WO2021027705A1 - 无线通信系统中的用户设备、电子设备、方法及存储介质 - Google Patents

无线通信系统中的用户设备、电子设备、方法及存储介质 Download PDF

Info

Publication number
WO2021027705A1
WO2021027705A1 PCT/CN2020/107690 CN2020107690W WO2021027705A1 WO 2021027705 A1 WO2021027705 A1 WO 2021027705A1 CN 2020107690 W CN2020107690 W CN 2020107690W WO 2021027705 A1 WO2021027705 A1 WO 2021027705A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
user equipment
mac
wireless communication
beam failure
Prior art date
Application number
PCT/CN2020/107690
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to CN202080055255.1A priority Critical patent/CN114245995A/zh
Priority to KR1020227003444A priority patent/KR20220047761A/ko
Priority to US17/626,127 priority patent/US20220287131A1/en
Priority to JP2022509067A priority patent/JP2022543901A/ja
Priority to EP20852495.9A priority patent/EP4007341A4/en
Publication of WO2021027705A1 publication Critical patent/WO2021027705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the technical field of wireless communication, in particular to user equipment, electronic equipment, a method for wireless communication in a wireless communication system, and a computer-readable storage medium in a wireless communication system.
  • the network side configures a PCell (Primary Cell) and multiple SCells (Secondary Cells) for UE (User Equipment) to communicate with the base station.
  • the UE will perform beam failure detection to determine whether the beam used by the SCell is in a failure state. If a beam failure occurs, the UE will notify the network side of the beam failure event, and will notify the identification of the SCell where the beam failure occurred and the new beam selected by the UE. After that, the network side will use the new beam selected by the UE to send signals. When the UE receives the signal, it can be determined that the new beam has been activated, that is, the beam failed to recover successfully.
  • the NR New Radio
  • 5G fifth generation mobile communication system
  • communication transmission runs in a high frequency band. Due to changes in the millimeter wave propagation environment, such as the obstruction of people and buildings, the rotation of the UE, and other factors, the beam between the UE and the network may frequently fail.
  • the multiple SCells may be co-located, that is, the same downlink transmit beam is used. Therefore, if beam failure occurs, multiple secondary cells may have beam failure at the same time. Whenever a beam failure occurs in a secondary cell, the UE will notify the network side of a beam failure event, and accordingly notify the identification of the SCell where the beam failure occurred and the new beam selected by the UE. As a result, the communication and transmission overhead is relatively high.
  • the purpose of the present disclosure is to provide a user equipment in a wireless communication system, an electronic device, a method for wireless communication in a wireless communication system, and a computer-readable storage medium, so as to reduce communication transmission when a beam failure occurs in a secondary cell s expenses.
  • a user equipment in a wireless communication system communicates with an electronic device in the wireless communication system via a primary cell and multiple secondary cells, and the user equipment includes: One or more processing circuits configured to perform the following operations: determine whether beam failure has occurred in each of the plurality of secondary cells; and when it is determined that at least two of the plurality of secondary cells have occurred When the beam fails, a single media access control control element MAC CE is set to notify the electronic device, where the MAC CE includes at least index information of all component carriers where the beam fails.
  • an electronic device in a wireless communication system communicates with a user equipment in the wireless communication system via a primary cell and multiple secondary cells.
  • the electronic device includes : A transceiver; and one or more processing circuits configured to perform the following operations: cause the transceiver to receive a single media access control control element MAC CE from the user equipment, wherein the MAC
  • the CE contains at least the index information of all component carriers where beam failure occurs.
  • a method for wireless communication in a wireless communication system including user equipment and electronic equipment, the user equipment via a primary cell and multiple secondary cells
  • the method includes: judging whether beam failure has occurred in each of the plurality of secondary cells; and when it is judged that beam failure has occurred in at least two of the plurality of secondary cells, setting a single The MAC CE, a control element of the media access control, is used to notify the electronic device, where the MAC CE at least includes index information of all component carriers where beam failure occurs.
  • a method for wireless communication in a wireless communication system including user equipment and electronic equipment, the user equipment via a primary cell and multiple secondary cells Communicating with the electronic device, the method includes: receiving a single media access control control element MAC CE from the user equipment, where the MAC CE includes at least index information of all component carriers where beam failure occurs.
  • a computer-readable storage medium including executable computer instructions that when executed by a computer cause the computer to perform the method according to the present disclosure.
  • Using the user equipment, electronic equipment, method for wireless communication in the wireless communication system, and computer-readable storage medium in the wireless communication system according to the present disclosure can reduce communication transmission overhead when a beam failure occurs in a secondary cell.
  • FIG. 1 shows a schematic diagram of a beam failure recovery process between a UE and a network side known by the inventor
  • FIG. 2 shows a schematic diagram of another beam failure recovery process between the UE and the network side known by the inventor
  • Fig. 3 shows a structure of a UE 300 in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 4 shows the structure of the processing circuit 310 in the UE 300 in the wireless communication system according to an embodiment of the present disclosure
  • 5A is a schematic diagram of the format of multiple MAC CEs according to an embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of omitting multiple MAC CEs to a single MAC CE of FIG. 5A;
  • Fig. 6 is a schematic diagram of MAC CE in a grouping manner according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of the network side sending BFRR to the UE in a packet manner according to an embodiment of the present disclosure
  • Fig. 8 shows a schematic diagram of a PCell transmitting partial BFRR according to an embodiment of the present disclosure
  • Fig. 9 shows a schematic diagram of a PCell using two parts to transmit BFRR according to an embodiment of the present disclosure
  • FIG. 10 shows a schematic diagram of interaction with the network side when the UE does not find a new beam that meets the quality requirements in q1 according to an embodiment of the present disclosure
  • FIG. 11 shows a schematic diagram of interaction between the UE and the network side in the case where the pre-processing of BFR has not occurred according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic diagram of transmitting and receiving in which some beams are of poor quality and another part of beams is of good quality;
  • FIG. 13 shows a schematic diagram of partially recovering a downlink transmit beam in q0 according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram of the structure of an electronic device in a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 15 is a flowchart illustrating a wireless communication method according to an embodiment of the present disclosure.
  • 16 is a block diagram showing a first example of a schematic configuration of an eNB (evolution Node Base Station) or gNB (a base station in a 5th generation communication system) applicable to the present disclosure;
  • eNB evolution Node Base Station
  • gNB a base station in a 5th generation communication system
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of an eNB or gNB applicable to the present disclosure
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smart phone applicable to the present disclosure.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that no specific details need to be used, and the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • the UE (User Equipment) involved in the present disclosure includes but is not limited to terminals with wireless communication functions such as mobile terminals, computers, and vehicle-mounted equipment. Further, depending on the specific functions described, the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip.
  • the base station involved in the present disclosure may be, for example, an eNB (evolution Node Base Station, evolved node base station), a gNB (a base station in the 5th generation communication system), or a component in an eNB or a gNB Such as chips.
  • the network side configures a PCell (Primary Cell) and multiple SCells (Secondary Cells) for UE (User Equipment) to communicate with the base station.
  • the UE will perform beam failure detection to determine whether the beam used by the SCell is in a failed state. If a beam failure occurs, the UE will notify the network side of the beam failure event, and will notify the identification of the SCell where the beam failure occurred and the new beam selected by the UE to restore the SCell service. After that, the network side will use the new beam selected by the UE to send signals. When the UE receives the signal, it can be determined that the new beam has been activated, that is, the beam failed to recover successfully.
  • Fig. 1 shows a schematic diagram of a beam failure recovery process between a UE and a network side known by the inventor.
  • the UE communicates with the base station via a PCell or SCell with an uplink and an SCell with only a downlink.
  • a PCell or SCell with an uplink can send a q0 set (Reference Signal Set, reference signal set) for BFD (Beam Failure Detection) to the UE.
  • the SCell with only downlink can set q0 configured for BFD in an explicit or implicit manner.
  • the reference signal set q0 can be a maximum of 2 periodic CSI-RS (Channel Channels) configured by the gNB through RRC (Radio Resource Control) signaling for the UE on each SCell. State Information Reference Signal, channel state information reference signal) resource.
  • an implicit configuration method can be used.
  • the UE can determine the reference signal included in the q0 set by itself. This reference signal has the same TCI (Transmission Configuration Indication) as the CORESET where the PDCCH (Physical Downlink Control Channel) is located. Indicate) status (that is, the same beam direction).
  • the UE can determine whether a beam failure event occurs based on q0. For example, the UE may determine whether the assumed BLER (Block Error Rate, block error rate) of the PDCCH corresponding to the reference signal is too high according to the reference signal in q0, so as to determine whether the beam is in a failed state. Assuming that a beam failure event occurs, the UE may send a PUCCH (Physical Uplink Control Channel) to a PCell or SCell with an uplink to notify the beam failure event. For example, the UE may send a BFRQ (Beam Failure Recovery Request, beam failure recovery request) in the PUCCH.
  • PUCCH Physical Uplink Control Channel
  • BFRQ Beam Failure Recovery Request, beam failure recovery request
  • the PCell or SCell with uplink can authorize PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) to carry MAC CE (Media Access Control-Control Element, media access control-control element).
  • PUSCH Physical Uplink Shared Channel
  • MAC CE Media Access Control-Control Element, media access control-control element
  • the UE can notify the cell ID (Identification) where the beam failure occurred and the new beam selected by the UE through the MAC CE.
  • the UE receives the PDCCH sent by the new beam in a specific PDCCH search space, that is, the RecoverySearchSpace recovery search space, to determine that the new beam has been activated, that is, the beam failed to recover successfully.
  • the multiple SCells may be co-located, that is, the multiple SCells use the same downlink transmit beam. Therefore, if a beam failure occurs, multiple SCells using the failed beam may have beam failures at the same time.
