WO2022068762A1 - Harq-ack反馈方法、终端及网络侧设备 - Google Patents

Harq-ack反馈方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2022068762A1
WO2022068762A1 PCT/CN2021/120877 CN2021120877W WO2022068762A1 WO 2022068762 A1 WO2022068762 A1 WO 2022068762A1 CN 2021120877 W CN2021120877 W CN 2021120877W WO 2022068762 A1 WO2022068762 A1 WO 2022068762A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
pdschs
harq
ack
terminal
Prior art date
Application number
PCT/CN2021/120877
Other languages
English (en)
French (fr)
Inventor
洪琪
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023519972A priority Critical patent/JP2023543882A/ja
Priority to EP21874422.5A priority patent/EP4224767A4/en
Publication of WO2022068762A1 publication Critical patent/WO2022068762A1/zh
Priority to US18/191,975 priority patent/US20230261808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a hybrid automatic repeat request feedback (HARQ-ACK) feedback method, a terminal and a network side device.
  • HARQ-ACK hybrid automatic repeat request feedback
  • the terminal supports HARQ-ACK feedback for the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the terminal feeds back HARQ-ACK for each PDSCH, and the terminal needs to feed back a large number of HARQ-ACK bits, which increases the feedback overhead.
  • the embodiments of the present application provide a HARQ-ACK feedback method, a terminal, and a network side device, which can reduce the HARQ-ACK feedback overhead.
  • a first aspect provides a HARQ-ACK feedback method, the method comprising: a terminal groups multiple physical downlink shared channels PDSCH to obtain one or more PDSCH groups; the terminal feeds back each PDSCH group HARQ-ACK.
  • a HARQ-ACK feedback method includes: receiving a HARQ-ACK by a network side device; wherein, the HARQ-ACK is obtained by the terminal grouping multiple PDSCHs to obtain one or more PDSCH groups ; and fed back for each PDSCH group.
  • a terminal including: a grouping module configured to group multiple PDSCHs to obtain one or more PDSCH groups; and a sending module configured to feed back HARQ-ACK for each PDSCH grouping.
  • a network-side device including: a receiving module for receiving HARQ-ACK; wherein, the HARQ-ACK is that the terminal groups multiple PDSCHs to obtain one or more PDSCH groups; and for Each of the PDSCH packets is fed back.
  • a terminal in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor A method as described in the first aspect is implemented.
  • a network side device in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the method as described in the second aspect when executed.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the method described in the first aspect or the second the method described in the aspect.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the When executed by the processor, the method described in the first aspect or the method described in the second aspect is realized.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect , or implement the method described in the second aspect.
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group.
  • the number of HARQ-ACK bits to be fed back reduces the feedback overhead.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a HARQ-ACK feedback method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of multiple PDSCH time domain locations according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of grouping multiple PDSCHs scheduled by one PDCCH according to an embodiment of the present application
  • 5 is a schematic diagram of grouping multiple PDSCHs scheduled by one PDCCH into one or more groups according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a HARQ-ACK feedback method according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network side device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th generation ). Generation, 6G) communication system.
  • 6th generation 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. In the application embodiments, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • Hybrid Automatic Repeat request Acknowledgement Hybrid Automatic Repeat request Acknowledgement, HARQ-ACK
  • HARQ-ACK Hybrid Automatic Repeat request Acknowledgement
  • an embodiment of the present application provides a HARQ-ACK feedback method 200, which can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal, and the method includes the following steps .
  • the terminal groups multiple physical downlink shared channels (Physical Downlink Shared Channel, PDSCH) to obtain one or more PDSCH groups.
  • PDSCH Physical Downlink Shared Channel
  • the multiple PDSCHs mentioned in this step may be scheduled by a physical downlink control channel (Physical Downlink Control Channel, PDCCH), and the terminal may divide the multiple PDSCHs scheduled by the one PDCCH into a PDSCH group, It can also be divided into multiple PDSCH groups.
  • PDCCH Physical Downlink Control Channel
  • the multiple PDSCHs mentioned in this step may be scheduled by multiple PDCCHs, and each PDCCH in the multiple PDCCHs schedules one or more PDSCHs.
  • the number of multiple PDSCHs is equal to the number of multiple PDCCHs, that is, one PDSCH is scheduled for each PDCCH, and the terminal can divide the multiple PDSCHs scheduled by the multiple PDCCHs into one PDSCH group, and can also divide them into multiple PDSCH groups.
  • PDSCH grouping is equal to the number of multiple PDCCHs, that is, one PDSCH is scheduled for each PDCCH, and the terminal can divide the multiple PDSCHs scheduled by the multiple PDCCHs into one PDSCH group, and can also divide them into multiple PDSCH groups.
  • the number of multiple PDSCHs is less than the number of multiple PDCCHs, and there are the following three possible grouping situations.
  • Possible situation 1 For the multiple PDCCHs, the terminal divides one or more PDSCHs scheduled for each PDCCH into one PDSCH group.
  • Possible case 2 when a certain PDCCH schedules multiple PDSCHs, the PDCCH schedules multiple PDSCHs into one PDSCH group or into multiple PDSCH groups.
  • Possible situation 3 The terminal may further divide multiple PDSCHs scheduled by multiple PDCCHs into one PDSCH group.
  • each PDSCH group obtained after grouping may include one or more PDSCHs.
  • the above-mentioned value of Q can be predefined; it can also be determined by the terminal according to a predefined rule; it can also be configured by a higher layer; it can also be indicated by a network side device, and so on.
  • the terminal may further group multiple PDSCHs according to a predetermined duration.
  • the predetermined duration is 2 symbols; the number of multiple PDSCHs is 5, and the symbol positions occupied by these 5 PDSCHs in a certain time slot are: the first PDSCH occupies the third symbol; the second PDSCH occupies the third symbol; The 4th symbol; the 3rd PDSCH occupies the 6th symbol; the 4th PDSCH occupies the 9th symbol; the 5th PDSCH occupies the 10th symbol.
  • the terminal groups the 5 PDSCHs: first, from the start time of the first PDSCH to the time when the start time of the first PDSCH plus the above predetermined duration, there are the first PDSCH and the second PDSCH , therefore, the 1st PDSCH and the 2nd PDSCH are grouped into one group; then, from the start time of the 3rd PDSCH to the time when the start time of the 3rd PDSCH plus the above predetermined duration, there is only a 3rd PDSCH Therefore, the third PDSCH is separately grouped into a group; then, from the start time of the fourth PDSCH to the time when the start time of the fourth PDSCH plus the above predetermined duration, there are the fifth PDSCH and The 6th PDSCH, therefore, the 5th PDSCH and the 6th PDSCH are grouped together.
  • the above-mentioned predetermined duration can also be predefined; it can also be determined by the terminal according to a predefined rule; it can also be configured by a higher layer; it can also be indicated by a network side device, and so on.
  • the predetermined duration can be determined based on two time slots (slots) of SCS120, then the predetermined duration under SCS240 is the length of four slots (the length of each slot is half of that of SCS120); The predetermined duration is the length of 8 slots.
  • S204 The terminal feeds back HARQ-ACK for each PDSCH group.
  • the terminal may feed back one HARQ-ACK for each PDSCH group, and the HARQ-ACK may be a positive acknowledgement (Acknowledgment, ACK) or a negative acknowledgement (Negative-Acknowledgment, NACK).
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • the terminal can feed back an ACK response for the PDSCH group; if the detection result of at least one PDSCH in the PDSCH group is NACK, the HARQ-ACK corresponding to the PDSCH group is NACK, and the terminal can respond to The PDSCH packet feeds back a NACK response.
  • the PDSCH in this embodiment includes a semi-persistent scheduling (Semi-Persistent Scheduling, SPS) PDSCH release indication, and this embodiment can also be extended to other schemes requiring HARQ-ACK feedback.
  • SPS semi-persistent scheduling
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group, because the number of PDSCH groups is less than that of the above-mentioned multiple PDSCH groups It is beneficial to reduce the number of HARQ-ACK bits fed back and reduce the feedback overhead.
  • the HARQ-ACK feedback method provided in this embodiment of the present application may be applied to a system higher than 52.6 GHz (B52.6 GHz).
  • B52.6GHz system uses a large subcarrier spacing (SubCarrier Spacing, SCS), and at this time, the time of each slot (slot) will become very short.
  • SCS SubCarrier Spacing
  • a PDCCH schedules multiple PDSCHs the time domain positions of each PDSCH are different and continuous with each other or the time interval is small, but the frequency domain positions and the used modulation and coding strategy (Modulation and Coding Scheme, MCS) level are the same.
  • MCS Modulation and Coding Scheme
  • the channels experienced by multiple PDSCHs scheduled by a PDCCH and the signal-to-noise ratio (SINR) are relatively close, so there is a high probability that these multiple PDSCHs are either decoded correctly (feedback ACK) or decoded incorrectly ( feedback NACK), that is, the HARQ-ACK feedback is relatively consistent.
  • the terminal groups multiple PDSCHs and feeds back HARQ-ACK for each PDSCH grouping is reasonable in design, and does not bring additional transmission overhead.
  • each PDSCH grouping may include Q PDSCHs, and the indexes of the Q PDSCHs included in each PDSCH grouping are consecutive; wherein, the index is determined according to the time sequence of the multiple PDSCHs , Q is a positive integer, and Q in this example is greater than or equal to 2.
  • the above PDSCH index may be understood as a local number corresponding to each PDSCH in chronological order among multiple PDSCHs scheduled by the same PDCCH.
  • the above PDSCH index may be understood as, among multiple PDSCHs scheduled by multiple PDCCHs, local numbers corresponding to the multiple PDSCHs in chronological order.
  • the number of multiple PDSCHs mentioned in each of the foregoing embodiments is N, and the number of PDSCH groups obtained by grouping the N PDSCHs is M; wherein, case 1): at least (M-1) The number of PDSCHs included in the PDSCH groups is equal, 1 ⁇ M ⁇ N, where M and N are integers; or, case 2): the number of PDSCHs included in at least two PDSCH groups is unequal.
  • the number of PDSCHs contained in the first PDSCH grouping or the last PDSCH grouping may be the same as the number of PDSCHs contained in the remaining (M-1) PDSCH groups.
  • the numbers are not equal, and the numbers of PDSCHs included in the (M-1) PDSCH groups other than the first PDSCH group or the last PDSCH group are all equal.
  • the number of PDSCHs contained in any two PDSCH groups is not equal.
  • (any) PDSCH grouping includes Q PDSCHs, where Q is a positive integer, and Q can be obtained according to at least one of the following; or, the terminal can be obtained according to at least one of the following Group multiple PDSCHs, because after grouping, you can get Q:
  • the protocol stipulates that the value of Q is 2.
