WO2021024544A1 - Retardation-layer-equipped polarizing plate, and image display device using same - Google Patents

Retardation-layer-equipped polarizing plate, and image display device using same Download PDF

Info

Publication number
WO2021024544A1
WO2021024544A1 PCT/JP2020/012254 JP2020012254W WO2021024544A1 WO 2021024544 A1 WO2021024544 A1 WO 2021024544A1 JP 2020012254 W JP2020012254 W JP 2020012254W WO 2021024544 A1 WO2021024544 A1 WO 2021024544A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation layer
polarizing plate
retardation
polarizer
Prior art date
Application number
PCT/JP2020/012254
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 小川
理 小島
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227001646A priority Critical patent/KR20220038342A/en
Priority to CN202080053918.6A priority patent/CN114207484A/en
Publication of WO2021024544A1 publication Critical patent/WO2021024544A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer which is thin and can suppress warpage when applied to an image display device. There is.
  • the polarizing plate with a retardation layer of the present invention is provided via a polarizing plate, a polarizing plate including a protective layer at least on the visible side of the polarizing element, and a first adhesive layer on the side opposite to the visible side of the polarizing plate.
  • the first retardation layer bonded to the first retardation layer, the second retardation layer bonded to the first retardation layer via the second adhesive layer, and the second retardation layer. It has a pressure-sensitive adhesive layer provided on the opposite side of the first retardation layer.
  • the coefficient of linear expansion of the humidifying line in the absorption axis direction of the polarizing element of the protective layer on the visible side is 6 ⁇ 10 -5 /% RH or less, from the midpoint of the total thickness to the visible surface of the protective layer on the visible side.
  • the distance is 45 ⁇ m or less.
  • the first retardation layer and the second retardation layer are each an orientation-solidified layer of a liquid crystal compound.
  • the polarizing plate with a retardation layer has a total thickness of 100 ⁇ m or less.
  • the Re (550) of the first retardation layer is 200 nm to 300 nm, and the angle between its slow axis and the absorber absorption axis is 10 ° to 20 °;
  • the Re (550) of the second retardation layer is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is 70 ° to 80 °.
  • the polarizing plate with a retardation layer is attached to a polyimide film via the pressure-sensitive adhesive layer, and is left to stand for 24 hours under the conditions of 20 ° C. and 98% RH. Is 30 mm or less.
  • an image display device is provided. This image display device includes the above-mentioned polarizing plate with a retardation layer.
  • the image display device is an organic electroluminescence display device.
  • the coefficient of linear expansion of the humidifying line in the direction of the polarizer absorption axis of the viewing side protective layer and the distance from the midpoint of the total thickness to the viewing side surface of the viewing side protective layer is possible to realize a polarizing plate with a retardation layer that can suppress warpage when applied to an image display device.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
  • Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of the polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10, a first retardation layer 21, and a second retardation layer 22 in this order from the viewing side.
  • the polarizing plate 10 includes a polarizing element 11 and a protective layer 12 at least on the visible side of the polarizing element 11.
  • the protective layer 13 is provided on the side opposite to the visible side of the polarizer 11, but the protective layer 13 may be omitted depending on the purpose or the like.
  • the first retardation layer 21 is bonded to the side opposite to the visible side of the polarizing plate 10 via the first adhesive layer 31.
  • the second retardation layer 22 is bonded to the side opposite to the visible side of the first retardation layer 21 via the second adhesive layer 32.
  • the pressure-sensitive adhesive layer 40 is provided on the side of the second retardation layer 22 opposite to the first retardation layer 21 (that is, as the outermost layer on the side opposite to the viewing side), and polarized light with a retardation layer is provided.
  • the board can be attached to the image display cell.
  • a release film (not shown) is temporarily attached to the surface of the pressure-sensitive adhesive layer 40 until the polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and a roll of the polarizing plate with a retardation layer can be formed.
  • the first retardation layer 21 and the second retardation layer 22 are typically oriented solidification layers of liquid crystal compounds, respectively.
  • the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller. As a result, it is possible to realize a remarkable reduction in thickness of the polarizing plate with a retardation layer.
  • the term "oriented solidified layer” refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed.