  • the UE will notify the network side of a beam failure event, and accordingly notify the ID of the SCell where the beam failure occurred and the new beam selected by the UE. As a result, the communication and transmission overhead is relatively high.
  • Fig. 2 shows a schematic diagram of another beam failure recovery process between the UE and the network side known by the inventor.
  • the UE communicates with the base station via one PCell or SCell with uplink and two SCells A and B with only downlink.
  • a PCell or SCell with an uplink can send q0 for BFD to the UE.
  • SCells A and B with only downlink can set q0 configured for BFD in an explicit or implicit manner.
  • the UE may determine whether a beam failure event occurs in SCell A and SCell B based on q0 received from SCell A and SCell B, respectively. Assuming that a beam failure event occurs, the UE may send PUCCHs for SCell A and SCell B to the PCell or SCell with uplink to notify the beam failure event.
  • the PCell or SCell with uplink can authorize the PUSCH to carry the MAC CE for SCell A and SCell B respectively.
  • the UE can notify the cell ID of the beam failure and the new beam selected by the UE through the MAC CE for SCell A and SCell B respectively.
  • the UE receives the PDCCH sent by the new beam in a specific PDCCH search space, namely the recovery search space A for SCell A and the recovery search space B for SCell B, to determine that the new beam has been activated. That is, the beam failed to recover successfully. Specifically, if the corresponding beam is received in the recovery search space A, the beam of SCell A is considered to be restored successfully; conversely, if the corresponding beam is not received in the recovery search space A, it is considered that the beam of SCell A has not been successfully restored .
  • the beam recovery of SCell B is similar, so it will not be repeated here.
  • the UE does not need to search the recovery search space A and recovery search space B of each SCell to confirm the activation of the new beam.
  • FIG. 3 shows a structure of a UE 300 in a wireless communication system according to an embodiment of the present disclosure.
  • the UE 300 may include a processing circuit 310. It should be noted that the UE 300 may include one processing circuit 310 or multiple processing circuits 310. In addition, the UE 300 may also include a communication unit 320 and the like.
  • processing circuit 310 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the processing circuit 310 may include a judgment unit 311 and a setting unit 312.
  • the determining unit 311 may be configured to determine whether a beam failure occurs in each of the multiple secondary cells.
  • the setting unit 312 may be configured to set a single media access control control element MAC CE to notify the network side beam failure event.
  • the MAC CE may include index information of all CCs (Component Carriers) where beam failure occurs.
  • CCs Component Carriers
  • the present disclosure is not limited to this, and the MAC CE may of course include other information such as the new beam selected by the UE.
  • the processing circuit 310 may further include a selection unit 313.
  • the selection unit 313 may be configured to select a new beam based on the candidate reference signal set q1 for beam failure recovery for each secondary cell where the beam failure occurs.
  • the MAC CE may also include identification information of the new beam selected by the UE.
  • the identification information of the new beam corresponds to the index information of the failed CC.
  • each MAC CE is represented by 8 bits.
  • the first 5 bits of each MAC CE are used to indicate the failed CC index information, and the last 3 bits indicate the new beam ID.
  • multiple SCells A1 to Am are in a quasi co-located relationship, that is, they have the same downlink transmit beam relationship, and the same new beam A is selected, and multiple SCells B1 to Bm are in a quasi-co-located relationship and selected
  • multiple MAC CEs can be omitted to a single MAC CE, so that the effective load of the MAC CE can be reduced.
  • the failed CC index A1 to the failed CC index Am can be divided into a group, and the MAC CE can be set so that multiple indexes A1...Am in the group correspond to a single group. New beam ID A.
  • the failed CC index B1 to the failed CC index Bm can be divided into a group, and the MAC CE can be set so that multiple indexes B1...Bm in the group can correspond to a single new beam ID B.
  • the effective load of MAC CE can be reduced.
  • the setting unit 312 may also be configured to set the MAC CE so that the MAC CE includes information indicating the length of the group.
  • the number of failed SCells for each group can be set at the beginning of each MAC CE report.
  • the network side can also send a BFRR (Beam Failure Recovery Response) to the UE in a packet manner.
  • BFRR Beam Failure Recovery Response
  • FIG. 7 shows a schematic diagram of the network side using grouping to send BFRR to the UE.
  • the SCells A1...Am with only downlinks are a group, which is referred to as group A here;
  • the SCells B1...Bm are a group, which is called group B here.
  • the network side can choose to send a BFRR PDCCH for each group of SCells in the group A and group B, thereby reducing the downlink signaling overhead on the network side.
  • the network side may send a PDCCH for one BFRR of group A to the UE.
  • the network side may also send a PDCCH for a BFRR of group B to the UE.
  • a group of SCells A1...Am, that is, group A has the same new beam
  • a group of SCells B1...Bm, that is, group B has the same new beam.
  • the UE can find the PDCCH in the recovery search space in any SCell of one group, the UE considers that the beam of the group of SCells failed to recover successfully. For example, if the UE finds the PDCCH in the recovery search space in the SCells A1 of the A group, the UE considers that the beams of all the SCells in the A group have failed to recover successfully. If the UE finds the PDCCH in the recovery search space in the SCells B1 of the group B, the UE considers that the beams of all the SCells in the group B have failed to recover successfully.
  • the UE can also find only one recovery search for each group. For the PDCCH in the space, it can be considered that the beam failure recovery of all SCells in the group is successful. In this way, the UE can avoid additional busy detection of the downlink control channel.
  • the PCell may also send BFRR to the UE for multiple SCells.
  • the BFRR sent by the PCell to the UE can be divided into two parts, part 1 and part 2.
  • Part 1 similar to the case of sending BFRR to the UE in multiple SCells, as long as the UE finds the PDCCH in the recovery search space of the PCell, such as RecoverySearchSpaceForSCell, it determines that the new beam has been activated, that is, the beam failed to recover successfully.
  • the PDSCH (Physical Downlink Shared Channel) resources scheduled by the PDCCH may be invalid resources.
  • the frequency domain resources of the scheduled PDSCH are configured as 0RB or time domain.
  • the number of OFDM symbols of the resource is configured as 0.
  • the UE determines that the beam failed to recover successfully as long as it finds the PDCCH in the recovery search space of the PCell.
  • the PDSCH scheduled by the PDCCH is used to carry more information to the UE.
  • the MAC CE included in the BFRR sent by the PCell may indicate whether the new beam selected by the UE for each SCell is accepted by the network side. If the network side does not accept it, the network side will give the ID of the new beam, such as the CSI-RS resource index or the SSB index.
  • each MAC CE can be represented by 8 bits, the first 5 bits of each MAC CE are used to indicate the failed CC index information, and the last 3 bits indicate the new beam ID.
  • the UE can be configured with two reference signal sets, q0 and q1.
  • q0 is a reference signal set for beam failure detection
  • ql is a candidate reference signal set for beam failure recovery.
  • the UE can report the information indicating that there is no new beam to the network side, and the UE can reselect through the asynchronous downlink beam scanning process triggered by the network side New beam.
  • the UE in the BFRQ process, if the UE does not find the quality requirements in q1, for example, L1-RSRP (Lay 1-Reference Signal Receiving Power, Layer 1-Reference Signal Received Power) is at a certain threshold
  • L1-RSRP Layer 1-Reference Signal Receiving Power, Layer 1-Reference Signal Received Power
  • this special status can be reported in the PUCCH.
  • the network side receives the report of this special state, it can choose to trigger the asynchronous downlink beam scanning process through DCI. After the UE measures the downlink beam, it can feed back the beam with the best beam quality to the network side as a new beam.
  • the UE When the UE discovers that q1 has no new beams above the L1-RSRP threshold, even if the beam quality in q0 is still good at this time, the UE can still inform the network side of the situation through PUCCH/PUSCH and request one time Aperiodic beam scanning and reporting, as shown in Figure 11.
  • the RSs corresponding to Tx beam 1 and Tx beam 2 are both in the q0 set, but the quality of Tx beam 1 is poor. In this case, the UE will not report the BFR case to the MAC CE, because the beam quality of Tx beam 2 is always better.
  • a partial beam failure state is determined based on the reference signal set q0 for beam failure detection.
  • the UE In the partial beam failure state, only a part of the reference signals in q0 are in the In a bad channel condition, the UE will also report to the network side information indicating that the part of the reference signal is in a bad channel condition, and the UE can reset the q0 based on a message from the network side.
  • the UE when the UE detects that some RSs in q0 are in poor channel conditions, it can report to the network side to update/change the CORESET beams corresponding to the RSs in q0. Then, the network side issues RRC reconfiguration signaling or activates through MAC CE. Next, the UE carries an ACK through the PUCCH to indicate that it has successfully received the RRC reconfiguration or MAC CE activation issued by the network side.
  • the network side may include a base station or TRP (Transmit/Receive port).
  • Using the user equipment in the wireless communication system according to the present disclosure can reduce communication transmission overhead when a beam failure occurs in a secondary cell.
  • FIG. 14 shows a structure of an electronic device 1400 in a wireless communication system according to another embodiment of the present disclosure.
  • the electronic device 1400 may include a processing circuit 1410. It should be noted that the electronic device 1400 may include one processing circuit 1410 or multiple processing circuits 1410. In addition, the electronic device 1400 may further include a communication unit 1420 such as a transceiver and the like.
  • processing circuit 1410 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and units of different titles may be realized by the same physical entity.
  • the processing circuit 1410 may enable the communication unit 1420 to receive a single media access control control element MAC CE from the user equipment, where the MAC CE includes at least index information of all component carriers where beam failure occurs.
  • the processing circuit 1410 may also be configured to perform the following operations: perform a beam failure recovery response based on the index information to activate a new beam.
