WO2021027723A1 - 车辆用定位方法及定位系统 - Google Patents

车辆用定位方法及定位系统 Download PDF

Info

Publication number
WO2021027723A1
WO2021027723A1 PCT/CN2020/107793 CN2020107793W WO2021027723A1 WO 2021027723 A1 WO2021027723 A1 WO 2021027723A1 CN 2020107793 W CN2020107793 W CN 2020107793W WO 2021027723 A1 WO2021027723 A1 WO 2021027723A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
binary code
mobile device
database
positioning system
Prior art date
Application number
PCT/CN2020/107793
Other languages
English (en)
French (fr)
Inventor
齐欧
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Publication of WO2021027723A1 publication Critical patent/WO2021027723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road

Definitions

  • This application relates to a positioning method and a positioning system for a vehicle, especially a positioning method and a positioning system for a vehicle for identifying lane lines.
  • GPS Global Positioning System
  • Dead reckoning dead reckoning
  • the information from the sensors and accelerometers on the vehicle is used to estimate the current position of the vehicle.
  • the dead reckoning method will accumulate errors and cause inaccurate positioning.
  • One of the methods to solve the aforementioned problems is to use computer vision to assist in identifying the location of the vehicle.
  • computer vision-aided recognition it is necessary to perform neural network analysis on each pixel of each frame, which will consume a lot of computing power, and require high hardware requirements, and the calculation results are not easy to be timely.
  • One of the objectives of the present application is to provide a vehicle positioning method and positioning system to improve the problems in the background art.
  • a vehicle positioning method which is used to provide the position of the vehicle when the vehicle is moving on the road, including: at each preset distance, the continuous line of the lane on the road is recognized by sensors State, and generate a corresponding binary code according to the continuous state, the binary code is at least used to indicate the continuous state of the lane line of the road; compare the binary code with the database, if the same is found in the database The position information corresponding to the binary code is fed back; and the position of the vehicle is displayed according to the position information.
  • comparing the binary code with the database includes: transmitting the binary code to a remote server via a mobile phone; and comparing the binary code with the database in the remote server Performing comparison to generate the position of the vehicle; and returning the position of the vehicle to the mobile phone.
  • comparing the binary code with the database includes: storing data obtained from a remote server through a mobile phone to establish the database on the mobile phone; and comparing the data received from the sensor The binary code is compared with the data in the database to generate the position of the vehicle.
  • the binary code only contains the continuous state information of the lane lines of the road, and does not contain other environmental information.
  • the preset distance is measured by an odometer or a global positioning system device.
  • the vehicle positioning method further includes identifying the continuous state of the lane lines of the road through a sensor when the satellite signal received by the GPS device of the vehicle is lower than a default value To display the location of the vehicle.
  • the vehicle positioning method further includes when the binary code indicates that the distance between the vehicle and the non-traffic area is less than a preset value or indicates that the distance between the vehicle and the lane line is less than a preset value.
  • the lane offset information is displayed.
  • a positioning system for providing the position of the mobile device when the mobile device moves on the road, including a sensor and a display.
  • the sensor is used to capture an image of a road surface and generate a signal of the image.
  • the signal includes a binary code, and the binary code is used to at least indicate information of lane lines on the road surface.
  • the display is used for displaying the position of the mobile device according to the result of the comparison between the signal and the database.
  • the information includes any one or more of the line style, color, shape, width of the lane line, the distance between any two adjacent lane lines, and the coordinates of the lane line .
  • the positioning system further includes a processor for receiving the signal from the sensor and transmitting the signal to a remote server, and the remote server connects the signal with the The data comparison of the database in the remote server provides the comparison result of the display.
  • the positioning system further includes a processor, configured to periodically store data obtained from a remote server to establish the database in the processor, and receive the signal from the sensor , To provide the comparison result of the display by comparing the signal with the data of the database in the processor.
  • the processor is further configured to control the sensor to capture the road surface when the satellite signal strength received by the global positioning system in the mobile device is lower than a default value. Image to indicate the information of the road surface.
  • the binary code further includes information for indicating a non-passable area on the road surface, wherein the non-passable area includes a sidewalk or a safety island.
  • the display is also used for when the binary code indicates that the distance between the mobile device and the non-traffic area is less than a preset value or indicates that the distance between the mobile device and the lane line is less than At the preset value, the lane offset information is displayed.
  • a mobile device includes the positioning system, and the mobile device is a road vehicle.
  • the vehicle positioning method, positioning system and positioning method of the present disclosure only recognize the lane line of the road image and perform binary coding on it. Therefore, compared with the existing neural network analysis of computer vision-aided recognition, the present disclosure requires The computing power of can be greatly reduced, so simple and low-cost hardware can be used to perform calculations and provide more timely calculation results. In addition, compared with the existing dead reckoning method, because the present disclosure directly recognizes the road image instead of calculating the position using the estimation method, it can provide more accurate position information.
  • Fig. 1 is a flowchart of a positioning method according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a positioning system according to an embodiment of the present application.
  • Fig. 3 is a top view of an application context of the positioning system according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an application context of a positioning system according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an application context of a positioning system according to different embodiments of the present application.
  • Fig. 6 is a schematic diagram of an application context of a positioning system according to different embodiments of the present application.
  • Fig. 7 is a schematic diagram of an application scenario of a positioning system according to different embodiments of the present application.
  • first and second features are in direct contact with each other; and may also include
  • additional components are formed between the above-mentioned first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing
  • the relationship between one component or feature relative to another component or feature is shown.
  • these spatially relative terms also cover a variety of different orientations in which the device is in use or operation.
  • the device may be placed in other orientations (for example, rotated by 90 degrees or in other orientations), and these spatially-relative description words should be explained accordingly.
  • Automated vehicles are one of the current trends in technological development. Common automated vehicles include autonomous vehicles, unmanned vehicles, and wheeled mobile robots. Generally, automated vehicles need to use sensors to detect the surrounding environment and their own state, including navigation and positioning information, road information, obstacles information such as other vehicles and pedestrians, their own position information and movement status information, and make the best after a certain calculation Judgment, to precisely control the speed and direction of movement of the automated vehicle. Therefore, the automated vehicle can reach the destination safely without driver monitoring.
  • the absolute positioning of the automated vehicle can be obtained through GPS.
  • the automated vehicle can use dual antennas and obtain the absolute position and heading information of the automated vehicle on the earth through satellite signals.
  • the relative positioning of the automated vehicle can be based on the initial position of the automated vehicle to obtain acceleration and angular acceleration information through sensors such as inertial navigation and odometer, and integrate it over time to obtain current position information relative to the initial position.
  • the existing vehicle positioning is mostly based on GPS.
  • the navigator When the GPS signal is blocked (for example, passing under a bridge), the navigator will generally switch to dead-reckoning method to estimate the current driving position.
  • dead-reckoning method Accumulate errors and cause inaccurate positioning.
  • One way to solve the aforementioned problems is to use computer vision to assist in identifying the location of the vehicle.
  • computer vision-aided identification it takes a lot of computing power to analyze the screen, so relatively high-end hardware is required, and the calculation results are not easy to be timely.
  • the positioning system and method of the present disclosure can provide more accurate location information.
  • the computing power required by the present disclosure can be greatly reduced, so simple and low-cost hardware can be used to perform calculations and provide more timely calculation results.
  • Fig. 1 is a flowchart of a positioning method according to an embodiment of the present application.
  • the positioning method 10 starts at operation S1. At each preset distance, the continuous state of the lane line of the road is recognized through the sensor, and the corresponding binary code is generated according to the continuous state, and the binary code is used to at least indicate the road The continuous state of the lane line.
  • the positioning method 10 continues to operate S2 to compare the binary code with the database, and if the same binary code is found in the database, then feedback the position information corresponding to the binary code.
  • the positioning method 10 continues to operate S3, and displays the position of the vehicle according to the position information.
  • the positioning method 10 is only an example, and is not used to limit the disclosure, and the parts beyond the scope are clearly recorded in the claims. Before, during, and after the positioning method 10, other operations may be provided, and in other embodiments of the method, some of the operations described may be replaced, excluded, or moved.