  • the "oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later.
  • first retardation layer 21 and the second retardation layer 22 typically, rod-shaped liquid crystal compounds are arranged in the slow axis direction of the first retardation layer or the second retardation layer. Oriented in (homogeneous orientation).
  • first retardation layer 21 or the second retardation layer 22 can function as a ⁇ / 2 plate and the other can function as a ⁇ / 4 plate.
  • the Re (550) of the first retardation layer 21 Is preferably 200 nm to 300 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer 10 is preferably 10 ° to 20 °; Re (550) of the second retardation layer 22 is preferable. Is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer 10 is preferably 70 ° to 80 °.
  • the humidification line expansion coefficient of the polarizing element 11 of the protective layer 12 in the absorption axis direction is 6 ⁇ 10-5 /% RH or less, preferably 5 ⁇ 10-5 /% RH or less. , More preferably 4 ⁇ 10 -5 /% RH or less, further preferably 2 ⁇ 10 -5 /% RH or less, and particularly preferably 1 ⁇ 10 -5 /% RH or less.
  • the lower limit of the humidification line expansion coefficient can be, for example, 0.3 ⁇ 10-5 /% RH.
  • the coefficient of expansion of the humidified line is within such a range, the distance from the midpoint of the total thickness of the polarizing plate with a retardation layer to the outermost surface on the visual side is optimized (described later) due to a synergistic effect.
  • the "humidified linear expansion coefficient” means the linear expansion coefficient when the relative humidity is changed from 10% to 90% at a temperature of 25 ° C.
  • the coefficient of linear expansion can be measured, for example, by thermomechanical analysis (TMA).
  • the viewing side surface of the protective layer on the viewing side from the midpoint of the total thickness of the polarizing plate with the retardation layer (substantially, the outermost surface on the viewing side of the polarizing plate with the retardation layer).
  • the distance L to the distance L is 45 ⁇ m or less, preferably 42 ⁇ m or less, more preferably 35 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the lower limit of the distance L can be, for example, 20 ⁇ m.
  • the moment of force of the polarizing plate with a retardation layer can be reduced, and as a result, warpage can be suppressed. Since the moment of force can correlate with the distance from the center to the outermost surface, optimizing the distance L corresponding to the distance has technical significance. Further, by setting the coefficient of linear expansion of the humidifying line of the visible side protective layer to a predetermined value or less, the moment of force of the portion from the center to the outermost surface can be further reduced, and a synergistic effect can be realized.
  • the "total thickness of the polarizing plate with the retardation layer” means the thickness from the visual side protective layer to the pressure-sensitive adhesive layer.
  • the total thickness of the polarizing plate with a retardation layer is preferably 100 ⁇ m or less, more preferably 85 ⁇ m or less, further preferably 60 ⁇ m or less, and particularly preferably 55 ⁇ m or less.
  • the lower limit of the total thickness can be, for example, 28 ⁇ m.
  • a polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability.
  • the polarizing plate with a retardation layer can be particularly preferably applied to a curved image display device and / or a bendable or bendable image display device.
  • the polarizing plate with a retardation layer is attached to a polyimide film via an adhesive layer 40 and left to stand for 24 hours (humidification test) at 20 ° C. and 98% RH.
  • the absolute value of is preferably 30 mm or less, more preferably 25 mm or less, still more preferably 20 mm or less, and particularly preferably 15 mm or less. The smaller the absolute value of the amount of warpage, the more preferable, and the lower limit thereof can be, for example, 2 mm.
  • the thickness of the polyimide film is, for example, 30 ⁇ m to 100 ⁇ m, preferably 40 ⁇ m to 80 ⁇ m.
  • Warp amount (warp amount 1-warp amount 2)
  • warp amount 1 is the warp amount of the laminated body of the polarizing plate with the retardation layer and the polyimide film before the humidification test
  • warp amount 2 is the warp amount of the laminated body after the humidification test.
  • the polarizing plate with a retardation layer may further include other optical functional layers.
  • the type, characteristics, number, combination, arrangement position, and the like of the optical functional layers that can be provided on the polarizing plate with the retardation layer can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer may further have a conductive layer or an isotropic base material with a conductive layer (neither is shown).