  • the MAC CE may also include identification information of the new beam selected by the user equipment, and the identification information corresponds to the index information.
  • multiple index information corresponding to the same identification information are divided into groups, and the MAC CE is set so that the multiple index information in the group correspond to For a single identification information.
  • the MAC CE is set so that the MAC CE contains information indicating the length of the group.
  • the processing circuit 1410 may also be configured to perform the following operations: make the communication unit 1420 send the physical downlink control channel in the recovery search space of any one or more or all of the secondary cells corresponding to the multiple index information in the group
  • the PDCCH signal is used as a beam failure recovery response BFRR.
  • the processing circuit 1410 may also be configured to perform the following operations: make the communication unit 1420 send the physical downlink control channel PDCCH signal in the recovery search space of the primary cell.
  • the processing circuit 1410 may also be configured to perform the following operations: reselect a new beam for the component carrier where the beam fails; set the physical downlink shared channel PDSCH signal scheduled by the PDCCH signal, so that the PDSCH signal contains reselection Identification information of the new beam; and causing the communication unit 1420 to transmit the PDSCH signal.
  • the processing circuit 1410 may also be configured to perform the following operation: when receiving information from the user equipment indicating that there is no new beam, trigger an asynchronous downlink beam scanning process, so that the user equipment reselects New beam.
  • the processing circuit 1410 may also be configured to perform the following operations: when receiving information from the user equipment indicating that only a part of the reference signals in the reference signal set q0 for beam failure detection are in a bad channel condition, reconfigure The q0 is to notify the user equipment.
  • the wireless communication system described above may be a 5G new wireless NR system
  • the electronic device 1400 may be a base station or a TRP.
  • FIG. 15 shows a flowchart of a wireless communication method according to an embodiment of the present disclosure.
  • step S1510 it is judged whether or not beam failure occurs in each of a plurality of secondary cells.
  • step S1520 when it is determined that at least two of the multiple secondary cells have failed beams, a single media access control control element MAC CE is set to notify the electronic device, wherein the MAC CE It contains at least the index information of all component carriers where beam failure occurs.
  • the wireless communication method further includes: for each secondary cell where beam failure occurs, selecting a new beam based on the candidate reference signal set q1 for beam failure recovery, and wherein the MAC CE also Contains identification information of the selected new beam, and the identification information corresponds to the index information.
  • the wireless communication method according to an embodiment of the present disclosure, wherein when at least two of the identification information are the same, the method further includes: dividing a plurality of index information corresponding to the same identification information into groups; and setting The MAC CE makes the multiple index information in the group correspond to a single identification information.
  • the wireless communication method further includes: setting the MAC CE so that the MAC CE includes information indicating the length of the group.
  • the wireless communication method further includes: searching for a physical downlink control channel PDCCH signal in the recovery search space of any one secondary cell corresponding to the plurality of index information in the group; and when detecting When the PDCCH signal is reached, stop busy detection of the recovery search space of each secondary cell corresponding to the multiple index information in the group.
  • the wireless communication method further includes: searching for a physical downlink control channel PDCCH signal in the recovery search space of the primary cell.
  • the wireless communication method further includes: acquiring, from the physical downlink shared channel PDSCH signal scheduled by the PDCCH signal, the new one that the electronic device reselects for the component carrier that has the beam failure Identification information of the beam.
  • the wireless communication method further includes: when a new beam cannot be selected based on the q1, reporting to the electronic device information indicating that there is no new beam; and using the electronic The asynchronous downlink beam scanning process triggered by the device reselects a new beam.
  • the wireless communication method further includes: for each of the multiple secondary cells, preselecting a new beam based on the candidate reference signal set q1 for beam failure recovery; When q1 cannot select a new beam, report information indicating that there is no new beam to the electronic device; and reselect a new beam through an asynchronous downlink beam scanning process triggered by the electronic device.
  • the wireless communication method when determining whether beam failure occurs in each of the plurality of secondary cells, the method further includes: determining a partial beam based on the reference signal set q0 of beam failure detection Failure state, in the partial beam failure state, only a part of the reference signal in the q0 is in a bad channel condition state; reporting to the electronic device information indicating that the part of the reference signal is in a bad channel condition state; and The message from the electronic device resets the q0.
  • the wireless communication system includes a user equipment and an electronic device.
  • the user equipment passes through one primary cell and multiple The secondary cell communicates with the electronic device, and the method includes: receiving a single media access control control element MAC CE from the user equipment, where the MAC CE includes at least index information of all component carriers where beam failure occurs.
  • the method according to another embodiment of the present disclosure further includes: performing a beam failure recovery response based on the index information to enable a new beam.
  • the MAC CE further includes identification information of the new beam selected by the user equipment, and the identification information corresponds to the index information.
  • the method according to another embodiment of the present disclosure wherein when at least two of the identification information are the same, multiple index information corresponding to the same identification information is divided into groups, and the MAC CE is It is set such that a plurality of index information in the group corresponds to a single identification information.
  • the method according to another embodiment of the present disclosure wherein the MAC CE is set such that the MAC CE contains information indicating the length of the group.
  • the method according to another embodiment of the present disclosure further includes: sending a physical downlink control channel PDCCH signal in the recovery search space of any one or more or all of the secondary cells corresponding to the multiple index information in the group , As the beam failure recovery response BFRR.
  • the method according to another embodiment of the present disclosure further includes: causing the transceiver to send a physical downlink control channel PDCCH signal in the recovery search space of the primary cell.
  • the method according to another embodiment of the present disclosure further includes: reselecting a new beam for the component carrier where the beam fails; setting the physical downlink shared channel PDSCH signal scheduled by the PDCCH signal so that the PDSCH signal contains The identification information of the new beam to be reselected; and sending the PDSCH signal.
  • the method according to another embodiment of the present disclosure further includes: when receiving information indicating that there is no new beam from the user equipment, triggering an asynchronous downlink beam scanning process, so that the user equipment Reselect a new beam.
  • the method according to another embodiment of the present disclosure further includes: when receiving information from the user equipment indicating that only a part of the reference signals in the reference signal set q0 for beam failure detection are in a bad channel condition, Reconfigure the q0 to notify the user equipment.
  • a computer-readable storage medium may include executable computer instructions that, when executed by a computer, cause the computer to The method according to the embodiment of the present disclosure may be executed.
  • the base station mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • RRH remote radio heads
  • various types of terminals to be described below can all operate as base stations by temporarily or semi-persistently performing base station functions.
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera device) or a vehicle-mounted terminal (Such as car navigation equipment).
  • the UE may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 16 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1000 includes one or more antennas 1010 and a base station device 1020.
  • the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
  • Each of the antennas 1010 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1020 to transmit and receive wireless signals.
  • the eNB 1000 may include multiple antennas 1010.
  • multiple antennas 1010 may be compatible with multiple frequency bands used by eNB 1000.
  • FIG. 16 shows an example in which the eNB 1000 includes multiple antennas 1010, the eNB 1000 may also include a single antenna 1010.
  • the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
  • the controller 1021 may be, for example, a CPU or a DSP, and operates various functions of the base station device 1020 at a higher level. For example, the controller 1021 generates a data packet based on data in the signal processed by the wireless communication interface 1025, and transmits the generated packet via the network interface 1023. The controller 1021 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1021 may have a logical function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1022 includes RAM and ROM, and stores programs executed by the controller 1021 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1023 is a communication interface for connecting the base station device 1020 to the core network 1024.
  • the controller 1021 may communicate with a core network node or another eNB via a network interface 1023.
  • the eNB 1000 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 1023 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1023 is a wireless communication interface, the network interface 1023 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1025.
  • the wireless communication interface 1025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 1000 via the antenna 1010.
  • the wireless communication interface 1025 may generally include, for example, a baseband (BB) processor 1026 and an RF circuit 1027.
  • the BB processor 1026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1026 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1026 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1026.
  • the module may be a card or a blade inserted into the slot of the base station device 1020. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1027 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1010.
  • the wireless communication interface 1025 may include a plurality of BB processors 1026.
  • multiple BB processors 1026 may be compatible with multiple frequency bands used by eNB 1000.
  • the wireless communication interface 1025 may include a plurality of RF circuits 1027.
  • multiple RF circuits 1027 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1025 includes a plurality of BB processors 1026 and a plurality of RF circuits 1027, the wireless communication interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1130 includes one or more antennas 1140, a base station device 1150, and an RRH 1160.
  • the RRH 1160 and each antenna 1140 may be connected to each other via an RF cable.
  • the base station device 1150 and the RRH 1160 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1160 to transmit and receive wireless signals.
  • the eNB 1130 may include multiple antennas 1140.
  • multiple antennas 1140 may be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 17 shows an example in which the eNB 1130 includes multiple antennas 1140, the eNB 1130 may also include a single antenna 1140.
  • the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155, and a connection interface 1157.
  • the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG. 16.
  • the wireless communication interface 1155 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140.
  • the wireless communication interface 1155 may generally include, for example, a BB processor 1156.
  • the BB processor 1156 is the same as the BB processor 1026 described with reference to FIG. 16 except that the BB processor 1156 is connected to the RF circuit 1164 of the RRH 1160 via the connection interface 1157.
  • the wireless communication interface 1155 may include a plurality of BB processors 1156.
  • multiple BB processors 1156 may be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 17 shows an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, the wireless communication interface 1155 may also include a single BB processor 1156.
  • connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the connection interface 1157 may also be a communication module for connecting the base station device 1150 (wireless communication interface 1155) to the communication in the above-mentioned high-speed line of the RRH 1160.
  • the RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
  • connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1163) to the base station device 1150.
  • the connection interface 1161 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 1163 transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 may generally include, for example, an RF circuit 1164.
