WO2021027712A1 - 传输资源大小的确定方法、装置、终端及网络侧设备 - Google Patents

传输资源大小的确定方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2021027712A1
WO2021027712A1 PCT/CN2020/107742 CN2020107742W WO2021027712A1 WO 2021027712 A1 WO2021027712 A1 WO 2021027712A1 CN 2020107742 W CN2020107742 W CN 2020107742W WO 2021027712 A1 WO2021027712 A1 WO 2021027712A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
csi
transmission resource
uci
size
Prior art date
Application number
PCT/CN2020/107742
Other languages
English (en)
French (fr)
Inventor
皮启平
高雪娟
邢艳萍
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021027712A1 publication Critical patent/WO2021027712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device, terminal, and network side equipment for determining the size of transmission resources.
  • the PUSCH enhancement in NR will support single or multiple short time slots or time slot PUSCH repeated transmission, and each short time slot (mini-slot) PUSCH allows cross-slot boundary or Up and down switching point. If a certain PUSCH repeatedly crosses slot boundaries or uplink and downlink switching points, the PUSCH (may be called nominal PUSCH, nominal PUSCH) will be divided into two or more PUSCHs (may be called actual PUSCH, actual PUSCH) for transmission.
  • the UCI is multiplexed on the actual PUSCH for transmission under the condition that the specified time limit is met.
  • the actual length of the actual PUSCH is less than the length indicated by the PUSCH time domain resource allocation, the calculation method of related UCI resources will cause the actual UCI transmission resources to become smaller and the transmission reliability will be affected.
  • the purpose of some embodiments of the present disclosure is to provide a method, device, terminal, and network-side equipment for determining the size of transmission resources, so as to solve the problem that the calculation method of the transmission resource size of UCI multiplexed on PUSHC cannot be applied in certain scenarios. .
  • some embodiments of the present disclosure provide a method for determining the size of transmission resources, which is applied to a terminal, and includes:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the method further includes:
  • the UCI is transmitted on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the first formula is:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the third formula is:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the fifth formula is:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure also provide a method for determining the size of a transmission resource, which is applied to a network side device, including:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the method further includes:
  • the UCI is received on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the first formula is:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the third formula is:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • determining the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH includes:
  • the fifth formula is:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure also provide an apparatus for determining the size of transmission resources, which is applied to a terminal, and includes:
  • the first determining module is configured to determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching point, The first PUSCH is divided into at least two second PUSCHs;
  • the second determining module is configured to determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • the third determining module is configured to determine that the target transmission resource size of UCI transmission on the second PUSCH overlapping with the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor, and the transceiver is under the control of the processor Receiving and sending data, the processor is used to read the program in the memory and perform the following operations:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the processor is used to read the program in the memory and perform the following operations:
  • the UCI is transmitted on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the processor is used to read the program in the memory and perform the following operations:
  • the first formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the processor is used to read the program in the memory and perform the following operations:
  • the third formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the processor is used to read the program in the memory and perform the following operations:
  • the fifth formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure also provide an apparatus for determining the size of a transmission resource, which is applied to a network side device, and includes:
  • the fourth determining module is configured to determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching point, The first PUSCH is divided into at least two second PUSCHs;
  • the fifth determining module is configured to determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • the sixth determining module is configured to determine that the target transmission resource size of UCI transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • Some embodiments of the present disclosure also provide a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor, and the transceiver is in the processor's To receive and send data under control, the processor is used to read the program in the memory and perform the following operations:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the processor is used to read the program in the memory and perform the following operations:
  • the UCI is received on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the processor is used to read the program in the memory and perform the following operations:
  • the first formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the processor is used to read the program in the memory and perform the following operations:
  • the third formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the processor is used to read the program in the memory and perform the following operations:
  • the fifth formula is:
  • the processor is used to read the program in the memory and perform the following operations:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure further provide a readable storage medium on which a program is stored, and when the program is executed by a processor, the steps of the method for determining the size of the transmission resource as described above are implemented.
  • the first PUSCH is divided into at least two second PUSCHs, according to the number of symbols of the first PUSCH and the second PUSCH
  • the number of PUSCH symbols determines the actual transmission resource size of the UCI multiplexed on the second PUSCH, so as to ensure the matching of the actual UCI transmission resource and the UCI and avoid affecting its transmission reliability.
  • FIG. 1 shows one of the step flowcharts of a method for determining the size of a transmission resource provided by some embodiments of the present disclosure
  • FIG. 2 is a diagram showing the correspondence between the first PUSCH and the second PUSCH in the method for determining the size of transmission resources provided by some embodiments of the present disclosure
  • FIG. 3 shows the second flow chart of the method for determining the size of transmission resources provided by some embodiments of the present disclosure
  • FIG. 4 shows an application example diagram of a method for determining a transmission resource size provided by some embodiments of the present disclosure
  • FIG. 5 shows one of the schematic structural diagrams of the device for determining the size of transmission resources provided by some embodiments of the present disclosure
  • Figure 6 shows a schematic structural diagram of a terminal provided by some embodiments of the present disclosure
  • FIG. 7 shows the second structural diagram of a device for determining the size of transmission resources provided by some embodiments of the present disclosure.
  • FIG. 8 shows a schematic structural diagram of a network side device provided by some embodiments of the present disclosure.
  • some embodiments of the present disclosure provide a method for determining the size of transmission resources, which is applied to a terminal, and includes:
  • Step 11 Determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH Be divided into at least two second PUSCH;
  • Step 12 Determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • Step 13 Determine the target transmission resource size of the UCI for transmission on the second PUSCH overlapping the UCI as the minimum value of the first transmission resource size and the second transmission resource size.
  • the first PUSCH is each PUSCH with length L determined according to ⁇ S, L, K ⁇ indicated by the PUSCH time domain resource configured by the network side device, and there are K first PUSCHs in total, where S represents The start symbol position of the first PUSCH, L represents the length of the first PUSCH, and K represents the number of repetitions of the first PUSCH.
  • S represents The start symbol position of the first PUSCH
  • L represents the length of the first PUSCH
  • K represents the number of repetitions of the first PUSCH.
  • when a first PUSCH crosses the slot boundary (or uplink and downlink switching point) it is divided into multiple second PUSCHs for transmission, and these are divided
  • the obtained second PUSCH may also be referred to as actual PUSCH.
  • the first transmission resource size of UCI is determined according to the number of symbols of the first PUSCH
  • the second transmission resource size of UCI is determined according to the number of symbols of the second PUSCH
  • the first transmission resource size is taken And the smallest value of the second transmission resource size as the target transmission resource size of the UCI on the second PUSCH (that is, the actual transmission resource size).