  • Fig. 2 is a schematic diagram of a positioning system according to an embodiment of the present application.
  • the positioning system 20 is used to provide the position of the mobile device when the mobile device moves on the road.
  • Mobile devices may include road vehicles, such as automated vehicles such as autonomous vehicles, unmanned vehicles, and wheeled mobile robots, or general vehicles, buses, trams, and other ground vehicles, but are not limited to this.
  • the positioning system 20 includes a sensor 22 and a display 24.
  • the sensor 22 is used to capture an image of the road surface and generate an image signal.
  • the sensor 22 recognizes the continuous state of the lane line of the road at each preset distance, and generates a corresponding binary code according to the continuous state of the lane line, wherein the preset distance is measured by an odometer or a GPS device.
  • the sensor 22 may include an image sensor or a photosensitive component, such as a camera, but is not limited to this.
  • the sensor 22 may be a camera of a mobile phone, a camera of a driving recorder, or a camera built in a road vehicle, but is not limited to this.
  • the image signal may include binary codes, and the binary codes are used at least to indicate information about lane lines on the road.
  • the information of the lane line includes the line style, color, shape, width of the lane line, the distance between any two adjacent lane lines, the coordinates of the lane line, etc., but not limited to this.
  • binary coding is used at least to indicate the continuous state of lane lines of the road.
  • the binary code may only contain the continuous state information of the lane lines of the road surface, but not other environmental information.
  • the binary code further includes information for indicating non-passable areas on the road surface, where the non-passable areas include sidewalks or safety islands.
  • the display 24 is used to display the position of the mobile device according to the result of the comparison between the image signal and the database.
  • the display 24 may include an image display, such as a display panel, but is not limited to this.
  • the display 24 may be a display panel of a mobile phone 36, a display panel of a driving recorder 32, or a display device built in a road vehicle, but not limited to this.
  • the display 24 is also used to display lane offset information when the binary code indicates that the distance between the mobile device and the non-traffic area is less than a preset value or indicates that the distance between the mobile device and the lane line is less than a preset value.
  • the positioning system 20 may also include a processor 26 and a remote server 28, but is not limited to this.
  • the process of comparing the image signal with the database can be performed in the remote server 28.
  • the processor 26 is used to receive the image signal from the sensor 22 and transmit the signal to the remote server 28, and the remote server 28 compares the signal with the remote server.
  • the data comparison of the database in the end server 28 provides the comparison result of the display 24.
  • the process of comparing the image signal with the database may be in the processor 26.
  • the processor 26 is used to periodically store the data obtained from the remote server 28 to establish the database in the processor 26 and receive the signal from the sensor 22 , To provide the comparison result of the display 24 by comparing the signal with the data in the database in the processor 26.
  • the signal specifications of the image comply with common wireless communication protocols such as wireless fidelity, mobile network, near field communication, and zigbee.
  • the device specifications of the processor 26 and the remote server 28 for transmitting and receiving the image signal also conform to the above-mentioned wireless communication protocol, thereby transmitting/receiving the image signal.
  • the processor 26 and the remote server 28 transmit the image signal
  • the transmitting end will encrypt the image signal
  • the receiving end will use the encryption/decryption method communicated with the transmitting end in advance. Decrypt the encrypted image signal to decode the binary code in the image signal.
  • the disclosure does not limit the encryption/decryption method between the processor 26 and the remote server 28.
  • the positioning system 20 may also include a global positioning system.
  • the processor 26 is also used to control the sensor 22 to capture the image of the road surface to indicate the location information of the road surface when the satellite signal strength received by the global positioning system in the mobile device is lower than the default value.
  • Fig. 3 is a top view of an application context of the positioning system according to an embodiment of the present application
  • Fig. 4 is a schematic diagram of an application context of the positioning system according to an embodiment of the present application.
  • the mobile device 30 of this embodiment is an example of an autonomous vehicle, but the disclosure is not limited to this.
  • Figure 3 illustrates a schematic diagram of an autonomous vehicle when it moves on a road.
  • FIG. 4 depicts an image of the road surface observed from the cockpit and the windshield of the autonomous vehicle.
  • a rear mirror 32 and a car screen 34 are provided in the cockpit.
  • a mounting base of the mobile phone 36 may be additionally provided in the cockpit to fix the mobile phone 36 in front of the driver's seat.
  • the mobile phone 36 may have the sensor 22 in FIG. 2 to capture images of the road surface.
  • the sensor 22 may be a camera of the mobile phone 36, but is not limited to this.
  • the sensor 22 After the sensor 22 in the mobile phone 36 recognizes the image of the road surface, the sensor 22 generates an image signal, where the signal includes a binary code, and the binary code is used to at least indicate information about lane lines on the road.
  • the information of the lane line can include the line style of the lane line (for example: dashed line, solid line or composite type), the color of the lane line (for example: common white, yellow or red), and the shape of the lane line (for example: Rectangle, parallelogram or arc), the width of the lane line, the coordinates of the lane line (for example: the longitude and latitude coordinates of the lane line in the GPS), the distance between two adjacent lane lines (for example: the left and right lane lines Distance) and signals of non-traffic areas (for example: sidewalks or safety islands).
  • the line style of the lane line for example: dashed line, solid line or composite type
  • the color of the lane line for example: common white, yellow or red
  • the lane line can be slightly divided into two types, namely the dashed line and The solid line, if the dashed line code in the lane line is defined as 0, and the solid line code in the lane line is defined as 1, then the binary code of the continuous state of the left lane in Figure 3 and Figure 4 is 000000, and the right lane The binary code of the continuous state is 001100.
  • the preset distance (2 meters) of each lane line can be measured by an odometer or a GPS device, but it is not limited to this.
  • the signal can be transmitted to the remote server 28 through the mobile phone 36.
  • the sensor 22 of the mobile phone 36 needs to transmit the codes of the aforementioned left and right lane lines to the remote server 28 through the processor 26 of the mobile phone 36.
  • the process of the processor 26 transmitting the code to the remote server 28 may transmit the code information to the remote server 28 through wireless communication. After the remote server 28 receives the signal, it compares the signal with the database in the remote server 28.
  • the database in the remote server 28 has stored binary coded data of lane lines in various regions.
  • Figure 4 depicts three sets of data in the database. They have different binary codes of lane lines at different latitudes and longitudes. The following marks are latitude first, longitude behind, and the left lane line code is The front and right lane lines are coded at the back. The first set of latitude and longitude is 39°53'N, 115°25'E, and the codes of the left and right lane lines are 001100 and 000111 respectively. The second set of latitude and longitude is 83°22’N, 103°21’E, and the codes of the left and right lane lines are 000000 and 001100 respectively.
  • the latitude and longitude of the third group are 77°59'N, 13°20'E, and the codes of the left and right lane lines are 010101 and 100110 respectively.
  • the remote server 28 After receiving the binary code, the remote server 28 searches the database for the same data that the left lane line is 000000 and the right lane is 001100, and then, it filters out the possible positions of the array. Then, according to the position obtained from the previous comparison result, it is judged that the left lane line is 000000 and the right lane is the most likely position among 001100.
  • the latitude and longitude position of the mobile device 30 may be 83°22'N, 103°21'E.
  • the left lane line of the road section in Figure 3 is actually a continuous dashed line (00), and the right lane line is actually composed of two dashed lines (00) and a long solid line (11) alternately arranged, so
  • the front and rear binary codes of the left and right lane lines of the regional road section in Figure 3 can be expressed as the left lane line code as 0000. 0000, and the right lane line code is 0011 1100
  • the remote server 28 can use the received left lane line code 000000 and right lane line code 001100, and according to the position obtained by the previous comparison result or the previous GPS information, it can be combined with the codes before and after the left and right lane lines. Based on this, the most likely location of the mobile device 30 is determined.
  • the left lane line is 000000 and the right lane is 001100 in the database.
  • the previous latitude and longitude position of the mobile device 30 has been determined Is 83°23'N,103°21'E, because the latitude and longitude of the second set of data in the database is 83°22'N,103°21'E, which is very close to the position of the previous comparison result, so the second The latitude and longitude of the group data may be the current location of the mobile device 30.
  • determining the most likely position of the mobile device 30 may also include inferring and predicting the range of the mobile device 30 moving in the two determinations according to the speed of the mobile device 30, so as to compare and match the left range within this range.
  • the lane line is 000000 and the right lane is the position of 001100.
  • the method of this embodiment first filters out the possible moving range of the mobile device 30, when comparing the possible positions of the mobile device 30, the most suitable result can be compared quickly, compared to the previous implementation. For example, it can save more time and provide more accurate information.
  • the remote server 28 After determining the location of the mobile device 30, the remote server 28 will return the determination result to the processor 26 of the mobile phone 36, and the processor 26 of the mobile phone 36 will transmit the location information to the display 24 of the mobile phone 36.
