WO2022237772A1 - 码本构造方法、装置、通信设备、存储介质及系统 - Google Patents

码本构造方法、装置、通信设备、存储介质及系统 Download PDF

Info

Publication number
WO2022237772A1
WO2022237772A1 PCT/CN2022/091939 CN2022091939W WO2022237772A1 WO 2022237772 A1 WO2022237772 A1 WO 2022237772A1 CN 2022091939 W CN2022091939 W CN 2022091939W WO 2022237772 A1 WO2022237772 A1 WO 2022237772A1
Authority
WO
WIPO (PCT)
Prior art keywords
opportunities
candidate pdsch
opportunity
transmission opportunity
transmission
Prior art date
Application number
PCT/CN2022/091939
Other languages
English (en)
French (fr)
Inventor
曾超君
李�灿
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237040110A priority Critical patent/KR20230173718A/ko
Priority to JP2023569868A priority patent/JP2024518508A/ja
Priority to EP22806735.1A priority patent/EP4340245A1/en
Publication of WO2022237772A1 publication Critical patent/WO2022237772A1/zh
Priority to US18/507,474 priority patent/US20240089037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a codebook construction method, device, communication equipment, storage medium and system.
  • Multi-PDSCH scheduling means that a single downlink control information (Downlink Control Information, DCI) can Multiple PDSCH transmissions on the same carrier are scheduled at a time.
  • DCI Downlink Control Information
  • HARQ-ACK semi-static Hybrid Automatic Repeat Request-Acknowledgment
  • the embodiment of the present application provides a codebook construction method, device, communication device, storage medium and system, which can solve the problem of how to construct a semi-static HARQ-ACK codebook for a semi-static HARQ-ACK codebook supporting Multi-PDSCH scheduling .
  • a codebook construction method includes: a user equipment (User Equipment, UE) constructs a semi-static HARQ-ACK codebook; the UE sends a semi-static HARQ-ACK codebook; wherein, the UE
  • the step of constructing a semi-static HARQ-ACK codebook includes any of the following: the UE performs time-domain bundling according to the first information after determining the set of transmission opportunities, and constructs a semi-static HARQ-ACK codebook based on the time-domain bundling result; UE Construct a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table according to the second information.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • a codebook construction method includes: a network side device receives a semi-static HARQ-ACK codebook; wherein the semi-static HARQ codebook is constructed based on a time domain binding result; or , the semi-static HARQ-ACK codebook is constructed based on the second information based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union:
  • Candidate PDSCH receiver opportunity union is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in a preset order.
  • Opportunity union the second information is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static time domain configuration information, and the first target row is in the time domain resource allocation table any line in the .
  • a codebook construction device in a third aspect, includes: a construction module and a sending module.
  • the construction module is used to construct a semi-static HARQ-ACK codebook.
  • a sending module configured to send a semi-static HARQ-ACK codebook.
  • constructing the semi-static HARQ-ACK codebook specifically includes any of the following items: performing time-domain bundling according to the first information after determining the transmission opportunity set, and constructing a semi-static HARQ-ACK codebook based on the time-domain bundling result; The second information constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • a codebook construction device in a fourth aspect, includes: a receiving module. Wherein, the receiving module is used for receiving the semi-static HARQ-ACK codebook. Wherein, the semi-static HARQ codebook is constructed based on the time-domain binding result; or, the semi-static HARQ-ACK codebook is constructed based on the last time-domain resource allocation record of each row in the time-domain resource allocation table according to the second information .
  • the time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union:
  • Candidate PDSCH receiver opportunity union is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in a preset order.
  • Opportunity union the second information is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static time domain configuration information, and the first target row is in the time domain resource allocation table any line in the .
  • a UE in a fifth aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, when the program or instruction is executed by the processor. The steps of the method described in the first aspect are realized.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the The processor implements the steps of the method described in the second aspect when executed.
  • a UE including a processor and a communication interface, wherein the processor is configured to construct a semi-static HARQ-ACK codebook; and send the semi-static HARQ-ACK codebook.
  • constructing the semi-static HARQ-ACK codebook specifically includes any of the following items: performing time-domain bundling according to the first information after determining the transmission opportunity set, and constructing a semi-static HARQ-ACK codebook based on the time-domain bundling result; The second information constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • a network side device including a processor and a communication interface, wherein the processor is configured to receive a semi-static HARQ-ACK codebook; wherein the semi-static HARQ codebook is constructed based on a time-domain binding result or, the semi-static HARQ-ACK codebook is constructed based on the last time domain resource allocation record in each row in the time domain resource allocation table according to the second information.
  • the time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union:
  • Candidate PDSCH receiver opportunity union is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in a preset order.
  • Opportunity union the second information is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static time domain configuration information, and the first target row is in the time domain resource allocation table any line in the .
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first The steps of the codebook construction method described in the first aspect, or the steps of implementing the codebook construction method described in the second aspect.
  • the UE when the UE constructs the semi-static HARQ-ACK codebook, it can be based on the boundary of the transmission opportunity in the transmission opportunity set, or the transmission opportunity set
  • the corresponding candidate PDSCH receiver opportunities are combined to perform time-domain bundling, thereby realizing the construction of a semi-static HARQ-ACK codebook without first determining the bundling granularity, avoiding the influence of bundling granularity on determining transmission opportunities, and improving
  • the versatility of the codebook construction process reduces the complexity of codebook construction.
  • the UE when the UE constructs the semi-static HARQ-ACK codebook, it can use the time domain resource allocation record of any line in the time domain resource allocation table to conflict with the semi-static time domain configuration information, based on the last time domain Resource allocation records are used to construct a semi-static HARQ-ACK codebook to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, thereby avoiding the impact on HARQ transmission performance or bringing unnecessary restrictions on downlink scheduling .
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a codebook construction method provided by an embodiment of the present application.
  • FIG. 3 is one of the structural schematic diagrams of a codebook construction device provided in an embodiment of the present application.
  • FIG. 4 is the second structural schematic diagram of a codebook construction device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a communication device provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a UE provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Sub-carrier Spacing SCS
  • PDCCH Physical Downlink Control Channel
  • Multi-PDSCH scheduling and multiple Physical Uplink Shared Channel are introduced.
  • Multi-PDSCH scheduling means that a single DCI can schedule multiple PDSCH transmissions on the same carrier at one time. According to the NR protocol, these PDSCHs do not overlap with each other in the time domain.
  • a single DCI supports scheduling multiple PDSCHs. Each PDSCH is limited to a single slot and corresponds to its own transport block (Transport Block, TB). A single TB can neither perform joint rate matching across multiple PDSCHs nor occupy multiple The PDSCH is repeatedly transmitted.
  • Transport Block Transport Block
  • the UE organizes the HARQ-ACK bit sequence that needs to be reported at a certain feedback time, based on the predefined rules and the scheduling situation of the uplink and downlink PDSCH transmission of a single/multiple carriers that need to report HARQ-ACK at this feedback time, determine each The corresponding relationship between downlink PDSCH transmission and a certain bit in the organized HARQ-ACK bit sequence is called constructing a HARQ-ACK codebook (Codebook) or a HARQ-ACK codebook scheme.
  • Codebook HARQ-ACK codebook
  • the semi-static codebook is constructed from the perspective of possible PDSCH receiving opportunities, which is based on the feedback time (Timing) configuration table (that is, the K1Set configured by the upper layer) and the HARQ-ACK feedback time (that is, the uplink time slot where the semi-static codebook is transmitted) ), corresponding HARQ-ACK bits are reserved for each possible PDSCH receiving opportunity (determined based on the Time Domain Resource Assignment (TDRA) table configured by the upper layer).
  • Timing feedback time
  • HARQ-ACK feedback time that is, the uplink time slot where the semi-static codebook is transmitted
  • the UE If for a certain PDSCH receiving opportunity, the UE does not actually receive/detect the corresponding PDSCH, then set its corresponding HARQ-ACK bit to non-acknowledgement (Non-Acknowledge, NACK), otherwise set the corresponding HARQ-ACK bit based on the decoding result of this PDSCH HARQ-ACK bits.
  • NACK non-acknowledgement
  • the HARQ-ACK semi-static codebook needs to be enhanced accordingly to support the HARQ-ACK feedback corresponding to Multi-PDSCH scheduling. For example, it is necessary to ensure that each scheduled PDSCH in Multi-PDSCH scheduling There are corresponding HARQ-ACK bits in the codebook.
  • Time-domain bundling for HARQ-ACK feedback can be understood as: bundling (Bundling, generally using binary AND operation) on the decoding results of PDSCH received at different times to form a single fused decoding result to reduce feedback bits; in LTE Time Division Duplexing (Time Division Duplexing, TDD) mode HARQ-ACK feedback binding mechanism has been adopted.
  • bundling generally using binary AND operation
  • TDD Time Division Duplexing
  • a time-domain bundling mechanism including: performing time-domain bundling in the range of one or more PDSCHs scheduled by a single DCI, or combining a single DCI-scheduled One or more PDSCHs are grouped, and time domain bonding is performed within the PDSCH range corresponding to a single PDSCH group.
  • the traditional technical solution is to first determine the bundling granularity, and then bind the PDSCH determined based on the bundling granularity
  • the group (Bundling Group) is mapped to the set of transmission opportunities, and the HARQ-ACK bit sequence corresponding to the set of transmission opportunities is determined.
  • the bundling granularity adopted at this time will deeply affect the determination of transmission opportunities, resulting in certain complexity and affecting The versatility of this construction process.
  • the traditional technical solution is that if the last time-domain resource allocation record of a row conflicts with the semi-static time-domain configuration information, and this row is ignored during the construction of the semi-static codebook, then when this When there is at least one time domain resource allocation record that does not conflict with the semi-static time domain configuration information in the row, and the downlink scheduling DCI indicates this row, the PDSCH( can be actually transmitted) there is no corresponding HARQ-ACK bit in the semi-static codebook, which affects the performance of HARQ transmission (when blind retransmission is not based on HARQ-ACK feedback, it will lead to a decline in downlink transmission efficiency; When relying on subsequent other HARQ-ACK codebooks for feedback, additional HARQ-ACK feedback delays will be used.
  • the codebook supporting Multi-PDSCH scheduling when the codebook is constructed based on the last (last) time domain resource allocation record), the conflict judgment with the semi-static time domain configuration information , different processing methods are introduced to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, so as to avoid affecting the HARQ transmission performance or bringing unnecessary restrictions to the downlink scheduling.
  • FIG. 2 shows a flowchart of the method for constructing a codebook provided in the embodiment of the present application.
  • the codebook construction method provided by the embodiment of the present application may include the following steps 21 to 23 .
  • Step 21 UE constructs a semi-static HARQ-ACK codebook.
  • Step 22 the UE sends a semi-static HARQ-ACK codebook.
  • the step of the UE constructing the semi-static HARQ-ACK codebook includes any of the following: the UE performs time-domain bundling according to the first information after determining the set of transmission opportunities, and constructs a semi-static HARQ-ACK codebook based on the time-domain bundling result This; the UE constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table according to the second information.
  • the above-mentioned first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union set of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union set of candidate PDSCH receiver opportunities is that each transmission opportunity in the transmission opportunity set corresponds Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities.
  • the above second information is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static uplink symbol, and the first target line is any row in the time domain resource allocation table.
  • Step 23 the network side device receives the semi-static HARQ-ACK codebook.
  • the above-mentioned semi-static HARQ codebook is constructed based on the time-domain binding result; or, the above-mentioned semi-static HARQ-ACK codebook is based on the last time-domain resource allocation record of each row in the time-domain resource allocation table according to the second information Constructed;
  • the above time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union set;
  • Candidate PDSCH receiver opportunity union set is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in the preset order.
  • Receiver chance union is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static uplink symbol, and the first target line is any row in the time domain resource allocation table.
  • the network side device before the network side device receives the semi-static HARQ-ACK codebook, it also includes: the network side device determines the length of the HARQ-ACK bit sequence corresponding to the semi-static HARQ-ACK codebook, and the HARQ- The mapping relationship between each HARQ-ACK bit in the ACK bit sequence and candidate PDSCH receiving opportunities.
  • the method steps for UE to construct a semi-static HARQ-ACK codebook may include the following steps 201 and 202 .
  • Step 201 UE determines a set of transmission opportunities.
  • Step 202 after determining the set of transmission opportunities, the UE performs time-domain bundling according to the first information.
  • the above-mentioned first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiving opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiving opportunities is the Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities.
  • the UE after the UE determines the set of transmission opportunities, when using time-domain bundling, it can perform time-domain bundling based on the boundaries of transmission opportunities, or perform time-domain bundling based on the union of candidate PDSCH receiver opportunities. Concerns/can cross boundaries of transfer opportunities.
  • the time-domain resource allocation record may refer to a start and length indicator value (SLIV); in order to better understand the technical solutions of the embodiments of the present application, The resource allocation record in the time domain described in the following embodiments will be described in detail by taking SLIV as an example. Certainly, the time-domain resource allocation record may also be in other forms, and this application does not give too many examples.
  • SLIV start and length indicator value
  • an example form of the feedback time offset is K1, which is used to indicate the offset of the time domain position of HARQ-ACK feedback relative to the time domain position of PDSCH transmission.
  • the unit of the offset is a time unit, which can be a time slot or a sub-slot.
  • the feedback time offset mentioned later may be described by taking K1 as an example, but other representation forms of the feedback time offset are not limited thereby.
  • the transmission opportunity refers to: the transmission opportunity usually corresponds to a certain K1 or equivalent K1 (Effective K1), which can be understood as within the time unit corresponding to this K1/equivalent K1 (or within the time unit corresponding to this time unit associated) a downlink transmission opportunity that can be used independently, different transmission opportunities corresponding to this K1/equivalent K1 can be occupied independently of each other (for example, occupying one at the same time, or occupying one without occupying the other), so in the semi-static structure of the structure Corresponding HARQ-ACK bits need to be reserved for each transmission opportunity in the codebook.
  • each transmission opportunity can be further associated with one or more candidate PDSCH receiving opportunities (or Semi-Persistent Scheduling (Semi-Persistent Scheduling, SPS) PDSCH release), when a certain transmission in the semi-static codebook
  • SPS Semi-Persistent Scheduling
  • SPS Semi-Persistent Scheduling
  • Candidate PDSCH reception (Candidate PDSCH reception) or SPS PDSCH release (the description below takes the candidate PDSCH reception opportunity as an example, and can be extended to SPS PDSCH release) means: when a certain transmission opportunity is occupied, This transmission opportunity is used to transmit/receive a single PDSCH, or a single SPS PDSCH release.
  • the single PDSCH or SPS PDSCH release here can be understood as candidate PDSCH reception, and the transmission opportunity and the candidate PDSCH receiver opportunity have a one-to-one association relationship.
  • the UE On the same serving cell (Serving cell), the UE is not allowed to receive any two or more PDSCHs with overlapping time domains.
  • two or more SLIVs with overlapping time domains can be mapped to the same candidate PDSCH receiving opportunity, and the maximum number of transmission opportunities that can be independently occupied when the corresponding candidate PDSCH receiving opportunities are guaranteed not to overlap in the time domain is reserved for each K1 (transmission opportunity One-to-one correspondence with candidate PDSCH receiver opportunities).
  • each transmission opportunity can also correspond to more than one candidate PDSCH receiving opportunity, and at this time, one of the candidate PDSCH receiving opportunities (for example, the last one of a single DCI scheduling in Multi-PDSCH scheduling PDSCH, which may correspond to the last candidate PDSCH receiving opportunity) is associated with this transmission opportunity based on a preset rule, and other candidate PDSCH receiving opportunities (for example, other PDSCHs other than the last PDSCH scheduled by a single DCI in Multi-PDSCH scheduling can be Based on the scheduling sequence, corresponding to other candidate PDSCH receiver opportunities except the last candidate PDSCH receiver opportunity) follow this association relationship and also be associated with this transmission opportunity.
  • the candidate PDSCH receiving opportunities for example, the last one of a single DCI scheduling in Multi-PDSCH scheduling PDSCH, which may correspond to the last candidate PDSCH receiving opportunity
  • other candidate PDSCH receiving opportunities for example, other PDSCHs other than the last PDSCH scheduled by a single DCI in Multi-PDSCH scheduling can be Based on the scheduling sequence, corresponding to other
  • each occupied candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities corresponding to this transmission opportunity are generally occupied at the same time, and each occupied candidate PDSCH receiver opportunity corresponds to a single PDSCH scheduled by a single DCI in the Multi-PDSCH scheduling.
  • the corresponding relationship between transmission opportunities and candidate PDSCH reception opportunities in each enhanced option is:
  • Option 1 Determine the transmission opportunity subset for each K1 in the extended K1 set.
  • the transmission opportunity subset corresponding to a certain K1 you can perform corresponding operations based on the SLIV set associated with this K1.
  • the transmission opportunity is the same as Candidate PDSCH receivers may have a one-to-one association relationship.
  • K1 set is not extended; for each K1 in the K1 set, based on each SLIV configured in each row in the TDRA table, determine the subset of transmission opportunities corresponding to this K1. At this time, in order to ensure that each SLIV has a corresponding HARQ - ACK bit. In general, there may be a one-to-many relationship between transmission opportunities and candidate PDSCH reception opportunities.
  • K1 set is not extended; for each K1 in the K1 set, based on the last SLIV configured in each row in the TDRA table, determine the subset of transmission opportunities corresponding to this K1, and at this time other SLIVs in the same row are associated To the transmission opportunity associated with the last SLIV (that is, multiple PDSCHs with non-overlapping time domains are all associated with the same transmission opportunity; here SLIV corresponds to PDSCH one-to-one), in order to ensure that each SLIV has a corresponding HARQ-ACK bit , in general, there may be a one-to-many association relationship between transmission opportunities and candidate PDSCH reception opportunities.
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the above step 202 may specifically be implemented through the following step 202a.
  • Step 202a After determining the set of transmission opportunities, the UE performs time-domain bundling within the scope of the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • the UE may perform time domain bundling within the scope of the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity. That is, this implementation manner may be applicable to a scenario where a single transmission opportunity is associated with one or more candidate PDSCH reception opportunities, and may include Option 1a and Option 2 in the foregoing embodiments.
  • the candidate PDSCH receiver opportunity set corresponding to one transmission opportunity is: the candidate PDSCH reception opportunity composed of at least one candidate PDSCH receiver opportunity associated with the one transmission opportunity Opportunities gather.
  • one or more candidate PDSCH receiver opportunity sets associated with each transmission opportunity constitute a candidate PDSCH receiver opportunity set, and time-domain binding is performed on the candidate PDSCH receiver opportunity set. is determined, that is, the target operation described below is performed.
  • step 202a may be specifically implemented through the following step 202a1 or step 202a2.
  • Step 202a After determining the set of transmission opportunities, the UE performs time-domain bundling for the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • Step 202a2 After determining the set of transmission opportunities, the UE performs time-domain bundling for a subset of candidate PDSCH receiver opportunities in the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • the candidate PDSCH receiver opportunity subset corresponding to one transmission opportunity includes at least one of the following: at least one first subset and a second subset.
  • each first subset is a candidate PDSCH receiver opportunity set composed of at least one candidate PDSCH receiver opportunity associated with the one transmission opportunity, and a candidate PDSCH receiver opportunity composed of every N candidate PDSCH receiver opportunities with adjacent or continuous indexes/numbers A subset of receiver opportunities.
  • the above-mentioned second subset is a candidate PDSCH receiver opportunity subset composed of the remaining candidate PDSCH receiver opportunities at the tail when the number of remaining candidate PDSCH receiver opportunities at the tail of the candidate PDSCH receiver opportunity set is less than N, where N is a positive integer.
  • every N candidate PDSCH receivers with adjacent indexes/numbers constitute a subset of candidate PDSCH receivers, when When the number of remaining candidate PDSCH receiver opportunities at the end of the set of candidate PDSCH receiver opportunities is less than N, these remaining candidate PDSCH receiver opportunities constitute a single subset of candidate PDSCH receiver opportunities.
  • Perform time-domain bundling for each subset of candidate PDSCH receiver opportunities that is, perform the following target operations.
  • N can be specified by the protocol or configured by high-layer signaling.
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the above time domain binding result is obtained by performing time domain binding on the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity after the transmission opportunity set is determined; or, the above time domain binding result is obtained after the transmission opportunity set is determined , is obtained by performing time-domain bundling for a subset of candidate PDSCH receiver opportunities in the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the above step 202 may specifically be implemented through the following step 202b.
  • Step 202b After determining the transmission opportunity set, the UE performs time-domain bundling for each candidate PDSCH receiver opportunity associated with each transmission opportunity in each transmission opportunity set in at least one transmission opportunity set.
  • the at least one transmission opportunity group includes at least one of the following: at least one first transmission opportunity group and a second transmission opportunity group.
