WO2021025115A1 - 調光装置 - Google Patents

調光装置 Download PDF

Info

Publication number
WO2021025115A1
WO2021025115A1 PCT/JP2020/030188 JP2020030188W WO2021025115A1 WO 2021025115 A1 WO2021025115 A1 WO 2021025115A1 JP 2020030188 W JP2020030188 W JP 2020030188W WO 2021025115 A1 WO2021025115 A1 WO 2021025115A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
pixel
voltage
liquid crystal
electrode
Prior art date
Application number
PCT/JP2020/030188
Other languages
English (en)
French (fr)
Inventor
山口 稔
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020093145A external-priority patent/JP2021026222A/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2021025115A1 publication Critical patent/WO2021025115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • the present invention relates to a dimming device that controls the light transmittance.
  • a dimming film (dimming element) having a guest-host type liquid crystal layer is known.
  • the guest host type liquid crystal layer is formed by dissolving a dichroic dye in the liquid crystal. Then, the transmittance of the light control film is changed by changing the orientation of the dichroic dye according to the movement of the liquid crystal due to the electric field.
  • the light control film is, for example, the first and second transparent substrates arranged to face each other, the first transparent electrode provided in a plane on the first transparent substrate, and the second transparent substrate provided in a plane on the second transparent substrate. It includes a transparent electrode and a guest host type liquid crystal layer sandwiched between the first and second transparent substrates. Further, by changing the voltage between the first transparent electrode and the second transparent electrode, it is possible to set the light control film between a transmissive state, a light-shielding state, and an intermediate state between the transmissive state and the light-shielding state. is there.
  • the resistance value of the first transparent electrode changes according to the distance from the terminal connected to it, and the resistance value increases as the distance from the terminal increases. Due to the unevenness of the resistance value of the first transparent electrode, when a voltage is applied to the first transparent electrode via the terminal, the voltage changes according to the position in the first transparent electrode. The same applies to the second transparent electrode. As a result, the transmittance of the light control film becomes uneven.
  • the present invention provides a dimming device capable of suppressing uneven transmittance.
  • the dimming device includes a dimming element including a liquid crystal layer and having a plurality of pixels arranged in a matrix, and each of the plurality of pixels is placed in either a transmissive state or a light-shielding state. It includes a drive circuit that can be set. The drive circuit changes the transmittance of the dimming element by changing the ratio of the light-shielded pixels to all the pixels.
  • FIG. 1 is a block diagram of a dimming device according to the first embodiment.
  • FIG. 2 is a plan view of the dimming element shown in FIG.
  • FIG. 3 is a cross-sectional view of the dimming element along the line AA'of FIG.
  • FIG. 4 is a plan view illustrating the configuration of the plurality of first electrodes.
  • FIG. 5 is a plan view illustrating the configuration of the plurality of second electrodes.
  • FIG. 6 is a diagram illustrating the relationship between the plurality of first electrodes, the plurality of second electrodes, and the signal line group.
  • FIG. 7 is a schematic view of the liquid crystal layer in the off state.
  • FIG. 8 is a schematic view of the liquid crystal layer in the on state.
  • FIG. 7 is a schematic view of the liquid crystal layer in the off state.
  • FIG. 9 is a schematic diagram illustrating a dimming element having a transmittance of 100%.
  • FIG. 10 is a schematic diagram illustrating a dimming element having a transmittance of 75%.
  • FIG. 11 is a schematic diagram illustrating a dimming element having a transmittance of 50%.
  • FIG. 12 is a schematic diagram illustrating a dimming element having a transmittance of 25%.
  • FIG. 13 is a schematic diagram illustrating a dimming element having a transmittance of 0%.
  • FIG. 14 is a graph illustrating the transmittance of the pixel PX.
  • FIG. 15 is a schematic diagram in which four pixels are extracted.
  • FIG. 16 is a diagram illustrating the operation of a dimming element having a transmittance of 100%.
  • FIG. 17 is a diagram illustrating the operation of the light control element having a transmittance of 75%.
  • FIG. 18 is a diagram illustrating the operation of the dimming element having a transmittance of 50%.
  • FIG. 19 is a diagram illustrating the operation of the dimming element having a transmittance of 25%.
  • FIG. 20 is a diagram illustrating the operation of the dimming element having a transmittance of 0%.
  • FIG. 21 is a schematic view of the camera according to the second embodiment.
  • FIG. 22 is a schematic view of a camera according to a modified example.
  • FIG. 23 is a schematic view of a camera according to another modified example.
  • FIG. 24 is a schematic view illustrating the configuration of the plurality of first electrodes and the plurality of second electrodes according to the third embodiment.
  • FIG. 25 is a schematic diagram in which four pixels are extracted.
  • FIG. 26 is a plan view of the dimming element according to the third embodiment.
  • FIG. 27 is a cross-sectional view of the dimming element along the line AA'of FIG. 26.
  • FIG. 28 is a plan view from which the base material 20 and the plurality of first electrodes are extracted.
  • FIG. 29 is a plan view from which the base material 21 and the plurality of second electrodes are extracted.
  • FIG. 30 is a schematic diagram illustrating the area ratio of pixels.
  • FIG. 31 is a schematic diagram illustrating the relationship between the operation of pixels and the transmittance.
  • FIG. 32 is a graph illustrating the relationship between the shading area ratio and the transmittance.
  • FIG. 31 is a schematic diagram illustrating the relationship between the operation of pixels and the transmittance.
  • FIG. 33 is a schematic view illustrating the configuration of the dimming element according to the fourth embodiment.
  • FIG. 34 is a schematic diagram illustrating the configuration of one pixel group.
  • FIG. 35 is a schematic view illustrating the configuration of the dimming element according to the fifth embodiment.
  • FIG. 36 is a cross-sectional view of the dimming element shown in FIG. 35.
  • FIG. 37 is a timing diagram illustrating the operation of the pixels in the on state.
  • FIG. 38 is a schematic view illustrating the configuration of the dimming element according to the sixth embodiment.
  • FIG. 1 is a block diagram of a dimming device 10 according to the first embodiment.
  • the dimming device 10 includes a dimming element 11 and a drive circuit 12.
  • the dimming element 11 is an element capable of controlling the light transmittance.
  • the light control element 11 is composed of, for example, a light control film.
  • the dimming element 11 can switch between a transmission state that transmits light and a light-shielding state that blocks light, and can be set to an intermediate state between the transmission state and the light-shielding state.
  • the dimming element 11 includes a plurality of first electrodes each extending in the X direction, and a plurality of second electrodes each extending in the Y direction orthogonal to the X direction. The configuration of the plurality of first electrodes and the plurality of second electrodes will be described later.
  • a liquid crystal layer is arranged between the plurality of first electrodes and the plurality of second electrodes.
  • the drive circuit 12 is connected to the dimming element 11 via the signal line group 13 and the signal line group 14.
  • the signal line group 13 is connected to a plurality of first electrodes of the dimming element 11.
  • the signal line group 14 is connected to a plurality of second electrodes of the dimming element 11.
  • the drive circuit 12 applies a voltage to the dimming element 11 to control the operation of the dimming element 11.
  • FIG. 2 is a plan view of the dimming element 11 shown in FIG.
  • FIG. 3 is a cross-sectional view of the dimming element 11 along the line AA'of FIG.
  • the dimming element 11 of the present embodiment is a passive matrix system (simple matrix system) and a dot matrix system.
  • the dimming element 11 includes base materials 20 and 21 arranged to face each other and a liquid crystal layer 22 arranged between the base materials 20 and 21.
  • the base materials 20 and 21 are made of a transparent member, for example, a transparent film.
  • a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polycarbonate (PC) film, or the like can be used as the base materials 20 and 21, for example, a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polycarbonate (PC) film, or the like can be used.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PC polycarbonate
  • the liquid crystal layer 22 is composed of, for example, a guest host type liquid crystal layer.
  • the guest-hosted liquid crystal layer is formed by dissolving a dichroic dye as a guest in the liquid crystal as a host. The specific configuration of the liquid crystal layer 22 will be described later.
  • the sealing material 27 seals the liquid crystal layer 22 between the base materials 20 and 21.
  • the sealing material 27 is made of, for example, a photocurable resin.
  • FIG. 4 is a plan view illustrating the configuration of the plurality of first electrodes 23.
  • FIG. 4 shows the base material 20 and the plurality of first electrodes 23 extracted from the dimming element 11.
  • the dimming element 11 includes eight first electrodes 23-1 to 23-8.
  • the first electrodes 23-1 to 23-8 each extend in the Y direction and are arranged side by side in the X direction.
  • the first electrodes 23-1, 23-3, 23-5, 23-7 are connected to the connection electrode 28-1 extending in the X direction.
  • One end of the connection electrode 28-1 is connected to the terminal 29-1 extending in the Y direction.
  • the terminal 29-1 is connected to the drive circuit 12 via the signal line group 13.
  • the first electrodes 23-2, 23-4, 23-6, 23-8 are connected to the connection electrode 28-2 extending in the X direction.
  • One end of the connection electrode 28-2 is connected to the terminal 29-2 extending in the Y direction.
  • the terminal 29-2 is connected to the drive circuit 12 via the signal line group 13.
  • the first electrodes 23-1 to 23-8, the connection electrodes 28-1, 28-2, and the terminals 29-1 and 29-2 are made of transparent electrodes, for example, ITO (indium tin oxide).
  • An alignment film 25 for controlling the initial orientation of the liquid crystal layer 22 is provided on the base material 20 and the first electrodes 23-1 to 23-8.
  • FIG. 5 is a plan view illustrating the configuration of the plurality of second electrodes 24.
  • FIG. 5 shows the base material 21 and the plurality of second electrodes 24 extracted from the dimming element 11.
  • the dimming element 11 includes eight second electrodes 24-1 to 24-8.
  • the second electrodes 24-1 to 24-8 each extend in the X direction and are arranged side by side in the Y direction.
  • the second electrodes 24-1, 24-3, 24-5, 24-7 are connected to the connection electrode 28-3 extending in the Y direction.
  • One end of the connection electrode 28-3 is connected to the terminal 29-3 extending in the X direction.
  • the terminals 29-3 are connected to the drive circuit 12 via the signal line group 14.
  • the second electrodes 24-2, 24-4, 24-6, 24-8 are connected to the connection electrode 28-4 extending in the Y direction.
  • One end of the connection electrode 28-4 is connected to the terminal 29-4 extending in the X direction.
  • the terminals 29-4 are connected to the drive circuit 12 via the signal line group 14.
  • the second electrodes 24-1 to 24-8, the connection electrodes 28-3 and 28-4, and the terminals 29-3 and 29-4 are made of transparent electrodes, for example, ITO.
  • An alignment film 26 for controlling the initial orientation of the liquid crystal layer 22 is provided on the base material 21 and the second electrodes 24-1 to 24-8.
  • FIG. 6 is a diagram illustrating the relationship between the plurality of first electrodes 23, the plurality of second electrodes 24, the signal line group 13, and the signal line group 14.
  • Each of the plurality of intersecting regions of the plurality of first electrodes 23 and the plurality of second electrodes 24 constitutes a pixel PX.
  • the plurality of pixels are arranged in a matrix.
