WO2021027093A1 - 一种涡扇发动机控制系统主动容错控制方法 - Google Patents

一种涡扇发动机控制系统主动容错控制方法 Download PDF

Info

Publication number
WO2021027093A1
WO2021027093A1 PCT/CN2019/115497 CN2019115497W WO2021027093A1 WO 2021027093 A1 WO2021027093 A1 WO 2021027093A1 CN 2019115497 W CN2019115497 W CN 2019115497W WO 2021027093 A1 WO2021027093 A1 WO 2021027093A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
matrix
turbofan engine
control system
tolerant
Prior art date
Application number
PCT/CN2019/115497
Other languages
English (en)
French (fr)
Inventor
丁男
马艳华
高艳蕾
杜宪
汪锐
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/770,801 priority Critical patent/US20210156314A1/en
Publication of WO2021027093A1 publication Critical patent/WO2021027093A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/82Forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/305Tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/46Type of control system redundant, i.e. failsafe operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/701Type of control algorithm proportional
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/71Type of control algorithm synthesized, i.e. parameter computed by a mathematical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/803Sampling thereof

Definitions

  • the present invention relates to an active fault-tolerant control method for a turbofan engine control system, which belongs to the technical field of aviation control. Specifically, it refers to the concurrent failure of an actuator and a sensor in a turbofan engine control system, and there is external disturbance. Next, the method of fault estimation and active fault tolerance control.
  • Turbofan engines are widely used in civil and military aircraft, and their safety and reliability are closely related to flight safety.
  • the control system ensures the safety and performance of the turbofan engine in the full flight envelope.
  • the function realization of the control system needs to rely on a large number of sensors and actuators. If some of the components fail, it will be difficult to achieve the desired control effect and even affect flight safety. Therefore, it is of great significance to monitor the performance of the turbofan engine control system, estimate and warn the fault status in real time, and take corresponding fault-tolerant control measures.
  • the literature shows that the existing turbofan engine control system uses fault diagnosis and passive fault-tolerant control for the fault handling of sensors and actuators, that is, the control algorithm adopts a control method that combines PID and Min/Max switching.
  • the turbofan engine The operating conditions and the output speed, temperature, pressure and other measurable parameters based on the Kalman filter are used to judge whether the sensors and actuators of the control system are faulty. When a fault occurs, further use based on hardware redundancy and control Passive fault-tolerant control of loop switching.
  • the existing methods can ensure the safe operation of turbofan engines, they are somewhat conservative, which are mainly reflected in the following points:
  • the PID+Min/Max control method will affect the control bandwidth, amplitude/phase margin of the aeroengine As well as the introduction of undesirable characteristics in terms of response speed, it is difficult to obtain fast dynamic response characteristics.
  • the fault is only detected, that is, as soon as a fault occurs, a conservative passive fault-tolerant control method such as hardware redundancy or control loop switching is used for processing.
  • the use of hardware redundancy will inevitably lead to a waste of hardware resources; based on controller switching
  • the fault-tolerant control is at the expense of some performance indicators to ensure the safe operation of aero engines.
  • the traditional passive fault-tolerant control has great limitations, that is, it is necessary to consider all possible fault conditions in advance, resulting in the controller having a certain Conservativeness. It is worth mentioning that the turbofan control system is often interfered by noise signals. The existing method has no ideal solution for fault-tolerant control of the sensor and actuator faults of the turbofan engine control system under the interference signal.
  • the present invention provides an active fault-tolerant control method for the turbofan engine control system.
  • LUV linear variable parameter
  • the adaptive estimation of the fault amplitude of the sensor and the actuator is realized, and the fault signal is accurately reconstructed.
  • an active fault-tolerant control strategy based on virtual actuators is designed. Without the need to redesign the controller, through the designed active fault-tolerant control strategy, under the premise of ensuring the stability of the control system, The control effect is similar to the non-fault state of the control system.
  • An active fault-tolerant control method for a turbofan engine control system includes the following steps:
  • Step 1 Based on the turbofan engine test data, establish a turbofan engine LPV model:
  • x ⁇ R n is the state variable
  • u c ⁇ R m is the control input of the turbofan engine
  • d ⁇ R q is the disturbance signal
  • the scheduling parameter ⁇ is the normalized turbofan Engine high pressure turbine relative converted speed
  • ⁇ min ⁇ max , ⁇ min and ⁇ max are the minimum and maximum values of scheduling parameters, respectively, the system matrix A( ⁇ ) ⁇ R n ⁇ n , B( ⁇ ) ⁇ R n ⁇ m , C ⁇ R p ⁇ n , E ⁇ R n ⁇ q , G ⁇ R p ⁇ q