  • each first transmission opportunity group is a transmission opportunity group formed by every M transmission opportunities with adjacent or continuous indexes/numbers in the transmission opportunity set or transmission opportunity subset.
  • the above-mentioned second transmission opportunity group is when the number of remaining transmission opportunities at the tail of the transmission opportunity set or transmission opportunity subset is less than M, a transmission opportunity group formed by the remaining transmission opportunities at the tail; Transmission opportunity subset obtained after set division, M is a positive integer.
  • the UE may perform time-domain bundling based on the granularity of transmission opportunities (corresponding candidate PDSCH reception opportunities).
  • the UE forms a transmission opportunity group for every M transmission opportunities with adjacent indexes/numbers/consecutive numbers in the transmission opportunity set/transmission opportunity subset. When the number of remaining transmission opportunities at the end of the transmission opportunity set/transmission opportunity subset is less than M, these The remaining transmit opportunities form a single transmit opportunity group.
  • the UE performs time-domain bundling for each candidate PDSCH receiver associated with each transmission opportunity in each transmission opportunity group, that is, performs the following target operations for all candidate PDSCH receivers involved in this transmission opportunity group.
  • M can be specified by the protocol or configured by high-layer signaling.
  • this scheme does not limit the number of candidate PDSCH receiving opportunities corresponding to a single transmission opportunity, and can be applied to Option 1, Option 1a and Option 2 in the above-mentioned embodiment, wherein Option 1 is more applicable (at this time, each transmission opportunity Only a single candidate PDSCH receiver opportunity is associated).
  • the foregoing transmission opportunity subset may specifically be a transmission opportunity subset obtained by dividing a transmission opportunity set based on K1 or an equivalent K1, and of course the transmission opportunity subset may also be obtained based on other division methods,
  • the embodiment of this application is not limited.
  • the above-mentioned at least one transmission opportunity group is obtained by allowing crossing the boundary of the transmission opportunity subset, and at least one transmission opportunity group is one or more transmission opportunity groups obtained by splitting the transmission opportunity set based on M group of transport opportunities.
  • the above at least one transmission opportunity group is obtained by not allowing to cross the boundary of the transmission opportunity subset, at least one transmission opportunity group is a transmission opportunity subset in the transmission opportunity set based on One or more transmission opportunity groups obtained by M splitting.
  • the transmission opportunity group may cross the boundary of a transmission opportunity subset corresponding to a certain K1 or an equivalent K1.
  • the UE splits the transmission opportunity set corresponding to a serving cell (Serving cell) into one or more transmission opportunity groups based on M.
  • Method 2 The transmission opportunity group cannot cross the boundary of a transmission opportunity subset corresponding to a certain K1 or an equivalent K1.
  • the UE splits the transmission opportunity subset corresponding to a certain K1 or equivalent K1 in the transmission opportunity set corresponding to a certain serving cell into one or more transmission opportunity groups.
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the above time-domain bundling result is obtained by performing time-domain bundling on each candidate PDSCH receiving opportunity associated with each transmission opportunity in each transmission opportunity group in at least one transmission opportunity group after determining the transmission opportunity set.
  • the range of performing time domain bundling can be limited to The time domain bundling is performed within the range of the candidate PDSCH receiver opportunity set corresponding to a certain transmission opportunity, or based on the granularity of the transmission opportunity (the corresponding candidate PDSCH receiver opportunity set).
  • the foregoing first information is a union set of candidate PDSCH receiver opportunities corresponding to the set of transmission opportunities.
  • the above step 202 may specifically be implemented through the following step 202c.
  • Step 202c after determining the set of transmission opportunities, the UE performs time-domain bundling for all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group in at least one candidate PDSCH receiver opportunity group.
  • the at least one candidate PDSCH receiver opportunity set includes at least one of the following: at least one first candidate PDSCH receiver opportunity set and a second candidate PDSCH receiver opportunity set.
  • each first candidate PDSCH receiver opportunity group is a candidate PDSCH receiver opportunity group formed by every L candidate PDSCH receiver opportunities with adjacent or continuous indexes/numbers in the candidate PDSCH receiver opportunity union set.
  • the second candidate PDSCH receiver opportunity group is a candidate PDSCH receiver opportunity group formed by the remaining tail candidate PDSCH receiver opportunities when the number of remaining candidate PDSCH receiver opportunities in the union of candidate PDSCH receiver opportunities is less than L, where L is a positive integer.
  • the UE can perform time-domain bundling based on candidate PDSCH receiver opportunities, and does not care about/may cross the boundaries of transmission opportunities.
  • the UE can concatenate each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity set corresponding to a certain serving cell head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities, and use the candidate Every L candidate PDSCH receivers whose indexes/numbers are adjacent/continuous in the union of PDSCH receivers form a candidate PDSCH receiver group.
  • opportunities constitute a single set of candidate PDSCH receiver opportunities.
  • the UE performs time-domain bundling for all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group, that is, performs the following target operations.
  • L can be specified by the protocol or configured by high-layer signaling.
  • the foregoing first information is a union set of candidate PDSCH receiver opportunities corresponding to the set of transmission opportunities.
  • the above time-domain bundling result is obtained by performing time-domain bundling on all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group in at least one candidate PDSCH receiver opportunity group after the transmission opportunity set is determined.
  • the above-mentioned target operation is: performing time-domain bundling for at least one candidate PDSCH receiver opportunity.
  • the PDSCHs corresponding to 0, 1 or more candidate PDSCH receiving opportunities are actually transmitted, and the PDSCHs corresponding to the remaining candidate PDSCH receiving opportunities are not actually transmitted.
  • each candidate PDSCH receiver opportunity can be mapped with one or more SLIV/PDSCHs.
  • SLIV/PDSCHs At this time, as long as there is a mapped SLIV/PDSCH that actually transmits, it is considered that the PDSCH corresponding to the candidate PDSCH receiver actually transmits. Whether a certain mapped SLIV/PDSCH is actually transmitted can be determined by the UE based on the downlink scheduling DCI detection and/or the configured SPS PDSCH transmission.
  • the UE For downlink dynamic scheduling, if the UE detects that a certain SLIV in a row in the TDRA table indicated by a certain downlink scheduling DCI corresponds to the mapped SLIV/PDSCH (that is, the SLIV has the same value and is located in the same DL slot, and the corresponding HARQ-ACK is fed back in the currently constructed semi-static codebook), the UE considers that the SLIV/PDSCH has actually been transmitted; for the downlink SPS, if the UE judges a certain The SLIV corresponding to a SPS PDSCH corresponds to the mapped SLIV/PDSCH, then the UE thinks that the SLIV/PDSCH has actually been transmitted (optionally, when the UE needs to detect the skipped SPS PDSCH, if the UE thinks that the SPS PDSCH has not been skipped, Then it is considered that the SLIV/PDSCH has actually been transmitted).
  • Binding mode 1 Candidate PDSCH receivers that have not been actually transmitted will be included in the scope of time-domain bundling calculations. At this time, each candidate PDSCH receiver in the at least one candidate PDSCH receiver participates in the time-domain bundling operation; the decoding result corresponding to the candidate PDSCH receiver that has not actually transmitted can be assumed to be NACK or ACK.
  • the decoding result corresponding to the candidate PDSCH receivers that have not actually transmitted can be assumed to be ACK; when binary or When , the decoding results corresponding to the candidate PDSCH receivers that have not actually performed transmission may be assumed to be NACK.
  • Binding mode 2 Candidate PDSCH receivers that have not actually transmitted will be excluded from the scope of time-domain bundling calculations. At this time, only the candidate PDSCH receivers that have actually transmitted among the at least one candidate PDSCH receivers participate in the time-domain bundling operation.
  • the HARQ-ACK information corresponding to the decoding result is compressed/packaged into one or two HARQ-ACK bits, which are included in the HARQ-ACK codebook for transmission.
  • Time-domain bundling can be understood as: performing binary AND or binary OR on the decoding results of corresponding codewords of two or more candidate PDSCH receiving opportunities to obtain the fusion decoding result corresponding to this codeword (which can be represented by 1 bit); when When dual-codeword transmission is configured, each codeword corresponds to its own fused decoding result, and further operations can be performed based on specific binding configurations.
  • the corresponding HARQ-ACK bit in the HARQ-ACK codebook is set directly using the decoding result corresponding to the candidate PDSCH receiver. If no candidate PDSCH receivers are included in the time-domain bundling calculation range (for example, using bundling mode 2, and all candidate PDSCH receivers are not actually transmitted), the corresponding HARQ-ACK bits in the HARQ-ACK codebook can be directly Set to NACK.
  • the number of candidate PDSCH receiver opportunities associated with each transmission opportunity may be different.
  • the above-mentioned selected scheme/mode can be executed for each serving cell (the above-mentioned transmission opportunity set can be understood as targeting a certain serving cell), and then the execution output of each serving cell is divided into
  • the cascading is performed in a preset manner, for example, the cascading is performed according to the serving cell index from small to large.
  • step 202 may be specifically implemented through the following step 202d or step 202e.
  • Step 202d after determining the transmission opportunity set, for at least one candidate PDSCH receiving opportunity corresponding to the transmission opportunity set, the PDSCHs corresponding to the K candidate PDSCH receiving opportunities in the at least one candidate PDSCH receiving opportunity are actually transmitted, and the P candidate PDSCH receiving opportunities
  • the UE performs time-domain bundling for the K candidate PDSCH receiving opportunities and the P candidate PDSCH receiving opportunities.
  • the above-mentioned P candidate PDSCH receiving opportunities are candidate PDSCH receiving opportunities except K candidate PDSCH receiving opportunities in at least one candidate PDSCH receiving opportunity, where K is an integer and P is an integer.
  • the decoding results corresponding to the above P candidate PDSCH receiver opportunities are non-acknowledged NACK or ACK.
  • the decoding results corresponding to the above P candidate PDSCH receivers are ACK; in the case of using binary OR, the decoding results corresponding to the above P candidate PDSCH receivers The result is NACK.
  • Step 202e after determining the set of transmission opportunities, for at least one candidate PDSCH receiving opportunity corresponding to the set of transmission opportunities, the PDSCHs corresponding to the K candidate PDSCH receiving opportunities in the at least one candidate PDSCH receiving opportunity are actually transmitted, and the P candidate PDSCH receiving opportunities When the PDSCH corresponding to the PDSCH receiving opportunity is not actually transmitted, the UE performs time-domain bundling for the K candidate PDSCH receiving opportunities.
  • it also includes: when the UE performs time-domain bundling for K candidate PDSCH receiving opportunities, after the target HARQ-ACK information is compressed/packaged into one or more HARQ-ACK bits , is included in the HARQ-ACK codebook for transmission, and the target HARQ-ACK information is the HARQ-ACK information corresponding to the decoding result of each candidate PDSCH receiving opportunity among the K candidate PDSCH receiving opportunities.
  • it also includes: when the K candidate PDSCH receiver opportunities are one candidate PDSCH receiver opportunity, the UE uses the decoding result corresponding to one candidate PDSCH receiver opportunity to set the corresponding HARQ-ACK bit; when K is 0, the UE sets the corresponding HARQ-ACK bit in the HARQ-ACK codebook as NACK.
  • An embodiment of the present application provides a method for constructing a codebook.
  • the UE may perform: after determining the set of transmission opportunities, perform time-domain bundling according to the first information, where the first information is any of the following: the transmission opportunity in the set of transmission opportunities A union set of candidate PDSCH receiver opportunities corresponding to the boundary and the set of transmission opportunities.
  • the UE is based on the boundary of the transmission opportunity in the set of transmission opportunities, or the candidate PDSCH receiving opportunity corresponding to the set of transmission opportunities Union set, to perform time-domain binding, so as to realize the construction of semi-static HARQ-ACK codebook, without first determining the binding granularity, avoiding the impact of binding granularity on determining transmission opportunities, and improving the codebook construction process Versatility reduces the complexity of codebook construction.
  • the method steps for UE to construct a semi-static HARQ-ACK codebook may include the following steps 301 and 302 .
  • Step 301 the UE determines second information.
  • step 302 the UE constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record of each row in the time domain resource allocation table according to the second information.
  • the above second information is used to indicate whether at least one SLIV in the first target line in the time domain resource allocation table conflicts with the semi-static uplink symbol, and the first target line is any line in the time domain resource allocation table .
  • step 302 may specifically be implemented through the following step 302a, step 302b, or step 302c.
  • Step 302a if the last SLIV of the first target row conflicts with the semi-static uplink symbol, the UE determines the first target behavior: not used to determine the row of the transmission opportunity set, otherwise the UE determines the first target behavior: used to determine The row for the collection of transport opportunities.
  • Step 302b in the case that the last SLIV of the first target row conflicts or does not exist with the semi-static uplink symbol, the UE determines a first target behavior: a row for determining a set of transmission opportunities.
  • step 302c the UE determines whether the first target row is a row for determining a set of transmission opportunities based on the conflict between each SLIV of the first target row and the semi-static uplink symbol.
  • the first target line when the last SLIV of the first target line conflicts with the semi-static uplink symbol, the first target line is not used to determine the set of transmission opportunities, otherwise the first target line is used to determine the set of transmission opportunities; or, the first target line It is always used to determine the set of transmission opportunities; or, the UE determines whether the first target line is used to determine the set of transmission opportunities based on the conflict between each SLIV of the first target line and the semi-static uplink symbol.
  • step 302c may be specifically implemented through the following step 302c1 or step 302c2.
  • Step 302c1 In the case that at least one SLIV of the first target row conflicts with the semi-static uplink symbol, the UE determines a first target behavior: a row not used for determining a set of transmission opportunities.
  • Step 302c2 In the case that at least one SLIV of the first target row does not conflict with the semi-static uplink symbol, the UE determines a first target behavior: a row for determining a set of transmission opportunities.
  • the UE maps the first SLIV in the first target row to the target transmission opportunity.
  • the target transmission opportunity is a transmission opportunity corresponding to the last SLIV of the first target row
  • the first SLIV is any SLIV in the first target row that does not conflict with the semi-static uplink symbol.
  • the above-mentioned target transmission opportunity corresponds to X candidate PDSCH receiving opportunities
  • X is the maximum number of SLIVs in the second target row that do not conflict with semi-static uplink symbols
  • the second target behavior is Any row corresponding to the target transmission opportunity in the domain resource allocation table
  • X is an integer.
  • the Q SLIVs correspond to the first Q or the last Q of the X candidate PDSCH receiving opportunities one by one, and Q is in the third target row
  • the number of SLIVs that do not conflict with the semi-static uplink symbol, the third target behavior is the row corresponding to the target transmission opportunity in the time domain resource allocation table, and Q is an integer.
  • the UE can traverse each K1 in the K1 set; for a given K1, extract the last SLIV for each row, and determine the transmission opportunity corresponding to the given K1 through the split method described in the above embodiment subset, where each last SLIV group corresponds to a single transport opportunity.
  • the last SLIV of a row conflicts with the semi-static uplink symbol (that is, there is a time domain overlap)
  • the last SLIV and this row will be deleted, and will not participate in subsequent operations, that is, it has not been determined for the last SLIV/this row
  • the corresponding transmission opportunity, and the last SLIV/this line does not have a corresponding HARQ-ACK bit in the semi-static codebook.
  • the conflict between each SLIV in a certain row and the semi-static uplink symbol may be considered.
  • each SLIV in each row can be mapped to the transmission opportunity corresponding to the last SLIV in this row (that is, the transmission opportunity corresponding to the last SLIV group where the last SLIV is located ).
  • the last line in which the SLIV collides with the semi-static uplink symbol is not mapped to any transmission opportunity.
  • the subset size Q corresponding to a row is smaller than the maximum number of candidate PDSCH receiver opportunities corresponding to the corresponding transmission opportunity, it can correspond to the first Q or the last Q candidate PDSCH receiver opportunities of this transmission opportunity, that is, use the HARQ-ACK codebook HARQ-ACK bits corresponding to the Q candidate PDSCH receivers.
  • conflict handling mode 3-1 any row in which any SLIV collides with a semi-static uplink symbol is not mapped to any transmission opportunity, which is similar to the scheduling restriction of conflict handling mode 1 at this time.
  • conflict handling mode 3-2 its processing is basically the same as the above-mentioned conflict handling mode 2, and the difference is that in this mode, the number of candidate PDSCH receiving opportunities corresponding to a transmission opportunity is not 0.
  • An embodiment of the present application provides a method for constructing a codebook.
  • the UE constructs a semi-static HARQ-ACK codebook based on the last SLIV in each row in the time domain resource allocation table according to the second information, which is used to indicate the time domain resources. Whether at least one SLIV in the first target row in the allocation table conflicts with the semi-static upstream symbol.
  • the UE uses the last SLIV of each row based on the conflict between the SLIV and the semi-static uplink symbol in any row in the time domain resource allocation table.
  • a semi-static HARQ-ACK codebook is constructed to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, so as to avoid affecting HARQ transmission performance or bringing unnecessary restrictions on downlink scheduling.
  • the codebook construction method provided in the embodiment of the present application may be executed by a UE, or a codebook construction device, or a control module in the codebook construction device for executing the codebook construction method.
  • the codebook construction method provided by the embodiment of the present application is described by taking the UE executing the codebook construction method as an example.
  • Fig. 3 shows a possible structural diagram of the codebook construction apparatus involved in the embodiment of the present application.
  • the codebook constructing device 30 may include: a constructing module 31 and a sending module 32 .
  • the constructing module 31 is configured to construct a semi-static HARQ-ACK codebook.
  • the sending module 32 is configured to send the semi-static HARQ-ACK codebook.
  • constructing the semi-static HARQ-ACK codebook specifically includes any of the following items: performing time-domain bundling according to the first information after determining the transmission opportunity set, and constructing a semi-static HARQ-ACK codebook based on the time-domain bundling result;
  • the second information constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • the foregoing first information is boundaries of transmission opportunities in the transmission opportunity set.
  • the above construction module 31 is specifically configured to perform time-domain bundling within the scope of the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity after the transmission opportunity set is determined.
  • the above-mentioned construction module 31 is specifically configured to, after determining the set of transmission opportunities, perform time-domain bundling for the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity; or, after determining the set of transmission opportunities Finally, time domain bundling is performed for a subset of candidate PDSCH receiver opportunities in the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • the set of candidate PDSCH receiver opportunities corresponding to a transmission opportunity is: a set of candidate PDSCH receiver opportunities formed by at least one candidate PDSCH receiver opportunity associated with a transmission opportunity;
  • the candidate PDSCH receiver opportunity subset corresponding to a transmission opportunity includes at least one of the following: at least one first subset and a second subset; wherein, each first subset is formed by at least one candidate PDSCH receiver opportunity associated with a transmission opportunity
  • a candidate PDSCH receiver opportunity subset is formed by every N candidate PDSCH receiver opportunities whose index/number is adjacent or continuous; the second subset is the remaining candidate PDSCH receiver opportunity set at the end of the candidate PDSCH receiver opportunity set
  • N is a positive integer.
  • the foregoing first information is boundaries of transmission opportunities in the transmission opportunity set.
  • the above construction module 31 is specifically configured to perform time-domain bundling for each candidate PDSCH receiving opportunity associated with each transmission opportunity in each transmission opportunity group in at least one transmission opportunity group after the transmission opportunity set is determined.
  • the at least one transmission opportunity group includes at least one of the following: at least one first transmission opportunity group and a second transmission opportunity group; wherein, each first transmission opportunity group is a transmission opportunity set or a transmission opportunity group In the opportunity subset, a transmission opportunity group consisting of every M transmission opportunities with adjacent or continuous indexes/numbers; the second transmission opportunity group is when the number of remaining transmission opportunities at the end of the transmission opportunity set or transmission opportunity subset is less than M, the tail A transmission opportunity group formed by the remaining transmission opportunities; the transmission opportunity subset is a transmission opportunity subset obtained by dividing the transmission opportunity set based on preset rules, and M is a positive integer.
  • the above at least one transmission opportunity group is obtained by allowing crossing the boundary of the transmission opportunity subset, at least one transmission opportunity group is one or more transmission opportunity groups obtained by splitting the transmission opportunity set based on M transport opportunity group;
  • At least one transmission opportunity group is obtained without crossing the boundary of the transmission opportunity subset
  • at least one transmission opportunity group is one or more transmission opportunity groups obtained by splitting a transmission opportunity subset in the transmission opportunity set based on M group of transport opportunities.
  • the foregoing first information is a union set of candidate PDSCH receiver opportunities corresponding to the set of transmission opportunities.
  • the above construction module 31 is specifically configured to perform time-domain bundling for all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group in at least one candidate PDSCH receiver opportunity group after the transmission opportunity set is determined.
  • the at least one candidate PDSCH receiver opportunity set includes at least one of the following: at least one first candidate PDSCH receiver opportunity set and a second candidate PDSCH receiver opportunity set; wherein, each first candidate PDSCH receiver opportunity set
  • the opportunity group is a candidate PDSCH receiver opportunity group in the union of candidate PDSCH receiver opportunities, and a candidate PDSCH receiver opportunity group composed of every L candidate PDSCH receiver opportunities with adjacent or continuous indexes/numbers;