  • the protocol stipulates the correspondence between multiple SCSs and multiple Qs, and the terminal obtains the Qs used for grouping according to the SCSs currently used for communication and the above-mentioned correspondences.
  • the protocol stipulates the correspondence between multiple SCSs and multiple Qs, and the terminal obtains the Qs used for grouping according to the SCSs currently used for communication and the above-mentioned correspondences.
  • the terminal determines PDSCH groups according to a predetermined duration, and obtains Q PDSCHs included in each group.
  • High-level configuration For example, the value of Q directly configured by the high layer is 2. Or, a set of values of the high-level configuration Q.
  • the terminal can determine the Q used by the packet according to the dynamic signaling indication of the network side device; or, the terminal can determine the Q used by the packet according to a predefined rule (eg, according to the correspondence between multiple SCSs and multiple Qs).
  • the network-side device indicates Q through dynamic signaling; or, the network-side device indicates a Q from a set of Q values through dynamic signaling, and the above-mentioned set of Q values may be configured by a high layer.
  • the terminal according to at least the following: One determines Q, or in other words, the terminal groups multiple PDSCHs according to at least one of the following, because Q can be obtained after grouping:
  • the size of the SCS For example, the protocol stipulates/the higher layer configures the correspondence between multiple SCSs and multiple Qs, and the terminal obtains the Qs used by the grouping according to the size of the SCSs currently used for communication and the above-mentioned correspondences.
  • the terminal uses the size of the SCS to obtain the Q used by the packet, which may be referred to as determining the Q by the terminal according to a predefined rule.
  • a control channel element (Control Channel Element, CCE) aggregation level for scheduling one or more PDCCHs of the multiple PDSCHs.
  • CCE Control Channel Element
  • the protocol stipulates/the higher layer configures the corresponding relationship between multiple CCE aggregation levels and multiple Qs, and the terminal obtains the Q used by the group according to the CCE aggregation level of the PDCCH and the above-mentioned corresponding relationship.
  • the terminal obtains the Q used by the grouping according to the CCE aggregation level of the PDCCH, which may be referred to as the terminal determining the Q according to a predefined rule.
  • the terminal groups multiple PDSCHs with the same MCS and consecutive in the time domain into a group.
  • the terminal obtains the Q used by the grouping according to the MCS, it may be called that the terminal determines the Q according to a predefined rule.
  • the terminal may also determine the Q used by the packet according to the combination of at least two of the above-mentioned SCS size, CCE aggregation level and MCS.
  • SCS the higher the SCS is, the fewer PDSCHs are included in each group.
  • Q is obtained according to the predefined rule, and the predefined rule includes a predetermined duration; thus, the terminal mentioned in Embodiment 200 groups multiple PDSCHs to obtain one or more PDSCHs
  • the grouping includes: for the multiple PDSCHs, the terminal uses one or more PDSCHs within the predetermined duration as one PDSCH grouping to obtain one or more PDSCH groups.
  • the above-mentioned terminal uses one or more PDSCHs in the predetermined duration T as a PDSCH group, including: the terminal determines the start time T1 of the predetermined duration, and according to the time sequence of the multiple PDSCHs, (T1 One or more PDSCHs within +T) are used as a PDSCH grouping; wherein, the interval between the start time of the first PDSCH and the start time of the last PDSCH in the PDSCH grouping is less than or equal to T; or the The interval between the start time of the first PDSCH and the end time of the last PDSCH within the PDSCH group is less than or equal to T.
  • the terminal may determine between the start times of multiple PDSCHs based on a predetermined time length; or the interval between the start time of the first PDSCH and the end time of another PDSCH does not exceed the predetermined time length, and the index is continuous.
  • the PDSCH is regarded as a single group of corresponding PDSCHs. For example, the interval between the start time of PDSCH n and the start time of PDSCH n+1,...PDSCH n+m does not exceed this predetermined time, then PDSCH n, PDSCH n+1,...PDSCH n+m all correspond to the same group ; The determination of the next group starts from PDSCH n+m+1.
  • the division of PDSCH groups may also be determined based on the start time of PDSCH n and the end time of PDSCH n+m.
  • the predetermined duration may be predefined by a protocol, or configured by a higher layer, or dynamically indicated by a network-side device.
  • the network-side device may directly indicate the value of the predetermined duration, or a set may be configured by a higher layer first, and the network-side device dynamically indicates one of them as the predetermined duration.
  • Q is obtained according to the instruction of the network side device; thus, the embodiment 200 further includes one of the following:
  • the terminal receives the first indication information of the network side device, where the first indication information is used to indicate one Q, and the one Q is applicable to each PDSCH group.
  • the terminal receives the second indication information of the network side device, where the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively applicable to the multiple PDSCH groups.
  • the terminal receives the third indication information of the network side device, where the third indication information is used to indicate one Q in the preconfigured set, and the one Q is applicable to each PDSCH group.
  • the network side device directly indicates a single Q, and the single Q corresponds to all groups, wherein the actual number of PDSCHs contained in the last group or the first group may be less than or equal to Q; or, the network side device directly Multiple Qs are indicated, and each Q is applied to one PDSCH group; or, a set of Qs is pre-configured by the high layer, and the network side device dynamically instructs the application of a certain Q, which is applied to each PDSCH group.
  • the network side device may indicate the above content in the downlink control information (Downlink Control Information, DCI) of the scheduling PDSCH, or may add a corresponding indication field in the DCI, or reinterpret the existing field.
  • DCI Downlink Control Information
  • the terminal mentioned in each of the foregoing embodiments groups multiple PDSCHs, and obtaining one or more PDSCH groups includes: not configuring a code block group (Code Block Group) in the serving cell where the multiple PDSCHs are located. , CBG) transmission, the terminal groups multiple PDSCHs to obtain one or more PDSCH groups.
  • CBG code block group
  • the serving cells where multiple PDSCHs are located are configured with CBG-based transmission (that is, the parameter PDSCH-CodeBlockGroupTransmission is configured)
  • the PDSCHs are not grouped, and can be implemented according to the scheme of feeding back one HARQ-ACK for one PDSCH in the related art .
  • the terminal (UE) is configured with a semi-static codebook
  • the semi-static codebook refers to a HARQ-ACK codebook generation method in which the size of the HARQ-ACK codebook does not change dynamically with the actual data scheduling situation.
  • the codebook size of the HARQ-ACK is determined according to a parameter predefined by a protocol or configured by a radio resource control (Radio Resource Control, RRC).
  • the generation of the codebook mainly depends on: 1, the set of k1; 2, the row index set provided by PDSCH-TimeDomainResourceAllocation; 3, the uplink and downlink configuration parameters of the upper layer; 4, the number of cells configured by RRC; 5, the HARQ space binding parameters; 6, CBG parameters and the maximum number of codewords supported by each cell.
  • the UE can construct the codebook according to the following parameters: 1, the set of k1; 2, the row index set provided by PDSCH-TimeDomainResourceAllocation; 3, the upper and lower layer configuration parameters; 4, the number of cells configured by RRC ; 5, HARQ space binding parameters; 6, CBG parameters and the maximum number of codewords supported by each cell.
  • the UE only supports receiving at most a single PDSCH in one time slot; 2.
  • the UE is not configured with CBG-based PDSCH transmission, that is, the parameter PDSCH-CodeBlockGroupTransmission is not configured for the UE; 3. Only Send a single codeword.
  • the possible values of k1 in the RRC configuration in this embodiment are ⁇ 3, 4, 5, 6, 7, 8 ⁇ , and the frame structures of time slots n+1, n+2...n+6 are all is configured to send all downlinks.
  • serving cell 1 needs to feed back 6 bits of HARQ-ACK information at the position of time slot 9, and serving cell 2 needs to feed back 6 bits of HARQ-ACK information at the time slot 9.
  • the position of slot 9 feeds back 6bits HARQ-ACK information, that is, a total of 12bits HARQ-ACK information.
  • the two serving cells feed back 5 bits of HARQ-ACK information in total, which is much smaller than the 12 bits of HARQ-ACK information in the related art.
  • the codebook M A, C of the serving cell is determined as follows The steps are as follows:
  • Step 1 Determine the PDSCH reception opportunity set for each serving cell.
  • This step can be based on the protocol flow, first traverse k1, and for each k1 that meets the requirements, then determine the PDSCH-TDRA configured by RRC for serving cell c and the uplink and downlink parameters configured by RRC (tdd-UL-DL-ConfigurationCommon or tdd-UL - The time slot configured as Uplink in DL-ConfigurationCommon2 or tdd-UL-DL-Configcondicated) or whether it matches whether there is a conflict, if there is a conflict, it will not be included in the candidate PDSCH receiving set.
  • Step 2 Group multiple PDSCH receiver sets based on Q.
  • the network side device determines that the PDSCH packet corresponding to this HARQ-ACK bit has one or more corresponding actual PDSCH transmissions, it considers that one or more corresponding actual PDSCH transmissions exist.
  • the HARQ-ACK feedbacks of the actual PDSCH transmissions are all NACKs, and retransmissions corresponding to one or more PDSCHs can be scheduled as required.
  • the number Q of scheduled PDSCHs included in each group may be determined in one of the following ways: protocol pre-defined values; determination based on protocol pre-defined rules; high-level configuration;
  • the terminal may determine Q according to the size of the SCS, the CCE aggregation level of the PDCCH, the MCS of the scheduled PDSCH, and the like. For example, the larger the SCS is, the more PDSCHs are included in each group; the higher the CCE level is, the fewer PDSCHs are included in each group.
  • the terminal is configured with a dynamic codebook.
  • the dynamic codebook refers to a codebook generation method in which the size of the HARQ-ACK codebook changes dynamically with the actual data scheduling situation.
  • DAI Downlink Assignment Index
  • the DCI for scheduling PDSCH includes DAI information
  • the UE can determine the number and order of HARQ-ACK bits according to the DAI information, that is, the correspondence between each PDSCH and HARQ-ACK information bits.
  • two more important parameters are cumulative DAI (Counter DAI, C-DAI) C-DAI, and total DAI (Total DAI, T-DAI).
  • C-DAI cumulative DAI
  • Total DAI Total DAI
  • T-DAI total DAI
  • multiple scheduled PDSCHs are assumed to be a group: the statistical order of C-DAI is, firstly, in ascending order of serving cell index, and then in ascending order of starting time of PDCCH detection timing.
  • serving cells there are three serving cells, numbered 1, 2, and 3, respectively.
  • For a certain PDCCH detection opportunity first perform C-DAI numbering on the DCI sent by serving cell 1, and then respectively C-DAI numbering is performed on the DCI issued by serving cell 2 and serving cell 3; therefore, for the first PDCCH detection opportunity, the C-DAI number of serving cell 1 is 1, the C-DAI number of serving cell 2 is 2, and the serving The C-DAI number of cell 3 is 3.
