WO2022147779A1 - 混合自动重传请求反馈方法、通信设备及可读存储介质 - Google Patents

混合自动重传请求反馈方法、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2022147779A1
WO2022147779A1 PCT/CN2021/070923 CN2021070923W WO2022147779A1 WO 2022147779 A1 WO2022147779 A1 WO 2022147779A1 CN 2021070923 W CN2021070923 W CN 2021070923W WO 2022147779 A1 WO2022147779 A1 WO 2022147779A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
time unit
harq feedback
timing parameter
feedback signal
Prior art date
Application number
PCT/CN2021/070923
Other languages
English (en)
French (fr)
Inventor
殷晓雪
生嘉
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to PCT/CN2021/070923 priority Critical patent/WO2022147779A1/zh
Priority to CN202180087860.1A priority patent/CN116671163A/zh
Publication of WO2022147779A1 publication Critical patent/WO2022147779A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management

Definitions

  • the present application relates to the field of communications, and in particular, to a hybrid automatic repeat request feedback method, a communication device and a readable storage medium.
  • the fifth generation mobile communication system includes three major application scenarios, namely Enhanced Mobile Broadband (eMBB: Enhanced Mobile Broadband), Massive Machine Type Communication (mMTC: Massive Machine Type Communication) and Low Latency and High Reliability (URLLC: Ultra-reliable low-latency communication).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable low-latency communication
  • URLLC has two basic characteristics, namely high reliability and low delay, such as BLER performance of the order of 10-5 or 10-6 , and air interface transmission delay of 0.5ms or 1ms.
  • SPS Semi-persistent scheduling
  • UE User Equipment
  • SPS has the characteristic of "once allocation, multiple use”.
  • DCI Downlink Control Information
  • the UE if the UE is configured to receive the SPS physical downlink share channel (PDSCH) at slot n, the UE will pass the physical uplink control channel (Physical uplink control channel) at slot n+k1. , PUCCH) to transmit the hybrid automatic repeat request (Hybrid automatic repeat request, HARQ) feedback signal (also referred to as HARQ-ACK) corresponding to the SPS PDSCH.
  • PDSCH physical downlink share channel
  • HARQ hybrid automatic repeat request
  • HARQ-ACK Hybrid automatic repeat request
  • k1 is a timing parameter, indicating a certain number of slots, which is configured by the PDSCH-to-HARQ_feedback timing indicator field in the DCI, or by the Radio Resource Control (Radio Resource Control, RRC) parameter dl-DataToUL-ACK to configure (DCI In Format1_2, the RRC parameter is dl-DataToUL-ACKForDCIFormat1_2).
  • RRC Radio Resource Control
  • the configuration of k1 is only configured in the DCI format (format) of the activation/activation (activate) SPS PDSCH, and the rest of the SPS PDSCH follow the configuration in the activate DCI format for HARQ Feedback, that is, their k1 value is the same for each SPS PDSCH. Based on this characteristic, conflict will occur in the Time-Division Duplex (TDD) scenario. If the HARQ feedback signal responding to the SPS PDSCH happens to fall into the non-uplink slot or non-uplink symbol (symbol) of TDD , the HARQ feedback will be discarded according to the current protocol.
  • TDD Time-Division Duplex
  • D represents the downlink (Downlink, DL)
  • U represents the uplink (Uplink, UL)
  • the position of the HARQ feedback signal is shown in the following figure.
  • the corresponding HARQ feedback signal needs to be sent at the position of DL#3, but since DL#3 is a downlink slot, the HARQ feedback signal needs to be discarded.
  • the corresponding HARQ feedback signal is sent at UL#1 and UL#2 respectively, and the HARQ feedback signal can be
  • Discarding the HARQ feedback signal caused by the collision will affect the performance of the corresponding PDSCH, especially when the SPS PDSCH period becomes shorter and the HARQ feedback collision occurs more frequently.
  • the technical problem mainly solved by the present application is to provide a hybrid automatic repeat request feedback method, a communication device and a readable storage medium, which can solve the problem of resource conflict affecting PDSCH performance in the prior art.
  • a first aspect of the present application provides a hybrid automatic repeat request feedback method, the method is applied to the user equipment side, the method includes: receiving multiple timing parameters from the base station, each timing parameter using In order to indicate the time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive the downlink transmission from the base station, and the second time unit is for the user equipment to send the HARQ feedback of the downlink transmission to the base station The time unit of the signal; select a non-conflicting timing parameter from multiple timing parameters; use the non-conflicting timing parameter to send the HARQ feedback signal.
  • a second aspect of the present application provides a hybrid automatic repeat request feedback method, the method is applied to the base station side, the method includes: sending a plurality of timing parameters to the user equipment, each timing parameter is used to indicate The time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive downlink transmission from the base station, and the second time unit is the time for the user equipment to send the downlink transmission HARQ feedback signal to the base station. Time unit; try to receive the HARQ feedback signal in the second time unit corresponding to at least one timing parameter.
  • a third aspect of the present application provides a hybrid automatic repeat request feedback method, the method is applied to the user equipment side, and the method includes: receiving a first timing parameter from a base station, and using the first timing parameter with In order to indicate the time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive the downlink transmission from the base station, and the second time unit is for the user equipment to send the HARQ feedback of the downlink transmission to the base station The time unit of the signal; if there is a conflict in sending the HARQ feedback signal using the first timing parameter, adjust the first timing parameter to obtain a non-conflicting second timing parameter; use the non-conflicting second timing parameter to send the HARQ feedback signal.
  • a fourth aspect of the present application provides a hybrid automatic repeat request feedback method, the method is applied to the base station side, and the method includes: sending a first timing parameter to the user equipment, where the first timing parameter is used to indicate The time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive downlink transmission from the base station, and the second time unit is the time for the user equipment to send the downlink transmission HARQ feedback signal to the base station. Time unit; try to receive the HARQ feedback signal in a second time unit corresponding to the first timing parameter and/or the second timing parameter, where the second timing parameter is obtained by adjusting the first timing parameter.
  • a first aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is configured to execute instructions to implement the first or third aspect of the present application.
  • a second aspect of the present application provides a communication device, the device includes a processor and a communication circuit, the processor is connected to the communication circuit; the processor is configured to execute instructions to implement the second or fourth aspect of the present application.
  • the present application provides a readable storage medium storing instructions, which implement the aforementioned method when the instructions are executed.
  • the beneficial effects of the present application are: receiving multiple timing parameters from the base station, each timing parameter is used to indicate the time interval between the first time unit and the second time unit, and the first time unit is for the user equipment to receive data from the base station
  • the time unit of downlink transmission, the second time unit is the time unit for the user equipment to send the HARQ feedback signal of downlink transmission to the base station; select a non-conflicting timing parameter from multiple timing parameters; use the non-conflicting timing parameter to send HARQ feedback
  • the situation that the HARQ feedback signal is discarded due to collision can be reduced, and the performance of the PDSCH can be improved.
  • 1 is a schematic diagram of a conflict between the HARQ feedback signal of the SPS PDSCH and the TDD configuration in the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of a wireless communication system or network of the present application
  • FIG. 3 is a schematic flowchart of the first embodiment of the hybrid automatic repeat request feedback method of the present application.
  • Fig. 4 is a specific flow chart of S12 in Fig. 3;
  • FIG. 5 is a schematic diagram of an example of selecting non-conflicting timing parameters in the first embodiment of the hybrid automatic repeat request feedback method of the present application
  • Fig. 6 is another specific flow chart of S12 in Fig. 3;
  • Fig. 7 is another specific flow diagram of S12 in Fig. 3;
  • Fig. 8 is another specific schematic flow chart of S12 in Fig. 3;
  • FIG. 9 is a schematic flowchart of the HARQ feedback order reversal determination in the first embodiment of the hybrid automatic repeat request feedback method of the present application.
  • FIG. 10 is a schematic flowchart of the second embodiment of the hybrid automatic repeat request feedback method of the present application.
  • FIG. 11 is a schematic flowchart of the third embodiment of the hybrid automatic repeat request feedback method of the present application.