  • the second candidate PDSCH receiver opportunity group is in the union of candidate PDSCH receiver opportunities
  • L is a positive integer.
  • the above-mentioned construction module 31 is specifically configured to, after determining the transmission opportunity set, for at least one candidate PDSCH receiving opportunity corresponding to the transmission opportunity set, the K candidate PDSCH receiving opportunities in the at least one candidate PDSCH receiving opportunity When the PDSCH corresponding to the receiver is actually transmitted, and the PDSCH corresponding to the P candidate PDSCH receivers is not actually transmitted:
  • the P candidate PDSCH receiving opportunities are candidate PDSCH receiving opportunities except the K candidate PDSCH receiving opportunities in at least one candidate PDSCH receiving opportunity, K is an integer, and P is an integer.
  • the decoding results corresponding to the above P candidate PDSCH receiver opportunities are NACK or ACK.
  • the decoding results corresponding to the above P candidate PDSCH receivers are ACK; in the case of using binary OR, the decoding results corresponding to the above P candidate PDSCH receivers The result is NACK.
  • the setting module is used to set the corresponding HARQ-ACK bit in the HARQ-ACK codebook using the decoding result corresponding to one candidate PDSCH receiver opportunity when the K candidate PDSCH receiver opportunities are one candidate PDSCH receiver opportunity; or, When K is 0, set the corresponding HARQ-ACK bit in the HARQ-ACK codebook as NACK.
  • the above construction module 31 is specifically configured to determine the first target behavior when the last time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information: no Otherwise, the UE determines the first target behavior: used to determine the row of the transmission opportunity set; or, the last time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information or If there is no conflict, determine the first target behavior: used to determine the row of the transmission opportunity set; or, based on the conflict between each time domain resource allocation record of the first target row and the semi-static time domain configuration information, determine the first Is the target row: the row used to determine the set of transfer opportunities.
  • the above construction module 31 is specifically configured to determine the first target behavior when at least one time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information: no The row for determining the set of transmission opportunities; or, in the case that at least one time-domain resource allocation record of the first target row does not conflict with the semi-static time-domain configuration information, determine the first target behavior: for determining the set of transmission opportunities Row.
  • the mapping module is configured to map the first time-domain resource allocation record in the first target row to the target transmission opportunity when the first target behavior is used to determine the row of the transmission opportunity set.
  • the target transmission opportunity is the transmission opportunity corresponding to the last time domain resource allocation record in the first target line
  • the first time domain resource allocation record is any time in the first target line that does not conflict with the semi-static time domain configuration information. Domain resource allocation records.
  • the above target transmission opportunity corresponds to X candidate PDSCH receiving opportunities, and X is the maximum number of time domain resource allocation records in the second target row that do not conflict with the semi-static time domain configuration information, and the first 2. Any row corresponding to the target transmission opportunity in the time-domain resource allocation table of the target behavior, where X is an integer.
  • the Q time-domain resource allocation records correspond to the first Q or the last Q of the X candidate PDSCH receiving opportunities one by one
  • Q is the The number of time domain resource allocation records in the third target line that do not conflict with the semi-static time domain configuration information
  • the third target line is the row corresponding to the target transmission opportunity in the time domain resource allocation table
  • Q is an integer
  • the target transmission opportunity does not have a corresponding HARQ-ACK bit in the constructed HARQ-ACK codebook.
  • An embodiment of the present application provides a codebook construction device.
  • a semi-static HARQ-ACK codebook that supports Multi-PDSCH scheduling
  • when constructing a semi-static HARQ-ACK codebook according to the boundaries of the transmission opportunities in the transmission opportunity set, Or the candidate PDSCH receiver opportunities corresponding to the transmission opportunity set are combined to perform time-domain bundling, thereby realizing the construction of a semi-static HARQ-ACK codebook, without first determining the bundling granularity, and avoiding the binding granularity on determining the transmission opportunity.
  • the influence improves the versatility of the codebook construction process and reduces the complexity of the codebook construction.
  • the conflict between the time domain resource allocation records of any row in the time domain resource allocation table and the semi-static time domain configuration information can be used to base on the last time domain resource of each row Assign records to construct a semi-static HARQ-ACK codebook to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, thereby avoiding the impact on HARQ transmission performance or bringing unnecessary restrictions on downlink scheduling.
  • Fig. 4 shows a possible structural diagram of the codebook construction apparatus involved in the embodiment of the present application.
  • the codebook construction apparatus 40 may include: a receiving module 41 .
  • the receiving module 41 is configured to receive a semi-static HARQ-ACK codebook.
  • the semi-static HARQ codebook is constructed based on the time-domain binding result; or, the semi-static HARQ-ACK codebook is constructed based on the last time-domain resource allocation record of each row in the time-domain resource allocation table according to the second information .
  • the time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union:
  • Candidate PDSCH receiver opportunity union is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in a preset order.
  • Opportunity union the second information is used to indicate whether at least one time domain resource allocation record in the first target line in the time domain resource allocation table conflicts with semi-static time domain configuration information, and the first target line in the time domain resource allocation table any row.
  • the foregoing first information is boundaries of transmission opportunities in the transmission opportunity set.
  • the above time domain binding result is obtained by performing time domain binding on the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity after the transmission opportunity set is determined; or, the above time domain binding result is obtained after the transmission opportunity set is determined , is obtained by performing time-domain bundling for a subset of candidate PDSCH receiver opportunities in the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity.
  • the set of candidate PDSCH receiver opportunities corresponding to a transmission opportunity is: a set of candidate PDSCH receiver opportunities formed by at least one candidate PDSCH receiver opportunity associated with a transmission opportunity;
  • the candidate PDSCH receiver opportunity subset corresponding to a transmission opportunity includes at least one of the following: at least one first subset and a second subset; wherein, each first subset is formed by at least one candidate PDSCH receiver opportunity associated with a transmission opportunity
  • a candidate PDSCH receiver opportunity subset is formed by every N candidate PDSCH receiver opportunities whose index/number is adjacent or continuous; the second subset is the remaining candidate PDSCH receiver opportunity set at the end of the candidate PDSCH receiver opportunity set
  • N is a positive integer.
  • the foregoing first information is boundaries of transmission opportunities in the transmission opportunity set.
  • the above time-domain bundling result is obtained by performing time-domain bundling on each candidate PDSCH receiving opportunity associated with each transmission opportunity in each transmission opportunity group in at least one transmission opportunity group after determining the transmission opportunity set.
  • the at least one transmission opportunity group includes at least one of the following: at least one first transmission opportunity group and a second transmission opportunity group; wherein, each first transmission opportunity group is a transmission opportunity set or a transmission opportunity group In the opportunity subset, a transmission opportunity group consisting of every M transmission opportunities with adjacent or continuous indexes/numbers; the second transmission opportunity group is when the number of remaining transmission opportunities at the end of the transmission opportunity set or transmission opportunity subset is less than M, the tail A transmission opportunity group formed by the remaining transmission opportunities; the transmission opportunity subset is a transmission opportunity subset obtained by dividing the transmission opportunity set based on preset rules, and M is a positive integer.
  • the above at least one transmission opportunity group is obtained by allowing crossing the boundary of the transmission opportunity subset, at least one transmission opportunity group is one or more transmission opportunity groups obtained by splitting the transmission opportunity set based on M transport opportunity group;
  • At least one transmission opportunity group is obtained without crossing the boundary of the transmission opportunity subset, at least one transmission opportunity group is one or more transmission opportunity subsets in the transmission opportunity set based on M splitting Transport group.
  • the foregoing first information is a union set of candidate PDSCH receiver opportunities corresponding to the set of transmission opportunities.
  • the above time-domain bundling result is obtained by performing time-domain bundling on all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group in at least one candidate PDSCH receiver opportunity group after the transmission opportunity set is determined.
  • the at least one candidate PDSCH receiver opportunity set includes at least one of the following: at least one first candidate PDSCH receiver opportunity set and a second candidate PDSCH receiver opportunity set; wherein, each first candidate PDSCH receiver opportunity set
  • the opportunity group is a candidate PDSCH receiver opportunity group in the union of candidate PDSCH receiver opportunities, and a candidate PDSCH receiver opportunity group composed of every L candidate PDSCH receiver opportunities with adjacent or continuous indexes/numbers;
  • the second candidate PDSCH receiver opportunity group is in the union of candidate PDSCH receiver opportunities
  • L is a positive integer.
  • the above semi-static HARQ-ACK codebook is constructed based on the last time domain resource allocation record in each row in the time domain resource allocation table according to the second information.
  • the first target behavior not used to determine the row of the transmission opportunity set, otherwise the first target behavior: used to determine the transmission or, in the event that the last time domain resource allocation record of the first target line conflicts or does not exist with the semi-static time domain configuration information, the first target behavior: the line used to determine the set of transmission opportunities ; Or, whether the first target row is a row for determining the set of transmission opportunities is determined based on the conflict between each time domain resource allocation record of the first target row and the semi-static time domain configuration information.
  • the first target behavior in the case that at least one time-domain resource allocation record of the first target row conflicts with the semi-static time-domain configuration information, the first target behavior: a row that is not used to determine the set of transmission opportunities;
  • the first target behavior is: a row for determining a set of transmission opportunities.
  • the determination module is used to determine the length of the HARQ-ACK bit sequence corresponding to the semi-static HARQ-ACK codebook and the length of each HARQ-ACK bit sequence in the HARQ-ACK bit sequence before the receiving module 41 receives the semi-static HARQ-ACK codebook. Mapping relationship between bits and candidate PDSCH receiving opportunities.
  • An embodiment of the present application provides a codebook construction device.
  • the semi-static HARQ-ACK codebook received by the codebook construction device is constructed based on the time domain binding result, or based on the second information based on each
  • the last time-domain resource allocation record in the row is constructed, while the construction of the semi-static HARQ-ACK codebook is performed according to the boundaries of the transmission opportunities in the transmission opportunity set, or the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set Time-domain binding, so as to realize the construction of the semi-static HARQ-ACK codebook, without first determining the binding granularity, avoiding the impact of the binding granularity on determining the transmission opportunity, improving the generality of the codebook construction process, reducing the The complexity of codebook construction.
  • the semi-static HARQ-ACK codebook is constructed based on the last time domain resource allocation record of each row , so as to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, so as to avoid affecting the HARQ transmission performance or bringing unnecessary restrictions on downlink scheduling.
  • the codebook construction apparatus in the embodiment of the present application may be a device, a device with an operating system or a UE, and may also be a component, an integrated circuit, or a chip in the UE.
  • the apparatus or UE may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of UE 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the codebook construction device provided in the embodiment of the present application can implement the various processes implemented in the above method embodiments, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 500, including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501,
  • a communication device 500 including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501
  • the communication device 500 is a UE
  • the program or instruction is executed by the processor 501
  • various processes of the foregoing method embodiments can be implemented, and the same technical effect can be achieved.
  • the communication device 500 is a network-side device
  • the program or instruction is executed by the processor 501
  • the various processes of the above-mentioned method embodiments can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a UE, including a processor and a communication interface, and the processor is used to construct a semi-static HARQ-ACK codebook.
  • the communication interface is used to send the semi-static HARQ-ACK codebook.
  • constructing the semi-static HARQ-ACK codebook specifically includes any of the following items: performing time-domain bundling according to the first information after determining the transmission opportunity set, and constructing a semi-static HARQ-ACK codebook based on the time-domain bundling result;
  • the second information constructs a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • FIG. 6 is a schematic diagram of a hardware structure of a UE implementing an embodiment of the present application.
  • the UE 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, and a processor 110, etc. at least some of the components.
  • the UE 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system Management and other functions.
  • a power supply such as a battery
  • the UE structure shown in FIG. 6 does not limit the UE, and the UE may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used by the image capturing device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 receives the downlink data from the network side device, and processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 109 can be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the processor 110 is configured to construct a semi-static HARQ-ACK codebook.
  • the radio frequency unit 101 is configured to send a semi-static HARQ-ACK codebook.
  • the construction of the semi-static HARQ-ACK codebook specifically includes any of the following items: performing time-domain bundling according to the first information after determining the transmission opportunity set, and constructing a semi-static HARQ-ACK codebook based on the time-domain bundling result; Construct a semi-static HARQ-ACK codebook based on the last time domain resource allocation record in each row in the time domain resource allocation table according to the second information.
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the union of candidate PDSCH receiver opportunities corresponding to the transmission opportunity set; the union of candidate PDSCH receiver opportunities is the corresponding Each candidate PDSCH receiver opportunity in the set of candidate PDSCH receiver opportunities is concatenated head-to-tail in a preset order to obtain a union set of candidate PDSCH receiver opportunities; the second information is used to indicate at least one time domain resource allocation table of the first target row Whether there is a conflict between the domain resource allocation record and the semi-static time domain configuration information, the first target behavior is any row in the time domain resource allocation table.
  • An embodiment of the present application provides a UE.
  • the UE may transmit The candidate PDSCH receiver opportunities corresponding to the opportunity set are combined to perform time-domain bundling, thereby realizing the construction of a semi-static HARQ-ACK codebook, without first determining the bundling granularity, and avoiding the impact of bundling granularity on determining transmission opportunities.
  • the generality of the codebook construction process is improved, and the complexity of the codebook construction is reduced.
  • the UE when the UE constructs the semi-static HARQ-ACK codebook, it can use the time domain resource allocation record of any line in the time domain resource allocation table to conflict with the semi-static time domain configuration information, based on the last time domain Resource allocation records are used to construct a semi-static HARQ-ACK codebook to avoid the situation that there is no HARQ-ACK bit to be used in the codebook, thereby avoiding the impact on HARQ transmission performance or bringing unnecessary restrictions on downlink scheduling .
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the processor 110 is specifically configured to perform time-domain bundling within the range of the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity after the transmission opportunity set is determined.
  • the processor 110 is specifically configured to, after determining the set of transmission opportunities, perform time-domain bundling for the set of candidate PDSCH receiver opportunities corresponding to each transmission opportunity; or, after determining the set of transmission opportunities After the transmission opportunity set is described above, time domain bundling is performed for a candidate PDSCH receiver opportunity subset in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity.
  • the foregoing first information is a boundary of a transmission opportunity in the transmission opportunity set.
  • the processor 110 is specifically configured to perform time-domain bundling for each candidate PDSCH receiver opportunity associated with each transmission opportunity in each transmission opportunity group in at least one transmission opportunity group after the transmission opportunity set is determined.
  • the foregoing first information is a union set of candidate PDSCH receiver opportunities corresponding to the set of transmission opportunities.
  • the processor 110 is specifically configured to perform time-domain bundling for all candidate PDSCH receiver opportunities in each candidate PDSCH receiver opportunity group in at least one candidate PDSCH receiver opportunity group after the transmission opportunity set is determined.
  • the processor 110 is specifically configured to, after determining the transmission opportunity set, for at least one candidate PDSCH receiving opportunity corresponding to the transmission opportunity set, K candidate PDSCH receiving opportunities in the at least one candidate PDSCH receiving opportunity When the PDSCH corresponding to the receiver is actually transmitted, and the PDSCH corresponding to the P candidate PDSCH receivers is not actually transmitted:
  • the P candidate PDSCH receiving opportunities are candidate PDSCH receiving opportunities except the K candidate PDSCH receiving opportunities in at least one candidate PDSCH receiving opportunity, K is an integer, and P is an integer.
  • the processor 110 is further configured to set the HARQ-ACK codebook using the decoding result corresponding to one candidate PDSCH receiver when the K candidate PDSCH receivers are one candidate PDSCH receiver or, when K is 0, set the corresponding HARQ-ACK bit in the HARQ-ACK codebook to NACK.
  • the processor 110 is specifically configured to determine the first target behavior when the last time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information: no Otherwise, the UE determines the first target behavior: used to determine the row of the transmission opportunity set; or, the last time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information or If there is no conflict, determine the first target behavior: used to determine the row of the transmission opportunity set; or, based on the conflict between each time domain resource allocation record of the first target row and the semi-static time domain configuration information, determine the first Is the target row: the row used to determine the set of transfer opportunities.
  • the processor 110 is specifically configured to determine the first target behavior when at least one time domain resource allocation record in the first target row conflicts with the semi-static time domain configuration information: no The row for determining the set of transmission opportunities; or, in the case that at least one time-domain resource allocation record of the first target row does not conflict with the semi-static time-domain configuration information, determine the first target behavior: for determining the set of transmission opportunities Row.
  • the processor 110 is further configured to map the first time-domain resource allocation record in the first target row to Target transfer opportunities.
  • the target transmission opportunity is the transmission opportunity corresponding to the last time domain resource allocation record in the first target line
  • the first time domain resource allocation record is any time in the first target line that does not conflict with the semi-static time domain configuration information. Domain resource allocation records.
  • the UE provided in the embodiment of the present application can implement each process implemented in the foregoing method embodiment, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the communication interface is used to receive a semi-static HARQ-ACK codebook; wherein, the semi-static HARQ codebook is constructed based on a time domain binding result; or , the semi-static HARQ-ACK codebook is constructed based on the second information based on the last time domain resource allocation record in each row in the time domain resource allocation table.
  • the time-domain binding result is obtained by performing time-domain binding according to the first information after the transmission opportunity set is determined;
  • the first information is any of the following items: the boundary of the transmission opportunity in the transmission opportunity set, the corresponding Candidate PDSCH receiver opportunity union:
  • Candidate PDSCH receiver opportunity union is the candidate PDSCH receiver opportunity obtained by concatenating each candidate PDSCH receiver opportunity in the candidate PDSCH receiver opportunity set corresponding to each transmission opportunity in the transmission opportunity set in a preset order.
  • Opportunity union the second information is used to indicate whether at least one time domain resource allocation record in the first target row in the time domain resource allocation table conflicts with the semi-static time domain configuration information, and the first target row is in the time domain resource allocation table any line in the .
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , and a baseband device 73 .
  • the antenna 71 is connected to a radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71, and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72
  • the radio frequency device 72 processes the received information and sends it out through the antenna 71 .
  • the foregoing frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 73 , and the baseband device 73 includes a processor 74 and a memory 75 .
  • the baseband device 73 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG. The operation of the network side device shown in the above method embodiments.
  • the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72, such as a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 75 and operable on the processor 74, and the processor 74 calls the instructions or programs in the memory 75 to execute the methods performed by the above modules , and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above codebook construction method embodiment is realized, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the UE described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above codebook construction method embodiment Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to enable a terminal (which may be a mobile phone, computer, server, air conditioner, or network-side device, etc.) to execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种码本构造方法、装置、通信设备、存储介质及系统,码本构造方法包括:构造半静态HARQ-ACK码本;发送半静态HARQ-ACK码本;其中,构造半静态HARQ-ACK码本的步骤包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。第一信息为传输机会集合中的传输机会的边界或传输机会集合对应的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突。