  • the display 24 It can be the screen of the mobile phone 36, whereby the driver can observe the location information on the screen of the mobile phone 36.
  • the data comparison process may be on the mobile phone side.
  • the processor 26 of the mobile phone 36 may periodically request the latest road segment coding information of the nearby area from the remote server to establish a database in the processor 26 , That is, store the latest road section code information in the mobile phone 36. Therefore, when the processor 26 in the mobile phone 36 receives the signal from the sensor 22, the mobile phone 36 can directly compare this signal with the data in the database in the mobile phone 36 to obtain the comparison result, and display it on the display 24 of the mobile phone 36. Display location information.
  • the mobile phone 36 may have a built-in exclusive mobile application (mobile application, apps for short) including the aforementioned positioning system and positioning method.
  • mobile application apps for short
  • the mobile application will activate the camera of the mobile phone 36 to capture the image of the road lane line and compare the collected lane line image. , Perform binary encoding.
  • the binary code generated according to the foregoing content only contains the continuous state information of the lane lines of the road surface, and does not contain other environmental information (for example, those that do not include lane lines).
  • Line style, color, shape, distance between two adjacent lane lines, GPS data, etc. In this way, the amount of data can be minimized, so that the communication with the remote server 28 can be faster, but not limited to this.
  • the mobile application can perform binary encoding based on the line style, color, shape, and distance between two adjacent lane lines. In this way, although the amount of data after binary encoding will increase, The comparison accuracy will be relatively improved.
  • the mobile application can also binary-code the time of capturing or capturing the lane line image to report the latest lane line data comparison in the database.
  • the mobile application can binary-encode the most recent valid GPS data, where the GPS data includes time and coordinates to compare with the data of similar coordinate locations in the database to determine the most likely location of the mobile device 30 . Adding GPS data will help narrow the data range of the database comparison, so the most suitable results can be compared more quickly and more accurate information can be provided.
  • mobile applications can package the image signals of lane lines into binary-coded packets to express more information than solid lines or dashed lines.
  • the content of the packet may include the line type, color, width, and shape of the lane line.
  • the content of the packet can also include the time and coordinates of the GPS, and the time to retrieve the lane line information.
  • the content of the packet may include the version of the mobile application.
  • the version of the mobile application can be regarded as the encryption/decryption code communicated in advance by the transmitting end and the receiving end.
  • the transmitting end (processor 26) encrypts the image signal, and adds the version of the mobile application program to the packet as the decryption code, and receives
  • the end decrypts the encrypted image signal according to the AND code to decode the binary code in the packet.
  • the remote server 28 may have an array of data corresponding to different versions to provide more accurate location information of the mobile device 30.
  • the location information can be projected on the screen of the mobile phone 36, but it is not limited to this.
  • the mobile application can transmit this data to an appropriate medium such as a driving recorder or an in-vehicle screen through wireless communication, so that the driver can understand the location information of the mobile device 30.
  • the positioning system and the positioning method of the present disclosure are not limited to the above-mentioned embodiments, and may have other different embodiments.
  • the same components in each embodiment below are marked with the same reference numerals.
  • the following description will detail the differences between the different embodiments, and the description of the same features will not be repeated.
  • Fig. 5 is a schematic diagram of an application context of a positioning system according to different embodiments of the present application.
  • the processor 26 of the mobile phone 36 can also transmit the judgment result through the processor 26 to the driving navigation of the car screen 34, thereby the driver You can get information about your location more easily.
  • the mobile application program may operate as a background program in the mobile phone 36. After calculating the location information of the mobile device 30, the mobile application program may transmit this data to the dash cam or car via wireless communication. Appropriate media, such as an internal screen, facilitate the driver to learn the location information of the mobile device 30.
  • Fig. 6 is a schematic diagram of an application context of a positioning system according to different embodiments of the present application.
  • the driving navigation or driving recorder 38 can be used as a tool for capturing road images. For example, after the dash cam 38 takes an image of the road surface, it generates an image signal. As in the previous embodiment, the signal includes a binary code to indicate the lane line information of the road.
  • the driving recorder 38 transmits the signal to the mobile phone 36, and the mobile phone 36 can obtain the position identification result through the method of any of the foregoing embodiments.
  • the data comparison process can be performed on the mobile phone 36 or the remote server 28. After the data comparison is completed, the mobile phone 36 or the driving navigator 34 can display the location of the mobile device 30.
  • the driving recorder 38 can also directly compare the signal of the image with the data in the database without using a mobile phone or other components, so the comparison can be obtained more quickly. The result.
  • the database in the mobile phone 36 or the driving recorder 38 has stored the binary coded data of the lane lines in each region.
  • Figure 6 depicts three sets of data in the database. They have different binary codes of lane lines at different latitudes and longitudes. The following marks are latitude first, longitude behind, and left lane line coding in The front and right lane lines are coded at the back.
  • the first group of latitude and longitude is 49°53'N, 115°25'E, and the codes of the left and right lanes are 001100 and 000111 respectively.
  • the second group of latitude and longitude is 83°22’N, 123°21’E, and the codes of the left and right lane lines are 000000 and 001100 respectively.
  • the latitude and longitude of the third group are 87°59'N, 13°20'E, and the codes of the left and right lane lines are 010101 and 100110 respectively.
  • the remote server 28 After receiving the binary code, the remote server 28 searches the database for the same data with the left lane line being 000000 and the right lane being 001100, and then the possible positions of the array are filtered out. Then, according to the position obtained from the previous comparison result, it is judged that the left lane line is 000000 and the right lane is the most likely position among 001100.
  • Fig. 7 is a schematic diagram of an application scenario of a positioning system according to different embodiments of the present application.
  • the road image captured by the sensor 22 may further include an image of a non-traffic area.
  • the positioning system and positioning method of the present disclosure can also determine the location of the mobile device 30 through the information of the non-traffic area.
  • non-traffic areas may include sidewalks or safety islands, but not limited to this.
  • only one side of the road section that the mobile device 30 may travel has a lane line.
  • only the left side of the mobile device 30 has a lane line
  • the right side of the mobile device 30 is a sidewalk.
  • the left side of the mobile device 30 is an island
  • the right side of the mobile device 30 is a sidewalk. Therefore, it is advantageous for the positioning system and positioning method of the present disclosure to determine the location of the mobile device 30 through the image capture of the non-traffic area.
  • the mobile device 30 or the mobile phone 36 has a built-in global positioning system.
  • the processor 26 in the mobile phone 36 detects that the satellite signal strength received by the global positioning system is lower than the default value, the mobile phone The internal processor 26 controls the sensor 24 to start capturing the lane line image of the road surface to provide the position information of the mobile device 30.
  • the processor 26 in the mobile phone 36 or the driving recorder 38 detects that the satellite signal is insufficient, the processor 26 will send information to the sensor 22 so that the sensor 22 can start to perform the function of capturing road images. After the sensor 22 generates the image signal, the processor 26 and the remote server 28 compare the result to display the position information of the mobile device 30 on the display 24.
  • the positioning system 20 may also provide information that the mobile device 30 moves off the lane. For example, when a driver drives a mobile device, some factors, such as poor technique, lack of energy, or inattention, may cause the direction of the mobile device 30 to deviate from the original lane.
  • the distance between the mobile device 30 and the left and right lane lines at the second time starts to change, for example: the mobile device 30 is biased When moving to the left, the distance between the mobile device 30 and the left lane line at the second time will be less than X, and the distance from the right lane line will be greater than X.
  • the mobile device 30 continues to move to the left direction, the distance between the mobile device 30 and the left lane line will get closer and closer.
  • the positioning system 20 will display lane deviation information, thereby reminding the driver to control the moving direction of the mobile device 30.
  • the mobile device 30 may move between non-traffic areas.
  • the distance between the mobile device 30 and the non-traffic area will get closer and closer.
  • the positioning system 20 will display lane deviation information, thereby reminding the driver to adjust the moving direction of the mobile device.
  • the mobile device 30 may move between the non-traffic area and the lane line.
  • the distance between the mobile device 30 and the non-traffic area or the distance between the mobile device 30 and the lane line will get closer and closer.
  • the positioning system 20 will display lane deviation information to remind the driver to adjust the movement The moving direction of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆用定位方法,用于车辆于马路上移动时提供车辆的位置,包括于每个预设距离,透过传感器辨识路面的车道线的连续状态,并根据连续状态产生对应之二进制编码,二进制编码至少用于指示路面的车道线的连续状态(S1);将二进制编码与数据库比对,若于数据库中找到相同的二进制编码,则反馈对应于二进制编码的位置信息(S2);及根据位置信息显示车辆的位置(S3)。