  • the conductive layer or the isotropic base material with the conductive layer is typically provided on the outside (opposite side of the polarizing plate 10) of the second retardation layer 22.
  • the conductive layer or the isotropic base material with the conductive layer is typically an arbitrary layer provided as needed, and may be omitted.
  • the polarizing plate with a retardation layer is a so-called inner in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device.
  • the polarizing plate with a retardation layer may further include other retardation layers.
  • the optical characteristics for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient
  • thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer of the present invention may be single-wafered or elongated.
  • the term "long” means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including.
  • the elongated polarizing plate with a retardation layer can be wound in a roll shape.
  • Polarizing plate B-1 Polarizer
  • any suitable polarizer can be adopted.
  • the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer system partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching.
  • the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
  • the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, further preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above.
  • the degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the protective layer 12 and the protective layer 13 are each formed of any suitable film that can be used as a protective layer for the polarizer.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based.
  • TAC triacetyl cellulose
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
  • glassy polymers such as siloxane-based polymers can also be mentioned.
  • the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
  • the polymer film can be, for example, an extruded product of the above resin composition.
  • the polarizing plate with a retardation layer of the present invention is typically arranged on the visible side of an image display device as described later, and the protective layer 12 is arranged on the visible side thereof. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 12 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, providing a (elliptical) circular polarization function, ultra-high phase difference). May be given). By performing such a process, excellent visibility can be realized even when the display screen is visually recognized through a polarized lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
  • the thickness of the protective layer 12 is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the protective layer 12 is a thickness including the thickness of the surface treatment layer.
  • the protective layer 13 is preferably optically isotropic in one embodiment.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm.
  • the protective layer 13 can be a retardation layer having any suitable retardation value.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm.
  • the thickness of the protective layer 13 is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 10 ⁇ m to 30 ⁇ m. From the viewpoint of thinning, the protective layer 13 may be preferably omitted.
  • the first phase difference layer 21 and the second phase difference layer 22 are liquid crystals, respectively. It is an orientation solidification layer of a compound (hereinafter, a liquid crystal orientation solidification layer).
  • the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed.
  • the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal.
  • the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example.
  • the retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in Special Tables 2002-533742 WO00 / 37585
  • EP358208 US521187)
  • EP66137 US4388453
  • WO93 / 22397 EP02671712, DE19504224, DE4408171, GB2280445 and the like
  • Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Sillicon-CC3767.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • the liquid crystal alignment solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing a liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the state.
  • the substrate is any suitable resin film
  • the liquid crystal oriented solidified layer (first retardation layer 21) formed on the substrate comprises the first adhesive layer 31. It can be transferred to the surface of the polarizing plate 10 via.
  • the liquid crystal oriented solidifying layer (second retardation layer 22) formed on the substrate can be transferred to the surface of the first retardation layer 21 via the second adhesive layer 32.
  • any appropriate orientation treatment can be adopted.
  • Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment.
  • Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment.
  • As the treatment conditions for various orientation treatments any appropriate conditions may be adopted depending on the purpose.
  • the orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
  • the orientation state is fixed by cooling the liquid crystal compound oriented as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
  • first retardation layer 21 or the second retardation layer 22 can function as a ⁇ / 2 plate, and the other can function as a ⁇ / 4 plate.
  • first retardation layer 21 can function as a ⁇ / 2 plate and the second retardation layer 22 can function as a ⁇ / 4 plate will be described, but these may be reversed. ..
  • the thickness of the first retardation layer 21 can be adjusted to obtain the desired in-plane retardation of the ⁇ / 2 plate, for example 2.0 ⁇ m to 4.0 ⁇ m.
  • the thickness of the second retardation layer 22 can be adjusted to obtain the desired in-plane retardation of the ⁇ / 4 plate, for example 1.0 ⁇ m to 2.5 ⁇ m.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm as described above.
  • the in-plane retardation Re (550) of the second retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 130 nm to 160 nm as described above.
  • the angle formed by the slow axis of the first retardation layer 21 and the absorption axis of the polarizer 10 is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably, as described above.