Description

码本构造方法、装置、通信设备、存储介质及系统
相关申请的交叉引用
本申请主张在2021年05月11日在中国提交的中国专利申请号202110513688.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种码本构造方法、装置、通信设备、存储介质及系统。
背景技术
目前,为了充分利用载波时域资源,引入了多个物理下行共享信道(Multi-Physical Downlink Shared Channel,Multi-PDSCH)调度,Multi-PDSCH调度是指单个下行控制信息(Downlink Control Information,DCI)能够一次调度同一载波上的多个PDSCH传输。对于支持Multi-PDSCH调度的半静态混合自动重传请求-确认(Hybrid Automatic Repeat Request-Acknowledgement,HARQ-ACK)码本,如何构造该半静态HARQ-ACK码本,是亟待解决的问题。
发明内容
本申请实施例提供一种码本构造方法、装置、通信设备、存储介质及系统,能够解决对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,如何构造半静态HARQ-ACK码本的问题。
第一方面,提供了一种码本构造方法,该码本构造方法包括:用户设备(User Equipment,UE)构造半静态HARQ-ACK码本;UE发送半静态HARQ-ACK码本;其中,UE构造半静态HARQ-ACK码本的步骤包括以下任一项:UE在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;UE根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
第二方面,提供了一种码本构造方法,该码本构造方法包括:网络侧设备接收半静态HARQ-ACK码本;其中,半静态HARQ码本是基于时域绑定结果构造的;或者,半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。其中,时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为所述时域资源分配表中的任一行。
第三方面,提供了一种码本构造装置,该码本构造装置包括:构造模块和发送模块。其中,构造模块,用于构造半静态HARQ-ACK码本。发送模块,用于发送半静态HARQ-ACK码本。其中,构造半静态HARQ-ACK码本具体包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中 的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
第四方面,提供了一种码本构造装置,该码本构造装置包括:接收模块。其中,接收模块,用于接收半静态HARQ-ACK码本。其中,半静态HARQ码本是基于时域绑定结果构造的;或者,半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。其中,时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为所述时域资源分配表中的任一行。
第五方面,提供了一种UE,该UE包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种UE,包括处理器及通信接口,其中,所述处理器用于构造半静态HARQ-ACK码本;并发送半静态HARQ-ACK码本。其中,构造半静态HARQ-ACK码本具体包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于接收半静态HARQ-ACK码本;其中,半静态HARQ码本是基于时域绑定结果构造的;或者,半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。其中,时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为所述时域资源分配表中的任一行。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或者实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的码本构造方法的步骤,或者实现如第二方面所述的码本构造方法的步骤。
在本申请实施例中,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,UE在构造半静态HARQ-ACK码本时,可以根据传输机会集合中的传输机会的边界,或者传输机会集合对应的 候选PDSCH接收机会并集,来执行时域绑定,从而实现半静态HARQ-ACK码本的构造,而无需先确定绑定粒度,避免了绑定粒度对确定传输机会的影响,提升了码本构造流程的通用性,降低了码本构造的复杂度。或者,UE在构造半静态HARQ-ACK码本时,可以根据时域资源分配表中任一行的时域资源分配记录与半静态时域配置信息的冲突情况,以基于每行的最后一个时域资源分配记录来构造半静态HARQ-ACK码本,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种码本构造方法的示意图;
图3是本申请实施例提供的一种码本构造装置的结构示意图之一;
图4是本申请实施例提供的一种码本构造装置的结构示意图之二;
图5是本申请实施例提供的一种通信设备的硬件结构示意图;
图6是本申请实施例提供的一种UE的硬件结构示意图;
图7是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面对本申请实施例提供的码本构造方法、装置、通信设备、存储介质及系统中涉及的一些概念和 /或术语做一下解释说明。
1、Multi-PDSCH调度
目前,确认针对新的NR部署频段需要引入新的子载波间隔(Sub-carrier Spacing,SCS),包括480kHz和960kHz。针对这些新引入的SCS,物理下行控制信道(Physical Downlink Control Channel,PDCCH)监测需要作相应的调整或增强,例如避免UE在每个时隙(slot,时长很短)内都需要监测PDCCH,以降低UE实现复杂度。相应地,为了充分利用载波时域资源,引入了Multi-PDSCH调度和多个物理上行共享信道(Multi-Physical Uplink Shared Channel,Multi-PUSCH)调度。
Multi-PDSCH调度是指单个DCI能一次性调度同一载波上的多个PDSCH传输。根据NR的协议规定,这些PDSCH在时域相互不交叠。目前支持单个DCI调度多个PDSCH,每个PDSCH限制在单个slot范围内,并且对应各自的传输块(Transport Block,TB),单个TB既不能跨越多个PDSCH进行联合速率匹配,也不能占用多个PDSCH进行重复传输。
2、HARQ-ACK半静态码本
当UE组织在某个反馈时刻需要上报的HARQ-ACK比特序列时,基于预定义的规则,以及需要在此反馈时刻上报HARQ-ACK的单个/多个载波上下行PDSCH传输的调度情况,确定各下行PDSCH传输与组织的HARQ-ACK比特序列中某个比特的对应关系,这种操作称为构造HARQ-ACK码本(Codebook)或HARQ-ACK码本方案。目前采用两种HARQ-ACK Codebook方案:半静态码本(Type-1)和动态码本(Type-2)。
半静态码本是从可能的PDSCH接收机会的角度进行构造,其基于反馈时间(Timing)配置表格(即高层配置的K1Set)和HARQ-ACK反馈时刻(即半静态码本传输所在的上行时隙),对每个可能的PDSCH接收机会(基于高层配置的时域资源分配(Time Domain Resource Assignment,TDRA)表确定)都预留了对应的HARQ-ACK比特。如果对于某个PDSCH接收机会,UE实际并未接收/检测对应的PDSCH,则将其对应的HARQ-ACK比特设置为非确认(Non-Acknowledge,NACK),否则基于此PDSCH的解码结果设置对应的HARQ-ACK比特。
当支持Multi-PDSCH调度时,HARQ-ACK半静态码本需要作相应的增强,以支持Multi-PDSCH调度对应的HARQ-ACK反馈,例如需要保证Multi-PDSCH调度中各个调度的PDSCH在HARQ-ACK码本中都存在对应的HARQ-ACK比特。
3、HARQ-ACK反馈的时域绑定(Time Domain Bundling)
针对HARQ-ACK反馈的时域绑定可以理解为:对于不同时刻接收的PDSCH的解码结果进行绑定(Bundling,一般采用二进制与操作),形成单个融合的解码结果,以减少反馈比特;在LTE时分双工(Time Division Duplexing,TDD)模式HARQ-ACK反馈的绑定机制中就已采用。
针对Multi-PDSCH调度基于动态码本进行HARQ-ACK反馈,提出采用时域绑定机制,包括:在单个DCI调度的一到多个PDSCH范围内进行时域绑定,或者,将单个DCI调度的一到多个PDSCH进行分组,再在单个PDSCH分组对应的PDSCH范围内进行时域绑定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的码本构造方法进行详细地说明。
一种场景,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,当应用时域绑定时,传统技术的方案是,先确定绑定粒度,然后将基于绑定粒度确定的PDSCH绑定组(Bundling Group)映射到传输机会集合,并确定与此传输机会集合对应的HARQ-ACK比特序列,此时采用的绑定粒度将深度影响传输机会的确定,从而导致一定的复杂度并影响码本构造流程的通用性。
本申请实施例中,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,在确定传输机会集合之后,当采用时域绑定时,引入了相应的处理方案,可以提升码本构造流程的通用性,从而降低码本构造的复杂度。
另一种场景,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,当采用根据TDRA表中每行的最后一个时域资源分配记录来确定候选PDSCH接收机会集合(即下述实施例中的Option 2)时,传统技术的方案是,如果某行的最后一个时域资源分配记录与半静态时域配置信息冲突,并且在半静态码本的构造过程中此行被忽略,则当此行中存在至少一个不与半静态时域配置信息冲突的时域资源分配记录,并且下行调度DCI指示此行时,这些不与半静态时域配置信息冲突的时域资源分配记录对应的 PDSCH(可实际传输)在半静态码本中并不存在对应的HARQ-ACK比特,从而对于HARQ传输的性能造成影响(当不基于HARQ-ACK反馈进行盲重传时,将导致下行传输效率的下降;当依赖于后续其它HARQ-ACK码本进行反馈时,将引入额外的HARQ-ACK反馈时延),或者对于下行调度带来不必要的限制。
本申请实施例中,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,当基于最后一个(last)时域资源分配记录)构造码本时,对于与半静态时域配置信息的冲突判决,引入了不同的处理方式,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
需要说明的是,在下文中,针对时域资源分配记录与半静态时域配置信息的冲突,是以时域资源分配记录与半静态上行符号(Semi-static UL symbol)之间的冲突为例进行描述的,但并不会限制时域资源分配记录与其它半静态时域配置信息之间存在冲突(并导致此时域资源分配记录对应的物理信道无法实际传输)时采用本申请中的方案。
本申请实施例提供一种码本构造方法,图2示出了本申请实施例提供的一种码本构造方法的流程图。如图2所示,本申请实施例提供的码本构造方法可以包括下述的步骤21至步骤23。
步骤21、UE构造半静态HARQ-ACK码本。
步骤22、UE发送半静态HARQ-ACK码本。
其中,UE构造半静态HARQ-ACK码本的步骤包括以下任一项:UE在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;UE根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。
其中,上述第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集。上述第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态上行符号是否存在冲突,第一目标行为时域资源分配表中的任一行。
步骤23、网络侧设备接收半静态HARQ-ACK码本。
其中,上述半静态HARQ码本是基于时域绑定结果构造的;或者,上述半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的;
其中,上述时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集。上述第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态上行符号是否存在冲突,第一目标行为时域资源分配表中的任一行。
可选地,本申请实施例中,网络侧设备接收半静态HARQ-ACK码本之前,还包括:网络侧设备确定半静态HARQ-ACK码本对应的HARQ-ACK比特序列的长度,以及HARQ-ACK比特序列中各HARQ-ACK比特与候选PDSCH接收机会之间的映射关系。
下面通过具体的实施例对本申请实施例提供的码本构造方法中,UE构造半静态HARQ-ACK码本的步骤进行说明。
实施例一
本申请实施例中,UE构造半静态HARQ-ACK码本的方法步骤可以包括下述的步骤201和步骤202。
步骤201、UE确定传输机会集合。
步骤202、在确定传输机会集合后,UE根据第一信息执行时域绑定。
本申请实施例中,上述第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集。
本申请实施例中,UE在确定传输机会集合之后,当采用时域绑定时,可以采用基于传输机会的边 界执行时域绑定,或者基于候选PDSCH接收机会并集执行时域绑定,不关注/可跨越传输机会的边界。
需要说明的是,作为一种典型的表现形式,时域资源分配记录可以是指起始和长度指示值(Start and length indicator value,SLIV);为更好地理解本申请实施例的技术方案,以下实施例中所述时域资源分配记录将以SLIV为例进行具体说明。当然,所述时域资源分配记录还可以是其他形式,本申请不做过多举例。
需要说明的是,反馈时间偏移的一种示例形式为K1,其用于指示HARQ-ACK反馈的时域位置相对于PDSCH传输的时域位置的偏移。偏移的单位为时间单元,可以为时隙或子时隙。后续提到的反馈时间偏移可以以K1为例进行描述,但并不因此限定反馈时间偏移的其它表示形式。
需要说明的是,传输机会(Occasion)是指:传输机会通常与某个K1或等效K1(Effective K1)对应,可以理解为此K1/等效K1对应的时间单元内(或者与此时间单元关联的)可独立使用的一个下行传输机会,此K1/等效K1对应的不同传输机会可相互独立地占用(例如同时占用,或者占用某一个而不占用另一个),因此在构造的半静态码本中需要为各个传输机会都预留对应的HARQ-ACK比特。一般情况下,每个传输机会可进一步关联到一到多个候选PDSCH接收机会(或者半持续调度(Semi-Persistent Scheduling,SPS)PDSCH释放),此时当在半静态码本中为某个传输机会中预留对应的HARQ-ACK比特时,需要为此传输机会关联的每个候选PDSCH接收机会(或者SPS PDSCH释放)都预留对应的HARQ-ACK比特。
候选PDSCH接收机会(Candidate PDSCH reception)或SPS PDSCH释放(下文中的描述是以候选PDSCH接收机会为例进行说明的,都可以扩展到SPS PDSCH释放)是指:当某个传输机会被占用时,此传输机会用于传输/接收单个PDSCH,或者单个SPS PDSCH释放,这里的单个PDSCH或SPS PDSCH释放可以理解为候选PDSCH接收,并且传输机会与候选PDSCH接收机会为一对一的关联关系。在同一服务小区(Serving cell)上UE不允许接收时域交叠的任意两个或多个PDSCH,因此在半静态码本构造流程中,时域交叠的两个或多个SLIV(单个SLIV与单个PDSCH一一对应)可映射到同一候选PDSCH接收机会,并且为每个K1预留出当保证对应的候选PDSCH接收机会在时域不交叠时可独立占用的最大传输机会数目(传输机会与候选PDSCH接收机会一一对应)。当引入Multi-PDSCH调度时,可选地,每个传输机会也可以对应多于一个候选PDSCH接收机会,此时其中的某个候选PDSCH接收机会(例如Multi-PDSCH调度中单个DCI调度的最后一个PDSCH,可以与最后一个候选PDSCH接收机会对应)基于一个预设规则关联到此传输机会,其它候选PDSCH接收机会(例如Multi-PDSCH调度中单个DCI调度的除最后一个PDSCH之外的其它PDSCH,可以基于调度顺序,与除最后一个候选PDSCH接收机会之外的其它候选PDSCH接收机会逐一对应)沿用此关联关系也关联到此传输机会。此传输机会对应的候选PDSCH接收机会集合中的部分或所有候选PDSCH接收机会一般同时占用,每个占用的候选PDSCH接收机会与Multi-PDSCH调度中单个DCI调度的单个PDSCH对应。基于目前针对Multi-PDSCH调度的半静态码本增强的讨论情况,各增强Option中传输机会与候选PDSCH接收机会的对应关系为:
Option 1:针对扩展的K1 set中的每个K1确定传输机会子集,在确定某个K1对应的传输机会子集时,可以基于此K1关联的SLIV集合进行相应的操作,此时传输机会与候选PDSCH接收机会可以为一对一的关联关系。
Option 1a:K1 set不作扩展;针对K1 set中的每个K1,基于TDRA表中的每行配置的各个SLIV,确定此K1对应的传输机会子集,此时为了保证各个SLIV都存在对应的HARQ-ACK比特,一般情况下,传输机会与候选PDSCH接收机会之间可能出现一对多的关联关系。
Option 2:K1 set不作扩展;针对K1 set中的每个K1,基于TDRA表中的每行配置的最后一个SLIV,确定此K1对应的传输机会子集,此时同一行中的其它SLIV都关联到最后一个SLIV所关联的传输机会(即多个相互时域不交叠的PDSCH都关联到同一个传输机会;这里SLIV与PDSCH一一对应),为了保证各个SLIV都存在对应的HARQ-ACK比特,一般情况下,传输机会与候选PDSCH接收机会之间可以为一对多的关联关系。
可选地,在本申请实施例的一种实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述步骤202具体可以通过下述的步骤202a实现。
步骤202a、在确定传输机会集合后,UE在每个传输机会对应的候选PDSCH接收机会集合范围内, 执行时域绑定。
可选地,本申请实施例中,在每个传输机会关联至少一个候选PDSCH接收机会的情况下,UE可以在每个传输机会对应的候选PDSCH接收机会集合范围内,执行时域绑定。即这种实现方式,可以适用于单个传输机会关联到一个或多个候选PDSCH接收机会的场景,可以包括上述实施例中的Option 1a和Option 2。
可选地,本申请实施例中,针对传输机会集合中的每个传输机会,一个传输机会对应的候选PDSCH接收机会集合为:该一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合。
可以理解,针对每个传输机会对应的候选PDSCH接收机会集合,此时每个传输机会关联的一个或多个候选PDSCH接收机会构成候选PDSCH接收机会集合,针对该候选PDSCH接收机会集合执行时域绑定,即执行下述的目标操作。
可选地,本申请实施例中,上述步骤202a具体可以通过下述的步骤202a1或步骤202a2实现。
步骤202a1、在确定传输机会集合后,UE针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定。
步骤202a2、在确定传输机会集合后,UE针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定。
可选地,本申请实施例中,针对传输机会集合中的每个传输机会,一个传输机会对应的候选PDSCH接收机会子集包括以下至少一项:至少一个第一子集和第二子集。其中,每个第一子集为该一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻或连续的每N个候选PDSCH接收机会构成的一个候选PDSCH接收机会子集。上述第二子集为在候选PDSCH接收机会集合的尾部剩余候选PDSCH接收机会数目小于N时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会子集,N为正整数。