  • T-DAI represents the total number of PDSCH receptions scheduled by DCI 1_0 and DCI1_1 or the total number of SPS releases indicated by DCI 1_0 until the current PDCCH detection occasion, the value of T-DAI of all serving cells on the same PDCCH detection occasion is the same, The T-DAI is updated with the PDCCH detection occasion index. Therefore, at the first PDCCH detection occasion as shown in FIG. 4 , the value of T-DAI is 3.
  • the second embodiment can be implemented in the following manner a or manner b.
  • PDSCH 4 and 5 are a group.
  • PDSCH 6, 7, 8 are a group;
  • PDSCH 11 is a group;
  • PDSCH 14, 15 are a group.
  • a group represents a group of multiple PDSCHs scheduled at the same time by one PDCCH, for example, one PDCCH can schedule PDSCH 1, 2, and 3 at the same time, and the three PDSCHs are a group.
  • a single DCI can only schedule a single PDSCH transmission, a total of 15 DCIs are required to schedule 15 PDSCHs, and 15 bits of HARQ-ACK information are required.
  • 15 bits of HARQ-ACK information are required.
  • 7 bits of HARQ-ACK information is required. Among them, if the 6th bit position is missed (as shown in Figure 4), the network side device can retransmit the PDSCH 12, 13.
  • FIG. 4 shows a scenario where one PDCCH schedules multiple PDSCHs, which is also applicable to a scenario where one PDCCH schedules one PDSCH.
  • PDSCHs 1, 2, and 3 are scheduled by three PDCCHs respectively.
  • Manner b The multiple PDSCHs scheduled by one PDCCH may be divided into one or more groups.
  • serving cell 1 if one PDCCH schedules PDSCH1, 2, and 3, then PDSCH1 and PDSCH2 are One group, PDSCH 3 is a group; one PDCCH schedules PDSCH 9, then PDSCH 9 is a group; one PDCCH schedules PDSCH 12, 13, then PDSCH 12, PDSCH 13 is a group.
  • serving cell 2 In serving cell 2, suppose one PDCCH schedules PDSCH 4, 5, then PDSCH 4, PDSCH 5 are a group; in serving cell 3, suppose one PDCCH schedules PDSCH 6, 7, 8, then PDSCH 6, PDSCH 7 is a group, PDSCH 8 is a group; a PDCCH schedules PDSCH 10, 11, then PDSCH 10, PDSCH 11 is a group; a PDCCH schedules PDSCH 14, 15, 16, 17, then PDSCH 14, 15 is a group; PDSCH 16, 17 is a group One group.
  • the PDCCH in serving cell 1 schedules two groups of PDSCHs, namely PDSCH1, 2 and PDSCH3, so the C-DAI of serving cell 1 is 1 (starting from 1, a total of two counts).
  • the PDCCH in serving cell 2 schedules one group of PDSCHs, namely PDSCH 4 and 5. Therefore, the C-DAI of cell 2 is 1 added to the C-DAI of serving cell 1, that is, the C-DAI of serving cell 2 is 3.
  • the PDCCH in serving cell 3 schedules two groups of PDSCHs, namely PDSCH 6, 7 and PDSCH 8, so the C-DAI of serving cell 3 is the addition of 2 to the C-DAI of serving cell 2, that is, the C-DAI of serving cell 2 is 5 .
  • the number of all PDSCH groups scheduled in the current PDCCH listening occasion is considered when the T-DAI is counted, and the value is 5 for the first PDCCH monitoring occasion.
  • the PDCCH in serving cell 1 schedules a group of PDSCHs, namely PDSCH 9, so the C-DAI of serving cell 1 is increased by 1 on the previous basis, that is, the C-DAI of serving cell 1 is 6.
  • Serving cell 2 has no PDCCH monitoring opportunity.
  • the PDCCH in serving cell 3 schedules a group of PDSCHs, namely PDSCH 10, 11. Therefore, the C-DAI of serving cell 3 is 1 added to the previous C-DAI, that is, the C-DAI of serving cell 3 is 7.
  • the T-DAI of the second PDCCH listening occasion its value is 7.
  • the PDCCH in serving cell 1 schedules a group of PDSCHs, namely PDSCH 12 and 13. Therefore, the C-DAI of serving cell 1 is increased by 1 on the previous basis, that is, the C-DAI of serving cell 1 is 8.
  • Serving cell 2 has no PDCCH monitoring opportunity.
  • the PDCCH in serving cell 3 schedules two groups of PDSCHs, namely PDSCH 14, 15 and PDSCH 16, 17. Therefore, the C-DAI of serving cell 3 is 2 added to the previous C-DAI, that is, the C-DAI of serving cell 3 is 10.
  • the T-DAI of the third PDCCH listening occasion its value is 10.
  • the network side device retransmits the information of PDSCH 14 and PDSCH 15.
  • the number Q of scheduled PDSCHs included in each group may be determined in one of the following ways: protocol pre-defined values; determination based on protocol pre-defined rules; high-level configuration;
  • the terminal may determine Q according to the size of the SCS, the CCE aggregation level of the PDCCH, the MCS of the scheduled PDSCH, and the like. For example, the larger the SCS is, the more PDSCHs are included in each group; the higher the CCE level is, the fewer PDSCHs are included in each group.
  • the HARQ-ACK feedback method according to the embodiment of the present application is described in detail above with reference to FIG. 2 to FIG. 5 .
  • a HARQ-ACK feedback method according to another embodiment of the present application will be described in detail below with reference to FIG. 6 . It can be understood that the interaction between the network side device and the terminal described from the network side device is the same as the description on the terminal side in the method shown in FIG. 2 , and related descriptions are appropriately omitted to avoid repetition.
  • FIG. 6 is a schematic flowchart of an implementation of a HARQ-ACK feedback method according to an embodiment of the present application, which can be applied to a network side device. As shown in FIG. 6, the method 600 includes the following steps.
  • the network side device receives the HARQ-ACK, where the HARQ-ACK is obtained by the terminal grouping multiple PDSCHs to obtain one or more PDSCH groups; and the HARQ-ACK is fed back for each PDSCH grouping.
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group, so that the network side device receives the HARQ-ACK. Since the number of PDSCH groups is less than the number of the above-mentioned multiple PDSCHs, it is beneficial to reduce the number of HARQ-ACK bits fed back and reduce the feedback overhead.
  • the method further includes: sending a PDCCH; wherein the multiple PDSCHs are scheduled by one of the PDCCHs; or the multiple PDSCHs are scheduled by multiple of the PDCCHs, Each of the plurality of PDCCHs schedules one or more PDSCHs.
  • the indexes of Q PDSCHs included in the PDSCH grouping are consecutive; wherein, the indexes are determined according to the time sequence of the multiple PDSCHs, and Q is a positive integer.
  • the number of the multiple PDSCHs is N, and the number of the PDSCH groups is M; wherein, the number of PDSCHs included in at least (M-1) the PDSCH groups Equal, 1 ⁇ M ⁇ N, M and N are integers.
  • the number of PDSCHs included in the at least two PDSCH groups is not equal.
  • the PDSCH grouping includes Q PDSCHs, where Q is a positive integer, and Q is obtained according to at least one of the following: predefined; determined according to predefined rules; Indicated by the network side device.
  • Q is determined by the terminal according to at least one of the following: the size of the subcarrier interval SCS; the control channel element CCE aggregation level used for scheduling one or more PDCCHs of the multiple PDSCHs; The modulation and coding strategy MCS of multiple PDSCHs is described.
  • the method further includes one of the following: sending first indication information, where the first indication information is used to indicate one Q, and the one Q is applicable to each PDSCH group; sending second indication information, the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively applicable to the multiple PDSCH groups; third indication information is sent, and the third indication information is used to indicate the pre-configuration A Q within the set of , which applies to each of the PDSCH groupings.
  • each PDSCH group feeds back one of the HARQ-ACKs.
  • the HARQ-ACK corresponding to the PDSCH grouping is ACK; at least one of the PDSCH groupings is ACK;
  • the detection result of the PDSCH is NACK
  • the HARQ-ACK corresponding to the PDSCH packet is NACK.
  • the serving cells where the multiple PDSCHs are located are not configured with code block group-based CBG transmission.
  • the execution subject may be a terminal, or a control module in the terminal for executing the HARQ-ACK feedback method.
  • the terminal provided by the embodiment of the present application is described by taking the terminal performing the HARQ-ACK feedback method as an example.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application. As shown in FIG. 7 , the terminal 700 includes the following modules.
  • the grouping module 702 may be configured to group multiple PDSCHs to obtain one or more PDSCH groups.
  • the sending module 704 may be configured to feed back HARQ-ACK for each PDSCH group.
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group.
  • the number of HARQ-ACK bits to be fed back reduces the feedback overhead.
  • the multiple PDSCHs are scheduled by one physical downlink control channel PDCCH; or the multiple PDSCHs are scheduled by multiple PDCCHs, and each PDCCH in the multiple PDCCHs is scheduled One or more PDSCHs.
  • the indexes of Q PDSCHs included in the PDSCH grouping are consecutive; wherein, the indexes are determined according to the time sequence of the multiple PDSCHs, and Q is a positive integer.
  • the number of the multiple PDSCHs is N, and the number of the PDSCH groups is M; wherein, the number of PDSCHs included in at least (M-1) the PDSCH groups Equal, 1 ⁇ M ⁇ N, M and N are integers.
  • the number of PDSCHs included in the at least two PDSCH groups is not equal.
  • the PDSCH grouping includes Q PDSCHs, where Q is a positive integer, and Q is obtained according to at least one of the following: predefined; determined according to predefined rules; high-level configuration; network side device indicated.
  • the terminal 700 further includes: a determining module, which can be configured to determine Q according to at least one of the following: the size of the subcarrier interval SCS; for scheduling one or more of the multiple PDSCHs The control channel element CCE aggregation level of the PDCCH; the modulation and coding strategy MCS of the multiple PDSCHs.
  • a determining module which can be configured to determine Q according to at least one of the following: the size of the subcarrier interval SCS; for scheduling one or more of the multiple PDSCHs The control channel element CCE aggregation level of the PDCCH; the modulation and coding strategy MCS of the multiple PDSCHs.
  • Q is obtained according to the predefined rule, and the predefined rule includes a predetermined duration; the grouping module 702 can be configured to, for the multiple PDSCHs, divide the data within the predetermined duration.
  • One or more PDSCHs are grouped as one PDSCH to obtain one or more PDSCH groups.
  • the grouping module 702 may be configured to determine the start time T1 of the predetermined duration, and according to the time sequence of the multiple PDSCHs, group one or more PDSCHs within (T1+T) As a PDSCH group; wherein, the interval between the start time of the first PDSCH in the PDSCH group and the start time of the last PDSCH is less than or equal to T; or the start time of the first PDSCH in the PDSCH group The interval to the end time of the last PDSCH is less than or equal to T.