  • the RF circuit 1164 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1140.
  • the wireless communication interface 1163 may include a plurality of RF circuits 1164.
  • multiple RF circuits 1164 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may also include a single RF circuit 1164.
  • the processing circuit 1410 described in FIG. 14 may be implemented by the controller 1021 and/or the controller 1151, and the communication unit 1420 described in FIG. It may be implemented by a wireless communication interface 1025 and a wireless communication interface 1155 and/or a wireless communication interface 1163. At least part of the functions may also be implemented by the controller 1021 and the controller 1151. For example, the controller 1021 and/or the controller 1151 may perform a control function by executing instructions stored in a corresponding memory.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smart phone 1200 to which the technology of the present disclosure can be applied.
  • the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, a camera device 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, one or more An antenna switch 1215, one or more antennas 1216, a bus 1217, a battery 1218, and an auxiliary controller 1219.
  • the processor 1201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1200.
  • the memory 1202 includes RAM and ROM, and stores data and programs executed by the processor 1201.
  • the storage device 1203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1200.
  • USB universal serial bus
  • the camera 1206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1207 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1208 converts the sound input to the smart phone 1200 into an audio signal.
  • the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives operations or information input from the user.
  • the display device 1210 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200.
  • the speaker 1211 converts the audio signal output from the smart phone 1200 into sound.
  • the wireless communication interface 1212 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 1212 may generally include, for example, a BB processor 1213 and an RF circuit 1214.
  • the BB processor 1213 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1214 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1216.
  • the wireless communication interface 1212 may be a chip module on which a BB processor 1213 and an RF circuit 1214 are integrated. As shown in FIG.
  • the wireless communication interface 1212 may include a plurality of BB processors 1213 and a plurality of RF circuits 1214.
  • FIG. 18 shows an example in which the wireless communication interface 1212 includes a plurality of BB processors 1213 and a plurality of RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
  • the wireless communication interface 1212 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1212 may include a BB processor 1213 and an RF circuit 1214 for each wireless communication scheme.
  • Each of the antenna switches 1215 switches the connection destination of the antenna 1216 among a plurality of circuits included in the wireless communication interface 1212 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1212 to transmit and receive wireless signals.
  • the smart phone 1200 may include multiple antennas 1216.
  • FIG. 18 shows an example in which the smart phone 1200 includes a plurality of antennas 1216, the smart phone 1200 may also include a single antenna 1216.
  • the smart phone 1200 may include an antenna 1216 for each wireless communication scheme.
  • the antenna switch 1215 may be omitted from the configuration of the smart phone 1200.
  • the bus 1217 connects the processor 1201, memory 1202, storage device 1203, external connection interface 1204, camera device 1206, sensor 1207, microphone 1208, input device 1209, display device 1210, speaker 1211, wireless communication interface 1212, and auxiliary controller 1219 to each other. connection.
  • the battery 1218 supplies power to each block of the smart phone 1200 shown in FIG. 18 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 1219 operates the minimum necessary functions of the smartphone 1200 in the sleep mode, for example.
  • the judgment unit 311 and the setting unit 312 therein can be implemented by the processor 1201 or the auxiliary controller 1219, and by using the processing circuit 310 described in FIG.
  • the communication unit 320 may be implemented by the wireless communication interface 1212. At least part of the functions may also be implemented by the processor 1201 or the auxiliary controller 1219.
  • the processor 1201 or the auxiliary controller 1219 may execute the judgment function and the setting function by executing instructions stored in the memory 1202 or the storage device 1203.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device 1320 to which the technology of the present disclosure can be applied.
  • the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage medium interface 1328, an input device 1329, a display device 1330, a speaker 1331, a wireless A communication interface 1333, one or more antenna switches 1336, one or more antennas 1337, and a battery 1338.
  • GPS global positioning system
  • the processor 1321 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 1320.
  • the memory 1322 includes RAM and ROM, and stores data and programs executed by the processor 1321.
  • the GPS module 1324 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1320.
  • the sensor 1325 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1326 is connected to, for example, an in-vehicle network 1341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1327 reproduces content stored in a storage medium (such as CD and DVD), which is inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from the user.
  • the display device 1330 includes a screen such as an LCD or OLED display, and displays images of navigation functions or reproduced content.
  • the speaker 1331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1333 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1333 may generally include, for example, a BB processor 1334 and an RF circuit 1335.
  • the BB processor 1334 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1335 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1337.
  • the wireless communication interface 1333 can also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
  • the wireless communication interface 1333 may include multiple BB processors 1334 and multiple RF circuits 1335.
  • FIG. 19 shows an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
  • the wireless communication interface 1333 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1333 may include a BB processor 1334 and an RF circuit 1335 for each wireless communication scheme.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 among a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