  • the method further includes:
  • the UCI is transmitted on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • step 11 includes:
  • the first formula is:
  • step 12 includes:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • step 11 includes:
  • the third formula is:
  • step 12 includes:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • Indicates the rate compensation factor Represents the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer
  • Q'ACK indicates The size of the target transmission resource for transmitting the HARQ-ACK on the second PUSCH.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • Q 'ACK min ⁇ Q ACK1 , Q ACK2 ⁇ ; Q ACK1, Q ACK2 calculated above and are not repeated herein.
  • the target transmission resource size Q′ CSI-1 for CSI part 1 to transmit on the second PUSCH is:
  • Q'CSI-1 min ⁇ Q CSI-11 ,Q CSI-12 ⁇ .
  • step 11 includes:
  • the fifth formula is:
  • step 12 includes:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • Indicates the rate compensation factor Represents the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer;
  • Q'ACK indicates The size of the target transmission resource for transmission of the HARQ-ACK on the second PUSCH;
  • Q'CSI-1 indicates the size of the target transmission resource for the transmission of the first part of CSI on the second PUSCH.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • Q 'ACK min ⁇ Q ACK1 , Q ACK2 ⁇ ; Q ACK1, Q ACK2 calculated above and are not repeated herein.
  • the target transmission resource size Q′ CSI-1 for CSI part 1 to transmit on the second PUSCH is:
  • Q'CSI-1 min ⁇ Q CSI-11 ,Q CSI-12 ⁇ ; the calculation formulas of Q CSI-11 and Q CSI-12 are the same as above, and the details are not repeated here.
  • the target transmission resource size Q′ CSI-2 for CSI part 2 to transmit on the second PUSCH is:
  • Q'CSI-2 min ⁇ Q CSI-21 ,Q CSI-22 ⁇ .
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of UCI actual transmission resources and UCI, and avoids affecting its transmission reliability.
  • some embodiments of the present disclosure also provide a method for determining the size of transmission resources, which is applied to a network side device, including:
  • Step 31 Determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH Be divided into at least two second PUSCH;
  • Step 32 Determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • Step 33 Determine the target transmission resource size of the UCI for transmission on the second PUSCH overlapping the UCI as the smallest value of the first transmission resource size and the second transmission resource size.
  • the first PUSCH is each PUSCH with length L determined according to ⁇ S, L, K ⁇ indicated by the PUSCH time domain resource configured by the network side device, and there are K first PUSCHs in total, where S represents The start symbol position of the first PUSCH, L represents the length of the first PUSCH, and K represents the number of repetitions of the first PUSCH.
  • S represents The start symbol position of the first PUSCH
  • L represents the length of the first PUSCH
  • K represents the number of repetitions of the first PUSCH.
  • when a first PUSCH crosses the slot boundary (or uplink and downlink switching point) it is divided into multiple second PUSCHs for transmission, and these are divided
  • the obtained second PUSCH may also be referred to as actual PUSCH.
  • the first transmission resource size of UCI is determined according to the number of symbols of the first PUSCH
  • the second transmission resource size of UCI is determined according to the number of symbols of the second PUSCH
  • the first transmission resource size is taken And the smallest value of the second transmission resource size as the target transmission resource size of the UCI on the second PUSCH (that is, the actual transmission resource size).
  • the method further includes:
  • the UCI is received on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • step 31 includes:
  • the first formula is:
  • step 32 includes:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • step 31 includes:
  • the third formula is:
  • step 32 includes:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • Indicates the rate compensation factor Represents the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer
  • Q'ACK indicates The size of the target transmission resource for transmitting the HARQ-ACK on the second PUSCH.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • Q 'ACK min ⁇ Q ACK1 , Q ACK2 ⁇ ; Q ACK1, Q ACK2 calculated above and are not repeated herein.
  • the target transmission resource size Q′ CSI-1 for CSI part 1 to transmit on the second PUSCH is:
  • Q'CSI-1 min ⁇ Q CSI-11 ,Q CSI-12 ⁇ .
  • step 31 includes:
  • the fifth formula is:
  • step 32 includes:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • Indicates the rate compensation factor Represents the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer;
  • Q'ACK indicates The size of the target transmission resource for transmission of the HARQ-ACK on the second PUSCH;
  • Q'CSI-1 indicates the size of the target transmission resource for the transmission of the first part of CSI on the second PUSCH.
  • It is dynamically indicated by the downlink control information DCI or the radio resource control RRC semi-static configuration.
  • the target transmission resource size Q′ ACK for HARQ-ACK transmission on the second PUSCH is:
  • Q 'ACK min ⁇ Q ACK1 , Q ACK2 ⁇ ; Q ACK1, Q ACK2 calculated above and are not repeated herein.
  • the target transmission resource size Q′ CSI-1 for CSI part 1 to transmit on the second PUSCH is:
  • Q'CSI-1 min ⁇ Q CSI-11 ,Q CSI-12 ⁇ ; the calculation formulas of Q CSI-11 and Q CSI-12 are the same as above, and the details are not repeated here.
  • the target transmission resource size Q′ CSI-2 for CSI part 2 to transmit on the second PUSCH is:
  • Q'CSI-2 min ⁇ Q CSI-21 ,Q CSI-22 ⁇ .
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of the actual UCI transmission resource and UCI, and avoids affecting its transmission reliability.
  • PUCCH 1 will be multiplexed on the second PUSCH#1, and PUCCH 2 will be multiplexed. Used on the second PUSCH#2 The second PUSCH#1 and the second PUSCH#2 belong to the same first PUSCH.
  • the size of the first transmission resource of CSI part 1 is 24*N, and the size of the second transmission resource is 2*N, then the actual transmission resource size of CSI part 1 takes the first Two transmission resources 2*N, the terminal multiplexes the CSI part 1 of UCI 1 on this actual transmission resource; the first transmission resource size of CSI part 2 is 12*N, and the second transmission resource size is 0, then CSI part 2
  • the actual transmission resource size is 0.
  • the first transmission resource size of HARQ-ACK is (3*N/5), and the second transmission resource size is 3*N.
  • the actual transmission resource of HARQ-ACK The size is the size of the first transmission resource (3*N/5).