  • Q is obtained according to the indication of the network side device; the terminal 700 further includes: a receiving module, which can be used for one of the following: receiving first indication information of the network side device, the first The indication information is used to indicate one Q, and the one Q is applicable to each PDSCH group; the second indication information of the network side device is received, and the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively Applicable to multiple PDSCH groups; receiving third indication information of the network side device, where the third indication information is used to indicate one Q in the preconfigured set, and the one Q is applicable to each PDSCH group.
  • a receiving module which can be used for one of the following: receiving first indication information of the network side device, the first The indication information is used to indicate one Q, and the one Q is applicable to each PDSCH group; the second indication information of the network side device is received, and the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively Applicable to multiple PDSCH groups; receiving third indication information of the network side device
  • each PDSCH group feeds back one HARQ-ACK.
  • the HARQ-ACK corresponding to the PDSCH grouping is ACK; at least one of the PDSCH groupings is ACK;
  • the detection result of the PDSCH is NACK
  • the HARQ-ACK corresponding to the PDSCH packet is NACK.
  • the grouping module 702 can be configured to group the multiple PDSCHs by the terminal when the serving cell where the multiple PDSCHs are located is not configured with code block group-based CBG transmission to obtain one or more PDSCHs. Multiple PDSCH groupings.
  • the terminal 700 may refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the terminal 700 are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • the terminal in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in the terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the terminal in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the terminal provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • the network side device 800 includes: a receiving module 802, which can be used to receive HARQ-ACK; wherein, the HARQ-ACK is a terminal pair A plurality of PDSCHs are grouped to obtain one or more PDSCH groups; and each PDSCH group is fed back.
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group, so that the network side device receives the HARQ-ACK. Since the number of PDSCH groups is less than the number of the above-mentioned multiple PDSCHs, it is beneficial to reduce the number of HARQ-ACK bits fed back and reduce the feedback overhead.
  • the network-side device 800 further includes: a sending module, which can be used to send a PDCCH; wherein the multiple PDSCHs are scheduled by one of the PDCCHs; or the multiple PDSCHs are One or more PDSCHs are scheduled by each of the plurality of PDCCHs scheduled by the plurality of PDCCHs.
  • a sending module which can be used to send a PDCCH; wherein the multiple PDSCHs are scheduled by one of the PDCCHs; or the multiple PDSCHs are One or more PDSCHs are scheduled by each of the plurality of PDCCHs scheduled by the plurality of PDCCHs.
  • the indexes of Q PDSCHs included in the PDSCH grouping are consecutive; wherein, the indexes are determined according to the time sequence of the multiple PDSCHs, and Q is a positive integer.
  • the number of the multiple PDSCHs is N, and the number of the PDSCH groups is M; wherein, the number of PDSCHs included in at least (M-1) the PDSCH groups Equal, 1 ⁇ M ⁇ N, M and N are integers.
  • the number of PDSCHs included in the at least two PDSCH groups is not equal.
  • the PDSCH grouping includes Q PDSCHs, where Q is a positive integer, and Q is obtained according to at least one of the following: predefined; determined according to predefined rules; Indicated by the network side device.
  • Q is determined by the terminal according to at least one of the following: the size of the subcarrier interval SCS; the control channel element CCE aggregation level used for scheduling one or more PDCCHs of the multiple PDSCHs; The modulation and coding strategy MCS of multiple PDSCHs is described.
  • the network-side device 800 further includes: a sending module, which can be used for one of the following: sending first indication information, where the first indication information is used to indicate a Q, the one Q apply to each of the PDSCH groups; send second indication information, the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively applicable to the multiple PDSCH groups; send third indication information, the The third indication information is used to indicate one Q in the preconfigured set, and the one Q is applicable to each PDSCH group.
  • a sending module which can be used for one of the following: sending first indication information, where the first indication information is used to indicate a Q, the one Q apply to each of the PDSCH groups; send second indication information, the second indication information is used to indicate multiple Qs, and the multiple Qs are respectively applicable to the multiple PDSCH groups; send third indication information, the The third indication information is used to indicate one Q in the preconfigured set, and the one Q is applicable to each PDSCH group.
  • each PDSCH group feeds back one of the HARQ-ACKs.
  • the HARQ-ACK corresponding to the PDSCH grouping is ACK; at least one of the PDSCH groupings is ACK;
  • the detection result of the PDSCH is NACK
  • the HARQ-ACK corresponding to the PDSCH packet is NACK.
  • the serving cells where the multiple PDSCHs are located are not configured with code block group-based CBG transmission.
  • each unit/module and the above-mentioned other operations and/or functions in the network-side device 800 are for the purpose of implementing the method 600 , respectively. and can achieve the same or equivalent technical effects.
  • no further description is given here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned HARQ-ACK feedback method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned HARQ-ACK feedback method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010 and other components .
  • the terminal 1000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and then processes it to the processor 1010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1010.
  • the processor 1010 is configured to group multiple physical downlink shared channels PDSCH to obtain one or more PDSCH groups; the radio frequency unit 1001 is configured to feed back HARQ-ACK for each PDSCH group.
  • the terminal groups multiple PDSCHs to obtain one or more PDSCH groups, and feeds back HARQ-ACK for each PDSCH group.
  • the number of HARQ-ACK bits to be fed back reduces the feedback overhead.
  • the terminal 1000 provided in this embodiment of the present application can also implement the various processes of the above-mentioned HARQ-ACK feedback method embodiments, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the network device 1100 includes: an antenna 111 , a radio frequency device 112 , and a baseband device 113 .