  • Each of the antennas 1337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1333 to transmit and receive wireless signals.
  • the car navigation device 1320 may include multiple antennas 1337.
  • FIG. 19 shows an example in which the car navigation device 1320 includes a plurality of antennas 1337, the car navigation device 1320 may also include a single antenna 1337.
  • the car navigation device 1320 may include an antenna 1337 for each wireless communication scheme.
  • the antenna switch 1336 may be omitted from the configuration of the car navigation device 1320.
  • the battery 1338 supplies power to each block of the car navigation device 1320 shown in FIG. 19 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 1338 accumulates power supplied from the vehicle.
  • the processor 1321 can be implemented, and by using the communication unit 320 described in FIG. It can be implemented by the wireless communication interface 1333. At least part of the functions may also be implemented by the processor 1321.
  • the processor 1321 may execute various judgment functions and setting functions by executing instructions stored in the memory 1322.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1340 including one or more blocks in a car navigation device 1320, an in-vehicle network 1341, and a vehicle module 1342.
  • vehicle module 1342 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 1341.
  • each component or each step can be decomposed and/or recombined.
  • These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but it is not necessarily performed in chronological order. Certain steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信系统中的用户设备、电子设备、方法及存储介质。所述无线通信系统中的用户设备经由一个主小区和多个辅小区与所述无线通信系统中的电子设备通信,所述用户设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:判断所述多个辅小区中的每一个是否发生波束失败;以及当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。

Description

无线通信系统中的用户设备、电子设备、方法及存储介质
本申请要求于2019年8月15日提交中国专利局、申请号为201910753424.8、发明名称为“无线通信系统中的用户设备、电子设备、方法及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信的技术领域,具体地涉及无线通信系统中的用户设备、电子设备、用于在无线通信系统中进行无线通信的方法以及计算机可读存储介质。
背景技术
在目前的无线通信系统中,网络侧会为UE(User Equipment,用户设备)配置一个PCell(Primary Cell,主小区)和多个SCell(Secondary Cell,辅小区)以与基站通信。针对每个SCell,UE会进行波束失败检测,以判断该SCell所使用的波束是否处于失败状态。如果发生了波束失败,UE会向网络侧告知波束失败事件,并且会告知发生波束失败的SCell的标识和UE选择的新的波束。在这之后,网络侧会使用UE选择的新的波束来发送信号。当UE接收到该信号时,可以认定新的波束已经启用,亦即波束失败恢复成功。
在第五代移动通信系统(5G)的NR(New Radio,新无线)系统中,通信传输在高频段运行。由于毫米波传播环境的变化,如人和建筑物的阻挡、UE的旋转等因素,UE和网络之间的波束有可能会频繁出现波束失败的情况。另外,当UE被配置多个SCell时,多个SCell有可能是共址的,亦即使用相同的下行发射波束。因此,如果发生波束失败的话,有可能多个辅小区同时发生波束失败。而每当一个辅小区发生波束失败时,UE都会向网络侧告知一个波束失败事件,以及相应地告知发生波束失败的SCell的标识和UE选择的新的波束。这样一来,造成通信传输的开销较大。
因此,有必要提出一种技术方案,以在辅小区发生波束失败时减少 通信传输的开销。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种无线通信系统中的用户设备、电子设备、用于在无线通信系统中进行无线通信的方法以及计算机可读存储介质,以在辅小区发生波束失败时可以减少通信传输的开销。
根据本公开的一方面,提供了一种无线通信系统中的用户设备,所述用户设备经由一个主小区和多个辅小区与所述无线通信系统中的电子设备通信,所述用户设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:判断所述多个辅小区中的每一个是否发生波束失败;以及当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,所述电子设备经由一个主小区和多个辅小区与所述无线通信系统中的用户设备通信,所述电子设备包括:收发机;以及一个或多个处理电路,所述处理电路被配置为执行以下操作:使所述收发机从所述用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括用户设备和电子设备,所述用户设备经由一个主小区和多个辅小区与所述电子设备通信,所述方法包括:判断所述多个辅小区中的每一个是否发生波束失败;以及当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括用户设备和电子设备,所述用户设备经由一个主小区和多个辅小区与所述电子设备通信,所述方法包括:从所述用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述 MAC CE至少包含发生波束失败的所有分量载波的索引信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的方法。
使用根据本公开的无线通信系统中的用户设备、电子设备、用于在无线通信系统中进行无线通信的方法以及计算机可读存储介质,可以在辅小区发生波束失败时减少通信传输的开销。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1示出了发明人已知的一种UE和网络侧之间的波束失败恢复流程的示意图;
图2示出了发明人已知的另一种UE和网络侧之间的波束失败恢复流程的示意图;
图3示出了根据本公开的实施例的无线通信系统中的UE 300的结构;
图4示出了根据本公开的实施例的无线通信系统中的UE 300中的处理电路310的结构;
图5A是根据本公开的一个实施例的多个MAC CE的格式的示意图;
图5B是图5A的从多个MAC CE省略到单个MAC CE的示意图;
图6是根据本公开的一个实施例的采用分组方式的MAC CE的示意图;
图7示出了根据本公开的一个实施例的网络侧采用分组的方式来向UE发送BFRR的示意图;
图8示出了根据本公开的一个实施例的PCell来发送部分BFRR的示意图;
图9示出了根据本公开的一个实施例的PCell来采用两部分发送 BFRR的示意图;
图10示出了根据本公开的一个实施例的其中UE在q1中没有找到符合质量要求的新波束的情况下的与网络侧之间进行交互的示意图;
图11示出了根据本公开的一个实施例的其中还没有发生BFR的预先处理的情况下的UE与网络侧之间进行交互的示意图;
图12示出了其中部分波束质量不好而另一部分波束质量较好的发射接收示意图;
图13示出了根据本公开的一个实施例的部分恢复q0中下行发射波束的示意图;
图14是根据本公开的另一实施例的无线通信系统中的电子设备的结构的框图;
图15是图示根据本公开的实施例的无线通信方法的流程图;
图16是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)或gNB(第5代通信系统中的基站)的示意性配置的第一示例的框图;
图17是示出适用于本公开的eNB或gNB的示意性配置的第二示例的框图;
图18是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图19是示出适用于本公开的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有无线通信功能的终端。进一步,取决于具体所描述的功能,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,类似地,本公开中所涉及的基站可以例如是eNB(evolution Node Base Station,演进节点基站),也可以是gNB(第5代通信系统中的基站),或者是eNB或gNB中的部件如芯片。
在目前的无线通信系统中,网络侧会为UE(User Equipment,用户设备)配置一个PCell(Primary Cell,主小区)和多个SCell(Secondary Cell,辅小区)以与基站通信。针对每个SCell,UE会进行波束失败检测,以判断SCell所使用的波束是否处于失败状态。如果发生了波束失败,UE会向网络侧告知波束失败事件,并且会告知发生波束失败的SCell的标识和UE为恢复SCell服务而选择的新的波束。在此之后,网络侧会使用UE选择的新的波束来发送信号。当UE接收到该信号时,可以认定新的波束已经启用,亦即波束失败恢复成功。
图1示出了发明人已知的一种UE和网络侧之间的波束失败恢复流程的示意图。其中,UE经由一个具有上行链路的PCell或SCell和一个仅具有下行链路的SCell与基站进行通信。
如图1所示,例如,具有上行链路的PCell或SCell可以向UE发送针对BFD(Beam Failure Detection,波束失败检测)的q0集合(Reference Signal Set,参考信号集合)。仅具有下行链路的SCell可以设置以显式或隐式的方式针对BFD配置的q0。例如,对于显式的配置方式,q0这个参考信号集合可以是gNB通过RRC(Radio Resource Control,无线资源控制)信令为UE在每一个SCell上配置的最多2个周期性的CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)资源。在没有显式的配置方式的情况下,可以采用隐式的配置方式。对于隐式的配置方式,UE可以自己来决定q0集合中包含的参考信号,这个参考信号与 PDCCH(Physical Downlink Control Channel,物理下行控制信道)所在的CORESET具有相同的TCI(Transmission Configuration Indication,传输配置指示)状态(亦即相同的波束方向)。
然后,UE可以基于q0来判断是否发生波束失败事件。例如,UE可以根据q0中的参考信号来判断该参考信号对应的PDCCH的假设BLER(Block Error Rate,块错误率)是否过高,从而判断该波束是否处于失败的状态。假设发生了波束失败事件,UE可以向具有上行链路的PCell或SCell发送PUCCH(Physical Uplink Control Channel,物理上行控制信道)来告知波束失败事件。例如,UE可以在PUCCH中发送BFRQ(Beam Failure Recovery Request,波束失败恢复请求)。
然后,具有上行链路的PCell或SCell可以授权PUSCH(Physical Uplink Shared Channel,物理上行共享信道)承载MAC CE(Media Access Control-Control Element,媒体接入控制-控制元素)。接下来,UE可以通过MAC CE来告知发生波束失败的小区ID(Identification,标识)和UE选择的新波束。最后,UE在一个特定的PDCCH搜索空间中,即RecoverySearchSpace恢复搜索空间中接收用新波束发来的PDCCH,以此来认定新波束已经启用,即波束失败恢复成功。
然而,当UE被配置多个SCell时,多个SCell有可能是共址的,亦即该多个SCell使用相同的下行发射波束。因此,如果发生波束失败的话,有可能使用该失败波束的多个SCell同时发生波束失败。而每当一个SCell发生波束失败时,UE都会向网络侧告知一个波束失败事件,以及相应地告知发生波束失败的SCell的ID和UE选择的新的波束。这样一来,造成通信传输的开销较大。
图2示出了发明人已知的另一种UE和网络侧之间的波束失败恢复流程的示意图。其中,UE经由一个具有上行链路的PCell或SCell和两个仅具有下行链路的SCell A和B与基站进行通信。
如图2所示,例如,具有上行链路的PCell或SCell可以向UE发送针对BFD的q0。仅具有下行链路的SCell A和B可以设置以明示或默示的方式针对BFD配置的q0。然后,UE可以分别基于从SCell A和SCell B接收的q0来判断SCell A和SCell B是否发生波束失败事件。假设发生了波束失败事件,UE可以向具有上行链路的PCell或SCell分别发送针对SCell A和SCell B的PUCCH来告知波束失败事件。然后,具有上行链路的PCell或SCell可以授权PUSCH分别承载针对SCell A和SCell B的 MAC CE。接下来,UE可以分别通过针对SCell A和SCell B的MAC CE来告知发生波束失败的小区ID和UE选择的新波束。最后,UE分别在一个特定的PDCCH搜索空间中,即针对SCell A的恢复搜索空间A和针对SCell B的恢复搜索空间B中接收用新波束发来的PDCCH,以此来认定新波束已经启用,即波束失败恢复成功。具体地,如果在恢复搜索空间A中接收到了相应的波束,则认为SCell A的波束恢复成功;反之,如果在恢复搜索空间A中未接收到相应的波束,则认为SCell A的波束未恢复成功。对于SCell B的波束恢复类似,就不再重复赘述了。