  • some embodiments of the present disclosure also provide a device for determining the size of transmission resources, which is applied to a terminal, and includes:
  • the first determining module 51 is configured to determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching point, The first PUSCH is divided into at least two second PUSCHs;
  • the second determining module 52 is configured to determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • the third determining module 53 is configured to determine that the target transmission resource size of UCI transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the device further includes:
  • the transmission module is configured to transmit the UCI on the second PUSCH overlapping with the UCI according to the determined target transmission resource size.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the first determining module includes:
  • the first determining submodule is used to determine the number of symbols according to the first PUSCH And the first formula to determine the first transmission resource size Q ACK1 of the HARQ-ACK; the first formula is:
  • the second determining module includes:
  • the second determining submodule is used to determine the number of symbols according to the second PUSCH And a second formula to determine the second transmission resource size Q ACK2 of the HARQ-ACK; the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the first determining module includes:
  • the third determining submodule is used to determine the number of symbols according to the first PUSCH And a third formula to determine the first transmission resource size Q CSI-11 of the first part of CSI; the third formula is:
  • the second determining module includes:
  • the fourth determining submodule is used to determine the number of symbols according to the second PUSCH And a fourth formula to determine the second transmission resource size Q CSI-12 of the first part of CSI; the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the first determining module includes:
  • the fifth determining submodule is used to determine the number of symbols according to the first PUSCH And the fifth formula to determine the first transmission resource size Q CSI-21 of the second part of CSI; the fifth formula is:
  • the second determining module includes:
  • the sixth determining submodule is used to determine the number of symbols according to the second PUSCH And a sixth formula to determine the second transmission resource size Q CSI-22 of the second part of CSI; the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of UCI actual transmission resources and UCI, and avoids affecting its transmission reliability.
  • the device for determining the size of the transmission resource provided by some embodiments of the present disclosure is a device capable of executing the method for determining the size of the transmission resource, and all the embodiments of the method for determining the size of the transmission resource are applicable to the device. And all can achieve the same or similar beneficial effects.
  • some embodiments of the present disclosure also provide a terminal, including: a transceiver 620, a memory 610, a processor 600, and a program stored on the memory 610 and running on the processor 600
  • the transceiver 620 receives and sends data under the control of the processor 600, and the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the UCI is transmitted on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the first formula is:
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the third formula is:
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the fifth formula is:
  • the processor 600 is configured to read a program in the memory 610 and perform the following operations:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure also provide a terminal. Since the principle of the terminal to solve the problem is similar to the method for determining the transmission resource size in some embodiments of the present disclosure, the implementation of the terminal can refer to the implementation of the method. Not to repeat it.
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of UCI actual transmission resources and UCI, and avoids affecting its transmission reliability.
  • the terminal provided by some embodiments of the present disclosure is a terminal capable of executing the method for determining the size of the transmission resource, and all the embodiments of the method for determining the size of the transmission resource are applicable to the terminal, and can achieve the same Or similar beneficial effects.
  • some embodiments of the present disclosure also provide an apparatus for determining the size of a transmission resource, which is applied to a network side device, including:
  • the fourth determining module 71 is configured to determine the size of the first transmission resource of the uplink control information UCI according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching point, The first PUSCH is divided into at least two second PUSCHs;
  • the fifth determining module 72 is configured to determine the second transmission resource size of the UCI according to the number of symbols of the second PUSCH; wherein the physical uplink control channel PUCCH carrying the UCI has resource overlap with a second PUSCH;
  • the sixth determining module 73 is configured to determine that the target transmission resource size of UCI transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the device further includes:
  • the receiving module is configured to receive the UCI on the second PUSCH overlapping the UCI according to the determined target transmission resource size.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the fourth determining module includes:
  • the seventh determining submodule is used to determine the number of symbols according to the first PUSCH And the first formula to determine the first transmission resource size Q ACK1 of the HARQ-ACK; the first formula is:
  • the fifth determining module includes:
  • the eighth determining submodule is used to determine the number of symbols according to the second PUSCH And a second formula to determine the second transmission resource size Q ACK2 of the HARQ-ACK; the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the fourth determining module includes:
  • the ninth determining submodule is used to determine the number of symbols according to the first PUSCH And a third formula to determine the first transmission resource size Q CSI-11 of the first part of CSI; the third formula is:
  • the fifth determining module includes:
  • the tenth determining submodule is used to determine the number of symbols according to the second PUSCH And a fourth formula to determine the second transmission resource size Q CSI-12 of the first part of CSI; the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the fourth determining module includes:
  • the eleventh determining submodule is used to determine the number of symbols according to the first PUSCH And the fifth formula to determine the first transmission resource size Q CSI-21 of the second part of CSI; the fifth formula is:
  • the fifth determining module includes:
  • the twelfth determining submodule is used to determine the number of symbols according to the second PUSCH And a sixth formula to determine the second transmission resource size Q CSI-22 of the second part of CSI; the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of UCI actual transmission resources and UCI, and avoids affecting its transmission reliability.
  • the device for determining the size of the transmission resource provided by some embodiments of the present disclosure is a device capable of executing the method for determining the size of the transmission resource, and all the embodiments of the method for determining the size of the transmission resource are applicable to the device. And all can achieve the same or similar beneficial effects.
  • some embodiments of the present disclosure also provide a network side device, including: a transceiver 820, a memory 810, a processor 800, and is stored in the memory 810 and can run on the processor 800
  • the transceiver 820 receives and sends data under the control of the processor 800, and the processor 800 is used to read the program in the memory 810 and perform the following operations:
  • the size of the first transmission resource of the uplink control information UCI is determined according to the number of symbols of the first physical uplink shared channel PUSCH; when the first PUSCH crosses the slot boundary or the uplink and downlink switching points, the first PUSCH is divided into At least two second PUSCHs;
  • the target transmission resource size of UCI for transmission on the second PUSCH overlapping the UCI is the minimum value of the first transmission resource size and the second transmission resource size.
  • the processor 800 is configured to read a program in the memory 810 and perform the following operations:
  • the UCI is received on a second PUSCH overlapping the UCI.
  • the UCI includes: hybrid automatic repeat request response HARQ-ACK and/or channel state information CSI;
  • the CSI includes a first part of CSI and/or a second part of CSI.
  • the processor 800 is configured to read a program in the memory 810 and perform the following operations:
  • the first formula is:
  • the processor 800 is configured to read the program in the memory 810 and perform the following operations:
  • the second formula is:
  • O ACK represents the number of HARQ-ACK bits
  • L ACK represents the number of cyclic redundancy check CRC bits of HARQ-ACK
  • Is the number of bits of the first PUSCH
  • is the scale factor configured by the higher layer.
  • the processor 800 is configured to read a program in the memory 810 and perform the following operations:
  • the third formula is:
  • the processor 800 is configured to read the program in the memory 810 and perform the following operations:
  • the fourth formula is:
  • O CSI-1 represents the number of bits of the first part of CSI
  • L CSI-1 represents the number of bits of the CRC of the first part of CSI
  • It represents the number of subcarriers that can be used to transmit UCI on the 1st PUSCH symbol
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH.