  • the antenna 111 is connected to the radio frequency device 112.
  • the radio frequency device 112 receives information through the antenna 111, and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112
  • the radio frequency device 112 processes the received information and sends it out through the antenna 111 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 113 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 113 .
  • the baseband apparatus 113 includes a processor 114 and a memory 115 .
  • the baseband device 113 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 11 , one of the chips is, for example, the processor 114 , which is connected to the memory 115 to call the program in the memory 115 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 113 may further include a network interface 116 for exchanging information with the radio frequency device 112, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 115 and executable on the processor 114, and the processor 114 invokes the instructions or programs in the memory 115 to execute the modules shown in FIG. 8 .
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned HARQ-ACK feedback method embodiment is implemented, and can To achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned HARQ-ACK feedback method In order to avoid repetition, the details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-volatile memory, and the computer program product is executed by at least one processor to implement each of the foregoing HARQ-ACK feedback method embodiments process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a communication device, which is configured to perform each process of the above-mentioned HARQ-ACK feedback method embodiment, and can achieve the same technical effect. To avoid repetition, details are not described here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例提供了一种HARQ-ACK反馈方法、终端及网络侧设备,能够降低HARQ-ACK反馈开销。该方法包括:终端对多个物理下行共享信道PDSCH进行分组,得到一个或多个PDSCH分组(S202);终端针对每个PDSCH分组反馈HARQ-ACK(S204)。

Description

HARQ-ACK反馈方法、终端及网络侧设备
交叉引用
本申请要求在2020年9月30日在中国提交的申请号为202011064771.9、发明名称为“HARQ-ACK反馈方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种混合自动重传请求反馈(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)反馈方法、终端及网络侧设备。
背景技术
在5G新空口(New Radio,NR)系统中支持终端针对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行HARQ-ACK反馈。相关技术中,终端针对每个PDSCH反馈HARQ-ACK,终端需要反馈较多的HARQ-ACK比特数,增加了反馈的开销。
发明内容
本申请实施例提供一种HARQ-ACK反馈方法、终端及网络侧设备,能够降低HARQ-ACK反馈开销。
第一方面,提供了一种HARQ-ACK反馈方法,所述方法包括:终端对多个物理下行共享信道PDSCH进行分组,得到一个或多个PDSCH分组;所述终端针对每个所述PDSCH分组反馈HARQ-ACK。
第二方面,提供了一种HARQ-ACK反馈方法,所述方法包括:网络侧设备接收HARQ-ACK;其中,所述HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个所述PDSCH分组反馈的。
第三方面,提供了一种终端,包括:分组模块,用于对多个PDSCH进行分组,得到一个或多个PDSCH分组;发送模块,用于针对每个所述PDSCH分组反馈HARQ-ACK。
第四方面,提供了一种网络侧设备,包括:接收模块,用于接收HARQ-ACK;其中,所述HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个所述PDSCH分组反馈的。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
附图说明
图1是根据本申请的一个实施例的无线通信系统的框图;
图2是根据本申请的一个实施例的HARQ-ACK反馈方法的示意性流程图;
图3是根据本申请的一个实施例的多个PDSCH时域位置示意图;
图4是根据本申请的一个实施例的将一个PDCCH调度的多个PDSCH为一组的示意图;
图5是根据本申请的一个实施例的将一个PDCCH调度的多个PDSCH为一组或多组的示意图;
图6是根据本申请的另一个实施例的HARQ-ACK反馈方法的示意性流程图;
图7是根据本申请的一个实施例的终端的结构示意图;
图8是根据本申请的另一个实施例的网络侧设备的结构示意图;
图9是根据本申请的一个实施例的通信设备的结构示意图;
图10是根据本申请的一个实施例的终端的结构示意图;
图11是根据本申请的一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说 明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、 家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的混合自动重传请求反馈(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)反馈方法、终端及网络侧设备进行详细地说明。
如图2所示,本申请的一个实施例提供一种HARQ-ACK反馈方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端对多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行分组,得到一个或多个PDSCH分组。
在一个例子中,该步骤中提到的多个PDSCH可以是由一个物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度的,终端可以将这一个PDCCH调度的多个PDSCH分为一个PDSCH分组,还可以分为多个PDSCH分组。
在另一个例子中,该步骤中提到的多个PDSCH可以是由多个PDCCH调度的,这多个PDCCH中的每个PDCCH调度一个或多个PDSCH。
该例子例如,多个PDSCH的数量和多个PDCCH的数量相等,也即每个PDCCH调度一个PDSCH,终端可以将这多个PDCCH调度的多个PDSCH分为一个PDSCH分组,还可以分为多个PDSCH分组。
该例子又例如,多个PDSCH的数量小于多个PDCCH的数量,这将存在以下三种分组可能情况。可能情况一:针对这多个PDCCH,终端将每个PDCCH调度一个或多个PDSCH分为一个PDSCH分组。可能情况二:在某一个PDCCH调度多个PDSCH时,将该PDCCH调度多个PDSCH分为一个PDSCH分组或者是分为多个PDSCH分组。可能情况三:终端还可以将多个PDCCH调度多个PDSCH分为一个PDSCH分组。
该步骤中,分组后得到的每个PDSCH分组中可以包含有一个或多个PDSCH。
可选地,该步骤中终端可以根据每个分组内的PDSCH的数量Q,来对多个PDSCH进行分组。例如,Q=2;多个PDSCH的数量是5。那么,终端对这5个PDSCH进行分组,得到3个PDSCH分组,这3个PDSCH分组包含的PDSCH的数量分别是2,2,1;或者是1,2,2。可选地,上述Q的值可以是预定义的;还可以是终端根据预定义规则确定的;还可以是高层配置的;还可以是网络侧设备指示的,等等。
可选地,该步骤中终端还可以根据预定时长,来对多个PDSCH进行分组。例如,预定时长为2个符号长度;多个PDSCH的数量是5,这5个PDSCH在某一个时隙内占用的符号位置分别是:第1个PDSCH占用第3个符号;第2个PDSCH占用第4个符号;第3个PDSCH占用第6个符号;第4个PDSCH占用第9个符号;第5个PDSCH占用第10个符号。那么,终端对这5个PDSCH进行分组:首先,从第1个PDSCH的开始时刻,到第1个PDSCH的开始时刻加上上述预定时长的时刻之间,存在第1个PDSCH和第2个PDSCH,因此,第1个PDSCH和第2个PDSCH分为一组;然后,从第3个PDSCH的开始时刻,到第3个PDSCH的开始时刻加上上述预定时长的时刻之间,仅存在第3个PDSCH,因此,第3个PDSCH单独分为一组;然后,从第4个PDSCH的开始时刻,到第4个PDSCH的开始时刻加上上述预定时长的时刻之间,存在第5个PDSCH和第6个PDSCH,因此,第5个PDSCH和第6个PDSCH分为一组。可选地,上述预定时长也可以是预定义的;还可以是终端根据预定义规则确定的;还可以是高层配置的;还可以是网络侧设备指示的,等等。在一个例子中,可以以SCS120的两个时隙(slot)为基准确定预定时长,那么,SCS240下的预定时长就是4个slot的长度(每个slot的长度是SCS120的一半);SCS480下的预定时长就是8个slot的长度。
S204:终端针对每个PDSCH分组反馈HARQ-ACK。
可选地,该步骤中终端可以针对每个PDSCH分组反馈一个HARQ-ACK,该HARQ-ACK可以是肯定答应(Acknowledgment,ACK)或者否定应答(Negative-Acknowledgment,NACK)。
该步骤例如,针对S202中得到的一个或多个PDSCH分组中的任意一个PDSCH分组:在该PDSCH分组中的(一个或多个)PDSCH的检测结果均为ACK的情况下,该PDSCH分组对应的HARQ-ACK为ACK,终端即可针对该PDSCH分组反馈ACK应答;在该PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,该PDSCH分组对应的HARQ-ACK为NACK,终端即可针对该PDSCH分组反馈NACK应答。
可选地,该实施例中的PDSCH包括半静态调度(Semi-Persistent Scheduling,SPS)PDSCH释放指示,该实施例还可以扩展到其它需要HARQ-ACK反馈的方案中。
本申请实施例提供的HARQ-ACK反馈方法,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
可选地,本申请实施例提供的HARQ-ACK反馈方法可以应用在高于52.6GHz(B52.6GHz)系统中。B52.6GHz系统使用大的子载波间隔(SubCarrier Spacing,SCS),此时每个时隙(slot)的时间将会变得很短。如果一个PDCCH调度多个PDSCH,每个PDSCH的时域位置不一样且相互连续或时间间隔较小,但是频域位置以及使用的调制与编码策略(Modulation and Coding Scheme,MCS)等级一样。基于上述考虑,一个PDCCH调度的多个PDSCH经历的信道,以及信噪比(SINR)等都较为接近,那么,这多个PDSCH有大概率要么都解码正确(反馈ACK),要么都解码错误(反馈NACK),即HARQ-ACK反馈较为一致。基于上述考虑,该实施例中终端对多个PDSCH进行分组,并针对每个PDSCH分组反馈HARQ-ACK在设计上是合理的,并不会带来额外的传输开销。
前文各个实施例中提到的PDSCH分组,每个PDSCH分组可以包含Q个PDSCH,每个PDSCH分组包含的Q个PDSCH的索引连续;其中,该索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数,该例子中的Q大于等于2。
在一个例子中,上述PDSCH索引可以理解为同一个PDCCH调度的多个PDSCH中,各个PDSCH按时间先后顺序对应的局部编号。
在另一个例子中,上述PDSCH索引可以理解为多个PDCCH调度的多个PDSCH中,该多个PDSCH按时间先后顺序对应的局部编号。
可选地,前文各个实施例中提到的多个PDSCH的个数为N,对这N个PDSCH进行分组得到的PDSCH分组的个数为M;其中,情况1):至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数;或者是,情况2):至少两个所述PDSCH分组中包含的PDSCH的个数不等。
针对上述情况1),例如,M个PDSCH分组中,第一个PDSCH分组或最后一个PDSCH分组中包含的PDSCH的个数,可能与其余的(M-1)个PDSCH分组中包含的PDSCH的个数不等,第一个PDSCH分组或最后一个PDSCH分组之外的(M-1)个PDSCH分组中包含的PDSCH的个数均相等。
针对上述情况2),例如,M个PDSCH分组中,任意两个PDSCH分组内中包含的PDSCH的个数均不相等。
针对本说明书各个实施例中提到的PDSCH分组,(任意一个)PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q可以是根据如下至少之一得到;或者说,终端可以根据如下至少之一对多个PDSCH进行分组,因为分组后即可得到Q:
1)预定义的。例如,协议约定Q的取值为2。又例如,协议约定多个SCS和多个Q的对应关系,终端根据当前通信使用的SCS以及上述对应关系,得到分组使用的Q。
2)根据预定义规则确定的。例如,协议约定多个SCS和多个Q的对应 关系,终端根据当前通信使用的SCS以及上述对应关系,得到分组使用的Q。又例如,终端根据预定时长确定PDSCH分组,得到每个分组包含的Q个PDSCH。
3)高层配置的。例如,高层直接配置Q的取值为2。或者,高层配置Q的取值的集合。这样,终端可以根据网络侧设备的动态信令指示确定分组使用的Q;或者,终端可以根据预定义规则(如根据多个SCS和多个Q的对应关系)确定分组使用的Q。
4)网络侧设备指示的。例如,网络侧设备通过动态信令指示Q;或者,网络侧设备通过动态信令,从Q的取值的集合中指示出一个Q,上述Q的取值的集合可以是高层配置的。
可选地,在Q是预定义的、根据预定义规则确定的、高层配置、网络侧设备指示的的的一种或多种组合的情况下,S202之前还可以包括如下步骤:终端根据如下至少之一确定Q,或者说,终端根据如下至少之一对多个PDSCH进行分组,因为分组后即可得到Q:
1)SCS的大小。例如,协议约定/高层配置多个SCS和多个Q的对应关系,终端根据当前通信使用的SCS的大小以及上述对应关系,得到分组使用的Q。该处终端使用SCS的大小得到分组使用的Q,则可以称作是终端根据预定义规则确定Q。
2)用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元(Control Channel Element,CCE)聚合等级。例如,协议约定/高层配置多个CCE聚合等级和多个Q的对应关系,终端根据PDCCH的CCE聚合等级以及上述对应关系,得到分组使用的Q。该处终端根据PDCCH的CCE聚合等级得到分组使用的Q,则可以称作是终端根据预定义规则确定Q。
3)多个PDSCH的MCS。例如,终端将MCS相同且时域上连续的多个PDSCH分为一组。该处终端根据MCS得到分组使用的Q,则可以称作是终端根据预定义规则确定Q。
可以理解,在其他的例子中,终端还可以根据上述SCS的大小、CCE聚 合等级以及MCS的至少两者的组合来确定分组使用的Q。通常,SCS越大,每组中包含的PDSCH个数越多;CCE等级越高,每组中包含的PDSCH个数越少。
在一个例子中,Q是根据所述预定义规则得到的,所述预定义规则包括预定时长;这样,实施例200中提到的所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组包括:针对所述多个PDSCH,所述终端将所述预定时长内的一个或多个PDSCH作为一个PDSCH分组,得到一个或多个PDSCH分组。
上述提到的终端将所述预定时长T内的一个或多个PDSCH作为一个PDSCH分组包括:所述终端确定所述预定时长的开始时刻T1,根据所述多个PDSCH的时间顺序,将(T1+T)之内的一个或多个PDSCH作为一个PDSCH分组;其中,所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的开始时刻之间的间隔小于或等于T;或所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的结束时刻之间的间隔小于或等于T。
该实施例具体例如,终端可以基于一个预定时长,确定多个PDSCH的开始时刻之间;或者第一个PDSCH开始时刻与另一个PDSCH结束时刻之间的间隔不超过此预定时长,且索引连续的PDSCH作为单组对应的PDSCH。例如PDSCH n的开始时刻,与PDSCH n+1,…PDSCH n+m的开始时刻之间的间隔都不超过此预定时长,则PDSCH n,PDSCH n+1,…PDSCH n+m都对应同一组;下一组的确定从PDSCH n+m+1开始考虑。类似地,也可以基于PDSCH n的开始时刻与PDSCH n+m的结束时刻来进行确定PDSCH组的划分。该预定时长可由协议预定义,或者高层配置,或者网络侧设备动态指示。当由网络侧设备动态指示时,网络侧设备可以直接指示此预定时长的取值,也可以先由高层配置一个集合,网络侧设备动态指示其中一个作为预定时长。
在另一个例子中,Q是根据网络侧设备指示得到的;这样,实施例200中还包括如下之一:
1)终端接收网络侧设备的第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组。
2)终端接收网络侧设备的第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组。
3)终端接收网络侧设备的第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
该实施例具体例如,网络侧设备直接指示单个Q,这单个Q对应所有的分组,其中最后一组或最开始的一组包含的PDSCH的实际数目可能小于或等于Q;或者,网络侧设备直接指示多个Q,每个Q应用于一个PDSCH分组;或者,高层预配置一个Q的集合,网络侧设备动态指示应用其中某个Q,应用于每个PDSCH分组。可选地,网络侧设备可以在调度PDSCH的下行控制信息(Downlink Control Information,DCI)中指示上述内容,也可以在DCI中新增对应的指示字段,或重新解释现有的字段。
可选地,前文各个实施例中提到的所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组包括:在所述多个PDSCH所在服务小区没有配置基于码块组(Code Block Group,CBG)传输的情况下,所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组。该实施例中,当多个PDSCH所在服务小区配置了基于CBG的传输(即配置了参数PDSCH-CodeBlockGroupTransmission)时,不对PDSCH进行分组,可以按照相关技术中的一个PDSCH反馈一个HARQ-ACK的方案执行。
为详细说明本申请实施例提供的HARQ-ACK反馈方法,以下将结合几个具体的实施例进行说明。
实施例一
该实施例中,终端(UE)配置的是半静态码本,半静态码本指的是HARQ-ACK码本大小不随实际的数据调度情况动态改变的一种HARQ-ACK码本生成方式。在此方式下,HARQ-ACK的码本大小根据协议预定义或无线资源控制(Radio Resource Control,RRC)配置的参数来确定。其码本的生 成主要取决于:1,k1的集合;2,PDSCH-TimeDomainResourceAllocation提供的行索引集合;3,高层的上下行配置参数;4,RRC配置的小区个数;5,HARQ空间绑定参数;6,CBG参数以及各小区支持的最大码字数。
该实施例中,UE可以根据如下参数去进行码本构建:1,k1的集合;2,PDSCH-TimeDomainResourceAllocation提供的行索引集合;3,高层的上下行配置参数;4,RRC配置的小区个数;5,HARQ空间绑定参数;6,CBG参数以及各小区支持的最大码字数。
该实施例可以做出如下假设:1、UE仅支持1个时隙内最多只接收单个PDSCH;2、UE没有被配置基于CBG的PDSCH传输,即没有为UE配置参数PDSCH-CodeBlockGroupTransmission;3、只发送单个码字。
如图3所示,该实施例中RRC配置的k1的可能取值为{3,4,5,6,7,8},时隙n+1,n+2…n+6的帧结构都是配置的全部发送下行。按照现有协议方案,针对时隙n+1,n+2…n+6这6个PDSCH接收机会,服务小区1需要在时隙9的位置反馈6bits HARQ-ACK信息,服务小区2需要在时隙9的位置反馈6bits HARQ-ACK信息,即总共12bits HARQ-ACK信息。
按照本申请实施例提供的HARQ-ACK反馈方法,首先设置每个服务小区的分组规则,比如此处假设服务小区1的Q=2,即每个PDSCH分组包括2个PDSCH,则服务小区1中k1=8,k1=7为一组;k1=6,k1=5为一组;k1=4,k1=3为一组,则总共需要反馈3bits HARQ-ACK信息。服务小区2中Q=3,k1=8,k1=7,k1=6为一组;k1=5,k1=4,k1=3为一组。则总共需要反馈2bits HARQ-ACK信息。两个服务小区总共反馈5bits HARQ-ACK信息,远小于相关技术中的12bits HARQ-ACK信息。
基于上述图3所示的例子的介绍,假设每个服务小区的PDSCH接收机会有N个,并且采用统一的Q值,则此服务小区对应的HARQ-ACK比特数为M=ceiling(M/Q),ceiling()函数表示向上取整。
该实施例中,若最后一个PDSCH分组中的PDSCH的个数不够Q时,将其单独列为一组,例如,假设服务小区1中还有一个k1=9(由于服务小区 1的Q=2),则将其单独列为一组;假设服务小区2中也有一个k1=9(由于服务小区2的Q=3),则将其单独列为一组。
该实施例中,对于时域位置n+9对应的PDSCH接收时机集合(即时隙n+1,n+2…n+6这6个),服务小区的码本M A,C的确定方式如下步骤所示:
步骤1:确定每个服务小区的PDSCH接收机会集合。
该步骤可以基于协议流程,先遍历k1,对于每个符合要求的k1,再判断RRC为服务小区c配置的PDSCH-TDRA与RRC配置的上下行参数(tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationCommon2或tdd-UL-DL-Configcondicated)中被配置为Uplink的时隙或者符合是否冲突,如有冲突,则不计入候选PDSCH接收集合。
步骤2:基于Q,将多个PDSCH接收机集合进行分组。
首先对于服务小区1,基于其Q值,即Q=2,将PDSCH接收机集合进行分组。即小区1的M A,C,M A,C,1={1,2,3}。其中1代表小区1的k1=3,k1=4;2代表小区1的k1=5,k1=6;3代表小区1的k1=7,k1=8。若尾部不够Q时(假设这里还有一个k1=9),则单独分为一组。
然后对于服务小区2,基于其Q值,即Q=3,将PDSCH接收机集合进行分组。即小区2的M A,C,M A,C,2={1,2}。其中1代表小区2的k1=3,k1=4,k1=5;2代表小区2的k1=6,k1=7,k1=8。若尾部不够Q时(假设这里还有一个k1=9),则单独分为一组。
该实施例中,一旦某个HARQ-ACK比特的取值为NACK,则当网络侧设备确定此HARQ-ACK比特对应的PDSCH分组存在一个或多个对应的实际PDSCH传输时,认为这一个或多个实际PDSCH传输的HARQ-ACK反馈都为NACK,可以根据需要调度针对其中一个或多个PDSCH对应的重传。
其中,每组内包含的调度的PDSCH的个数Q可由如下某种方式确定:协议预定义取值;基于协议预定义规则确定;高层配置;网络动态指示,具体可以参见前文实施例介绍。
具体地,终端可以根据SCS的大小,PDCCH的CCE聚合等级,调度的 PDSCH的MCS等去确定Q。比如:SCS越大,每组中包含的PDSCH个数越多;CCE等级越高,每组中包含的PDSCH个数越少。
实施例二
该实施例中,终端(UE)配置的是动态码本。动态码本指的是HARQ-ACK码本大小会随着实际的数据调度情况动态改变的码本生成方式。通过对实际调度的PDSCH传输/SPS PDSCH释放指示进行DAI计数的方式,为每个实际使用的下行分配指示(Downlink AssignmentIndex,DAI)值都预留了反馈比特,如果UE通过检测到的其它DAI推测出有些DAI对应的PDSCH或SPS PDSCH释放指示并未收到,则将对应的反馈比特设置为NACK,否则按照各PDSCH分配指示对应的PDSCH传输的解码结果,设置其对应的反馈比特,对于检测到的SPS PDSCH释放指示,将其对应的反馈比特设置为ACK。
该实施例中,调度PDSCH的DCI中包含DAI信息,UE可以根据DAI信息确定HARQ-ACK比特数及比特顺序,即每个PDSCH与HARQ-ACK信息比特的对应关系。
该实施例中,两个比较重要的参数是累计DAI(Counter DAI,C-DAI)C-DAI,以及总DAI(Total DAI,T-DAI)。该实施例假设多个调度的PDSCH为一组:其中,C-DAI的统计顺序为,先按服务小区索引升序,再按PDCCH检测时机开始时刻升序。
如图4所示,在本示例中,有三个服务小区,编号分别为1,2和3,对于某一个PDCCH检测时机,先对服务小区1下发的DCI进行C-DAI编号,然后再分别对服务小区2和服务小区3下发的DCI进行C-DAI编号;因此对于第一个PDCCH检测时机,服务小区1的C-DAI编号为1,服务小区2的C-DAI编号为2,服务小区3的C-DAI编号为3。而T-DAI代表到当前PDCCH检测时机为止由DCI 1_0以及DCI1_1调度的PDSCH接收或者由DCI 1_0指示的SPS释放的总个数,相同PDCCH检测时机上的所有服务小区的T-DAI的值一样,T-DAI随着PDCCH检测时机索引更新。因此,在如图4中的第一个PDCCH检测时机,T-DAI的值为3。
该实施例二可以分以下方式a或方式b两种方式来实现。
方式a):调度的多个PDSCH归为一组,该多个PDSCH可以基于一个PDCCH的调度,也可以是一个PDCCH调度一个PDSCH。
如图4所示,服务小区1中,PDSCH1,2,3为一组;PDSCH 9,10为一组;PDSCH 12,13为一组。服务小区2中,PDSCH 4,5为一组。服务小区3中,PDSCH 6,7,8为一组;PDSCH 11为一组;PDSCH 14,15为一组。其中,所述为一组代表一个PDCCH同时调度的多个PDSCH为一组,如:一个PDCCH可同时调度PDSCH1,2,3,且这三个PDSCH为一组。
如果按照现有协议,单个DCI只能调度单个PDSCH传输,则需要总共15个DCI去调度15个PDSCH,且需要15个bits HARQ-ACK信息。而按照本申请实施例提供的方法,只需要7bits HARQ-ACK信息。其中,如果在第6bit位置漏检了(如图4所示),则网络侧设备可以重传PDSCH 12,13。
需要说明的是,图4所示为1个PDCCH调度多个PDSCH的场景,其同时也适用于1个PDCCH调度1个PDSCH的场景,例如,PDSCH1,2,3分别由3个PDCCH调度。
方式b):一个PDCCH调度的多个PDSCH可以划分为一组或多组。
该实施方式假设每组中被调度的PDSCH个数为Q,单个DCI调度N个PDSCH,则此DCI调度的PDSCH将划分为M=ceiling(N/Q)个组,前(M-1)个组分别包含相邻的Q个PDSCH,最后一个组包含N-(M-1)*Q个PDSCH。
如图5所示,假设三个服务小区中每组中被调度的PDSCH个数都为2,即Q=2,服务小区1中,假设一个PDCCH调度PDSCH1,2,3,则PDSCH1,PDSCH2为一组,PDSCH 3为一组;一个PDCCH调度PDSCH 9,则PDSCH 9为一组;一个PDCCH调度PDSCH 12,13,则PDSCH 12,PDSCH 13为一组。服务小区2中,假设一个PDCCH调度PDSCH 4,5,则PDSCH 4,PDSCH 5为一组;服务小区3中,假设一个PDCCH调度PDSCH 6,7,8,则PDSCH 6,PDSCH 7为一组,PDSCH 8为一组;一个PDCCH调度PDSCH 10,11,则PDSCH 10,PDSCH 11为一组;一个PDCCH调度PDSCH 14,15,16,17,则 PDSCH 14,15为一组;PDSCH 16,17为一组。
对于第一个PDCCH监听时机,服务小区1中PDCCH调度两组PDSCH,即PDSCH1,2以及PDSCH3,因此服务小区1的C-DAI为1(从1开始,共两个计数)。服务小区2中PDCCH调度1组PDSCH,即PDSCH 4,5,因此小区2的C-DAI为在服务小区1的C-DAI上加1,即服务小区2的C-DAI为3。服务小区3中PDCCH调度两组PDSCH,即PDSCH 6,7以及PDSCH 8,因此服务小区3的C-DAI为在服务小区2的C-DAI上加2,即服务小区2的C-DAI为5。T-DAI计数时考虑当前PDCCH监听时机内调度的所有PDSCH组的数目,对于第一个PDCCH监听时机,其值为5。
对于第二个PDCCH监听时机,服务小区1中PDCCH调度一组PDSCH,即PDSCH 9,因此服务小区1的C-DAI为在之前的基础上加1,即服务小区1的C-DAI为6。服务小区2没有PDCCH监听时机。服务小区3中PDCCH调度一组PDSCH,即PDSCH 10,11,因此,服务小区3的C-DAI为在之前的C-DAI上加1,即服务小区3的C-DAI为7。对于第二个PDCCH监听时机的T-DAI,其值为7。
对于第三个PDCCH监听时机,服务小区1中PDCCH调度一组PDSCH,即PDSCH12,13,因此,服务小区1的C-DAI为在之前的基础上加1,即服务小区1的C-DAI为8。服务小区2没有PDCCH监听时机。服务小区3中PDCCH调度两组PDSCH,即PDSCH14,15以及PDSCH16,17,因此,服务小区3的C-DAI为在之前的C-DAI上加2,即服务小区3的C-DAI为10。对于第三个PDCCH监听时机的T-DAI,其值为10。
按照本申请实施例提供的HARQ-ACK反馈方法,只需要10bits HARQ-ACK信息。其中,如果在第9bit位置漏检了,则网络侧设备重传PDSCH 14,PDSCH 15的信息。
其中,每组内包含的调度的PDSCH的个数Q可由如下某种方式确定:协议预定义取值;基于协议预定义规则确定;高层配置;网络动态指示,具体可以参见前文实施例介绍。
具体地,终端可以根据SCS的大小,PDCCH的CCE聚合等级,调度的PDSCH的MCS等去确定Q。比如:SCS越大,每组中包含的PDSCH个数越多;CCE等级越高,每组中包含的PDSCH个数越少。
