WO2021024617A1 - Method for determining specification of badminton racket and method for analyzing shaft behavior - Google Patents

Method for determining specification of badminton racket and method for analyzing shaft behavior Download PDF

Info

Publication number
WO2021024617A1
WO2021024617A1 PCT/JP2020/023250 JP2020023250W WO2021024617A1 WO 2021024617 A1 WO2021024617 A1 WO 2021024617A1 JP 2020023250 W JP2020023250 W JP 2020023250W WO 2021024617 A1 WO2021024617 A1 WO 2021024617A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
plane direction
bending
racket
amount
Prior art date
Application number
PCT/JP2020/023250
Other languages
French (fr)
Japanese (ja)
Inventor
渉 君塚
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2021024617A1 publication Critical patent/WO2021024617A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/42Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand

Definitions

  • the present invention relates to a method for determining specifications of a badminton racket. Specifically, the present invention relates to a method for determining the characteristics of a shaft that is a component of a racket.
  • the badminton racket has a frame, string and shaft.
  • the player shoots the shuttle with a racket.
  • the shaft is deformed.
  • the deformation behavior of the shaft affects the behavior of the shuttle.
  • the characteristics of the shaft affect the quality of the shot.
  • Japanese Unexamined Patent Publication No. 2012-147846 discloses a shaft having an appropriate degree of flexibility and an appropriate degree of rigidity.
  • the player makes various types of shots.
  • shots such as smash, lobing, and cut.
  • the van-garde player and the rearguard player form a pair.
  • the shots that are mainly required of school-garde players and the shots that are mainly required of rearguard players are different.
  • An object of the present invention is to provide a specification determination method for obtaining a badminton racket suitable for a specific player or a specific shot.
  • the method for determining the specifications of the badminton racket is as follows. It includes (A) a step of analyzing how the shaft bends in a shot and (B) a step of determining the characteristics of the target shaft based on the result of the analysis of the above step (A).
  • step (A) how to bend is determined by the amount of bending of the shaft.
  • the bending method is determined by the maximum bending amount of the shaft.
  • the bending method is determined by the bending amount of the shaft in the in-plane direction and the bending amount of the shaft in the out-of-plane direction.
  • the bending method is determined by the maximum bending amount of the shaft in the in-plane direction and the maximum bending amount of the shaft in the out-of-plane direction.
  • the bending method is determined by the ratio of the bending amount of the shaft in the in-plane direction to the bending amount of the shaft in the out-of-plane direction.
  • the characteristic determined in step (B) is the rigidity of the shaft.
  • the characteristic determined in step (B) is the rigidity distribution of the shaft.
  • the characteristics determined in step (B) are the rigidity of the shaft in the in-plane direction and the rigidity of the shaft in the out-of-plane direction.
  • the characteristics determined in step (B) are the rigidity distribution of the shaft in the in-plane direction and the rigidity distribution of the shaft in the out-of-plane direction.
  • the method for manufacturing a badminton racket is: (A) Step to analyze how the shaft bends in the shot, (B) A step of determining the characteristics of the target shaft based on the analysis result of the above step (A), and (C) A step of attaching the frame and the grip to the shaft having the characteristics determined by the above step (B). including.
  • the method for analyzing the shaft behavior of the badminton racket is as follows. (A) Steps to measure the amount of bending of the shaft in the in-plane direction and the amount of bending of the shaft in the out-of-plane direction in the shot, and (B) The amount of bending of the shaft in the in-plane direction and the out-of-plane direction. Includes a step to compare the amount of bending of the shaft.
  • a badminton racket suitable for a specific player can be obtained.
  • a badminton racket suitable for a specific shot can be obtained.
  • FIG. 1 is a front view showing a badminton racket obtained by the determination method according to the embodiment of the present invention.
  • FIG. 2 is a right side view showing the racket of FIG.
  • FIG. 3 is a graph showing the results of a three-point flexural rigidity test of a standard racket shaft.
  • FIG. 4 is a graph showing the measurement result of the amount of bending of the shaft of the standard racket at the time of smashing.
  • FIG. 5 is a front view showing a state in which the racket of FIG. 1 is curved.
  • FIG. 6 is a right side view showing a state in which the racket of FIG. 1 is curved.
  • FIG. 1 is a front view showing a badminton racket obtained by the determination method according to the embodiment of the present invention.
  • FIG. 2 is a right side view showing the racket of FIG.
  • FIG. 3 is a graph showing the results of a three-point flexural rigidity test of
  • FIG. 7 is a graph showing the results of a three-point flexural rigidity test on the shafts of other rackets.
  • FIG. 8 is a graph showing the measurement results of the amount of bending of the shaft of the standard racket during lobing.
  • FIG. 9 is a graph showing the results of a three-point flexural rigidity test of the shaft of another racket.
  • FIG. 10 is a graph showing the measurement results of the amount of bending of the shaft of the standard racket at the time of cutting.
  • FIG. 11 is a graph showing the results of a three-point flexural rigidity test of the shaft of another racket.
  • FIG. 12 is a flowchart showing a specification determination method according to an embodiment of the present invention.
  • FIGS. 1 and 2 Badminton racket 2 is shown in FIGS. 1 and 2.
  • the racket 2 has a shaft 4, a frame 6, a grip 8, and a string 10.
  • the arrow X represents the width direction
  • the arrow Y represents the axial direction
  • the arrow Z represents the thickness direction.
  • the shaft 4 is hollow.
  • the shaft 4 is made of a fiber reinforced resin.
  • a base resin is impregnated in a large number of reinforcing fibers.
  • thermosetting resins such as epoxy resin, pismareimide resin, polyimide and phenol resin; and polyetheretherketone, polyethersulfone, polyetherimide, polyphenylene sulfide, polyamide and polypropylene.
  • Thermoplastic resin is exemplified.
  • a resin particularly suitable for the shaft 4 is an epoxy resin.
  • Examples of the reinforcing fibers of the shaft 4 include carbon fibers, metal fibers, glass fibers and aramid fibers.
  • a fiber particularly suitable for the shaft 4 is carbon fiber. Multiple types of fibers may be used in combination.
  • the frame 6 is annular and hollow.
  • the frame 6 is made of a fiber reinforced resin.
  • a resin similar to the base resin of the shaft 4 can be used.
  • a fiber similar to the reinforcing fiber of the shaft 4 can be used.
  • the frame 6 is tightly coupled to the front end of the shaft 4.
  • the grip 8 has a hole (not shown) extending in the axial direction (Y direction). The vicinity of the rear end of the shaft 4 is inserted into this hole. The inner peripheral surface of the hole and the outer peripheral surface of the shaft 4 are joined with an adhesive.
  • the string 10 is stretched on the frame 6.
  • the string 10 is stretched along the width direction X and the axial direction Y.
  • the portion of the string 10 extending along the width direction X is referred to as a horizontal string.
  • the portion of the string 10 extending along the axial direction Y is referred to as a vertical string.
  • the face 12 (see FIG. 2) is formed by the plurality of horizontal strings and the plurality of vertical strings.
  • the face 12 is generally along the XY plane.
  • a standard racket is first prepared.
  • This standard racket has a shaft.
  • FIG. 3 shows the results of the three-point flexural rigidity test of this shaft.
  • the measurement point of the flexural rigidity is 4.
  • This shaft has a nearly flat stiffness distribution from near the grip to the front end.
  • a shaft with a non-flat stiffness distribution may be employed in the standard racket.
  • Shafts of various specifications can be used in standard rackets.
  • the racket that the player uses on a daily basis may be a standard racket.
  • the amount of bending in the out-of-plane direction is the moving distance of the front end of the shaft in the Z direction, and is indicated by the arrow Lz in FIG.
  • the amount of bending in the in-plane direction and the out-of-plane direction may be measured at a predetermined position of the shaft other than the front end.
  • the behavior of the shaft is analyzed based on the amount of bending in the in-plane direction and the amount of bending in the out-of-plane direction. From FIG. 4, it can be seen that in the smash of this player, the shaft becomes larger in the in-plane direction and also becomes larger in the out-of-plane direction.
  • the ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 0.76.
  • This player was made to use another racket.
  • the rigidity distribution of the shaft of this racket is shown in FIG.
  • This shaft has a front-down stiffness distribution.
  • the behavior of the shuttle after smashing with this racket was photographed with a high-speed camera. From the obtained image, the speed of the shuttle when crossing the net was measured. The results are as follows.
  • the shaft can be enlarged in both the in-plane and out-of-plane directions even for shots other than smash by this player.
  • the ratio R1 can be 1/2 or more and 2/1 or less. It is presumed that a shaft having a downward-sloping rigidity distribution is suitable for such a shot.
  • the shaft can become large in both the in-plane and out-of-plane directions.
  • the ratio R1 can be 1/2 or more and less than 2/1. It is presumed that a shaft having a downward-sloping rigidity distribution is suitable for such a shot.
  • a shaft having a front-down rigidity distribution is suitable for a player who frequently uses shots in which the shaft becomes large in both the in-plane direction and the out-of-plane direction. It is presumed that a shaft having a downward-sloping rigidity distribution is also suitable for players who place importance on shots in which the shaft becomes large in both the in-plane direction and the out-of-plane direction.
  • the ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 0.14.
  • This player was made to use another racket.
  • the rigidity distribution of the shaft of this racket is shown in FIG.
  • This shaft has a downwardly convex stiffness distribution.
  • the behavior of the shuttle after lobing using this racket was photographed with a high-speed camera. From the obtained image, the height of the shuttle when crossing the net was measured. The results are as follows.
  • the shaft can be enlarged mainly in the out-of-plane direction even for shots other than lobing by this player.
  • the ratio R1 can be less than 1/2. It is presumed that a shaft having a downwardly convex rigidity distribution is suitable for such a shot.
  • the shaft can be enlarged mainly in the out-of-plane direction.
  • the ratio R1 can be less than 1/2. It is presumed that a shaft having a downwardly convex rigidity distribution is suitable for such a shot.
  • a shaft with a downwardly convex rigidity distribution is suitable for players who frequently use shots in which the shaft becomes larger in the out-of-plane direction. It is presumed that a shaft having a downwardly convex rigidity distribution is also suitable for a player who emphasizes a shot in which the shaft becomes larger mainly in the out-of-plane direction.
  • the ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 2.47.
  • This player was made to use another racket.
  • the rigidity distribution of the shaft of this racket is shown in FIG.
  • This shaft has an upwardly convex stiffness distribution.
  • the behavior of the shuttle after cutting with this racket was photographed with a high-speed camera. From the obtained image, the height of the shuttle when crossing the net was measured. The results are as follows.
  • the shaft can be enlarged mainly in the in-plane direction even for shots other than cuts by this player.
  • the ratio R1 can be 2/1 or more. It is presumed that a shaft having an upwardly convex rigidity distribution is suitable for such a shot.
  • the shaft can be enlarged mainly in the in-plane direction.
  • the ratio R1 can be 2/1 or more. It is presumed that a shaft having an upwardly convex rigidity distribution is suitable for such a shot.
  • a shaft with an upwardly convex rigidity distribution is suitable for players who frequently use shots in which the shaft becomes larger in the in-plane direction. It is presumed that a shaft having an upwardly convex rigidity distribution is also suitable for players who place importance on shots in which the shaft becomes larger mainly in the in-plane direction.
  • FIG. 12 is a flowchart showing a specification determination method according to an embodiment of the present invention.
  • this determination method first, the bending of the shaft is photographed in a shot with a standard racket (STEP 1). Typically, the shooting is done with an infrared camera. Motion control photography is typically performed. Shooting is done in shots that are frequently used by the player or shots that are emphasized by the player.
  • the maximum amount of bending of the shaft is measured from the start of the shot to the end of impact with the shuttle.
  • the amount of bending in the in-plane direction and the amount of bending in the out-of-plane direction are measured.
  • the ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is calculated.
  • the characteristics of the target shaft are determined based on how the obtained shaft bends (STEP3). Examples of the characteristics include length, thickness, weight, mass distribution, rigidity, and rigidity distribution.
  • the stiffness distribution of the target shaft is determined.
  • the rigidity of the shaft in the in-plane direction and the rigidity of the shaft in the out-of-plane direction may be determined.
  • the rigidity distribution of the shaft in the in-plane direction and the rigidity distribution of the shaft in the out-of-plane direction may be determined.
  • Ratio R1 is less than 1/2: Select a downwardly convex rigidity distribution Ratio R1 is 1/2 or more and less than 2/1: Select a front-down rigidity distribution Ratio R1 is 2/1 or more: Select an upwardly convex rigidity distribution Selection
  • a racket equipped with a shaft having the determined characteristics is selected from ready-made products (STEP 4). In this way, the specifications of the badminton racket are determined. The selected racket is suitable for the player. Players can use this racket to make highly accurate shots.
  • a new racket may be manufactured by mounting a frame and a grip on an existing shaft having the determined characteristics.
  • the present invention has the following viewpoints.
  • a shaft having the determined characteristics may be newly manufactured.
  • a useful use example of the specification determination method according to the present invention is customization. According to the present invention, the optimum badminton racket can be determined for each player.
  • the specification determination method according to the present invention can also contribute to the enhancement of the product lineup.
  • Badminton racket suitable for players who prefer powerful shots (2) Badminton racket suitable for players who prefer controlled shots (3) Badminton racket suitable for doubles school-garde players (4) Suitable for doubles rear guard players Badminton racket (5) Badminton racket suitable for players who place importance on serve (6) Badminton racket suitable for players who place importance on smash (7) Badminton racket suitable for players who place importance on receive may be commercially available.
  • a badminton racket suitable for each player can be selected by the specification determination method according to the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Golf Clubs (AREA)