  • Fig. 12 is a specific flow chart of S32 in Fig. 11;
  • FIG. 13 is a schematic diagram of an example of adjusting the first timing parameter in the third embodiment of the hybrid automatic repeat request feedback method of the present application.
  • 15 is a schematic structural diagram of the first embodiment of the communication device of the present application.
  • 16 is a schematic structural diagram of a second embodiment of a communication device of the present application.
  • FIG. 17 is a schematic structural diagram of an embodiment of a readable storage medium of the present application.
  • User equipment in this application may include or represent any portable computing device used for communication.
  • Examples of user equipment that may be used in certain embodiments of the described devices, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops , handheld devices, tablets, tablet computers, netbooks, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • the user equipment may also be a reduced capability (Reduced Capability) user equipment.
  • FIG. 2 is a wireless communication comprising a core network 102 (or telecommunications infrastructure) with multiple network nodes 104a-104m (eg, base stations gNB) with cells 106a-106m serving multiple wireless communication units 108a-108e (eg, UEs)
  • a core network 102 or telecommunications infrastructure
  • multiple network nodes 104a-104m eg, base stations gNB
  • cells 106a-106m serving multiple wireless communication units 108a-108e (eg, UEs)
  • FIG. 2 is a wireless communication comprising a core network 102 (or telecommunications infrastructure) with multiple network nodes 104a-104m (eg, base stations gNB) with cells 106a-106m serving multiple wireless communication units 108a-108e (eg, UEs)
  • a schematic diagram of a system or network 100 A plurality of network nodes 104a-104m are connected to the core network 102 by links. These links may be wired or wireless (
  • the network nodes 104a-104m are illustrated as base stations, which may be gNBs in a 5G network, for example but not limited to.
  • Each of the plurality of network nodes 104a-104m (eg, base stations) has a footprint, which is schematically represented in FIG. 1 for serving one or more UEs 108a for simplicity and by way of example and not limitation
  • UEs 108a-108e can receive services from wireless communication system 100, such as voice, video, audio, or other communication services.
  • the wireless communication system or network 100 may include or represent any one or more communication networks used for communication between UEs 108a-108e and other devices, content sources, or servers connected to the wireless communication system or network 100.
  • Core network 102 may also include or represent one or more communication networks, one or more network nodes, entities, elements, application servers, servers, base stations or other links, coupled or connected to form wireless communication system or network 100 Network equipment. Links or couplings between network nodes may be wired or wireless (eg, radio communication links, fiber optics, etc.).
  • the wireless communication system or network 100 and core network 102 may include any suitable combination of a core network and a wireless access network comprising network nodes or entities, base stations, access points, etc. that enable UEs 108a-108e, wireless communication system 100 and Communication between network nodes 104a-104m of core network 102, content sources, and/or other devices connected to system or network 100 is enabled.
  • An example of a wireless communication network 100 may be at least one communication network or a combination thereof including, but not limited to, one or more wired and/or wireless telecommunications networks, a core network(s), radio access network(s), computer network(s), data communication network(s), internet, telephone network, wireless network, such as WiMAX based on the IEEE 802.11 standard by way of example only , WLAN and/or Wi-Fi network, or Internet Protocol (Internet Protocol, IP) network, packet-switched network or enhanced packet-switched network, IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) network or based on wireless, cellular or satellite Technical communication networks, such as mobile networks, Global System for Mobile Communications (GSM), GPRS networks, Wideband Code Division Multiple Access (W-CDMA), CDMA2000 or LTE/Advanced LTE communication network or any 2nd, 3rd, 4th or 5th generation and beyond type of communication network etc.
  • GSM Global System for Mobile Communications
  • W-CDMA Wideband Code Division Multiple Access
  • the wireless communication system 100 may be, by way of example only and not limited to, cyclic prefix orthogonal frequency division multiplexing (CP- 5G communication network using OFDM) technology.
  • the downlink may include one or more communication channels for transmitting data from one or more gNBs 104a-104m to one or more UEs 108a-108e.
  • a downlink channel is a communication channel used to transmit data, eg, from gNB 104a to UE 108a.
  • each frame may be 10ms in length
  • each frame may be divided into multiple subframes.
  • each frame may include 10 subframes of equal length, where each subframe consists of multiple time slots (eg, 2 time slots) for transmitting data.
  • time slots e.g, 2 time slots
  • a subframe may include several additional special fields or OFDM symbols, which may include, by way of example only, downlink synchronization symbols, broadcast symbols and/or uplink reference symbols.
  • the first embodiment of the hybrid automatic repeat request feedback method of the present application includes:
  • S11 Receive multiple timing parameters from the base station.
  • Each timing parameter is used to indicate the time interval between the first time unit and the second time unit.
  • the first time unit is the time unit for the user equipment to receive downlink transmission from the base station
  • the second time unit is the time unit for the user equipment to send the downlink transmission to the base station.
  • the unit of the timing parameter/time unit may be a time slot or a symbol. For convenience of description, the following description will be made by using a time slot as the unit of the timing parameter/time unit, and other types may also be used in practical applications.
  • Downlink transmission can be SPSPDSCH.
  • the timing parameter k1 may be an integer, and its value represents the number of time slots between the first time unit and the second time unit. If the aggregation of downlink transmission of multiple time units is involved, the user equipment will perform HARQ feedback on the aggregated multiple time units as a whole, and use the last one of the multiple aggregated time units as the first time unit . For example, when the pdsch-AggregationFactor is configured, the aggregated pdsch-AggregationFactor SPS PDSCHs are processed according to one SPS PDSCH. That is, the HARQ corresponding to the SPS PDSCH from slot n to slot n-pdsch-AggregationFactor+1 are all sent on the same UL slot n+k1.
  • the multiple timing parameters may be a set of timing parameters of a single SPS configuration (that is, the SPS configuration corresponding to the received SPS PDSCH).
  • the base station may send a timing parameter set including multiple timing parameters to the user equipment when configuring the SPS configuration.
  • Different timing parameters in the timing parameter set are different from each other, and the number of timing parameters in the timing parameter set may be specified by DCI or higher layer signaling (for example, RRC signaling), which is not limited herein.
  • the multiple timing parameters may be timing parameters configured for multiple SPSs, and the number of timing parameters configured for each SPS may be one or more.
  • the SPS configuration corresponding to the SPS PDSCH received by the user equipment hereinafter referred to as the current SPS configuration
  • the current SPS configuration may be one of these SPS configurations.
  • the user equipment After receiving the downlink transmission, the user equipment determines the corresponding HARQ feedback signal according to the decoding situation. If it can be decoded normally, the corresponding HARQ feedback signal is a HARQ acknowledgement signal (ACK); otherwise, the corresponding HARQ feedback signal is a HARQ acknowledgement signal (NACK). If downlink transmission aggregation is enabled, corresponding HARQ feedback signals are generated for all aggregated downlink transmissions, including HARQ feedback information of each downlink transmission.
  • ACK HARQ acknowledgement signal
  • NACK HARQ acknowledgement signal
  • the user equipment can determine the second time unit corresponding to each timing parameter according to the first time unit in which the downlink transmission is received and each configured timing parameter. If the second time unit corresponding to a certain timing parameter is downlink in the TDD configuration, the user equipment cannot send the HARQ feedback signal in the second time unit corresponding to the timing parameter, which means that the timing parameter conflicts with the TDD configuration, abbreviated as The timing parameters are conflicting. Conversely, if the second time unit corresponding to a certain timing parameter is uplink in the TDD configuration, then the user equipment can send the HARQ feedback signal in the second time unit corresponding to the timing parameter, which means that the timing parameter and the TDD configuration do not exist. Conflict, referred to as the timing parameter is not in conflict.
  • the user equipment can use the above manner to determine whether each timing parameter is in conflict, so as to find a non-conflicting timing parameter among the multiple configured timing parameters. If a non-conflicting timing parameter is not found among the multiple timing parameters, the transmission is abandoned and the HARQ feedback signal is discarded and discarded.
  • the following describes the two cases of selecting from the timing parameter set of the current SPS configuration and selecting from the timing parameters of multiple SPSs, respectively. In practical applications, the two cases can be combined.