可以理解,UE将单个传输机会关联的一个或多个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻的每N个候选PDSCH接收机会构成一个候选PDSCH接收机会子集,当候选PDSCH接收机会集合尾部剩余的候选PDSCH接收机会数目不足N个时,这些剩余的候选PDSCH接收机会构成一个单独的候选PDSCH接收机会子集。针对每个候选PDSCH接收机会子集执行时域绑定,即执行下述的目标操作。N可以由协议规定或高层信令配置。
可选地,本申请实施例中,上述第一信息为传输机会集合中的传输机会的边界。上述时域绑定结果是在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定得到的;或者,上述时域绑定结果是在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定得到的。
可选地,在本申请实施例的另一种实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述步骤202具体可以通过下述的步骤202b实现。
步骤202b、在确定传输机会集合后,UE针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定。
可选地,本申请实施例中,上述至少一个传输机会组包括以下至少一项:至少一个第一传输机会组和第二传输机会组。其中,每个第一传输机会组为传输机会集合或传输机会子集中,索引/编号相邻或连续的每M个传输机会构成的一个传输机会组。上述第二传输机会组为在传输机会集合或传输机会子集的尾部剩余传输机会数目小于M时,尾部剩余传输机会构成的一个传输机会组;该传输机会子集为基于预设规则对传输机会集合划分后得到的传输机会子集,M为正整数。
可以理解,UE可以基于传输机会(对应的候选PDSCH接收机会)的粒度执行时域绑定。UE将传输机会集合/传输机会子集中索引/编号相邻/连续的每M个传输机会构成一个传输机会组,当传输机会集合/传输机会子集尾部剩余的传输机会数目不足M个时,这些剩余的传输机会构成一个单独的传输机会组。UE针对每个传输机会组中各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定,即针对此传输机会组涉及的所有候选PDSCH接收机会执行下述的目标操作。M可以由协议规定或高层信令配置。
这种方式中,此方案不限制单个传输机会对应的候选PDSCH接收机会的数目,可以应用于上述实施例中的Option 1、Option 1a和Option 2,其中Option 1更加适用(此时每个传输机会仅关联单个候选PDSCH接收机会)。
可选地,本申请实施例中,上述传输机会子集具体可以为基于K1或等效K1对传输机会集合划分得到的传输机会子集,当然还可以基于其他的划分方式得到传输机会子集,本申请实施例不做限制。
可选地,本申请实施例中,上述至少一个传输机会组由在允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合基于M拆分得到的一个或多个传输机会组。
可选地,本申请实施例中,上述至少一个传输机会组由在不允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合中的一个传输机会子集基于M拆分得到的一个或多个传输机会组。
可以理解,在上述划分传输机会组的过程中,还可以考虑是否允许跨越K1或等效K1对应的传输机会子集的边界,相应地可以采用以下方式之一:
方式一、传输机会组可跨越某个K1或等效K1对应的传输机会子集的边界。
在方式一中,UE将某个服务小区(Serving cell)对应的传输机会集合基于M拆分成一个或多个传输机会组。
方式二、传输机会组不可跨越某个K1或等效K1对应的传输机会子集的边界。
在方式二中,UE将某个服务小区对应的传输机会集合中与某个K1或等效K1对应的传输机会子集拆分成一个或多个传输机会组。
可选地,本申请实施例中,上述第一信息为传输机会集合中的传输机会的边界。上述时域绑定结果是在确定传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定得到的。
本申请实施例中,在确定执行时域绑定的候选PDSCH接收机会组(作为Bundling group)时,可以根据各个传输机会对应的候选PDSCH接收机会集合范围,将执行时域绑定的范围限制在某个传输机会对应的候选PDSCH接收机会集合范围内,或者,基于传输机会(对应的候选PDSCH接收机会集合)的粒度来执行时域绑定。
可选地,在本申请实施例的又一种实现方式中,上述第一信息为传输机会集合对应的候选PDSCH接收机会并集。上述步骤202具体可以通过下述的步骤202c实现。
步骤202c、在确定传输机会集合后,UE针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定。
可选地,本申请实施例中,上述至少一个候选PDSCH接收机会组包括以下至少一项:至少一个第一候选PDSCH接收机会组和第二候选PDSCH接收机会组。其中,每个第一候选PDSCH接收机会组为候选PDSCH接收机会并集中,索引/编号相邻或连续的每L个候选PDSCH接收机会构成的一个候选PDSCH接收机会组。上述第二候选PDSCH接收机会组为在候选PDSCH接收机会并集的尾部剩余候选PDSCH接收机会数目小于L时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会组,L为正整数。
可以理解,UE可以基于候选PDSCH接收机会执行时域绑定,不关注/可跨越传输机会的边界。UE可以将某个服务小区对应的传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会按预设顺序进行首尾级联,得到候选PDSCH接收机会并集,将该候选PDSCH接收机会并集中索引/编号相邻/连续的每L个候选PDSCH接收机会构成一个候选PDSCH接收机会组,当并集尾部剩余的候选PDSCH接收机会数目不足L个时,这些剩余的候选PDSCH接收机会构成一个单独的候选PDSCH接收机会组。UE针对每个候选PDSCH接收机会组中的所有候选PDSCH接收机会执行时域绑定,即执行下述的目标操作。L可以由协议规定或高层信令配置。
可选地,本申请实施例中,上述第一信息为传输机会集合对应的候选PDSCH接收机会并集。上述时域绑定结果是在确定传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定得到的。
本申请实施例中,上述目标操作为:针对至少一个候选PDSCH接收机会执行时域绑定。该至少一个候选PDSCH接收机会中,有0、1或多个候选PDSCH接收机会对应的PDSCH实际做了传输,剩余 候选PDSCH接收机会对应的PDSCH实际未作传输。
需要说明的是,每个候选PDSCH接收机会可以与一个或多个SLIV/PDSCH进行映射。此时只要有一个映射的SLIV/PDSCH实际做了传输,则认为此候选PDSCH接收机会对应的PDSCH实际做了传输。某个映射的SLIV/PDSCH是否实际做了传输,UE可以基于下行调度DCI检测情况,和/或配置的SPS PDSCH传输确定。例如,对于下行动态调度,如果UE检测到某个下行调度DCI指示的TDRA表中某行中的某个SLIV与此映射的SLIV/PDSCH对应(即SLIV取值相同,并且位于相同的DL slot,以及对应的HARQ-ACK在当前构造的半静态码本中反馈),则UE认为此SLIV/PDSCH实际做了传输;对于下行SPS,如果UE基于半静态配置的上行授权(DL grant),判断某个SPS PDSCH对应的SLIV与此映射的SLIV/PDSCH对应,则UE认为此SLIV/PDSCH实际做了传输(可选地,当UE需要检测skipped SPS PDSCH时,如果UE认为此SPS PDSCH没有被skip,则认为此SLIV/PDSCH实际做了传输)。
可以理解的是,每个候选PDSCH接收机会最多只会有一个映射的SLIV/PDSCH实际做了传输。当某个候选PDSCH接收机会对应的PDSCH实际做了传输时,使用映射到此候选PDSCH接收机会并且实际做了传输的SLIV/PDSCH对应的解码结果,作为时域绑定运算的输入。
绑定方式1、实际未做传输的候选PDSCH接收机会纳入时域绑定运算范围。此时上述至少一个候选PDSCH接收机会中的各个候选PDSCH接收机会均参与时域绑定运算;实际未做传输的候选PDSCH接收机会对应的解码结果可假设为NACK或ACK。
进一步地,为了避免实际未做传输的候选PDSCH接收机会对于HARQ-ACK反馈的影响:当采用二进制与时,实际未做传输的候选PDSCH接收机会对应的解码结果可假设为ACK;当采用二进制或时,实际未做传输的候选PDSCH接收机会对应的解码结果可假设为NACK。
绑定方式2、实际未做传输的候选PDSCH接收机会排除在时域绑定运算范围之外。此时上述至少一个候选PDSCH接收机会中仅各个实际做了传输的候选PDSCH接收机会参与时域绑定运算。
对于纳入时域绑定运算范围的各个候选PDSCH接收机会,将其解码结果对应的HARQ-ACK信息压缩/打包成一个或两个HARQ-ACK比特,包含在HARQ-ACK码本中进行传输。
时域绑定可以理解为:将两个或以上候选PDSCH接收机会的对应码字的解码结果进行二进制与或二进制或,得到此码字对应的融合解码结果(可以由1比特来表示);当配置采用双码字传输时,每个码字对应各自的融合解码结果,还可以基于特定绑定配置作进一步的操作。
如果纳入时域绑定运算范围的候选PDSCH接收机会仅有一个,则直接使用此候选PDSCH接收机会对应的解码结果设置HARQ-ACK码本中的对应HARQ-ACK比特。如果没有任何候选PDSCH接收机会纳入时域绑定运算范围(例如采用绑定方式2,并且所有候选PDSCH接收机会都实际未做传输),则HARQ-ACK码本中的对应HARQ-ACK比特可以直接设置为NACK。
需要说明的是,每个传输机会关联的候选PDSCH接收机会数目可能不同。当半静态码本涉及多个服务小区时,可以针对每个服务小区分别执行上述选择的方案/方式(上述传输机会集合可以理解为针对某个服务小区),然后将各个服务小区的执行输出按预设方式进行级联,例如按照服务小区索引从小到大进行级联。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202d或步骤202e实现。
步骤202d、在确定传输机会集合后,针对传输机会集合对应的至少一个候选PDSCH接收机会,在至少一个候选PDSCH接收机会中的K个候选PDSCH接收机会对应的PDSCH进行了实际传输,且P个候选PDSCH接收机会对应的PDSCH未进行实际传输的情况下,UE针对K个候选PDSCH接收机会和P个候选PDSCH接收机会,执行时域绑定。
本申请实施例中,上述P个候选PDSCH接收机会为至少一个候选PDSCH接收机会中除K个候选PDSCH接收机会之外的候选PDSCH接收机会,K为整数,P为整数。
可选地,本申请实施例中,在UE针对K个候选PDSCH接收机会和P个候选PDSCH接收机会,执行时域绑定的情况下,上述P个候选PDSCH接收机会对应的解码结果为非确认NACK或ACK。
可选地,本申请实施例中,在采用二进制与的情况下,上述P个候选PDSCH接收机会对应的解码结果为ACK;在采用二进制或的情况下,上述P个候选PDSCH接收机会对应的解码结果为NACK。
步骤202e、在确定传输机会集合后,针对传输机会集合对应的至少一个候选PDSCH接收机会,在至少一个候选PDSCH接收机会中的K个候选PDSCH接收机会对应的PDSCH进行了实际传输,且P 个候选PDSCH接收机会对应的PDSCH未进行实际传输的情况下,UE针对K个候选PDSCH接收机会,执行时域绑定。
可选地,本申请实施例中,还包括:在UE针对K个候选PDSCH接收机会,执行时域绑定的情况下,目标HARQ-ACK信息压缩/打包为一个或多个HARQ-ACK比特后,包含在HARQ-ACK码本中进行传输,该目标HARQ-ACK信息为K个候选PDSCH接收机会中的各个候选PDSCH接收机会的解码结果对应的HARQ-ACK信息。
可选地,本申请实施例中,还包括:在K个候选PDSCH接收机会为一个候选PDSCH接收机会的情况下,UE使用一个候选PDSCH接收机会对应的解码结果设置HARQ-ACK码本中对应的HARQ-ACK比特;在K为0的情况下,UE将HARQ-ACK码本中对应的HARQ-ACK比特设置为NACK。
本申请实施例提供一种码本构造方法,UE可以执行:在确定传输机会集合后根据第一信息执行时域绑定,该第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集。本方案中,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,在确定传输机会集合后之后,UE是根据传输机会集合中的传输机会的边界,或者传输机会集合对应的候选PDSCH接收机会并集,来执行时域绑定的,从而实现半静态HARQ-ACK码本的构造,而无需先确定绑定粒度,避免了绑定粒度对确定传输机会的影响,提升了码本构造流程的通用性,降低了码本构造的复杂度。
实施例二
本申请实施例中,UE构造半静态HARQ-ACK码本的方法步骤可以包括下述的步骤301和步骤302。
步骤301、UE确定第二信息。
步骤302、UE根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。
本申请实施例中,上述第二信息用于指示时域资源分配表中第一目标行的至少一个SLIV与半静态上行符号是否存在冲突,该第一目标行为时域资源分配表中的任一行。
可选地,本申请实施例中,上述步骤302具体可以通过下述的步骤302a、步骤302b或步骤302c实现。
步骤302a、在第一目标行的最后一个SLIV与半静态上行符号存在冲突的情况下,UE确定第一目标行为:不用于确定传输机会集合的行,否则UE确定第一目标行为:用于确定传输机会集合的行。
步骤302b、在第一目标行的最后一个SLIV与半静态上行符号存在冲突或不存在冲突的情况下,UE确定第一目标行为:用于确定传输机会集合的行。
步骤302c、UE基于第一目标行的各个SLIV与半静态上行符号的冲突情况,确定第一目标行是否为:用于确定传输机会集合的行。
可以理解,在第一目标行的最后一个SLIV与半静态上行符号存在冲突时,第一目标行不用于确定传输机会集合,否则第一目标行用于确定传输机会集合;或者,第一目标行总是用于确定传输机会集合;或者,UE基于第一目标行的各个SLIV与半静态上行符号的冲突情况,确定第一目标行是否用于确定传输机会集合。
可选地,本申请实施例中,上述步骤302c具体可以通过下述的步骤302c1或步骤302c2实现。
步骤302c1、在第一目标行的至少一个SLIV与半静态上行符号存在冲突的情况下,UE确定第一目标行为:不用于确定传输机会集合的行。
步骤302c2、在第一目标行的至少一个SLIV与半静态上行符号不存在冲突的情况下,UE确定第一目标行为:用于确定传输机会集合的行。
可选地,本申请实施例中,还包括:在第一目标行为用于确定传输机会集合的行的情况下,UE将第一目标行中的第一SLIV映射到目标传输机会。其中,目标传输机会为与第一目标行的最后一个SLIV对应的传输机会,该第一SLIV为第一目标行中不与半静态上行符号存在冲突的任一SLIV。
可选地,本申请实施例中,上述目标传输机会对应X个候选PDSCH接收机会,X为第二目标行中不与半静态上行符号存在冲突的SLIV数目的最大值,该第二目标行为时域资源分配表中与目标传输机会对应的任一行,X为整数。
可选地,本申请实施例中,在Q小于X的情况下,Q个SLIV依次与X个候选PDSCH接收机会 中的最开始Q个或最尾部Q个逐一对应,Q为在第三目标行中不与半静态上行符号存在冲突的SLIV数目,该第三目标行为时域资源分配表中与目标传输机会对应的行,Q为整数。
可选地,本申请实施例中,在X为0的情况下,上述目标传输机会在构造的HARQ-ACK码本中不存在对应的HARQ-ACK比特。
本申请实施例中,UE可以遍历K1 set中的各个K1;对于给定K1,针对每行抽取最后一个SLIV,并通过上述实施例所述的拆分方式,确定该给定K1对应的传输机会子集,其中每个last SLIV组与单个传输机会对应。
在对于给定K1执行拆分之前,在考虑每行与半静态上行符号是否冲突时,可以采用以下方式之一:
冲突处理方式1、考虑最后一个SLIV与半静态上行符号的冲突。
当某一行的最后一个SLIV与半静态上行符号冲突(即存在时域交叠)时,此最后一个SLIV及此行将被删除,不参与后续操作,即并未为该最后一个SLIV/此行确定对应的传输机会,且该最后一个SLIV/此行在半静态码本中并不存在对应的HARQ-ACK比特。
冲突处理方式2、不考虑最后一个SLIV与半静态上行符号的冲突。
可选地,在后续确定传输机会关联的候选PDSCH接收机会数目时,可以考虑某一行中各SLIV与半静态上行符号的冲突。
冲突处理方式3、考虑任一行中每个SLIV与半静态上行符号的冲突。
冲突处理方式3-1、当任一SLIV与半静态上行符号冲突时删除此行。
冲突处理方式3-2、当任一SLIV与半静态上行符号不冲突时保留此行。
在执行拆分流程确定各个K1对应的传输机会子集之后,可以将每行中的各个SLIV对应到此行的最后一个SLIV对应的传输机会(即最后一个SLIV所在的last SLIV group对应的传输机会)。
对于上述冲突处理方式1,最后一个SLIV与半静态上行符号冲突的行不映射到任何传输机会。
对于上述冲突处理方式2,对于基于最后一个SLIV与某个传输机会对应的一到多行中的每行,检查此行中不与半静态上行符号冲突的SLIV并构成子集(假设子集大小为子集中包含的SILV数目),各行对应的子集大小的最大值,可以作为此传输机会关联的候选PDSCH接收机会数目。
当某行对应的子集大小Q<对应传输机会对应的候选PDSCH接收机会数目最大值时,可以对应此传输机会的前Q个或最尾部Q个候选PDSCH接收机会,即使用HARQ-ACK码本中这Q个候选PDSCH接收机会对应的HARQ-ACK比特。
当传输机会对应的候选PDSCH接收机会数目为0时,此传输机会在HARQ-ACK码本中实际不存在对应的HARQ-ACK比特。
对于上述冲突处理方式3-1,任一SLIV与半静态上行符号冲突的行不映射到任何传输机会,此时和冲突处理方式1的调度限制类似。
对于上述冲突处理方式3-2,其处理与上述冲突处理方式2基本一致,差异在于该方式不会存在传输机会对应的候选PDSCH接收机会数目为0的情况。
本申请实施例提供一种码本构造方法,UE根据第二信息,基于时域资源分配表中每行的最后一个SLIV构造半静态HARQ-ACK码本,该第二信息用于指示时域资源分配表中第一目标行的至少一个SLIV与半静态上行符号是否存在冲突。本方案中,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,UE是根据时域资源分配表中任一行的SLIV与半静态上行符号的冲突情况,以基于每行的最后一个SLIV来构造半静态HARQ-ACK码本的,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
需要说明的是,本申请实施例提供的码本构造方法,执行主体可以为UE,或者,码本构造装置,或者,该码本构造装置中的用于执行码本构造方法的控制模块。本申请实施例中以UE执行码本构造方法为例,说明本申请实施例提供的码本构造方法。
图3示出了本申请实施例中涉及的码本构造装置的一种可能的结构示意图。如图3所示,该码本构造装置30可以包括:构造模块31和发送模块32。
其中,构造模块31,用于构造半静态HARQ-ACK码本。发送模块32,用于发送半静态HARQ-ACK码本。其中,构造半静态HARQ-ACK码本具体包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表 中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
在一种可能的实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述构造模块31,具体用于在确定传输机会集合后,在每个传输机会对应的候选PDSCH接收机会集合范围内,执行时域绑定。
在一种可能的实现方式中,上述构造模块31,具体用于在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定;或者,在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定。
在一种可能的实现方式中,一个传输机会对应的候选PDSCH接收机会集合为:一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合;
一个传输机会对应的候选PDSCH接收机会子集包括以下至少一项:至少一个第一子集和第二子集;其中,每个第一子集为一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻或连续的每N个候选PDSCH接收机会构成的一个候选PDSCH接收机会子集;第二子集为在候选PDSCH接收机会集合的尾部剩余候选PDSCH接收机会数目小于N时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会子集,N为正整数。