Abstract

In the determination method according to the present invention, the flexing of a shaft is photographed in a shot made using a standard racket (STEP1). The manner of flexure of the shaft is analyzed on the basis of the photographed image (STEP2). A characteristic of a target shaft is determined on the basis of the obtained manner of flexure of the shaft (STEP3). A racket fitted with a shaft having the determined characteristic is selected from among ready-made products (STEP4).

Description

バドミントンラケットの仕様決定方法及びシャフト挙動の解析方法Badminton racket specification determination method and shaft behavior analysis method
 本発明は、バドミントンラケットの仕様決定方法に関する。詳細には、本発明は、ラケットの部品であるシャフトの特性の決定方法に関する。 The present invention relates to a method for determining specifications of a badminton racket. Specifically, the present invention relates to a method for determining the characteristics of a shaft that is a component of a racket.
 バドミントンのラケットは、フレーム、ストリング及びシャフトを有している。プレーヤーは、ラケットでシャトルをショットする。ショット時には、シャフトが変形する。シャフトの変形挙動は、シャトルの挙動に影響を与える。シャフトの特性は、ショットのクオリティを左右する。 The badminton racket has a frame, string and shaft. The player shoots the shuttle with a racket. At the time of shot, the shaft is deformed. The deformation behavior of the shaft affects the behavior of the shuttle. The characteristics of the shaft affect the quality of the shot.
 特開2012-147846公報には、適度なしなりやすさと適度な剛性とを有するシャフトが開示されている。 Japanese Unexamined Patent Publication No. 2012-147846 discloses a shaft having an appropriate degree of flexibility and an appropriate degree of rigidity.
特開2012-147846公報Japanese Unexamined Patent Publication No. 2012-147846
 バドミントンのゲームでは、プレーヤーは、様々な種類のショットを行う。例えば、スマッシュ、ロビング、カット等のショットを、プレーヤーは行う。 In a badminton game, the player makes various types of shots. For example, the player makes shots such as smash, lobing, and cut.
 パワフルなショットを好むプレーヤーが、存在する。コントロールされたショットを好むプレーヤーも、存在する。 There are players who like powerful shots. Some players prefer controlled shots.
 バドミントンのダブルスのゲームでは、前衛のプレーヤーと後衛のプレーヤーとが、ペアを形成する。前衛のプレーヤーに主として求められるショットと、後衛のプレーヤーに主として求められるショットとは、異なる。 In the badminton doubles game, the avant-garde player and the rearguard player form a pair. The shots that are mainly required of avant-garde players and the shots that are mainly required of rearguard players are different.
 プレーヤーが好むショットに適した仕様のシャフトが、求められている。プレーヤーが多用するショットに適した仕様のシャフトも、求められている。 There is a demand for a shaft with specifications suitable for shots that players like. There is also a demand for a shaft with specifications suitable for shots that are frequently used by players.
 本発明の目的は、特定のプレーヤー又は特定のショットに適したバドミントンラケットが得られる仕様決定方法の提供にある。 An object of the present invention is to provide a specification determination method for obtaining a badminton racket suitable for a specific player or a specific shot.
 本発明に係るバドミントンラケットの仕様決定方法は、
(A)ショットにおけるシャフトのしなり方を解析するステップ
及び
(B)上記ステップ(A)の解析の結果に基づいて、目標シャフトの特性を決定するステップ
を含む。
The method for determining the specifications of the badminton racket according to the present invention is as follows.
It includes (A) a step of analyzing how the shaft bends in a shot and (B) a step of determining the characteristics of the target shaft based on the result of the analysis of the above step (A).
 好ましくは、ステップ(A)において、シャフトのしなり量によってしなり方が判定される。 Preferably, in step (A), how to bend is determined by the amount of bending of the shaft.
 好ましくは、ステップ(A)において、シャフトの最大しなり量によってしなり方が判定される。 Preferably, in step (A), the bending method is determined by the maximum bending amount of the shaft.
 好ましくは、ステップ(A)において、面内方向におけるシャフトのしなり量及び面外方向におけるシャフトのしなり量によって、しなり方が判定される。 Preferably, in step (A), the bending method is determined by the bending amount of the shaft in the in-plane direction and the bending amount of the shaft in the out-of-plane direction.
 好ましくは、ステップ(A)において、面内方向におけるシャフトの最大しなり量及び面外方向におけるシャフトの最大しなり量によって、しなり方が判定される。 Preferably, in step (A), the bending method is determined by the maximum bending amount of the shaft in the in-plane direction and the maximum bending amount of the shaft in the out-of-plane direction.
 好ましくは、ステップ(A)において、面内方向におけるシャフトのしなり量と面外方向におけるシャフトのしなり量との比によって、しなり方が判定される。 Preferably, in step (A), the bending method is determined by the ratio of the bending amount of the shaft in the in-plane direction to the bending amount of the shaft in the out-of-plane direction.
 好ましくは、ステップ(B)において決定される特性は、シャフトの剛性である。 Preferably, the characteristic determined in step (B) is the rigidity of the shaft.
 好ましくは、ステップ(B)において決定される特性は、シャフトの剛性分布である。 Preferably, the characteristic determined in step (B) is the rigidity distribution of the shaft.
 好ましくは、ステップ(B)において決定される特性は、面内方向におけるシャフトの剛性及び面外方向におけるシャフトの剛性である。 Preferably, the characteristics determined in step (B) are the rigidity of the shaft in the in-plane direction and the rigidity of the shaft in the out-of-plane direction.
 好ましくは、ステップ(B)において決定される特性は、面内方向におけるシャフトの剛性分布及び面外方向におけるシャフトの剛性分布である。 Preferably, the characteristics determined in step (B) are the rigidity distribution of the shaft in the in-plane direction and the rigidity distribution of the shaft in the out-of-plane direction.
 他の観点によれば、本発明に係るバドミントンラケットの製造方法は、
(A)ショットにおけるシャフトのしなり方を解析するステップ、
(B)上記ステップ(A)の解析の結果に基づいて、目標シャフトの特性を決定するステップ
並びに
(C)上記ステップ(B)によって決定された特性を有するシャフトに、フレーム及びグリップを装着するステップ
を含む。
According to another viewpoint, the method for manufacturing a badminton racket according to the present invention is:
(A) Step to analyze how the shaft bends in the shot,
(B) A step of determining the characteristics of the target shaft based on the analysis result of the above step (A), and (C) A step of attaching the frame and the grip to the shaft having the characteristics determined by the above step (B). including.
 さらに他の観点によれば、本発明に係るバドミントンラケットのシャフト挙動の解析方法は、
(A)ショットにおける、面内方向のシャフトのしなり量と、面外方向のシャフトのしなり量とを、計測するステップ
及び
(B)上記面内方向のシャフトのしなり量と面外方向のシャフトのしなり量とを、対比するステップ
を含む。
According to still another viewpoint, the method for analyzing the shaft behavior of the badminton racket according to the present invention is as follows.