  • the processor 800 is configured to read a program in the memory 810 and perform the following operations:
  • the fifth formula is:
  • the processor 800 is configured to read the program in the memory 810 and perform the following operations:
  • the sixth formula is:
  • O CSI-2 represents the number of bits of the second part of CSI
  • L CSI-2 represents the number of bits of the CRC of the second part of CSI
  • is the scale factor configured by the higher layer
  • Q'ACK represents the target transmission resource size of the HARQ-ACK for transmission on the second PUSCH
  • Q'CSI -1 indicates the target transmission resource size for the first part of CSI to be transmitted on the second PUSCH.
  • Some embodiments of the present disclosure also provide a network-side device. Since the principle of the network-side device to solve the problem is similar to the method for determining the transmission resource size in some embodiments of the present disclosure, the implementation of the network-side device can refer to the method The implementation of, the repetition will not be repeated.
  • the first PUSCH when the first PUSCH is divided into at least two second PUSCHs, it is determined that UCI is multiplexed on the second PUSCH according to the number of symbols of the first PUSCH and the number of symbols of the second PUSCH.
  • the actual transmission resource size on the above ensures the matching of UCI actual transmission resources and UCI, and avoids affecting its transmission reliability.
  • the network-side device provided by some embodiments of the present disclosure is a network-side device that can execute the foregoing method for determining the size of transmission resources, and all embodiments of the foregoing method for determining the size of transmission resources are applicable to the network-side device. , And can achieve the same or similar beneficial effects.
  • Some embodiments of the present disclosure also provide a readable storage medium on which a program is stored, and when the program is executed by a processor, each process of the method embodiment for determining the size of a transmission resource as described above is implemented, And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输资源大小的确定方法、装置、终端及网络侧设备,该方法包括:根据第一PUSCH的符号数确定UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。

Description

传输资源大小的确定方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2019年8月15日在中国提交的中国专利申请号No.201910753712.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其是指一种传输资源大小的确定方法、装置、终端及网络侧设备。
背景技术
在5G NR(New Radio,新空口)系统中,当PUCCH(Physical Uplink Control CHannel,物理上行控制信道)和PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)在资源重叠时,在满足时间限制的条件下,UCI(Uplink Control Information,上行控制信息)将复用在与之重叠的PUSCH上进行传输。
在5G NR系统中,URLLC(Ultra-Reliable and Low Latency Communications,超可靠、低时延通信)业务有低时延和高可靠的要求。为了提高PUSCH传输可靠性和降低时延,NR中的PUSCH增强将支持单个或多个短时隙或时隙PUSCH重复传输,且每个短时隙(mini-slot)PUSCH允许跨时隙边界或上下行切换点。如果某个PUSCH重复跨时隙边界或上下行切换点,则该PUSCH(可称为nominal PUSCH,名义PUSCH)会分割成两个甚至多个PUSCH(可称为actual PUSCH,实际PUSCH)进行传输。当PUCCH与某个被分割后的actual PUSCH有资源重叠时,在满足规定的时间限制的条件下,UCI复用在该actual PUSCH上进行传输。然而,由于该actual PUSCH实际长度小于PUSCH时域资源分配指示的长度,按照相关UCI资源计算的方法将导致UCI实际传输资源变小,传输可靠性受到影响。
发明内容
本公开的一些实施例的目的在于提供一种传输资源大小的确定方法、装置、终端及网络侧设备,以解决某些场景下UCI复用在PUSHC上的传输资源大小的计算方式无法适用的问题。
为了解决上述问题,本公开的一些实施例提供一种传输资源大小的确定方法,应用于终端,包括:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
其中,所述方法还包括:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000001
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000002
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000003
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000004
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000005
表示码率补偿因子;
Figure PCTCN2020107742-appb-000006
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000007
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000008
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000009
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000010
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000011
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000012
表示码率补偿因子;
Figure PCTCN2020107742-appb-000013
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000014
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000015
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000016
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000017
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000018
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000019
表示码率补偿因子;
Figure PCTCN2020107742-appb-000020
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000021
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例还提供一种传输资源大小的确定方法,应用于网络侧设备,包括:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
其中,所述方法还包括:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000022
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000023
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000024
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000025
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000026
表示码率补偿因子;
Figure PCTCN2020107742-appb-000027
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000028
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000029
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000030
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000031
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000032
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000033
表示码率补偿因子;
Figure PCTCN2020107742-appb-000034
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000035
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000036
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000037
所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000038
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000039
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000040
表示码率补偿因子;
Figure PCTCN2020107742-appb-000041
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000042
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例还提供一种传输资源大小的确定装置,应用于终端,包括:
第一确定模块,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
第二确定模块,用于根据第二PUSCH的符号数,确定所述UCI的第二 传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
第三确定模块,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
本公开的一些实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序,执行下列操作:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000043
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000044
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000045
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000046
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000047
表示码率补偿因子;
Figure PCTCN2020107742-appb-000048
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000049
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000050
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000051
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000052
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000053
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000054
表示码率补偿因子;
Figure PCTCN2020107742-appb-000055
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000056
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000057
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000058
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000059
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000060
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000061
表示码率补偿因子;
Figure PCTCN2020107742-appb-000062
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000063
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例还提供一种传输资源大小的确定装置,应用于网络侧设备,包括:
第四确定模块,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
第五确定模块,用于根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