  • S12 includes:
  • S121 Select the first timing parameter in the timing parameter set and try to send the HARQ feedback signal.
  • the first timing parameter may also be referred to as a default timing parameter, and the user equipment preferentially selects the default timing parameter. Specifically, the user equipment determines the second time unit corresponding to the default timing parameter and attempts to send the HARQ feedback signal. If the second time unit corresponding to the default timing parameters is uplink, the HARQ feedback signal can be sent successfully, and no other timing parameters need to be selected; if the second time unit corresponding to the default timing parameters is downlink, it means that the default timing parameters are conflicting Yes, jump to S122.
  • S122 Select a non-conflicting timing parameter from other timing parameters except the first timing parameter in the timing parameter set.
  • the user equipment may traverse other timing parameters except the default timing parameters in the timing parameter set until a non-conflicting timing parameter is found.
  • the TDD is configured as DDDDDDDDUU, that is, in a radio frame, the first 8 time slots are downlink, and the last 2 time slots are uplink.
  • S12 includes:
  • the specified order can be from largest to smallest.
  • S132 Select the timing parameter used in the last downlink transmission and try to send the HARQ feedback signal.
  • the uplink slot or symbol is generally at the end of a radio frame, then for downlink transmission, starting from the first downlink slot and increasing by slot number, the corresponding non-conflicting k1 value is in a decreasing state.
  • the downlink transmissions on the downlink slots DL#1, 2, and 3 are all allocated to send the HARQ feedback signal on UL#1, then their corresponding values of k1 are: 8 , 7, 6.
  • the k1 of the timing parameter set configured by the base station can be arranged in descending order of value, and the UE is selecting for each SPS PDSCH.
  • the appropriate k1 feedback sequence is selected, the appropriate k1 is screened in turn according to the internal sorting of K1_set.
  • the UE When the UE has multiple SPS configurations at the same time, it can select from the timing parameters of the multiple SPS configurations:
  • S12 includes:
  • S141 Select the timing parameter of the SPS configuration corresponding to the downlink transmission and try to send the HARQ feedback signal.
  • the timing parameters of the current SPS configuration are preferred. Specifically, the user equipment determines the second time unit corresponding to the timing parameter of the current SPS configuration and attempts to send the HARQ feedback signal. If the second time unit corresponding to the timing parameters of the current SPS configuration is uplink, then the HARQ feedback signal can be successfully sent, and no other timing parameters need to be selected; if the second time unit corresponding to the timing parameters of the current SPS configuration is downlink, it is It is said that the default timing parameters are conflicting, and jump to S142.
  • the user equipment may traverse the timing parameters of other SPS configurations until a non-conflicting timing parameter is found.
  • the user equipment can sort the timing parameters of all SPS configurations in ascending order or from small to large, and then start from the timing parameters after the timing parameters of the current SPS configuration, and traverse the parameters of other SPS configurations in sequence. Timing parameters look for non-conflicting timing parameters.
  • S12 includes:
  • S151 Select the timing parameter of the SPS configuration corresponding to the downlink transmission and try to send the HARQ feedback signal.
  • S154 Select a non-conflicting timing parameter from timing parameters of other SPS configurations.
  • the UE may decide whether to perform the HARQ feedback order reversal decision according to whether the HARQ feedback order reversal is allowed. Specifically, if the HARQ feedback order reversal is allowed, it is not necessary to perform the HARQ feedback order reversal determination; if the HARQ feedback order reversal is not allowed, the HARQ feedback order reversal determination needs to be performed.
  • the HARQ feedback order reversal determination includes:
  • S161 Determine whether the non-conflicting timing parameters will cause the feedback order of the HARQ feedback signal and another HARQ feedback signal to be reversed.
  • the feedback order is reversed means that the order of downlink transmission is opposite to the corresponding HARQ feedback order. For example, if downlink transmission 1 precedes downlink transmission 2, but the final determined HARQ feedback signal of downlink transmission 1 is sent after the HARQ feedback signal of downlink transmission 2, it means that the HARQ feedback order is reversed.
  • S162 Give up sending one of the HARQ feedback signal and the other HARQ feedback signal.
  • the number of non-conflicting timing parameters is greater than 1, as long as there is a non-conflicting timing parameter that does not cause the HARQ feedback order to be reversed, it can be used to send the HARQ feedback signal; otherwise, if all non-conflicting timing parameters will cause the HARQ feedback order If it is reversed, a HARQ feedback signal will be discarded.
  • the HARQ feedback signal is sent in the second time unit corresponding to the non-conflicting timing parameters.
  • the UE can search for non-conflicting timing parameters from multiple timing parameters to send the HARQ feedback signal. Compared with the fixed single timing parameter in the prior art, it is possible to reduce the number of HARQ feedback signals discarded due to collisions. situation, improve the performance of PDSCH.
  • the second embodiment of the hybrid automatic repeat request feedback method of the present application includes:
  • S21 Send multiple timing parameters to the user equipment.
  • Each timing parameter is used to indicate the time interval between the first time unit and the second time unit.
  • the first time unit is the time unit for the user equipment to receive downlink transmission from the base station
  • the second time unit is the time unit for the user equipment to send the downlink transmission to the base station.
  • This embodiment is applied to the base station side.
  • the UE can search for non-conflicting timing parameters from multiple timing parameters to send the HARQ feedback signal.
  • the base station attempts to receive the HARQ feedback signal in multiple second time units, which is fixed with the prior art. Compared with a single timing parameter of , it can reduce the situation that HARQ feedback signals are discarded due to collision, and improve the performance of PDSCH.
  • the third embodiment of the hybrid automatic repeat request feedback method of the present application includes:
  • S31 Receive the first timing parameter from the base station.
  • the first timing parameter is used to indicate the time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive downlink transmission from the base station, and the second time unit is the time unit for the user equipment to send to the base station Time unit of the HARQ feedback signal for downlink transmission.
  • This embodiment is applied to the user equipment side.
  • the user equipment cannot send the HARQ feedback signal in the second time unit corresponding to the first timing parameter, which means that the first timing parameter is in conflict and needs to be make adjustments.
  • S32 may specifically include:
  • S321 Increment or decrease the adjustment of the first timing parameter according to the preset step size to obtain the second timing parameter.
  • the base station can configure a larger first timing parameter, and then the user equipment adjusts in a decreasing manner; or, the base station can configure a smaller first timing parameter, and then the user equipment adopts an increasing first timing parameter. way to adjust.
  • the process of adjusting the first timing parameters can also be understood as updating the first timing parameters, and the specific adjustment formula is as follows:
  • the preset step size can be a single slot or multiple slots. In the case of multiple time slots, the preset step size may be x time slots, where x>1 and is determined according to the SPS period.
  • the base station Since the SPS PDSCH is transmitted periodically, and the base station knows the current TDD configuration when configuring the first timing parameter, the first timing parameter does not conflict with some SPS PDSCHs under normal circumstances. Based on this premise, the time interval between the non-conflicting second timing parameter and the first timing parameter is likely to be an integer multiple of the SPS period. Therefore, the adjusted step size can be set according to the SPS period to reduce the complexity.
  • the Period represents the period of the SPS PDSCH, which is indicated by the Periodicity or PeriodicityExt field in the RRC parameter SPS-Config, and takes subframes as the unit;
  • ⁇ DL represents the downlink parameter set (Numerology) indication, which is configured by the high-level parameter subcarrierSpacing and is used to set the SPS period is normalized to the unit of k1.
  • the current second timing parameter is the non-conflicting second timing parameter, and the subsequent steps are performed.
  • the finally obtained non-conflicting second timing parameter shall not be less than the minimum processing time of the PDSCH.
  • the adjustment cannot go on endlessly, so there is a termination condition.
  • the termination condition may include that the second timing parameter reaches the first threshold and/or the number of adjustments reaches the second threshold.
  • the base station may configure the first threshold for the user equipment.
  • a parameter Th_m can be configured by the high layer, and the screening is terminated when k1 ⁇ Th_m, and the minimum value of Th_m can be 0.
  • the upper limit of k1 can also be limited.