(A) Steps to measure the amount of bending of the shaft in the in-plane direction and the amount of bending of the shaft in the out-of-plane direction in the shot, and (B) The amount of bending of the shaft in the in-plane direction and the out-of-plane direction. Includes a step to compare the amount of bending of the shaft.
 本発明に係る決定方法により、特定のプレーヤーに適したバドミントンラケットが得られうる。本発明に係る決定方法により、特定のショットに適したバドミントンラケットが得られうる。 By the determination method according to the present invention, a badminton racket suitable for a specific player can be obtained. By the determination method according to the present invention, a badminton racket suitable for a specific shot can be obtained.
図1は、本発明の一実施形態に係る決定方法で得られたバドミントンラケットが示された正面図である。FIG. 1 is a front view showing a badminton racket obtained by the determination method according to the embodiment of the present invention. 図2は、図1のラケットが示された右側面図である。FIG. 2 is a right side view showing the racket of FIG. 図3は、標準ラケットのシャフトの、3点曲げ剛性試験の結果が示されたグラフである。FIG. 3 is a graph showing the results of a three-point flexural rigidity test of a standard racket shaft. 図4は、標準ラケットのシャフトの、スマッシュのときのしなり量の測定結果が示されたグラフである。FIG. 4 is a graph showing the measurement result of the amount of bending of the shaft of the standard racket at the time of smashing. 図5は、図1のラケットが湾曲した状態が示された正面図である。FIG. 5 is a front view showing a state in which the racket of FIG. 1 is curved. 図6は、図1のラケットが湾曲した状態が示された右側面図である。FIG. 6 is a right side view showing a state in which the racket of FIG. 1 is curved. 図7は、他のラケットのシャフトの、3点曲げ剛性試験の結果が示されたグラフである。FIG. 7 is a graph showing the results of a three-point flexural rigidity test on the shafts of other rackets. 図8は、標準ラケットのシャフトの、ロビングのときのしなり量の測定結果が示されたグラフである。FIG. 8 is a graph showing the measurement results of the amount of bending of the shaft of the standard racket during lobing. 図9は、さらに他のラケットのシャフトの、3点曲げ剛性試験の結果が示されたグラフである。FIG. 9 is a graph showing the results of a three-point flexural rigidity test of the shaft of another racket. 図10は、標準ラケットのシャフトの、カットのときのしなり量の測定結果が示されたグラフである。FIG. 10 is a graph showing the measurement results of the amount of bending of the shaft of the standard racket at the time of cutting. 図11は、さらに他のラケットのシャフトの、3点曲げ剛性試験の結果が示されたグラフである。FIG. 11 is a graph showing the results of a three-point flexural rigidity test of the shaft of another racket. 図12は、本発明の一実施形態に係る仕様決定方法が示されたフローチャートである。FIG. 12 is a flowchart showing a specification determination method according to an embodiment of the present invention.
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。 Hereinafter, the present invention will be described in detail based on a preferred embodiment with reference to the drawings as appropriate.
 図1及び2に、バドミントンラケット2が示されている。このラケット2は、シャフト4、フレーム6、グリップ8及びストリング10を有している。図1及び2において、矢印Xは幅方向を表し、矢印Yは軸方向を表し、矢印Zは厚み方向を表す。 Badminton racket 2 is shown in FIGS. 1 and 2. The racket 2 has a shaft 4, a frame 6, a grip 8, and a string 10. In FIGS. 1 and 2, the arrow X represents the width direction, the arrow Y represents the axial direction, and the arrow Z represents the thickness direction.
 シャフト4は、中空である。シャフト4は、繊維強化樹脂から形成されている。この繊維強化樹脂では、多数の強化繊維の中に基材樹脂が含浸している。 The shaft 4 is hollow. The shaft 4 is made of a fiber reinforced resin. In this fiber reinforced resin, a base resin is impregnated in a large number of reinforcing fibers.
 シャフト4の基材樹脂として、エポキシ樹脂、ピスマレイミド樹脂、ポリイミド及びフェノール樹脂のような熱硬化性樹脂;並びにポリエーテルエーテルケトン、ポリエーテルサルホン、ポリエーテルイミド、ポリフェニレンサルファイド、ポリアミド及びポリプロピレンのような熱可塑性樹脂が例示される。シャフト4に特に適した樹脂は、エポキシ樹脂である。 As the base resin of the shaft 4, thermosetting resins such as epoxy resin, pismareimide resin, polyimide and phenol resin; and polyetheretherketone, polyethersulfone, polyetherimide, polyphenylene sulfide, polyamide and polypropylene. Thermoplastic resin is exemplified. A resin particularly suitable for the shaft 4 is an epoxy resin.
 シャフト4の強化繊維として、カーボン繊維、金属繊維、ガラス繊維及びアラミド繊維が例示される。シャフト4に特に適した繊維は、カーボン繊維である。複数種の繊維が併用されてもよい。 Examples of the reinforcing fibers of the shaft 4 include carbon fibers, metal fibers, glass fibers and aramid fibers. A fiber particularly suitable for the shaft 4 is carbon fiber. Multiple types of fibers may be used in combination.
 フレーム6は環状であり、中空である。フレーム6は、繊維強化樹脂から形成されている。この繊維強化樹脂の基材樹脂として、シャフト4の基材樹脂と同様の樹脂が用いられ得る。この繊維強化樹脂の強化繊維として、シャフト4の強化繊維と同様の繊維が用いられ得る。フレーム6は、シャフト4の前端に、堅固に結合されている。 The frame 6 is annular and hollow. The frame 6 is made of a fiber reinforced resin. As the base resin of the fiber reinforced resin, a resin similar to the base resin of the shaft 4 can be used. As the reinforcing fiber of the fiber reinforced resin, a fiber similar to the reinforcing fiber of the shaft 4 can be used. The frame 6 is tightly coupled to the front end of the shaft 4.
 グリップ8は、軸方向(Y方向)に延びる穴(図示されず)を有している。この穴に、シャフト4の後端近傍が挿入されている。穴の内周面とシャフト4の外周面とは、接着剤で接合されている。 The grip 8 has a hole (not shown) extending in the axial direction (Y direction). The vicinity of the rear end of the shaft 4 is inserted into this hole. The inner peripheral surface of the hole and the outer peripheral surface of the shaft 4 are joined with an adhesive.
 ストリング10は、フレーム6に張られている。ストリング10は、幅方向X及び軸方向Yに沿って張られる。ストリング10のうち幅方向Xに沿って延在する部分は、横ストリングと称される。ストリング10のうち軸方向Yに沿って延在する部分は、縦ストリングと称される。複数の横ストリング及び複数の縦ストリングにより、フェース12(図2参照)が形成される。フェース12は、概してX-Y平面に沿っている。 The string 10 is stretched on the frame 6. The string 10 is stretched along the width direction X and the axial direction Y. The portion of the string 10 extending along the width direction X is referred to as a horizontal string. The portion of the string 10 extending along the axial direction Y is referred to as a vertical string. The face 12 (see FIG. 2) is formed by the plurality of horizontal strings and the plurality of vertical strings. The face 12 is generally along the XY plane.