Description

车辆用定位方法及定位系统 技术领域
本申请是有关于一种车辆用定位方法及定位系统,尤指一种辨识车道线的车辆用定位方法及定位系统。
背景技术
现有的行车定位多以全球定位系统(Global Positioning System,GPS)为主,当GPS信号被遮挡时(例如经过桥下),导航仪一般会切换成航位推测法(Dead reckoning),整合车上的传感器和加速度计等的信息来推算目前行车的位置,然而航位推测法会累积误差,造成定位不准确。解决前述问题的方法之一是使用电脑视觉辅助辨识行车的位置。但使用电脑视觉辅助辨识时,需要对每一幅画面的每一个画素进行神经网路分析,此将耗费大量的计算力,且对于硬件需求高,而计算结果也不容易及时。
发明内容
本申请的目的之一在于提供一种车辆用定位方法及定位系统来改善背景技术中的问题。
依据本申请的一实施例,揭露一种车辆用定位方法,用于车辆于马路上移动时提供所述车辆的位置,包括:于每个预设距离,透过传感器辨识路面的车道线的连续状态,并根据所述连续状态产生对应之二进制编码,所述二进制编码至少用于指示所述路面的车道线的连续状态;将所述二进制编码与数据库比对,若于所述数据库中找到相同的二进制编码,则反馈对应于所述二进制编码的位置信息;及根据所述位置信息显示所述车辆的所述位置。
依据本申请的一实施例,将所述二进制编码与所述数据库比对包括:通过手机将所述二进制编码传送至远端服务器;将所述二进制编码与所述远端服务器内的所述数据库进行比对以产生所述车辆的所述位置;及回传所述车辆的所述位置至所述手机。
依据本申请的一实施例,将所述二进制编码与所述数据库比对包括:通过手机存储自远端服务器获取的资料,以在所述手机建立所述数据库;及将自所述传感器接收的所述二进制编码与所述数据库的数据进行比对,以产生所述车辆的所述位置。
依据本申请的一实施例,所述二进制编码仅包含所述路面的车道线的连续状态信息,而不包含其他环境信息。
依据本申请的一实施例,所述预设距离的测量是通过里程计或全球定位系统装置。
依据本申请的一实施例,所述车辆用定位方法还包括当所述车辆的所述全球定位系统装置所接受到的卫星讯号低于默认值时,透过传感器辨识路面的车道线的连续状态以显示所述车辆的所述位置。
依据本申请的一实施例,所述车辆用定位方法还包括当所述二进制编码指示所述车辆与非通行区的距离小于预设值时或指示所述车辆与所述车道线的距离小于预设值时,显示车道偏移信息。
依据本申请的一实施例,揭露一种定位系统,用于移动装置于马路上移动时提供所述移动装置的位置,包括传感器及显示器。所述传感器,用于撷取路面的影像,并产生所述影像的讯号,所述讯号包括二进制编码,所述二进制编码至少用于指示所述路面的车道线的信息。所述显示器,用于依据所述讯号与数据库比对的结果,来显示所述移动装置的所述位置。
依据本申请的一实施例,所述信息包括所述车道线的线条样式、颜色、形 状、宽度、任两相邻的所述车道线的距离、所述车道线的坐标的任一或多者。
依据本申请的一实施例,所述定位系统还包括处理器,用于自所述传感器接收所述讯号,并将所述讯号传送至远端服务器,所述远端服务器将所述讯号与所述远端服务器内的所述数据库的数据比对,以提供所述显示器所述比对的结果。
依据本申请的一实施例,所述定位系统还包括处理器,用于定时存储自远端服务器获取的资料,以建立所述处理器内的所述数据库,并自所述传感器接收所述讯号,以将所述讯号与所述处理器内的所述数据库的数据比对,来提供所述显示器所述比对的结果。
依据本申请的一实施例,所述处理器还用于当所述移动装置中的全球定位系统所接受到的卫星讯号强度低于默认值时,控制所述传感器撷取所述路面的所述影像以指示所述路面的所述信息。
依据本申请的一实施例,所述二进制编码还包括用于指示所述路面的非通行区的信息,其中所述非通行区包括人行道或安全岛。
依据本申请的一实施例,所述显示器还用于当所述二进制编码指示所述移动装置与所述非通行区的距离小于预设值或指示所述移动装置与所述车道线的距离小于预设值时,显示车道偏移信息。
依据本申请的一实施例,揭露一种移动装置,所述移动装置包括所述定位系统,且所述移动装置是路面交通工具。
本揭露之车辆用定位方法及定位系统及其定位方法仅辨识路面影像的车道线,并对其进行二进制编码,因此,相较于现有的电脑视觉辅助辨识的神经网络分析,本揭露所需要的计算力可大幅降低,因此可以用简单且低成本的硬件来进行计算并提供更及时的计算结果。另外,相较于现有的航位推测法,因本揭露是直接辨识路面影像,而非使用推测法计算位置,故可以提供更准确的位 置信息。
附图说明
图1是依据本申请实施例的定位方法的流程图。
图2是依据本申请实施例的定位系统的示意图。
图3是依据本申请实施例的定位系统的应用情境的上视图。
图4是依据本申请实施例的定位系统的应用情境的示意图。
图5是依据本申请不同实施例的定位系统的应用情境的示意图。
图6是依据本申请不同实施例的定位系统的应用情境的示意图。
图7是依据本申请不同实施例的定位系统的应用情境的示意图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
自动化载具是目前科技发展的趋势之一,常见的自动化载具包括自动驾驶汽车、无人驾驶汽车和轮式移动机器人等。一般自动化载具需利用传感器检测周围环境和自身状态,包括导航定位信息、道路信息、其他车辆和行人等障碍物信息、自身的位置信息及运动状态信息,经过一定的运算后做出最佳的判断,以精确控制自动化载具移动的速度和转向。因此,可在无驾驶员监控的情况下,即可使自动化载具安全到达目的地。
导航定位信息对自动化载具尤其重要。自动化载具的绝对定位可通过GPS获得,详细来说,自动化载具可采用双天线并通过卫星讯号以获得自动化载具在地球上的绝对位置和航向信息。此外,自动化载具的相对定位可根据自动化载具的初始位置,通过惯导、里程计等传感器获得加速度和角加速度信息,将其对时间进行积分,即可得到相对初始位置的当前位置信息。
一般来说,现有的行车定位多以GPS为主,当GPS信号被遮挡时(例如经过桥下),导航仪一般会切换成航位推测法来推算目前行车的位置,然而航位推测法会累积误差,造成定位不准确。解决前述问题的方法之一是使用电脑视觉 辅助辨识行车的位置。但使用电脑视觉辅助辨识时,需耗费大量的计算力在分析画面上,因此需求较为高端的硬件,且其计算结果也不容易及时。
在本揭露中,选择性的仅辨识路面影像中车道线的部分,并对车道线进行二进制编码,因此相较于现有的航位推测法,本揭露之定位系统及方法可以提供更准确的位置信息。另外,相较于现有的电脑视觉辅助辨识的神经网络分析,本揭露所需要的计算力可大幅降低,因此可以用简单且低成本的硬件来进行计算并提供更及时的计算结果。
图1是依据本申请实施例的定位方法的流程图。定位方法10开始于操作S1,于每个预设距离,透过传感器辨识路面的车道线的连续状态,并根据所述连续状态产生对应之二进制编码,所述二进制编码至少用于指示所述路面的车道线的连续状态。定位方法10继续操作S2,将所述二进制编码与数据库比对,若于所述数据库中找到相同的二进制编码,则反馈对应于所述二进制编码的位置信息。定位方法10继续操作S3,根据所述位置信息显示所述车辆的所述位置。
定位方法10仅为范例,并非用于限制本揭露,超越所述范围的部分明确记载于权利要求书中。在定位方法10之前、其间以及之后,可提供其它的操作,以及在所述方法的其它实施例中,可替换、排除或移动所述的一些操作。
图2是依据本申请实施例的定位系统的示意图。定位系统20用于移动装置于马路上移动时提供移动装置的位置。移动装置可包括路面交通工具,例如:自动驾驶汽车、无人驾驶汽车、轮式移动机器人等自动化载具,或一般汽车、巴士、电车等地面载具,但不以此为限。
定位系统20包括传感器22和显示器24。传感器22用于撷取路面的影像,并产生影像的讯号。在一些实施例中,传感器22于每个预设距离辨识路面的车道线的连续状态,并根据车道线的连续状态产生对应之二进制编码,其中预设距离的测量是通过里程计或GPS装置。
传感器22可包括图像传感器或感光组件,例如:摄像头,但不以此为限。在一些实施例中,传感器22可为手机的摄像头、行车记录仪的摄像头或内建于路面交通工具中的摄像头,但不以此为限。
影像的讯号可包括二进制编码,二进制编码至少用于指示路面上车道线的信息。车道线的信息包括车道线的线条样式、颜色、形状、宽度、任两相邻的车道线的距离、车道线的坐标等,但不以此为限。在一些实施例中,二进制编码至少用于指示路面的车道线的连续状态。此外,二进制编码可仅包含路面的车道线的连续状态信息,而不包含其他环境信息。在其他实施例中,二进制编码还包括用于指示路面的非通行区的信息,其中非通行区包括人行道或安全岛。