以上结合图2至图5详细描述了根据本申请实施例的HARQ-ACK反馈方法。下面将结合图6详细描述根据本申请另一实施例的HARQ-ACK反馈方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2所示的方法中的终端侧的描述相同,为避免重复,适当省略相关描述。
图6是本申请实施例的HARQ-ACK反馈方法实现流程示意图,可以应用在网络侧设备。如图6所示,该方法600包括如下步骤。
S602:网络侧设备接收HARQ-ACK,该HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个PDSCH分组反馈的。
在本申请实施例中,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,这样,网络侧设备接收HARQ-ACK。由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
可选地,作为一个实施例,所述方法还包括:发送PDCCH;其中,所述多个PDSCH是由一个所述PDCCH调度的;或所述多个PDSCH是由多个所述PDCCH调度的,多个所述PDCCH中的每个PDCCH调度一个或多个PDSCH。
可选地,作为一个实施例,所述PDSCH分组包含的Q个PDSCH的索引连续;其中,所述索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数。
可选地,作为一个实施例,所述多个PDSCH的个数为N,所述PDSCH分组的个数为M;其中,至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数。
可选地,作为一个实施例,至少两个所述PDSCH分组中包含的PDSCH 的个数不等。
可选地,作为一个实施例,所述PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q是根据如下至少之一得到:预定义的;根据预定义规则确定的;高层配置的;所述网络侧设备指示的。
可选地,作为一个实施例,Q是终端根据如下至少之一确定的:子载波间隔SCS的大小;用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元CCE聚合等级;所述多个PDSCH的调制与编码策略MCS。
可选地,作为一个实施例,所述方法还包括如下之一:发送第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组;发送第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组;发送第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
可选地,作为一个实施例,每个所述PDSCH分组反馈一个所述HARQ-ACK。
可选地,作为一个实施例,在所述PDSCH分组中的PDSCH的检测结果均为ACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为ACK;在所述PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为NACK。
可选地,作为一个实施例,所述多个PDSCH所在服务小区没有配置基于码块组CBG传输。
需要说明的是,本申请实施例提供的HARQ-ACK反馈方法,执行主体可以为终端,或者,该终端中的用于执行HARQ-ACK反馈方法的控制模块。本申请实施例中以终端执行HARQ-ACK反馈方法为例,说明本申请实施例提供的终端。
图7是根据本申请实施例的终端的结构示意图,如图7所示,终端700包括如下模块。
分组模块702,可以用于对多个PDSCH进行分组,得到一个或多个PDSCH分组。
发送模块704,可以用于针对每个所述PDSCH分组反馈HARQ-ACK。
在本申请实施例中,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
可选地,作为一个实施例,所述多个PDSCH是由一个物理下行控制信道PDCCH调度的;或所述多个PDSCH是由多个PDCCH调度的,所述多个PDCCH中的每个PDCCH调度一个或多个PDSCH。
可选地,作为一个实施例,所述PDSCH分组包含的Q个PDSCH的索引连续;其中,所述索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数。
可选地,作为一个实施例,所述多个PDSCH的个数为N,所述PDSCH分组的个数为M;其中,至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数。
可选地,作为一个实施例,至少两个所述PDSCH分组中包含的PDSCH的个数不等。
可选地,作为一个实施例,所述PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q是根据如下至少之一得到:预定义的;根据预定义规则确定的;高层配置的;网络侧设备指示的。
可选地,作为一个实施例,所述终端700还包括:确定模块,可以用于根据如下至少之一确定Q:子载波间隔SCS的大小;用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元CCE聚合等级;所述多个PDSCH的调制与编码策略MCS。
可选地,作为一个实施例,Q是根据所述预定义规则得到的,所述预定义规则包括预定时长;分组模块702,可以用于针对所述多个PDSCH,将所 述预定时长内的一个或多个PDSCH作为一个PDSCH分组,得到一个或多个PDSCH分组。
可选地,作为一个实施例,分组模块702,可以用于确定所述预定时长的开始时刻T1,根据所述多个PDSCH的时间顺序,将(T1+T)之内的一个或多个PDSCH作为一个PDSCH分组;其中,所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的开始时刻之间的间隔小于或等于T;或所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的结束时刻之间的间隔小于或等于T。
可选地,作为一个实施例,Q是根据网络侧设备指示得到的;所述终端700还包括:接收模块,可以用于如下之一:接收网络侧设备的第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组;接收网络侧设备的第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组;接收网络侧设备的第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
可选地,作为一个实施例,每个所述PDSCH分组反馈一个HARQ-ACK。
可选地,作为一个实施例,在所述PDSCH分组中的PDSCH的检测结果均为ACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为ACK;在所述PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为NACK。
可选地,作为一个实施例,分组模块702,可以用于在所述多个PDSCH所在服务小区没有配置基于码块组CBG传输的情况下,所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组。
根据本申请实施例的终端700可以参照对应本申请实施例的方法200的流程,并且,该终端700中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的终端可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的终端可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的终端能够实现图2至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8是根据本申请实施例的网络侧设备的结构示意图,如图8所示,网络侧设备800包括:接收模块802,可以用于接收HARQ-ACK;其中,所述HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个所述PDSCH分组反馈的。
在本申请实施例中,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,这样,网络侧设备接收HARQ-ACK。由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
可选地,作为一个实施例,所述网络侧设备800还包括:发送模块,可以用于发送PDCCH;其中,所述多个PDSCH是由一个所述PDCCH调度的;或所述多个PDSCH是由多个所述PDCCH调度的,多个所述PDCCH中的每个PDCCH调度一个或多个PDSCH。
可选地,作为一个实施例,所述PDSCH分组包含的Q个PDSCH的索引连续;其中,所述索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数。
可选地,作为一个实施例,所述多个PDSCH的个数为N,所述PDSCH 分组的个数为M;其中,至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数。
可选地,作为一个实施例,至少两个所述PDSCH分组中包含的PDSCH的个数不等。
可选地,作为一个实施例,所述PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q是根据如下至少之一得到:预定义的;根据预定义规则确定的;高层配置的;所述网络侧设备指示的。
可选地,作为一个实施例,Q是终端根据如下至少之一确定的:子载波间隔SCS的大小;用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元CCE聚合等级;所述多个PDSCH的调制与编码策略MCS。
可选地,作为一个实施例,所述网络侧设备800还包括:发送模块,可以用于如下之一:发送第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组;发送第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组;发送第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
可选地,作为一个实施例,每个所述PDSCH分组反馈一个所述HARQ-ACK。
可选地,作为一个实施例,在所述PDSCH分组中的PDSCH的检测结果均为ACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为ACK;在所述PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为NACK。
可选地,作为一个实施例,所述多个PDSCH所在服务小区没有配置基于码块组CBG传输。
根据本申请实施例的网络侧设备800可以参照对应本申请实施例的方法600的流程,并且,该网络侧设备800中的各个单元/模块和上述其他操作和/或功能分别为了实现方法600中的相应流程,并且能够达到相同或等同的技 术效果,为了简洁,在此不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后, 给处理器1010处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于对多个物理下行共享信道PDSCH进行分组,得到一个或多个PDSCH分组;射频单元1001,用于针对每个所述PDSCH分组反馈HARQ-ACK。
在本申请实施例中,终端对多个PDSCH进行分组得到一个或多个PDSCH分组,并针对每个PDSCH分组反馈HARQ-ACK,由于PDSCH分组的数量少于上述多个PDSCH的数量,有利于降低反馈的HARQ-ACK比特数,减少反馈的开销。
本申请实施例提供的终端1000还可以实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络设备1100包括:天线111、射频装置112、基带装置113。天线111与射频装 置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
上述频带处理装置可以位于基带装置113中,以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括处理器114和存储器115。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器114,与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置113还可以包括网络接口116,用于与射频装置112交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免 重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,被配置成用于执行上述HARQ-ACK反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种混合自动重传请求反馈信息HARQ-ACK反馈方法,所述方法包括:
    终端对多个物理下行共享信道PDSCH进行分组,得到一个或多个PDSCH分组;
    所述终端针对每个所述PDSCH分组反馈HARQ-ACK。
  2. 根据权利要求1所述的方法,其中,
    所述多个PDSCH是由一个物理下行控制信道PDCCH调度的;或
    所述多个PDSCH是由多个PDCCH调度的,所述多个PDCCH中的每个PDCCH调度一个或多个PDSCH。
  3. 根据权利要求2所述的方法,其中,所述PDSCH分组包含的Q个PDSCH的索引连续;其中,所述索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数。
  4. 根据权利要求1所述的方法,其中,所述多个PDSCH的个数为N,所述PDSCH分组的个数为M;其中,至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数。
  5. 根据权利要求1所述的方法,其中,至少两个所述PDSCH分组中包含的PDSCH的个数不等。
  6. 根据权利要求1至5任一项所述的方法,其中,所述PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q是根据如下至少之一得到:
    预定义的;
    根据预定义规则确定的;
    高层配置的;
    网络侧设备指示的。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:所述终端根据如下至少之一确定Q:
    子载波间隔SCS的大小;
    用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元CCE聚合等级;
    所述多个PDSCH的调制与编码策略MCS。
  8. 根据权利要求6所述的方法,其中,Q是根据所述预定义规则得到的,所述预定义规则包括预定时长;
    所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组包括:
    针对所述多个PDSCH,所述终端将所述预定时长内的一个或多个PDSCH作为一个PDSCH分组,得到一个或多个PDSCH分组。
  9. 根据权利要求8所述的方法,其中,所述终端将所述预定时长T内的一个或多个PDSCH作为一个PDSCH分组包括:
    所述终端确定所述预定时长的开始时刻T1,根据所述多个PDSCH的时间顺序,将(T1+T)之内的一个或多个PDSCH作为一个PDSCH分组;
    其中,所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的开始时刻之间的间隔小于或等于T;或所述PDSCH分组内的第一个PDSCH的开始时刻与最后一个PDSCH的结束时刻之间的间隔小于或等于T。
  10. 根据权利要求6所述的方法,其中,Q是根据网络侧设备指示得到的;其中,所述方法还包括如下之一:
    所述终端接收网络侧设备的第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组;
    所述终端接收网络侧设备的第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组;