  • R ( ⁇ ) represents a ( ⁇ )-dimensional real number column vector
  • R a ⁇ b represents a ⁇ b-dimensional real number matrix
  • Step 2 Design a robust tracking controller for LPV gain scheduling for the turbofan engine LPV model with disturbances
  • Step 2.1 Introduce a new state variable x e , defined as
  • Step 2.2 For equation (3), construct and solve the following linear matrix inequality LMIs:
  • Step 2.3 Calculate the output of the robust tracking controller for LPV gain scheduling:
  • Step 3 For the turbofan engine LPV model with disturbances and sensor and actuator faults, based on the robust H ⁇ optimization method, establish an adaptive fault estimator for the turbofan engine to realize the fault estimation of the sensor and actuator;
  • Step 3.1 Consider that there are actuator and sensor failures in the turbofan engine control system.
  • the failure system is represented by equation (6):
  • x f ⁇ R n is the fault system state variable
  • u ⁇ R m is the fault system control input
  • y f ⁇ R p is the fault system measurement output
  • f [f a T f s T ]
  • ⁇ R l is the fault signal
  • B f ( ⁇ ) ⁇ R n ⁇ m is the fault system matrix
  • F f ( ⁇ ) ⁇ R n ⁇ l and H f ( ⁇ ) ⁇ R p ⁇ l are the fault matrices of the actuator and the sensor respectively;
  • Step 3.2 Separate the time-varying part from the time-invariant part in formula (6) and rewrite it as follows
  • x e ⁇ R k , u e [u T y f T ] T ⁇ R (p+m) and Respectively represent the state variable, control input and fault estimation output of the fault estimator, z e ⁇ ⁇ R r and w e ⁇ ⁇ R r respectively represent the input and output of the time-varying part of the fault estimator,
  • a e ⁇ R k ⁇ k , B e1 ⁇ R k ⁇ (m+p) , B e2 ⁇ R k ⁇ r , C e1 ⁇ R l ⁇ k , C e2 ⁇ R r ⁇ k , De11 ⁇ R l ⁇ (p+m) , De12 ⁇ R l ⁇ r , De21 ⁇ R r ⁇ (p+m) and De22 ⁇ R r ⁇ r are the coefficient matrix of the fault estimator to be designed;
  • Step 3.3 Construct a state space joint representation of the turbofan engine fault system equation (7) and fault estimator equation (8):
  • is the estimation matrix of the fault estimator
  • L, V, and Y respectively represent the sub-matrix block of X
  • J, W, and Z respectively represent the sub-matrix block of X -1 ;
  • Q 1 , Q 2 , and Q 3 represent the sub-matrix blocks of Q respectively
  • S 1 , S 2 , S 3 , and S 4 represent the sub-matrix blocks of S respectively
  • R 1 , R 2 , and R 3 represent the sub-matrix blocks of R respectively.
  • N L and N J are [C 3 D 31 D 32 ] and Basis of nuclear space;
  • Step 3.5 Further, according to the solution result of step 3.4, solve X in (17):
  • Step 3.6 Solve the following LMIs to obtain the estimated matrix ⁇ of the fault estimator
  • Step 4 According to the fault estimation result, design the turbofan engine active fault-tolerant controller based on the virtual actuator, so that the control system is stable without redesigning the controller, and the control effect is similar to that of the trouble-free system;
  • Step 4.1 Consider the turbofan engine failure system. When there are sensor and actuator failures, design a virtual actuator based on the reconstruction principle.
  • the state space model of the reconstruction system is expressed as follows:
  • x ⁇ is the state variable of the virtual actuator
  • C ⁇ ( ⁇ ) M( ⁇ )
  • D ⁇ ( ⁇ ) N( ⁇ )
  • z re is the controlled output of the reconstructed system
  • M( ⁇ ) and N( ⁇ ) are the waiting matrices in the active fault-tolerant control law
  • i 1, 2
  • is the minimum attenuation rate of the LMI region
  • r is the radius of the LMI region
  • q is the center of the circle
  • is the angle between the closed loop pole in the LMI region and the horizontal axis
  • Step 4.3 Calculation among them, Means Pseudo-inverse
  • Step 4.4 Calculate the system matrix:
  • the active fault-tolerant controller of the turbofan engine control system designed by the method of the present invention is aimed at when the actuator and sensor failures of the turbofan engine control system occur simultaneously, without the need to redesign the controller.
  • the designed reconfiguration controller makes the control system stable and obtains a speed tracking effect similar to that of a trouble-free system.
  • Figure 1 is the design flow chart of the active fault-tolerant controller for the sensor and actuator of the turbofan aeroengine control system
  • Figure 2 is a block diagram of a robust tracking controller for turbofan engine LPV gain scheduling
  • Figure 3(a) is the simulation result of the robust tracking control of the turbofan engine LPV gain scheduling when the relative converted speed of the high-pressure rotor is 88%;
  • Figure 3(b) is the simulation result of the robust tracking control of the turbofan engine LPV gain scheduling when the relative conversion speed of the high-pressure rotor is 94%;
  • Figure 4 is a block diagram of a turbofan engine fault estimator
  • Figure 5(a) is the result of sensor fault estimation for turbofan engine
  • Figure 5(b) is the result of the turbofan engine's fault estimation result for the actuator
  • Figure 6 is a block diagram of an active fault-tolerant controller for sensors and actuators of turbofan aeroengine control system
  • Figure 7(a) is the output of the faulty system when the relative converted speed of the high-pressure rotor is 90%;
  • Figure 7(b) shows the output of the faulty system when the relative converted speed of the high-pressure rotor is 94%
  • Figure 8(a) is the normal output result of the turbofan engine control system when the relative conversion speed of the high-pressure rotor is 90%;