  • a parameter Th_p can be configured by the upper layer. When k1 ⁇ Th_p, the screening is terminated, and the maximum value of Th_p can be the upper limit of k1.
  • S325 Give up sending the HARQ feedback signal.
  • HARQ feedback signals are discarded.
  • the HARQ feedback signal is sent in the second time unit corresponding to the non-conflicting second timing parameter.
  • the TDD configuration is DDDDUDDD.
  • the corresponding HARQ feedback signal should be sent at the position of DL#6.
  • the UE can try to adjust the first timing parameter to find a non-conflicting second timing parameter to send the HARQ feedback signal when the first timing parameter conflicts, thereby reducing the HARQ feedback signal being damaged due to the conflict.
  • the performance of PDSCH is improved.
  • the fourth embodiment of the hybrid automatic repeat request feedback method of the present application includes:
  • the first timing parameter is used to indicate the time interval between the first time unit and the second time unit, the first time unit is the time unit for the user equipment to receive downlink transmission from the base station, and the second time unit is the time unit for the user equipment to send to the base station Time unit of the HARQ feedback signal for downlink transmission.
  • This embodiment is applied to the base station side.
  • the second timing parameter is obtained by adjusting the first timing parameter.
  • the UE can try to adjust the first timing parameters to find non-conflicting second timing parameters to send the HARQ feedback signal when the first timing parameters conflict.
  • the second time unit corresponding to the two timing parameters attempts to receive the HARQ feedback signal, thereby reducing the situation that the HARQ feedback signal is discarded due to collision, and improving the performance of the PDSCH.
  • the first embodiment of the communication device of the present application includes: a processor 110 and a memory 120 .
  • the processor 110 controls the operation of the communication device, and the processor 110 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 110 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 120 stores instructions and data required for the operation of the processor 110 .
  • the processor 110 is configured to execute the instructions to implement the methods provided by the first and third embodiments and possible combinations of the hybrid automatic repeat request feedback method of the present application.
  • the second embodiment of the communication device of the present application includes: a processor 210 and a memory 220 .
  • the processor 210 controls the operation of the communication device, and the processor 210 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 210 may be an integrated circuit chip with processing capability of signal sequences.
  • Processor 210 may also be a general purpose processor, digital signal sequence processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 220 stores instructions and data required for processor 210 to operate.
  • the processor 210 is configured to execute the instructions to implement the methods provided by the second and fourth embodiments and possible combinations of the hybrid automatic repeat request feedback method of the present application.
  • an embodiment of the readable storage medium of the present application includes a memory 310, and the memory 310 stores an instruction.
  • the instructions When the instruction is executed, the instructions provided by any of the embodiments and possible combinations of the hybrid automatic repeat request feedback method of the present application are implemented. Methods.
  • the memory 310 may include a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash Memory flash memory
  • the disclosed method and apparatus may be implemented in other manners.
  • the device implementations described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be Combinations can either be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种混合自动重传请求反馈方法,该方法应用于用户设备侧,该方法包括:接收来自于基站的多个时序参数,每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;从多个时序参数中选择一个不冲突的时序参数;使用不冲突的时序参数发送HARQ反馈信号。本申请还公开了一种通信设备和可读存储介质。

Description

混合自动重传请求反馈方法、通信设备及可读存储介质 【技术领域】
本申请涉及通信领域,特别是涉及一种混合自动重传请求反馈方法、通信设备及可读存储介质。
【背景技术】
第五代移动通信系统(5G NR)包括三大应用场景,即增强移动宽带(eMBB:Enhanced Mobile Broadband)、大规模机器类型通信(mMTC:Massive Machine Type Communication)以及低时延高可靠(URLLC:Ultra-reliable low-latency communication)。URLLC有两个基本特点,即高可靠和低时延,例如10 -5或10 -6量级的BLER性能,0.5ms或1ms的空口传输时延。
