WO2021027775A1 - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
WO2021027775A1
WO2021027775A1 PCT/CN2020/108180 CN2020108180W WO2021027775A1 WO 2021027775 A1 WO2021027775 A1 WO 2021027775A1 CN 2020108180 W CN2020108180 W CN 2020108180W WO 2021027775 A1 WO2021027775 A1 WO 2021027775A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclined surface
top cover
explosion
proof valve
secondary battery
Prior art date
Application number
PCT/CN2020/108180
Other languages
English (en)
French (fr)
Inventor
卜祥艳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20853251.5A priority Critical patent/EP3907816B1/en
Publication of WO2021027775A1 publication Critical patent/WO2021027775A1/zh
Priority to US17/489,681 priority patent/US20220021069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, in particular to a secondary battery.
  • the secondary battery includes a casing, an electrode assembly contained in the casing, and a top cover assembly that is hermetically connected with the casing.
  • the top cover assembly includes a top cover plate, an explosion-proof valve arranged on the top cover plate and a lower insulating member arranged below the top cover plate. The lower insulator can prevent a short circuit between the electrode assembly and the top cover plate.
  • the electrode assembly expands during the charging and discharging process and easily deforms the lower insulator.
  • the deformed lower insulator will squeeze the explosion-proof valve, which will affect the preset burst pressure of the explosion-proof valve, which may cause potential safety hazards for the secondary battery.
  • the embodiment of the present application provides a secondary battery that can buffer the expansion of the electrode assembly through the lower insulator, so that it is not easy to deform and squeeze the explosion-proof valve, ensure that the preset burst pressure of the explosion-proof valve is maintained in a normal state, and improve the use of the secondary battery safety.
  • an embodiment of the present application proposes a secondary battery, which includes a casing, an electrode assembly, and a top cover assembly.
  • the housing has an opening.
  • the electrode assembly is arranged in the casing.
  • the electrode assembly has a main body and two tabs. Two tabs respectively extend from both sides of the main body in the axial direction. Both tabs are arranged facing the housing.
  • the top cover assembly includes a top cover plate, a lower insulator and an explosion-proof valve.
  • the top cover seals the opening.
  • the explosion-proof valve is arranged on the top cover plate.
  • the lower insulating member is arranged on the side of the top cover plate close to the electrode assembly.
  • the lower insulator has an inner side facing the main body, an outer side facing the top cover plate, and a concave portion recessed from the inner side toward the outer side.
  • the recess corresponds to the position of the explosion-proof valve.
  • the recess is used to buffer the amount of expansion and deformation of the main body.
  • the recess includes a first inclined surface and a second inclined surface distributed along the axial direction.
  • the first inclined surface and the second inclined surface are both inclined from the inner side to the outer side, and the explosion-proof valve is located between the first inclined surface and the second inclined surface. In between, along the direction from the inner side to the outer side, the first inclined surface and the second inclined surface are close to each other.
  • the first inclined surface and the inner side surface arc transition, and/or, the second inclined surface and the inner side surface arc transition are transitions.
  • the first inclined surface and the second inclined surface are symmetrically arranged along the axis of the recess itself.
  • the first inclined surface and the inner side surface are both flat, the angle between the first inclined surface and the inner side surface is 120° to 170°, and/or the second inclined surface and the inner side surface are flat surfaces, and the second inclined surface The included angle with the inner side is 120° to 170°.
  • the thickness of the corresponding part of the lower insulating member and the first inclined surface gradually decreases in the direction approaching the explosion-proof valve, and/or the thickness of the corresponding part of the lower insulating member and the second inclined surface is closer to the explosion-proof valve The direction gradually decreases.
  • the top cover plate has a liquid injection hole.
  • the liquid injection hole is located on one side of the explosion-proof valve, and the first inclined surface or the second inclined surface does not exceed the edge of the liquid injection hole near the explosion-proof valve.
  • the top cover plate has a convex portion protruding toward the lower insulating member, the injection hole penetrates the convex portion, and the lower insulating member has a groove recessed from the outer side surface toward the inner side surface and a groove communicating with the groove
  • the overflow hole, the convex part is inserted into the groove, the liquid injection hole is arranged corresponding to the overflow hole, and the first inclined surface or the second inclined surface does not exceed the edge of the groove near the explosion-proof valve.
  • the lower insulating member includes a first insulating plate and a second insulating plate spaced apart along the axial direction, the first inclined surface is arranged on the first insulating plate, and the first inclined surface is connected to the first insulating plate and faces The first end surface and inner side surface of the second insulating plate, the second inclined surface is arranged on the second insulating plate, and the second inclined surface is connected to the second end surface and the inner side surface of the second insulating plate facing the first insulating plate.
  • An avoidance gap communicating with the recess is formed between the end surfaces.
  • a connecting column is provided between the first insulating plate and the top cover plate, the first insulating plate is connected and fixed to the top cover plate through the connecting column, and/or the second insulating plate and the top cover plate Connecting pillars are arranged between them, and the second insulating plate is connected and fixed with the top cover plate through the connecting pillars.
  • the lower insulator is an integral structure and has an escape hole communicating with the recess, the escape hole corresponds to the position of the explosion-proof valve, and the first inclined surface and the second inclined surface are connected in the axial direction.
  • the main body of the electrode assembly may swell.
  • the portion of the main body that faces the opening of the housing expands toward the lower insulator. Since the portion of the lower insulator corresponding to the position of the explosion-proof valve is provided with a recess, when the main body is expanded, the expansion of the main body will be at least partially absorbed and buffered by the recess, so that at the position of the recess, the expanded main body is not It will come into contact with the lower insulator or will not apply greater compressive stress to the lower insulator.
  • FIG. 1 is a schematic diagram of an exploded structure of a secondary battery according to an embodiment of the present application
  • FIG. 2 is a schematic sectional view of the secondary battery of the embodiment shown in FIG. 1;
  • Figure 3 is a cross-sectional view along the A-A direction in Figure 2;
  • FIG. 4 is a schematic diagram of a partial exploded structure of a secondary battery according to an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of the secondary battery of the embodiment shown in FIG. 4;
  • Figure 6 is an enlarged view of B in Figure 5;
  • Fig. 7 is an enlarged view of B1 in Fig. 6;
  • Fig. 8 is an enlarged view of B2 in Fig. 6;
  • FIG. 9 is a schematic structural diagram of a first insulating plate according to an embodiment of the present application.
  • Figure 10 is an enlarged view of C in Figure 5;
  • Fig. 11 is a schematic partial cross-sectional view of a lower insulating member according to another embodiment of the present application.
  • Electrode assembly 31. Main body; 32. Tab;
  • Top cover assembly 41. Top cover plate; 41a, center line; 411, injection hole; 412, convex part; 42, lower insulator; 421, inner side surface; 422, outer side surface; 423, concave part; 423a, The first slope; 423b, the second slope; 424, the first insulating plate; 424a, the first end surface; 425, the second insulating plate; 425a, the second end surface; 426, the receiving part; 427, the groove; 428, overcurrent Hole; 429, avoidance hole; 430, connecting column; 43, explosion-proof valve;
  • X axial direction
  • Y thickness direction
  • the secondary battery 10 of the embodiment of the present application includes a casing 20, an electrode assembly 30 provided in the casing 20, and a top cover assembly 40 sealedly connected to the casing 20.
  • the housing 20 in the embodiment of the present application has a square structure or other shapes.
  • the case 20 has an internal space accommodating the electrode assembly 30 and the electrolyte, and an opening 20a communicating with the internal space.
  • the housing 20 may be made of materials such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 30 of the embodiment of the present application may be formed by stacking or winding the first pole piece, the second pole piece, and the diaphragm between the first pole piece and the second pole piece together to form the main body portion 31, wherein the diaphragm is An insulator between the first pole piece and the second pole piece.
  • the main body portion 31 of this embodiment has a flat structure as a whole, which has a predetermined thickness, height, and width.
  • the axial direction of the main body portion 31 is its own height direction.
  • the main body portion 31 has two end surfaces facing each other in the axial direction X of the main body portion 31.
  • the first pole piece is used as a positive electrode piece and the second pole piece is a negative electrode piece for illustration.
  • the first pole piece may also be a negative pole piece
  • the second pole piece is a positive pole piece
  • the positive sheet active material is coated on the coating area of the positive sheet
  • the negative sheet active material is coated on the coating area of the negative sheet.