在一种可能的实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述构造模块31,具体用于在确定传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定。
在一种可能的实现方式中,上述至少一个传输机会组包括以下至少一项:至少一个第一传输机会组和第二传输机会组;其中,每个第一传输机会组为传输机会集合或传输机会子集中,索引/编号相邻或连续的每M个传输机会构成的一个传输机会组;第二传输机会组为在传输机会集合或传输机会子集的尾部剩余传输机会数目小于M时,尾部剩余传输机会构成的一个传输机会组;传输机会子集为基于预设规则对传输机会集合划分后得到的传输机会子集,M为正整数。
在一种可能的实现方式中,上述至少一个传输机会组由在允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合基于M拆分得到的一个或多个传输机会组;
或者,上述至少一个传输机会组由在不允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合中的一个传输机会子集基于M拆分得到的一个或多个传输机会组。
在一种可能的实现方式中,上述第一信息为传输机会集合对应的候选PDSCH接收机会并集。上述构造模块31,具体用于在确定传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定。
在一种可能的实现方式中,上述至少一个候选PDSCH接收机会组包括以下至少一项:至少一个第一候选PDSCH接收机会组和第二候选PDSCH接收机会组;其中,每个第一候选PDSCH接收机会组为候选PDSCH接收机会并集中,索引/编号相邻或连续的每L个候选PDSCH接收机会构成的一个候选PDSCH接收机会组;第二候选PDSCH接收机会组为在候选PDSCH接收机会并集的尾部剩余候选PDSCH接收机会数目小于L时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会组,L为正整数。
在一种可能的实现方式中,上述构造模块31,具体用于在确定传输机会集合后,针对传输机会集合对应的至少一个候选PDSCH接收机会,在至少一个候选PDSCH接收机会中的K个候选PDSCH接收机会对应的PDSCH进行了实际传输,且P个候选PDSCH接收机会对应的PDSCH未进行实际传输的情况下:
针对K个候选PDSCH接收机会和P个候选PDSCH接收机会,执行时域绑定;或者,
针对K个候选PDSCH接收机会,执行时域绑定;
其中,P个候选PDSCH接收机会为至少一个候选PDSCH接收机会中除K个候选PDSCH接收机 会之外的候选PDSCH接收机会,K为整数,P为整数。
在一种可能的实现方式中,上述在UE针对K个候选PDSCH接收机会和P个候选PDSCH接收机会,执行时域绑定的情况下,上述P个候选PDSCH接收机会对应的解码结果为NACK或ACK。
在一种可能的实现方式中,上述在采用二进制与的情况下,上述P个候选PDSCH接收机会对应的解码结果为ACK;在采用二进制或的情况下,上述P个候选PDSCH接收机会对应的解码结果为NACK。
在一种可能的实现方式中,还包括:设置模块。其中,设置模块,用于在K个候选PDSCH接收机会为一个候选PDSCH接收机会的情况下,使用一个候选PDSCH接收机会对应的解码结果设置HARQ-ACK码本中对应的HARQ-ACK比特;或者,在K为0的情况下,将HARQ-ACK码本中对应的HARQ-ACK比特设置为NACK。
在一种可能的实现方式中,上述构造模块31,具体用于在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,确定第一目标行为:不用于确定传输机会集合的行,否则UE确定第一目标行为:用于确定传输机会集合的行;或者,在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突或不存在冲突的情况下,确定第一目标行为:用于确定传输机会集合的行;或者,基于第一目标行的各个时域资源分配记录与半静态时域配置信息的冲突情况,确定第一目标行是否为:用于确定传输机会集合的行。
在一种可能的实现方式中,上述构造模块31,具体用于在第一目标行的至少一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,确定第一目标行为:不用于确定传输机会集合的行;或者,在第一目标行的至少一个时域资源分配记录与半静态时域配置信息不存在冲突的情况下,确定第一目标行为:用于确定传输机会集合的行。
在一种可能的实现方式中,还包括:映射模块。其中,映射模块,用于在第一目标行为用于确定传输机会集合的行的情况下,将第一目标行中的第一时域资源分配记录映射到目标传输机会。其中,目标传输机会为与第一目标行的最后一个时域资源分配记录对应的传输机会,第一时域资源分配记录为第一目标行中不与半静态时域配置信息存在冲突的任一时域资源分配记录。
在一种可能的实现方式中,上述目标传输机会对应X个候选PDSCH接收机会,X为第二目标行中不与半静态时域配置信息存在冲突的时域资源分配记录数目的最大值,第二目标行为时域资源分配表中与目标传输机会对应的任一行,X为整数。
在一种可能的实现方式中,在Q小于X的情况下,Q个时域资源分配记录依次与X个候选PDSCH接收机会中的最开始Q个或最尾部Q个逐一对应,Q为在第三目标行中不与半静态时域配置信息存在冲突的时域资源分配记录数目,第三目标行为时域资源分配表中与目标传输机会对应的行,Q为整数。
在一种可能的实现方式中,在X为0的情况下,上述目标传输机会在构造的HARQ-ACK码本中不存在对应的HARQ-ACK比特。
本申请实施例提供一种码本构造装置,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,在构造半静态HARQ-ACK码本时,可以根据传输机会集合中的传输机会的边界,或者传输机会集合对应的候选PDSCH接收机会并集,来执行时域绑定,从而实现半静态HARQ-ACK码本的构造,而无需先确定绑定粒度,避免了绑定粒度对确定传输机会的影响,提升了码本构造流程的通用性,降低了码本构造的复杂度。或者,在构造半静态HARQ-ACK码本时,可以根据时域资源分配表中任一行的时域资源分配记录与半静态时域配置信息的冲突情况,以基于每行的最后一个时域资源分配记录来构造半静态HARQ-ACK码本,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
图4示出了本申请实施例中涉及的码本构造装置的一种可能的结构示意图。如图4所示,该码本构造装置40可以包括:接收模块41。
其中,接收模块41,用于接收半静态HARQ-ACK码本。其中,半静态HARQ码本是基于时域绑定结果构造的;或者,半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。其中,时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集; 第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
在一种可能的实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述时域绑定结果是在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定得到的;或者,上述时域绑定结果是在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定得到的。
在一种可能的实现方式中,一个传输机会对应的候选PDSCH接收机会集合为:一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合;
一个传输机会对应的候选PDSCH接收机会子集包括以下至少一项:至少一个第一子集和第二子集;其中,每个第一子集为一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻或连续的每N个候选PDSCH接收机会构成的一个候选PDSCH接收机会子集;第二子集为在候选PDSCH接收机会集合的尾部剩余候选PDSCH接收机会数目小于N时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会子集,N为正整数。
在一种可能的实现方式中,上述第一信息为传输机会集合中的传输机会的边界。上述时域绑定结果是在确定传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定得到的。
在一种可能的实现方式中,上述至少一个传输机会组包括以下至少一项:至少一个第一传输机会组和第二传输机会组;其中,每个第一传输机会组为传输机会集合或传输机会子集中,索引/编号相邻或连续的每M个传输机会构成的一个传输机会组;第二传输机会组为在传输机会集合或传输机会子集的尾部剩余传输机会数目小于M时,尾部剩余传输机会构成的一个传输机会组;传输机会子集为基于预设规则对传输机会集合划分后得到的传输机会子集,M为正整数。
在一种可能的实现方式中,上述至少一个传输机会组由在允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合基于M拆分得到的一个或多个传输机会组;
或者,至少一个传输机会组由在不允许跨越传输机会子集的边界的情况下得到,至少一个传输机会组为将传输机会集合中的一个传输机会子集基于M拆分得到的一个或多个传输机会组。
在一种可能的实现方式中,上述第一信息为传输机会集合对应的候选PDSCH接收机会并集。上述时域绑定结果是在确定传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定得到的。
在一种可能的实现方式中,上述至少一个候选PDSCH接收机会组包括以下至少一项:至少一个第一候选PDSCH接收机会组和第二候选PDSCH接收机会组;其中,每个第一候选PDSCH接收机会组为候选PDSCH接收机会并集中,索引/编号相邻或连续的每L个候选PDSCH接收机会构成的一个候选PDSCH接收机会组;第二候选PDSCH接收机会组为在候选PDSCH接收机会并集的尾部剩余候选PDSCH接收机会数目小于L时,尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会组,L为正整数。
在一种可能的实现方式中,上述半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,第一目标行为:不用于确定传输机会集合的行,否则第一目标行为:用于确定传输机会集合的行;或者,在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突或不存在冲突的情况下,第一目标行为:用于确定传输机会集合的行;或者,第一目标行是否为用于确定传输机会集合的行,是基于第一目标行的各个时域资源分配记录与半静态时域配置信息的冲突情况确定的。
在一种可能的实现方式中,在第一目标行的至少一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,第一目标行为:不用于确定传输机会集合的行;
或者,
在第一目标行的至少一个时域资源分配记录与半静态时域配置信息不存在冲突的情况下,第一目标行为:用于确定传输机会集合的行。
在一种可能的实现方式中,还包括:确定模块。其中,确定模块,用于在接收模块41接收半静态 HARQ-ACK码本之前,确定半静态HARQ-ACK码本对应的HARQ-ACK比特序列的长度,以及HARQ-ACK比特序列中各HARQ-ACK比特与候选PDSCH接收机会之间的映射关系。
本申请实施例提供一种码本构造装置,码本构造装置接收的半静态HARQ-ACK码本,是基于时域绑定结果构造的,或者是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的,而构造半静态HARQ-ACK码本时,是根据传输机会集合中的传输机会的边界,或者传输机会集合对应的候选PDSCH接收机会并集,来执行时域绑定,从而实现半静态HARQ-ACK码本的构造的,而无需先确定绑定粒度,避免了绑定粒度对确定传输机会的影响,提升了码本构造流程的通用性,降低了码本构造的复杂度。或者,是根据时域资源分配表中任一行的时域资源分配记录与半静态时域配置信息的冲突情况,以基于每行的最后一个时域资源分配记录来构造半静态HARQ-ACK码本,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
本申请实施例中的码本构造装置可以是装置,具有操作系统的装置或UE,也可以是UE中的部件、集成电路、或芯片。该装置或UE可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的UE 11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的码本构造装置能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图5所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为UE时,该程序或指令被处理器501执行时实现上述方法实施例的各个过程,且能达到相同的技术效果。该通信设备500为网络侧设备时,该程序或指令被处理器501执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,处理器用于构造半静态HARQ-ACK码本。通信接口,用于发送半静态HARQ-ACK码本。其中,构造半静态HARQ-ACK码本具体包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。该UE实施例是与上述UE侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。具体地,图6为实现本申请实施例的一种UE的硬件结构示意图。
该UE 100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等中的至少部分部件。
本领域技术人员可以理解,UE 100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、 鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,处理器110,用于构造半静态HARQ-ACK码本。
射频单元101,用于发送半静态HARQ-ACK码本。其中,构造半静态HARQ-ACK码本的具体包括以下任一项:在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造半静态HARQ-ACK码本;根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本。其中,第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为时域资源分配表中的任一行。
本申请实施例提供一种UE,对于支持Multi-PDSCH调度的半静态HARQ-ACK码本,UE在构造半静态HARQ-ACK码本时,可以根据传输机会集合中的传输机会的边界,或者传输机会集合对应的候选PDSCH接收机会并集,来执行时域绑定,从而实现半静态HARQ-ACK码本的构造,而无需先确定绑定粒度,避免了绑定粒度对确定传输机会的影响,提升了码本构造流程的通用性,降低了码本构造的复杂度。或者,UE在构造半静态HARQ-ACK码本时,可以根据时域资源分配表中任一行的时域资源分配记录与半静态时域配置信息的冲突情况,以基于每行的最后一个时域资源分配记录来构造半静态HARQ-ACK码本,以避免在码本中不存在需要使用的HARQ-ACK比特的情况,从而避免对HARQ传输性能造成影响,或者对下行调度带来不必要的限制。
可选地,本申请实施例中,上述第一信息为传输机会集合中的传输机会的边界。处理器110,具体用于在确定传输机会集合后,在每个传输机会对应的候选PDSCH接收机会集合范围内,执行时域绑定。
可选地,本申请实施例中,处理器110,具体用于在确定所述传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定;或者,在确定所述传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定。
可选地,本申请实施例中,上述第一信息为传输机会集合中的传输机会的边界。处理器110,具体用于在确定传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定。
可选地,本申请实施例中,上述第一信息为传输机会集合对应的候选PDSCH接收机会并集。处理器110,具体用于在确定传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定。
可选地,本申请实施例中,处理器110,具体用于在确定传输机会集合后,针对传输机会集合对应的至少一个候选PDSCH接收机会,在至少一个候选PDSCH接收机会中的K个候选PDSCH接收机会对应的PDSCH进行了实际传输,且P个候选PDSCH接收机会对应的PDSCH未进行实际传输的情况下:
针对K个候选PDSCH接收机会和P个候选PDSCH接收机会,执行时域绑定;或者,
针对K个候选PDSCH接收机会,执行时域绑定;
其中,P个候选PDSCH接收机会为至少一个候选PDSCH接收机会中除K个候选PDSCH接收机会之外的候选PDSCH接收机会,K为整数,P为整数。
可选地,本申请实施例中,处理器110,还用于在K个候选PDSCH接收机会为一个候选PDSCH接收机会的情况下,使用一个候选PDSCH接收机会对应的解码结果设置HARQ-ACK码本中对应的HARQ-ACK比特;或者,在K为0的情况下,将HARQ-ACK码本中对应的HARQ-ACK比特设置为NACK。
可选地,本申请实施例中,处理器110,具体用于在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,确定第一目标行为:不用于确定传输机会集合的行,否则UE确定第一目标行为:用于确定传输机会集合的行;或者,在第一目标行的最后一个时域资源分配记录与半静态时域配置信息存在冲突或不存在冲突的情况下,确定第一目标行为:用于确定传输机会集合的行;或者,基于第一目标行的各个时域资源分配记录与半静态时域配置信息的冲突情况,确定第一目标行是否为:用于确定传输机会集合的行。
可选地,本申请实施例中,处理器110,具体用于在第一目标行的至少一个时域资源分配记录与半静态时域配置信息存在冲突的情况下,确定第一目标行为:不用于确定传输机会集合的行;或者,在第一目标行的至少一个时域资源分配记录与半静态时域配置信息不存在冲突的情况下,确定第一目标行为:用于确定传输机会集合的行。
可选地,本申请实施例中,处理器110,还用于在第一目标行为用于确定传输机会集合的行的情况下,将第一目标行中的第一时域资源分配记录映射到目标传输机会。其中,目标传输机会为与第一目标行的最后一个时域资源分配记录对应的传输机会,第一时域资源分配记录为第一目标行中不与半静态时域配置信息存在冲突的任一时域资源分配记录。
本申请实施例提供的UE能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于接收半静态HARQ-ACK码本;其中,半静态HARQ码本是基于时域绑定结果构造的;或者,半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的。其中,时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;第一信息为以下任一项:传输机会集合中的传输机会的边界、传输机会集合对应的候选PDSCH接收机会并集;候选PDSCH接收机会并集为将传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;第二信息用于指示时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,第一目标行为所述时域资源分配表中的任一行。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图7所示,该网络侧设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器75上并可在处理器74上运行的指令或程序,处理器74调用存储器75中的指令或程序执行上述各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述码本构造方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的UE中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述码本构造方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种码本构造方法,包括:
    用户设备UE构造半静态混合自动重传请求-确认HARQ-ACK码本;
    所述UE发送所述半静态HARQ-ACK码本;
    其中,所述UE构造所述半静态HARQ-ACK码本的步骤包括以下任一项:
    所述UE在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造所述半静态HARQ-ACK码本;
    所述UE根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本;
    其中,所述第一信息为以下任一项:所述传输机会集合中的传输机会的边界、所述传输机会集合对应的候选物理下行共享信道PDSCH接收机会并集;所述候选PDSCH接收机会并集为将所述传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;所述第二信息用于指示所述时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,所述第一目标行为所述时域资源分配表中的任一行。
  2. 根据权利要求1所述的方法,其中,所述第一信息为所述传输机会集合中的传输机会的边界;
    所述UE在确定传输机会集合后根据第一信息执行时域绑定,包括:
    所述UE在确定所述传输机会集合后,在每个传输机会对应的候选PDSCH接收机会集合范围内,执行时域绑定。
  3. 根据权利要求2所述的方法,其中,所述UE在确定所述传输机会集合后,在每个传输机会对应的候选PDSCH接收机会集合范围内,执行时域绑定,包括:
    所述UE在确定所述传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定;
    或者,
    所述UE在确定所述传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定。
  4. 根据权利要求3所述的方法,其中,一个传输机会对应的候选PDSCH接收机会集合为:所述一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合;
    一个传输机会对应的候选PDSCH接收机会子集包括以下至少一项:至少一个第一子集和第二子集;其中,每个第一子集为所述一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻或连续的每N个候选PDSCH接收机会构成的一个候选PDSCH接收机会子集;所述第二子集为在所述候选PDSCH接收机会集合的尾部剩余候选PDSCH接收机会数目小于N时,所述尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会子集,N为正整数。
  5. 根据权利要求1所述的方法,其中,所述第一信息为所述传输机会集合中的传输机会的边界;
    所述UE在确定传输机会集合后根据第一信息执行时域绑定,包括:
    所述UE在确定所述传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定。
  6. 根据权利要求5所述的方法,其中,所述至少一个传输机会组包括以下至少一项:至少一个第一传输机会组和第二传输机会组;其中,每个第一传输机会组为所述传输机会集合或传输机会子集中,索引/编号相邻或连续的每M个传输机会构成的一个传输机会组;所述第二传输机会组为在所述传输机会集合或传输机会子集的尾部剩余传输机会数目小于M时,所述尾部剩余传输机会构成的一个传输机会组;所述传输机会子集为基于预设规则对所述传输机会集合划分后得到的传输机会子集,M为正整数。
  7. 根据权利要求6所述的方法,其中,所述至少一个传输机会组由在允许跨越所述传输机会子集的边界的情况下得到,所述至少一个传输机会组为将所述传输机会集合基于M拆分得到的一个或多个传输机会组;
    或者,所述至少一个传输机会组由在不允许跨越所述传输机会子集的边界的情况下得到,所述至少一个传输机会组为将所述传输机会集合中的一个传输机会子集基于M拆分得到的一个或多个传输机会组。
  8. 根据权利要求1所述的方法,其中,所述第一信息为所述传输机会集合对应的候选PDSCH接收机会并集;
    所述UE在确定传输机会集合后根据第一信息执行时域绑定,包括:
    所述UE在确定所述传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定。
  9. 根据权利要求8所述的方法,其中,所述至少一个候选PDSCH接收机会组包括以下至少一项:至少一个第一候选PDSCH接收机会组和第二候选PDSCH接收机会组;其中,每个第一候选PDSCH接收机会组为所述候选PDSCH接收机会并集中,索引/编号相邻或连续的每L个候选PDSCH接收机会构成的一个候选PDSCH接收机会组;所述第二候选PDSCH接收机会组为在所述候选PDSCH接收机会并集的尾部剩余候选PDSCH接收机会数目小于L时,所述尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会组,L为正整数。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述UE在确定传输机会集合后根据第一信息执行时域绑定,包括:
    所述UE在确定所述传输机会集合后,针对所述传输机会集合对应的至少一个候选PDSCH接收机会,在所述至少一个候选PDSCH接收机会中的K个候选PDSCH接收机会对应的PDSCH进行了实际传输,且P个候选PDSCH接收机会对应的PDSCH未进行实际传输的情况下:
    针对所述K个候选PDSCH接收机会和所述P个候选PDSCH接收机会,执行时域绑定;或者,
    针对所述K个候选PDSCH接收机会,执行时域绑定;
    其中,所述P个候选PDSCH接收机会为所述至少一个候选PDSCH接收机会中除所述K个候选PDSCH接收机会之外的候选PDSCH接收机会,K为整数,P为整数。
  11. 根据权利要求10所述的方法,其中,在所述UE针对所述K个候选PDSCH接收机会和所述P个候选PDSCH接收机会,执行时域绑定的情况下,所述P个候选PDSCH接收机会对应的解码结果为非确认NACK或ACK。
  12. 根据权利要求11所述的方法,其中,在采用二进制与的情况下,所述P个候选PDSCH接收机会对应的解码结果为ACK;
    在采用二进制或的情况下,所述P个候选PDSCH接收机会对应的解码结果为NACK。
  13. 根据权利要求10所述的方法,其中,还包括:
    在K个候选PDSCH接收机会为一个候选PDSCH接收机会的情况下,所述UE使用所述一个候选PDSCH接收机会对应的解码结果设置HARQ-ACK码本中对应的HARQ-ACK比特;
    在K为0的情况下,所述UE将HARQ-ACK码本中对应的HARQ-ACK比特设置为NACK。
  14. 根据权利要求1所述的方法,其中,所述UE根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本,包括:
    在所述第一目标行的最后一个时域资源分配记录与所述半静态时域配置信息存在冲突的情况下,所述UE确定所述第一目标行为:不用于确定传输机会集合的行,否则所述UE确定所述第一目标行为:用于确定传输机会集合的行;
    或者,
    在所述第一目标行的最后一个时域资源分配记录与所述半静态时域配置信息存在冲突或不存在冲突的情况下,所述UE确定所述第一目标行为:用于确定传输机会集合的行;
    或者,
    所述UE基于所述第一目标行的各个时域资源分配记录与所述半静态时域配置信息的冲突情况,确定所述第一目标行是否为:用于确定传输机会集合的行。
  15. 根据权利要求14所述的方法,其中,所述UE基于所述第一目标行的各个时域资源分配记录与所述半静态时域配置信息的冲突情况,确定所述第一目标行是否为:用于确定传输机会集合的行,包括:
    在所述第一目标行的至少一个时域资源分配记录与所述半静态时域配置信息存在冲突的情况下,所述UE确定所述第一目标行为:不用于确定所述传输机会集合的行;
    或者,
    在所述第一目标行的至少一个时域资源分配记录与所述半静态时域配置信息不存在冲突的情况下,所述UE确定所述第一目标行为:用于确定所述传输机会集合的行。
  16. 根据权利要求14所述的方法,其中,还包括:
    在所述第一目标行为用于确定所述传输机会集合的行的情况下,所述UE将所述第一目标行中的第一时域资源分配记录映射到目标传输机会;
    其中,所述目标传输机会为与所述第一目标行的最后一个时域资源分配记录对应的传输机会,所述第一时域资源分配记录为所述第一目标行中不与所述半静态时域配置信息存在冲突的任一时域资源分配记录。
  17. 根据权利要求16所述的方法,其中,所述目标传输机会对应X个候选PDSCH接收机会,X为第二目标行中不与所述半静态时域配置信息存在冲突的时域资源分配记录数目的最大值,所述第二目标行为所述时域资源分配表中与所述目标传输机会对应的任一行,X为整数。
  18. 根据权利要求17所述的方法,其中,在Q小于X的情况下,Q个时域资源分配记录依次与X个候选PDSCH接收机会中的最开始Q个或最尾部Q个逐一对应,Q为在第三目标行中不与所述半静态时域配置信息存在冲突的时域资源分配记录数目,所述第三目标行为所述时域资源分配表中与所述目标传输机会对应的行,Q为整数。
  19. 根据权利要求17所述的方法,其中,在X为0的情况下,所述目标传输机会在构造的HARQ-ACK码本中不存在对应的HARQ-ACK比特。
  20. 一种码本构造方法,包括:
    网络侧设备接收半静态混合自动重传请求-确认HARQ-ACK码本;其中,所述半静态HARQ码本是基于时域绑定结果构造的;或者,所述半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的;
    其中,所述时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;所述第一信息为以下任一项:所述传输机会集合中的传输机会的边界、所述传输机会集合对应的候选物理下行共享信道PDSCH接收机会并集;所述候选PDSCH接收机会并集为将所述传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;所述第二信息用于指示所述时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,所述第一目标行为所述时域资源分配表中的任一行。
  21. 根据权利要求20所述的方法,其中,所述第一信息为所述传输机会集合中的传输机会的边界;
    所述时域绑定结果是在确定传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合,执行时域绑定得到的;或者,
    所述时域绑定结果是在确定所述传输机会集合后,针对每个传输机会对应的候选PDSCH接收机会集合中的一个候选PDSCH接收机会子集,执行时域绑定得到的。
  22. 根据权利要求21所述的方法,其中,一个传输机会对应的候选PDSCH接收机会集合为:所述一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合;
    一个传输机会对应的候选PDSCH接收机会子集包括以下至少一项:至少一个第一子集和第二子集;其中,每个第一子集为所述一个传输机会关联的至少一个候选PDSCH接收机会构成的候选PDSCH接收机会集合中,索引/编号相邻或连续的每N个候选PDSCH接收机会构成的一个候选PDSCH接收机会子集;所述第二子集为在所述候选PDSCH接收机会集合的尾部剩余候选PDSCH接收机会数目小于N时,所述尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接 收机会子集,N为正整数。
  23. 根据权利要求20所述的方法,其中,所述第一信息为所述传输机会集合中的传输机会的边界;
    所述时域绑定结果是在确定所述传输机会集合后,针对至少一个传输机会组中,每个传输机会组中的各个传输机会关联的各个候选PDSCH接收机会,执行时域绑定得到的。
  24. 根据权利要求23所述的方法,其中,所述至少一个传输机会组包括以下至少一项:至少一个第一传输机会组和第二传输机会组;其中,每个第一传输机会组为所述传输机会集合或传输机会子集中,索引/编号相邻或连续的每M个传输机会构成的一个传输机会组;所述第二传输机会组为在所述传输机会集合或传输机会子集的尾部剩余传输机会数目小于M时,所述尾部剩余传输机会构成的一个传输机会组;所述传输机会子集为基于预设规则对所述传输机会集合划分后得到的传输机会子集,M为正整数。
  25. 根据权利要求24所述的方法,其中,所述至少一个传输机会组由在允许跨越所述传输机会子集的边界的情况下得到,所述至少一个传输机会组为将所述传输机会集合基于M拆分得到的一个或多个传输机会组;
    或者,所述至少一个传输机会组由在不允许跨越所述传输机会子集的边界的情况下得到,所述至少一个传输机会组为将所述传输机会集合中的一个传输机会子集基于M拆分得到的一个或多个传输机会组。
  26. 根据权利要求20所述的方法,其中,所述第一信息为所述传输机会集合对应的候选PDSCH接收机会并集;
    所述时域绑定结果是在确定所述传输机会集合后,针对至少一个候选PDSCH接收机会组中,每个候选PDSCH接收机会组中的所有候选PDSCH接收机会,执行时域绑定得到的。
  27. 根据权利要求26所述的方法,其中,所述至少一个候选PDSCH接收机会组包括以下至少一项:至少一个第一候选PDSCH接收机会组和第二候选PDSCH接收机会组;其中,每个第一候选PDSCH接收机会组为所述候选PDSCH接收机会并集中,索引/编号相邻或连续的每L个候选PDSCH接收机会构成的一个候选PDSCH接收机会组;所述第二候选PDSCH接收机会组为在所述候选PDSCH接收机会并集的尾部剩余候选PDSCH接收机会数目小于L时,所述尾部剩余候选PDSCH接收机会构成的一个候选PDSCH接收机会组,L为正整数。
  28. 根据权利要求20所述的方法,其中,所述半静态HARQ-ACK码本是根据所述第二信息基于所述时域资源分配表中每行的最后一个时域资源分配记录构造的;
    在所述第一目标行的最后一个时域资源分配记录与所述半静态时域配置信息存在冲突的情况下,所述第一目标行为:不用于确定传输机会集合的行,否则所述第一目标行为:用于确定传输机会集合的行;
    或者,
    在所述第一目标行的最后一个时域资源分配记录与所述半静态时域配置信息存在冲突或不存在冲突的情况下,所述第一目标行为:用于确定传输机会集合的行;
    或者,
    所述第一目标行是否为用于确定传输机会集合的行,是基于所述第一目标行的各个时域资源分配记录与所述半静态时域配置信息的冲突情况确定的。
  29. 根据权利要求28所述的方法,其中,在所述第一目标行的至少一个时域资源分配记录与所述半静态时域配置信息存在冲突的情况下,所述第一目标行为:不用于确定所述传输机会集合的行;
    或者,
    在所述第一目标行的至少一个时域资源分配记录与所述半静态时域配置信息不存在冲突的情况下,所述第一目标行为:用于确定所述传输机会集合的行。
  30. 根据权利要求20所述的方法,其中,所述网络侧设备接收半静态HARQ-ACK码本之前,还包括:
    所述网络侧设备确定所述半静态HARQ-ACK码本对应的HARQ-ACK比特序列的长度,以及 所述HARQ-ACK比特序列中各HARQ-ACK比特与候选PDSCH接收机会之间的映射关系。
  31. 一种码本构造装置,包括:构造模块和发送模块;
    所述构造模块,用于构造半静态混合自动重传请求-确认HARQ-ACK码本;
    所述发送模块,用于发送所述半静态HARQ-ACK码本;
    其中,构造所述半静态HARQ-ACK码本具体包括以下任一项:
    在确定传输机会集合后根据第一信息执行时域绑定,并基于时域绑定结果构造所述半静态HARQ-ACK码本;
    根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造半静态HARQ-ACK码本;
    其中,所述第一信息为以下任一项:所述传输机会集合中的传输机会的边界、所述传输机会集合对应的候选物理下行共享信道PDSCH接收机会并集;所述候选PDSCH接收机会并集为将所述传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;所述第二信息用于指示所述时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,所述第一目标行为所述时域资源分配表中的任一行。
  32. 一种码本构造装置,包括:接收模块;
    所述接收模块,用于接收半静态混合自动重传请求-确认HARQ-ACK码本;其中,所述半静态HARQ码本是基于时域绑定结果构造的;或者,所述半静态HARQ-ACK码本是根据第二信息基于时域资源分配表中每行的最后一个时域资源分配记录构造的;
    其中,所述时域绑定结果是在确定传输机会集合后根据第一信息执行时域绑定得到的;所述第一信息为以下任一项:所述传输机会集合中的传输机会的边界、所述传输机会集合对应的候选物理下行共享信道PDSCH接收机会并集;所述候选PDSCH接收机会并集为将所述传输机会集合中各个传输机会对应的候选PDSCH接收机会集合中的各个候选PDSCH接收机会,按预设顺序进行首尾级联得到的候选PDSCH接收机会并集;所述第二信息用于指示所述时域资源分配表中第一目标行的至少一个时域资源分配记录与半静态时域配置信息是否存在冲突,所述第一目标行为所述时域资源分配表中的任一行。
  33. 一种用户设备UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的码本构造方法的步骤。
  34. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20至30中任一项所述的码本构造方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19中任一项所述的码本构造方法的步骤,或者实现如权利要求20至30中任一项所述的码本构造方法的步骤。
  36. 一种通信系统,所述通信系统包括如权利要求31和如权利要求32所述的码本构造装置;或者,
    所述通信系统包括如权利要求33所述的用户设备UE和如权利要求34所述的网络侧设备。
  37. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至19中任一项所述的码本构造方法,或实现如权利要求20至30中任一项所述的码本构造方法。
  38. 一种用户设备UE,包括所述UE被配置成用于执行如权利要求1至19中任一项所述的码本构造方法。
  39. 一种网络侧设备,包括所述网络侧设备被配置成用于执行如权利要求20至30中任一项所述的码本构造方法。
PCT/CN2022/091939 2021-05-11 2022-05-10 码本构造方法、装置、通信设备、存储介质及系统 WO2022237772A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237040110A KR20230173718A (ko) 2021-05-11 2022-05-10 코드북 구성 방법, 장치, 통신기기, 저장 매체 및 시스템
JP2023569868A JP2024518508A (ja) 2021-05-11 2022-05-10 コードブック構築方法、装置、通信機器、記憶媒体及びシステム
EP22806735.1A EP4340245A1 (en) 2021-05-11 2022-05-10 Codebook construction method and apparatus, communication device, storage medium, and system
US18/507,474 US20240089037A1 (en) 2021-05-11 2023-11-13 Codebook construction method and apparatus, communication device, storage medium, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513688.3A CN115333585B (zh) 2021-05-11 2021-05-11 码本构造方法、装置、通信设备、存储介质及系统
CN202110513688.3 2021-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/507,474 Continuation US20240089037A1 (en) 2021-05-11 2023-11-13 Codebook construction method and apparatus, communication device, storage medium, and system