  • the signal line group 13 includes signal lines 13-1 and 13-2.
  • the signal line group 14 includes signal lines 14-1 and 14-2.
  • the first electrodes 23-1, 23-3, 23-5, 23-7 are connected to the signal line 13-1 via terminals (not shown).
  • the drive circuit 12 supplies the signal X1 to the signal line 13-1.
  • the first electrodes 23-2, 23-4, 23-6, 23-8 are connected to the signal line 13-2 via terminals (not shown).
  • the drive circuit 12 supplies the signal X2 to the signal line 13-2.
  • the second electrodes 24-1, 24-3, 24-5, 24-7 are connected to the signal line 14-1 via terminals (not shown).
  • the drive circuit 12 supplies the signal Y1 to the signal line 14-1.
  • the second electrodes 24-2, 24-4, 24-6, 24-8 are connected to the signal line 14-2 via terminals (not shown).
  • the drive circuit 12 supplies the signal Y2 to the signal line 14-2.
  • FIG. 7 is a schematic view of the liquid crystal layer 22 in the off state.
  • FIG. 8 is a schematic view of the liquid crystal layer 22 in the on state. 7 and 8 show a part of the liquid crystal layer 22.
  • the off state is a state in which a voltage lower than the threshold voltage of the liquid crystal is applied to the liquid crystal layer 22, and for example, a state in which the same potential (for example, 0V) is applied to the first electrode 23 and the second electrode 24. is there.
  • the on state is a state in which a voltage equal to or higher than the threshold voltage of the liquid crystal is applied to the liquid crystal layer 22.
  • the threshold voltage of the liquid crystal is a voltage at which the liquid crystal molecules switch from the vertical orientation to the horizontal orientation.
  • the liquid crystal layer 22 contains a liquid crystal 22A and a dichroic dye 22B.
  • the liquid crystal 22A is composed of, for example, an N-type nematic liquid crystal having a negative dielectric anisotropy.
  • the long axis of the liquid crystal molecules contained in the liquid crystal 22A is oriented substantially perpendicular to the surface of the base material in the off state, and is inclined in the horizontal direction with respect to the surface of the base material in the on state.
  • the dichroic dye 22B is a dye having anisotropy in light absorption rate.
  • the major axis of the dye molecule contained in the dichroic dye 22B is set to the same orientation as the liquid crystal molecule.
  • the light absorption rate of the dichroic dye 22B becomes low, and the liquid crystal layer 22 becomes a transmissive state.
  • the on state the light absorption rate of the dichroic dye 22B becomes high, and the liquid crystal layer 22 is in a light-shielding state.
  • the dichroic dye 22B displays, for example, black.
  • the liquid crystal 22A a P-type nematic liquid crystal having positive dielectric anisotropy may be used.
  • the long axis of the liquid crystal molecules contained in the liquid crystal 22A is oriented substantially horizontally with respect to the surface of the base material when there is no electric field, and is inclined in the direction perpendicular to the surface of the base material when an electric field is applied.
  • the light absorption rate of the dichroic dye 22B in the off state, the light absorption rate of the dichroic dye 22B is high, and the liquid crystal layer 22 is in a light-shielding state.
  • the on state the light absorption rate of the dichroic dye 22B becomes low, and the liquid crystal layer 22 becomes a transmissive state.
  • the dimming element 11 includes a plurality of pixels PX arranged in a matrix. Each of the plurality of pixels PX can be set to either a transmission state or a light-shielding state. Then, the dimming element 11 can change the transmittance by changing the ratio of the pixel PX in the light-shielded state to all the pixels PX.
  • FIG. 9 is a schematic diagram illustrating a dimming element 11 having a transmittance of 100%. At 100% transmittance, all pixels PX are set to the transparent state.
  • FIG. 10 is a schematic diagram illustrating a dimming element 11 having a transmittance of 75%. At a transmittance of 75%, one pixel PX out of the four pixel PXs arranged in a matrix is set to a light-shielding state. A pixel group having the other four pixels as a unit is also set to the same state.
  • FIG. 11 is a schematic diagram illustrating a dimming element 11 having a transmittance of 50%. At a transmittance of 50%, two of the four pixel PXs arranged in a matrix are set in a light-shielding state.
  • FIG. 12 is a schematic diagram illustrating a dimming element 11 having a transmittance of 25%. At a transmittance of 25%, three pixel PXs out of the four pixel PXs arranged in a matrix are set in a light-shielding state.
  • FIG. 13 is a schematic diagram illustrating a dimming element 11 having a transmittance of 0%. At a transmittance of 0%, all pixels PX are set to a light-shielded state.
  • the transmittance referred to here is a relative value when the transmittance is 100% and the light-shielding state is 0%.
  • FIG. 14 is a graph illustrating the transmittance of the pixel PX.
  • the horizontal axis of FIG. 14 is the voltage, and the vertical axis of FIG. 14 is the transmittance.
  • the transmittance of the pixel PX is the highest, and the pixel PX is in the transmission state.
  • the transmittance of the pixel PX becomes the lowest, and the pixel PX is in a light-shielded state.
  • the pixel PX is set to either a transmission state or a light-shielding state, and an intermediate state between the transmission state and the light-shielding state is not used. That is, the pixel PX is binary driven.
  • FIG. 15 is a schematic diagram in which four pixels are extracted.
  • the four pixels arranged in a matrix are represented by PX_11, PX_12, PX_21, and PX_22.
  • a signal X1 and a signal Y1 are supplied to the pixel PX_11.
  • a signal X2 and a signal Y1 are supplied to the pixel PX_12.
  • the signal X1 and the signal Y2 are supplied to the pixel PX_21.
  • a signal X2 and a signal Y2 are supplied to the pixel PX_22.
  • the same operation as that of the pixel group of FIG. 15 is executed for the pixel group having the other four pixels as a unit.
  • the minimum unit of the pixel group is 2 pixels in 2 rows and 1 column, 3 pixels in 3 rows and 1 column, and 9 pixels in 3 rows and 3 columns. It is possible to apply various pixel groups consisting of m ⁇ n pixels in rows and n columns. m and n can be set to any combination of integers in which m ⁇ n is 2 or more.
  • FIG. 16 is a diagram illustrating the operation of the dimming element 11 having a transmittance of 100%.
  • FIG. 16A is a diagram illustrating a pixel group having a transmittance of 100%. Pixels without hatching mean a transparent state. In FIG. 16A, only the branch numbers of the pixels are shown.
  • FIG. 16B is a waveform of the signal X1.
  • FIG. 16C is a waveform of the signal X2.
  • FIG. 16D is a waveform of the signal Y1.
  • FIG. 16E is a waveform of the signal Y2.
  • FIG. 16 (f) is a waveform of the voltage applied to the pixel PX_11.
  • the voltage applied to the pixel is the voltage (potential difference) between the first electrode 23 and the second electrode 24. That is, FIG. 16 (f) is a voltage waveform of “Y1-X1”.
  • FIG. 16 (g) is a waveform of the voltage applied to the pixel PX_12, which is a voltage waveform of “Y1-X2”.
  • FIG. 16H is a waveform of the voltage applied to the pixel PX_21, which is a voltage waveform of “Y2-X1”.
  • FIG. 16I is a waveform of the voltage applied to the pixel PX_22, which is a voltage waveform of “Y2-X2”.
  • FIGS. 16 (b) to 16 (i) the horizontal axis is time and the vertical axis is voltage.
  • the times t1 to t5 are shown as represented by FIG. 16B.
  • the times shown in FIGS. 16 (c) to 16 (i) are omitted in order to avoid complicating the drawings, the times of the corresponding scales are the same as those of FIG. 16 (b).
  • the signals X1 and X2 become the voltage V1 (> 0V) at the times t1 and t2, and become the voltage ⁇ V1 at the times t3 and t4.
  • the signal Y1 becomes a voltage V3 (> V2) at time t1, becomes 0V at time t2, becomes a voltage ⁇ V3 at time t3, and becomes 0V at time t4.
  • the voltage V3 is, for example, 3 ⁇ V1.
  • the periods t1 to t3 and the periods t3 to t5 are frames. The frame period can be set arbitrarily.
  • a voltage V2 is applied to the pixels PX_11 and PX_12 at time t1, a voltage-V1 is applied at time t2, a voltage-V2 is applied at time t3, and a voltage V1 is applied at time t4.
  • the voltage V2 is, for example, 2 ⁇ V1.
  • the effective voltage of the frame in the pixels PX_11 and PX_12 is "(V1 + V2) / 2".
  • a voltage-V1 is applied to the pixels PX_21 and PX_22 at time t1, a voltage V2 is applied at time t2, a voltage V1 is applied at time t3, and a voltage-V2 is applied at time t4.
  • the effective voltage of the frame in the pixels PX_21 and PX_22 is "(V1 + V2) / 2".
  • the effective voltage "(V1 + V2) / 2" is set lower than the threshold voltage of the liquid crystal. As a result, the pixels PX_11 to PX_22 are set to the transparent state.
  • FIG. 17 is a diagram illustrating the operation of the dimming element 11 having a transmittance of 75%.
  • FIG. 17A is a diagram illustrating a pixel group having a transmittance of 75%.
  • the hatched pixel means a light-shielded state.
  • the signal X1 becomes voltage ⁇ V1 at time t1, becomes voltage V1 at time t2 and t3, and becomes voltage ⁇ V1 at time t4.
  • the signal X2 becomes a voltage V1 at times t1 and t2, and becomes a voltage ⁇ V1 at times t3 and t4.
  • the signals Y1 and Y2 in FIG. 17 are the same as those in FIG.
  • a voltage V4 (> V3) is applied to the pixel PX_11 at time t1, a voltage-V1 is applied at time t2, a voltage-V4 is applied at time t3, and a voltage V1 is applied at time t4.
  • the voltage V4 is, for example, 4 ⁇ V1.
  • the effective voltage of the frame in pixel PX_11 is "(V1 + V4) / 2".
  • the voltage waveform of pixel PX_12 is the same as in FIG.
  • a voltage V1 is applied to the pixel PX_21 at a time t1, a voltage V2 is applied at a time t2, a voltage ⁇ V1 is applied at a time t3, and a voltage ⁇ V2 is applied at a time t4.
  • the effective voltage of the frame in pixel PX_21 is "(V1 + V2) / 2".
  • the voltage waveform of pixel PX_22 is the same as in FIG.
  • the effective voltage "(V1 + V4) / 2" is set to be equal to or higher than the threshold voltage of the liquid crystal.
  • the pixel PX_11 is set to the light-shielded state.
  • the pixels PX_12, PX_21, and PX_22 are set to the transparent state.
  • FIG. 18 is a diagram illustrating the operation of the dimming element 11 having a transmittance of 50%.
  • the signal X1 becomes voltage ⁇ V1 at time t1, becomes voltage V1 at time t2 and t3, and becomes voltage ⁇ V1 at time t4.
  • the signal X2 becomes the voltage V1 at the time t1, becomes the voltage ⁇ V1 at the times t2 and t3, and becomes the voltage V1 at the time t4.
  • the signals Y1 and Y2 in FIG. 18 are the same as those in FIG.
  • the voltage waveform of pixel PX_11 is the same as in FIG.
  • a voltage V2 is applied to the pixel PX_12 at time t1, a voltage V1 is applied at time t2, a voltage ⁇ V2 is applied at time t3, and a voltage ⁇ V1 is applied at time t4.
  • the effective voltage of the frame in pixel PX_12 is "(V1 + V2) / 2".
  • the voltage waveform of pixel PX_21 is the same as in FIG.
  • a voltage-V1 is applied to the pixel PX_22 at time t1, a voltage V4 is applied at time t2, a voltage V1 is applied at time t3, and a voltage-V4 is applied at time t4.
  • the effective voltage of the frame in pixel PX_22 is "(V1 + V4) / 2".
  • the pixels PX_11 and PX_22 are set to the light-shielding state, and the pixels PX_12 and PX_21 are set to the transparent state.
  • FIG. 19 is a diagram illustrating the operation of the dimming element 11 having a transmittance of 25%.
  • the signal X1 becomes a voltage ⁇ V1 at times t1 and t2, and becomes a voltage V1 at times t3 and t4.
  • the signal X2 becomes the voltage V1 at the time t1, becomes the voltage ⁇ V1 at the times t2 and t3, and becomes the voltage V1 at the time t4.
  • the signals Y1 and Y2 are the same as those in FIG.
  • a voltage V4 is applied to the pixel PX_11 at time t1, a voltage V1 is applied at time t2, a voltage ⁇ V4 is applied at time t3, and a voltage ⁇ V1 is applied at time t4.
  • the effective voltage of the frame in pixel PX_11 is "(V1 + V4) / 2".
  • the voltage waveform of pixel PX_12 is the same as in FIG.
  • a voltage V1 is applied to the pixel PX_21 at time t1, a voltage V4 is applied at time t2, a voltage ⁇ V1 is applied at time t3, and a voltage ⁇ V4 is applied at time t4.
  • the effective voltage of the frame in pixel PX_12 is "(V1 + V4) / 2".
  • the voltage waveform of pixel PX_22 is the same as in FIG.
  • the pixels PX_11, PX_21, and PX_22 are set to the light-shielding state, and the pixels PX_12 are set to the transparent state.
  • FIG. 20 is a diagram illustrating the operation of the dimming element 11 having a transmittance of 0%.