  • the uncoated area extending from the coated area of the main body portion 31 serves as the tab 32.
  • the electrode assembly 30 includes two tabs 32, namely a positive electrode tab and a negative electrode tab.
  • the positive tab extends from the coating area of the positive electrode sheet.
  • the negative lug extends from the coated area of the negative sheet.
  • Two tabs 32 respectively extend from both sides of the main body portion 31 in the axial direction X.
  • a tab 32 extends from each end surface of the main body portion 31, so that two tabs 32 are also arranged opposite to each other in the axial direction X. Both end surfaces of the main body portion 31 and the two tabs 32 are disposed facing the housing 20.
  • the main body portion 31 has a wide surface and a narrow surface alternately arranged. Optionally, the narrow surface of the main body portion 31 faces the opening 20 a of the housing 20.
  • the top cover assembly 40 of the embodiment of the present application includes a top cover plate 41, a lower insulating member 42 and an explosion-proof valve 43.
  • the top cover 41 is connected to the housing 20 and seals the opening 20 a of the housing 20.
  • the top cover 41 has an installation hole for installing the explosion-proof valve 43.
  • the explosion-proof valve 43 is connected to the top cover plate 41 and covers the mounting hole.
  • the explosion-proof valve 43 has a sheet structure.
  • the top cover 41 has a center line 41a that intersects the axis of the mounting hole. In the axial direction X, the explosion-proof valve 43 is symmetrically arranged in the areas on both sides of the center line 41a.
  • the lower insulating member 42 is disposed on a side of the top cover plate 41 close to the electrode assembly 30.
  • the lower insulating member 42 has an inner side surface 421 facing the main body portion 31, an outer side surface 422 facing the top cover 41, and a recess 423 recessed from the inner side surface 421 toward the outer side surface 422.
  • the recessed portion 423 and the explosion-proof valve 43 are in positions corresponding to each other and are spaced apart from the main body portion 31 by a predetermined distance.
  • the concave portion 423 of the lower insulating member 42 is used to buffer the amount of expansion and deformation of the main body portion 31.
  • the projection of the explosion-proof valve 43 on the top cover 41 is located within the outer contour of the projection of the recess 423 of the lower insulating member 42 on the top cover 41.
  • the secondary battery 10 further includes an electrode terminal 60 provided on the top cover plate 41 and a current collector 50 connecting the electrode terminal 60 and the tab 32.
  • Two electrode terminals 60 are provided on the top cover 41.
  • the number of current collectors 50 is also two.
  • One electrode terminal 60 is connected to a corresponding tab 32 through a current collector 50.
  • the current collector 50 includes a connecting portion 51 connected and fixed to the electrode terminal 60 and a current collecting portion 52 connected to the tab 32.
  • the connecting portion 51 is connected to a portion of the electrode terminal 60 close to the electrode assembly 30.
  • the collecting portion 52 is at least partially located between the end surface of the main body portion 31 and the housing 20 and is welded to the tab 32.
  • the main body portion 31 of the electrode assembly 30 may swell.
  • the portion of the main body 31 facing the opening 20 a of the casing 20 expands toward the lower insulating member 42. Since the portion of the lower insulator 42 corresponding to the position of the explosion-proof valve 43 is provided with a concave portion 423, when the main body portion 31 expands, the expansion of the main body portion 31 will be at least partially absorbed and buffered by the concave portion 423, thereby being at the position of the concave portion 423. Therefore, the expanded main body portion 31 will not come into contact with the lower insulating member 42 or will not apply a large compressive stress to the lower insulating member 42.
  • the possibility of deformation of the lower insulator 42 being squeezed by the expanded main body 31 is reduced, thereby reducing the deformation of the lower insulator 42 squeezing the explosion-proof valve 43 and affecting the original preset of the explosion-proof valve 43.
  • the possibility of burst pressure improves the safety of use of the secondary battery 10.
  • the recess 423 provided in the lower insulator 42 can increase the internal space of the secondary battery 10, so that the recess 423 can accommodate a part of the gas generated during the operation of the secondary battery 10, reduce the internal pressure of the secondary battery 10, and lower the secondary battery 10 10 The possibility of overall expansion.
  • the lower insulating member 42 includes a first insulating plate 424 and a second insulating plate 425 arranged at intervals along the axial direction X.
  • the first insulating plate 424 and the second insulating plate 425 are respectively located on both sides of the explosion-proof valve 43.
  • An escape gap is formed between the first insulating plate 424 and the second insulating plate 425.
  • the avoidance gap corresponds to the position of the explosion-proof valve 43, so that the lower insulator 42 avoids the explosion-proof valve 43 through the avoidance gap, so as to ensure that when the internal pressure of the secondary battery 10 exceeds the preset burst stress of the explosion-proof valve 43, the airflow can smoothly pass through the avoidance gap And it is discharged from the explosion-proof valve 43; Moreover, the lower insulator 42 is easy to soften in a high temperature environment. If the lower insulator 42 is facing the explosion-proof valve 43 without a clearance, the softened lower insulator 42 will be close to the explosion-proof valve 43. It affects the preset bursting stress of the explosion-proof valve 43.
  • the concave portion 423 includes a first inclined surface 423 a and a second inclined surface 423 b distributed along the axial direction X of the main body portion 31. Both the first inclined surface 423a and the second inclined surface 423b are inclined from the inner side surface 421 to the outer side surface 422.
  • the explosion-proof valve 43 is located between the first inclined surface 423a and the second inclined surface 423b.
  • the first insulating plate 424 has an inner side surface 421 and a first end surface 424 a facing the second insulating plate 425.
  • the first inclined surface 423a is disposed on the first insulating plate 424 and connects the inner side surface 421 of the first insulating plate 424 and the first end surface 424a.
  • the second insulating plate 425 has an inner side surface 421 and a second end surface 425 a facing the first insulating plate 424.
  • the first end surface 424 a and the second end surface 425 a are spaced apart to form an escape gap communicating with the recess 423.
  • the second inclined surface 423b is disposed on the second insulating plate 425 and connects the inner side surface 421 of the second insulating plate 425 and the second end surface 425a.
  • the first inclined surface 423a and the second inclined surface 423b are close to each other in the direction from the inner side surface 421 to the outer side surface 422, that is, the distance between the first inclined surface 423a and the second inclined surface 423b in the axial direction X of the main body portion 31 Gradually become smaller.
  • the portion corresponding to the main body portion 31 and the inner side surface 421 is indicated as the first region
  • the portion corresponding to the main body portion 31 and the concave portion 423 is indicated as the second region.
  • the second area of the main body portion 31 will enter the recess 423, and the second area of the main body portion 31 can contact the first inclined surface 423a and the second inclined surface 423b, so that the first inclined surface 423a and The second inclined surface 423b exerts a restraining force on the second area, and reduces the expansion amount of the main body 31 to a certain extent.
  • the first inclined surface 423a and the second inclined surface 423b have slopes, so that when the first inclined surface 423a and the second inclined surface 423b are in contact with the second area respectively, there will be no stress concentration, which reduces the localization of the lower insulator 42 to the expanded second area. The possibility of structural damage.
  • the first inclined surface 423a and the second inclined surface 423b are both arc-transitioned with the corresponding inner side surface 421, thereby reducing the transition area between the first inclined surface 423a and the inner side surface 421 and the second The sharpness of the transition area between the two inclined surfaces 423b and the inner side surface 421.
  • the transition area between each of the first inclined surface 423a and the second inclined surface 423b and the corresponding inner side surface 421 is smooth and continuous.
  • the first area is constrained by the inner side surface 421 of the lower insulating member 42, and the second area is not restricted by the inner side surface 421 of the lower insulating member 42, so that the expansion degree of the first area is smaller than that of the second area.
  • the degree of expansion of the area which in turn causes the expansion of the first area and the second area to be different.
  • both the first inclined surface 423a and the second inclined surface 423b have a circular arc transition with the inner side surface 421, the transition between the first area and the second area is correspondingly smooth, so the inner side surface 421 of the lower insulating member 42 and the first inclined surface 423a transition area
  • the main body portion 31 will not be subjected to a large shear stress in the direction perpendicular to the axial direction X, and the main body portion 31 is effectively reduced due to the transition area between the inner side surface 421 and the first inclined surface 423a of the lower insulator 42 and the inner side surface 421 and There is a possibility of shearing structural damage due to the extrusion of the transition area of the second inclined surface 423b.