 本発明に係る設計方法では、まず、標準ラケットが準備される。この標準ラケットは、シャフトを有している。図3に、このシャフトの3点曲げ剛性試験の結果が示されている。本実施形態では、曲げ剛性の測定点は4である。このシャフトは、グリップの近傍から前端まで、ほぼフラットな剛性分布を有する。フラットでない剛性分布を有するシャフトが、標準ラケットに採用されてもよい。種々の仕様のシャフトが、標準ラケットに採用されうる。プレーヤーが日常使用しているラケットが、標準ラケットであってもよい。 In the design method according to the present invention, a standard racket is first prepared. This standard racket has a shaft. FIG. 3 shows the results of the three-point flexural rigidity test of this shaft. In the present embodiment, the measurement point of the flexural rigidity is 4. This shaft has a nearly flat stiffness distribution from near the grip to the front end. A shaft with a non-flat stiffness distribution may be employed in the standard racket. Shafts of various specifications can be used in standard rackets. The racket that the player uses on a daily basis may be a standard racket.
[スマッシュ]
 この標準ラケットを一人のプレーヤーに使用させ、スマッシュのときのシャフトのしなりを、赤外線カメラで撮影した。得られた画像から、ショット中のシャフトのしなり量を測定した。本実施形態では、ショットの開始時からシャトルとのインパクトが終わるまでの間のシャフトのしなり量が、測定された。この結果が、図4に示されている。図4において、実線は面内方向におけるしなり量であり、点線は面外方向におけるしなり量である。本実施形態では、面内方向におけるしなり量とは、シャフトの前端のX方向への移動距離であり、図5において矢印Lxで示されている。本実施形態では、面外方向におけるしなり量とは、シャフトの前端のZ方向への移動距離であり、図6において矢印Lzで示されている。前端以外の、シャフトの所定位置にて、面内方向及び面外方向におけるしなり量が測定されてもよい。
[smash]
This standard racket was used by one player, and the bending of the shaft during smashing was photographed with an infrared camera. From the obtained image, the amount of bending of the shaft during the shot was measured. In this embodiment, the amount of bending of the shaft from the start of the shot to the end of the impact with the shuttle was measured. The result is shown in FIG. In FIG. 4, the solid line is the amount of bending in the in-plane direction, and the dotted line is the amount of bending in the out-of-plane direction. In the present embodiment, the amount of bending in the in-plane direction is the moving distance of the front end of the shaft in the X direction, and is indicated by the arrow Lx in FIG. In the present embodiment, the amount of bending in the out-of-plane direction is the moving distance of the front end of the shaft in the Z direction, and is indicated by the arrow Lz in FIG. The amount of bending in the in-plane direction and the out-of-plane direction may be measured at a predetermined position of the shaft other than the front end.
 面内方向におけるしなり量及び面外方向におけるしなり量に基づき、シャフトの挙動が解析される。図4からは、このプレーヤーのスマッシュにおいてシャフトが、面内方向に大きくしなり、面外方向にも大きくしなることが分かる。面内方向における最大しなり量と、面外方向における最大しなり量との比R1は、0.76である。 The behavior of the shaft is analyzed based on the amount of bending in the in-plane direction and the amount of bending in the out-of-plane direction. From FIG. 4, it can be seen that in the smash of this player, the shaft becomes larger in the in-plane direction and also becomes larger in the out-of-plane direction. The ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 0.76.
 このプレーヤーに、他のラケットを使用させた。このラケットのシャフトの剛性分布が、図7に示されている。このシャフトは、前下がりの剛性分布を有する。このラケットを用いたスマッシュの後のシャトルの挙動を、高速度カメラで撮影した。得られた画像から、ネットを超えるときのシャトルの速度を測定した。この結果は、下記の通りである。 This player was made to use another racket. The rigidity distribution of the shaft of this racket is shown in FIG. This shaft has a front-down stiffness distribution. The behavior of the shuttle after smashing with this racket was photographed with a high-speed camera. From the obtained image, the speed of the shuttle when crossing the net was measured. The results are as follows.
 標準ラケット(剛性分布:フラット)
  平均速度:23.9m/s
  最大速度:26.6m/s
  最小速度:21.0m/s
  ばらつき:5.6m/s
 他のラケット(剛性分布:前下がり)
  平均速度:24.5m/s
  最大速度:25.7m/s
  最小速度:23.9m/s
  ばらつき:1.8m/s
Standard racket (rigidity distribution: flat)
Average speed: 23.9m / s
Maximum speed: 26.6m / s
Minimum speed: 21.0m / s
Variation: 5.6 m / s
Other racket (rigidity distribution: falling forward)
Average speed: 24.5m / s
Maximum speed: 25.7 m / s
Minimum speed: 23.9 m / s
Variation: 1.8 m / s
 前下がりの剛性分布を有するシャフトを含むラケットを用いたスマッシュでは、平均速度が速く、かつ速度のばらつきが小さい。この結果から、このプレーヤーのスマッシュには、前下がりの剛性分布を有するシャフトを含むラケットが適していることが分かる。 In a smash using a racket including a shaft with a downward-sloping rigidity distribution, the average speed is high and the variation in speed is small. From this result, it can be seen that a racket including a shaft having a front-down rigidity distribution is suitable for the smash of this player.
 このプレーヤーによる、スマッシュ以外のショットでも、面内方向及び面外方向の両方にてシャフトが大きくしなりうる。例えば、比R1が1/2以上2/1以下となり得る。このようなショットには、前下がりの剛性分布を有するシャフトが適していると推測される。 The shaft can be enlarged in both the in-plane and out-of-plane directions even for shots other than smash by this player. For example, the ratio R1 can be 1/2 or more and 2/1 or less. It is presumed that a shaft having a downward-sloping rigidity distribution is suitable for such a shot.
 他のプレーヤーによるショットでも、面内方向及び面外方向の両方にてシャフトが大きくしなりうる。例えば、比R1が1/2以上2/1未満となり得る。このようなショットには、前下がりの剛性分布を有するシャフトが適していると推測される。 Even with shots by other players, the shaft can become large in both the in-plane and out-of-plane directions. For example, the ratio R1 can be 1/2 or more and less than 2/1. It is presumed that a shaft having a downward-sloping rigidity distribution is suitable for such a shot.
 面内方向及び面外方向の両方にてシャフトが大きくしなるショットを多用するプレーヤーには、前下がりの剛性分布を有するシャフトが適していると推測される。面内方向及び面外方向の両方にてシャフトが大きくしなるショットを重視するプレーヤーにも、前下がりの剛性分布を有するシャフトが適していると推測される。 It is presumed that a shaft having a front-down rigidity distribution is suitable for a player who frequently uses shots in which the shaft becomes large in both the in-plane direction and the out-of-plane direction. It is presumed that a shaft having a downward-sloping rigidity distribution is also suitable for players who place importance on shots in which the shaft becomes large in both the in-plane direction and the out-of-plane direction.
[ロビング]
 前述の標準ラケットを一人のプレーヤーに使用させ、ロビングのときのシャフトのしなりを、赤外線カメラで撮影した。得られた画像から、ショットの開始時からシャトルとのインパクトが終わるまでのシャフトのしなり量を、測定した。この結果が、図8に示されている。図8において、実線は面内方向におけるしなり量であり、点線は面外方向におけるしなり量である。
[Robbing]
The above-mentioned standard racket was used by one player, and the bending of the shaft during lobing was photographed with an infrared camera. From the obtained image, the amount of bending of the shaft from the start of the shot to the end of the impact with the shuttle was measured. The result is shown in FIG. In FIG. 8, the solid line is the amount of bending in the in-plane direction, and the dotted line is the amount of bending in the out-of-plane direction.