Publications (1)

Publication Number Publication Date
WO2022237772A1 true WO2022237772A1 (zh) 2022-11-17

Family

ID=83912371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091939 WO2022237772A1 (zh) 2021-05-11 2022-05-10 码本构造方法、装置、通信设备、存储介质及系统

Country Status (6)

Country Link
US (1) US20240089037A1 (zh)
EP (1) EP4340245A1 (zh)
JP (1) JP2024518508A (zh)
KR (1) KR20230173718A (zh)
CN (1) CN115333585B (zh)
WO (1) WO2022237772A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351837A (zh) * 2018-04-04 2019-10-18 北京展讯高科通信技术有限公司 半静态harq-ack码本的确定方法及装置、存储介质、终端
CN112398585A (zh) * 2019-08-12 2021-02-23 中国移动通信有限公司研究院 码本的生成方法及装置
US20210105102A1 (en) * 2019-10-02 2021-04-08 Yingyang Li Ue configured for type-2 harq-ack codebook grouping and harq-ack retransmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303419B2 (en) * 2018-04-06 2022-04-12 Qualcomm Incorporated Semi-static HARQ-ACK codebook with multiple PDSCH transmissions per slot
CN110505040B (zh) * 2018-05-18 2020-05-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN112311512B (zh) * 2019-07-30 2021-11-09 中国移动通信有限公司研究院 混合自动重传码本的确定、指示方法、终端及网络设备
EP4018584A4 (en) * 2019-08-23 2023-05-03 Lenovo (Beijing) Limited METHOD AND APPARATUS FOR DETERMINING A HARQ-ACK CODEBOOK

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351837A (zh) * 2018-04-04 2019-10-18 北京展讯高科通信技术有限公司 半静态harq-ack码本的确定方法及装置、存储介质、终端
CN112398585A (zh) * 2019-08-12 2021-02-23 中国移动通信有限公司研究院 码本的生成方法及装置
US20210105102A1 (en) * 2019-10-02 2021-04-08 Yingyang Li Ue configured for type-2 harq-ack codebook grouping and harq-ack retransmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussions on PDSCH PUSCH enhancements for NR operation from 52.6GHz to 71GHz", 3GPP DRAFT; R1-2102518, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993122 *

Also Published As

Publication number Publication date
US20240089037A1 (en) 2024-03-14
JP2024518508A (ja) 2024-05-01
KR20230173718A (ko) 2023-12-27
EP4340245A1 (en) 2024-03-20
CN115333585B (zh) 2024-05-31
CN115333585A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2021164482A1 (zh) 信息接收方法、信息发送方法及设备
JP2024509292A (ja) Harq ackフィードバック方法、装置、端末及び記憶媒体
WO2021197317A1 (zh) 混合自动重传请求应答反馈方法、终端及网络节点
US20240023108A1 (en) Method and apparatus for determining pucch resource, and terminal
KR20230036124A (ko) 정보 다중화 방법, 장치 및 사용자 장비
WO2022237772A1 (zh) 码本构造方法、装置、通信设备、存储介质及系统
EP4307589A1 (en) Semi-static harq-ack codebook generating method and terminal
KR20230031340A (ko) 사이드링크 전송 방법, 전송 장치 및 통신 장비
WO2022237683A1 (zh) 动态harq-ack码本处理方法、装置、设备及可读存储介质
WO2022213922A1 (zh) 码本确定、接收方法、装置、终端及网络侧设备
WO2022068762A1 (zh) Harq-ack反馈方法、终端及网络侧设备
WO2023005977A1 (zh) 码本反馈的方法、装置、设备及计算机存储介质
EP4307814A1 (en) Information feedback method and apparatus, information sending method and apparatus, and terminal and network side device
WO2023006065A1 (zh) Harq-ack的传输方法及装置
WO2022028606A1 (zh) 信息确定方法、信息指示方法、终端及网络侧设备
WO2022206992A1 (zh) 混合自动重传请求应答harq-ack码本构造方法、传输方法及设备
EP4319023A1 (en) Pdsch transmitting method and apparatus, pdsch receiving method and apparatus, and communication device
WO2022135458A1 (zh) Sps harq-ack处理方法、装置、设备及可读存储介质
CN116938397A (zh) 混合自动重传请求确认码本确定方法、装置及通信设备
JP2024512580A (ja) 準静的harqコードブックの構築方法、装置、機器及び可読記憶媒体
CN116094675A (zh) 上行传输方法、设备及可读存储介质
CN116980082A (zh) 半静态harq-ack码本的构建方法、装置及通信设备
CN115968043A (zh) 重复传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569868

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237040110

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040110

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022806735

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806735

Country of ref document: EP

Effective date: 20231211