  • the direction perpendicular to the axial direction X indicates the same direction as the thickness direction Y of the top cover 41.
  • the shear structural damage of the main body 31 includes pole piece cracking or diaphragm cracking.
  • the first inclined surface 423a and the first end surface 424a transition in a circular arc
  • the second inclined surface 423b and the second end surface 425a transition in a circular arc, thereby reducing the transition area between the first inclined surface 423a and the first end surface 424a and the second inclined surface 423b
  • the sharpness of the transition area with the second end surface 425a is particularly reducing the transition area between the first inclined surface 423a and the first end surface 424a and the second inclined surface 423b.
  • the transition area between the first inclined surface 423a and the first end surface 424a and the transition area between the second inclined surface 423b and the second end surface 425a No large shear stress is applied to the second area of the main body 31 in the direction perpendicular to the axial direction X, effectively reducing the transition of the second area of the main body 31 due to the first inclined surface 423a and the first end surface 424a Area and the transition area between the second inclined surface 423b and the second end surface 425a may cause shearing structural damage.
  • first inclined surface 423a or the second inclined surface 423b and the inner side surface 421 transition in a circular arc.
  • the first inclined surface 423a and the first end surface 424a transition in a circular arc, or the second inclined surface 423b and the second end surface 425a transition in a circular arc. In this way, it is also possible to reduce the possibility that the main body portion 31 is squeezed by the corresponding area of the lower insulating member 42 and the possibility of shearing structural damage occurs.
  • the first inclined surface 423a and the second inclined surface 423b are symmetrically arranged, so that the first inclined surface 423a and the second inclined surface 423b have the same structure, which further ensures that the main body 31 is in contact with the first inclined surface 423a
  • the expansion degree of the area is the same as the expansion degree of the substrate in the contact area between the main body portion 31 and the second inclined surface 423b, which reduces the possibility of uneven expansion in the second area of the main body portion 31.
  • both the first inclined surface 423a and the inner side surface 421 are flat.
  • the plane refers to an approximately flat surface.
  • the included angle ⁇ between the first inclined surface 423a and the inner side surface 421 is 120° to 170°.
  • the sharpness of the transition area between the first inclined surface 423a and the inner side surface 421 is still relatively large, and it is easy to impose an axial direction X on the expanded main body portion 31. Shear stress in the vertical direction.
  • the first inclined surface 423a and the inner side surface 421 When the included angle ⁇ between the first inclined surface 423a and the inner side surface 421 is greater than 170°, the first inclined surface 423a is too close to the plane where the inner side surface 421 is located, resulting in a smaller depth of the recess 423 in the direction from the inner side surface 421 to the outer side surface 422 , The effect of buffering the expansion of the main body portion 31 is not achieved.
  • the second inclined surface 423b and the inner side surface 421 are flat.
  • the included angle ⁇ between the second inclined surface 423b and the inner side surface 421 is 120° to 170°.
  • the included angle ⁇ between the second inclined surface 423b and the inner side surface 421 is less than 120°, the sharpness of the transition area between the second inclined surface 423b and the inner side surface 421 is still relatively large, and it is easy to apply the along and axis to the expanded main body 31 Shear stress perpendicular to the X phase.
  • the angle ⁇ between the second inclined surface 423b and the inner side surface 421 is greater than 170°, the second inclined surface 423b is too close to the plane where the inner side surface 421 is located, resulting in a smaller depth of the recess 423 in the direction from the inner side surface 421 to the outer side surface 422 , The effect of buffering the expansion of the main body portion 31 is not achieved.
  • the included angle ⁇ between the first inclined surface 423a and the inner side surface 421 and the included angle ⁇ between the second inclined surface 423b and the inner side surface 421 are both 150°.
  • the first inclined surface 423a and the inner side surface 421 are both flat surfaces, and the included angle ⁇ between the first inclined surface 423a and the inner side surface 421 is 120° to 170°, and the second inclined surface 423b and the inner side surface 421 are flat surfaces.
  • the included angle ⁇ between the two inclined surfaces 423b and the inner side surface 421 is 120° to 170°.
  • the thickness of the corresponding part of the lower insulating member 42 and the first inclined surface 423a gradually decreases in the direction approaching the explosion-proof valve 43, and the corresponding part of the lower insulating member 42 and the second inclined surface 423b
  • the thickness of ⁇ gradually decreases in the direction close to the explosion-proof valve 43.
  • the top cover plate 41 has a liquid injection hole 411 for injecting electrolyte into the housing 20.
  • the liquid injection hole 411 is located on one side of the explosion-proof valve 43 and on one side of the first inclined surface 423a.
  • the area on the top cover 41 between the liquid injection hole 411 and the explosion-proof valve 43 corresponds to the first inclined surface 423a.
  • the first insulating plate 424 of the lower insulating member 42 has a flow hole 428 corresponding to the liquid injection hole 411.
  • the first inclined surface 423a does not exceed the edge of the liquid injection hole 411 near the explosion-proof valve 43.
  • the top cover 41 has a convex portion 412 protruding toward the lower insulating member 42.
  • the injection hole 411 penetrates the convex portion 412.
  • the first insulating plate 424 has a groove 427 recessed from the outer side surface 422 toward the inner side surface 421.
  • the flow hole 428 communicates with the groove 427.
  • the convex portion 412 of the top cover 41 is inserted into the groove 427, and the liquid injection hole 411 is provided corresponding to the flow hole 428.
  • the electrolyte is injected into the housing 20 through the injection hole 411 and the overflow hole 428.
  • the first inclined surface 423a does not exceed the edge of the groove 427 near the explosion-proof valve 43, and thus does not exceed the edge of the liquid injection hole 411 near the explosion-proof valve 43. Since the first inclined surface 423a does not exceed the edge of the groove 427 near the explosion-proof valve 43, the bottom of the groove 427 will not be thinned and the thickness of the bottom will be too small, thereby reducing the possibility of fracture or deformation of the bottom due to external forces. Sex.
  • the liquid injection hole 411 is located on one side of the explosion-proof valve 43 and on one side of the second inclined surface 423b.
  • the second inclined surface 423b corresponds to the area between the liquid injection hole 411 and the explosion-proof valve 43 on the top cover 41.
  • the second insulating plate 425 of the lower insulating member 42 has a flow hole 428 corresponding to the liquid injection hole 411.
  • the second inclined surface 423b does not exceed the edge of the liquid injection hole 411 near the explosion-proof valve 43.
  • the top cover 41 has a convex portion 412 protruding toward the lower insulating member 42. The injection hole 411 penetrates the convex portion 412.
  • the second insulating plate 425 has a groove 427 recessed from the outer side surface 422 toward the inner side surface 421.
  • the flow hole 428 communicates with the groove 427.
  • the convex portion 412 of the top cover 41 is inserted into the groove 427, and the liquid injection hole 411 is provided corresponding to the flow hole 428.
  • the second inclined surface 423b does not exceed the edge of the groove 427 near the explosion-proof valve 43, and thus does not exceed the edge of the liquid injection hole 411 near the explosion-proof valve 43.
  • the second inclined surface 423b does not exceed the edge of the groove 427 near the explosion-proof valve 43, the bottom of the groove 427 will not be thinned and the thickness of the bottom will be too small, thereby reducing the possibility of fracture or deformation of the bottom due to external force. Sex.
  • the end of the first insulating plate 424 close to the second insulating plate 425 and the end of the second insulating plate 425 close to the first insulating plate 424 are both cantilevered.
  • the end of the first insulating plate 424 close to the second insulating plate 425 is connected and fixed to the top cover plate 41
  • the end of the second insulating plate 425 close to the first insulating plate 424 is connected and fixed to the top cover 41.
  • both the end of the first insulating plate 424 and the end of the second insulating plate 425 can keep their positions stable and are not prone to sagging deformation.
  • a connecting post 430 is provided between the first insulating plate 424 and the top cover plate 41, and a connecting post 430 is provided between the second insulating plate 425 and the top cover plate 41.
  • Both the first insulating plate 424 and the second insulating plate 425 are connected and fixed to the top cover plate 41 through a connecting column 430.
  • the connecting pillar 430 does not need to penetrate the first insulating plate 424 or the second insulating plate 425, so as to ensure that the first inclined surface 423a or the second inclined surface 423b remains in a complete and flat state, and the pairing of the first inclined surface 423a and the second inclined surface 423b is reduced.