  • the angle formed by the slow axis of the second retardation layer 22 and the absorption axis of the polarizer 10 is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably, as described above. Is about 75 °.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
  • the retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the first adhesive layer 31 and the second adhesive layer 32 will be collectively described as an adhesive layer.
  • the first adhesive layer and the second adhesive layer may have the same structure or may have different structures from each other.
  • Any suitable adhesive may be adopted as the adhesive constituting the adhesive layer.
  • a typical example of the adhesive is an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive include an ultraviolet curable adhesive and an electron beam-curable adhesive.
  • examples of the active energy ray-curable adhesive include radical curing type, cationic curing type, anion curing type, and a hybrid of radical curing type and cationic curing type.
  • a radical curable UV curable adhesive can be used. This is because it has excellent versatility and its characteristics (configuration) can be easily adjusted.
  • the adhesive typically contains a curing component and a photopolymerization initiator.
  • the curing component include monomers and / or oligomers having a functional group such as a (meth) acrylate group and a (meth) acrylamide group.
  • Specific examples of the curing component include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, phenoxydiethylene glycol acrylate, cyclic trimethylolpropaneformal acrylate, dioxane glycol diacrylate, and EO modification.
  • the adhesive contains a curing component having a heterocycle.
  • the curing component having a heterocycle include acryloyl morpholine, ⁇ -butyrolactone acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ⁇ -caprolactone, and N-methylpyrrolidone. More preferred curing components are unsaturated fatty acid hydroxyalkyl ester modified ⁇ -caprolactone and acryloyl morpholine, and particularly preferred curing components are acryloyl morpholine.
  • the cured component having a heterocycle is preferably 50 parts by weight or more, more preferably 60 parts by weight, based on 100 parts by weight of the cured component (the total of the cured component and the oligomer component when the oligomer component described later is present). As described above, more preferably, it can be contained in the adhesive in a proportion of 70 parts by weight to 95 parts by weight.
  • Acryloylmorpholin is preferably 5 parts by weight to 60 parts by weight, more preferably 10 parts by weight to 50 parts by weight, based on 100 parts by weight of the curing component (the total of the curing component and the oligomer component when the oligomer component is present). It can be contained in the adhesive in proportions of parts.
  • the adhesive may further contain an oligomer component in addition to the above-mentioned curing component.
  • an oligomer component is a (meth) acrylic oligomer.
  • the (meth) acrylic monomer constituting the (meth) acrylic oligomer include (meth) acrylic acid (1 to 20 carbon atoms) alkyl esters, cycloalkyl (meth) acrylates (for example, cyclohexyl (meth) acrylates, etc.
  • (meth) acrylic acid (1 to 20 carbon atoms) alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and 2-methyl.
  • photopolymerization initiator a photopolymerization initiator known in the industry can be used in a blending amount well known in the industry, so detailed description thereof will be omitted.
  • the thickness of the adhesive layer (after curing of the adhesive) is preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • a desired distance L can be achieved by applying the adhesive so as to have such a thickness.
  • the conductive layer is made of any suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it.
  • suitable film forming method for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the conductive layer may be transferred from the base material to the second retardation layer to form a constituent layer of a polarizing plate with a retardation layer by itself, or a laminate with the base material (base material with a conductive layer). It may be laminated on the second retardation layer.
  • the substrate is optically isotropic, and therefore the conductive layer can be used as an isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
  • any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material).
  • the material constituting the isotropic base material include a material having a resin having no conjugate system such as a norbornene resin and an olefin resin as a main skeleton, and an acrylic resin having a cyclic structure such as a lactone ring and a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic base material is formed, the expression of the phase difference due to the orientation of the molecular chains can be suppressed to be small.
  • the thickness of the isotropic substrate is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less. The lower limit of the thickness of the isotropic substrate is, for example, 20 ⁇ m.
  • the conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed.
  • the electrode can function as a touch sensor electrode that senses contact with the touch panel.
  • any suitable method can be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • the polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer.
  • Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device).
  • the image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to E on the visible side thereof.
  • the polarizing plate with a retardation layer is laminated so that the retardation layer is on the image display cell side (for example, a liquid crystal cell, an organic EL cell, an inorganic EL cell) (so that the polarizer is on the visual recognition side).