 図8から明らかなように、このプレーヤーのロビングでは、シャフトは面内方向にはあまりしならず、面外方向に大きくしなる。面内方向における最大しなり量と、面外方向における最大しなり量との比R1は、0.14である。 As is clear from FIG. 8, in the lobing of this player, the shaft does not become much in the in-plane direction, but becomes larger in the out-of-plane direction. The ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 0.14.
 このプレーヤーに、他のラケットを使用させた。このラケットのシャフトの剛性分布が、図9に示されている。このシャフトは、下に凸な剛性分布を有する。このラケットを用いたロビングの後のシャトルの挙動を、高速度カメラで撮影した。得られた画像から、ネットを超えるときのシャトルの高さを測定した。この結果は、下記の通りである。 This player was made to use another racket. The rigidity distribution of the shaft of this racket is shown in FIG. This shaft has a downwardly convex stiffness distribution. The behavior of the shuttle after lobing using this racket was photographed with a high-speed camera. From the obtained image, the height of the shuttle when crossing the net was measured. The results are as follows.
 標準ラケット(剛性分布:フラット)
  平均高さ:1.88m
  最大高さ:2.20m
  最小高さ:1.63m
  ばらつき:0.57m
 他のラケット(剛性分布:下に凸)
  平均高さ:1.85m
  最大高さ:1.97m
  最小高さ:1.80m
  ばらつき:0.17m
Standard racket (rigidity distribution: flat)
Average height: 1.88m
Maximum height: 2.20m
Minimum height: 1.63m
Variation: 0.57m
Other racket (rigidity distribution: convex downward)
Average height: 1.85m
Maximum height: 1.97m
Minimum height: 1.80m
Variation: 0.17m
 下に凸な剛性分布を有するシャフトを含むラケットを用いたロビングでは、シャトルの高さのばらつきが小さい。この結果から、このプレーヤーのロビングには、下に凸な剛性分布を有するシャフトを含むラケットが適していることが分かる。 In lobing using a racket that includes a shaft with a downwardly convex rigidity distribution, the variation in shuttle height is small. From this result, it can be seen that a racket including a shaft having a downwardly convex rigidity distribution is suitable for lobing of this player.
 このプレーヤーによる、ロビング以外のショットでも、主として面外方向にシャフトが大きくしなりうる。例えば、比R1が1/2未満となり得る。このようなショットには、下に凸な剛性分布を有するシャフトが適していると推測される。 The shaft can be enlarged mainly in the out-of-plane direction even for shots other than lobing by this player. For example, the ratio R1 can be less than 1/2. It is presumed that a shaft having a downwardly convex rigidity distribution is suitable for such a shot.
 他のプレーヤーによるショットでも、主として面外方向にシャフトが大きくしなりうる。例えば、比R1が1/2未満となり得る。このようなショットには、下に凸な剛性分布を有するシャフトが適していると推測される。 Even with shots by other players, the shaft can be enlarged mainly in the out-of-plane direction. For example, the ratio R1 can be less than 1/2. It is presumed that a shaft having a downwardly convex rigidity distribution is suitable for such a shot.
 主として面外方向にシャフトが大きくしなるショットを多用するプレーヤーには、下に凸な剛性分布を有するシャフトが適していると推測される。主として面外方向にシャフトが大きくしなるショットを重視するプレーヤーにも、下に凸な剛性分布を有するシャフトが適していると推測される。 It is presumed that a shaft with a downwardly convex rigidity distribution is suitable for players who frequently use shots in which the shaft becomes larger in the out-of-plane direction. It is presumed that a shaft having a downwardly convex rigidity distribution is also suitable for a player who emphasizes a shot in which the shaft becomes larger mainly in the out-of-plane direction.
[カット]
 前述の標準ラケットを一人のプレーヤーに使用させ、カットのときのシャフトのしなりを、赤外線カメラで撮影した。得られた画像から、ショットの開始時からシャトルとのインパクトが終わるまでのシャフトのしなり量を、測定した。この結果が、図10に示されている。図10において、実線は面内方向におけるしなり量であり、点線は面外方向におけるしなり量である。
[cut]
The above-mentioned standard racket was used by one player, and the bending of the shaft at the time of cutting was photographed with an infrared camera. From the obtained image, the amount of bending of the shaft from the start of the shot to the end of the impact with the shuttle was measured. The result is shown in FIG. In FIG. 10, the solid line is the amount of bending in the in-plane direction, and the dotted line is the amount of bending in the out-of-plane direction.
 図10から明らかなように、このプレーヤーのカットでは、シャフトは面外方向にはあまりしならず、面内方向に大きくしなる。面内方向における最大しなり量と、面外方向における最大しなり量との比R1は、2.47である。 As is clear from FIG. 10, in this player's cut, the shaft does not become much in the out-of-plane direction, but becomes larger in the in-plane direction. The ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is 2.47.
 このプレーヤーに、他のラケットを使用させた。このラケットのシャフトの剛性分布が、図11に示されている。このシャフトは、上に凸な剛性分布を有する。このラケットを用いたカットの後のシャトルの挙動を、高速度カメラで撮影した。 得られた画像から、ネットを超えるときのシャトルの高さを測定した。この結果は、下記の通りである。 This player was made to use another racket. The rigidity distribution of the shaft of this racket is shown in FIG. This shaft has an upwardly convex stiffness distribution. The behavior of the shuttle after cutting with this racket was photographed with a high-speed camera. From the obtained image, the height of the shuttle when crossing the net was measured. The results are as follows.
 標準ラケット(剛性分布:フラット)
  平均高さ:0.58m
  最大高さ:0.72m
  最小高さ:0.36m
  ばらつき:0.36m
 他のラケット(剛性分布:上に凸)
  平均高さ:0.50m
  最大高さ:0.55m
  最小高さ:0.45m
  ばらつき:0.10m
Standard racket (rigidity distribution: flat)
Average height: 0.58m
Maximum height: 0.72m
Minimum height: 0.36m
Variation: 0.36m
Other racket (rigidity distribution: convex upward)
Average height: 0.50m
Maximum height: 0.55m
Minimum height: 0.45m
Variation: 0.10m
 上に凸な剛性分布を有するシャフトを含むラケットを用いたカットでは、シャトルの高さのばらつきが小さい。この結果から、このプレーヤーのカットには、上に凸な剛性分布を有するシャフトを含むラケットが適していることが分かる。 In the cut using a racket including a shaft with a convex rigidity distribution on the top, the variation in the height of the shuttle is small. From this result, it can be seen that a racket containing a shaft having an upwardly convex rigidity distribution is suitable for cutting this player.
 このプレーヤーによる、カット以外のショットでも、主として面内方向にシャフトが大きくしなりうる。例えば、比R1が2/1以上となり得る。このようなショットには、上に凸な剛性分布を有するシャフトが適していると推測される。 The shaft can be enlarged mainly in the in-plane direction even for shots other than cuts by this player. For example, the ratio R1 can be 2/1 or more. It is presumed that a shaft having an upwardly convex rigidity distribution is suitable for such a shot.
 他のプレーヤーによるショットでも、主として面内方向にシャフトが大きくしなりうる。例えば、比R1が2/1以上となり得る。このようなショットには、上に凸な剛性分布を有するシャフトが適していると推測される。 Even with shots by other players, the shaft can be enlarged mainly in the in-plane direction. For example, the ratio R1 can be 2/1 or more. It is presumed that a shaft having an upwardly convex rigidity distribution is suitable for such a shot.