  • Figure 8(b) is the result of active fault-tolerant control of the turbofan engine control system when the relative converted speed of the high-pressure rotor is 90%;
  • Figure 9(a) is the normal output result of the turbofan engine control system when the relative converted speed of the high-pressure rotor is 94%;
  • Figure 9(b) shows the result of active fault-tolerant control of the turbofan engine control system when the relative converted speed of the high-pressure rotor is 94%.
  • the research object of the present invention is a turbofan engine after the failure of the control system sensor and the actuator.
  • the design method is shown in the flowchart in Figure 1, and the detailed design steps are as follows.
  • Step 1 Based on the turbofan engine test data, establish a turbofan engine LPV model:
  • the scheduling parameter ⁇ is the normalized relative conversion speed of the turbofan engine high-pressure turbine, and -1 ⁇ 1, so the time-varying parameter ⁇ forms a parameter polyhedron with -1 and 1 as the vertices, and the disturbance d takes the standard deviation Gaussian white noise of 0.0001.
  • Step 2 As shown in Figure 2, for the turbofan engine LPV model with disturbances, design the LPV gain scheduling robust tracking controller.
  • V 1 [5589 -3460 -946]
  • V 2 [5894 -1975 -2096]
  • the gain of the speed tracking controller can change with the change of the time-varying parameter ⁇ , and has scheduling characteristics.
  • the turbofan engine LPV Gain scheduling robust tracking control simulation results it can be seen from the simulation results that the designed LPV speed tracking controller can ensure that the output responds quickly and tracks the reference command, whether it is for the vertex or non-vertex parameters. Therefore, the controller is within the range of the full-time varying parameters. Both have good control performance, can realize tracking stably and quickly, and have good robustness and stability.
  • Step 3 Establish an adaptive fault estimator for turbofan engine, as shown in Figure 4, to realize fault estimation of sensors and actuators.
  • the turbofan engine control system has actuator and sensor failures, as shown in (28)
  • the time-varying parameter ⁇ is measurable in real time and it is assumed to change as follows
  • x e ⁇ R k , u e [u T y f T ] T ⁇ R (p+m) and Respectively represent the state variable, control input and fault estimation output of the fault estimator, z e ⁇ ⁇ R r and w e ⁇ ⁇ R r respectively represent the input and output of the time-varying part of the fault estimator,
  • a e ⁇ R k ⁇ k , B e1 ⁇ R k ⁇ (m+p) , B e2 ⁇ R k ⁇ r , C e1 ⁇ R l ⁇ k , C e2 ⁇ R r ⁇ k , De11 ⁇ R l ⁇ (p+m) , De12 ⁇ R l ⁇ r , De21 ⁇ R r ⁇ (p+m) and De22 ⁇ R r ⁇ r are the coefficient matrices of the fault estimator to be designed.
  • is the estimation matrix of the fault estimator.
  • L, V, and Y respectively represent the sub-matrix block of X
  • J, W, and Z respectively represent the sub-matrix block of X -1 .
  • Q 1 , Q 2 , and Q 3 represent the sub-matrix blocks of Q respectively
  • S 1 , S 2 , S 3 , and S 4 represent the sub-matrix blocks of S respectively
  • R 1 , R 2 , and R 3 represent the sub-matrix blocks of R respectively.
  • Matrix block Respectively represent the sub-matrix blocks of P ⁇ , Respectively Submatrix block, Respectively Submatrix block, Respectively The sub-matrix block.
  • N L and N J are [C 3 D 31 D 32 ] and The basis of nuclear space.
  • Figure 5 shows the estimation results of the proposed fault estimator when a sudden fault occurs in the sensor and actuator of the control system. It can be seen from the simulation results that the proposed LPV fault estimator can adaptively adjust parameters, adapt to the current system dynamics, quickly detect faults, and accurately reconstruct fault signals.
  • Step 4 According to the fault estimation result, design the turbofan engine active fault-tolerant controller based on the virtual actuator, as shown in Figure 6.
  • Figure 7 shows the output of the fault system when the relative converted speed of the high-pressure rotor is 90% and 94%, respectively. It can be seen that in the fault state, the system output is quite different from the fault-free state.
  • the simultaneous LMIs of (22)-(24) solve the positive definite matrix X v , Y 1 and Y 2 .
  • Figures 8 and 9 are the results of the normal output of the control system and the faulty system after active fault-tolerant control when the relative converted speed of the high-pressure rotor is 90% and 94%, respectively. Compared. It can be seen from the simulation results that after the introduction of the active fault-tolerant controller, the control performance of the reconstructed system is similar to that of the fault-free system, the fault is hidden, and the active fault tolerance is realized. In addition, due to the use of virtual actuators for reconstruction, the redesign of the original speed tracking controller is avoided, and the complexity of system maintenance is reduced, which is of great significance to engineering applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Feedback Control In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种涡扇发动机控制系统主动容错控制方法,设计一个具有良好动态性能的线性变参数增益调度鲁棒跟踪控制器。根据涡扇发动机运行状态的变化,实现传感器与执行机构故障幅值的自适应估计,准确地重构故障信号。根据故障估计结果,设计基于虚拟执行器的主动容错控制策略,在无需重新设计控制器的情况下,通过所设计的主动容错控制策略,在保证控制系统稳定性的前提下,获得和控制系统无故障状态相似的控制效果。通过该方法设计的涡扇发动机控制系统主动容错控制器,针对涡扇发动机控制系统同时发生执行机构与传感器故障时,在无需重新设计控制器的情况下,通过所设计的重构控制器,使得控制系统稳定,并获得和无故障系统相近的转速跟踪效果。