第六确定模块,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
本公开的一些实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序,执行下列操作:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000064
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000065
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000066
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000067
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000068
表示码率补偿因子;
Figure PCTCN2020107742-appb-000069
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000070
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000071
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000072
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000073
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000074
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000075
表示码率补偿因子;
Figure PCTCN2020107742-appb-000076
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000077
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
其中,所述处理器用于读取存储器中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000078
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000079
所述处理器用于读取存储器中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000080
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000081
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000082
表示码率补偿因子;
Figure PCTCN2020107742-appb-000083
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000084
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例还提供一种可读存储介质,所述可读存储介质上存储程序,所述程序被处理器执行时实现如上所述的传输资源大小的确定方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开的一些实施例的传输资源大小的确定方法、装置、终端及网络侧设备中,在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
附图说明
图1表示本公开的一些实施例提供的传输资源大小的确定方法的步骤流程图之一;
图2表示本公开的一些实施例提供的传输资源大小的确定方法中第一PUSCH和第二PUSCH的对应关系图;
图3表示本公开的一些实施例提供的传输资源大小的确定方法的步骤流程图之二;
图4表示本公开的一些实施例提供的传输资源大小的确定方法的应用示例图;
图5表示本公开的一些实施例提供的传输资源大小的确定装置的结构示意图之一;
图6表示本公开的一些实施例提供的终端的结构示意图;
图7表示本公开的一些实施例提供的传输资源大小的确定装置的结构示意图之二;以及
图8表示本公开的一些实施例提供的网络侧设备的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,本公开的一些实施例提供一种传输资源大小的确定方法,应用于终端,包括:
步骤11,根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
步骤12,根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
步骤13,确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
如图2所示,第一PUSCH为根据网络侧设备配置的PUSCH时域资源指示的{S,L,K}确定的每一个长度为L的PUSCH,共有K个第一PUSCH,其中,S表示第一个第一PUSCH的起始符号位置,L表示第一PUSCH的长度,K表示第一PUSCH的重复次数。假设PUSCH时域资源指示“L=7,K=4”,当一个第一PUSCH在跨时隙边界(或上下行切换点)时,其被分割成多个第二PUSCH进行传输,这些被分割得到的第二PUSCH也可称为actual PUSCH。
本公开的一些实施例中,根据第一PUSCH的符号数确定UCI的第一传输资源大小,根据第二PUSCH的符号数确定所述UCI的第二传输资源大小,取所述第一传输资源大小和所述第二传输资源大小中的最小值作为UCI在第二PUSCH上的目标传输资源大小(即实际传输资源大小)。
进一步的,所述方法还包括:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
作为一个可选实施例,针对HARQ-ACK,步骤11包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000085
和第一公式,确定所述 HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000086
相应的,步骤12包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000087
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000088
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000089
表示码率补偿因子;
Figure PCTCN2020107742-appb-000090
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000091
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子。可选的,
Figure PCTCN2020107742-appb-000092
由下行控制信息DCI动态指示或者无线资源控制RRC半静态配置。
则,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2}。
作为另一个可选实施例,针对第一部分CSI(即CSI part 1),步骤11包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000093
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000094
相应的,步骤12包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000095
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000096
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000097
表示码率补偿因子;
Figure PCTCN2020107742-appb-000098
表示第一PUSCH的比特 数;
Figure PCTCN2020107742-appb-000099
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。可选的,
Figure PCTCN2020107742-appb-000100
由下行控制信息DCI动态指示或者无线资源控制RRC半静态配置。
其中,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2};Q ACK1、Q ACK2的计算公式同上,在此不重复赘述。
则,CSI part 1在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-1为:
Q′ CSI-1=min{Q CSI-11,Q CSI-12}。
作为又一个可选实施例,针对第二部分CSI(即CSI part 2),步骤11包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000101
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000102
相应的,步骤12包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000103
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000104
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000105
表示码率补偿因子;
Figure PCTCN2020107742-appb-000106
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000107
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。可选的,
Figure PCTCN2020107742-appb-000108
由下行控制信息DCI动态指示或者 无线资源控制RRC半静态配置。
其中,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2};Q ACK1、Q ACK2的计算公式同上,在此不重复赘述。
CSI part 1在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-1为:
Q′ CSI-1=min{Q CSI-11,Q CSI-12};Q CSI-11、Q CSI-12的计算公式同上,在此不重复赘述。
则,CSI part 2在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-2为:
Q′ CSI-2=min{Q CSI-21,Q CSI-22}。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
如图3所示,本公开的一些实施例还提供一种传输资源大小的确定方法,应用于网络侧设备,包括:
步骤31,根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
步骤32,根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
步骤33,确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
如图2所示,第一PUSCH为根据网络侧设备配置的PUSCH时域资源指示的{S,L,K}确定的每一个长度为L的PUSCH,共有K个第一PUSCH,其中,S表示第一个第一PUSCH的起始符号位置,L表示第一PUSCH的长度,K表示第一PUSCH的重复次数。假设PUSCH时域资源指示“L=7,K=4”,当一个第一PUSCH在跨时隙边界(或上下行切换点)时,其被分割成多个 第二PUSCH进行传输,这些被分割得到的第二PUSCH也可称为actual PUSCH。
本公开的一些实施例中,根据第一PUSCH的符号数确定UCI的第一传输资源大小,根据第二PUSCH的符号数确定所述UCI的第二传输资源大小,取所述第一传输资源大小和所述第二传输资源大小中的最小值作为UCI在第二PUSCH上的目标传输资源大小(即实际传输资源大小)。
进一步的,所述方法还包括:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
作为一个可选实施例,针对HARQ-ACK,步骤31包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000109
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000110
相应的,步骤32包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000111
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000112
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000113
表示码率补偿因子;
Figure PCTCN2020107742-appb-000114
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000115
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子。可选的,
Figure PCTCN2020107742-appb-000116
由下行控制信息DCI动态指示或者无线资源控制RRC半静态配置。
则,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2}。
作为另一个可选实施例,针对第一部分CSI(即CSI part 1),步骤31包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000117
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000118
相应的,步骤32包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000119
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000120
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000121
表示码率补偿因子;
Figure PCTCN2020107742-appb-000122
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000123
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。可选的,
Figure PCTCN2020107742-appb-000124
由下行控制信息DCI动态指示或者无线资源控制RRC半静态配置。
其中,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2};Q ACK1、Q ACK2的计算公式同上,在此不重复赘述。
则,CSI part 1在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-1为:
Q′ CSI-1=min{Q CSI-11,Q CSI-12}。
作为又一个可选实施例,针对第二部分CSI(即CSI part 2),步骤31包括:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000125
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000126
相应的,步骤32包括:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000127
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000128
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000129
表示码率补偿因子;
Figure PCTCN2020107742-appb-000130
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000131
表示第l个PUSCH符号上能够用于传输UCI的子载波数目(传输解调参考信号DMRS的符号上用于传输UCI的子载波数目为0);α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。可选的,
Figure PCTCN2020107742-appb-000132
由下行控制信息DCI动态指示或者无线资源控制RRC半静态配置。