  • a recessed portion is provided on the surface of the top cover plate 41 facing the electrode assembly 30.
  • the connecting column 430 is at least partially inserted into the recess and connected and fixed with the top cover plate 41, thereby effectively improving the structural compactness of the top cover plate 41 and the lower insulator 42, reducing the total thickness of the two, which is beneficial to improve the secondary battery Energy density of 10.
  • one of the end of the first insulating plate 424 close to the second insulating plate 425 and the end of the second insulating plate 425 close to the first insulating plate 424 is connected and fixed to the top cover plate 41.
  • the first insulating plate 424 of the lower insulating member 42 has a receiving portion 426 recessed from the inner side surface 421 to the outer side surface 422.
  • the connecting portion 51 of the current collector 50 is accommodated in the accommodating portion 426 and connected to the electrode terminal 60.
  • the structure of the lower insulating member 42 and the current collecting member 50 is more compact, thereby reducing the space occupancy rate in the direction from the inner side surface 421 to the outer side surface 422, which is beneficial to increase the energy density of the secondary battery 10.
  • the connecting portion 51 of the current collector 50 and the electrode terminal 60 do not exceed the inner side surface 421 of the lower insulating member 42, thereby reducing the application of excessive shear stress by the connecting portion 51 or the electrode terminal 60 to the corresponding area of the expanded main body 31 It may lead to the possibility of shear structural damage in the corresponding area.
  • the second insulating plate 424 of the lower insulating member 42 also has a receiving portion 426 recessed from the inner side surface 421 to the outer side surface 422.
  • the structure of the lower insulating member 42 of the embodiment shown in FIG. 11 is basically the same as that of the lower insulating member 42 of the embodiment shown in FIG. 6. Therefore, the main differences are described here, and the same structure or the embodiments that can be combined are no longer Repeat.
  • the lower insulating member 42 is an integral structure and has an escape hole 429 communicating with the recess 423.
  • the escape hole 429 corresponds to the position of the explosion-proof valve 43, so that the lower insulator 42 avoids the explosion-proof valve 43 through the escape hole 429 to ensure that when the internal pressure of the secondary battery 10 is too high and exceeds the preset burst stress of the explosion-proof valve 43, the airflow can smoothly pass the avoidance
  • the hole 429 is discharged from the explosion-proof valve 43.
  • the size of the escape hole 429 is larger than the size of the mounting hole on the top cover plate 41 and also larger than the size of the explosion-proof valve 43.
  • the escape hole 429 does not penetrate the lower insulating member 42 in its radial direction, so that the first inclined surface 423a and the second inclined surface 423b are connected to each other in the axial direction X.
  • Both the first inclined surface 423a or the second inclined surface 423b transition with the hole wall of the avoiding hole 429 in a circular arc. Therefore, the transition area between the first inclined surface 423a and the hole wall or the transition area between the second inclined surface 423b and the hole wall will not impose a large shear stress on the main body portion 31 in a direction perpendicular to the axial direction X, effectively reducing the main body portion 31
  • the possibility of shear structural damage may occur due to the squeezing action of the transition area between the first inclined surface 423a and the hole wall or the transition area between the second inclined surface 423b and the hole wall.
  • the first inclined surface 423a and the second inclined surface 423b and the hole wall of the avoiding hole 429 are arc-transitioned.
  • the lower insulating member 42 is an integral structure and has high structural strength, it can be connected and fixed with the top cover 41 without using the connecting post 430 of the foregoing embodiment, so that the lower insulating member 42 is insulated from the inner side 421 to the outer side 422.
  • the structure between the member 42 and the top cover plate 41 is more compact, and the lower insulating member 42 and the top cover plate 41 have relatively simple structures, which reduces the difficulty of manufacturing.