显示器24用于依据影像的讯号与数据库比对的结果,来显示移动装置的位置。显示器24可包括图像显示器,例如:显示面板,但不以此为限。在一些实施例中,显示器24可为手机36的显示面板、行车记录仪32的显示面板或内建于路面交通工具中的显示设备,但不以此为限。在一些实施例中,显示器24还用于当二进制编码指示移动装置与非通行区的距离小于预设值或指示移动装置与车道线的距离小于预设值时,显示车道偏移信息。
定位系统20还可包括处理器26和远端服务器28,但不以此为限。在一些实施例中,影像的讯号与数据库比对的过程可在远端服务器28内。当影像的讯号与数据库比对的过程是在远端服务器28内时,处理器26用于自传感器22接收影像的讯号,并将讯号传送至远端服务器28,远端服务器28将讯号与远端服务器28内的数据库的数据比对,以提供显示器24比对的结果。
在其他实施例中,影像的讯号与数据库比对的过程可在处理器26内。当影像的讯号与数据库比对的过程是在远端服务器28内时,处理器26用于定时存储自远端服务器28获取的资料,以建立处理器26内的数据库,并自传感器22接收讯号,以将讯号与处理器26内的数据库的数据比对,来提供显示器24比对的结果。
在本揭露中,所述影像的讯号规格符合无线保真、移动网路、近场通讯、zigbee等常见的无线通讯协议。相应地,用于传送与接收所述影像的讯号的处理器26和远端服务器28的装置规格同样符合上述无线通讯协议,借此传送/接收所述影像的讯号。本技术领域具有通常知识者应能理解,处理器26和远端服务器28在传输影像的讯号时,传送端将对影像的讯号进行加密,接收端将依据与传送端事先沟通的加密/解密方式对加密后的影像的讯号进行解密来解读影像的讯号中的二进制编码。本揭露并不限定处理器26和远端服务器28之间的加密/解密方式。
在一些实施例中,定位系统20还可包括全球定位系统。处理器26还用于当移动装置中的全球定位系统所接受到的卫星讯号强度低于默认值时,控制传感器22撷取路面的影像以指示路面的位置信息。
为能更清楚说明本申请的技术特征,以下针对本申请提供的定位系统及其定位方法进行应用情境的说明,同时提供多个实施例以呈现不同变化与应用。而为了能方便理解,不同实施例中具有相同或是类似功能与作用的组件将使用相同组件标号。再者,不同实施例之间的不同部件在不冲突的情况下,可以交错或混和搭配产生新的实施例,但仍属于本申请的保护范围内。
图3是依据本申请实施例的定位系统的应用情境的上视图,图4是依据本申请实施例的定位系统的应用情境的示意图。如图3所示,本实施例的移动装置30是以自动驾驶汽车为例,但本揭露不以此为限。图3绘示出自动驾驶汽车在路面上移动时的示意图。
请参看图4,图4绘示出自动驾驶汽车内驾驶舱和由挡风玻璃所观测到的路面影像。如图4所示,驾驶舱内设置有后照镜32和车用屏幕34。在一些实施例中,驾驶舱内可额外设置手机36的安装底座,以将手机36固定在驾驶座前方。在本实施例中,手机36内可具有图2的传感器22以撷取路面的影像。举例来说,传感器22可为手机36的摄像头,但不以此为限。
当手机36内的传感器22辨识路面的影像后,传感器22会产生影像的讯号, 其中讯号包括二进制编码,二进制编码至少用于指示路面上的车道线的信息。详细来说,车道线的信息可包括车道线的线条样式(例如:虚线、实线或复合型)、车道线的颜色(例如:常见的白色、黄色或红色)、车道线的形状(例如:长方形、平行四边形或圆弧形)、车道线的宽度、车道线的坐标(例如:车道线在全球定位系统中的经纬度坐标)、两相邻的车道线间的距离(例如:左右车道线的距离)以及非通行区的讯号(例如:人行道或安全岛)。
以车道线的线条样式为例,如图3所示,假设将每条车道线的每2米(预设距离)分割为不同的线段,则车道线可略分为两种,分别是虚线和实线,若将车道线中的虚线编码定义为0,且将车道线中的实线编码定义为1,则图3和图4中的左车道的连续状态的二进制编码是000000,且右车道的连续状态的二进制编码则是001100。其中,每条车道线的预设距离(2米)的测量可通过里程计或GPS装置,但不以此为限。
接着,可通过手机36将讯号传送至远端服务器28。详细来说,手机36的传感器22需透过手机36的处理器26将前述左右车道线的编码传送至远端服务器28。在一些实施例中,处理器26将编码传送至远端服务器28的过程,可通过无线通讯方式将编码信息传送至远端服务器28。当远端服务器28接收到的讯号后,会将此讯号与远端服务器28内的数据库进行比对。
举例而言,远端服务器28内的数据库已储存各地区的车道线的二进制编码数据。如图4所示,图4绘示出数据库内的三组数据,分别在不同的经纬度上有不同的车道线的二进制编码,以下标示为纬度在前,经度在后,且左车道线编码在前,右车道线编码在后。第一组经纬度为39°53’N,115°25’E,左右车道线的编码分别为001100和000111。第二组经纬度为83°22’N,103°21’E,左右车道线的编码分别为000000和001100。第三组经纬度为77°59’N,13°20’E,左右车道线的编码分别为010101和100110。远端服务器28接收二进制编码后,在数据库内寻找同样左车道线是000000并且右车道是001100的数据,接着, 筛选出数组可能的位置。然后,根据前一个比对结果所得出的位置,判断符合左车道线是000000并且右车道是001100中最有可能的位置。举例来说,数据库内的第二组资料恰巧符合左车道线是000000并且右车道是001100的数据,则移动装置30的经纬度位置可能为83°22’N,103°21’E。
详细来说,假设图3中路段的左车道线实际上是连续的虚线(00),而右车道线实际上是由两虚线(00)和一长实线(11)交替设置所构成,因此图3中区域路段的左右车道线的前后二进制编码分别可表示为左车道线编码为0000
Figure PCTCN2020107793-appb-000001
0000,且右车道线编码为0011
Figure PCTCN2020107793-appb-000002
1100,则远端服务器28可利用所接收到的左车道线编码000000和右车道线编码001100,并根据前一个比对结果所得出的位置或前一个GPS信息,搭配左右车道线前后的编码来依此判断出移动装置30最有可能的位置。
举例来说,数据库内可能有数组同样左车道线是000000并且右车道是001100的数据,藉由移动装置30前一个比对结果的位置,例如:已判断出移动装置30的前一个的经纬度位置为83°23’N,103°21’E,则因数据库中的第二组数据的经纬度为83°22’N,103°21’E,非常靠近前一个比对结果的位置,故第二组数据的经纬度很可能就是现在移动装置30的所在位置。
在其他实施例中,判断移动装置30最有可能的位置可能还包括根据移动装置30的时速,推测并预估移动装置30在两次判断中移动的范围,以在此范围里去比对符合左车道线是000000并且右车道是001100的位置。详细来说,因本实施例之方法先筛选出移动装置30可能移动的范围,因此在比对移动装置30可能的位置时,可以较快速地比对出最适的结果,相较于前述实施例,可以节省更多时间,并提供更准确的信息。
当判断出移动装置30的所在位置后,远端服务器28会将判断结果回传至手机36的处理器26,手机36的处理器26会将位置信息传送到手机36的显示器24上,显示器24可为手机36的屏幕,藉此,驾驶人可在手机36的屏幕上观察到所在位置的信息。
在一变化实施例中,数据比对的过程可以在手机端,举例来说,手机36的处理器26可以定时向远端服务器要求附近区域的最新路段编码信息,以建立处理器26内的数据库,亦即,将最新路段编码信息储存在手机36中。因此,当手机36内的处理器26接受到传感器22的讯号时,手机36可直接将此讯号与手机36内数据库的数据比对,以获得比对的结果,并在手机36的显示器24上显示位置信息。
在其他实施例中,手机36可内建有专属的行动应用程序(mobile application,简称apps)包括前述定位系统和定位方法。举例来说,驾驶人于启动移动装置30时,可同时启动手机36内的行动应用程序,行动应用程序会启用手机36的摄像头来捕捉路面车道线的画面,并对所收集到的车道线画面,进行二进制编码。
在一实施例中,为了最小化二进制编码后的数据量,依据前述内容所产生的二进制编码仅包含所述路面的车道线的连续状态信息,而不包含其他环境信息(例如不包含车道线的线条样式、颜色、形状、相邻两车道线之间的距离、GPS数据等)。如此一来,可将数据量最小化,使得与远端服务器28的沟通能更加快速,但不以此为限。在其他实施例中,行动应用程序可依车道线的线条样式、颜色、形状、相邻两车道线之间的距离来进行二进制编码,如此一来,虽然二进制编码后的数据量将增加,但比对准确度也会相对的提升。