其中,HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小Q′ ACK为:
Q′ ACK=min{Q ACK1,Q ACK2};Q ACK1、Q ACK2的计算公式同上,在此不重复赘述。
CSI part 1在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-1为:
Q′ CSI-1=min{Q CSI-11,Q CSI-12};Q CSI-11、Q CSI-12的计算公式同上,在此不重复赘述。
则,CSI part 2在第二PUSCH上进行传输的目标传输资源大小Q′ CSI-2为:
Q′ CSI-2=min{Q CSI-21,Q CSI-22}。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
为了更好的描述本公开的一些实施例提供的传输资源大小的确定方法, 下面结合一示例进行描述,如图4所示,PUCCH 1将复用在第二PUSCH#1上,PUCCH 2将复用在第二PUSCH#2上第二PUSCH#1和第二PUSCH#2同属于一个第一PUSCH。
假设UCI 1(即PUCCH 1上承载的UCI)承载CSI信息;其中,O CSI-1+L CSI-1=200bit,O CSI-2+L CSI-2=200bit;UCI 2(即PUCCH 2上承载的UCI)承载2bit HARQ-ACK信息;第一PUSCH上承载信息
Figure PCTCN2020107742-appb-000133
为100bit,第一PUSCH频域子载波数目为N,高层配置的比例因子α=1,
Figure PCTCN2020107742-appb-000134
Figure PCTCN2020107742-appb-000135
则对于复用在第二PUSCH#1上的UCI 1,CSI part 1的第一传输资源大小为24*N,第二传输资源大小为2*N,则CSI part 1的实际传输资源大小取第二传输资源2*N,终端将UCI 1的CSI part 1复用在此实际传输资源上;CSI part 2的第一传输资源大小为12*N,第二传输资源大小为0,则CSI part 2的实际传输资源大小为0。
对于复用在第二PUSCH#2上的UCI 2,HARQ-ACK的第一传输资源大小(3*N/5),第二传输资源大小为3*N,此时HARQ-ACK的实际传输资源大小取第一传输资源大小(3*N/5)。
如图5所示,本公开的一些实施例还提供一种传输资源大小的确定装置,应用于终端,包括:
第一确定模块51,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
第二确定模块52,用于根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
第三确定模块53,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
可选的,本公开的上述实施例中,所述装置还包括:
传输模块,用于根据确定的所述目标传输资源大小,在与所述UCI重叠 的第二PUSCH上传输所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
可选的,本公开的上述实施例中,所述第一确定模块包括:
第一确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000136
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000137
所述第二确定模块包括:
第二确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000138
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000139
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000140
表示码率补偿因子;
Figure PCTCN2020107742-appb-000141
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000142
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
可选的,本公开的上述实施例中,所述第一确定模块包括:
第三确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000143
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000144
所述第二确定模块包括:
第四确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000145
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000146
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC 的比特数;
Figure PCTCN2020107742-appb-000147
表示码率补偿因子;
Figure PCTCN2020107742-appb-000148
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000149
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
可选的,本公开的上述实施例中,所述第一确定模块包括:
第五确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000150
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000151
所述第二确定模块包括:
第六确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000152
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000153
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000154
表示码率补偿因子;
Figure PCTCN2020107742-appb-000155
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000156
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
需要说明的是,本公开的一些实施例提供的传输资源大小的确定装置是能够执行上述传输资源大小的确定方法的装置,则上述传输资源大小的确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图6所示,本公开的一些实施例还提供一种终端,包括:收发机620、存储器610、处理器600及存储在所述存储器610上并可在所述处理器600 上运行的程序,所述收发机620在处理器600的控制下接收和发送数据,所述处理器600用于读取存储器610中的程序,执行下列操作:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
可选的,本公开的上述实施例中,所述处理器600用于读取存储器610中的程序,执行下列操作:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
可选的,本公开的上述实施例中,所述处理器600用于读取存储器610中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000157
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000158
所述处理器600用于读取存储器610中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000159
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000160
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环 冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000161
表示码率补偿因子;
Figure PCTCN2020107742-appb-000162
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000163
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
可选的,本公开的上述实施例中,所述处理器600用于读取存储器610中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000164
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000165
所述处理器600用于读取存储器610中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000166
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000167
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000168
表示码率补偿因子;
Figure PCTCN2020107742-appb-000169
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000170
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
可选的,本公开的上述实施例中,所述处理器600用于读取存储器610中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000171
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000172
所述处理器600用于读取存储器610中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000173
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000174
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000175
表示码率补偿因子;
Figure PCTCN2020107742-appb-000176
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000177
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例中还提供了一种终端,由于终端解决问题的原理与本公开的一些实施例中传输资源大小的确定方法相似,因此该终端的实施可以参见方法的实施,重复之处不再敷述。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
需要说明的是,本公开的一些实施例提供的终端是能够执行上述传输资源大小的确定方法的终端,则上述传输资源大小的确定方法的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
如图7所示,本公开的一些实施例还提供一种传输资源大小的确定装置,应用于网络侧设备,包括:
第四确定模块71,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
第五确定模块72,用于根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
第六确定模块73,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
可选的,本公开的上述实施例中,所述装置还包括:
接收模块,用于根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
可选的,本公开的上述实施例中,所述第四确定模块包括:
第七确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000178
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000179
所述第五确定模块包括:
第八确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000180
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000181
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000182
表示码率补偿因子;
Figure PCTCN2020107742-appb-000183
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000184
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
可选的,本公开的上述实施例中,所述第四确定模块包括:
第九确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000185
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000186
所述第五确定模块包括:
第十确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000187
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000188
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000189
表示码率补偿因子;
Figure PCTCN2020107742-appb-000190
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000191
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
可选的,本公开的上述实施例中,所述第四确定模块包括:
第十一确定子模块,用于根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000192
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000193
所述第五确定模块包括:
第十二确定子模块,用于根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000194
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000195
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000196
表示码率补偿因子;
Figure PCTCN2020107742-appb-000197
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000198
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
需要说明的是,本公开的一些实施例提供的传输资源大小的确定装置是能够执行上述传输资源大小的确定方法的装置,则上述传输资源大小的确定 方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图8所示,本公开的一些实施例还提供一种网络侧设备,包括:收发机820、存储器810、处理器800及存储在所述存储器810上并可在所述处理器800上运行的程序,所述收发机820在处理器800的控制下接收和发送数据,所述处理器800用于读取存储器810中的程序,执行下列操作:
根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
可选的,本公开的上述实施例中,所述处理器800用于读取存储器810中的程序,执行下列操作:
根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
可选的,本公开的上述实施例中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
所述CSI包括第一部分CSI和/或第二部分CSI。
可选的,本公开的上述实施例中,所述处理器800用于读取存储器810中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000199
和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
Figure PCTCN2020107742-appb-000200