Description

一种涡扇发动机控制系统主动容错控制方法 技术领域
本发明涉及一种涡扇发动机控制系统主动容错控制方法,属于航空控制技术领域,具体来说,是指针对涡扇发动机控制系统中,执行机构与传感器的并发性故障,且存在外部扰动的情况下,进行故障估计与主动容错控制的方法。
背景技术
涡扇发动机广泛应用于民机及军机,其安全性与可靠性与飞行安全密切相关。控制系统作为涡扇发动机的“大脑”,确保涡扇发动机在全飞行包线内的安全与性能。控制系统的功能实现需要依靠大量的传感器和执行机构,若其中某些器件发生故障,则很难实现期望的控制效果,甚至影响飞行安全。因此,对涡扇发动机控制系统的性能进行监测,对故障状态实时估计、告警,并采取相应的容错控制措施,具有重要的意义。
文献表明,现有的涡扇发动机控制系统针对传感器和执行机构的故障处理方式采用的是故障诊断和被动容错控制,即控制算法采用PID和Min/Max切换相结合的控制方式,根据涡扇发动机的运行工况及输出的转速、温度、压力等可测参数基于卡尔曼滤波器对控制系统的传感器及执行机构是否发生故障给出判断,当有故障发生时,进一步采用基于硬件余度和控制回路切换的被动容错控制。尽管现有方法可以保证涡扇发动机的安全运行,但存在一定的保守性,主要体现在以下几点:首先,PID+Min/Max控制方式会在航空发动机的控制带宽、幅值/相位裕度以及响应速度等方面引入不理想的特性,难以获得较快的动态响应特性。其次,对故障只进行检测,即判断一有故障发生,就采用如硬件余度或控制回路切换等较为保守的被动容错控制方式进行处理,采用硬件余度难免造成硬件资源浪费;基于控制器切换的容错控制则是以牺牲部分性能指标为代价来确保航空发动机的安全运行。最后,随着涡扇发动机控制系统复杂性增加,故障种类及数量也会增加,因此传统的被动容错控制存在很大的局限性,即需要提前考虑全部可能发生的故障情况,导致控制器具有一定的保守性。值得提出的是,涡扇控制系统常受到噪声信号干扰,现有方法在处理干扰信号下,针对涡扇发动机控制系统传感器及执行器故障的容错控制,尚无理想的解决方法。
发明内容
针对现有涡扇发动机控制系统传感器与执行机构故障诊断与容错控制方法的保守性及难以保证扰动环境下的控制系统鲁棒性问题,本发明提供一种涡扇发动机控制系统主动容错控制方法。首先,设计一个具有良好动态性能的线性变参数(LPV)增益调度鲁棒跟踪控制器。进一步,根据涡扇发动机运行状态的变化,实现传感器与执行机构故障幅值的自适应估计,准确地重构故障信号。然后,根据故障估计结果,设计一种基于虚拟执行器的主动容错控制 策略,在无需重新设计控制器的情况下,通过所设计的主动容错控制策略,在保证控制系统稳定性的前提下,获得和控制系统无故障状态相似的控制效果。
为实现上述目的,本发明采用的技术方案步骤如下:
一种涡扇发动机控制系统主动容错控制方法,包括以下步骤:
步骤1:基于涡扇发动机试车数据,建立涡扇发动机LPV模型:
Figure PCTCN2019115497-appb-000001
其中,x∈R n为状态变量,u c∈R m为涡扇发动机的控制输入,d∈R q为扰动信号,输出y∈R p,调度参数λ取值为归一化后的涡扇发动机高压涡轮相对换算转速,且λ min≤λ≤λ max,λ min和λ max分别为调度参数的最小和最大值,系统矩阵A(λ)∈R n×n,B(λ)∈R n×m,C∈R p×n,E∈R n×q,G∈R p×q,R (·)表示(·)维实数列向量,R a×b表示a×b维实数矩阵;
步骤2:针对带有扰动的涡扇发动机LPV模型,设计LPV增益调度鲁棒跟踪控制器;
步骤2.1:引入新的状态变量x e,定义为
Figure PCTCN2019115497-appb-000002
其中,e(·)为跟踪误差,y r(·)为期望的跟踪信号;将式(1)改写为广义形式式(3)
Figure PCTCN2019115497-appb-000003
其中,
Figure PCTCN2019115497-appb-000004
Figure PCTCN2019115497-appb-000005
步骤2.2:对于式(3),构建并求解如下线性矩阵不等式LMIs:
Figure PCTCN2019115497-appb-000006
其中,i=1、2,
Figure PCTCN2019115497-appb-000007
γ为广义形式(3)的闭环传递函数
Figure PCTCN2019115497-appb-000008
的H 范数期望值,I为单位矩阵,求解式(4)得到矩阵X和V i
步骤2.3:计算LPV增益调度鲁棒跟踪控制器输出:
Figure PCTCN2019115497-appb-000009
其中,
Figure PCTCN2019115497-appb-000010
步骤3:针对带有扰动,且存在传感器与执行机构故障的涡扇发动机LPV模型,基于鲁棒H 优化方法,建立涡扇发动机自适应故障估计器,实现传感器及执行机构的故障估计;
步骤3.1:考虑涡扇发动机控制系统存在执行机构和传感器故障,故障系统表示如式(6)所示:
Figure PCTCN2019115497-appb-000011
其中,x f∈R n为故障系统状态变量,u∈R m为故障系统控制输入,y f∈R p为故障系统测量输出,f=[f a T f s T] T∈R l为故障信号,
Figure PCTCN2019115497-appb-000012
为执行机构故障,
Figure PCTCN2019115497-appb-000013
为传感器故障,B f(λ)∈R n×m为故障系统矩阵,F f(λ)∈R n×l和H f(λ)∈R p×l分别为执行机构和传感器的故障矩阵;
步骤3.2:将式(6)中时变部分和时不变部分分离,改写为如下形式
Figure PCTCN2019115497-appb-000014
其中,外部输入w=[u T d T f T] T,z λ,w λ∈R r分别为式(6)中r维时变子系统Λ=λI的输入和输出变量,B f1∈R n×r、B f2∈R n×(m+q+l)、C f1∈R r×n、C f2∈R p×n、D f11∈R r×r、D f12∈R r×(m+q+l)、D f21∈R p×r和D f22∈R p×(m+q+l)为系统状态空间矩阵;
基于式(7),构建故障估计器状态空间表达式如下:
Figure PCTCN2019115497-appb-000015
其中,x e∈R k,u e=[u T y f T] T∈R (p+m)
Figure PCTCN2019115497-appb-000016
分别表示故障估计器的状态变量、控制输入和故障估计输出,z ∈R r和w ∈R r分别表示故障估计器时变部分的输入和输出,A e∈R k×k、B e1∈R k×(m+p)、B e2∈R k×r、C e1∈R l×k、C e2∈R r×k、D e11∈R l×(p+m)、D e12∈R l×r、D e21∈R r×(p+m)和D e22∈R r×r为待设计的故障估计器系数矩阵;
步骤3.3:构建涡扇发动机故障系统式(7)和故障估计器式(8)的状态空间联合表示:
Figure PCTCN2019115497-appb-000017
其中,故障估计误差
Figure PCTCN2019115497-appb-000018
Figure PCTCN2019115497-appb-000019
Figure PCTCN2019115497-appb-000020
Figure PCTCN2019115497-appb-000021
Figure PCTCN2019115497-appb-000022