然而,多个SCell共址的情况下,例如上述共址的SCell A和SCell B,UE没有必要去对每个SCell的恢复搜索空间A和恢复搜索空间B进行搜索从而确认新波束的启用。
为了解决上面提到的问题中至少之一,提出了根据本公开的技术方案。图3示出了根据本公开的实施例的无线通信系统中的UE 300的结构。
如图3所示,UE 300可以包括处理电路310。需要说明的是,UE 300既可以包括一个处理电路310,也可以包括多个处理电路310。另外,UE 300还可以包括通信单元320等。
进一步,处理电路310可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的一个实施例,如图3所示,处理电路310可以包括判断单元311和设置单元312。
判断单元311可以被配置为判断多个辅小区中的每一个是否发生波束失败。
然后,当判断单元311判断所述多个辅小区中的至少两个已发生波束失败时,设置单元312可以被配置为设置单个媒体接入控制的控制元素MAC CE以通知网络侧波束失败事件。
根据本公开的一个实施例,MAC CE可以包含发生波束失败的所有CC(Component Carrier,分量载波)的索引信息。这里,本领域技术人员应该清楚,本公开并不限于此,MAC CE当然可以包括其他例如UE选择的新波束等信息。
例如,根据本公开的一个实施例,如图4所示,处理电路310可以进一步包括选择单元313。
选择单元313可以被配置为针对发生波束失败的每个辅小区,基于波束失败恢复的候选参考信号集合q1选择新的波束。根据本实施例,MAC CE还可以包含UE选择的新的波束的标识信息。这里,新的波束的标识信息与失败的CC的索引信息相对应。
如图5A所示,其中示意性示出3个MAC CE,每一个MAC CE以8位表示。每一个MAC CE前5位用于表示失败的CC索引信息,后3位表示新波束ID。然而,如果多个SCell A1到Am是准共址的关系,即具有相同的下行发射波束关系,并且选择了相同的新波束A,多个SCell B1到Bm是准共址的关系,并且选择了相同的新波束B,那么,多个MAC CE可以省略到单个MAC CE,从而可以缩减MAC CE的有效载荷。
例如,如图5B所示,其中,失败的CC索引A1到失败的CC索引Am可以被划分为一组,而MAC CE可以被设置使得该组中的多个索引A1...Am对应于单个新波束ID A。类似地,失败的CC索引B1到失败的CC索引Bm可以被划分为一组,而MAC CE可以被设置使得该组中的多个索引B1...Bm可以对应于单个新波束ID B。由此,可以缩减MAC CE的有效载荷。
为了对MAC CE进行更合理的安排,根据本公开的一个实施例,设置单元312还可以被配置为设置所述MAC CE,使得所述MAC CE包含指示组的长度的信息。
考虑到目前协议只支持两个不同站址的传输,也就假设相应地分为两个组来进行恢复,分别是组A和组B。当然,本领域技术人员应该清楚,也可以扩展到多于两个组的情况。
例如,如图6所示,可以在每一个MAC CE上报的开头设置每个组例如A组的波束失败的SCell的数目,接下来,上报失败的CC索引信息A1...Am,最后,加上一个新波束的ID A。接下来,上报B组的波束失败的SCell的数目,然后,上报失败的CC索引信息B1...Bm,最后,加上一个新波束的ID B。
相应地,当多个SCell是准共址的关系时,根据本公开的一个实施例,网络侧也可以采用分组的方式来向UE发送BFRR(Beam Failure Recovery Response,波束失败恢复回复)。
例如,图7示出了网络侧采用分组的方式来向UE发送BFRR的示意图,其中,仅具有下行链路的SCell A1...Am为一组,这里称为A组; 仅具有下行链路的SCell B1...Bm为一组,这里称为B组。网络侧可以选择针对A组和B组中的每一组SCell发送一个BFRR的PDCCH,从而减少网络侧下行的信令开销。例如,网络侧可以向UE发送针对A组的一个BFRR的PDCCH。网络侧也可以向UE发送针对B组的一个BFRR的PDCCH。
接下来,SCell A1...Am一组即A组具有相同的新波束,SCell B1...Bm一组即B组具有相同的新波束。那么,如果UE可以在其中一组的任何一个SCell内找到恢复搜索空间中的PDCCH,UE则认为该组SCell的波束失败恢复成功。例如,如果UE在A组的SCell A1内找到恢复搜索空间中的PDCCH,UE则认为A组中的所有SCell的波束失败恢复成功。如果UE在B组的SCell B1内找到恢复搜索空间中的PDCCH,UE则认为B组中的所有SCell的波束失败恢复成功。
另外,这里本领域技术人员应该清楚,即使网络侧没有采用分组的方式来向UE发送BFRR即网络侧为每组中的每一个SCell都发送一个BFRR,UE同样可以针对每组只要找到一个恢复搜索空间中的PDCCH,就可以认为该组中的所有SCell的波束失败恢复成功。以此方式,可以避免UE进行额外的下行控制信道的忙检测。
不同于在多个SCell中向UE发送BFRR的技术方案,PCell也可以为多个SCell向UE发送BFRR。
如图8所示,PCell向UE发送BFRR可以分为两部分,部分1和部分2。在部分1中,与在多个SCell中向UE发送BFRR的情况类似,UE只要在PCell的恢复搜索空间如RecoverySearchSpaceForSCell中找到PDCCH即认定新波束已经启用,即波束失败恢复成功。
而在部分2中,为了节省开销,PDCCH调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)资源可以是无效(invalid)资源,如将该调度的PDSCH的频域资源配置为0RB或者时域资源的OFDM符号数配置为0。
然而,为了BFRR中包含更多维度的信息,如图9所示,在部分1中,类似地,UE只要在PCell的恢复搜索空间中找到PDCCH即认定波束失败恢复成功。而在部分2中,PDCCH调度的PDSCH用来承载更多的信息给UE。例如,在PCell发送的BFRR所包含的MAC CE中可以指示UE为每一个SCell选择的新波束网络侧是否接受。如果网络侧不接受, 网络侧将给出新波束的ID,例如CSI-RS资源索引或SSB索引。这里,针对PCell的MAC CE的格式可以与图5A所示的类似,每一个MAC CE可以以8位表示,每一个MAC CE前5位用于表示失败的CC索引信息,后3位表示新波束ID。
如上所述,对于每一个SCell,UE可以被配置q0和q1两个参考信号集合。其中,q0为波束失败检测的参考信号集合;ql为波束失败恢复的备选参考信号集合。而当UE在q1中没有找到符合质量要求的新波束的情况下,UE可以向网络侧上报指示不存在新波束的信息,并且UE可以通过网络侧触发的非同步的下行波束扫描过程,重新选择新波束。
如图10所示,在BFRQ过程中,如果当UE在q1中没有找到符合质量要求,例如L1-RSRP(Lay 1-Reference Signal Receiving Power,层1-参考信号接收功率)在某一个特定的门限之上的新波束时,UE可以上报给网络侧一个新波束的特殊状态。根据本公开的优选实施例,这个特殊状态可以在PUCCH中上报。当网络侧收到这个特殊状态的上报后,可以选择通过DCI来触发非同步的下行波束扫描过程。UE在测量了下行波束后,可以反馈给网络侧波束质量最好的波束作为新波束。
而当UE发现q1已经没有备选波束在L1-RSRP门限之上的新波束时,即使这时q0中的波束质量仍然较好,UE仍然可以通过PUCCH/PUSCH告知网络侧该情况,并请求一次非周期的波束扫描和上报,如图11所示。
对于目前的协议,只有当q0中的全部波束都质量较差时,才算一个BFR事例。但是,如图12所示,Tx波束1和Tx波束2对应的RS都在q0集合中,但是Tx波束1的质量较差。在这种情况下,UE并不会上报BFR事例给MAC CE,因为Tx波束2的波束质量始终较好。
因此,为了解决上述问题,根据本公开的一个实施例,基于波束失败检测的参考信号集合q0确定部分波束失败状态,在所述部分波束失败状态下,在所述q0中仅有一部分参考信号处于信道条件恶劣状态,UE也会向网络侧上报指示所述一部分参考信号处于信道条件恶劣状态的信息,并且UE可以基于来自网络侧的消息重新设置所述q0。
例如,如图13所示,当UE检测q0中的部分RS处于不良的信道条件时,可以向网络侧上报更新/改变q0中该部分RS对应的CORESET波束。然后,网络侧下发RRC重新配置信令或通过MAC CE激活。接下来,UE通过PUCCH承载ACK,以表示成功接收网络侧下发的RRC重新配 置或MAC CE激活。
根据本公开的一个实施例,网络侧可以包括基站或TRP(Transmit/Receive port,发送/接收端口)。
使用根据本公开的无线通信系统中的用户设备可以在辅小区发生波束失败时减少通信传输的开销。
接下来将结合图14来描述根据本公开的另一实施例的无线通信系统中的电子设备1400。
图14示出了根据本公开的另一实施例的无线通信系统中的电子设备1400的结构。
如图14所示,电子设备1400可以包括处理电路1410。需要说明的是,电子设备1400既可以包括一个处理电路1410,也可以包括多个处理电路1410。另外,电子设备1400还可以包括诸如收发机之类的通信单元1420等。
如上面提到的那样,同样地,处理电路1410也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
处理电路1410可以使通信单元1420从用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
优选地,处理电路1410还可以被配置为执行以下操作:基于所述索引信息进行波束失败恢复响应,以启用新的波束。
优选地,所述MAC CE还可以包含所述用户设备选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
优选地,当所述标识信息中的至少两个相同时,对应于同一标识信息的多个索引信息被划分成组,并且所述MAC CE被设置成使得所述组中的多个索引信息对应于单个标识信息。
优选地,所述MAC CE被设置成使得所述MAC CE包含指示所述组的长度的信息。
优选地,处理电路1410还可以被配置为执行以下操作:使通信单元1420在所述组中的多个索引信息对应的任何一个或多个或全部辅小区的恢复搜索空间中发送物理下行控制信道PDCCH信号,作为波束失败恢复 响应BFRR。
优选地,处理电路1410还可以被配置为执行以下操作:使通信单元1420在所述主小区的恢复搜索空间中发送物理下行控制信道PDCCH信号。
优选地,处理电路1410还可以被配置为执行以下操作:为发生波束失败的分量载波重新选择新的波束;设置所述PDCCH信号调度的物理下行共享信道PDSCH信号,使得所述PDSCH信号包含重新选择的新的波束的标识信息;以及使通信单元1420发送所述PDSCH信号。
优选地,处理电路1410还可以被配置为执行以下操作:当从所述用户设备接收到指示不存在新的波束的信息时,触发非同步的下行波束扫描过程,以使所述用户设备重新选择新的波束。
优选地,处理电路1410还可以被配置为执行以下操作:当从所述用户设备接收到指示在波束失败检测的参考信号集合q0中仅有一部分参考信号处于信道条件恶劣状态的信息时,重新配置所述q0以通知所述用户设备。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是5G新无线NR系统,并且电子设备1400可以是基站或TRP。
接下来参考图15来描述根据本公开的实施例的用于在无线通信系统中进行无线通信的方法。图15示出了根据本公开的实施例的无线通信方法的流程图。
如图15所示,首先,在步骤S1510中,判断多个辅小区中的每一个是否发生波束失败。
然后,在步骤S1520中,当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
优选地,根据本公开的一个实施例的无线通信方法还包括:针对发生波束失败的每个辅小区,基于波束失败恢复的候选参考信号集合q1选择新的波束,并且其中,所述MAC CE还包含选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
优选地,根据本公开的一个实施例的无线通信方法,其中,当所述 标识信息中的至少两个相同时,还包括:将对应于同一标识信息的多个索引信息划分成组;以及设置所述MAC CE,使得所述组中的多个索引信息对应于单个标识信息。
优选地,根据本公开的一个实施例的无线通信方法,还包括:设置所述MAC CE,使得所述MAC CE包含指示所述组的长度的信息。
优选地,根据本公开的一个实施例的无线通信方法,还包括:在所述组中的多个索引信息对应的任何一个辅小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号;以及当检测到所述PDCCH信号时,停止对所述组中的多个索引信息对应的每一个辅小区的恢复搜索空间的忙检测。
优选地,根据本公开的一个实施例的无线通信方法,还包括:在所述主小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号。
优选地,根据本公开的一个实施例的无线通信方法,还包括:从所述PDCCH信号调度的物理下行共享信道PDSCH信号中,获取所述电子设备为发生波束失败的分量载波重新选择的新的波束的标识信息。
优选地,根据本公开的一个实施例的无线通信方法,还包括:当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
优选地,根据本公开的一个实施例的无线通信方法,还包括:针对所述多个辅小区中的每一个,基于波束失败恢复的候选参考信号集合q1预先选择新的波束;当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
优选地,根据本公开的一个实施例的无线通信方法,其中,在判断所述多个辅小区中的每一个是否发生波束失败时,还包括:基于波束失败检测的参考信号集合q0确定部分波束失败状态,在所述部分波束失败状态下,在所述q0中仅有一部分参考信号处于信道条件恶劣状态;向所述电子设备上报指示所述一部分参考信号处于信道条件恶劣状态的信息;以及基于来自所述电子设备的消息重新设置所述q0。
根据本公开的另一实施例,还提供了一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括用户设备和电子设备,所述用 户设备经由一个主小区和多个辅小区与所述电子设备通信,所述方法包括:从所述用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
优选地,根据本公开的另一实施例的方法,还包括:基于所述索引信息进行波束失败恢复响应,以启用新的波束。
优选地,根据本公开的另一实施例的方法,其中,所述MAC CE还包含所述用户设备选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
优选地,根据本公开的另一实施例的方法,其中,当所述标识信息中的至少两个相同时,对应于同一标识信息的多个索引信息被划分成组,并且所述MAC CE被设置成使得所述组中的多个索引信息对应于单个标识信息。
优选地,根据本公开的另一实施例的方法,其中,所述MAC CE被设置成使得所述MAC CE包含指示所述组的长度的信息。
优选地,根据本公开的另一实施例的方法,还包括:在所述组中的多个索引信息对应的任何一个或多个或全部辅小区的恢复搜索空间中发送物理下行控制信道PDCCH信号,作为波束失败恢复响应BFRR。
优选地,根据本公开的另一实施例的方法,还包括:使所述收发机在所述主小区的恢复搜索空间中发送物理下行控制信道PDCCH信号。
优选地,根据本公开的另一实施例的方法,还包括:为发生波束失败的分量载波重新选择新的波束;设置所述PDCCH信号调度的物理下行共享信道PDSCH信号,使得所述PDSCH信号包含重新选择的新的波束的标识信息;以及发送所述PDSCH信号。