  • the signals X1 and X2 become the voltage ⁇ V1 at the times t1 and t2, and become the voltage V1 at the times t3 and t4.
  • the signals Y1 and Y2 are the same as those in FIG.
  • the voltage waveform of pixel PX_11 is the same as in FIG.
  • the voltage waveform of the pixel PX_12 is the same as that of the pixel PX_11.
  • the voltage waveform of pixel PX_21 is the same as in FIG.
  • the voltage waveform of pixel PX_22 is the same as that of pixel PX_21.
  • the pixels PX_11 to PX_22 are set to the light-shielded state.
  • a signal line may be added according to the number of rows and columns of this pixel group by driving in units of four or more pixels. Thereby, the transmittance can be changed more finely.
  • the dimming device 10 includes a guest host type liquid crystal layer 22 and includes a plurality of pixels arranged in a matrix. It includes an optical element 11 and a drive circuit 12 capable of setting each of a plurality of pixels to either a transmission state or a light-shielding state. Then, the drive circuit 12 changes the transmittance of the light control element 11 by changing the ratio of the pixels in the light-shielded state to all the pixels.
  • the dimming element 11 has a transmittance of 100% corresponding to the transmission state, a transmittance of 0% for the light-shielding state, and a transmission state and a light-shielding state according to the pattern formed by the pixels in the light-shielding state. It can be set to the transmittance corresponding to the intermediate state between and.
  • the transmittance in the intermediate state can be realized. As a result, unevenness in the transmittance of the dimming element 11 can be suppressed.
  • the second embodiment is an application example of the dimming device 10.
  • the dimming device 10 can be applied to, for example, a camera.
  • FIG. 21 is a schematic view of the camera 30 according to the second embodiment.
  • the camera 30 includes a dimming element 11, a lens group 31, and an image pickup element 32 according to the first embodiment.
  • the lens group 31 includes a convex lens and a concave lens.
  • the image sensor 32 is composed of a CCD image sensor or a CMOS image sensor.
  • the image sensor 32 converts the light transmitted through the lens group 31 into an electric signal.
  • the dimming element 11 is arranged on the side opposite to the image pickup element 32 of the lens group 31.
  • the light from the object 33 is incident on the dimming element 11.
  • the light control element 11 can change the light transmittance.
  • the light transmitted through the dimming element 11 is incident on the image pickup element 32 via the lens group 31.
  • An image 34 of the object 33 is formed on the image pickup surface of the image pickup element 32.
  • the light transmitted through the dimming element 11 is incident on the image sensor 32 via the lens group 31. Therefore, it is possible to prevent the display pattern of the dimming element 11 from being imaged on the image pickup element 32.
  • FIG. 22 is a schematic view of the camera 30 according to the modified example.
  • the dimming element 11 is arranged between the lens group 31 and the image pickup element 32.
  • the light transmitted through the lens group 31 is incident on the dimming element 11.
  • the light transmitted through the dimming element 11 is incident on the image pickup element 32.
  • the light collected by the lens group 31 is incident on the dimming element 11. Therefore, the size of the dimming element 11 can be reduced.
  • FIG. 23 is a schematic view of the camera 30 according to another modified example.
  • the camera 30 includes a plurality of lenses, for example, a convex lens 31-1, a concave lens 31-2, and a convex lens 31-3.
  • the dimming element 11 is arranged between the concave lens 31-2 and the convex lens 31-3. In this way, the dimming element 11 may be inserted between the lens groups.
  • the transmittance is set more finely by setting the areas of, for example, four pixels included in the pixel group, which is one repeating unit, so as to be different from each other. ing.
  • FIG. 24 is a schematic diagram illustrating the configuration of the plurality of first electrodes 23 and the plurality of second electrodes 24 according to the third embodiment.
  • the dimming element 11 includes a plurality of first electrodes 23 each extending in the Y direction, and a plurality of second electrodes 24 each extending in the X direction. Each of the plurality of intersecting regions of the plurality of first electrodes 23 and the plurality of second electrodes 24 constitutes a pixel PX. In the present embodiment, eight first electrodes 23-1 to 23-8 and eight second electrodes 24-1 to 24-8 are shown as examples.
  • the odd-numbered first electrode 23-1 and the even-numbered first electrode 23-2 have different widths (wiring widths).
  • the width of the electrode is the length in the direction orthogonal to the extending direction of the electrode.
  • the width of the first electrode 23-2 is twice the width of the first electrode 23-1. That is, the ratio of the width of the first electrode 23-1 to the width of the first electrode 23-2 is "1: 2".
  • the configuration of the other odd-numbered first electrodes 23-3, 23-5, 23-7 is the same as the configuration of the first electrode 23-1 described above.
  • the configuration of the other even-numbered first electrodes 23-4, 23-6, 23-8 is the same as the configuration of the first electrode 23-2 described above.
  • the odd-numbered second electrode 24-1 and the even-numbered second electrode 24-2 have different widths (wiring widths).
  • the width of the second electrode 24-2 is four times the width of the second electrode 24-1. That is, the ratio of the width of the second electrode 24-1 to the width of the second electrode 24-2 is "1: 4".
  • the configuration of the other odd-numbered second electrodes 24-3, 24-5, 24-7 is the same as the configuration of the second electrode 24-1 described above.
  • the configuration of the other even-numbered second electrodes 24-4, 24-6, 24-8 is the same as the configuration of the second electrode 24-2 described above.
  • FIG. 25 is a schematic diagram in which four pixels are extracted.
  • FIG. 25 corresponds to four pixels existing in the region where the two first electrodes 23-1 and 23-2 and the two second electrodes 24-1 and 24-2 intersect.
  • the four pixels arranged in a matrix are referred to as PX_11, PX_12, PX_21, and PX_22.
  • a set of four pixels PX_11, PX_12, PX_21, and PX_22 is called a pixel group PG.
  • Pixel PX_11 is connected to signal line 13-1 and signal line 14-1.
  • Pixel PX_12 is connected to signal line 13-2 and signal line 14-1.
  • Pixel PX_21 is connected to signal line 13-1 and signal line 14-2.
  • Pixel PX_22 is connected to signal line 13-2 and signal line 14-2.
  • the pixel group having the other four pixels as a unit has the same configuration as the pixel group of FIG. 25.
  • the ratio of the width of the odd-numbered first electrode 23 to the width of the even-numbered first electrode 23 is “1: 2”, and the width of the odd-numbered second electrode 24 and the even-numbered first electrode 23 are “1: 2”.
  • the ratio to the width of the two electrodes 24 is "1: 4”. Therefore, the area ratio of the pixels PX_11, PX_12, PX_21, and PX_22 is "1: 2: 4: 8".
  • the four pixels PX arranged in a matrix have different areas from each other.
  • FIG. 26 is a plan view of the dimming element 11 according to the third embodiment.
  • FIG. 27 is a cross-sectional view of the dimming element 11 along the line AA'of FIG. 26.
  • FIG. 28 is a plan view of the base material 20 and the plurality of first electrodes 23 extracted.
  • FIG. 29 is a plan view of the base material 21 and the plurality of second electrodes 24 extracted. 28 and 29 show, as an example, eight first electrodes 23-1 to 23-8 and eight second electrodes 24-1 to 24-8.
  • the odd-numbered first electrodes 23-1, 23-3, 23-5, and 23-7 are commonly connected to the connection electrode 28-1.
  • the odd-numbered first electrodes 23-1, 23-3, 23-5, and 23-7 have the same width.
  • the connection electrode 28-1 is connected to the terminal 29-1.
  • the even-numbered first electrodes 23-2, 23-4, 23-6, 23-8 are commonly connected to the connection electrode 28-2.
  • the even-numbered first electrodes 23-2, 23-4, 23-6, and 23-8 have the same width.
  • the width of the even-numbered first electrodes 23-2, 23-4, 23-6, 23-8 is 2 of the width of the odd-numbered first electrodes 23-1, 23-3, 23-5, 23-7. It is double.
  • the connection electrode 28-2 is connected to the terminal 29-2.
  • the odd-numbered second electrodes 24-1, 24-3, 24-5, and 24-7 are commonly connected to the connection electrode 28-3.
  • the odd-numbered second electrodes 24-1, 24-3, 24-5, and 24-7 have the same width.
  • the connection electrode 28-3 is connected to the terminal 29-3.
  • the even-numbered second electrodes 24-2, 24-4, 24-6, 24-8 are commonly connected to the connection electrode 28-4.
  • the even-numbered second electrodes 24-2, 24-4, 24-6, 24-8 have the same width.
  • the width of the even-numbered second electrodes 24-2, 24-4, 24-6, 24-8 is 4 of the width of the odd-numbered second electrodes 24-1, 24-3, 24-5, 24-7. It is double.
  • the connection electrode 28-4 is connected to the terminal 29-4.
  • FIG. 30 is a schematic diagram illustrating the pixel area ratio (pixel area ratio).
  • the X-width ratio means the ratio of the width of the odd-numbered first electrode 23-1 to which the signal X1 is supplied to the width of the even-numbered first electrode 23-2 to which the signal X2 is supplied.
  • the Y width ratio means the ratio of the width of the odd-numbered second electrode 24-1 to which the signal Y1 is supplied to the width of the even-numbered second electrode 24-2 to which the signal Y2 is supplied.
  • the four matrix-shaped numerical values represent the area ratio of the four pixels PX_11, PX_12, PX_21, and PX_22.
  • the total area of the pixel group PG is 15.
  • the area ratio of the pixel PX_11 is "1”
  • the area ratio of the pixel PX_12 is "2”
  • the area ratio of the pixel PX_21 is "4"
  • the area ratio of the pixel PX_22 is "8".
  • FIG. 31 is a schematic diagram illustrating the relationship between the operation of pixels and the transmittance.
  • the pixel numbers correspond to the numbers of pixels PX_11, PX_12, PX_21, and PX_22.
  • the shading area ratio is the ratio of the total shading area to the total area "15" of the pixel group PG.
  • the shading area ratio is represented by 16 numerical values from 0 to 15. Circles in FIG. 31 represent pixels in a light-shielded state, and blanks in FIG. 31 represent pixels in a transparent state.
  • FIG. 32 is a graph for explaining the relationship between the shading area ratio and the transmittance.
  • the horizontal axis of FIG. 32 is the shading area ratio, and the vertical axis is the transmittance (%).
  • the shading area ratio is represented by 16 numerical values from 0/15 to 15/15.
  • the shading area ratio 0/15 to 15/15 in FIG. 32 has the same meaning as the shading area ratio 0 to 15 in FIG.
  • the shading area ratio can be set in 16 steps from 0 to 15.
  • the transmittance decreases as the shading area ratio increases.
  • the transmittance at a light-shielding area ratio of 0 is 100%, and the transmittance at a light-shielding area ratio of 15 is 0%.
  • the pixel When setting a pixel in a transparent state, the pixel is turned off, that is, a voltage lower than the threshold voltage is applied to the pixel. When the pixel is set to the light-shielding state, the pixel is turned on, that is, a voltage equal to or higher than the threshold voltage is applied to the pixel.
  • the operation of setting the light-shielding state and the transmissive state is the same as that of the first embodiment.
  • the widths of the plurality of first electrodes 23 are different, and the widths of the plurality of second electrodes are different. Therefore, according to the third embodiment, the transmittance can be set more finely. According to the example of this embodiment, the transmittance can be changed in 16 steps.
  • the amount of change in the transmittance can be further reduced.
  • Other effects are the same as in the first embodiment.
  • the widths of the plurality of first electrodes 23 are the same, the widths of the plurality of second electrodes 24 are the same, and the transmittance is set more finely.
  • FIG. 33 is a schematic diagram illustrating the configuration of the dimming element 11 according to the fourth embodiment.
  • the dimming element 11 includes a plurality of first electrodes 23 each extending in the Y direction, and a plurality of second electrodes 24 each extending in the X direction. Each of the plurality of intersecting regions of the plurality of first electrodes 23 and the plurality of second electrodes 24 constitutes a pixel PX.