在一些实施例中,行动应用程序还可将撷取或捕捉车道线画面的时间进行二进制编码,以回报数据库中最新时间的车道线数据比对。在其他实施例中,行动应用程序可将最近一次的有效GPS数据进行二进制编码,其中GPS数据包括时间和坐标,以与数据库中类似坐标位置的数据比对,来判断移动装置30最可能的位置。加入GPS的数据将有助于缩小数据库比对的数据范围,故可以更快速地比对出最适的结果,并提供更准确的信息。
因应各式各样的车道线,行动应用程序可将车道线的影像的讯号进行二进制编码的封包,以表达除了实线或虚线之外更多的信息。举例来说,封包的内 容可包括车道线的线条类型、颜色、宽度、形状等。除车道线本身的信息外,封包的内容还可包括GPS的时间和坐标、撷取车道线信息的时间。
在一些实施例中,封包的内容可包括行动应用程序的版本,具体来说,行动应用程序的版本可视为传送端和接收端事先沟通的加密/解密代码。举例而言,处理器26和远端服务器28在传输影像的讯号时,传送端(处理器26)将对影像的讯号进行加密,并在封包中加入行动应用程序的版本作为解密的代码,接收端(远端服务器28)将依据与代码以对加密后的影像的讯号进行解密来解读封包中的二进制编码。因应行动应用程序的版本不同,远端服务器28内可能具有数组对应不同版本的数据,以更准确地提供移动装置30的位置信息。
当行动应用程序获得移动装置30的位置信息后,可将位置信息投射在手机36的屏幕上,但不以此为限。行动应用程序可将此数据通过无线通讯方式传送给行车记录仪或车内屏幕等适当的媒介,以利驾驶人了解移动装置30的位置信息。
本揭露的定位系统及其定位方法不限于上述实施例,并且可以具有其他不同的实施例。为了简化描述并且为了便于在本公开的每个实施例之间进行比较,以下每个实施例中的相同部件用相同的标号标记。为了更容易地比较实施例之间的差异,以下描述将详细说明不同实施例之间的不同之处,并且将不再重复描述相同的特征。
图5是依据本申请不同实施例的定位系统的应用情境的示意图。在一变化实施例中,为了提升使用上的便利性,手机36的处理器26也可在接受到判断结果后,透过处理器26传送至车用屏幕34的行车导航上,藉此驾驶人可以更容易的获得所在位置的相关信息。
在其他实施例中,行动应用程序可能在手机36中以背景程序的模式运作,当计算出移动装置30的位置信息后,行动应用程序可将此数据通过无线通讯方式传送给行车记录仪或车内屏幕等适当的媒介,以利驾驶人得知移动装置30的位置信息。
图6是依据本申请不同实施例的定位系统的应用情境的示意图。在一变化实施例中,可利用行车导航或行车记录仪38作为撷取路面影像的工具。举例来说,行车记录仪38拍摄路面的影像后,产生影像的讯号。如同前述实施例,讯号包括二进制编码,用于指示路面的车道线信息。
随后,行车记录仪38将讯号传送至手机36,手机36可透过前述任一实施例的方法来获得位置的辨识结果。举例来说,数据比对的过程可在手机36或远端服务器28,当数据比对完成后,再藉由手机36或行车导航仪34显示移动装置30的位置。
替代的,若处理器26位于行车记录仪38中,则行车记录仪38亦可直接将影像的讯号与数据库内的数据比对,而不需经由手机或其他组件,故可更快速地获得比对结果。
举例而言,手机36或行车记录仪38内的数据库已储存各地区的车道线的二进制编码数据。如图6所示,图6绘示出数据库内的三组数据,分别在不同的经纬度上有不同的车道线的二进制编码,以下标示为纬度在前,经度在后,且左车道线编码在前,右车道线编码在后。第一组经纬度为49°53’N,115°25’E,左右车道线的编码分别为001100和000111。第二组经纬度为83°22’N,123°21’E,左右车道线的编码分别为000000和001100。第三组经纬度为87°59’N,13°20’E,左右车道线的编码分别为010101和100110。
远端服务器28接收二进制编码后,在数据库内寻找同样左车道线是000000并且右车道是001100的数据,接着,筛选出数组可能的位置。然后,根据前一个比对结果所得出的位置,判断符合左车道线是000000并且右车道是001100中最有可能的位置。
详细来说,数据库内可能有数组同样左车道线是000000并且右车道是001100的数据,藉由移动装置30前一个比对结果的位置,例如:已判断出移动装置30的前一个的经纬度位置为83°23’N,123°20’E,则因数据库中的第二组数据的经纬度为83°22’N,123°21’E,非常靠近前一个比对结果的位置,故第二 组数据的经纬度很可能就是现在移动装置30的所在位置。图7是依据本申请不同实施例的定位系统的应用情境的示意图。在一变化实施例中,可利用传感器22撷取的路面影像另包括非通行区的影像。藉此,本揭露之定位系统和定位方法亦可透过非通行区的信息来判断移动装置30的位置。举例来说,非通行区可包括人行道或安全岛,但不以此为限。
在一些实施例中,移动装置30可能行经的路段只有一侧有车道线,例如:只有移动装置30的左边具有车道线,而移动装置30的右边是人行道。在其他实施例中,移动装置可能行经的路段两侧都没有车道线,如图7所示,移动装置30的左边是安全岛,而移动装置30的右边是人行道。因此,藉由非通行区的影像撷取,有利于本揭露的定位系统和定位方法判别移动装置30的所在位置。
在另一变化实施例中,移动装置30或手机36中内建有全球定位系统,当手机36内的处理器26侦测到全球定位系统所接受到的卫星讯号强度低于默认值时,手机内的处理器26会控制传感器24,使其开始撷取路面的车道线影像,以提供移动装置30的位置信息。
举例来说,当移动装置30行经桥下等路段时,卫星讯号可能会被遮挡,此时内建的全球定位系统将无法发挥原本的定位功能。因此,当手机36或行车记录仪38内的处理器26侦测到卫星讯号不足时,处理器26会传送信息给传感器22,使传感器22开始发挥路面影像撷取的功能。当传感器22产生影像的讯号后,再经由处理器26和远端服务器28比对结果,将移动装置30的位置信息显示在显示器24上。
在又一变化实施例中,定位系统20还可以提供移动装置30移动偏移车道的信息。举例来说,当驾驶人驾驶移动装置时,可能因一些因素,例如:技术不佳、精神不济或不专心等等,导致移动装置30移动的方向偏离原先的车道。
当移动装置30在车道线间移动时,假设移动装置30在第一时间与左右车道线的距离相等,移动装置30在第二时间与左右车道线的距离开始产生变化, 例如:移动装置30偏向左边移动时,则移动装置30在第二时间与左车道线的距离会小于X,而与右车道线的距离会大于X。当移动装置30持续往左边的方向移动时,则移动装置30和左车道线间的距离会越来越近。当移动装置30与左车道线的距离小于预设值时,则定位系统20会显示车道偏移的信息,藉此提醒驾驶人须控制移动装置30的移动方向。
在其他实施例中,移动装置30可能在非通行区之间移动。当移动装置30偏向某一方向移动时,则移动装置30与非通行区之间的距离会越来越近。当移动装置30与非通行区的距离小于预设值时,则定位系统20会显示车道偏移的信息,藉此提醒驾驶人须调整移动装置的移动方向。
在变化实施例中,移动装置30可能在非通行区和车道线之间移动。当移动装置30偏向某一方向移动时,则移动装置30与非通行区之间的距离或移动装置30与车道线之间的距离会越来越近。当移动装置30与非通行区的距离小于预设值或移动装置30与车道线之间的距离小于预设值时,则定位系统20会显示车道偏移的信息,以提醒驾驶人须调整移动装置的移动方向。
上文概述若干实施例的特征,使得所属领域的技术人员可较佳理解本申请的方面。所属领域的技术人员应了解,其可容易使用本申请作为用于设计或修改用于实行相同目的及/或实现本文中介绍的实施例的相同优点的其它工艺及结构的基础。所属领域的技术人员还应意识到,这些等效构造不脱离本揭露的精神及范围且其可在本文中做出各种改变、替代及更改而不脱离本揭露的精神及范围。
再者,本申请的范围不旨在限于本说明书中描述的工艺、机器、制造、物质组成、构件、方法及步骤的特定实施例。所属领域的一般技术人员将根据本揭露的揭示内容容易了解,可根据本揭露利用大体上执行与本文中描述的对应实施例相同的功能或大体上实现与其相同的结果的目前存在或后续发展的工艺、机器、制造、物质组成、构件、方法或步骤。因此,随附权利要求书旨在将这些工艺、机器、制造、物质组成、构件、方法或步骤包含于其范围内。