 主として面内方向にシャフトが大きくしなるショットを多用するプレーヤーには、上に凸な剛性分布を有するシャフトが適していると推測される。主として面内方向にシャフトが大きくしなるショットを重視するプレーヤーにも、上に凸な剛性分布を有するシャフトが適していると推測される。 It is presumed that a shaft with an upwardly convex rigidity distribution is suitable for players who frequently use shots in which the shaft becomes larger in the in-plane direction. It is presumed that a shaft having an upwardly convex rigidity distribution is also suitable for players who place importance on shots in which the shaft becomes larger mainly in the in-plane direction.
[ラケットの仕様の決定]
 図12は、本発明の一実施形態に係る仕様決定方法が示されたフローチャートである。この決定方法では、まず、標準ラケットによるショットにおいて、シャフトのしなりが撮影される(STEP1)。典型的には、撮影は、赤外線カメラでなされる。典型的には、モーション・コントロール撮影がなされる。プレーヤーが多用するショット、又はプレーヤーが重視するショットにおいて、撮影がなされる。
[Determining racket specifications]
FIG. 12 is a flowchart showing a specification determination method according to an embodiment of the present invention. In this determination method, first, the bending of the shaft is photographed in a shot with a standard racket (STEP 1). Typically, the shooting is done with an infrared camera. Motion control photography is typically performed. Shooting is done in shots that are frequently used by the player or shots that are emphasized by the player.
 撮影された画像に基づき、シャフトのしなり方が解析される(STEP2)。好ましくは、ショットの開始時からシャトルとのインパクトが終わるまでの、シャフトの最大しなり量が測定される。好ましくは、面内方向におけるしなり量と、面外方向におけるしなり量とが、測定される。好ましくは、面内方向における最大しなり量と、面外方向における最大しなり量との比R1が、算出される。 The way the shaft bends is analyzed based on the captured image (STEP2). Preferably, the maximum amount of bending of the shaft is measured from the start of the shot to the end of impact with the shuttle. Preferably, the amount of bending in the in-plane direction and the amount of bending in the out-of-plane direction are measured. Preferably, the ratio R1 of the maximum amount of bending in the in-plane direction to the maximum amount of bending in the out-of-plane direction is calculated.
 得られたシャフトのしなり方に基づき、目標シャフトの特性が決定される(STEP3)。特性として、長さ、太さ、重さ、質量分布、剛性、剛性分布等が例示される。典型的には、目標シャフトの剛性分布が決定される。面内方向におけるシャフトの剛性及び面外方向におけるシャフトの剛性が、決定されてもよい。面内方向におけるシャフトの剛性分布及び面外方向におけるシャフトの剛性分布が、決定されてもよい。 The characteristics of the target shaft are determined based on how the obtained shaft bends (STEP3). Examples of the characteristics include length, thickness, weight, mass distribution, rigidity, and rigidity distribution. Typically, the stiffness distribution of the target shaft is determined. The rigidity of the shaft in the in-plane direction and the rigidity of the shaft in the out-of-plane direction may be determined. The rigidity distribution of the shaft in the in-plane direction and the rigidity distribution of the shaft in the out-of-plane direction may be determined.
 面内方向における最大しなり量と、面外方向における最大しなり量との比R1に基づき、目標シャフトの剛性分布が決定される場合の、基準の一例が、以下に示される。
  比R1が1/2未満:下に凸な剛性分布を選定
  比R1が1/2以上2/1未満:前下がりな剛性分布を選定
  比R1が2/1以上:上に凸な剛性分布を選定
An example of a reference when the rigidity distribution of the target shaft is determined based on the ratio R1 of the maximum amount of bending in the in-plane direction and the maximum amount of bending in the out-of-plane direction is shown below.
Ratio R1 is less than 1/2: Select a downwardly convex rigidity distribution Ratio R1 is 1/2 or more and less than 2/1: Select a front-down rigidity distribution Ratio R1 is 2/1 or more: Select an upwardly convex rigidity distribution Selection
 決定された特性を有するシャフトが装着されたラケットが、既製品の中から選定される(STEP4)。こうして、バドミントンラケットの仕様が決定される。選定されたラケットは、当該プレーヤーに適している。プレーヤーは、このラケットを使用して、精度の高いショットをなすことができる。 A racket equipped with a shaft having the determined characteristics is selected from ready-made products (STEP 4). In this way, the specifications of the badminton racket are determined. The selected racket is suitable for the player. Players can use this racket to make highly accurate shots.
 決定された特性を有する既存のシャフトに、フレーム及びグリップが装着されて、新たなラケットが製造されてもよい。換言すれば、本発明は、以下の観点を有する。
(A)ショットにおけるシャフトのしなり方を解析するステップ、
(B)上記ステップ(A)の解析の結果に基づいて、目標シャフトの特性を決定するステップ
及び
(C)上記ステップ(B)によって決定された特性を有するシャフトに、フレーム及びグリップを装着するステップ
を含む、バドミントンラケットの製造方法。
A new racket may be manufactured by mounting a frame and a grip on an existing shaft having the determined characteristics. In other words, the present invention has the following viewpoints.
(A) Step to analyze how the shaft bends in the shot,
(B) A step of determining the characteristics of the target shaft based on the analysis result of the above step (A) and (C) A step of mounting the frame and the grip on the shaft having the characteristics determined by the above step (B). How to make a badminton racket, including.
 決定された特性を有するシャフトが、新たに製造されてもよい。 A shaft having the determined characteristics may be newly manufactured.
 本発明に係る仕様決定方法の有用な利用例は、カスタマイズである。本発明により、プレーヤーごとに最適なバドミントンラケットが、決定されうる。 A useful use example of the specification determination method according to the present invention is customization. According to the present invention, the optimum badminton racket can be determined for each player.
 本発明に係る仕様決定方法は、商品ラインナップの充実にも寄与しうる。例えば、
 (1)パワフルなショットを好むプレーヤーに適したバドミントンラケット
 (2)コントロールされたショットを好むプレーヤーに適したバドミントンラケット
 (3)ダブルスの前衛プレーヤーに適したバドミントンラケット
 (4)ダブルスの後衛プレーヤーに適したバドミントンラケット
 (5)サーブを重視するプレーヤーに適したバドミントンラケット
 (6)スマッシュを重視するプレーヤーに適したバドミントンラケット
 (7)レシーブを重視するプレーヤーに適したバドミントンラケット
等が、市販されうる。
The specification determination method according to the present invention can also contribute to the enhancement of the product lineup. For example
(1) Badminton racket suitable for players who prefer powerful shots (2) Badminton racket suitable for players who prefer controlled shots (3) Badminton racket suitable for doubles avant-garde players (4) Suitable for doubles rear guard players Badminton racket (5) Badminton racket suitable for players who place importance on serve (6) Badminton racket suitable for players who place importance on smash (7) Badminton racket suitable for players who place importance on receive may be commercially available.
 本発明に係る仕様決定方法により、個々のプレーヤーに適したバドミントンラケットが選定されうる。 A badminton racket suitable for each player can be selected by the specification determination method according to the present invention.
 2・・・バドミントンラケット
 4・・・シャフト
 6・・・フレーム
 8・・・グリップ
 10・・・ストリング
 12・・・フェース
2 ... Badminton racket 4 ... Shaft 6 ... Frame 8 ... Grip 10 ... String 12 ... Face