半静态调度(Semi-Persistent Scheduling,SPS)允许半静态配置无线资源,并将该资源周期性地分配给用户设备(UserEquipment,UE)。SPS有“一次分配,多次使用”的特点,基站为UE配置SPS资源并激活SPS后,每过一个SPS周期,UE就使用该SPS资源来收或发数据。基站无需再为后续的SPS资源重新下发下行控制信息(Downlink Control Information,DCI)来指定分配的资源。
现有技术中,如果UE被配置了在时隙(slot)n接收SPS物理下行共享信道(Physical Downlink Share Channel,PDSCH),则UE会在slot n+k1通过物理上行控制信道(Physical uplink control channel,PUCCH)传输该SPS PDSCH相对应的混合自动重传请求(Hybrid automatic repeat request,HARQ)反馈信号(也可以被称为HARQ-ACK)。其中k1为时序参数,表示一定数量的slot数目,由DCI中的PDSCH-to-HARQ_feedback timing indicator字段来配置,或者由无线资源控制(Radio Resource Control,RRC)参数dl-DataToUL-ACK来配置(DCI Format1_2时RRC参数为dl-DataToUL-ACKForDCIFormat1_2)。
由于SPS PDSCH“一次分配,多次使用”的特点,k1的配置仅在启动/激活(activate)SPS PDSCH的DCI格式(format)中配置,其余SPS PDSCH均沿用activate DCI format中的配置来进行HARQ反馈,也就是对于每个SPS PDSCH来讲它们的k1取值是相同的。基于这种特性,在时分双工(Time-Division Duplex,TDD)场景下就会出现冲突的现象,如果回应SPS PDSCH的HARQ反馈信号 恰巧落到了TDD的非上行slot或非上行符号(symbol)内,按照目前的协议规定会将该HARQ反馈丢弃。
举例说明,如图1所示,假设TDD slot配置为‘DDDUU’,其中D代表下行(Downlink,DL),U代表上行(Uplink,UL),并且启动(activate)SPS PDSCH的DCI format中指示k1=2,则HARQ反馈信号的位置如下图所示。在DL#1发送的SPS PDSCH,基于k1=2需要在DL#3的位置发送相应的HARQ反馈信号,但由于DL#3为下行slot则该HARQ反馈信号需要被丢弃。以此类推,在DL#2和DL#3位置发送的SPS PDSCH,分别在UL#1和UL#2的位置发送相应的HARQ反馈信号,可以正常发送HARQ反馈信号给基站。
冲突导致的丢弃HARQ反馈信号会影响对应的PDSCH的性能,特别是在SPS PDSCH周期变短,HARQ反馈冲突出现地更加频繁的情况下。
【发明内容】
本申请主要解决的技术问题是提供一种混合自动重传请求反馈方法、通信设备及可读存储介质,能够解决现有技术中资源冲突影响PDSCH性能的问题。
为了解决上述技术问题,本申请第一方面提供了一种混合自动重传请求反馈方法,该方法应用于用户设备侧,该方法包括:接收来自于基站的多个时序参数,每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;从多个时序参数中选择一个不冲突的时序参数;使用不冲突的时序参数发送HARQ反馈信号。
为了解决上述技术问题,本申请第二方面提供了一种混合自动重传请求反馈方法,该方法应用于基站侧,该方法包括:向用户设备发送多个时序参数,每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;在至少一个时序参数对应的第二时间单元尝试接收HARQ反馈信号。
为了解决上述技术问题,本申请第三方面提供了一种混合自动重传请求反馈方法,该方法应用于用户设备侧,该方法包括:接收来自于基站的第一时序 参数,第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;若使用第一时序参数发送HARQ反馈信号出现冲突,则对第一时序参数进行调整得到不冲突的第二时序参数;使用不冲突的第二时序参数发送HARQ反馈信号。
为了解决上述技术问题,本申请第四方面提供了一种混合自动重传请求反馈方法,该方法应用于基站侧,该方法包括:向用户设备发送第一时序参数,第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;在第一时序参数和/或第二时序参数对应的第二时间单元尝试接收HARQ反馈信号,第二时序参数是对第一时序参数进行调整而得到的。
为了解决上述技术问题,本申请第一方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第一或第三方面所提供的混合自动重传请求反馈方法。
为了解决上述技术问题,本申请第二方面提供了一种通信设备,该设备包括处理器和通信电路,处理器连接通信电路;处理器用于执行指令以实现如本申请第二或第四方面所提供的混合自动重传请求反馈方法。
为了解决上述技术问题,本申请提供了一种可读存储介质,存储有指令,指令被执行时实现前述的方法。
本申请的有益效果是:接收来自于基站的多个时序参数,每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元;从多个时序参数中选择一个不冲突的时序参数;使用不冲突的时序参数发送HARQ反馈信号,与现有技术中固定的单个时序参数相比,可以减少HARQ反馈信号因冲突被丢弃的情况,改善PDSCH的性能。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是现有技术中SPS PDSCH的HARQ反馈信号和TDD配置出现冲突的示意图;
图2是本申请无线通信系统或网络一实施方式的结构示意图;
图3是本申请混合自动重传请求反馈方法第一实施例的流程示意图;
图4是图3中S12的一具体流程示意图;
图5是本申请混合自动重传请求反馈方法第一实施例中选择不冲突的时序参数的一个例子的示意图;
图6是图3中S12的另一具体流程示意图;
图7是图3中S12的又一具体流程示意图;
图8是图3中S12的又一具体流程示意图;
图9是本申请混合自动重传请求反馈方法第一实施例中HARQ反馈次序颠倒判定的流程示意图;
图10是本申请混合自动重传请求反馈方法第二实施例的流程示意图;
图11是本申请混合自动重传请求反馈方法第三实施例的流程示意图;
图12是图11中S32的一具体流程示意图;
图13是本申请混合自动重传请求反馈方法第三实施例中调整第一时序参数的一个例子的示意图;
图14是本申请混合自动重传请求反馈方法第四实施例的流程示意图;
图15是本申请通信设备第一实施例的结构示意图;
图16是本申请通信设备第二实施例的结构示意图;
图17是本申请可读存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,以下各实施例中不冲突的可以相互结合。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的“用户设备”可以包括或代表用于通信的任何便携式计算设备。在所描述的设备,方法和系统的某些实施例中可使用的用户设备的示例可以是有线或无线设备,例如移动设备,移动电话,终端,智能电话,便携式计算设备,诸如膝上型电脑,手持设备,平板,平板电脑,上网本,个人数字助理,音乐播放器以及能够进行有线或无线通信的其他计算设备。另外,用户设备还可以为能力降低(Reduced Capability)用户设备。
图2是包括核心网102(或电信基础设施),具有服务于多个无线通信单元108a-108e(例如UE)的小区106a-106m的多个网络节点104a-104m(例如基站gNB)的无线通信系统或网络100的示意图。多个网络节点104a-104m通过链路连接到核心网102。这些链路可以是有线或无线的(例如无线电通信链接、光纤等)。核心网102可包括多个核心网络节点,网络实体,应用服务器或可以与包括多个网络节点104a-104m的一个或多个无线接入网络进行通信的任何其他网络或计算设备。
在本示例中,网络节点104a-104m被示意为基站,例如但不限于,其在5G网络中可以是gNB。多个网络节点104a-104m(例如,基站)中的每个都具有足迹(footprint),为简化且例如但不限于,其在图1中示意性地表示用于服务于一个或多个UE 108a-108e的对应的圆形小区106a-106m。UE 108a-108e能够从无线通信系统100接收服务,例如声音、视频、音频或其他通信服务。
无线通信系统或网络100可以包括或代表用于UE 108a-108e与其他设备、内容源或连接无线通信系统或网络100的服务器之间的通信的任意一个或多个通信网络。核心网102也可以包括或代表链接,耦接或连接以形成无线通信系统或网络100的一个或多个通信网络,一个或多个网络节点,实体,元素,应用程序服务器,服务器,基站或其他网络设备。网络节点之间的链接或耦接可以是有线或无线的(例如无线电通信链接、光纤等)。该无线通信系统或网络100以及核心网102可以包括包含网络节点或实体的核心网络和无线接入网络的任何适当组合,基站,接入点等,其使得UE 108a-108e、无线通信系统100和核心网102的网络节点104a-104m、内容源和/或连接到系统或网络100的其他设备之间能够通信。
可在所描述的设备,方法和系统一些实施例中使用的无线通信网络100的示例可以是至少一个通信网络或其组合,包括但不限于,一个或多个有线和/或无线电信网络,一个或多个核心网,一个或多个无线接入网络,一个或多个计 算机网络,一个或多个数据通信网络,互联网,电话网络,无线网络,例如基于仅作为示例的IEEE802.11标准的WiMAX、WLAN和/或Wi-Fi网络,或互联网协议(Internet Protocol,IP)网络,分组交换网络或增强型分组交换网络,IP多媒体子系统(IP Multimedia Subsystem,IMS)网络或基于无线、蜂窝或卫星技术的通信网络,诸如移动网络,全球移动通信系统(Global System for Mobile Communications,GSM),GPRS网络,宽带码分多址接入(Wideband Code Division Multiple Access,W-CDMA),CDMA2000或LTE/高级LTE通信网络或任何第二代,第三代,第四代或第五代和超越类型的通信网络等。
在图2的示例中,该无线通信系统100可以是,仅作为示例但不限于,使用下行链路和上行链路信道的循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)技术的5G通信网络。下行链路可以包括用于将数据从一个或多个gNB 104a-104m传输到一个或多个UE108a-108e的一个或多个通信信道。通常下行链路信道是用于传输数据的通信信道,例如,从gNB 104a到UE 108a。