Figure PCTCN2019115497-appb-000023
Γ为故障估计器的估计矩阵;
步骤3.4:令
Figure PCTCN2019115497-appb-000024
其中,L、V、Y分别表示X的子矩阵块,J、W、Z分别表示X -1的子矩阵块;
构建矩阵P及其逆矩阵
Figure PCTCN2019115497-appb-000025
如式(14)所示:
Figure PCTCN2019115497-appb-000026
其中,Q 1、Q 2、Q 3分别表示Q的子矩阵块,S 1、S 2、S 3、S 4分别表示S的子矩阵块,R 1、R 2、R 3分别表示R的子矩阵块,
Figure PCTCN2019115497-appb-000027
分别表示
Figure PCTCN2019115497-appb-000028
的子矩阵块,
Figure PCTCN2019115497-appb-000029
分别表示
Figure PCTCN2019115497-appb-000030
的子矩阵块,
Figure PCTCN2019115497-appb-000031
分别表示
Figure PCTCN2019115497-appb-000032
的子矩阵块,
Figure PCTCN2019115497-appb-000033
分别表示
Figure PCTCN2019115497-appb-000034
的子矩阵块;
构建如下LMIs,联立求解相应矩阵解L,J,Q 3,R 3,S 4
Figure PCTCN2019115497-appb-000035
Figure PCTCN2019115497-appb-000036
Figure PCTCN2019115497-appb-000037
Figure PCTCN2019115497-appb-000038
R>0,Q=-R,S+S T=0  (18)
其中,N L和N J分别为[C 3D 31 D 32]和
Figure PCTCN2019115497-appb-000039
核空间的基;
步骤3.5:进一步,根据步骤3.4的求解结果,求解(17)中的X:
Figure PCTCN2019115497-appb-000040
根据
Figure PCTCN2019115497-appb-000041
求解P;
步骤3.6:求解下列LMIs,得到故障估计器的估计矩阵Γ;
Figure PCTCN2019115497-appb-000042
其中,
Figure PCTCN2019115497-appb-000043
Figure PCTCN2019115497-appb-000044
进一步,计算故障估计器的系数矩阵:
Figure PCTCN2019115497-appb-000045
步骤4:根据故障估计结果,设计基于虚拟执行器的涡扇发动机主动容错控制器,在无需重新设计控制器的情况下,使得控制系统稳定,并获得和无故障系统相近的控制效果;
步骤4.1:考虑涡扇发动机故障系统,当存在传感器与执行机构故障时,设计基于重构原理的虚拟执行器,重构系统的状态空间模型表示如下:
Figure PCTCN2019115497-appb-000046
其中,
Figure PCTCN2019115497-appb-000047
x Δ为虚拟执行器状态变量,
Figure PCTCN2019115497-appb-000048
Figure PCTCN2019115497-appb-000049
C (λ)=M(λ),D (λ)=N(λ),
Figure PCTCN2019115497-appb-000050
Figure PCTCN2019115497-appb-000051
z re为重构系统的被控输出,M(λ)和N(λ)为主动容错控制律中的待求矩阵;
根据(22)-(24)联立的LMIs,求解正定矩阵X v、Y 1和Y 2
Figure PCTCN2019115497-appb-000052
Figure PCTCN2019115497-appb-000053
Figure PCTCN2019115497-appb-000054
其中,i=1,2,ρ为LMI区域的最小衰减率,r为LMI区域的半径,q为圆心,θ为LMI区域中闭环极点与横轴的夹角;
步骤4.2:根据Y i=M iX v,得到矩阵M i
步骤4.3:计算
Figure PCTCN2019115497-appb-000055
其中,
Figure PCTCN2019115497-appb-000056
表示
Figure PCTCN2019115497-appb-000057
的伪逆;
步骤4.4:计算系统矩阵:
Figure PCTCN2019115497-appb-000058
C (λ)=M(λ),D (λ)=N(λ)
构造主动容错控制器状态空间方程及控制律:
Figure PCTCN2019115497-appb-000059
本发明的有益效果:通过本发明的方法设计的涡扇发动机控制系统主动容错控制器,针对涡扇发动机控制系统同时发生执行机构与传感器故障时,在无需重新设计控制器的情况下,通过所设计的重构控制器,使得控制系统稳定,并获得和无故障系统相近的转速跟踪效果。
附图说明
图1是涡扇航空发动机控制系统传感器与执行机构主动容错控制器设计流程图;
图2是涡扇发动机LPV增益调度鲁棒跟踪控制器框图;
图3(a)是高压转子相对换算转速为88%时,涡扇发动机LPV增益调度鲁棒跟踪控制仿真结果;
图3(b)是高压转子相对换算转速为94%时,涡扇发动机LPV增益调度鲁棒跟踪控制仿真结果;
图4是涡扇发动机故障估计器框图;
图5(a)是涡扇发动机为传感器故障估计结果;
图5(b)是涡扇发动机为执行机构故障估计结果;
图6是涡扇航空发动机控制系统传感器与执行机构主动容错控制器框图;
图7(a)是高压转子相对换算转速为90%时,故障系统输出;
图7(b)是高压转子相对换算转速为94%时,故障系统输出;
图8(a)是高压转子相对换算转速为90%时,涡扇发动机控制系统正常输出结果;
图8(b)是高压转子相对换算转速为90%时,涡扇发动机控制系统主动容错控制结果;
图9(a)是高压转子相对换算转速为94%时,涡扇发动机控制系统正常输出结果;
图9(b)是高压转子相对换算转速为94%时,涡扇发动机控制系统主动容错控制结果。
具体实施方式
下面结合附图对本发明作进一步说明,本发明的研究对象为控制系统传感器与执行机构故障后涡扇发动机,其设计方法如图1流程图所示,详细设计步骤如下。
步骤1:基于涡扇发动机试车数据,建立涡扇发动机LPV模型:
Figure PCTCN2019115497-appb-000060
其中
Figure PCTCN2019115497-appb-000061
Figure PCTCN2019115497-appb-000062
调度参数λ为归一化后的涡扇发动机高压涡轮相对换算转速,且-1≤λ≤1,所以时变参数λ组成了一个以-1和1为顶点的参数多面体,扰动d取标准差为0.0001的高斯白噪声。
步骤2:如图2所示,针对带有扰动的涡扇发动机LPV模型,设计LPV增益调度鲁棒跟踪控制器。
给定γ=2,求解LMI(4),可得如下相应的矩阵解X和V i(i=1,2)。
Figure PCTCN2019115497-appb-000063
V 1=[5589 -3460 -946]
V 2=[5894 -1975 -2096]
结合式(5)可得转速跟踪控制器的增益K(λ),且有
Figure PCTCN2019115497-appb-000064