Claims (12)

  1. (A)ショットにおけるシャフトのしなり方を解析するステップ
    及び
    (B)上記ステップ(A)の解析の結果に基づいて、目標シャフトの特性を決定するステップ
    を含む、バドミントンラケットの仕様決定方法。
    A method for determining the specifications of a badminton racket, which includes (A) a step of analyzing how the shaft bends in a shot and (B) a step of determining the characteristics of a target shaft based on the analysis result of the above step (A).
  2.  上記ステップ(A)において、シャフトのしなり量によってしなり方が判定される請求項1に記載の仕様決定方法。 The specification determination method according to claim 1, wherein in the above step (A), the bending method is determined by the bending amount of the shaft.
  3.  上記ステップ(A)において、シャフトの最大しなり量によってしなり方が判定される請求項2に記載の仕様決定方法。 The specification determination method according to claim 2, wherein in the above step (A), the bending method is determined by the maximum bending amount of the shaft.
  4.  上記ステップ(A)において、面内方向におけるシャフトのしなり量及び面外方向におけるシャフトのしなり量によって、しなり方が判定される請求項1に記載の仕様決定方法。 The specification determination method according to claim 1, wherein in the above step (A), the bending method is determined by the bending amount of the shaft in the in-plane direction and the bending amount of the shaft in the out-of-plane direction.
  5.  上記ステップ(A)において、面内方向におけるシャフトの最大しなり量及び面外方向におけるシャフトの最大しなり量によって、しなり方が判定される請求項4に記載の仕様決定方法。 The specification determination method according to claim 4, wherein in step (A), the bending method is determined by the maximum bending amount of the shaft in the in-plane direction and the maximum bending amount of the shaft in the out-of-plane direction.
  6.  上記ステップ(A)において、面内方向におけるシャフトのしなり量と面外方向におけるシャフトのしなり量との比によって、しなり方が判定される請求項4又は5に記載の仕様決定方法。 The specification determination method according to claim 4 or 5, wherein in step (A), the bending method is determined by the ratio of the bending amount of the shaft in the in-plane direction to the bending amount of the shaft in the out-of-plane direction.
  7.  上記ステップ(B)において決定される特性が、シャフトの剛性である請求項1から6のいずれかに記載の仕様決定方法。 The specification determination method according to any one of claims 1 to 6, wherein the characteristic determined in the above step (B) is the rigidity of the shaft.
  8.  上記ステップ(B)において決定される特性が、シャフトの剛性分布である請求項1から6のいずれかに記載の仕様決定方法。 The specification determination method according to any one of claims 1 to 6, wherein the characteristic determined in the above step (B) is the rigidity distribution of the shaft.
  9.  上記ステップ(B)において決定される特性が、面内方向におけるシャフトの剛性及び面外方向におけるシャフトの剛性である請求項1から6のいずれかに記載の仕様決定方法。 The specification determination method according to any one of claims 1 to 6, wherein the characteristics determined in the above step (B) are the rigidity of the shaft in the in-plane direction and the rigidity of the shaft in the out-of-plane direction.
  10.  上記ステップ(B)において決定される特性が、面内方向におけるシャフトの剛性分布及び面外方向におけるシャフトの剛性分布である請求項1から6のいずれかに記載の仕様決定方法。 The specification determination method according to any one of claims 1 to 6, wherein the characteristic determined in the above step (B) is the rigidity distribution of the shaft in the in-plane direction and the rigidity distribution of the shaft in the out-of-plane direction.
  11. (A)ショットにおけるシャフトのしなり方を解析するステップ、
    (B)上記ステップ(A)の解析の結果に基づいて、目標シャフトの特性を決定するステップ
    並びに
    (C)上記ステップ(B)によって決定された特性を有するシャフトに、フレーム及びグリップを装着するステップ
    を含む、バドミントンラケットの製造方法。
    (A) Step to analyze how the shaft bends in the shot,
    (B) A step of determining the characteristics of the target shaft based on the analysis result of the above step (A), and (C) A step of mounting the frame and the grip on the shaft having the characteristics determined by the above step (B). How to make a badminton racket, including.
  12. (A)ショットにおける、面内方向のシャフトのしなり量と、面外方向のシャフトのしなり量とを、計測するステップ
    及び
    (B)上記面内方向のシャフトのしなり量と面外方向のシャフトのしなり量とを、対比するステップ
    を含む、バドミントンラケットのシャフト挙動の解析方法。
    (A) Steps to measure the amount of bending of the shaft in the in-plane direction and the amount of bending of the shaft in the out-of-plane direction in the shot, and (B) The amount of bending of the shaft in the in-plane direction and the out-of-plane direction. A method for analyzing the shaft behavior of a badminton racket, including a step of comparing the amount of bending of the shaft.
PCT/JP2020/023250 2019-08-08 2020-06-12 Method for determining specification of badminton racket and method for analyzing shaft behavior WO2021024617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-146570 2019-08-08
JP2019146570A JP7326978B2 (en) 2019-08-08 2019-08-08 Specification determination method of badminton racket and analysis method of shaft behavior