  • FIG. 33 shows 12 first electrodes 23-1 to 23-12 and 20 second electrodes 24-1 to 24-20 as examples.
  • the widths of the plurality of first electrodes 23 are the same.
  • the widths of the plurality of second electrodes 24 are the same.
  • the width of the first electrode 23 and the width of the second electrode are different.
  • the width of the first electrode 23 is twice the width of the second electrode 24.
  • the first electrode 23-2, 23-5, 23-8, 23-11 are commonly connected to the signal line 13-1.
  • the signal X1 is supplied to the signal line 13-1.
  • the first electrodes 23-1, 23-3, 23-4, 23-6, 23-7, 23-9, 23-10, 23-12 are commonly connected to the signal line 13-2.
  • the signal X2 is supplied to the signal line 13-2.
  • the second electrodes 24-3, 24-8, 24-13, 24-18 are commonly connected to the signal line 14-1.
  • the signal Y1 is supplied to the signal line 14-1.
  • the second electrodes 24-1, 24-2, 24-4 to 24-7, 24-9 to 24-12, 24-14 to 24-17, 24-19, 24-20 are connected to the signal line 14-2. Common connection.
  • the signal Y2 is supplied to the signal line 14-2.
  • the three first electrodes 23-1 to 23-3 and the five second electrodes 24-1 to 24-5 are one repeating unit, and the relationship between the repeating units is the other electrode (first). The same applies to the electrodes 23-4 to 23-12 and the second electrodes 24-6 to 24-20). In FIG. 33, the distance between the electrodes is partially increased in order to clarify the repeating unit, but in reality, the distance between the electrodes is set in common.
  • the cross-sectional structure of the dimming element 11 in the fourth embodiment is the same as that in the third embodiment, except that the widths of the electrodes are different.
  • FIG. 34 is a schematic diagram illustrating the configuration of one pixel group PG.
  • a pixel group PG composed of three first electrodes 23-1 to 23-3 and five second electrodes 24-1 to 24-5 is extracted and shown.
  • the pixel group PG of FIG. 34 is composed of pixels PX_11, PX_12, PX_21, and PX_22. In FIG. 34, only the pixel number is displayed.
  • Pixel PX_11 is composed of an intersection region of the first electrode 23-2 and the second electrode 24-3.
  • Pixel PX_12 is composed of two sub-pixels PX_12-1 and PX_12-2.
  • the sub-pixel PX-12-1 is composed of an intersecting region of the first electrode 23-1 and the second electrode 24-3.
  • the sub-pixel PX_12-2 is composed of an intersection region of the first electrode 23-3 and the second electrode 24-3.
  • Pixel PX_21 is composed of two sub-pixels PX_21-1 and PX_21-2.
  • the sub-pixel PX_21-1 is composed of an intersection region of the first electrode 23-2 and the two second electrodes 24-1 and 24-2.
  • the sub-pixel PX_21-2 is composed of an intersection region of the first electrode 23-2 and the two second electrodes 24-4 and 24-5.
  • Pixel PX_22 is composed of four sub-pixels PX_22-1 to PX_22-4.
  • the sub-pixel PX_22-1 is composed of an intersection region of the first electrode 23-1 and the two second electrodes 24-1 and 24-2.
  • the sub-pixel PX_22-2 is composed of an intersection region of the first electrode 23-3 and the two second electrodes 24-1 and 24-2.
  • the sub-pixel PX_22-3 is composed of an intersection region of the first electrode 23-1 and the two second electrodes 24-4 and 24-5.
  • the sub-pixel PX_22-4 is composed of an intersection region of the first electrode 23-3 and the two second electrodes 24-4 and 24-5.
  • the area of pixel PX_12 is twice the area of pixel PX_11.
  • the area of pixel PX_21 is four times the area of pixel PX_11.
  • the area of pixel PX_22 is eight times the area of pixel PX_11. That is, the area ratio of the pixels PX_11, PX_12, PX_21, and PX_22 is "1: 2: 4: 8".
  • a plurality of pixel groups other than the pixel group PG shown in FIG. 34 also have the same connection relationship as in FIG. 34.
  • the pixel PX_12 When the pixel PX_12 is set to the ON state, for example, 0V is applied to the first electrodes 23-1 and 23-3, and a positive voltage is applied to the second electrode 24-3.
  • the pixel PX_21 When the pixel PX_21 is set to the ON state, for example, 0 V is applied to the first electrode 23-2, and a positive voltage is applied to the second electrodes 24-1, 24-2, 24-4, and 24-5.
  • the pixel PX_22 When the pixel PX_22 is set to the ON state, for example, 0 V is applied to the first electrodes 23-1 and 23-3, and a positive voltage is applied to the second electrodes 24-1, 24-2, 24-4 and 24-5. Apply.
  • the shading area ratio of the pixel group PG can be set in 16 steps from 0 to 15 as in the third embodiment.
  • the widths of the plurality of first electrodes 23 can be made the same, and the widths of the plurality of second electrodes 24 can be made the same. .. This makes it possible to simplify the electrode manufacturing process. Other effects are the same as in the third embodiment.
  • one common electrode 24 is arranged so as to face a plurality of first electrodes 23. Then, while applying a common voltage to the common electrode 24, the transmittance is controlled by controlling the voltage applied to the plurality of first electrodes 23.
  • FIG. 35 is a schematic diagram illustrating the configuration of the dimming element 11 according to the fifth embodiment.
  • FIG. 36 is a cross-sectional view of the dimming element 11 shown in FIG. 35.
  • FIG. 36 is a cross-sectional view cut in the X direction at an arbitrary position in the Y direction.
  • the layout of the connection electrode 28 and the terminal 29 for the first electrode 23 and the common electrode 24 is the same as that of the first embodiment, and can be arbitrarily designed.
  • the dimming element 11 includes a plurality of first electrodes 23, each of which extends in the Y direction, and a common electrode 24.
  • the plurality of first electrodes 23 are provided on the base material 20, and the common electrode 24 is provided on the base material 21.
  • FIG. 35 shows 16 first electrodes 23-1 to 23-16 as an example.
  • the four first electrodes 23-1 to 23-4 constitute one repeating unit.
  • the width of the first electrode 23-2 is twice the width of the first electrode 23-1.
  • the width of the first electrode 23-3 is four times the width of the first electrode 23-1.
  • the width of the first electrode 23-4 is eight times the width of the first electrode 23-1. That is, the ratio of the widths of the first electrodes 23-1 to 23-4 is "1: 2: 4: 8".
  • the configuration of the first electrodes 23-5 to 23-16 is the same as the configuration of the first electrodes 23-1 to 23-4.
  • the first electrodes 23-1, 23-5, 23-9, 23-13 are commonly connected to the signal line 13-1.
  • the signal X1 is supplied to the signal line 13-1 from the drive circuit 12. That is, the same voltage is applied to the first electrodes 23-1, 23-5, 23-9, and 23-13 as the signal X1.
  • the first electrode 23-2, 23-6, 23-10, 23-14 are commonly connected to the signal line 13-2.
  • the signal X2 is supplied to the signal line 13-2 from the drive circuit 12. That is, the same voltage is applied to the first electrode 23-2, 23-6, 23-10, 23-14 as the signal X2.
  • the first electrodes 23-3, 23-7, 23-11, 23-15 are commonly connected to the signal line 13-3.
  • the signal X3 is supplied to the signal line 13-3 from the drive circuit 12. That is, the same voltage is applied to the first electrodes 23-3, 23-7, 23-11, and 23-15 as the signal X3.
  • the first electrodes 23-4, 23-8, 23-12, 23-16 are commonly connected to the signal line 13-4.
  • the signal X4 is supplied from the drive circuit 12 to the signal lines 13-4. That is, the same voltage is applied to the first electrodes 23-4, 23-8, 23-12, 23-16 as the signal X4.
  • the common electrode 24 is formed flat on the base material 21.
  • the common electrode 24 has a size that covers the entire first electrodes 23-1 to 23-16.
  • the intersection region of the common electrode 24 and each first electrode 23 constitutes the pixel PX.
  • the common electrode 24 is connected to the signal line 14.
  • a signal COM is supplied to the signal line 14 from the drive circuit 12.
  • the signal COM is a common voltage, for example 0V.
  • FIG. 37 is a timing diagram illustrating the operation of the pixel PX in the on state.
  • the drive circuit 12 applies an AC voltage having an amplitude V1 to the corresponding first electrode 23.
  • the voltage V1 is a voltage equal to or higher than the threshold voltage. Further, the drive circuit 12 applies 0V to the common electrode 24.
  • the shading area can be controlled by controlling the voltage applied to the signals X1 to X4. Further, as in the third embodiment, the light-shielding area ratio of the dimming element 11 can be set in 16 steps from 0 to 15.
  • the number of first electrodes 23 having different widths is not limited to four. By changing the number of the first electrodes 23 having different widths from each other, the amount of change in the transmittance can be arbitrarily set.
  • the common electrode 24 is formed in a plane on the base material 21. Thereby, the structure of the electrode can be simplified. Moreover, since the static drive method can be applied, the drive method can be simplified. Other effects are the same as in the first embodiment.
  • the sixth embodiment is a modification of the fifth embodiment.
  • the widths of the plurality of first electrodes 23 are the same, and the transmittance is set more finely.
  • FIG. 38 is a schematic diagram illustrating the configuration of the dimming element 11 according to the sixth embodiment.
  • the dimming element 11 includes a plurality of first electrodes 23, each extending in the Y direction, and a common electrode 24.
  • the cross-sectional structure of the dimming element 11 is the same as that of FIG. 36 except that the width of the first electrode 23 is different.
  • FIG. 38 shows 45 first electrodes 23-1 to 23-45 as an example.
  • first electrodes 23-1 to 23-15 constitute one repeating unit (pixel group PG).
  • the widths of the first electrodes 23-1 to 23-15 are the same.
  • the distance between the electrodes is partially increased in order to clarify the repeating unit, but in reality, the distance between the electrodes is set in common.
  • the first electrode 23-8 is connected to the signal line 13-1.
  • the signal X1 is supplied to the signal line 13-1 from the drive circuit 12.
  • the two first electrodes 23-4 and 23-12 are commonly connected to the signal line 13-2.
  • the signal X2 is supplied to the signal line 13-2 from the drive circuit 12. That is, the same voltage is applied to the first electrodes 23-4 and 23-12 as the signal X2.
  • the four first electrodes 23-2, 23-6, 23-10, 23-14 are commonly connected to the signal line 13-3.
  • the signal X3 is supplied to the signal line 13-3 from the drive circuit 12. That is, the same voltage is applied to the first electrode 23-2, 23-6, 23-10, 23-14 as the signal X3.
  • the eight first electrodes 23-1, 23-3, 23-5, 23-7, 23-9, 23-11, 23-13, 23-15 are commonly connected to the signal line 13-4.
  • the signal X4 is supplied from the drive circuit 12 to the signal lines 13-4. That is, the same voltage is applied to the first electrodes 23-1, 23-3, 23-5, 23-7, 23-9, 23-11, 23-13, and 23-15 as the signal X4.
  • the common electrode 24 has a size that covers the entire first electrodes 23-1 to 23-45. The intersection region of the common electrode 24 and each first electrode 23 constitutes the pixel PX.
  • the common electrode 24 is connected to the signal line 14.
  • a signal COM is supplied to the signal line 14 from the drive circuit 12.
  • the signal COM is, for example, 0V.
  • the driving method of the dimming element 11 is the same as that of the fifth embodiment.
  • the widths of the plurality of first electrodes 23 can be made the same. This makes it possible to simplify the electrode manufacturing process. Other effects are the same as in the fifth embodiment.
  • the number of the first electrodes 23 included in the pixel group PG is not limited to 15. By changing the number of the first electrodes 23 included in the pixel group PG, the amount of change in the transmittance can be arbitrarily set.
  • the guest host type liquid crystal layer is described as an example of the liquid crystal layer 22.
  • the present invention is not limited to this, and for example, a polymer dispersed liquid crystal (PDLC: Polymer Dispersed Liquid Crystal) or a polymer network type liquid crystal (PNLC: Polymer Network Liquid Crystal) may be used.
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network Liquid Crystal
  • the liquid crystal layer 22 a TN (Twisted Nematic) type liquid crystal, an STN (Super Twisted Nematic) type liquid crystal, or the like may be used.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent requirements are deleted can be extracted as an invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