所述处理器800用于读取存储器810中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000201
和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
Figure PCTCN2020107742-appb-000202
其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
Figure PCTCN2020107742-appb-000203
表示码率补偿因子;
Figure PCTCN2020107742-appb-000204
为第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000205
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
可选的,本公开的上述实施例中,所述处理器800用于读取存储器810中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000206
和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
Figure PCTCN2020107742-appb-000207
所述处理器800用于读取存储器810中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000208
和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
Figure PCTCN2020107742-appb-000209
其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000210
表示码率补偿因子;
Figure PCTCN2020107742-appb-000211
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000212
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
可选的,本公开的上述实施例中,所述处理器800用于读取存储器810中的程序,执行下列操作:
根据所述第一PUSCH的符号数
Figure PCTCN2020107742-appb-000213
和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
Figure PCTCN2020107742-appb-000214
所述处理器800用于读取存储器810中的程序,执行下列操作:
根据第二PUSCH的符号数
Figure PCTCN2020107742-appb-000215
和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
Figure PCTCN2020107742-appb-000216
其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
Figure PCTCN2020107742-appb-000217
表示码率补偿因子;
Figure PCTCN2020107742-appb-000218
表示第一PUSCH的比特数;
Figure PCTCN2020107742-appb-000219
表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
本公开的一些实施例中还提供了一种网络侧设备,由于网络侧设备解决问题的原理与本公开的一些实施例中传输资源大小的确定方法相似,因此该网络侧设备的实施可以参见方法的实施,重复之处不再敷述。
综上,本公开的一些实施例中在第一PUSCH被分割成至少两个第二PUSCH的情况下,按照第一PUSCH的符号数和第二PUSCH的符号数来确定UCI复用在第二PUSCH上的实际传输资源大小,保证UCI实际传输资源与UCI的匹配性,避免影响其传输可靠性。
需要说明的是,本公开的一些实施例提供的网络侧设备是能够执行上述传输资源大小的确定方法的网络侧设备,则上述传输资源大小的确定方法的所有实施例均适用于该网络侧设备,且均能达到相同或相似的有益效果。
本公开的一些实施例还提供一种可读存储介质,所述可读存储介质上存储程序,所述程序被处理器执行时实现如上所述的传输资源大小的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的 流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (27)

  1. 一种传输资源大小的确定方法,应用于终端,包括:
    根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  2. 根据权利要求1所述的方法,还包括:
    根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
  3. 根据权利要求1所述的方法,其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
    所述CSI包括第一部分CSI和/或第二部分CSI。
  4. 根据权利要求3所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100001
    和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
    Figure PCTCN2020107742-appb-100002
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100003
    和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
    Figure PCTCN2020107742-appb-100004
    其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
    Figure PCTCN2020107742-appb-100005
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100006
    为第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100007
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
  5. 根据权利要求3所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100008
    和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
    Figure PCTCN2020107742-appb-100009
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100010
    和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
    Figure PCTCN2020107742-appb-100011
    其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100012
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100013
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100014
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
  6. 根据权利要求3所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100015
    和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
    Figure PCTCN2020107742-appb-100016
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小, 包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100017
    和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
    Figure PCTCN2020107742-appb-100018
    其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100019
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100020
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100021
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
  7. 一种传输资源大小的确定方法,应用于网络侧设备,包括:
    根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
  9. 根据权利要求7所述的方法,其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
    所述CSI包括第一部分CSI和/或第二部分CSI。
  10. 根据权利要求9所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100022
    和第一公式,确定所述 HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
    Figure PCTCN2020107742-appb-100023
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100024
    和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
    Figure PCTCN2020107742-appb-100025
    其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
    Figure PCTCN2020107742-appb-100026
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100027
    为第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100028
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
  11. 根据权利要求9所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100029
    和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
    Figure PCTCN2020107742-appb-100030
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100031
    和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
    Figure PCTCN2020107742-appb-100032
    其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100033
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100034
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100035
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传 输的目标传输资源大小。
  12. 根据权利要求9所述的方法,其中,所述根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小,包括:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100036
    和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
    Figure PCTCN2020107742-appb-100037
    所述根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小,包括:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100038
    和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
    Figure PCTCN2020107742-appb-100039
    其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100040
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100041
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100042
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
  13. 一种传输资源大小的确定装置,应用于终端,包括:
    第一确定模块,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    第二确定模块,用于根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    第三确定模块,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  14. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序,执行下列操作:
    根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  15. 根据权利要求14所述的终端,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上传输所述UCI。
  16. 根据权利要求14所述的终端,其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
    所述CSI包括第一部分CSI和/或第二部分CSI。
  17. 根据权利要求16所述的终端,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100043
    和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
    Figure PCTCN2020107742-appb-100044
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100045
    和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
    Figure PCTCN2020107742-appb-100046
    其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
    Figure PCTCN2020107742-appb-100047
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100048
    为第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100049
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
  18. 根据权利要求16所述的终端,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100050
    和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
    Figure PCTCN2020107742-appb-100051
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100052
    和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
    Figure PCTCN2020107742-appb-100053
    其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100054