用于5G网络的上行链路和下行链路均被分成无线帧(例如,每个帧可以是10ms的长度),其中每个帧可以被分成多个子帧。例如,每个帧可以包括10个长度相等的子帧,其中每个子帧由用于传输数据的多个时隙(例如2个时隙)组成。除了时隙之外,子帧可以包括若干额外的特殊字段或OFDM符号,其可包括,仅作为示例,下行链路同步符号,广播符号和/或上行链路参考符号。
如图3所示,本申请混合自动重传请求反馈方法第一实施例包括:
S11:接收来自于基站的多个时序参数。
本实施例应用于用户设备侧。每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元。时序参数/时间单元的单位可以为时隙或符号,为便于描述,下文均以时隙作为时序参数/时间单元的单位进行说明,实际应用中也可以采用其他类型。下行传输可以为SPSPDSCH。
时序参数k1可以为整数,其数值表示第一时间单元和第二时间单元之间的时隙数量。如果涉及到多个时间单元的下行传输的聚合,那么用户设备会将聚合的多个时间单元作为一个整体来进行HARQ反馈,并且将上述聚合的多个时间单元中的最后一个作为第一时间单元。举例说明,当配置了 pdsch-AggregationFactor时,被聚合的pdsch-AggregationFactor个SPS PDSCH按照1个SPS PDSCH做处理。即从slot n到slot n-pdsch-AggregationFactor+1的SPS PDSCH对应的HARQ均在同一个UL slot n+k1上发送。
多个时序参数可以为单个SPS配置(即接收到的SPS PDSCH对应的SPS配置)的时序参数集合。这种情况下,基站可以在配置该SPS配置的时候向用户设备发送包含多个时序参数的时序参数集合。时序参数集合中不同的时序参数互不相同,时序参数集合中时序参数的数量可以由DCI或者高层信令(例如,RRC信令)指定,在此不做限制。多个时序参数可以为多个SPS配置的时序参数,每个SPS配置的时序参数的数量可以为一个或者多个。这种情况下,用户设备接收到的SPS PDSCH对应的SPS配置(以下简称当前SPS配置)可以为这些SPS配置中的一个。
S12:从多个时序参数中选择一个不冲突的时序参数。
用户设备在收到下行传输之后,根据解码情况确定对应的HARQ反馈信号。若可以正常解码,则对应的HARQ反馈信号为HARQ确认信号(ACK);否则对应的HARQ反馈信号为HARQ否认信号(NACK)。若启用了下行传输聚合,则为聚合的所有下行传输生成对应的HARQ反馈信号,其中包括每个下行传输的HARQ反馈信息。
用户设备收到下行传输后,根据收到下行传输的第一时间单元,以及已配置的每个时序参数,可以确定每个时序参数对应的第二时间单元。若某个时序参数对应的第二时间单元在TDD配置中是下行的,那么用户设备无法在该时序参数对应的第二时间单元发送HARQ反馈信号,意味着该时序参数与TDD配置存在冲突,简称该时序参数是冲突的。反之,若某个时序参数对应的第二时间单元在TDD配置中是上行的,那么用户设备能够在该时序参数对应的第二时间单元发送HARQ反馈信号,意味着该时序参数与TDD配置不存在冲突,简称该时序参数是不冲突的。
用户设备可以采用上述方式来判断各时序参数是否是冲突的,以在已配置的多个时序参数中寻找不冲突的时序参数。若未在多个时序参数中找到不冲突的时序参数,则放弃发送并丢弃HARQ反馈信号并丢弃。
以下对从当前SPS配置的时序参数集合中选择和从多个SPS的时序参数中选择两种情况分别描述,实际应用中这两种情况可以结合。
从当前SPS配置的时序参数集合中选择:
如图4所示,在本申请一具体实施例中,S12包括:
S121:选择时序参数集合中的第一个时序参数尝试发送HARQ反馈信号。
第一个时序参数也可以被称为默认时序参数,用户设备优先选择默认时序参数。具体的,用户设备确定默认时序参数对应的第二时间单元并尝试发送HARQ反馈信号。如果默认时序参数对应的第二时间单元是上行的,那么可以成功发送HARQ反馈信号,无需再选择其他时序参数;如果默认时序参数对应的第二时间单元是下行的,就是说默认时序参数是冲突的,跳转到S122。
S122:从时序参数集合中除第一个时序参数之外的其他时序参数中选择一个不冲突的时序参数。
用户设备可以遍历时序参数集合中除默认时序参数之外其他时序参数直至找到不冲突的时序参数。
举例说明,如图5所示,TDD配置为DDDDDDDDUU,即在一个无线帧中,前8个时隙为下行,最后2的时隙为上行。为UE配置的时序参数集合K1_set={6,8,7,3,5},对于DL#1上调度的SPS PDSCH来说,k1=6时对应DL#7显然不符合发送HARQ反馈信号的条件,当k1=8时可以在UL#1中发送HARQ反馈信号;同样地,对于DL#5上调度的SPS PDSCH来说k1=5时可以成功传输相应的HARQ反馈信号。
如图6所示,在本申请另一具体实施例中,S12包括:
S131:将时序参数集合中的时序参数按照指定顺序进行排序。
指定顺序可以为从大到小。
S132:选择上一个下行传输使用的时序参数尝试发送HARQ反馈信号。
S133:若出现冲突,则依次选择上一个下行传输使用的时序参数之后的时序参数直至找到不冲突的时序参数。
由于在TDD的配置中,上行slot或symbol一般处在一个无线帧的结尾处,那么对于下行传输来说,从第一个下行slot开始按slot number依次递增,对应的不冲突的k1的值是处于一个递减的状态。以图5给出的TDD配置为例,假设在下行slot DL#1、2、3上的下行传输均分配在UL#1上发送HARQ反馈信号,那么它们对应的k1的取值分别为:8、7、6。
考虑到TDD场景的这种情况,为减少UE检索不冲突的k1的复杂度,可以将基站配置的时序参数集合的k1按照取值从大到小的顺序排列,UE在为每一个SPS PDSCH选取合适的k1反馈时序时,按照K1_set内部的排序依次筛选合 适的k1。
继续使用图5为例进行说明,假设排序之后的时序参数集合K1_set={8,7,6,5,3},对于DL#1上的SPS PDSCH,先判断k1=8时是否可以成功反馈HARQ,根据图5给出的TDD配置,k1=8是可以在UL#1上进行HARQ传输,则DL#1对应的k1=8。接下来,对于DL#3上的SPS PDSCH,先在DL#1对应的k1=8的基础上做判断,此时k1=8时对应的第二时间单元为下一个无线帧的DL#1,无法做HARQ反馈,则选取K1_set内8之后的7,判断k1=7时是否可以反馈,以此类推。
UE同时存在多个SPS配置的情况下,可以从多个SPS配置的时序参数中选择:
如图7所示,在本申请又一具体实施例中,S12包括:
S141:选择下行传输对应的SPS配置的时序参数尝试发送HARQ反馈信号。
优先选择当前SPS配置的时序参数。具体的,用户设备确定当前SPS配置的时序参数对应的第二时间单元并尝试发送HARQ反馈信号。如果当前SPS配置的时序参数对应的第二时间单元是上行的,那么可以成功发送HARQ反馈信号,无需再选择其他时序参数;如果当前SPS配置的时序参数对应的第二时间单元是下行的,就是说默认时序参数是冲突的,跳转到S142。
S142:若出现冲突,则从其他SPS配置的时序参数中选择一个不冲突的时序参数。
用户设备可以遍历其他SPS配置的时序参数直至找到不冲突的时序参数。
可选的,用户设备可以将所有SPS配置的时序参数按从大到小或从小到大的顺序进行排序,再依次从当前SPS配置的时序参数之后的时序参数开始,依序遍历其他SPS配置的时序参数寻找不冲突的时序参数。
如图8所示,在本申请又一具体实施例中,S12包括:
S151:选择下行传输对应的SPS配置的时序参数尝试发送HARQ反馈信号。
本例中与图7对应的具体实施例相同或相似的部分可参考图7对应的具体实施例中的描述,在此不再重复。
S152:若出现冲突,则对下行传输对应的SPS配置的时序参数进行调整以寻找不冲突的调整后时序参数。
具体调整方式可参考后续实施例的描述。
若找到则跳转到S153,否则跳转到S154。
S153:使用不冲突的调整后时序参数发送HARQ反馈信号。
S154:从其他SPS配置的时序参数中选择一个不冲突的时序参数。
确定不冲突的时序参数之后,UE可以根据是否允许出现HARQ反馈次序颠倒的情况决定是否执行HARQ反馈次序颠倒判定。具体的,若允许出现HARQ反馈次序颠倒的情况,则无需执行HARQ反馈次序颠倒判定;若不允许出现HARQ反馈次序颠倒的情况,则需要执行HARQ反馈次序颠倒判定。
如图9所示,HARQ反馈次序颠倒判定包括:
S161:判断不冲突的时序参数是否会造成HARQ反馈信号与另一HARQ反馈信号的反馈次序颠倒。
反馈次序颠倒是指下行传输的顺序与对应的HARQ反馈顺序相反。举例说明,若下行传输1在下行传输2之前,但最终确定的下行传输1的HARQ反馈信号在下行传输2的HARQ反馈信号之后发送,意味着出现了HARQ反馈次序颠倒。
若会造成HARQ反馈次序颠倒,则跳转到S162,否则不需要放弃,跳转到S13。
S162:放弃发送HARQ反馈信号与另一HARQ反馈信号中的一个。
如何确定放弃的HARQ反馈信号在此不做限定。
若不冲突的时序参数的数量大于1,只要有一个不冲突的时序参数不会造成HARQ反馈次序颠倒,就可以使用它发送HARQ反馈信号;反之若所有的不冲突的时序参数都会造成HARQ反馈次序颠倒,才会放弃一个HARQ反馈信号。
S13:使用不冲突的时序参数发送HARQ反馈信号。
在不冲突的时序参数对应的第二时间单元发送HARQ反馈信号。
通过本实施例的实施,UE可以从多个时序参数中寻找不冲突的时序参数以发送HARQ反馈信号,与现有技术中固定的单个时序参数相比,可以减少HARQ反馈信号因冲突被丢弃的情况,改善PDSCH的性能。
如图10所示,本申请混合自动重传请求反馈方法第二实施例包括:
S21:向用户设备发送多个时序参数。
每个时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元。
本实施例应用于基站侧。具体内容可参考本申请混合自动重传请求反馈方 法第一实施例的描述,在此不再重复。
S22:在至少一个时序参数对应的第二时间单元尝试接收HARQ反馈信号。
通过本实施例的实施,UE可以从多个时序参数中寻找不冲突的时序参数以发送HARQ反馈信号,对应的,基站尝试在多个第二时间单元接收HARQ反馈信号,与现有技术中固定的单个时序参数相比,可以减少HARQ反馈信号因冲突被丢弃的情况,改善PDSCH的性能。
如图11所示,本申请混合自动重传请求反馈方法第三实施例包括:
S31:接收来自于基站的第一时序参数。
第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元。
本实施例应用于用户设备侧。具体内容可参考本申请混合自动重传请求反馈方法第一实施例中的相关描述。