調光装置10は、液晶層22を含み、マトリクス状に配置された複数の画素を備える調光素子11と、複数の画素の各々を透過状態と遮光状態とのいずれかに設定可能である駆動回路12とを含む。駆動回路12は、全画素に対する遮光状態の画素の比率を変えることで、調光素子11の透過率を変化させる。

Description

調光装置
 本発明は、光の透過率を制御する調光装置に関する。
 ゲストホスト型液晶層を備えた調光フィルム(調光素子)が知られている。ゲストホスト型液晶層は、液晶中に二色性色素が溶解されて構成される。そして、電場による液晶の動きにあわせて二色性色素の配向を変化させることで、調光フィルムの透過率を変化させる。
 調光フィルムは、例えば、対向配置された第1及び第2透明基板と、第1透明基板に平面状に設けられた第1透明電極と、第2透明基板に平面状に設けられた第2透明電極と、第1及び第2透明基板間に挟まれたゲストホスト型液晶層とを備える。また、第1透明電極及び第2透明電極間の電圧を変化させることで、調光フィルムを透過状態と、遮光状態と、透過状態及び遮光状態の間の中間状態とに設定することが可能である。
 第1透明電極は、これに接続される端子からの距離に応じて抵抗値が変化し、端子から離れるにつれて抵抗値が大きくなる。この第1透明電極の抵抗値のムラに起因して、端子を介して第1透明電極に電圧を印加した場合、第1透明電極内の位置に応じて電圧が変化する。第2透明電極についても同様である。これにより、調光フィルムの透過率にムラが発生してしまう。
 本発明は、透過率のムラを抑制することが可能な調光装置を提供する。
 本発明の一態様に係る調光装置は、液晶層を含み、マトリクス状に配置された複数の画素を備える調光素子と、前記複数の画素の各々を透過状態と遮光状態とのいずれかに設定可能である駆動回路とを具備する。前記駆動回路は、全画素に対する遮光状態の画素の比率を変えることで、前記調光素子の透過率を変化させる。
 本発明によれば、透過率のムラを抑制することが可能な調光装置を提供することができる。
図1は、第1実施形態に係る調光装置のブロック図である。 図2は、図1に示した調光素子の平面図である。 図3は、図2のA-A´線に沿った調光素子の断面図である。 図4は、複数の第1電極の構成を説明する平面図である。 図5は、複数の第2電極の構成を説明する平面図である。 図6は、複数の第1電極、複数の第2電極、及び信号線群の関係を説明する図である。 図7は、オフ状態における液晶層の模式図である。 図8は、オン状態における液晶層の模式図である。 図9は、透過率100%の調光素子を説明する模式図である。 図10は、透過率75%の調光素子を説明する模式図である。 図11は、透過率50%の調光素子を説明する模式図である。 図12は、透過率25%の調光素子を説明する模式図である。 図13は、透過率0%の調光素子を説明する模式図である。 図14は、画素PXの透過率を説明するグラフである。 図15は、4個の画素を抽出した模式図である。 図16は、透過率100%の調光素子の動作を説明する図である。 図17は、透過率75%の調光素子の動作を説明する図である。 図18は、透過率50%の調光素子の動作を説明する図である。 図19は、透過率25%の調光素子の動作を説明する図である。 図20は、透過率0%の調光素子の動作を説明する図である。 図21は、第2実施形態に係るカメラの模式図である。 図22は、変形例に係るカメラの模式図である。 図23は、他の変形例に係るカメラの模式図である。 図24は、第3実施形態に係る複数の第1電極及び複数の第2電極の構成を説明する模式図である。 図25は、4個の画素を抽出した模式図である。 図26は、第3実施形態に係る調光素子の平面図である。 図27は、図26のA-A´線に沿った調光素子の断面図である。 図28は、基材20及び複数の第1電極を抽出した平面図である。 図29は、基材21及び複数の第2電極を抽出した平面図である。 図30は、画素の面積比を説明する模式図である。 図31は、画素の動作と透過率との関係を説明する模式図である。 図32は、遮光面積比と透過率との関係を説明するグラフである。 図33は、第4実施形態に係る調光素子の構成を説明する模式図である。 図34は、1個の画素群の構成を説明する模式図である。 図35は、第5実施形態に係る調光素子の構成を説明する模式図である。 図36は、図35に示した調光素子の断面図である。 図37は、オン状態における画素の動作を説明するタイミング図である。 図38は、第6実施形態に係る調光素子の構成を説明する模式図である。
実施形態
 以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率等は必ずしも現実のものと同一とは限らない。また、図面の相互間で同じ部分を表す場合においても、互いの寸法の関係や比率が異なって表される場合もある。特に、以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置等によって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については同一符号を付し、重複説明は必要な場合にのみ行う。
 [1] 第1実施形態
 [1-1] 調光装置の構成
 図1は、第1実施形態に係る調光装置10のブロック図である。調光装置10は、調光素子11、及び駆動回路12を備える。
 調光素子11は、光の透過率を制御可能な素子である。調光素子11は、例えば調光フィルムから構成される。調光素子11は、光を透過する透過状態と、光を遮光する遮光状態とを切り替え可能であるとともに、透過状態と遮光状態との間の中間状態に設定可能である。
 調光素子11は、それぞれがX方向に延びる複数の第1電極と、それぞれがX方向に直交するY方向に延びる複数の第2電極とを備える。複数の第1電極及び複数の第2電極の構成については後述する。複数の第1電極と複数の第2電極との間には、液晶層が配置される。
 駆動回路12は、信号線群13及び信号線群14を介して、調光素子11に接続される。信号線群13は、調光素子11の複数の第1電極に接続される。信号線群14は、調光素子11の複数の第2電極に接続される。駆動回路12は、調光素子11に電圧を印加し、調光素子11の動作を制御する。
 [1-2] 調光素子11の構成
 図2は、図1に示した調光素子11の平面図である。図3は、図2のA-A´線に沿った調光素子11の断面図である。本実施形態の調光素子11は、パッシブマトリクス方式(単純マトリクス方式)であり、また、ドットマトリクス方式である。
 調光素子11は、対向配置された基材20、21と、基材20、21間に配置された液晶層22とを備える。基材20、21は、透明部材から構成され、例えば透明フィルムから構成される。基材20、21としては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレン(PE)フィルム、又はポリカーボネート(PC)フィルムなどを用いることができる。
 液晶層22は、例えば、ゲストホスト型液晶層から構成される。ゲストホスト型液晶層は、ゲストとしての二色性色素が、ホストとしての液晶に溶解されて構成される。液晶層22の具体的な構成については後述する。
 シール材27は、基材20、21間に液晶層22を封止する。シール材27は、例えば光硬化樹脂から構成される。
 基材20上には、複数の第1電極23が設けられる。図4は、複数の第1電極23の構成を説明する平面図である。図4には、調光素子11のうち、基材20及び複数の第1電極23を抽出して示している。
 本実施形態では、一例として、調光素子11は、8本の第1電極23-1~23-8を備える。第1電極23-1~23-8は、それぞれがY方向に延び、X方向に並んで配置される。
 第1電極23-1、23-3、23-5、23-7は、X方向に延びる接続電極28-1に接続される。接続電極28-1の一端は、Y方向に延びる端子29-1に接続される。端子29-1は、信号線群13を介して駆動回路12に接続される。
 第1電極23-2、23-4、23-6、23-8は、X方向に延びる接続電極28-2に接続される。接続電極28-2の一端は、Y方向に延びる端子29-2に接続される。端子29-2は、信号線群13を介して駆動回路12に接続される。
 第1電極23-1~23-8、接続電極28-1、28-2、及び端子29-1、29-2は、透明電極からなり、例えばITO(インジウム錫酸化物)から構成される。
 基材20及び第1電極23-1~23-8上には、液晶層22の初期配向を制御する配向膜25が設けられる。
 基材21上には、複数の第2電極24が設けられる。図5は、複数の第2電極24の構成を説明する平面図である。図5には、調光素子11のうち、基材21及び複数の第2電極24を抽出して示している。
 本実施形態では、一例として、調光素子11は、8本の第2電極24-1~24-8を備える。第2電極24-1~24-8は、それぞれがX方向に延び、Y方向に並んで配置される。
 第2電極24-1、24-3、24-5、24-7は、Y方向に延びる接続電極28-3に接続される。接続電極28-3の一端は、X方向に延びる端子29-3に接続される。端子29-3は、信号線群14を介して駆動回路12に接続される。
 第2電極24-2、24-4、24-6、24-8は、Y方向に延びる接続電極28-4に接続される。接続電極28-4の一端は、X方向に延びる端子29-4に接続される。端子29-4は、信号線群14を介して駆動回路12に接続される。
 第2電極24-1~24-8、接続電極28-3、28-4、及び端子29-3、29-4は、透明電極からなり、例えばITOから構成される。
 基材21及び第2電極24-1~24-8上には、液晶層22の初期配向を制御する配向膜26が設けられる。
 図6は、複数の第1電極23、複数の第2電極24、信号線群13、及び信号線群14の関係を説明する図である。複数の第1電極23と複数の第2電極24との複数の交差領域はそれぞれ、画素PXを構成する。複数の画素は、マトリクス状に配置される。信号線群13は、信号線13-1、13-2を含む。信号線群14は、信号線14-1、14-2を含む。
 第1電極23-1、23-3、23-5、23-7は、端子(図示せず)を介して、信号線13-1に接続される。駆動回路12は、信号線13-1に信号X1を供給する。
 第1電極23-2、23-4、23-6、23-8は、端子(図示せず)を介して、信号線13-2に接続される。駆動回路12は、信号線13-2に信号X2を供給する。
 第2電極24-1、24-3、24-5、24-7は、端子(図示せず)を介して、信号線14-1に接続される。駆動回路12は、信号線14-1に信号Y1を供給する。
 第2電極24-2、24-4、24-6、24-8は、端子(図示せず)を介して、信号線14-2に接続される。駆動回路12は、信号線14-2に信号Y2を供給する。
 (液晶層22の構成)
 次に、液晶層22の構成について説明する。図7は、オフ状態における液晶層22の模式図である。図8は、オン状態における液晶層22の模式図である。図7及び図8は、液晶層22の一部領域を示している。
 オフ状態とは、液晶層22に、液晶の閾値電圧より低い電圧が印加された状態であり、例えば、第1電極23と第2電極24とに同電位(例えば0V)が印加された状態である。オン状態とは、液晶層22に、液晶の閾値電圧以上の電圧が印加された状態である。液晶の閾値電圧とは、液晶分子が垂直配向から水平配向に切り替わる電圧である。
 液晶層22は、液晶22A、及び二色性色素22Bを含む。液晶22Aは、例えば、負の誘電率異方性を有するN型のネマティック液晶から構成される。液晶22Aに含まれる液晶分子の長軸は、オフ状態では基材の面に対してほぼ垂直方向に配向し、オン状態では基材の面に対して水平方向に傾く。
 二色性色素22Bは、光吸収率に異方性を有する色素である。二色性色素22Bに含まれる色素分子の長軸は、液晶分子と同じ配向に設定される。オフ状態では、二色性色素22Bの光吸収率が低くなり、液晶層22は、透過状態となる。オン状態では、二色性色素22Bの光吸収率が高くなり、液晶層22は、遮光状態となる。遮光状態では、二色性色素22Bは、例えば黒を表示する。
 なお、液晶22Aとして、正の誘電率異方性を有するP型のネマティック液晶を用いてもよい。この場合、液晶22Aに含まれる液晶分子の長軸は、無電界時には基材の面に対してほぼ水平方向に配向し、電界印加時には基材の面に対して垂直方向に傾く。この場合、オフ状態では、二色性色素22Bの光吸収率が高くなり、液晶層22は、遮光状態となる。オン状態では、二色性色素22Bの光吸収率が低くなり、液晶層22は、透過状態となる。
 [1-3] 調光装置10の動作
 上記のように構成された調光装置10の動作について説明する。
 調光素子11は、マトリクス状に配置された複数の画素PXを備える。複数の画素PXの各々は、透過状態と遮光状態とのいずれかに設定可能である。そして、調光素子11は、全画素PXに対する遮光状態の画素PXの比率を変えることで、透過率を変化させることが可能である。
 図9は、透過率100%の調光素子11を説明する模式図である。透過率100%では、全ての画素PXは、透過状態に設定される。
 図10は、透過率75%の調光素子11を説明する模式図である。透過率75%では、マトリクス状に配置された4個の画素PXのうち1個の画素PXが遮光状態に設定される。他の4個の画素を単位とする画素群も同じ状態に設定される。
 図11は、透過率50%の調光素子11を説明する模式図である。透過率50%では、マトリクス状に配置された4個の画素PXのうち2個の画素PXが遮光状態に設定される。
 図12は、透過率25%の調光素子11を説明する模式図である。透過率25%では、マトリクス状に配置された4個の画素PXのうち3個の画素PXが遮光状態に設定される。
 図13は、透過率0%の調光素子11を説明する模式図である。透過率0%では、全ての画素PXは、遮光状態に設定される。なお、ここで言う透過率は、透過状態を100%、遮光状態を0%とした場合の相対的な数値である。
 図14は、画素PXの透過率を説明するグラフである。図14の横軸が電圧、図14の縦軸が透過率である。
 画素PXに電圧が印加されていないオフ状態では、画素PXの透過率が最も高く、画素PXは透過状態となる。画素PXに印加される電圧が高くなるにつれて透過率が低くなる。画素PXに印加される電圧が液晶の閾値を超えると、画素PXの透過率が最も低くなり、画素PXは遮光状態となる。
 本実施形態では、画素PXは、透過状態と遮光状態とのいずれかに設定され、透過状態と遮光状態との間の中間状態は使用されない。すなわち、画素PXは、2値駆動される。
 [1-3-1] 駆動方式の詳細
 以下に、調光装置10の駆動方式の詳細について説明する。本実施形態は、一例として、時分割駆動が適用される。
 図15は、4個の画素を抽出した模式図である。マトリクス状に配置された4個の画素をPX_11、PX_12、PX_21、PX_22を表記する。画素PX_11には、信号X1及び信号Y1が供給される。画素PX_12には、信号X2及び信号Y1が供給される。画素PX_21には、信号X1及び信号Y2が供給される。画素PX_22には、信号X2及び信号Y2が供給される。他の4個の画素を単位とする画素群についても、図15の画素群と同じ動作が実行される。