优选地,根据本公开的另一实施例的方法,还包括:当从所述用户设备接收到指示不存在新的波束的信息时,触发非同步的下行波束扫描过程,以使所述用户设备重新选择新的波束。
优选地,根据本公开的另一实施例的方法,还包括:当从所述用户设备接收到指示在波束失败检测的参考信号集合q0中仅有一部分参考信号处于信道条件恶劣状态的信息时,重新配置所述q0以通知所述用户设备。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法 的上述各个步骤的各种具体实施方式前面已经作过详细描述,在此不再重复说明。
另外,需要说明的是,根据本公开的另一实施例,还提供了一种计算机可读存储介质,该存储介质可以包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得计算机可以执行根据本公开的实施例所述的方法。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图16是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图16所示,eNB 1000可以包括多个天线1010。例如,多个天线1010可以与eNB 1000使用的多个频带兼容。虽然图16示出其中eNB 1000包括多个天线1010的示例,但是eNB 1000也可以包括单个天线1010。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较 高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于eNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010来传送和接收无线信号。
如图16所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与eNB 1000使用的多个频带兼容。如图16所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图16示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通 信接口1025也可以包括单个BB处理器1026或单个RF电路1027。
图17是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。eNB 1130包括一个或多个天线1140、基站设备1150和RRH 1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图17所示,eNB 1130可以包括多个天线1140。例如,多个天线1140可以与eNB 1130使用的多个频带兼容。虽然图17示出其中eNB 1130包括多个天线1140的示例,但是eNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图16描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图16描述的BB处理器1026相同。如图17所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与eNB 1130使用的多个频带兼容。虽然图17示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1163)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例 如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。如图17所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图17示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图16和图17所示的eNB 1000和eNB 1130中,通过使用图14所描述的处理电路1410可以由控制器1021和/或控制器1151实现,并且通过使用图14所描述的通信单元1420可以由无线通信接口1025以及无线通信接口1155和/或无线通信接口1163实现。功能的至少一部分也可以由控制器1021和控制器1151实现。例如,控制器1021和/或控制器1151可以通过执行相应的存储器中存储的指令而执行控制功能。
图18是示出可以应用本公开的技术的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。
摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213 和RF电路1214。BB处理器1213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图18所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图18示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图18所示,智能电话1200可以包括多个天线1216。虽然图18示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图18所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图18所示的智能电话1200中,通过使用图3所描述的处理电路310以及其中的判断单元311和设置单元312可以由处理器1201或辅助控制器1219实现,并且通过使用图3所描述的通信单元320可以由无线通 信接口1212实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。例如,处理器1201或辅助控制器1219可以通过执行存储器1202或存储装置1203中存储的指令而执行判断功能和设置功能。
图19是示出可以应用本公开的技术的汽车导航设备1320的示意性配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图19所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图19示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个 RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图19所示,汽车导航设备1320可以包括多个天线1337。虽然图19示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图19所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图19示出的汽车导航设备1320中,通过使用图3所描述的处理电路310以及其中的判断单元311和设置单元312可以由处理器1321实现,并且通过使用图3所描述的通信单元320可以由无线通信接口1333实现。功能的至少一部分也可以由处理器1321实现。例如,处理器1321可以通过执行存储器1322中存储的指令而执行各种判断功能和设置功能。
本公开的技术也可以被实现为包括汽车导航设备1320、车载网络1341以及车辆模块1342中的一个或多个块的车载系统(或车辆)1340。车辆模块1342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1341。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执 行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (43)

  1. 一种无线通信系统中的用户设备,所述用户设备经由一个主小区和多个辅小区与所述无线通信系统中的电子设备通信,所述用户设备包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    判断所述多个辅小区中的每一个是否发生波束失败;以及
    当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
  2. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    针对发生波束失败的每个辅小区,基于波束失败恢复的候选参考信号集合q1选择新的波束,并且
    其中,所述MAC CE还包含选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
  3. 根据权利要求2所述的用户设备,其中,当所述标识信息中的至少两个相同时,所述处理电路还被配置为执行以下操作:
    将对应于同一标识信息的多个索引信息划分成组;以及
    设置所述MAC CE,使得所述组中的多个索引信息对应于单个标识信息。
  4. 根据权利要求3所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    设置所述MAC CE,使得所述MAC CE包含指示所述组的长度的信息。
  5. 根据权利要求3所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    在所述组中的多个索引信息对应的任何一个辅小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号;以及
    当检测到任一所述PDCCH信号时,停止对所述组中的多个索引信息对应的每一个辅小区的恢复搜索空间的忙检测。
  6. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    在所述主小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号。
  7. 根据权利要求6所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    从所述PDCCH信号调度的物理下行共享信道PDSCH信号中,获取所述电子设备为发生波束失败的分量载波重新选择的新的波束的标识信息。
  8. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及
    通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
  9. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为执行以下操作:
    针对所述多个辅小区中的每一个,基于波束失败恢复的候选参考信号集合q1预先选择新的波束;
    当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及
    通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
  10. 根据权利要求1所述的用户设备,其中,在判断所述多个辅小区中的每一个是否发生波束失败时,所述处理电路还被配置为执行以下操作:
    基于波束失败检测的参考信号集合q0确定部分波束失败状态,在所述部分波束失败状态下,在所述q0中仅有一部分参考信号处于信道条件恶劣状态;
    向所述电子设备上报指示所述一部分参考信号处于信道条件恶劣状 态的信息;以及
    基于来自所述电子设备的消息重新设置所述q0。
  11. 根据权利要求1至10中任一项所述的用户设备,其中,所述电子设备为基站或发送/接收端口TRP。
  12. 一种无线通信系统中的电子设备,所述电子设备经由一个主小区和多个辅小区与所述无线通信系统中的用户设备通信,所述电子设备包括:
    收发机;以及
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    使所述收发机从所述用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    基于所述索引信息进行波束失败恢复响应,以启用新的波束。
  14. 根据权利要求12所述的电子设备,其中,所述MAC CE还包含所述用户设备选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
  15. 根据权利要求14所述的电子设备,其中,当所述标识信息中的至少两个相同时,对应于同一标识信息的多个索引信息被划分成组,并且所述MAC CE被设置成使得所述组中的多个索引信息对应于单个标识信息。
  16. 根据权利要求15所述的电子设备,其中,所述MAC CE被设置成使得所述MAC CE包含指示所述组的长度的信息。
  17. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    使所述收发机在所述组中的多个索引信息对应的任何一个或多个或全部辅小区的恢复搜索空间中发送物理下行控制信道PDCCH信号,作为波束失败恢复响应BFRR。
  18. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    使所述收发机在所述主小区的恢复搜索空间中发送物理下行控制信道PDCCH信号。
  19. 根据权利要求18所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    为发生波束失败的分量载波重新选择新的波束;
    设置所述PDCCH信号调度的物理下行共享信道PDSCH信号,使得所述PDSCH信号包含重新选择的新的波束的标识信息;以及
    使所述收发机发送所述PDSCH信号。
  20. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    当从所述用户设备接收到指示不存在新的波束的信息时,触发非同步的下行波束扫描过程,以使所述用户设备重新选择新的波束。
  21. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为执行以下操作:
    当从所述用户设备接收到指示在波束失败检测的参考信号集合q0中仅有一部分参考信号处于信道条件恶劣状态的信息时,重新配置所述q0以通知所述用户设备。
  22. 根据权利要求12至21中任一项所述的电子设备,其中,所述电子设备为基站或发送/接收端口TRP。
  23. 一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括用户设备和电子设备,所述用户设备经由一个主小区和多个辅小区与所述电子设备通信,所述方法包括:
    判断所述多个辅小区中的每一个是否发生波束失败;以及
    当判断所述多个辅小区中的至少两个已发生波束失败时,设置单个媒体接入控制的控制元素MAC CE以通知所述电子设备,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
  24. 根据权利要求23所述的方法,还包括:
    针对发生波束失败的每个辅小区,基于波束失败恢复的候选参考信号集合q1选择新的波束,并且
    其中,所述MAC CE还包含选择的新的波束的标识信息,所述标识 信息与所述索引信息相对应。
  25. 根据权利要求24所述的方法,其中,当所述标识信息中的至少两个相同时,所述方法还包括:
    将对应于同一标识信息的多个索引信息划分成组;以及
    设置所述MAC CE,使得所述组中的多个索引信息对应于单个标识信息。
  26. 根据权利要求25所述的方法,还包括:
    设置所述MAC CE,使得所述MAC CE包含指示所述组的长度的信息。
  27. 根据权利要求25所述的方法,还包括:
    在所述组中的多个索引信息对应的任何一个辅小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号;以及
    当检测到所述PDCCH信号时,停止对所述组中的多个索引信息对应的每一个辅小区的恢复搜索空间的忙检测。
  28. 根据权利要求23所述的方法,还包括:
    在所述主小区的恢复搜索空间中搜索物理下行控制信道PDCCH信号。
  29. 根据权利要求28所述的方法,还包括:
    从所述PDCCH信号调度的物理下行共享信道PDSCH信号中,获取所述电子设备为发生波束失败的分量载波重新选择的新的波束的标识信息。
  30. 根据权利要求24所述的方法,还包括:
    当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及
    通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
  31. 根据权利要求23所述的方法,还包括:
    针对所述多个辅小区中的每一个,基于波束失败恢复的候选参考信号集合q1预先选择新的波束;
    当基于所述q1无法选择新的波束时,向所述电子设备上报指示不存在新的波束的信息;以及
    通过所述电子设备触发的非同步的下行波束扫描过程,重新选择新的波束。
  32. 根据权利要求23所述的方法,其中,在判断所述多个辅小区中的每一个是否发生波束失败时,所述方法还包括:
    基于波束失败检测的参考信号集合q0确定部分波束失败状态,在所述部分波束失败状态下,在所述q0中仅有一部分参考信号处于信道条件恶劣状态;
    向所述电子设备上报指示所述一部分参考信号处于信道条件恶劣状态的信息;以及
    基于来自所述电子设备的消息重新设置所述q0。
  33. 一种用于在无线通信系统中进行无线通信的方法,所述无线通信系统包括用户设备和电子设备,所述用户设备经由一个主小区和多个辅小区与所述电子设备通信,所述方法包括:
    从所述用户设备接收单个媒体接入控制的控制元素MAC CE,其中,所述MAC CE至少包含发生波束失败的所有分量载波的索引信息。
  34. 根据权利要求33所述的方法,还包括:
    基于所述索引信息进行波束失败恢复响应,以启用新的波束。
  35. 根据权利要求33所述的方法,其中,所述MAC CE还包含所述用户设备选择的新的波束的标识信息,所述标识信息与所述索引信息相对应。
  36. 根据权利要求35所述的方法,其中,当所述标识信息中的至少两个相同时,对应于同一标识信息的多个索引信息被划分成组,并且所述MAC CE被设置成使得所述组中的多个索引信息对应于单个标识信息。
  37. 根据权利要求36所述的方法,其中,所述MAC CE被设置成使得所述MAC CE包含指示所述组的长度的信息。
  38. 根据权利要求36所述的方法,还包括:
    在所述组中的多个索引信息对应的任何一个或多个或全部辅小区的恢复搜索空间中发送物理下行控制信道PDCCH信号,作为波束失败恢复 响应BFRR。
  39. 根据权利要求33所述的方法,还包括:
    使所述收发机在所述主小区的恢复搜索空间中发送物理下行控制信道PDCCH信号。
  40. 根据权利要求39所述的方法,还包括:
    为发生波束失败的分量载波重新选择新的波束;
    设置所述PDCCH信号调度的物理下行共享信道PDSCH信号,使得所述PDSCH信号包含重新选择的新的波束的标识信息;以及
    发送所述PDSCH信号。
  41. 根据权利要求33所述的方法,还包括:
    当从所述用户设备接收到指示不存在新的波束的信息时,触发非同步的下行波束扫描过程,以使所述用户设备重新选择新的波束。
  42. 根据权利要求33所述的方法,还包括:
    当从所述用户设备接收到指示在波束失败检测的参考信号集合q0中仅有一部分参考信号处于信道条件恶劣状态的信息时,重新配置所述q0以通知所述用户设备。
  43. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求23至42中任一项所述的方法。
PCT/CN2020/107690 2019-08-15 2020-08-07 无线通信系统中的用户设备、电子设备、方法及存储介质 WO2021027705A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080055255.1A CN114245995A (zh) 2019-08-15 2020-08-07 无线通信系统中的用户设备、电子设备、方法及存储介质
KR1020227003444A KR20220047761A (ko) 2019-08-15 2020-08-07 무선 통신 시스템에서의 사용자 장비, 전자 장치, 방법, 및 저장 매체
US17/626,127 US20220287131A1 (en) 2019-08-15 2020-08-07 User equipment in wireless communication system, electronic apparatus, method, and storage medium
JP2022509067A JP2022543901A (ja) 2019-08-15 2020-08-07 無線通信システムにおけるユーザー装置、電子装置、方法及び記憶媒体
EP20852495.9A EP4007341A4 (en) 2019-08-15 2020-08-07 USER EQUIPMENT IN A WIRELESS COMMUNICATION SYSTEM, ELECTRONIC DEVICE, METHOD AND INFORMATION MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910753424.8A CN112399430A (zh) 2019-08-15 2019-08-15 无线通信系统中的用户设备、电子设备、方法及存储介质
CN201910753424.8 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027705A1 true WO2021027705A1 (zh) 2021-02-18

Family

ID=74570892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107690 WO2021027705A1 (zh) 2019-08-15 2020-08-07 无线通信系统中的用户设备、电子设备、方法及存储介质

Country Status (6)

Country Link
US (1) US20220287131A1 (zh)
EP (1) EP4007341A4 (zh)
JP (1) JP2022543901A (zh)
KR (1) KR20220047761A (zh)
CN (2) CN112399430A (zh)
WO (1) WO2021027705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150986A1 (zh) * 2022-02-10 2023-08-17 富士通株式会社 波束失败相关信息的上报方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035502A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 通信方法、通信设备和网络设备
CN110034799A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 通信方法和通信设备
CN110226340A (zh) * 2019-04-25 2019-09-10 北京小米移动软件有限公司 波束失败的上报方法、装置及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987525B1 (ko) * 2015-03-09 2019-06-12 주식회사 케이티 채널상태정보 전송 방법 및 그 장치
CN107769826A (zh) * 2016-08-19 2018-03-06 索尼公司 无线通信系统中的电子设备和方法以及无线通信系统
WO2019033072A1 (en) * 2017-08-10 2019-02-14 Comcast Cable Communications, Llc TRANSMISSION OF REQUEST FOR RESUME ON FAILURE OF BEAM
CN109429261A (zh) * 2017-08-31 2019-03-05 索尼公司 用于无线通信的电子设备和方法
TWI679907B (zh) * 2017-09-20 2019-12-11 華碩電腦股份有限公司 無線通訊系統中波束決定的方法和設備
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
EP3718334A4 (en) * 2018-01-05 2021-08-25 Samsung Electronics Co., Ltd. SECONDARY CELL BEAM RECOVERY APPARATUS AND METHOD
CN110022613B (zh) * 2018-01-10 2019-12-17 展讯通信(上海)有限公司 波束接收失败的上报方法、用户设备及通信系统
KR102559291B1 (ko) * 2018-01-10 2023-07-25 삼성전자주식회사 무선 통신 시스템에서 빔 제어 방법 및 장치
CA3033533A1 (en) * 2018-02-09 2019-08-09 Ali Cirik Beam failure recovery procedure in carrier aggregation
KR102537256B1 (ko) * 2018-09-27 2023-05-26 노키아 테크놀로지스 오와이 서빙 셀에 대한 빔 실패 복구
CN114097266B (zh) * 2019-07-22 2023-07-04 鸿颖创新有限公司 执行波束故障恢复的方法和相关装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035502A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 通信方法、通信设备和网络设备
CN110034799A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 通信方法和通信设备
CN110226340A (zh) * 2019-04-25 2019-09-10 北京小米移动软件有限公司 波束失败的上报方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM: "Enhancements on Multi-beam Operations", 3GPP DRAFT; R1-1907360 ENHANCEMENTS ON MULTI-BEAM OPERATIONS, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 6, XP051709381 *
SAMSUNG: "Enhancements on multi-beam operations", 3GPP DRAFT; R1-1810886 R16 MULTI-BEAM, vol. RAN WG1, 28 September 2018 (2018-09-28), Chengdu, China, pages 1 - 6, XP051518291 *
See also references of EP4007341A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150986A1 (zh) * 2022-02-10 2023-08-17 富士通株式会社 波束失败相关信息的上报方法及装置

Also Published As

Publication number Publication date
CN112399430A (zh) 2021-02-23
CN114245995A (zh) 2022-03-25
KR20220047761A (ko) 2022-04-19
US20220287131A1 (en) 2022-09-08
JP2022543901A (ja) 2022-10-14
EP4007341A1 (en) 2022-06-01
EP4007341A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
US20230141536A1 (en) Electronic device, wireless communication method and computer-readable medium
US20220393750A1 (en) Electronic device and method for measuring a beam quality of a currently serving beam based on a prediction window when the detected beam quality is within a particular range
US11206573B2 (en) Terminal apparatus, communication control method and communication control apparatus
US20200213957A1 (en) Device in wireless communication system and method
US10958401B2 (en) Electronic device and user equipment in wireless communication system and wireless communication method
WO2021249336A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20220094501A1 (en) Terminal device, base station device, method, and recording medium
US20230421232A1 (en) Electronic device, wireless communication method and computer-readable medium
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
EP3550875B1 (en) Devices in wireless communication system
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021027705A1 (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
US20230362687A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US10028256B2 (en) Apparatus
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
CN117917030A (zh) 用于无线通信系统的电子设备、方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852495

Country of ref document: EP

Effective date: 20220222