  • the main body portion 31 of the electrode assembly 30 has a swelling phenomenon.
  • the expanded main body portion 31 will not directly squeeze the upper and lower insulating members 42 and The area corresponding to the explosion-proof valve 43.
  • the expanded body portion 31 will not come into contact with the area where the recessed portion 423 is provided on the lower insulating member 42 or will not apply a large compressive stress to the area, reducing the area being squeezed by the expanded body portion 31.
  • the possibility of deformation occurs, thereby reducing the possibility that deformation of the area will squeeze the explosion-proof valve 43 and affect the preset burst pressure of the explosion-proof valve 43, and improve the safety of the use of the secondary battery 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请涉及一种二次电池,其包括:壳体,具有开口;电极组件,设置于壳体内,电极组件具有主体部以及两个极耳,两个极耳分别从主体部轴向的两侧延伸出,两个极耳均面向壳体设置;顶盖组件,包括顶盖板、下绝缘件和防爆阀,顶盖板密封开口,防爆阀设置于顶盖板,下绝缘件设置于顶盖板靠近电极组件的一侧,下绝缘件具有面对主体部的内侧面、面对顶盖板的外侧面以及从内侧面朝外侧面凹陷的凹部,凹部与防爆阀位置相对应,凹部用于缓冲主体部的膨胀变形量。本申请实施例的二次电池能够通过下绝缘件缓冲电极组件的膨胀量,从而自身不易发生变形而挤压防爆阀,保证防爆阀预设爆破压力保持正常状态,提升二次电池使用安全性。

Description

二次电池
相关申请的交叉引用
本申请要求享有于2019年08月14日提交的名称为“二次电池”的中国专利申请201910749321.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种二次电池。
背景技术
随着科学技术的发展,二次电池在移动电话、数码摄像机和手提电脑等便携式电子设备中得到了广泛使用,并且在电动汽车、电动自行车等电动交通工具及储能设施等大中型电动设备方面有着广泛的应用前景,成为解决能源危机和环境污染等全球性问题的重要技术手段。二次电池包括壳体、收纳于壳体内的电极组件、与壳体密封连接的顶盖组件。顶盖组件包括顶盖板、设置于顶盖板上的防爆阀以及设置于顶盖板下方的下绝缘件。下绝缘件可防止电极组件和顶盖板之间发生短路。然而,电极组件在充放电过程中发生膨胀并容易导致下绝缘件变形,变形后的下绝缘件会挤压防爆阀,从而影响防爆阀的预设爆破压力,导致二次电池存在安全隐患。
发明内容
本申请实施例提供一种二次电池,能够通过下绝缘件缓冲电极组件的膨胀量,从而自身不易发生变形而挤压防爆阀,保证防爆阀预设爆破压力保持正常状态,提升二次电池使用安全性。
一方面,本申请实施例提出了一种二次电池,其包括壳体、电极组件以及顶盖组件。壳体具有开口。电极组件设置于壳体内。电极组件具有主 体部以及两个极耳。两个极耳分别从主体部轴向的两侧延伸出。两个极耳均面向壳体设置。顶盖组件包括顶盖板、下绝缘件和防爆阀。顶盖板密封开口。防爆阀设置于顶盖板。下绝缘件设置于顶盖板靠近电极组件的一侧。下绝缘件具有面对主体部的内侧面、面对顶盖板的外侧面以及从内侧面朝外侧面凹陷的凹部。凹部与防爆阀位置相对应。凹部用于缓冲主体部的膨胀变形量。
根据本申请的前述实施例,凹部包括沿轴向分布的第一斜面和第二斜面,第一斜面和第二斜面均从内侧面朝外侧面倾斜,防爆阀位于第一斜面和第二斜面之间,沿内侧面至外侧面的方向,第一斜面和第二斜面彼此靠近。
根据本申请的前述实施例,第一斜面与内侧面圆弧过渡,和/或,第二斜面与内侧面圆弧过渡。
根据本申请的前述任一实施例,沿凹部自身的轴线,第一斜面和第二斜面对称设置。
根据本申请的前述实施例,第一斜面和内侧面均为平面,第一斜面与内侧面的夹角为120°至170°,和/或,第二斜面和内侧面为平面,第二斜面与内侧面之间的夹角为120°至170°。
根据本申请的前述任一实施例,下绝缘件与第一斜面对应部分的厚度沿靠近防爆阀的方向逐渐减小,和/或,下绝缘件与第二斜面对应部分的厚度沿靠近防爆阀的方向逐渐减小。
根据本申请的前述任一实施例,顶盖板具有注液孔,沿轴向,注液孔位于防爆阀的一侧,第一斜面或第二斜面不超过注液孔靠近防爆阀的边缘。
根据本申请的前述实施例,顶盖板具有朝向下绝缘件凸出的凸部,注液孔贯通凸部,下绝缘件具有从外侧面朝内侧面凹陷的凹槽以及与凹槽相连通的过流孔,凸部插入凹槽,注液孔与过流孔相对应设置,第一斜面或第二斜面不超过凹槽靠近防爆阀的边缘。
根据本申请的前述任一实施例,下绝缘件包括沿轴向间隔设置的第一绝缘板和第二绝缘板,第一斜面设置于第一绝缘板上,第一斜面连接第一 绝缘板朝向第二绝缘板的第一端面与内侧面,第二斜面设置于第二绝缘板上,第二斜面连接第二绝缘板朝向第一绝缘板的第二端面和内侧面,第一端面和第二端面之间形成与凹部相连通的避让间隙。
根据本申请的前述实施例,第一绝缘板和所述顶盖板之间设置连接柱,第一绝缘板通过连接柱与顶盖板连接固定,和/或,第二绝缘板和顶盖板之间设置连接柱,第二绝缘板通过连接柱与顶盖板连接固定。
根据本申请的前述实施例,下绝缘件为一体结构并且具有与凹部相连通的避让孔,避让孔与防爆阀位置相对应,第一斜面和第二斜面沿轴向相连接。
根据本申请实施例的二次电池,在使用过程中,电极组件的主体部会出现膨胀现象。主体部朝向壳体的开口的部分会朝靠近下绝缘件的方向发生膨胀。由于下绝缘件上与防爆阀位置相对应的部分设置有凹部,因此在主体部发生膨胀时,主体部的膨胀量会至少部分地被凹部吸收缓冲,从而在凹部位置,发生膨胀的主体部不会与下绝缘件发生接触或者不会对下绝缘件施加较大的压应力。这样,在充放电过程中,降低下绝缘件受到膨胀后的主体部挤压而发生变形的可能性,从而降低下绝缘件发生变形挤压防爆阀而影响防爆阀原预设爆破压力的可能性,提高二次电池的使用安全性。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一实施例的二次电池的分解结构示意图;
图2是图1所示实施例的二次电池的剖视结构示意图;
图3是图2中沿A-A方向的剖视图;
图4是本申请一实施例的二次电池的局部分解结构示意图;
图5是图4所示实施例的二次电池的剖视结构示意图;
图6是图5中B处放大图;
图7是图6中B1处放大图;
图8是图6中B2处放大图;
图9是本申请一实施例的第一绝缘板的结构示意图;
图10是图5中C处放大图;
图11是本申请另一实施例的下绝缘件的局部剖视结构示意图。
在附图中,附图未必按照实际的比例绘制。
标记说明:
10、二次电池;
20、壳体;20a、开口;
30、电极组件;31、主体部;32、极耳;
40、顶盖组件;41、顶盖板;41a、中心线;411、注液孔;412、凸部;42、下绝缘件;421、内侧面;422、外侧面;423、凹部;423a、第一斜面;423b、第二斜面;424、第一绝缘板;424a、第一端面;425、第二绝缘板;425a、第二端面;426、容纳部;427、凹槽;428、过流孔;429、避让孔;430、连接柱;43、防爆阀;
50、集流件;51、连接部;52、集流部;
60、电极端子;
X、轴向;Y、厚度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不 是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图11对本申请实施例进行描述。
参见图1至图3所示,本申请实施例的二次电池10包括壳体20、设置于壳体20内的电极组件30以及与壳体20密封连接的顶盖组件40。
本申请实施例的壳体20为方形结构或其他形状。壳体20具有容纳电极组件30和电解液的内部空间以及与内部空间相连通的开口20a。壳体20可以由例如铝、铝合金或塑料等材料制造。
本申请实施例的电极组件30可通过将第一极片、第二极片以及位于第一极片和第二极片之间的隔膜一同堆叠或卷绕而形成主体部31,其中,隔膜是介于第一极片和第二极片之间的绝缘体。本实施例的主体部31整体为扁平状结构,其具有预定的厚度、高度和宽度。主体部31的轴向为自身的高度方向。主体部31具有沿自身轴向X相对的两个端面。在本实施例中,示例性地以第一极片为正极片,第二极片为负极片进行说明。同样地,在其他的实施例中,第一极片还可以为负极片,而第二极片为正极片。另外,正极片活性物质被涂覆在正极片的涂覆区上,而负极片活性物质被涂覆到负极片的涂覆区上。由主体部31的涂覆区延伸出的未涂覆区则作为极耳32,电极组件30包括两个极耳32,即正极耳和负极耳,正极耳从正极片的涂覆区延伸出,负极耳从负极片的涂覆区延伸出。两个极耳32分别从主体部31的轴向X的两侧延伸出。主体部31的每个端面延伸出一个极耳32,从而两个极耳32也沿轴向X相对设置。主体部31的两个端面以及两个极耳32均面向壳体20设置。主体部31具有交替设置的宽面和窄面。可选地,主体部31的窄面朝向壳体20的开口20a。