 図15では、4個の画素を画素群の最小単位としているが、画素群の最小単位は、2行1列の2画素、3行1列の3画素、3行3列の9画素などm行n列のm×n画素からなる様々な画素群を適用することが可能である。m、nは、m×nが2以上となる任意の整数の組み合わせに設定可能である。
 [1-3-2] 透過率100%
 図16は、透過率100%の調光素子11の動作を説明する図である。図16(a)は、透過率100%の画素群を説明する図である。ハッチングなしの画素は、透過状態を意味している。図16(a)では、画素の枝番のみを示している。図16(b)は、信号X1の波形である。図16(c)は、信号X2の波形である。図16(d)は、信号Y1の波形である。図16(e)は、信号Y2の波形である。
 図16(f)は、画素PX_11に印加される電圧の波形である。画素に印加される電圧とは、第1電極23及び第2電極24間の電圧(電位差)である。すなわち、図16(f)は、“Y1-X1”の電圧波形である。
 図16(g)は、画素PX_12に印加される電圧の波形であり、“Y1-X2”の電圧波形である。図16(h)は、画素PX_21に印加される電圧の波形であり、“Y2-X1”の電圧波形である。図16(i)は、画素PX_22に印加される電圧の波形であり、“Y2-X2”の電圧波形である。
 図16(b)~図16(i)において、横軸が時間であり、縦軸が電圧である。なお、図16(b)に代表して時刻t1~t5を表記している。図面が煩雑になるのを避けるために、図16(c)~図16(i)の時刻を省略しているが、対応する目盛りの時刻は、図16(b)と同じである。
 図16において、信号X1、X2は、時刻t1、t2において電圧V1(>0V)になり、時刻t3、t4において電圧-V1になる。信号Y1は、時刻t1において電圧V3(>V2)になり、時刻t2において0Vになり、時刻t3において電圧-V3になり、時刻t4において0Vになる。電圧V3は、例えば3×V1である。期間t1~t3、期間t3~t5をそれぞれフレームとする。フレームの期間は、任意に設定可能である。
 画素PX_11、PX_12には、時刻t1において電圧V2が印加され、時刻t2において電圧-V1が印加され、時刻t3において電圧-V2が印加され、時刻t4において電圧V1が印加される。電圧V2は、例えば2×V1である。画素PX_11、PX_12におけるフレームの実効電圧は、“(V1+V2)/2”である。
 画素PX_21、PX_22には、時刻t1において電圧-V1が印加され、時刻t2において電圧V2が印加され、時刻t3において電圧V1が印加され、時刻t4において電圧-V2が印加される。画素PX_21、PX_22におけるフレームの実効電圧は、“(V1+V2)/2”である。
 実効電圧“(V1+V2)/2”は、液晶の閾値電圧より低く設定される。これにより、画素PX_11~PX_22は、透過状態に設定される。
 [1-3-3] 透過率75%
 図17は、透過率75%の調光素子11の動作を説明する図である。図17(a)は、透過率75%の画素群を説明する図である。ハッチングを付した画素は、遮光状態を意味している。
 図17において、信号X1は、時刻t1において電圧-V1になり、時刻t2、t3において電圧V1になり、時刻t4において電圧-V1になる。信号X2は、時刻t1、t2において電圧V1になり、時刻t3、t4において電圧-V1になる。図17の信号Y1、Y2は、図16と同じである。
 画素PX_11には、時刻t1において電圧V4(>V3)が印加され、時刻t2において電圧-V1が印加され、時刻t3において電圧-V4が印加され、時刻t4において電圧V1が印加される。電圧V4は、例えば4×V1である。画素PX_11におけるフレームの実効電圧は、“(V1+V4)/2”である。
 画素PX_12の電圧波形は、図16と同じである。
 画素PX_21には、時刻t1において電圧V1が印加され、時刻t2において電圧V2が印加され、時刻t3において電圧-V1が印加され、時刻t4において電圧-V2が印加される。画素PX_21におけるフレームの実効電圧は、“(V1+V2)/2”である。
 画素PX_22の電圧波形は、図16と同じである。
 実効電圧“(V1+V4)/2”は、液晶の閾値電圧以上に設定される。これにより、画素PX_11は、遮光状態に設定される。また、画素PX_12、PX_21、PX_22は、透過状態に設定される。
 [1-3-4] 透過率50%
 図18は、透過率50%の調光素子11の動作を説明する図である。
 図18において、信号X1は、時刻t1において電圧-V1になり、時刻t2、t3において電圧V1になり、時刻t4において電圧-V1になる。信号X2は、時刻t1において電圧V1になり、時刻t2、t3において電圧-V1になり、時刻t4において電圧V1になる。図18の信号Y1、Y2は、図16と同じである。
 画素PX_11の電圧波形は、図17と同じである。
 画素PX_12には、時刻t1において電圧V2が印加され、時刻t2において電圧V1が印加され、時刻t3において電圧-V2が印加され、時刻t4において電圧-V1が印加される。画素PX_12におけるフレームの実効電圧は、“(V1+V2)/2”である。
 画素PX_21の電圧波形は、図17と同じである。
 画素PX_22には、時刻t1において電圧-V1が印加され、時刻t2において電圧V4が印加され、時刻t3において電圧V1が印加され、時刻t4において電圧-V4が印加される。画素PX_22におけるフレームの実効電圧は、“(V1+V4)/2”である。
 これにより、画素PX_11、PX_22は、遮光状態に設定され、画素PX_12、PX_21は、透過状態に設定される。
 [1-3-5] 透過率25%
 図19は、透過率25%の調光素子11の動作を説明する図である。
 図19において、信号X1は、時刻t1、t2において電圧-V1になり、時刻t3、t4において電圧V1になる。信号X2は、時刻t1において電圧V1になり、時刻t2、t3において電圧-V1になり、時刻t4において電圧V1になる。信号Y1、Y2は、図16と同じである。
 画素PX_11には、時刻t1において電圧V4が印加され、時刻t2において電圧V1が印加され、時刻t3において電圧-V4が印加され、時刻t4において電圧-V1が印加される。画素PX_11におけるフレームの実効電圧は、“(V1+V4)/2”である。
 画素PX_12の電圧波形は、図18と同じである。
 画素PX_21には、時刻t1において電圧V1が印加され、時刻t2において電圧V4が印加され、時刻t3において電圧-V1が印加され、時刻t4において電圧-V4が印加される。画素PX_12におけるフレームの実効電圧は、“(V1+V4)/2”である。
 画素PX_22の電圧波形は、図18と同じである。
 これにより、画素PX_11、PX_21、PX_22は、遮光状態に設定され、画素PX_12は、透過状態に設定される。
 [1-3-6] 透過率0%
 図20は、透過率0%の調光素子11の動作を説明する図である。
 図20において、信号X1、X2は、時刻t1、t2において電圧-V1になり、時刻t3、t4において電圧V1になる。信号Y1、Y2は、図16と同じである。
 画素PX_11の電圧波形は、図19と同じである。画素PX_12の電圧波形は、画素PX_11と同じである。
 画素PX_21の電圧波形は、図19と同じである。画素PX_22の電圧波形は、画素PX_21と同じである。
 これにより、画素PX_11~PX_22は、遮光状態に設定される。
 なお、本実施形態では、4(=2×2)個の画素を単位とし、4個の画素を信号線X1、X2、及び信号線Y1、Y2を用いて駆動している。しかし、4個の画素を単位とした時分割駆動に限定されるものではない。4個より多くの画素を単位として駆動し、この画素群の行数及び列数に合わせて信号線を追加してもよい。これにより、透過率をより細かく変化させることができる。
 [1-4] 第1実施形態の効果
 以上詳述したように第1実施形態では、調光装置10は、ゲストホスト型液晶層22を含み、マトリクス状に配置された複数の画素を備える調光素子11と、複数の画素の各々を透過状態と遮光状態とのいずれかに設定可能である駆動回路12とを備える。そして、駆動回路12は、全画素に対する遮光状態の画素の比率を変えることで、調光素子11の透過率を変化させるようにしている。
 従って第1実施形態によれば、遮光状態の画素が形成するパターンにより、調光素子11を、透過状態に対応する透過率100%と、遮光状態に対する透過率0%と、透過状態と遮光状態との間の中間状態に対応する透過率とに設定することができる。
 また、画素を、透過状態と遮光状態との2種類の状態のうちいずれかに設定することで、中間状態の透過率を実現できる。これにより、調光素子11の透過率のムラを抑制できる。
 [2] 第2実施形態
 第2実施形態は、調光装置10の適用例である。調光装置10は、例えばカメラに適用可能である。
 図21は、第2実施形態に係るカメラ30の模式図である。カメラ30は、第1実施形態に係る調光素子11、レンズ群31、及び撮像素子32を備える。
 レンズ群31は、凸レンズ、及び凹レンズを含む。撮像素子32は、CCDイメージセンサ、又はCMOSイメージセンサで構成される。撮像素子32は、レンズ群31を透過した光を電気信号に変換する。調光素子11は、レンズ群31の撮像素子32と反対側に配置される。
 物体33からの光は、調光素子11に入射する。調光素子11は、光の透過率を変化させることができる。調光素子11を透過した光は、レンズ群31を介して撮像素子32に入射する。撮像素子32の撮像面には、物体33の像34が結像される。
 図21の構成例では、調光素子11を透過した光がレンズ群31を介して撮像素子32に入射する。よって、調光素子11の表示パターンが撮像素子32に結像されるのを防ぐことができる。
 図22は、変形例に係るカメラ30の模式図である。調光素子11は、レンズ群31と撮像素子32との間に配置される。
 レンズ群31を透過した光は、調光素子11に入射する。調光素子11を透過した光は、撮像素子32に入射する。図22の構成例では、レンズ群31で集光された光が調光素子11に入射する。よって、調光素子11のサイズを小さくすることができる。
 図23は、他の変形例に係るカメラ30の模式図である。
 カメラ30は、複数のレンズ、例えば凸レンズ31-1、凹レンズ31-2、及び凸レンズ31-3を備える。調光素子11は、凹レンズ31-2と凸レンズ31-3との間に配置される。このように、調光素子11をレンズ群の間に挿入してもよい。
 [3] 第3実施形態
 第3実施形態は、1つの繰り返し単位である画素群に含まれる例えば4個の画素の面積を互いに異なるように設定することで、透過率をより細かく設定するようにしている。
 [3-1] 調光素子11の構成
 図24は、第3実施形態に係る複数の第1電極23及び複数の第2電極24の構成を説明する模式図である。
 調光素子11は、それぞれがY方向に延びる複数の第1電極23と、それぞれがX方向に延びる複数の第2電極24とを備える。複数の第1電極23と複数の第2電極24との複数の交差領域はそれぞれ、画素PXを構成する。本実施形態では、8本の第1電極23-1~23-8と、8本の第2電極24-1~24-8とを一例として示している。
 奇数番目の第1電極23-1と偶数番目の第1電極23-2とは、その幅(配線幅)が異なる。電極の幅とは、電極の延びる方向に直交する方向における長さである。例えば、第1電極23-2の幅は、第1電極23-1の幅の2倍である。すなわち、第1電極23-1の幅と第1電極23-2の幅との比は、“1:2”である。他の奇数番目の第1電極23-3、23-5、23-7の構成は、前述した第1電極23-1の構成と同じである。他の偶数番目の第1電極23-4、23-6、23-8の構成は、前述した第1電極23-2の構成と同じである。
 奇数番目の第2電極24-1と偶数番目の第2電極24-2とは、その幅(配線幅)が異なる。例えば、第2電極24-2の幅は、第2電極24-1の幅の4倍である。すなわち、第2電極24-1の幅と第2電極24-2の幅との比は、“1:4”である。他の奇数番目の第2電極24-3、24-5、24-7の構成は、前述した第2電極24-1の構成と同じである。他の偶数番目の第2電極24-4、24-6、24-8の構成は、前述した第2電極24-2の構成と同じである。
 図25は、4個の画素を抽出した模式図である。図25は、2本の第1電極23-1、23-2と、2本の第2電極24-1、24-2とが交差する領域に存在する4個の画素に対応する。
 マトリクス状に配置された4個の画素をPX_11、PX_12、PX_21、PX_22と表記する。4個の画素PX_11、PX_12、PX_21、PX_22のセットを画素群PGと呼ぶ。画素PX_11は、信号線13-1、及び信号線14-1に接続される。画素PX_12は、信号線13-2、及び信号線14-1に接続される。画素PX_21は、信号線13-1、及び信号線14-2に接続される。画素PX_22は、信号線13-2、及び信号線14-2に接続される。他の4個の画素を単位とする画素群についても、図25の画素群と同じ構成を有する。
 前述したように、奇数番目の第1電極23の幅と偶数番目の第1電極23の幅との比が“1:2”であり、奇数番目の第2電極24の幅と偶数番目の第2電極24の幅との比が“1:4”である。よって、画素PX_11、PX_12、PX_21、PX_22の面積比は、“1:2:4:8”となる。このように、第3実施形態では、マトリクス状に配置された4個の画素PXは、互いに面積が異なる。
 次に、第3実施形態に係る調光素子11の具体的な構造について説明する。図26は、第3実施形態に係る調光素子11の平面図である。図27は、図26のA-A´線に沿った調光素子11の断面図である。図28は、基材20及び複数の第1電極23を抽出した平面図である。図29は、基材21及び複数の第2電極24を抽出した平面図である。図28及び図29には、一例として、8本の第1電極23-1~23-8、及び8本の第2電極24-1~24-8を示している。
 図28に示すように、奇数番目の第1電極23-1、23-3、23-5、23-7は、接続電極28-1に共通接続される。奇数番目の第1電極23-1、23-3、23-5、23-7は、その幅が同じである。接続電極28-1は、端子29-1に接続される。
 偶数番目の第1電極23-2、23-4、23-6、23-8は、接続電極28-2に共通接続される。偶数番目の第1電極23-2、23-4、23-6、23-8は、その幅が同じである。偶数番目の第1電極23-2、23-4、23-6、23-8の幅は、奇数番目の第1電極23-1、23-3、23-5、23-7の幅の2倍である。接続電極28-2は、端子29-2に接続される。
 図29に示すように、奇数番目の第2電極24-1、24-3、24-5、24-7は、接続電極28-3に共通接続される。奇数番目の第2電極24-1、24-3、24-5、24-7は、その幅が同じである。接続電極28-3は、端子29-3に接続される。
 偶数番目の第2電極24-2、24-4、24-6、24-8は、接続電極28-4に共通接続される。偶数番目の第2電極24-2、24-4、24-6、24-8は、その幅が同じである。偶数番目の第2電極24-2、24-4、24-6、24-8の幅は、奇数番目の第2電極24-1、24-3、24-5、24-7の幅の4倍である。接続電極28-4は、端子29-4に接続される。