Claims (15)

  1. 一种车辆用定位方法,用于车辆于马路上移动时提供所述车辆的位置,其特征在于,包括:
    于每个预设距离,透过传感器辨识路面的车道线的连续状态,并根据所述连续状态产生对应之二进制编码,所述二进制编码至少用于指示所述路面的车道线的连续状态;
    将所述二进制编码与数据库比对,若于所述数据库中找到相同的二进制编码,则反馈对应于所述二进制编码的位置信息;及
    根据所述位置信息显示所述车辆的所述位置。
  2. 如权利要求1的车辆用定位方法,其特征在于,将所述二进制编码与所述数据库比对包括:
    通过手机将所述二进制编码传送至远端服务器;
    将所述二进制编码与所述远端服务器内的所述数据库进行比对以产生所述车辆的所述位置;及
    回传所述车辆的所述位置至所述手机。
  3. 如权利要求1的车辆用定位方法,其特征在于,将所述二进制编码与所述数据库比对包括:
    通过手机存储自远端服务器获取的资料,以在所述手机建立所述数据库;及
    将自所述传感器接收的所述二进制编码与所述数据库的数据进行比对,以产生所述车辆的所述位置。
  4. 如权利要求1的车辆用定位方法,其特征在于,所述二进制编码仅包含所述路面的车道线的连续状态信息,而不包含其他环境信息。
  5. 如权利要求1的车辆用定位方法,其特征在于,所述预设距离的测量是通过里程计或全球定位系统装置。
  6. 如权利要求5的车辆用定位方法,其特征在于,还包括:
    当所述车辆的所述全球定位系统装置所接受到的卫星讯号低于默认值时,透过传感器辨识路面的车道线的连续状态以显示所述车辆的所述位置。
  7. 如权利要求1的定位方法,其特征在于,还包括:
    当所述二进制编码指示所述车辆与非通行区的距离小于预设值时或指示所述车辆与所述车道线的距离小于预设值时,显示车道偏移信息。
  8. 一种定位系统,用于移动装置于马路上移动时提供所述移动装置的位置,其特征在于,包括:
    传感器,用于撷取路面的影像,并产生所述影像的讯号,所述讯号包括二进制编码,所述二进制编码至少用于指示所述路面的车道线的信息;及
    显示器,用于依据所述讯号与数据库比对的结果,来显示所述移动装置的所述位置。
  9. 如权利要求8的定位系统,其特征在于,所述信息包括所述车道线的线条样式、颜色、形状、宽度、任两相邻的所述车道线的距离、所述车道线的坐标的任一或多者。
  10. 如权利要求8的定位系统,其特征在于,还包括:
    处理器,用于自所述传感器接收所述讯号,并将所述讯号传送至远端服务器,所述远端服务器将所述讯号与所述远端服务器内的所述数据库的数据比对,以提供所述显示器所述比对的结果。
  11. 如权利要求8的定位系统,其特征在于,还包括:
    处理器,用于定时存储自远端服务器获取的资料,以建立所述处理器内的所述数据库,并自所述传感器接收所述讯号,以将所述讯号与所述处理器内的所述数据库的数据比对,来提供所述显示器所述比 对的结果。
  12. 如权利要求10至11中任意一项的定位系统,其特征在于,所述处理器还用于当所述移动装置中的全球定位系统所接受到的卫星讯号强度低于默认值时,控制所述传感器撷取所述路面的所述影像以指示所述路面的所述信息。
  13. 如权利要求8的定位系统,其特征在于,所述二进制编码还包括用于指示所述路面的非通行区的信息,其中所述非通行区包括人行道或安全岛。
  14. 如权利要求13的定位系统,其特征在于,其中所述显示器还用于当所述二进制编码指示所述移动装置与所述非通行区的距离小于预设值或指示所述移动装置与所述车道线的距离小于预设值时,显示车道偏移信息。
  15. 一种移动装置,其特征在于,所述移动装置包括如权利要求1所述的定位系统,且所述移动装置是路面交通工具。
PCT/CN2020/107793 2019-08-14 2020-08-07 车辆用定位方法及定位系统 WO2021027723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910751687.5 2019-08-14
CN201910751687.5A CN110455298B (zh) 2019-08-14 2019-08-14 车辆用定位方法及定位系统