Publications (1)

Publication Number Publication Date
WO2021024617A1 true WO2021024617A1 (en) 2021-02-11

Family

ID=74503480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023250 WO2021024617A1 (en) 2019-08-08 2020-06-12 Method for determining specification of badminton racket and method for analyzing shaft behavior

Country Status (2)

Country Link
JP (1) JP7326978B2 (en)
WO (1) WO2021024617A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098332A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket
EP4098331A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket
EP4098334A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044826A (en) 2021-09-21 2023-04-03 住友ゴム工業株式会社 badminton racket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239583A1 (en) * 2002-03-07 2005-10-27 Arjen Radder Method for measuring parameters and a striking device
JP2013029393A (en) * 2011-07-28 2013-02-07 Approach Inc Measurement device for badminton racket
JP2019062977A (en) * 2017-09-28 2019-04-25 住友ゴム工業株式会社 Swing analysis device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080941B2 (en) * 2015-07-02 2018-09-25 Sumitomo Rubber Industries, Ltd. Method, system, and apparatus for analyzing a sporting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239583A1 (en) * 2002-03-07 2005-10-27 Arjen Radder Method for measuring parameters and a striking device
JP2013029393A (en) * 2011-07-28 2013-02-07 Approach Inc Measurement device for badminton racket
JP2019062977A (en) * 2017-09-28 2019-04-25 住友ゴム工業株式会社 Swing analysis device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLOMSTRAND, ELIAS ET AL.: "Simulation of a Badminton Racket - A parametric study of racket design parameters using Finite Element Analysis", CHALMERS OPEN DIGITAL REPOSITORY, 2017, pages 1 - 2, 6, 13-14, 27, 32-34, 38-40, XP055791944, Retrieved from the Internet <URL:https://odr.chalmers.se/handle/20.500.12380/250350> [retrieved on 20200714] *
KWAN, MAXINE ET AL.: "Linking Badminton Racket Design and Performance Through Motion Capture", COMPUTER AIDED MEDICAL ENGINEERING, vol. 2, January 2011 (2011-01-01), pages 13 - 18, XP055791935, Retrieved from the Internet <URL:https://www.researchgate.net/publication/233782806_Linking_badminton_racket_design_and_performance_through_motion_capture> [retrieved on 20200714] *
MIZUNO, MAMORU ET AL.: "Educational effects of sports engineering on subjects of 'engineering materials' and ' machine design ' in technical high schools: report of student research on badminton racket", AKITA, 31 March 2011 (2011-03-31), pages 55 - 62, Retrieved from the Internet <URL:https://akita-pu.repo.nii.ac.JP/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=111&item_no=l&pagejid=13&bloo,inparticular> [retrieved on 20200714] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098332A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket
EP4098331A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket
EP4098334A4 (en) * 2020-02-18 2024-02-21 Sumitomo Rubber Industries, Ltd. Badminton racket

Also Published As

Publication number Publication date
JP2021023724A (en) 2021-02-22
JP7326978B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2021024617A1 (en) Method for determining specification of badminton racket and method for analyzing shaft behavior
CN108236778B (en) Tennis racket frame
US20070270237A1 (en) Golf clubs prepared with basalt fiber
JP2001120696A (en) Shaft of golf club
EP4151290A1 (en) Badminton racket
JP7463754B2 (en) racket
EP2480296B1 (en) Device for stiffening a golf club shaft
JP7505404B2 (en) Badminton Racket
US20220111276A1 (en) Sports equipment with cut outs formed in outer layer of composite material
WO2021166517A1 (en) Badminton racket
WO2021166518A1 (en) Badminton racket
JP7459551B2 (en) Badminton Racket
WO2021166519A1 (en) Badminton racket
WO2022145199A1 (en) Badminton racket
JP7543906B2 (en) Badminton Racket
US20070113626A1 (en) Method of measuring the flexibility of a golf club shaft
JP7505405B2 (en) Badminton Racket
KR20070096814A (en) Golf club shaft
JP2023044830A (en) Specification determination method of badminton racket
CN116782985A (en) Badminton racket
JP3061252B2 (en) Golf club set
CN202860037U (en) Sport racket
JP5103026B2 (en) racket
JP2004033638A (en) Shaft for wedge club and wedge club

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849132

Country of ref document: EP

Kind code of ref document: A1