 [3-2] 調光素子11の動作
 次に、調光素子11の動作について説明する。
 図30は、画素の面積比(画素面積比)を説明する模式図である。図30において、X幅比は、信号X1が供給される奇数番目の第1電極23-1の幅と、信号X2が供給される偶数番目の第1電極23-2の幅との比を意味する。Y幅比は、信号Y1が供給される奇数番目の第2電極24-1の幅と、信号Y2が供給される偶数番目の第2電極24-2の幅との比を意味する。
 マトリクス状の4つの数値は、4個の画素PX_11、PX_12、PX_21、PX_22の面積比を表している。画素群PGの全面積を15とする。画素PX_11の面積比は“1”、画素PX_12の面積比は“2”、画素PX_21の面積比は“4”、画素PX_22の面積比は“8”である。
 図31は、画素の動作と透過率との関係を説明する模式図である。画素番号は、画素PX_11、PX_12、PX_21、PX_22の番号に対応する。遮光面積比は、画素群PGの全面積“15”に対する合計の遮光面積の比である。図31では、遮光面積比を0~15の16個の数値で表している。図31の丸は、遮光状態の画素を表し、図31の空白は、透過状態の画素を表している。
 図32は、遮光面積比と透過率との関係を説明するグラフである。図32の横軸が遮光面積比であり、縦軸が透過率(%)である。図32では、遮光面積比を0/15~15/15の16個の数値で表している。図32の遮光面積比0/15~15/15は、図31の遮光面積比0~15と同じ意味である。
 遮光面積比は、0~15までの16段階に設定可能である。透過率は、遮光面積比が大きくなるにつれて小さくなる。遮光面積比0における透過率は100%、遮光面積比15における透過率は0%である。
 画素を透過状態に設定する場合は、画素をオフ状態にし、すなわち、画素に閾値電圧より低い電圧を印加する。画素を遮光状態に設定する場合は、画素をオン状態にし、すなわち、画素に閾値電圧以上の電圧を印加する。遮光状態及び透過状態に設定する動作は、第1実施形態と同じである。
 [3-3] 第3実施形態の効果
 第3実施形態では、複数の第1電極23の幅が異なり、複数の第2電極の幅が異なるように構成している。よって、第3実施形態によれば、透過率をより細かく設定することができる。本実施形態の例によれば、透過率を16段階で変化させることができる。
 また、幅が異なる第1電極23の数を増やし、及び幅が異なる第2電極24の数を増やすことで、より透過率の変化量を小さくすることができる。その他の効果は、第1実施形態と同じである。
 [4] 第4実施形態
 第4実施形態は、複数の第1電極23の幅を同じにし、複数の第2電極24の幅を同じにしつつ、透過率をより細かく設定するようにしている。
 [4-1] 調光素子11の構成
 図33は、第4実施形態に係る調光素子11の構成を説明する模式図である。
 調光素子11は、それぞれがY方向に延びる複数の第1電極23と、それぞれがX方向に延びる複数の第2電極24とを備える。複数の第1電極23と複数の第2電極24との複数の交差領域はそれぞれ、画素PXを構成する。図33には、12本の第1電極23-1~23-12と、20本の第2電極24-1~24-20とを一例として示している。
 複数の第1電極23は、その幅が同じである。複数の第2電極24は、その幅が同じである。第1電極23の幅と第2電極の幅とは異なる。例えば、第1電極23の幅は、第2電極24の幅の2倍である。
 第1電極23-2、23-5、23-8、23-11は、信号線13-1に共通接続される。信号線13-1には、信号X1が供給される。第1電極23-1、23-3、23-4、23-6、23-7、23-9、23-10、23-12は、信号線13-2に共通接続される。信号線13-2には、信号X2が供給される。
 第2電極24-3、24-8、24-13、24-18は、信号線14-1に共通接続される。信号線14-1には、信号Y1が供給される。第2電極24-1、24-2、24-4~24-7、24-9~24-12、24-14~24-17、24-19、24-20は、信号線14-2に共通接続される。信号線14-2には、信号Y2が供給される。
 3本の第1電極23-1~23-3と、5本の第2電極24-1~24-5とが1つの繰り返し単位であり、この繰り返し単位の関係は、他の電極(第1電極23-4~23-12、及び第2電極24-6~24-20)についても同じである。図33では、繰り返し単位を明確にするために、部分的に電極の間隔を大きくしているが、実際には、電極の間隔は共通に設定される。
 電極の幅が異なることを除いて、第4実施形態における調光素子11の断面構造は、第3実施形態と同じである。
 図34は、1個の画素群PGの構成を説明する模式図である。図34には、3本の第1電極23-1~23-3と、5本の第2電極24-1~24-5とで構成される画素群PGを抽出して示している。図34の画素群PGは、画素PX_11、PX_12、PX_21、PX_22からなる。図34では、画素番号のみを表示している。
 画素PX_11は、第1電極23-2と、第2電極24-3との交差領域で構成される。
 画素PX_12は、2個のサブ画素PX_12-1、PX_12-2で構成される。サブ画素PX_12-1は、第1電極23-1と、第2電極24-3との交差領域で構成される。サブ画素PX_12-2は、第1電極23-3と、第2電極24-3との交差領域で構成される。
 画素PX_21は、2個のサブ画素PX_21-1、PX_21-2で構成される。サブ画素PX_21-1は、第1電極23-2と、2本の第2電極24-1、24-2との交差領域で構成される。サブ画素PX_21-2は、第1電極23-2と、2本の第2電極24-4、24-5との交差領域で構成される。
 画素PX_22は、4個のサブ画素PX_22-1~PX_22-4で構成される。サブ画素PX_22-1は、第1電極23-1と、2本の第2電極24-1、24-2との交差領域で構成される。サブ画素PX_22-2は、第1電極23-3と、2本の第2電極24-1、24-2との交差領域で構成される。サブ画素PX_22-3は、第1電極23-1と、2本の第2電極24-4、24-5との交差領域で構成される。サブ画素PX_22-4は、第1電極23-3と、2本の第2電極24-4、24-5との交差領域で構成される。
 画素PX_12の面積は、画素PX_11の面積の2倍である。画素PX_21の面積は、画素PX_11の面積の4倍である。画素PX_22の面積は、画素PX_11の面積の8倍である。すなわち、画素PX_11、PX_12、PX_21、PX_22の面積比は、“1:2:4:8”となる。
 図34に示した画素群PG以外の複数の画素群についても、図34と同様の接続関係を有する。
 [4-2] 調光素子11の動作
 次に、調光素子11の動作について説明する。
 図34において、画素PX_11をオン状態に設定する場合、例えば、第1電極23-2に0Vを印加し、第2電極24-3に閾値電圧以上の正電圧を印加する。
 画素PX_12をオン状態に設定する場合、例えば、第1電極23-1、23-3に0Vを印加し、第2電極24-3に正電圧を印加する。
 画素PX_21をオン状態に設定する場合、例えば、第1電極23-2に0Vを印加し、第2電極24-1、24-2、24-4、24-5に正電圧を印加する。
 画素PX_22をオン状態に設定する場合、例えば、第1電極23-1、23-3に0Vを印加し、第2電極24-1、24-2、24-4、24-5に正電圧を印加する。
 また、画素群PGの遮光面積比は、第3実施形態と同様に、0~15までの16段階に設定可能である。
 [4-3] 第4実施形態の効果
 第4実施形態によれば、複数の第1電極23の幅を同じにすることができ、複数の第2電極24の幅を同じにすることができる。これにより、電極の製造工程を簡略化できる。その他の効果は、第3実施形態と同じである。
 [5] 第5実施形態
 第5実施形態は、複数の第1電極23に対向して1つの共通電極24を配置する。そして、共通電極24に共通電圧を印加しつつ、複数の第1電極23に印加する電圧を制御することで、透過率を制御するようにしている。
 [5-1] 調光素子11の構成
 図35は、第5実施形態に係る調光素子11の構成を説明する模式図である。図36は、図35に示した調光素子11の断面図である。図36は、Y方向の任意の位置でX方向に切断した断面図である。なお、図示は省略するが、第1電極23及び共通電極24用の接続電極28及び端子29のレイアウトは、第1実施形態と同様であり、また、任意に設計可能である。
 調光素子11は、それぞれがY方向に延びる複数の第1電極23と、共通電極24とを備える。複数の第1電極23は、基材20上に設けられ、共通電極24は、基材21上に設けられる。図35には、16本の第1電極23-1~23-16を一例として示している。
 4本の第1電極23-1~23-4が1つの繰り返し単位を構成する。第1電極23-2の幅は、第1電極23-1の幅の2倍である。第1電極23-3の幅は、第1電極23-1の幅の4倍である。第1電極23-4の幅は、第1電極23-1の幅の8倍である。すなわち、第1電極23-1~23-4の幅の比は、“1:2:4:8”となる。第1電極23-5~23-16の構成は、第1電極23-1~23-4の構成と同様である。
 第1電極23-1、23-5、23-9、23-13は、信号線13-1に共通接続される。信号線13-1には、駆動回路12から信号X1が供給される。すなわち、第1電極23-1、23-5、23-9、23-13には、信号X1として同じ電圧が印加される。
 第1電極23-2、23-6、23-10、23-14は、信号線13-2に共通接続される。信号線13-2には、駆動回路12から信号X2が供給される。すなわち、第1電極23-2、23-6、23-10、23-14には、信号X2として同じ電圧が印加される。
 第1電極23-3、23-7、23-11、23-15は、信号線13-3に共通接続される。信号線13-3には、駆動回路12から信号X3が供給される。すなわち、第1電極23-3、23-7、23-11、23-15には、信号X3として同じ電圧が印加される。
 第1電極23-4、23-8、23-12、23-16は、信号線13-4に共通接続される。信号線13-4には、駆動回路12から信号X4が供給される。すなわち、第1電極23-4、23-8、23-12、23-16には、信号X4として同じ電圧が印加される。
 共通電極24は、基材21上に平面状に形成される。共通電極24は、第1電極23-1~23-16全体を覆うサイズを有する。共通電極24と各第1電極23との交差領域が画素PXを構成する。共通電極24は、信号線14に接続される。信号線14には、駆動回路12から信号COMが供給される。信号COMは、共通電圧であり、例えば0Vである。
 [5-2] 調光素子11の動作
 次に、調光素子11の動作について説明する。
 図37は、オン状態における画素PXの動作を説明するタイミング図である。駆動回路12は、対応する第1電極23に振幅V1の交流電圧を印加する。電圧V1は、閾値電圧以上の電圧である。また、駆動回路12は、共通電極24に0Vを印加する。
 画素PXをオフ状態に設定する場合は、対応する第1電極23と共通電極24との両方に0Vを印加する。
 信号X1~X4に印加する電圧を制御することで、遮光面積を制御することができる。また、第3実施形態と同様に、調光素子11の遮光面積比は、0~15までの16段階に設定可能である。
 なお、互いに幅の異なる第1電極23の数は、4本に限定されない。互いに幅の異なる第1電極23の数を変えることで、透過率の変化量を任意に設定できる。
 [5-3] 第5実施形態の効果
 第5実施形態によれば、基材21上に平面状に共通電極24が形成される。これにより、電極の構造を簡単にすることができる。また、スタティック駆動方式を適用できるため、駆動方式を簡単にすることができる。その他の効果は、第1実施形態と同じである。
 [6] 第6実施形態
 第6実施形態は、第5実施形態の変形例である。第6実施形態は、複数の第1電極23の幅を同じにしつつ、透過率をより細かく設定するようにしている。
 図38は、第6実施形態に係る調光素子11の構成を説明する模式図である。調光素子11は、それぞれがY方向に延びる複数の第1電極23と、共通電極24とを備える。調光素子11の断面構造は、第1電極23の幅が異なる以外は、図36と同じである。図38には、45本の第1電極23-1~23-45を一例として示している。
 15本の第1電極23-1~23-15が1つの繰り返し単位(画素群PG)を構成する。第1電極23-1~23-15は、その幅が同じである。図38では、繰り返し単位を明確にするために、部分的に電極の間隔を大きくしているが、実際には、電極の間隔は共通に設定される。
 第1電極23-8は、信号線13-1に接続される。信号線13-1には、駆動回路12から信号X1が供給される。
 2本の第1電極23-4、23-12は、信号線13-2に共通接続される。信号線13-2には、駆動回路12から信号X2が供給される。すなわち、第1電極23-4、23-12には、信号X2として同じ電圧が印加される。
 4本の第1電極23-2、23-6、23-10、23-14は、信号線13-3に共通接続される。信号線13-3には、駆動回路12から信号X3が供給される。すなわち、第1電極23-2、23-6、23-10、23-14には、信号X3として同じ電圧が印加される。
 8本の第1電極23-1、23-3、23-5、23-7、23-9、23-11、23-13、23-15は、信号線13-4に共通接続される。信号線13-4には、駆動回路12から信号X4が供給される。すなわち、第1電極23-1、23-3、23-5、23-7、23-9、23-11、23-13、23-15には、信号X4として同じ電圧が印加される。
 共通電極24は、第1電極23-1~23-45全体を覆うサイズを有する。共通電極24と各第1電極23との交差領域が画素PXを構成する。共通電極24は、信号線14に接続される。信号線14には、駆動回路12から信号COMが供給される。信号COMは、例えば0Vである。
 調光素子11の駆動方法は、第5実施形態と同じである。
 第6実施形態によれば、複数の第1電極23の幅を同じにすることができる。これにより、電極の製造工程を簡略化できる。その他の効果は、第5実施形態と同じである。なお、画素群PGに含まれる第1電極23の数は、15本に限定されない。画素群PGに含まれる第1電極23の数を変えることで、透過率の変化量を任意に設定できる。
 上記各実施形態では、液晶層22として、ゲストホスト型液晶層を例に挙げて説明している。しかし、これに限定されるものではなく、例えば、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、又はポリマーネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)を用いてもよい。さらに、液晶層22として、TN(Twisted Nematic)型液晶、又はSTN(Super Twisted Nematic)型液晶などを用いてもよい。
 本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
 