由此,转速跟踪控制器的增益可以随着时变参数λ的变化而变化,具有调度特性,如图3所示,分别为高压转子相对换算转速为90%和94%时,涡扇发动机LPV增益调度鲁棒跟踪控制仿真结果。从仿真结果可以看出,无论是针对顶点处参数还是非顶点处参数,设计的LPV转速跟踪控制器都能保证输出较快地响应并跟踪参考指令,因此该控制器在全时变参数范围内都具有良好的控制性能,能够稳定、较快地实现跟踪,并有着较好的鲁棒性和稳定性。
步骤3:建立涡扇发动机自适应故障估计器,如图4所示,实现传感器及执行机构的故障估计。考虑涡扇发动机控制系统存在执行机构和传感器故障,如(28)所示
Figure PCTCN2019115497-appb-000065
其中,f 1(λ)=0.1+0.01λ,-1≤λ≤1,h(λ)=0.5+0.02λ,-1≤λ≤1,扰动取标准差为0.0001的高斯白噪声。时变参数λ是实时可测的且假设其变化如下
Figure PCTCN2019115497-appb-000066
乘性执行机构故障表示为
Figure PCTCN2019115497-appb-000067
将(28)中时变部分和时不变部分分离,改写为如下形式
Figure PCTCN2019115497-appb-000068
其中,外部输入w=[u T d T f T] T,z λ,w λ∈R r分别为(6)中r维时变子系统Λ=λI的输入和输出变量,B f1∈R n×r、B f2∈R n×(m+q+l)、C f1∈R r×n、C f2∈R p×n、D f11∈R r×r、D f12∈R r×(m+q+l)、D f21∈R p×r和D f22∈R p×(m+q+l)为系统状态空间矩阵。
构建故障估计器状态空间表达式如下
Figure PCTCN2019115497-appb-000069
其中,x e∈R k,u e=[u T y f T] T∈R (p+m)
Figure PCTCN2019115497-appb-000070
分别表示故障估计器的状态变量、控制输入和故障估计输出,z ∈R r和w ∈R r分别表示故障估计器时变部分的输入和输出, A e∈R k×k、B e1∈R k×(m+p)、B e2∈R k×r、C e1∈R l×k、C e2∈R r×k、D e11∈R l×(p+m)、D e12∈R l×r、D e21∈R r×(p+m)和D e22∈R r×r为待设计的故障估计器系数矩阵。
构建涡扇发动机故障系统和故障估计器的状态空间联合表示
Figure PCTCN2019115497-appb-000071
其中,故障估计误差
Figure PCTCN2019115497-appb-000072
Figure PCTCN2019115497-appb-000073
Figure PCTCN2019115497-appb-000074
Figure PCTCN2019115497-appb-000075
Figure PCTCN2019115497-appb-000076
Figure PCTCN2019115497-appb-000077
Γ为故障估计器的估计矩阵。
Figure PCTCN2019115497-appb-000078
其中,L、V、Y分别表示X的子矩阵块,J、W、Z分别表示X -1的子矩阵块。
构建矩阵P及其逆矩阵
Figure PCTCN2019115497-appb-000079
Figure PCTCN2019115497-appb-000080
其中,Q 1、Q 2、Q 3分别表示Q的子矩阵块,S 1、S 2、S 3、S 4分别表示S的子矩阵块,R 1、R 2、R 3分别表示R的子矩阵块,
Figure PCTCN2019115497-appb-000081
分别表示P~的子矩阵块,
Figure PCTCN2019115497-appb-000082
分别表示
Figure PCTCN2019115497-appb-000083
的子矩阵块,
Figure PCTCN2019115497-appb-000084
分别表示
Figure PCTCN2019115497-appb-000085
的子矩阵块,
Figure PCTCN2019115497-appb-000086
分别表示
Figure PCTCN2019115497-appb-000087
的子矩阵块。
构建如下LMIs,联立求解相应矩阵解L,J,Q 3,R 3,S 4
Figure PCTCN2019115497-appb-000088
Figure PCTCN2019115497-appb-000089
Figure PCTCN2019115497-appb-000090
Figure PCTCN2019115497-appb-000091
R>0,Q=-R,S+S T=0
其中,N L和N J分别为[C 3 D 31 D 32]和
Figure PCTCN2019115497-appb-000092
核空间的基。
进一步,求解X
Figure PCTCN2019115497-appb-000093
根据
Figure PCTCN2019115497-appb-000094
求解P。
求解下列LMIs,得到故障估计器的估计矩阵Γ
Figure PCTCN2019115497-appb-000095
其中,
Figure PCTCN2019115497-appb-000096
Figure PCTCN2019115497-appb-000097
进一步,计算故障估计器的系数矩阵。
Figure PCTCN2019115497-appb-000098
图5分别为控制系统传感器和执行机构发生突变故障时,所提故障估计器的估计结果。由仿真结果可以看出,所提的LPV故障估计器能够自适应地调整参数,适应当前系统动态,快速地检测到故障,并准确地重构故障信号。
步骤4:根据故障估计结果,设计基于虚拟执行器的涡扇发动机主动容错控制器,如图6所示。考虑涡扇发动机故障系统(28),图7是高压转子相对换算转速分别为90%和94%时,故障系统输出。可以看出,故障状态下,系统输出较无故障状态具有较大区别。根据(22)-(24)联立的LMIs,求解正定矩阵X v,Y 1和Y 2
Figure PCTCN2019115497-appb-000099
Figure PCTCN2019115497-appb-000100
Figure PCTCN2019115497-appb-000101
其中,i=1,2,ρ=10,r=-4.5,q=15,θ=π/6。
根据Y i=M iX v得到矩阵M i(i=1,2)。
计算
Figure PCTCN2019115497-appb-000102
其中
Figure PCTCN2019115497-appb-000103
表示
Figure PCTCN2019115497-appb-000104
的伪逆。
计算系统矩阵
Figure PCTCN2019115497-appb-000105
C (λ)=M(λ),D (λ)=N(λ)
构造主动容错控制器状态空间方程及控制律
Figure PCTCN2019115497-appb-000106
利用综上设计出的虚拟执行器对故障系统进行重构,图8和图9分别是高压转子相对换算转速为90%和94%时,控制系统正常输出和故障系统经主动容错控制后的结果对比。仿真结果可以看出,引入主动容错控制器后,重构系统的控制性能和无故障系统的相近,对故障进行了隐藏,进而实现了主动容错。此外,由于采用虚拟执行器进行重构,避免了对原转速跟踪控制器的重新设计,降低了系统维护的复杂性,对工程应用具有重大意义。