Publications (1)

Publication Number Publication Date
WO2021027723A1 true WO2021027723A1 (zh) 2021-02-18

Family

ID=68486698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107793 WO2021027723A1 (zh) 2019-08-14 2020-08-07 车辆用定位方法及定位系统

Country Status (2)

Country Link
CN (1) CN110455298B (zh)
WO (1) WO2021027723A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455298B (zh) * 2019-08-14 2022-02-08 灵动科技(北京)有限公司 车辆用定位方法及定位系统
US11860634B2 (en) * 2019-12-12 2024-01-02 Baidu Usa Llc Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes
CN113128317B (zh) * 2020-01-15 2024-03-26 宏碁股份有限公司 车道定位系统以及车道定位方法
CN111524380A (zh) * 2020-04-21 2020-08-11 大连理工大学 虚线交通标线表征车辆定位及道路交通设施信息的方法
TWI814480B (zh) * 2022-07-11 2023-09-01 新馳科技股份有限公司 車輛定位系統與車輛定位方法
CN117560666B (zh) * 2024-01-11 2024-03-15 南京中科齐信科技有限公司 一种智能网联汽车与云端建立点对点加密通信网络的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019759A (ja) * 2008-07-11 2010-01-28 Mazda Motor Corp 車両用走行車線検出装置
CN107886752A (zh) * 2017-11-08 2018-04-06 武汉理工大学 一种基于改造车道线的高精度车辆定位系统及方法
CN108303103A (zh) * 2017-02-07 2018-07-20 腾讯科技(深圳)有限公司 目标车道的确定方法和装置
CN108960055A (zh) * 2018-05-30 2018-12-07 广西大学 一种基于局部线段模式特征的车道线检测方法
CN109085821A (zh) * 2018-06-22 2018-12-25 苏州上善知源汽车电子有限公司 自动驾驶车辆定位方法
CN110455298A (zh) * 2019-08-14 2019-11-15 灵动科技(北京)有限公司 车辆用定位方法及定位系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500907B1 (en) * 2003-07-21 2014-11-12 LG Electronics, Inc. Apparatus and method for detecting vehicle location in navigation system
KR100516970B1 (ko) * 2005-03-29 2005-09-26 포인트아이 주식회사 MS-Based GPS 방식을 이용하여 길 안내 서비스를제공하는 방법 및 이를 이용한 시스템 및 장치
JP4861850B2 (ja) * 2007-02-13 2012-01-25 アイシン・エィ・ダブリュ株式会社 レーン判定装置及びレーン判定方法
JP5292935B2 (ja) * 2008-06-16 2013-09-18 日本電気株式会社 メモリモジュール制御方法及びメモリモジュール並びにデータ転送装置
US8284995B2 (en) * 2008-07-16 2012-10-09 Volkswagen Of America, Inc. Method for updating a geographic database for an in-vehicle navigation system
GR20080100695A (el) * 2008-10-23 2010-02-24 Αποστολος Αποστολιδης Γραμμικο συστημα αποφυγης τροχαιων
US8315756B2 (en) * 2009-08-24 2012-11-20 Toyota Motor Engineering and Manufacturing N.A. (TEMA) Systems and methods of vehicular path prediction for cooperative driving applications through digital map and dynamic vehicle model fusion
CN104700313A (zh) * 2013-12-06 2015-06-10 大连灵动科技发展有限公司 基于卡车调度系统的卡车智能终端
CN106245475A (zh) * 2016-07-22 2016-12-21 金陵科技学院 一种全程带有车道中心标识的高速公路及使用方法
CN111542860A (zh) * 2016-12-30 2020-08-14 迪普迈普有限公司 用于自主车辆的高清地图的标志和车道创建
US10373002B2 (en) * 2017-03-31 2019-08-06 Here Global B.V. Method, apparatus, and system for a parametric representation of lane lines
US10168174B2 (en) * 2017-05-09 2019-01-01 Toyota Jidosha Kabushiki Kaisha Augmented reality for vehicle lane guidance
US10296795B2 (en) * 2017-06-26 2019-05-21 Here Global B.V. Method, apparatus, and system for estimating a quality of lane features of a roadway
CN108592914A (zh) * 2018-04-08 2018-09-28 河南科技学院 无gps情况下的复杂区域巡视机器人定位、导航及授时方法
CN109815900A (zh) * 2019-01-24 2019-05-28 深圳市路畅智能科技有限公司 一种基于辅助定位线的车辆自定位方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019759A (ja) * 2008-07-11 2010-01-28 Mazda Motor Corp 車両用走行車線検出装置
CN108303103A (zh) * 2017-02-07 2018-07-20 腾讯科技(深圳)有限公司 目标车道的确定方法和装置
CN107886752A (zh) * 2017-11-08 2018-04-06 武汉理工大学 一种基于改造车道线的高精度车辆定位系统及方法
CN108960055A (zh) * 2018-05-30 2018-12-07 广西大学 一种基于局部线段模式特征的车道线检测方法
CN109085821A (zh) * 2018-06-22 2018-12-25 苏州上善知源汽车电子有限公司 自动驾驶车辆定位方法
CN110455298A (zh) * 2019-08-14 2019-11-15 灵动科技(北京)有限公司 车辆用定位方法及定位系统

Also Published As

Publication number Publication date
CN110455298B (zh) 2022-02-08
CN110455298A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021027723A1 (zh) 车辆用定位方法及定位系统
CN109739236B (zh) 车辆信息的处理方法、装置、计算机可读介质及电子设备
US10101745B1 (en) Enhancing autonomous vehicle perception with off-vehicle collected data
US9959764B1 (en) Synchronization of vehicle sensor information
US20230288208A1 (en) Sensor plausibility using gps road information
CN113678140A (zh) 接近的车辆的定位和识别
US10838420B2 (en) Vehicular PSM-based estimation of pedestrian density data
US11335188B2 (en) Method for automatically producing and updating a data set for an autonomous vehicle
US10754348B2 (en) Encoded road striping for autonomous vehicles
US11205342B2 (en) Traffic information processing device
Chen et al. Centimeter-grade metropolitan positioning for lane-level intelligent transportation systems based on the internet of vehicles
CN102889892A (zh) 实景导航的方法及导航终端
KR101439019B1 (ko) 차량 제어 장치 및 그 자율 주행 방법
US10665109B1 (en) Construction zone apparatus and method
US20230392943A1 (en) Server apparatus and information processing method
CN103797333A (zh) 用于确定车辆的位置的设备和方法
CN113386738A (zh) 风险预警系统、方法和存储介质
WO2018199941A1 (en) Enhancing autonomous vehicle perception with off-vehicle collected data
JP2018124911A (ja) 車両制御装置、車両制御方法、および車両制御プログラム
KR20170128684A (ko) 증강현실 기술을 이용하여 차량의 주행 정보를 제공하기 위한 전자 장치
US20210223409A1 (en) Method and device for determining a position of a vehicle
US20210397854A1 (en) Systems and methods for aligning trajectory information derived from different source data
KR102600313B1 (ko) 교차로 통행 정보 분석 방법
CN113804210B (zh) 位置推定装置、位置推定方法以及存储介质
JP6896117B2 (ja) 情報処理装置、情報処理方法及び情報処理用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851525

Country of ref document: EP

Kind code of ref document: A1