Claims (12)

  1.  液晶層を含み、マトリクス状に配置された複数の画素を備える調光素子と、
     前記複数の画素の各々を透過状態と遮光状態とのいずれかに設定可能である駆動回路と、
     を具備し、
     前記駆動回路は、全画素に対する遮光状態の画素の比率を変えることで、前記調光素子の透過率を変化させる
     調光装置。
  2.  前記調光素子は、
     前記液晶層を挟むように配置された第1及び第2透明基材と、
     前記第1透明基材に設けられ、それぞれが第1方向に延び、前記第1方向に交差する第2方向に並んだ複数の第1電極と、
     前記第2透明基材に設けられ、それぞれが前記第2方向に延び、前記第1方向に並んだ複数の第2電極と、
     を含む
     請求項1に記載の調光装置。
  3.  前記複数の第1電極の幅は同じであり、
     前記複数の第2電極の幅は同じである
     請求項2に記載の調光装置。
  4.  前記複数の第1電極の幅は互いに異なり、
     前記複数の第2電極の幅は互いに異なる
     請求項2に記載の調光装置。
  5.  前記複数の第1電極と前記駆動回路とを接続する複数の第1信号線と、
     前記複数の第2電極と前記駆動回路とを接続する複数の第2信号線と、
     をさらに具備し、
     前記駆動回路は、前記複数の第1信号線及び前記複数の第2信号線の電圧を制御する
     請求項2に記載の調光装置。
  6.  前記駆動回路は、前記複数の第1信号線及び前記複数の第2信号線に対して時分割駆動を行う
     請求項5に記載の調光装置。
  7.  前記調光素子は、
     前記液晶層を挟むように配置された第1及び第2透明基材と、
     前記第1透明基材に設けられ、それぞれが第1方向に延び、前記第1方向に交差する第2方向に並んだ複数の第1電極と、
     前記第2透明基材に設けられ、前記複数の第1電極を覆う共通電極と、
     を含む
     請求項1に記載の調光装置。
  8.  前記複数の第1電極と前記駆動回路とを接続する複数の第1信号線と、
     前記共通電極と前記駆動回路とを接続する第2信号線と、
     をさらに具備し、
     前記駆動回路は、前記複数の第1信号線及び前記第2信号線の電圧を制御する
     請求項7に記載の調光装置。
  9.  前記駆動回路は、前記複数の第1信号線及び前記共通電極に対してスタティック駆動を行う
     請求項8に記載の調光装置。
  10.  前記液晶層は、二色性色素を含むゲストホスト型液晶層で構成される
     請求項1に記載の調光装置。
  11.  前記二色性色素は、黒を表示可能である
     請求項10に記載の調光装置。
  12.  前記液晶層は、高分子分散型液晶で構成される
     請求項1に記載の調光装置。
PCT/JP2020/030188 2019-08-06 2020-08-06 調光装置 WO2021025115A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019144466 2019-08-06
JP2019-144466 2019-08-06
JP2020093145A JP2021026222A (ja) 2019-08-06 2020-05-28 調光装置
JP2020-093145 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021025115A1 true WO2021025115A1 (ja) 2021-02-11

Family

ID=74502736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030188 WO2021025115A1 (ja) 2019-08-06 2020-08-06 調光装置

Country Status (1)

Country Link
WO (1) WO2021025115A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285921A (ja) * 1988-05-13 1989-11-16 Hitachi Ltd 液晶表示素子
JPH04188103A (ja) * 1990-11-21 1992-07-06 Matsushita Electron Corp 液晶絞り装置
JPH06194755A (ja) * 1992-12-25 1994-07-15 Fuji Photo Film Co Ltd 感光材料露光装置
JPH09237059A (ja) * 1995-12-28 1997-09-09 Canon Inc 解像度変換可能な表示パネル及び表示装置
JP2005031269A (ja) * 2003-07-09 2005-02-03 Sony Corp 撮像装置
US20180252950A1 (en) * 2015-03-18 2018-09-06 Gauzy Ltd. Solar reflective and absorptive electrically-switchable film and glazing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285921A (ja) * 1988-05-13 1989-11-16 Hitachi Ltd 液晶表示素子
JPH04188103A (ja) * 1990-11-21 1992-07-06 Matsushita Electron Corp 液晶絞り装置
JPH06194755A (ja) * 1992-12-25 1994-07-15 Fuji Photo Film Co Ltd 感光材料露光装置
JPH09237059A (ja) * 1995-12-28 1997-09-09 Canon Inc 解像度変換可能な表示パネル及び表示装置
JP2005031269A (ja) * 2003-07-09 2005-02-03 Sony Corp 撮像装置
US20180252950A1 (en) * 2015-03-18 2018-09-06 Gauzy Ltd. Solar reflective and absorptive electrically-switchable film and glazing

Similar Documents

Publication Publication Date Title
CN107633822B (zh) 一种显示装置和显示装置的驱动方法
US5760857A (en) In-plane field type liquid crystal display device with delta arrangement of three primary color pixels
US5854616A (en) Active matrix type liquid crystal display system and driving method therefor
US7505193B2 (en) Light modulator with bi-directional drive
KR101307554B1 (ko) 액정표시장치
US9746729B2 (en) Liquid crystal display
KR101641958B1 (ko) 액정 표시 장치
US20090146936A1 (en) Liquid crystal display and method of manufacturing the same
KR101725341B1 (ko) 액정 표시 장치
US5877737A (en) Wide viewing angle driving circuit and method for liquid crystal display
KR960032049A (ko) 액정패널 및 액정표시장치
JPH08179341A (ja) 液晶表示装置およびその駆動方法
KR20140024572A (ko) 표시판
CA2394977A1 (en) Pixel arrangement for flat-panel displays
KR101241137B1 (ko) 횡전계방식 액정표시장치 및 그 구동방법
CN106814505B (zh) 液晶显示装置
KR960007476B1 (ko) 디스플레이 장치 및 그 구동 방법
CN107450240B (zh) 阵列基板及其显示面板
CN100373250C (zh) 多域垂直配向式液晶显示面板及其驱动方法
US9741296B2 (en) Driving method of a display device, and a display device
US7042537B2 (en) Image display panel
WO2021025115A1 (ja) 調光装置
JP2021026222A (ja) 調光装置
KR102270257B1 (ko) 표시장치 및 이를 이용한 표시장치의 구동방법
CN112731708B (zh) 用于显示装置的光源装置及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849848

Country of ref document: EP

Kind code of ref document: A1