    所述终端接收网络侧设备的第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
  11. 根据权利要求1所述的方法,其中,每个所述PDSCH分组反馈一个HARQ-ACK。
  12. 根据权利要求11所述的方法,其中,
    在所述PDSCH分组中的PDSCH的检测结果均为ACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为ACK;
    在所述PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为NACK。
  13. 根据权利要求1所述的方法,其中,所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组包括:
    在所述多个PDSCH所在服务小区没有配置基于码块组CBG传输的情况下,所述终端对多个PDSCH进行分组,得到一个或多个PDSCH分组。
  14. 一种HARQ-ACK反馈方法,所述方法包括:
    网络侧设备接收HARQ-ACK;
    其中,所述HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个所述PDSCH分组反馈的。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:发送PDCCH;
    其中,所述多个PDSCH是由一个所述PDCCH调度的;或
    所述多个PDSCH是由多个所述PDCCH调度的,多个所述PDCCH中的每个PDCCH调度一个或多个PDSCH。
  16. 根据权利要求15所述的方法,其中,所述PDSCH分组包含的Q个PDSCH的索引连续;其中,所述索引是根据所述多个PDSCH的时间顺序确定的,Q是正整数。
  17. 根据权利要求14所述的方法,其中,所述多个PDSCH的个数为N,所述PDSCH分组的个数为M;其中,至少(M-1)个所述PDSCH分组中包含的PDSCH的个数相等,1≤M≤N,M和N为整数。
  18. 根据权利要求14所述的方法,其中,至少两个所述PDSCH分组中包含的PDSCH的个数不等。
  19. 根据权利要求14至18任一项所述的方法,其中,所述PDSCH分组包含Q个PDSCH,其中,Q是正整数,Q是根据如下至少之一得到:
    预定义的;
    根据预定义规则确定的;
    高层配置的;
    所述网络侧设备指示的。
  20. 根据权利要求19所述的方法,其中,Q是终端根据如下至少之一确定的:
    子载波间隔SCS的大小;
    用于调度所述多个PDSCH的一个或多个PDCCH的控制信道单元CCE聚合等级;
    所述多个PDSCH的调制与编码策略MCS。
  21. 根据权利要求19所述的方法,其中,所述方法还包括如下之一:
    发送第一指示信息,所述第一指示信息用于指示一个Q,所述一个Q适用于每个所述PDSCH分组;
    发送第二指示信息,所述第二指示信息用于指示多个Q,所述多个Q分别适用于多个所述PDSCH分组;
    发送第三指示信息,所述第三指示信息用于指示预配置的集合内的一个Q,所述一个Q适用于每个所述PDSCH分组。
  22. 根据权利要求14所述的方法,其中,每个所述PDSCH分组反馈一个所述HARQ-ACK。
  23. 根据权利要求22所述的方法,其中,
    在所述PDSCH分组中的PDSCH的检测结果均为ACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为ACK;
    在所述PDSCH分组中的至少一个PDSCH的检测结果为NACK的情况下,所述PDSCH分组对应的所述HARQ-ACK为NACK。
  24. 根据权利要求14所述的方法,其中,所述多个PDSCH所在服务小区没有配置基于码块组CBG传输。
  25. 一种终端,包括:
    分组模块,用于对多个PDSCH进行分组,得到一个或多个PDSCH分组;
    发送模块,用于针对每个所述PDSCH分组反馈HARQ-ACK。
  26. 一种网络侧设备,包括:
    接收模块,用于接收HARQ-ACK;
    其中,所述HARQ-ACK是终端对多个PDSCH进行分组,得到一个或多个PDSCH分组;并针对每个所述PDSCH分组反馈的。
  27. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的HARQ-ACK反馈方法。
  28. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求14至24任一项所述的HARQ-ACK反馈方法。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的HARQ-ACK反馈方法,或者实现如权利要求14至24任一项所述的HARQ-ACK反馈方法。
  30. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至13任一项所述的HARQ-ACK反馈方法,或者实现如权利要求14至24任一项所述的HARQ-ACK反馈方法。
  31. 一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至13任一项所述的HARQ-ACK反馈方法,或者实现如权利要求14至24任一项所述的HARQ-ACK反馈方法。
  32. 一种通信设备,被配置成用于执行如权利要求1至13任一项所述的HARQ-ACK反馈方法,或者实现如权利要求14至24任一项所述的HARQ-ACK反馈方法。
PCT/CN2021/120877 2020-09-30 2021-09-27 Harq-ack反馈方法、终端及网络侧设备 WO2022068762A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023519972A JP2023543882A (ja) 2020-09-30 2021-09-27 Harq-ackフィードバック方法、端末及びネットワーク側機器
EP21874422.5A EP4224767A4 (en) 2020-09-30 2021-09-27 HYBRID AUTOMATIC REPEAT REQUEST ACKNOWLEDGMENT (HARQ-ACK) RETURN METHOD, TERMINAL AND NETWORK SIDE DEVICE
US18/191,975 US20230261808A1 (en) 2020-09-30 2023-03-29 HARQ-ACK Feedback Method, Terminal and Network-Side Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011064771.9 2020-09-30
CN202011064771.9A CN114337954B (zh) 2020-09-30 2020-09-30 Harq-ack反馈方法、终端及网络侧设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/191,975 Continuation US20230261808A1 (en) 2020-09-30 2023-03-29 HARQ-ACK Feedback Method, Terminal and Network-Side Device

Publications (1)

Publication Number Publication Date
WO2022068762A1 true WO2022068762A1 (zh) 2022-04-07

Family

ID=80949662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120877 WO2022068762A1 (zh) 2020-09-30 2021-09-27 Harq-ack反馈方法、终端及网络侧设备

Country Status (5)

Country Link
US (1) US20230261808A1 (zh)
EP (1) EP4224767A4 (zh)
JP (1) JP2023543882A (zh)
CN (1) CN114337954B (zh)
WO (1) WO2022068762A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207109A1 (en) * 2011-02-14 2012-08-16 Nokia Siemens Networks Oy Multiplexing of ACK/NACK and channel state information on uplink control channel
CN109802764A (zh) * 2017-11-17 2019-05-24 中国移动通信有限公司研究院 一种ack/nack上报方法及装置、设备、存储介质
CN110535569A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
CN111106903A (zh) * 2018-10-26 2020-05-05 电信科学技术研究院有限公司 混合自动重传的反馈方法、接收方法、终端及网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842477B (zh) * 2017-11-29 2022-08-02 中兴通讯股份有限公司 信息解码、码本处理方法及装置、存储介质、处理器
CN110086583B (zh) * 2018-01-26 2021-05-07 电信科学技术研究院有限公司 一种dai的指示方法、用户终端和网络侧设备
US10912071B2 (en) * 2018-02-16 2021-02-02 Apple Inc. Reliability mechanisms for physical downlink control channel (PDCCH) transmissions in new radio (NR) systems
CN113194544B (zh) * 2018-05-10 2023-10-31 北京三星通信技术研究有限公司 传输上行控制信息的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207109A1 (en) * 2011-02-14 2012-08-16 Nokia Siemens Networks Oy Multiplexing of ACK/NACK and channel state information on uplink control channel
CN109802764A (zh) * 2017-11-17 2019-05-24 中国移动通信有限公司研究院 一种ack/nack上报方法及装置、设备、存储介质
CN111106903A (zh) * 2018-10-26 2020-05-05 电信科学技术研究院有限公司 混合自动重传的反馈方法、接收方法、终端及网络设备
CN110535569A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Feature lead summary of HARQ enhancements for NR-U", 3GPP DRAFT; R1-1907652 FEATURE LEAD SUMMARY FOR 7.2.2.2.3 NRU HARQ RAN97V3, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, USA, pages 1 - 22, XP051739941 *
MEDIATEK INC: "Enhancements to HARQ for NR-U operation", 3GPP DRAFT; R1-1904484_ENHANCEMENTS TO HARQ FOR NR-U OPERATION_FINAL, vol. RAN WG1, 30 March 2019 (2019-03-30), Xian, China, pages 1 - 12, XP051691543 *
See also references of EP4224767A4 *

Also Published As

Publication number Publication date
US20230261808A1 (en) 2023-08-17
JP2023543882A (ja) 2023-10-18
CN114337954B (zh) 2023-10-27
CN114337954A (zh) 2022-04-12
EP4224767A4 (en) 2024-03-13
EP4224767A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
KR102508791B1 (ko) 통신 방법 및 디바이스
US20230224938A1 (en) Method and device for allocating uplink control channels
US10271316B2 (en) User equipments, base stations and methods
US20220039074A1 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
US20190215104A1 (en) System and Method for Reliable Transmission over Network Resources
CN105743619B (zh) 混合自动重传请求(harq)传输的方法和设备
KR102210769B1 (ko) 다중 전송 시간 인터벌들을 통한 스케줄링
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
US11012220B2 (en) Allocation of communication resources for control signals in the uplink
JP6720371B2 (ja) キャリアアグリゲーションベースの無線通信システムにおける通信方法(communication method in wireless communication system on basis of carrier aggregation)
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
KR101565423B1 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
US20180145799A1 (en) Method and apparatus for transmitting ack/nack signal in wireless communication system
WO2021197270A1 (zh) 信息传输方法、装置及系统
US20230139269A1 (en) Acknowledgement information reporting for multi-cell scheduling
US10986619B2 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
WO2022012433A1 (zh) Harq-ack的反馈方法和设备
WO2022068762A1 (zh) Harq-ack反馈方法、终端及网络侧设备
WO2016161753A1 (zh) 上行控制信息的传输方法及装置、存储介质
WO2022237772A1 (zh) 码本构造方法、装置、通信设备、存储介质及系统
US20240080840A1 (en) Dynamic harq-ack codebook processing method and apparatus, device, and readable storage medium
WO2022213922A1 (zh) 码本确定、接收方法、装置、终端及网络侧设备
WO2022222879A1 (zh) Pdsch传输、接收方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874422

Country of ref document: EP

Effective date: 20230502