本申请实施例的顶盖组件40包括顶盖板41、下绝缘件42和防爆阀43。顶盖板41与壳体20连接并密封壳体20的开口20a。顶盖板41具有安装防爆阀43的安装孔。防爆阀43连接于顶盖板41并覆盖安装孔。可选地,防爆阀43为片状结构。顶盖板41具有与安装孔的轴线相交的中心线41a。在轴向X上,防爆阀43位于中心线41a两侧的区域对称设置。下绝缘件42设置于顶盖板41靠近电极组件30的一侧。下绝缘件42具有面对主体部31的内侧面421、面对顶盖板41的外侧面422以及从内侧面421朝外侧面422凹陷的凹部423。凹部423与防爆阀43彼此位置相对应并且与主体部31间隔预定距离。下绝缘件42的凹部423用于缓冲主体部31的膨胀变形量。在一个示例中,防爆阀43在顶盖板41上的投影位于下绝缘件42的凹部423在顶盖板41上的投影的外轮廓以内。
二次电池10还包括设置于顶盖板41上的电极端子60以及连接电极端子60和极耳32的集流件50。顶盖板41上设置有两个电极端子60。集流件50的数量也为两个。一个电极端子60通过一个集流件50与相对应的一个极耳32连接。集流件50包括与电极端子60连接固定的连接部51以及与极耳32相连接的集流部52。连接部51与电极端子60靠近电极组件30的部分相连接。集流部52至少部分地位于主体部31的端面和壳体20之间并与极耳32焊接。
本申请实施例的二次电池10,在使用过程中,电极组件30的主体部31会出现膨胀现象。主体部31朝向壳体20的开口20a的部分会朝靠近下绝缘件42的方向发生膨胀。由于下绝缘件42上与防爆阀43位置相对应的部分设置有凹部423,因此在主体部31发生膨胀时,主体部31的膨胀量会至少部分地被凹部423吸收缓冲,从而在凹部423位置,发生膨胀的主体部31不会与下绝缘件42发生接触或者不会对下绝缘件42施加较大的压应力。这样,在充放电过程中,降低下绝缘件42受到膨胀后的主体部31挤压而发生变形的可能性,从而降低下绝缘件42发生变形挤压防爆阀43而影响防爆阀43原预设爆破压力的可能性,提高二次电池10的使用安全性。另外,下绝缘件42设置的凹部423可以增大二次电池10的内部空间,从而凹部423可以容纳一部分二次电池10工作过程中产生的气 体,降低二次电池10内部压力,降低二次电池10整体发生膨胀的可能性。
参见图4所示,下绝缘件42包括沿轴向X间隔设置的第一绝缘板424和第二绝缘板425。第一绝缘板424和第二绝缘板425分别位于防爆阀43的两侧。第一绝缘板424和第二绝缘板425之间形成避让间隙。避让间隙与防爆阀43的位置相对应,从而下绝缘件42通过避让间隙避让防爆阀43,从而保证二次电池10内部压力过大超过防爆阀43预设爆破应力时,气流能够顺利通过避让间隙并从防爆阀43排出;再者,下绝缘件42在处于高温环境易软化,如果下绝缘件42正对防爆阀43的区域不作避让间隙,软化的下绝缘件42会紧贴在防爆阀43的四周,从而影响防爆阀43的预设爆破应力。
参见图5至图8所示,凹部423包括沿主体部31的轴向X分布的第一斜面423a和第二斜面423b。第一斜面423a和第二斜面423b均从内侧面421朝外侧面422倾斜。防爆阀43位于第一斜面423a和第二斜面423b之间。第一绝缘板424具有内侧面421和朝向第二绝缘板425的第一端面424a。第一斜面423a设置于第一绝缘板424并连接第一绝缘板424的内侧面421与第一端面424a。第二绝缘板425具有内侧面421和朝向第一绝缘板424的第二端面425a。第一端面424a和第二端面425a之间间隔设置以形成与凹部423相连通的避让间隙。第二斜面423b设置于第二绝缘板425并连接第二绝缘板425的内侧面421与第二端面425a。第一斜面423a和第二斜面423b沿内侧面421至外侧面422的方向彼此靠近,也就是说,第一斜面423a和第二斜面423b在主体部31的轴向X上两者之间的距离逐渐变小。本实施例中,为了便于描述,将主体部31与内侧面421相对应的部分示意为第一区域,而将主体部31与凹部423相对应部分示意为第二区域。在主体部31发生膨胀后,主体部31的第二区域会进入到凹部423内,并且主体部31的第二区域可以与第一斜面423a和第二斜面423b相接触,从而第一斜面423a和第二斜面423b会对第二区域施加约束力,一定程度上减小主体部31的膨胀量。第一斜面423a和第二斜面423b具有坡度,从而第一斜面423a和第二斜面423b各自与第二区域接触时不 会出现应力集中情况,降低下绝缘件42对膨胀状态的第二区域造成局部结构损坏的可能性。
在一个示例中,参见图7和图8所示,第一斜面423a和第二斜面423b均与相对应的内侧面421圆弧过渡,从而降低第一斜面423a与内侧面421的过渡区域以及第二斜面423b与内侧面421的过渡区域的尖锐程度。第一斜面423a和第二斜面423b各自与相对应的内侧面421之间过渡区域平滑连续。在主体部31发生膨胀时,第一区域受到下绝缘件42的内侧面421的约束,而第二区域未受到下绝缘件42的内侧面421的约束,从而第一区域的膨胀程度小于第二区域的膨胀程度,进而导致第一区域与第二区域膨胀量不同。由于第一斜面423a和第二斜面423b均与内侧面421圆弧过渡,从而使得第一区域与第二区域过渡也相应地平缓,因此下绝缘件42的内侧面421和第一斜面423a过渡区域不会对主体部31施加较大的沿与轴向X相垂直方向的剪切应力,有效降低主体部31因受到下绝缘件42的内侧面421和第一斜面423a过渡区域以及内侧面421和第二斜面423b过渡区域的挤压作用而发生剪切性结构损坏的可能性。与轴向X相垂直方向与顶盖板41的厚度方向Y指示相同方向。主体部31的剪切性结构损坏包括极片开裂或隔膜开裂的情况。可选地,第一斜面423a和第一端面424a圆弧过渡,而第二斜面423b和第二端面425a圆弧过渡,从而降低第一斜面423a与第一端面424a的过渡区域以及第二斜面423b与第二端面425a的过渡区域的尖锐程度。在主体部31的第二区域膨胀量较大而接近第一端面424a和第二端面425a时,第一斜面423a和第一端面424a的过渡区域以及第二斜面423b和第二端面425a的过渡区域均不会对主体部31的第二区域施加较大的沿与轴向X相垂直方向的剪切应力,有效降低主体部31的第二区域因受到第一斜面423a和第一端面424a的过渡区域以及第二斜面423b和第二端面425a的过渡区域的挤压而发生剪切性结构损坏的可能性。在其它示例中,第一斜面423a或第二斜面423b与内侧面421圆弧过渡。第一斜面423a和第一端面424a圆弧过渡,或者,第二斜面423b和第二端面425a圆弧过渡。这样,也可以降低主体部31因受到下绝缘件42相应区域的挤压而发生剪切性结构损坏的可能性。
在一个示例中,沿凹部423自身的轴线,第一斜面423a和第二斜面423b对称设置,从而第一斜面423a和第二斜面423b两者结构相同,进一步保证主体部31与第一斜面423a接触区域的膨胀程度与主体部31与第二斜面423b接触区域的膨胀程度基板保持相同,降低主体部31的第二区域出现膨胀不均匀的可能性。
在一个示例中,参见图7所示,第一斜面423a和内侧面421均为平面。这里,平面指的是近似平整的表面。第一斜面423a与内侧面421的夹角α为120°至170°。第一斜面423a与内侧面421的夹角α小于120°时,第一斜面423a与内侧面421的过渡区域的尖锐程度仍然较大,容易对膨胀后的主体部31施加沿与轴向X相垂直方向的剪切应力。第一斜面423a与内侧面421的夹角α大于170°时,第一斜面423a过于接近内侧面421所在的平面,从而导致凹部423在从内侧面421至外侧面422的方向上的深度偏小,达不到缓冲主体部31膨胀量的效果。在另一个示例中,参见图8所示,第二斜面423b和内侧面421为平面。第二斜面423b与内侧面421之间的夹角β为120°至170°。同样地,第二斜面423b与内侧面421的夹角β小于120°时,第二斜面423b与内侧面421的过渡区域的尖锐程度仍然较大,容易对膨胀后的主体部31施加沿与轴向X相垂直方向的剪切应力。第二斜面423b与内侧面421的夹角β大于170°时,第二斜面423b过于接近内侧面421所在的平面,从而导致凹部423在从内侧面421至外侧面422的方向上的深度偏小,达不到缓冲主体部31膨胀量的效果。优选地,第一斜面423a与内侧面421的夹角α以及第二斜面423b与内侧面421之间的夹角β均为150°。优选地,第一斜面423a和内侧面421均为平面,而第一斜面423a与内侧面421的夹角α为120°至170°,并且,第二斜面423b和内侧面421为平面,而第二斜面423b与内侧面421之间的夹角β为120°至170°。
在一个示例中,参见图7和图8所示,下绝缘件42与第一斜面423a对应部分的厚度沿靠近防爆阀43的方向逐渐减小,而下绝缘件42与第二斜面423b对应部分的厚度沿靠近防爆阀43的方向逐渐减小。在下绝缘件42的外侧面422与顶盖板41的表面接触时,由于下绝缘件42与第一斜面 423a所对应部分的厚度以及下绝缘件42与第二斜面423b所对应部分的厚度逐渐减小,因此降低了下绝缘件42与第一斜面423a对应部分和下绝缘件42与第二斜面423b对应部分在内侧面421至外侧面422方向上的空间占用率,有利于提高二次电池10的能量密度。
在一个示例中,参见图7所示,顶盖板41具有用于向壳体20内注入电解液的注液孔411。沿主体部31的轴向X,注液孔411位于防爆阀43的一侧并且位于第一斜面423a的一侧。顶盖板41上位于注液孔411和防爆阀43之间的区域与第一斜面423a相对应。下绝缘件42的第一绝缘板424具有与注液孔411相对应设置的过流孔428。第一斜面423a不超过注液孔411靠近防爆阀43的边缘。进一步地,顶盖板41具有朝向下绝缘件42凸出的凸部412。注液孔411贯通该凸部412。第一绝缘板424具有从外侧面422朝内侧面421凹陷的凹槽427。过流孔428与凹槽427相连通。顶盖板41的凸部412插入凹槽427内,而注液孔411与过流孔428相对应设置。电解液通过注液孔411与过流孔428注入壳体20内部。第一斜面423a不超过凹槽427靠近防爆阀43的边缘,从而也不超过注液孔411靠近防爆阀43的边缘。由于第一斜面423a不超过凹槽427靠近防爆阀43的边缘,因此凹槽427的底部不会被削薄而导致底部的厚度偏小,从而降低因底部受到外力作用而出现断裂或变形的可能性。
在另一个示例中,注液孔411位于防爆阀43的一侧并位于第二斜面423b的一侧。第二斜面423b与顶盖板41上位于注液孔411和防爆阀43之间的区域相对应。下绝缘件42的第二绝缘板425具有与注液孔411相对应设置的过流孔428。第二斜面423b不超过注液孔411靠近防爆阀43的边缘。进一步地,顶盖板41具有朝向下绝缘件42凸出的凸部412。注液孔411贯通凸部412。第二绝缘板425具有从外侧面422朝内侧面421凹陷的凹槽427。过流孔428与凹槽427相连通。顶盖板41的凸部412插入凹槽427内,而注液孔411与过流孔428相对应设置。第二斜面423b不超过凹槽427靠近防爆阀43的边缘,从而也不超过注液孔411靠近防爆阀43的边缘。由于第二斜面423b不超过凹槽427靠近防爆阀43的边缘,因此凹槽427的底部不会被削薄而导致底部的厚度偏小,从而降低因 底部受到外力作用而出现断裂或变形的可能性。