S32:若使用第一时序参数发送HARQ反馈信号出现冲突,则对第一时序参数进行调整得到不冲突的第二时序参数。
若第一时序参数对应的第二时间单元在TDD配置中是下行的,那么用户设备无法在第一时序参数对应的第二时间单元发送HARQ反馈信号,意味着第一时序参数是冲突的,需要进行调整。
如图12所示,S32可以具体包括:
S321:按照预设步长对第一时序参数进行递增或递减调整得到第二时序参数。
参考图6对应的具体实施例的描述,可知对于下行传输来说,从第一个下行slot开始按slot number依次递增,对应的不冲突的k1的值是处于一个递减的状态。为减小调整所需的时间,基站可以配置一个较大的第一时序参数,然后用户设备采用递减的方式进行调整;或者,基站可以配置一个较小的第一时序参数,然后用户设备采用递增的方式进行调整。
调整第一时序参数的过程也可以理解为对第一时序参数的更新,具体调整公式如下:
k1=k1-i·s,i=0,1,2,…(1)
k1=k1+i·s,i=0,1,2,…(2)
其中,=表示赋值,=左边的为本次调整之后的时序参数,=右边的为本次调 整之后的时序参数,i为调整的次数,s为预设步长。公式(1)为递减调整,公式(2)为递增调整。
预设步长可以为单个时隙或者多个时隙。多个时隙的情况下,预设步长可以为x个时隙,x>1并且是根据SPS周期确定的。
由于SPS PDSCH是周期性传输的,并且基站在配置第一时序参数时,是知道当时TDD的配置,正常情况下第一时序参数对于某些SPS PDSCH而言是不冲突的。基于这个前提,不冲突的第二时序参数与第一时序参数之间的时间间隔有较大可能是SPS周期的整数倍。因此可以根据SPS周期来设定调整的步长,以减小复杂度。此时上面两个公式中的
Figure PCTCN2021070923-appb-000001
Period表示SPS PDSCH的周期,由RRC参数SPS-Config中的Periodicity或PeriodicityExt字段指示,以子帧为单位;μ DL表示下行参数集(Numerology)指示,由高层参数subcarrierSpacing来配置,用于将SPS周期和k1的单位归一化。
S322:判断第二时序参数是否是不冲突的。
若是,则跳转到S323,否则跳转到S324。
S323:停止调整。
当前的第二时序参数为不冲突的第二时序参数,执行后续步骤。最终得到的不冲突的第二时序参数不得小于PDSCH的最小处理时间。
S324:判断是否满足终止条件。
调整不可能无止休的进行下去,因此设置有终止条件。终止条件可以包括第二时序参数达到第一阈值和/或调整次数达到第二阈值。
基站可以为用户设备配置第一阈值。例如对于递减策略,可以由高层配置一个参数Th_m,当k1≤Th_m时即终止筛选,Th_m的最小值可以为0。同样地对于递加策略,也可以对k1的上限进行限制,可以由高层配置一个参数Th_p,当k1≥Th_p时即终止筛选,Th_p的最大值可以为k1的上限值。
若满足,则跳转到S325,否则跳转到S321。
S325:放弃发送HARQ反馈信号。
丢弃HARQ反馈信号。
S33:使用不冲突的第二时序参数发送HARQ反馈信号。
在不冲突的第二时序参数对应的第二时间单元发送HARQ反馈信号。
举例说明,如图13所示,TDD配置为DDDDUDDD。假设UE被配置了在DL#1、3的位置上分别接收相应的SPS PDSCH,配置第一时序参数k1=6。那么 对于DL#1上传输的SPS PDSCH来说相应的HARQ反馈信号应该在DL#6的位置上发送。此时显然k1=6是不合适的,那么对k1进行减1操作,则k1=5,当k1=5时对应DL#5的位置仍然无法上传HARQ反馈信号,对k1再次进行减1操作,取k1=4,此时对应UL#1可以进行HARQ反馈信号的传输。同样地,DL#3上的下行传输也使用相同的方式,从k1=6依次递减,直到k1=2时可以在UL#1上成功传输HARQ反馈信号。
通过本实施例的实施,UE可以在第一时序参数出现冲突的情况下,尝试对第一时序参数进行调整以寻找不冲突的第二时序参数发送HARQ反馈信号,从而减少HARQ反馈信号因冲突被丢弃的情况,改善PDSCH的性能。
如图14所示,本申请混合自动重传请求反馈方法第四实施例包括:
S41:向用户设备发送第一时序参数。
第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,第一时间单元为用户设备接收来自于基站的下行传输的时间单元,第二时间单元为用户设备向基站发送下行传输的HARQ反馈信号的时间单元。
本实施例应用于基站侧。具体内容可参考本申请混合自动重传请求反馈方法第三实施例的描述,在此不再重复。
S42:在第二时序参数对应的第二时间单元尝试接收HARQ反馈信号。
第二时序参数是对第一时序参数进行调整而得到的。
通过本实施例的实施,UE可以在第一时序参数出现冲突的情况下,尝试对第一时序参数进行调整以寻找不冲突的第二时序参数以发送HARQ反馈信号,对应的,基站在在第二时序参数对应的第二时间单元尝试接收HARQ反馈信号,从而减少HARQ反馈信号因冲突被丢弃的情况,改善PDSCH的性能。
如图15所示,本申请通信设备第一实施例包括:处理器110和存储器120。
处理器110控制通信设备的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器120存储处理器110工作所需要的指令和数据。
处理器110用于执行指令以实现本申请混合自动重传请求反馈方法第一、 第三实施例及可能的组合所提供的方法。
如图16所示,本申请通信设备第二实施例包括:处理器210和存储器220。
处理器210控制通信设备的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器220存储处理器210工作所需要的指令和数据。
处理器210用于执行指令以实现本申请混合自动重传请求反馈方法第二、第四实施例及可能的组合所提供的方法。
如图17所示,本申请可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本申请混合自动重传请求反馈方法任一实施例及可能的组合所提供的方法。
存储器310可以包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、闪存(Flash Memory)、硬盘、光盘等。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种混合自动重传请求HARQ反馈方法,所述方法应用于用户设备侧,其特征在于,所述方法包括:
    接收来自于基站的多个时序参数,每个所述时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,所述第一时间单元为所述用户设备接收来自于所述基站的下行传输的时间单元,所述第二时间单元为所述用户设备向所述基站发送所述下行传输的HARQ反馈信号的时间单元;
    从所述多个时序参数中选择一个不冲突的时序参数;
    使用所述不冲突的时序参数发送所述HARQ反馈信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述下行传输为半静态调度SPS物理下行共享信道PDSCH。
  3. 根据权利要求2所述的方法,其特征在于,
    所述多个时序参数包括单个SPS配置的时序参数集合。
  4. 根据权利要求3所述的方法,其特征在于,
    所述从所述多个时序参数中选择一个不冲突的时序参数包括:
    选择所述时序参数集合中的第一个时序参数尝试发送所述HARQ反馈信号;
    若出现冲突,则从所述时序参数集合中除所述第一个时序参数之外的其他时序参数中选择一个所述不冲突的时序参数。
  5. 根据权利要求3所述的方法,其特征在于,
    所述从所述多个时序参数中选择一个不冲突的时序参数包括:
    将所述时序参数集合中的时序参数按照指定顺序进行排序;
    选择上一个下行传输使用的时序参数尝试发送所述HARQ反馈信号;
    若出现冲突,则依次选择所述上一个下行传输使用的时序参数之后的时序参数直至找到所述不冲突的时序参数。
  6. 根据权利要求2所述的方法,其特征在于,
    所述多个时序参数包括多个SPS配置的时序参数。
  7. 根据权利要求6所述的方法,其特征在于,
    所述从所述多个时序参数中选择一个不冲突的时序参数包括:
    选择所述下行传输对应的SPS配置的时序参数尝试发送所述HARQ反馈信号;
    若出现冲突,则从其他SPS配置的时序参数中选择一个所述不冲突的时序参数。
  8. 根据权利要求6所述的方法,其特征在于,
    所述从所述多个时序参数中选择一个不冲突的时序参数包括:
    选择所述下行传输对应的SPS配置的时序参数尝试发送所述HARQ反馈信号;
    若出现冲突,则对所述下行传输对应的SPS配置的时序参数进行调整以寻找不冲突的调整后时序参数;
    若找到,则使用所述不冲突的调整后时序参数发送所述HARQ反馈信号,否则从其他SPS配置的时序参数中选择一个所述不冲突的时序参数。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述从其他SPS配置的时序参数中选择一个所述不冲突的时序参数包括:
    将所述多个时序参数按照指定顺序进行排序;
    依次选择所述下行传输对应的SPS配置的时序参数之后的时序参数直至找到所述不冲突的时序参数。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,进一步包括:
    若未在所述多个时序参数中找到所述不冲突的时序参数,则放弃发送所述HARQ反馈信号。
  11. 根据权利要求1-8中任一项所述的方法,其特征在于,所述使用不冲突的时序参数所述发送所述HARQ反馈信号之前进一步包括:
    判断所述不冲突的时序参数是否会造成所述HARQ反馈信号与另一HARQ反馈信号的反馈次序颠倒;
    若会造成,则放弃发送所述HARQ反馈信号与所述另一HARQ反馈信号中的一个。
  12. 一种混合自动重传请求HARQ反馈方法,所述方法应用于基站侧,其特征在于,所述方法包括:
    向用户设备发送多个时序参数,每个所述时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,所述第一时间单元为所述用户设备接收来自于所述基站的下行传输的时间单元,所述第二时间单元为所述用户设备向所述基站发送所述下行传输的HARQ反馈信号的时间单元;
    在至少一个所述时序参数对应的第二时间单元尝试接收所述HARQ反馈信 号。
  13. 一种混合自动重传请求HARQ反馈方法,所述方法应用于用户设备侧,其特征在于,所述方法包括:
    接收来自于基站的第一时序参数,所述第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,所述第一时间单元为所述用户设备接收来自于所述基站的下行传输的时间单元,所述第二时间单元为所述用户设备向所述基站发送所述下行传输的HARQ反馈信号的时间单元;
    若使用第一时序参数发送所述HARQ反馈信号出现冲突,则对所述第一时序参数进行调整得到不冲突的第二时序参数;
    使用所述不冲突的第二时序参数发送所述HARQ反馈信号。
  14. 根据权利要求13所述的方法,其特征在于,
    所述对所述第一时序参数进行调整得到不冲突的第二时序参数包括:
    按照预设步长对所述第一时序参数进行递增或递减调整得到第二时序参数;
    判断所述第二时序参数是否是不冲突的;
    若是,则停止调整,否则继续调整直至满足终止条件。
  15. 根据权利要求14所述的方法,其特征在于,
    所述终止条件包括所述第二时序参数达到第一阈值和/或调整次数达到第二阈值。
  16. 根据权利要求14所述的方法,其特征在于,
    所述预设步长为单个时隙或者x个时隙,x>1并且是根据SPS周期确定的。
  17. 一种混合自动重传请求HARQ反馈方法,所述方法应用于基站侧,其特征在于,所述方法包括:
    向用户设备发送第一时序参数,所述第一时序参数用于指示第一时间单元和第二时间单元之间的时间间隔,所述第一时间单元为所述用户设备接收来自于所述基站的下行传输的时间单元,所述第二时间单元为所述用户设备向所述基站发送所述下行传输的HARQ反馈信号的时间单元;
    在第二时序参数对应的第二时间单元尝试接收所述HARQ反馈信号,所述第二时序参数是对所述第一时序参数进行调整而得到的。
  18. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求1-11、13-16任一项所述的方法。
  19. 一种通信设备,其特征在于,包括:处理器和通信电路,所述处理器连接所述通信电路;
    所述处理器用于执行指令以实现如权利要求12、17任一项所述的方法。
  20. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权利要求1-17任一项所述的方法。
PCT/CN2021/070923 2021-01-08 2021-01-08 混合自动重传请求反馈方法、通信设备及可读存储介质 WO2022147779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/070923 WO2022147779A1 (zh) 2021-01-08 2021-01-08 混合自动重传请求反馈方法、通信设备及可读存储介质
CN202180087860.1A CN116671163A (zh) 2021-01-08 2021-01-08 混合自动重传请求反馈方法、通信设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070923 WO2022147779A1 (zh) 2021-01-08 2021-01-08 混合自动重传请求反馈方法、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022147779A1 true WO2022147779A1 (zh) 2022-07-14

Family

ID=82357808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070923 WO2022147779A1 (zh) 2021-01-08 2021-01-08 混合自动重传请求反馈方法、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116671163A (zh)
WO (1) WO2022147779A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160323070A1 (en) * 2015-04-28 2016-11-03 Qualcomm Incorporated Low latency operation with different hybrid automatic repeat request (harq) timing options
CN109152053A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 传输时序确定及指示方法、通信设备及存储介质
CN109905212A (zh) * 2017-12-11 2019-06-18 深圳市金立通信设备有限公司 混合自动重传请求时序关系的指示方法、基站及用户设备
CN110034866A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种用于反馈的方法、装置及系统
CN110753370A (zh) * 2019-09-12 2020-02-04 海能达通信股份有限公司 数据传输方法及其系统以及基站、终端和存储装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160323070A1 (en) * 2015-04-28 2016-11-03 Qualcomm Incorporated Low latency operation with different hybrid automatic repeat request (harq) timing options
CN109152053A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 传输时序确定及指示方法、通信设备及存储介质
CN109905212A (zh) * 2017-12-11 2019-06-18 深圳市金立通信设备有限公司 混合自动重传请求时序关系的指示方法、基站及用户设备
CN110034866A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种用于反馈的方法、装置及系统
CN110753370A (zh) * 2019-09-12 2020-02-04 海能达通信股份有限公司 数据传输方法及其系统以及基站、终端和存储装置

Also Published As

Publication number Publication date
CN116671163A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US11637661B2 (en) System and method for time domain grant-free PUSCH resource allocation
WO2021027604A1 (zh) 传输方法、装置、通信节点及介质
US10841948B2 (en) Methods to support UL transmission on multiple numerologies in NR system
US20190349942A1 (en) Method and device for allocating uplink control channels
US11412490B2 (en) Method of multiplexing uplink control information and related device
CN107210895B (zh) 用于增强型载波聚集的软缓冲器管理的方法和装置
US20210120537A1 (en) An indication for a portion of a time interval
US20210168849A1 (en) Method, apparatus, and system for allocating resources in wireless communication system
TWI822665B (zh) 傳輸方法和裝置
US20220150874A1 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
US11425755B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
US11805523B2 (en) Information transmission method, terminal device, and network device
JP2020523841A (ja) フィードバック情報の送受信方法、装置及び通信システム
US11463222B2 (en) Method and device for transmitting or receiving uplink control channel in wireless communication system
WO2020228542A1 (zh) 一种发送和接收harq-ack消息的方法及装置
WO2018195861A1 (zh) 无线通信的方法、终端设备和传输与接收节点
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
US10863495B2 (en) PUSCH transmission method and device, and DCI indication method and device
KR20200034559A (ko) 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
US10986619B2 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
WO2022147779A1 (zh) 混合自动重传请求反馈方法、通信设备及可读存储介质
WO2022077876A1 (zh) 一种通信方法及装置
WO2022155767A1 (zh) 混合自动重传请求harq反馈码本生成方法、通信设备及可读存储介质
WO2022147660A1 (zh) Harq传输增强方法、通信设备及可读存储介质
WO2022068762A1 (zh) Harq-ack反馈方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087860.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916834

Country of ref document: EP

Kind code of ref document: A1