Claims (1)

  1. 一种涡扇发动机控制系统主动容错控制方法,其特征在于,包括以下步骤:
    步骤1:基于涡扇发动机试车数据,建立涡扇发动机LPV模型:
    Figure PCTCN2019115497-appb-100001
    其中,x∈R n为状态变量,u c∈R m为涡扇发动机的控制输入,d∈R q为扰动信号,输出y∈R p,调度参数λ取值为归一化后的涡扇发动机高压涡轮相对换算转速,且λ min≤λ≤λ max,λ min和λ max分别为调度参数的最小和最大值,系统矩阵A(λ)∈R n×n,B(λ)∈R n×m,C∈R p×n,E∈R n×q,G∈R p×q,R(·)表示(·)维实数列向量,R a×b表示a×b维实数矩阵;
    步骤2:针对带有扰动的涡扇发动机LPV模型,设计LPV增益调度鲁棒跟踪控制器;
    步骤2.1:引入新的状态变量x e,定义为
    Figure PCTCN2019115497-appb-100002
    其中,e(·)为跟踪误差,y r(·)为期望的跟踪信号;将式(1)改写为广义形式式(3)
    Figure PCTCN2019115497-appb-100003
    其中,
    Figure PCTCN2019115497-appb-100004
    Figure PCTCN2019115497-appb-100005
    步骤2.2:对于式(3),构建并求解如下线性矩阵不等式LMIs:
    Figure PCTCN2019115497-appb-100006
    其中,i=1、2,
    Figure PCTCN2019115497-appb-100007
    γ为广义形式(3)的闭环传递函数
    Figure PCTCN2019115497-appb-100008
    (s)的H 范数期望值,I为单位矩阵,求解式(4)得到矩阵X和V i
    步骤2.3:计算LPV增益调度鲁棒跟踪控制器输出:
    Figure PCTCN2019115497-appb-100009
    其中,
    Figure PCTCN2019115497-appb-100010
    步骤3:针对带有扰动,且存在传感器与执行机构故障的涡扇发动机LPV模型,基于鲁棒H 优化方法,建立涡扇发动机自适应故障估计器,实现传感器及执行机构的故障估计;
    步骤3.1:考虑涡扇发动机控制系统存在执行机构和传感器故障,故障系统表示如式(6)所示:
    Figure PCTCN2019115497-appb-100011
    其中,x f∈R n为故障系统状态变量,u∈R m为故障系统控制输入,y f∈R p为故障系统测量输出,f=[f a T f s T] T∈R l为故障信号,
    Figure PCTCN2019115497-appb-100012
    为执行机构故障,
    Figure PCTCN2019115497-appb-100013
    为传感器故障,B f(λ)∈R n×m为故障系统矩阵,F f(λ)∈R n×l和H f(λ)∈R p×l分别为执行机构和传感器的故障矩阵;
    步骤3.2:将式(6)中时变部分和时不变部分分离,改写为如下形式
    Figure PCTCN2019115497-appb-100014
    其中,外部输入w=[u T d T f T] T,z λ,w λ∈R r分别为式(6)中r维时变子系统Λ=λI的输入和输出变量,B f1∈R n×r、B f2∈R n×(m+q+l)、C f1∈R r×n、C f2∈R p×n、D f11∈R r×r、D f12∈R r×(m+q+l)、D f21∈R p×r和D f22∈R p×(m+q+l)为系统状态空间矩阵;
    基于式(7),构建故障估计器状态空间表达式如下:
    Figure PCTCN2019115497-appb-100015
    其中,x e∈R k,u e=[u T y f T] T∈R (p+m)
    Figure PCTCN2019115497-appb-100016
    分别表示故障估计器的状态变量、控制输入和故障估计输出,z ∈R r和w ∈R r分别表示故障估计器时变部分的输入和输出,A e∈R k×k、B e1∈R k×(m+p)、B e2∈R k×r、C e1∈R l×k、C e2∈R r×k、D e11∈R l×(p+m)、D e12∈R l×r、 D e21∈R r×(p+m)和D e22∈R r×r为待设计的故障估计器系数矩阵;
    步骤3.3:构建涡扇发动机故障系统式(7)和故障估计器式(8)的状态空间联合表示:
    Figure PCTCN2019115497-appb-100017
    其中,故障估计误差
    Figure PCTCN2019115497-appb-100018
    Figure PCTCN2019115497-appb-100019
    Figure PCTCN2019115497-appb-100020
    Figure PCTCN2019115497-appb-100021
    Figure PCTCN2019115497-appb-100022
    Figure PCTCN2019115497-appb-100023
    Γ为 故障估计器的估计矩阵;
    步骤3.4:令
    Figure PCTCN2019115497-appb-100024
    其中,L、V、Y分别表示X的子矩阵块,J、W、Z分别表示X -1的子矩阵块;
    构建矩阵P及其逆矩阵
    Figure PCTCN2019115497-appb-100025
    如式(14)所示:
    Figure PCTCN2019115497-appb-100026
    其中,Q 1、Q 2、Q 3分别表示Q的子矩阵块,S 1、S 2、S 3、S 4分别表示S的子矩阵块,R 1、R 2、R 3分别表示R的子矩阵块,
    Figure PCTCN2019115497-appb-100027
    分别表示
    Figure PCTCN2019115497-appb-100028
    的子矩阵块,
    Figure PCTCN2019115497-appb-100029
    分别表示
    Figure PCTCN2019115497-appb-100030
    的子矩阵块,
    Figure PCTCN2019115497-appb-100031
    分别表示
    Figure PCTCN2019115497-appb-100032
    的子矩阵块,
    Figure PCTCN2019115497-appb-100033
    分别表示
    Figure PCTCN2019115497-appb-100034
    的子矩阵块;
    构建如下LMIs,联立求解相应矩阵解L,J,Q 3,R 3,S 4
    Figure PCTCN2019115497-appb-100035
    Figure PCTCN2019115497-appb-100036
    Figure PCTCN2019115497-appb-100037
    Figure PCTCN2019115497-appb-100038
    R>0,Q=-R,S+S T=0  (18)
    其中,N L和N J分别为[C 3 D 31 D 32]和
    Figure PCTCN2019115497-appb-100039
    核空间的基;
    步骤3.5:进一步,根据步骤3.4的求解结果,求解(17)中的X:
    Figure PCTCN2019115497-appb-100040
    根据
    Figure PCTCN2019115497-appb-100041
    求解P;
    步骤3.6:求解下列LMIs,得到故障估计器的估计矩阵Γ;
    Figure PCTCN2019115497-appb-100042
    其中,
    Figure PCTCN2019115497-appb-100043
    Figure PCTCN2019115497-appb-100044
    进一步,计算故障估计器的系数矩阵:
    Figure PCTCN2019115497-appb-100045
    步骤4:根据故障估计结果,设计基于虚拟执行器的涡扇发动机主动容错控制器,在无需重新设计控制器的情况下,使得控制系统稳定,并获得和无故障系统相近的控制效果;
    步骤4.1:考虑涡扇发动机故障系统,当存在传感器与执行机构故障时,设计基于重构原理的虚拟执行器,重构系统的状态空间模型表示如下:
    Figure PCTCN2019115497-appb-100046
    其中,
    Figure PCTCN2019115497-appb-100047
    x Δ为虚拟执行器状态变量,
    Figure PCTCN2019115497-appb-100048
    Figure PCTCN2019115497-appb-100049
    C (λ)=M(λ),D (λ)=N(λ),
    Figure PCTCN2019115497-appb-100050
    Figure PCTCN2019115497-appb-100051
    z re为重构系统的被控输出,M(λ)和N(λ)为主动容错控制律中的待求矩阵;
    根据(22)-(24)联立的LMIs,求解正定矩阵X v、Y 1和Y 2
    Figure PCTCN2019115497-appb-100052
    Figure PCTCN2019115497-appb-100053
    Figure PCTCN2019115497-appb-100054
    其中,i=1,2,ρ为LMI区域的最小衰减率,r为LMI区域的半径,q为圆心,θ为LMI区域中闭环极点与横轴的夹角;
    步骤4.2:根据Y i=M iX v,得到矩阵M i
    步骤4.3:计算
    Figure PCTCN2019115497-appb-100055
    其中,
    Figure PCTCN2019115497-appb-100056
    表示
    Figure PCTCN2019115497-appb-100057
    的伪逆;
    步骤4.4:计算系统矩阵:
    Figure PCTCN2019115497-appb-100058
    C (λ)=M(λ),D (λ)=N(λ)
    构造主动容错控制器状态空间方程及控制律:
    Figure PCTCN2019115497-appb-100059
PCT/CN2019/115497 2019-08-13 2019-11-05 一种涡扇发动机控制系统主动容错控制方法 WO2021027093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,801 US20210156314A1 (en) 2019-08-13 2019-11-05 Method for active fault tolerant control of turbofan engine control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910742832.3 2019-08-13
CN201910742832.3A CN110513198B (zh) 2019-08-13 2019-08-13 一种涡扇发动机控制系统主动容错控制方法