第一绝缘板424靠近第二绝缘板425的端部以及第二绝缘板425靠近第一绝缘板424的端部均为悬臂状态。本实施例中,第一绝缘板424靠近第二绝缘板425的端部与顶盖板41连接固定,而第二绝缘板425靠近第一绝缘板424的端部与顶盖板41连接固定。这样,第一绝缘板424的端部以及第二绝缘板425的端部均能够保持自身位置稳定,不易于出现下垂变形的情况。在一个示例中,参见图7和图8所示,第一绝缘板424和顶盖板41之间设置连接柱430,而第二绝缘板425和顶盖板41之间设置连接柱430。第一绝缘板424和第二绝缘板425均通过连接柱430与顶盖板41连接固定。这样,连接柱430不需要穿透第一绝缘板424或第二绝缘板425,从而保证第一斜面423a或第二斜面423b保持完整、平整的状态,降低第一斜面423a和第二斜面423b对主体部31的局部区域施加过大应力而导致主体部31的局部区域发生剪切性结构损坏的可能性。在另一个示例中,顶盖板41朝向电极组件30的表面上设置有凹陷部。连接柱430至少部分地插入凹陷部并与顶盖板41连接固定,从而有效提高顶盖板41和下绝缘件42的结构紧凑性,减小两者总的厚度尺寸,有利于提高二次电池10的能量密度。在其他示例中,第一绝缘板424靠近第二绝缘板425的端部以及第二绝缘板425靠近第一绝缘板424的端部中的一者与顶盖板41连接固定。
参见图9和图10所示,下绝缘件42的第一绝缘板424具有从内侧面421向外侧面422凹陷的容纳部426。集流件50的连接部51被容纳于该容纳部426内并与电极端子60相连接。这样,下绝缘件42和集流件50的结构更加紧凑,从而降低在内侧面421至外侧面422的方向上的空间占用率,有利于提高二次电池10的能量密度。集流件50的连接部51以及电极端子60均不超过下绝缘件42的内侧面421,从而降低连接部51或电极端子60对发生膨胀的主体部31的相应区域施加过大的剪切应力而导致相应区域发生剪切性结构损坏的可能性。在一个示例中,下绝缘件42的第二绝缘板424也具有从内侧面421向外侧面422凹陷的容纳部426。
图11所示实施例的下绝缘件42,与图6所示实施例的下绝缘件42的 结构基本相同,因此这里重点描述主要不同之处,对相同的结构或可以组合的实施例不再赘述。
参见图11所示,下绝缘件42为一体结构并且具有与凹部423相连通的避让孔429。避让孔429与防爆阀43位置相对应,从而下绝缘件42通过避让孔429避让防爆阀43,保证二次电池10内部压力过大并超过防爆阀43预设爆破应力时,气流能够顺利通过避让孔429并从防爆阀43排出。避让孔429的尺寸大于顶盖板41上的安装孔的尺寸,也大于防爆阀43的尺寸。避让孔429在自身径向上不贯穿下绝缘件42,从而第一斜面423a和第二斜面423b彼此沿轴向X相连接。
第一斜面423a或第二斜面423b均与避让孔429的孔壁圆弧过渡。因此第一斜面423a和孔壁的过渡区域或者第二斜面423b和孔壁的过渡区域不会对主体部31施加较大的沿与轴向X相垂直方向的剪切应力,有效降低主体部31因受到第一斜面423a和孔壁的过渡区域或者第二斜面423b和孔壁的过渡区域的挤压作用而发生剪切性结构损坏的可能性。优选地,第一斜面423a和第二斜面423b与避让孔429的孔壁圆弧过渡。
由于下绝缘件42为一体结构,自身结构强度高,因此与顶盖板41之间可以不使用前述实施例的连接柱430连接固定,从而在内侧面421至外侧面422的方向上,下绝缘件42和顶盖板41之间结构更加紧凑,同时下绝缘件42和顶盖板41自身结构相对简单,降低加工制造难度。
本申请实施例的二次电池10在使用过程中,电极组件30的主体部31存在膨胀现象。本申请实施例中,由于与主体部31相邻的下绝缘件42具有用于缓冲主体部31的膨胀量的凹部423,因此发生膨胀的主体部31不会直接挤压下绝缘件42上与防爆阀43相对应的区域。这样,发生膨胀的主体部31不会与下绝缘件42上设置凹部423的区域发生接触或者不会对该区域施加较大的压应力,降低该区域受到膨胀后的主体部31挤压作用而发生变形的可能性,从而降低该区域发生变形挤压防爆阀43而影响防爆阀43的预设爆破压力的可能性,提高二次电池10的使用安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部 件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种二次电池,包括:
    壳体,具有开口;
    电极组件,设置于所述壳体内,所述电极组件具有主体部以及两个极耳,两个所述极耳分别从所述主体部轴向的两侧延伸出,两个所述极耳均面向所述壳体设置;
    顶盖组件,包括顶盖板、下绝缘件和防爆阀,所述顶盖板密封所述开口,所述防爆阀设置于所述顶盖板,所述下绝缘件设置于所述顶盖板靠近所述电极组件的一侧,所述下绝缘件具有面对所述主体部的内侧面、面对所述顶盖板的外侧面以及从所述内侧面朝所述外侧面凹陷的凹部,所述凹部与所述防爆阀位置相对应,所述凹部用于缓冲所述主体部的膨胀变形量。
  2. 根据权利要求1所述的二次电池,其中,所述凹部包括沿所述轴向分布的第一斜面和第二斜面,所述第一斜面和所述第二斜面均从所述内侧面朝所述外侧面倾斜,所述防爆阀位于所述第一斜面和所述第二斜面之间,沿所述内侧面至所述外侧面的方向,所述第一斜面和所述第二斜面彼此靠近。
  3. 根据权利要求2所述的二次电池,其中,所述第一斜面与所述内侧面圆弧过渡,和/或,所述第二斜面与所述内侧面圆弧过渡。
  4. 根据权利要求2或3所述的二次电池,其中,沿所述凹部自身的轴线,所述第一斜面和所述第二斜面对称设置。
  5. 根据权利要求2所述的二次电池,其中,所述第一斜面和所述内侧面均为平面,所述第一斜面与所述内侧面的夹角为120°至170°,和/或,所述第二斜面和所述内侧面为平面,所述第二斜面与所述内侧面之间的夹角为120°至170°。
  6. 根据权利要求2至5任一项所述的二次电池,其中,所述下绝缘件与所述第一斜面对应部分的厚度沿靠近所述防爆阀的方向逐渐减小,和/或,所述下绝缘件与所述第二斜面对应部分的厚度沿靠近所述防爆阀的方 向逐渐减小。
  7. 根据权利要求2至6任一项所述的二次电池,其中,所述顶盖板具有注液孔,沿所述轴向,所述注液孔位于所述防爆阀的一侧,所述第一斜面或所述第二斜面不超过所述注液孔靠近所述防爆阀的边缘。
  8. 根据权利要求7所述的二次电池,其中,所述顶盖板具有朝向所述下绝缘件凸出的凸部,所述注液孔贯通所述凸部,所述下绝缘件具有从所述外侧面朝所述内侧面凹陷的凹槽以及与所述凹槽相连通的过流孔,所述凸部插入所述凹槽,所述注液孔与所述过流孔相对应设置,所述第一斜面或所述第二斜面不超过所述凹槽靠近所述防爆阀的边缘。
  9. 根据权利要求2至8任一项所述的二次电池,其中,所述下绝缘件包括沿所述轴向间隔设置的第一绝缘板和第二绝缘板,所述第一斜面设置于所述第一绝缘板上,所述第一斜面连接所述第一绝缘板朝向所述第二绝缘板的第一端面与所述内侧面,所述第二斜面设置于所述第二绝缘板上,所述第二斜面连接所述第二绝缘板朝向所述第一绝缘板的第二端面和所述内侧面,所述第一端面和所述第二端面之间形成与所述凹部相连通的避让间隙。
  10. 根据权利要求9所述的二次电池,其中,所述第一绝缘板和所述顶盖板之间设置连接柱,所述第一绝缘板通过所述连接柱与所述顶盖板连接固定,和/或,所述第二绝缘板和所述顶盖板之间设置所述连接柱,所述第二绝缘板通过所述连接柱与所述顶盖板连接固定。
  11. 根据权利要求2至8任一项所述的二次电池,其中,所述下绝缘件为一体结构并且具有与所述凹部相连通的避让孔,所述避让孔与所述防爆阀位置相对应,所述第一斜面和所述第二斜面沿所述轴向相连接。
PCT/CN2020/108180 2019-08-14 2020-08-10 二次电池 WO2021027775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20853251.5A EP3907816B1 (en) 2019-08-14 2020-08-10 Secondary battery
US17/489,681 US20220021069A1 (en) 2019-08-14 2021-09-29 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910749321.4 2019-08-14
CN201910749321.4A CN111029488B (zh) 2019-08-14 2019-08-14 二次电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,681 Continuation US20220021069A1 (en) 2019-08-14 2021-09-29 Secondary battery

Publications (1)

Publication Number Publication Date
WO2021027775A1 true WO2021027775A1 (zh) 2021-02-18

Family

ID=70203770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108180 WO2021027775A1 (zh) 2019-08-14 2020-08-10 二次电池

Country Status (5)

Country Link
US (1) US20220021069A1 (zh)
EP (1) EP3907816B1 (zh)
CN (1) CN111029488B (zh)
HU (1) HUE061006T2 (zh)
WO (1) WO2021027775A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029488B (zh) * 2019-08-14 2021-07-30 宁德时代新能源科技股份有限公司 二次电池
CN111029489B (zh) * 2019-08-14 2021-08-17 宁德时代新能源科技股份有限公司 二次电池