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100055
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100056
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
  19. 根据权利要求16所述的终端,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100057
    和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
    Figure PCTCN2020107742-appb-100058
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100059
    和第六公式,确定所述第二部分CSI 的第二传输资源大小Q CSI-22;所述第六公式为:
    Figure PCTCN2020107742-appb-100060
    其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100061
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100062
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100063
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
  20. 一种传输资源大小的确定装置,应用于网络侧设备,包括:
    第四确定模块,用于根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    第五确定模块,用于根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    第六确定模块,用于确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  21. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序,执行下列操作:
    根据第一物理上行共享信道PUSCH的符号数确定上行控制信息UCI的第一传输资源大小;在所述第一PUSCH跨时隙边界或上下行切换点的情况下,所述第一PUSCH被分割成至少两个第二PUSCH;
    根据第二PUSCH的符号数,确定所述UCI的第二传输资源大小;其中,承载所述UCI的物理上行控制信道PUCCH与一个第二PUSCH存在资源重叠;
    确定UCI在与所述UCI重叠的第二PUSCH上进行传输的目标传输资源大小为所述第一传输资源大小和所述第二传输资源大小中的最小值。
  22. 根据权利要求21所述的网络侧设备,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据确定的所述目标传输资源大小,在与所述UCI重叠的第二PUSCH上接收所述UCI。
  23. 根据权利要求21所述的网络侧设备,其中,所述UCI包括:混合自动重传请求应答HARQ-ACK和/或信道状态信息CSI;
    所述CSI包括第一部分CSI和/或第二部分CSI。
  24. 根据权利要求23所述的网络侧设备,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100064
    和第一公式,确定所述HARQ-ACK的第一传输资源大小Q ACK1;所述第一公式为:
    Figure PCTCN2020107742-appb-100065
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100066
    和第二公式,确定所述HARQ-ACK的第二传输资源大小Q ACK2;所述第二公式为:
    Figure PCTCN2020107742-appb-100067
    其中,O ACK表示HARQ-ACK的比特数;L ACK表示HARQ-ACK的循环冗余校验CRC的比特数;
    Figure PCTCN2020107742-appb-100068
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100069
    为第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100070
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子。
  25. 根据权利要求23所述的网络侧设备,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100071
    和第三公式,确定所述第一部分CSI的第一传输资源大小Q CSI-11;所述第三公式为:
    Figure PCTCN2020107742-appb-100072
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100073
    和第四公式,确定所述第一部分CSI的第二传输资源大小Q CSI-12;所述第四公式为:
    Figure PCTCN2020107742-appb-100074
    其中,O CSI-1表示第一部分CSI的比特数;L CSI-1表示第一部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100075
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100076
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100077
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小。
  26. 根据权利要求23所述的网络侧设备,其中,所述处理器用于读取存储器中的程序,执行下列操作:
    根据所述第一PUSCH的符号数
    Figure PCTCN2020107742-appb-100078
    和第五公式,确定所述第二部分CSI的第一传输资源大小Q CSI-21;所述第五公式为:
    Figure PCTCN2020107742-appb-100079
    所述处理器用于读取存储器中的程序,执行下列操作:
    根据第二PUSCH的符号数
    Figure PCTCN2020107742-appb-100080
    和第六公式,确定所述第二部分CSI的第二传输资源大小Q CSI-22;所述第六公式为:
    Figure PCTCN2020107742-appb-100081
    其中,O CSI-2表示第二部分CSI的比特数;L CSI-2表示第二部分CSI的CRC的比特数;
    Figure PCTCN2020107742-appb-100082
    表示码率补偿因子;
    Figure PCTCN2020107742-appb-100083
    表示第一PUSCH的比特数;
    Figure PCTCN2020107742-appb-100084
    表示第l个PUSCH符号上能够用于传输UCI的子载波数目;α为高层配置的比例因子;Q′ ACK表示所述HARQ-ACK在第二PUSCH上进行传输的目标传输资源大小;Q′ CSI-1表示所述第一部分CSI在第二PUSCH上进行传输的目标传输资源大小。
  27. 一种可读存储介质,其中,所述可读存储介质上存储程序,所述程序被处理器执行时实现如权利要求1至6中任一项所述的传输资源大小的确 定方法的步骤;或者,所述程序被处理器执行时实现如权利要求7至12中任一项所述的传输资源大小的确定方法的步骤。
PCT/CN2020/107742 2019-08-15 2020-08-07 传输资源大小的确定方法、装置、终端及网络侧设备 WO2021027712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910753712.3A CN112398612B (zh) 2019-08-15 2019-08-15 传输资源大小的确定方法、装置、终端及网络侧设备
CN201910753712.3 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027712A1 true WO2021027712A1 (zh) 2021-02-18

Family

ID=74570520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107742 WO2021027712A1 (zh) 2019-08-15 2020-08-07 传输资源大小的确定方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN112398612B (zh)
WO (1) WO2021027712A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116602034A (zh) * 2021-04-02 2023-08-15 Oppo广东移动通信有限公司 传输方法、终端设备、网络设备及通信系统
CN115190601A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 信息发送方法、信息接收方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191441A (zh) * 2014-01-24 2015-12-23 华为技术有限公司 一种信道功率分配优先级的确定方法和设备
US20170223695A1 (en) * 2016-02-03 2017-08-03 Lg Electronics Inc. Method and apparatus for transmitting an uplink channel in a wireless communication system
CN109714827A (zh) * 2017-10-26 2019-05-03 华为技术有限公司 上行控制信息的传输方法和装置
CN110035550A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 上行控制信息传输方法和通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541785B2 (en) * 2016-07-18 2020-01-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN107801246B (zh) * 2016-09-06 2019-12-17 北京佰才邦技术有限公司 一种上行控制信息的传输方法、装置及用户终端
US11121825B2 (en) * 2017-11-26 2021-09-14 Qualcomm Incorporated Mapping uplink control information to uplink data channel in wireless communication
CN109995493B (zh) * 2017-12-29 2020-12-11 电信科学技术研究院有限公司 信道状态信息的传输资源的确定方法、通信设备及装置
CN110034879B (zh) * 2018-01-12 2020-07-28 维沃移动通信有限公司 信道状态信息的传输资源数确定方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191441A (zh) * 2014-01-24 2015-12-23 华为技术有限公司 一种信道功率分配优先级的确定方法和设备
US20170223695A1 (en) * 2016-02-03 2017-08-03 Lg Electronics Inc. Method and apparatus for transmitting an uplink channel in a wireless communication system
CN109714827A (zh) * 2017-10-26 2019-05-03 华为技术有限公司 上行控制信息的传输方法和装置
CN110035550A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 上行控制信息传输方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Summary of [87-32]: UL L1/L2 control channel design for NR", 3GPP TSG RAN WG1 AH_NR MEETING R1-1700618, 20 January 2017 (2017-01-20), XP051208710 *

Also Published As

Publication number Publication date
CN112398612A (zh) 2021-02-23
CN112398612B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US11716611B2 (en) Method for reporting blind decoding capability, blind decoding configuration, blind decoding method, terminal and base station
US11509425B2 (en) Method for determining HARQ-ACK feedback time, method for indicating HARQ-ACK feedback time, terminal device and network device
US10708889B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
US11082963B2 (en) Method, terminal device and network device for transmitting uplink control information
US11412490B2 (en) Method of multiplexing uplink control information and related device
EP3550752B1 (en) Method device and system for feedback
US10051633B2 (en) Method and apparatus for carrier aggregation
US20210076405A1 (en) Uplink Control Information Transmission Method and Device
CN107682128B (zh) 数据传输方法、装置、设备及存储介质
US11646819B2 (en) Information transmission method, terminal and base station
US11363573B2 (en) Terminal and communication method
CN110138523B (zh) 一种反馈码本确定方法及装置
WO2021027712A1 (zh) 传输资源大小的确定方法、装置、终端及网络侧设备
US20230319843A1 (en) Method and apparatus for harq-ack codebook determination for multi-carrier scheduling
US20230396392A1 (en) Data transmission method and apparatus
TW201931798A (zh) 通道狀態資訊傳輸方法、通訊設備及裝置
EP4096336A1 (en) Method for determining sidelink feedback information, and communication device
WO2019191966A1 (zh) 可靠性传输方法及相关产品
WO2021159261A1 (zh) 下行相位跟踪参考信号ptrs传输方法及相关装置
US20240064743A1 (en) Uci multiplexing transmission method and apparatus, and storage medium
EP4271082A1 (en) Communication method and apparatus
US20230354313A1 (en) Intra-user equipment multiplexing method, user equipment, and radio node for enabling the method
WO2022147779A1 (zh) 混合自动重传请求反馈方法、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851921

Country of ref document: EP

Kind code of ref document: A1