Publications (1)

Publication Number Publication Date
WO2021027093A1 true WO2021027093A1 (zh) 2021-02-18

Family

ID=68625584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115497 WO2021027093A1 (zh) 2019-08-13 2019-11-05 一种涡扇发动机控制系统主动容错控制方法

Country Status (3)

Country Link
US (1) US20210156314A1 (zh)
CN (1) CN110513198B (zh)
WO (1) WO2021027093A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113250905A (zh) * 2021-07-01 2021-08-13 湖南工业大学 基于lmi欠驱动滑模控制的故障风电系统容错方法
CN114326686A (zh) * 2022-01-04 2022-04-12 郑州大学 基于残差熵极小化的无人机乘性故障诊断与容错控制方法
CN114564000A (zh) * 2022-03-01 2022-05-31 西北工业大学 基于智能飞行器执行器故障诊断的主动容错方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11468164B2 (en) * 2019-12-11 2022-10-11 General Electric Company Dynamic, resilient virtual sensing system and shadow controller for cyber-attack neutralization
CN111271181B (zh) * 2020-04-04 2022-08-19 西北工业大学 航空发动机降保守性增益调度二自由度μ控制器
CN111830827B (zh) * 2020-06-15 2022-06-10 西北工业大学 航空发动机容错增益调度二自由度μ控制器
CN111856929B (zh) * 2020-06-15 2022-06-10 西北工业大学 航空发动机容错增益调度二自由度h∞控制器
CN111859555A (zh) * 2020-06-15 2020-10-30 西北工业大学 输入受限的航空发动机最大推力状态鲁棒容错控制器
CN113568423B (zh) * 2021-08-01 2024-01-16 西北工业大学 一种考虑电机故障的四旋翼无人机智能容错控制方法
CN113552805B (zh) * 2021-08-12 2022-12-27 南京理工大学 一种电静液作动器的间接自适应鲁棒控制方法
US11905891B2 (en) 2021-08-20 2024-02-20 Rtx Corporation On-board estimator effector drift detection in engine control
CN113830168B (zh) * 2021-11-05 2023-09-22 安徽奇米智能科技有限公司 一种基于故障估计的车辆前轮转角容错控制方法、系统
CN113998001B (zh) * 2021-11-05 2024-01-16 合肥工业大学 一种无人驾驶车辆线控转向的容错控制器及其设计方法
CN114893302B (zh) * 2022-04-14 2023-10-17 北京动力机械研究所 一种小型涡扇发动机转速判故方法及冗余控制方法
CN115509136B (zh) * 2022-11-21 2023-03-10 西北工业大学 一种面向线性传感器故障无人机飞行容错控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328836A (zh) * 2008-07-04 2008-12-24 东南大学 燃气轮机转速系统的多模型自适应广义预测控制方法
CN107313861A (zh) * 2017-08-17 2017-11-03 青岛格莱瑞智能控制技术有限公司 燃气轮机发电机组的鲁棒自适应控制器
US20180107176A1 (en) * 2016-10-18 2018-04-19 United Technologies Corporation System and method for simulating an operation of a gas turbine engine
CN109184913A (zh) * 2018-10-08 2019-01-11 南京航空航天大学 基于稳定性估计与预测的航空发动机气动稳定性主动复合控制方法
CN109441644A (zh) * 2018-12-11 2019-03-08 大连理工大学 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法
CN109630281A (zh) * 2019-01-10 2019-04-16 大连理工大学 一种基于误差区间观测器的航空发动机主动容错控制方法
US20190186287A1 (en) * 2017-12-20 2019-06-20 Plasma Igniter, LLC Power-generation Turbine Including Resonator-based Diagnostics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029015A2 (en) * 2009-09-03 2011-03-10 Larimore Wallace E Method and system for empirical modeling of time-varying, parameter-varying, and nonlinear systems via iterative linear subspace computation
CN105093932B (zh) * 2015-06-23 2016-06-01 北京航天自动控制研究所 一种确定lpv变增益控制器的鲁棒性的方法
CN108803316B (zh) * 2018-03-09 2020-12-15 南京航空航天大学 针对多智能体系统执行器故障的主动容错控制方法
CN108710293A (zh) * 2018-04-09 2018-10-26 无锡职业技术学院 一种直流调速系统的容错迭代学习控制方法
CN109799803B (zh) * 2018-12-11 2020-06-16 大连理工大学 一种基于lft的航空发动机传感器及执行机构故障诊断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328836A (zh) * 2008-07-04 2008-12-24 东南大学 燃气轮机转速系统的多模型自适应广义预测控制方法
US20180107176A1 (en) * 2016-10-18 2018-04-19 United Technologies Corporation System and method for simulating an operation of a gas turbine engine
CN107313861A (zh) * 2017-08-17 2017-11-03 青岛格莱瑞智能控制技术有限公司 燃气轮机发电机组的鲁棒自适应控制器
US20190186287A1 (en) * 2017-12-20 2019-06-20 Plasma Igniter, LLC Power-generation Turbine Including Resonator-based Diagnostics
CN109184913A (zh) * 2018-10-08 2019-01-11 南京航空航天大学 基于稳定性估计与预测的航空发动机气动稳定性主动复合控制方法
CN109441644A (zh) * 2018-12-11 2019-03-08 大连理工大学 一种基于自抗扰理论的涡扇发动机稳态过渡态多变量控制方法
CN109630281A (zh) * 2019-01-10 2019-04-16 大连理工大学 一种基于误差区间观测器的航空发动机主动容错控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113250905A (zh) * 2021-07-01 2021-08-13 湖南工业大学 基于lmi欠驱动滑模控制的故障风电系统容错方法
CN113250905B (zh) * 2021-07-01 2022-07-15 湖南工业大学 基于lmi欠驱动滑模控制的故障风电系统容错方法
CN114326686A (zh) * 2022-01-04 2022-04-12 郑州大学 基于残差熵极小化的无人机乘性故障诊断与容错控制方法
CN114564000A (zh) * 2022-03-01 2022-05-31 西北工业大学 基于智能飞行器执行器故障诊断的主动容错方法及系统
CN114564000B (zh) * 2022-03-01 2024-03-08 西北工业大学 基于智能飞行器执行器故障诊断的主动容错方法及系统

Also Published As

Publication number Publication date
CN110513198B (zh) 2021-07-06
CN110513198A (zh) 2019-11-29
US20210156314A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021027093A1 (zh) 一种涡扇发动机控制系统主动容错控制方法
WO2020142984A1 (zh) 一种基于误差区间观测器的航空发动机主动容错控制方法
CN109630281B (zh) 一种基于误差区间观测器的航空发动机主动容错控制方法
CN109799803B (zh) 一种基于lft的航空发动机传感器及执行机构故障诊断方法
WO2020118512A1 (zh) 一种基于lft的航空发动机传感器及执行机构故障诊断方法
Farjadian et al. Bumpless reengagement using shared control between human pilot and adaptive autopilot
Chen et al. Active FTC for hydraulic pitch system for an off-shore wind turbine
Cheng et al. Fault detection and performance recovery design with deferred actuator replacement via a low-computation method
WO2020248184A1 (zh) 一种面向航空发动机执行器故障的无扰切入容错控制方法
CN114564000B (zh) 基于智能飞行器执行器故障诊断的主动容错方法及系统
Li et al. Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model
CN111880403A (zh) 航空发动机最大推力状态容错二自由度μ控制器
Yu et al. Fault-tolerant flight control system design against control surface impairments
CN111859555A (zh) 输入受限的航空发动机最大推力状态鲁棒容错控制器
WO2020078141A1 (zh) 一种故障检测与隔离系统及方法
CN115437259A (zh) 一种面向舵面故障的飞机姿态容错控制系统及控制方法
Wu et al. Variable forgetting factor identification algorithm for fault diagnosis of wind turbines
CN114035543B (zh) 一种飞机受损状态下的自修复控制方法
CN107942665B (zh) 一种针对角速率比例-积分反馈的模块化自抗扰控制方法
CN112631129B (zh) 一种弹性飞机容错飞行控制方法及系统
Hu et al. Improved adaptive compensation of variant fighter with multiple faults via extended observer
Ma et al. A novel RFDI-FTC system for thrust-vectoring aircraft undergoing control surface damage and actuator faults during supermaneuverable flight
CN111830827A (zh) 航空发动机容错增益调度二自由度μ控制器
Xiao et al. Fault tolerant control of actuator in intake pressure regulation system based on Walcott-Zak sliding mode observer
CN117215175B (zh) 一种基于切换模型的航空发动机事件触发综合抗干扰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941622

Country of ref document: EP

Kind code of ref document: A1