JP2023517820A (ja) * 2021-02-10 2023-04-27 寧徳時代新能源科技股▲分▼有限公司 電池セル、電池、電力消費機器、電池セルの製造機器及び方法
CN115882136A (zh) * 2021-09-29 2023-03-31 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造系统、电池以及用电装置
CN116365124B (zh) * 2023-05-31 2023-08-11 深圳海辰储能控制技术有限公司 端盖组件、储能装置和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205422A (zh) * 2012-03-13 2014-12-10 株式会社东芝 电池以及电池包
CN106601940A (zh) * 2017-01-06 2017-04-26 宁德时代新能源科技股份有限公司 动力电池顶盖结构、动力电池及电池模组
JP2017098207A (ja) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 電極体を有する二次電池
CN207800666U (zh) * 2018-02-01 2018-08-31 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN111029489A (zh) * 2019-08-14 2020-04-17 宁德时代新能源科技股份有限公司 二次电池
CN111029488A (zh) * 2019-08-14 2020-04-17 宁德时代新能源科技股份有限公司 二次电池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440336B2 (en) * 2009-12-08 2013-05-14 Samsung Sdi Co., Ltd. Rechargeable battery with short circuit member
KR20120028078A (ko) * 2010-09-14 2012-03-22 에스비리모티브 주식회사 이차전지
US9343772B2 (en) * 2010-10-08 2016-05-17 Samsung Sdi Co., Ltd. Rechargeable battery
US9461295B2 (en) * 2012-05-04 2016-10-04 Samsung Sdi Co., Ltd. Rechargeable battery including terminal portion having auxiliary plate for reducing current flow along short circuit current path
US9263719B2 (en) * 2012-07-17 2016-02-16 Sanyo Electric Co., Ltd. Sealing plate for prismatic secondary battery and prismatic secondary battery using the sealing plate
CN202888254U (zh) * 2012-11-19 2013-04-17 深圳赛骄阳能源科技有限公司 一种锂电池的绝缘结构
US20140302361A1 (en) * 2013-04-08 2014-10-09 Samsung Sdi Co., Ltd. Rechargeable battery
JP6166994B2 (ja) * 2013-09-24 2017-07-19 日立オートモティブシステムズ株式会社 組電池
KR102232532B1 (ko) * 2014-08-08 2021-03-25 삼성에스디아이 주식회사 단락 돌기를 갖는 이차 전지
JP6621765B2 (ja) * 2015-01-30 2019-12-18 株式会社エンビジョンAescエナジーデバイス 二次電池
WO2016194571A1 (ja) * 2015-05-29 2016-12-08 株式会社豊田自動織機 電流遮断装置及びこれを備える蓄電装置
CN204760444U (zh) * 2015-07-30 2015-11-11 宁德时代新能源科技有限公司 二次电池顶盖及二次电池
KR102383192B1 (ko) * 2015-08-07 2022-04-06 삼성에스디아이 주식회사 배터리 팩
CN106025114B (zh) * 2016-06-07 2018-10-09 宁德时代新能源科技股份有限公司 动力电池顶盖及动力电池
JP6915616B2 (ja) * 2016-07-29 2021-08-04 三洋電機株式会社 二次電池
JP6789749B2 (ja) * 2016-09-30 2020-11-25 三洋電機株式会社 角形二次電池
JP6493352B2 (ja) * 2016-10-13 2019-04-03 トヨタ自動車株式会社 二次電池
CN108615830B (zh) * 2016-12-12 2023-12-19 宁德时代新能源科技股份有限公司 动力电池顶盖结构及动力电池
CN207038571U (zh) * 2017-08-04 2018-02-23 宁德时代新能源科技股份有限公司 二次电池
CN108428826B (zh) * 2018-01-18 2023-12-29 宁德时代新能源科技股份有限公司 二次电池顶盖组件、二次电池及汽车
CN208062179U (zh) * 2018-03-30 2018-11-06 宁德时代新能源科技股份有限公司 二次电池
CN209183613U (zh) * 2018-12-29 2019-07-30 宁德时代新能源科技股份有限公司 二次电池和电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205422A (zh) * 2012-03-13 2014-12-10 株式会社东芝 电池以及电池包
JP2017098207A (ja) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 電極体を有する二次電池
CN106601940A (zh) * 2017-01-06 2017-04-26 宁德时代新能源科技股份有限公司 动力电池顶盖结构、动力电池及电池模组
CN207800666U (zh) * 2018-02-01 2018-08-31 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN111029489A (zh) * 2019-08-14 2020-04-17 宁德时代新能源科技股份有限公司 二次电池
CN111029488A (zh) * 2019-08-14 2020-04-17 宁德时代新能源科技股份有限公司 二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907816A4 *

Also Published As

Publication number Publication date
US20220021069A1 (en) 2022-01-20
CN111029488B (zh) 2021-07-30
EP3907816A1 (en) 2021-11-10
HUE061006T2 (hu) 2023-04-28
EP3907816A4 (en) 2022-03-30
EP3907816B1 (en) 2022-12-14
CN111029488A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021027775A1 (zh) 二次电池
WO2021027778A1 (zh) 二次电池
CN110880566B (zh) 电池
US8497033B2 (en) Battery and battery housing
WO2021004226A1 (zh) 顶盖组件以及二次电池
US11088398B2 (en) Secondary battery and battery module
KR100458437B1 (ko) 밀폐형 전지
EP3800686B1 (en) Secondary battery and battery module
US11177539B2 (en) Current collector and secondary battery
US20230019890A1 (en) Power battery and battery module
WO2020133675A1 (zh) 二次电池以及电池模组
US20230126021A1 (en) Battery
US20230091615A1 (en) Top cover assembly for battery, battery, and energy storage device
JP7353382B2 (ja) リチウムイオン電池用カバープレート組立体及びリチウムイオン電池
US20210328293A1 (en) Secondary battery and battery module
CN209183613U (zh) 二次电池和电池模组
WO2021129739A1 (zh) 动力电池顶盖和动力电池
CN220138471U (zh) 电池的外壳及电池
US20220223951A1 (en) Packaging structure and battery core using the same
WO2020134746A1 (zh) 二次电池、电池模组以及二次电池的制造方法
WO2023240904A1 (zh) 滚槽封口的电芯及电池模组
WO2023245350A1 (zh) 电化学装置及用电设备
WO2023087556A1 (zh) 锂离子电池盖板和包含该盖板的锂离子电池及其防爆方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020853251

Country of ref document: EP

Effective date: 20210803

NENP Non-entry into the national phase

Ref country code: DE