  • the image display device is an organic EL display device.
  • the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
  • a polyimide film (thickness 50 ⁇ m or 75 ⁇ m) was cut out to a size of 140 mm ⁇ 70 mm.
  • the cut out polarizing plate with a retardation layer and the polyimide film were placed under the conditions of 23 ° C. and 55% RH for 1 day or more to control the humidity.
  • the humidity-controlled polarizing plate with a retardation layer and the polyimide film were bonded together via an adhesive layer of the polarizing plate with a retardation layer to prepare a test sample.
  • the test sample was subjected to a humidification test under the conditions of 20 ° C.
  • Warp amount (warp amount 1-warp amount 2)
  • Example 1 Preparation of polarizing plate A-PET (amorphous-polyethylene terephthalate) film (manufactured by Mitsubishi Resin Co., Ltd., trade name: NovaClear SH046, thickness 200 ⁇ m) is prepared as a base material, and the surface is subjected to corona treatment (58 W / m2 / min). did. On the other hand, 1 wt% of acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gosefima Z200, degree of polymerization 1200, degree of saponification 99.0% or more, degree of acetacetyl modification 4.6%) is added.
  • A-PET amorphous-polyethylene terephthalate film
  • PVA polymerization degree 4200, saponification degree 99.2%
  • a laminate having a PVA-based resin layer provided on the material was produced.
  • this laminate was first stretched 2.0 times in air at 130 ° C. to obtain a stretched laminate.
  • a step of insolubilizing the PVA-based resin layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insoluble aqueous solution having a liquid temperature of 30 ° C. for 30 seconds.
  • the boric acid insolubilized aqueous solution in this step had a boric acid content of 3% by weight based on 100% by weight of water.
  • a colored laminate was produced by dyeing this stretched laminate.
  • the colored laminate is obtained by immersing the stretched laminate in a dyeing solution containing iodine and potassium iodide at a liquid temperature of 30 ° C., so that iodine is adsorbed on the PVA-based resin layer contained in the stretched laminate.
  • the iodine concentration and immersion time were adjusted so that the simple substance transmittance of the obtained polarizer was 44.5%.
  • the staining solution had an iodine concentration in the range of 0.08 to 0.25% by weight and a potassium iodide concentration in the range of 0.56 to 1.75% by weight using water as a solvent. ..
  • the ratio of iodine to potassium iodide concentrations was 1: 7.
  • a step of cross-linking the PVA molecules of the PVA-based resin layer on which iodine was adsorbed was performed by immersing the colored laminate in a boric acid cross-linked aqueous solution at 30 ° C. for 60 seconds.
  • the boric acid crosslinked aqueous solution in this step had a boric acid content of 3% by weight based on 100% by weight of water and a potassium iodide content of 3% by weight based on 100% by weight of water.
  • the obtained colored laminate was stretched 2.7 times in the same direction as the above stretching in air at a stretching temperature of 70 ° C. in a boric acid aqueous solution, and the final stretching ratio was 5.4.
  • a substrate / polarizer laminate was obtained.
  • the thickness of the polarizer was 5 ⁇ m.
  • the boric acid crosslinked aqueous solution in this step had a boric acid content of 6.5% by weight based on 100% by weight of water and a potassium iodide content of 5% by weight based on 100% by weight of water.
  • the obtained laminate was taken out from the boric acid aqueous solution, and the boric acid adhering to the surface of the polarizer was washed with an aqueous solution having a potassium iodide content of 2% by weight based on 100% by weight of water.
  • the washed laminate was dried with warm air at 60 ° C.
  • COP-HC film manufactured by Nippon Zeon Co., Ltd., product name "ZD12-099063UHC”: cycloolefin-based film with a thickness of 26 ⁇ m
  • a hard coat layer having a thickness of 2 ⁇ m was formed on the film), and a laminate having a protective layer (COP-HC film) / polarizer / resin base material was obtained. Further, the resin base material was peeled off from this laminate to obtain a laminate (polarizing plate) having a protective layer (COP-HC film) / polarizer configuration.
  • the coefficient of linear expansion of the protective layer (COP-HC film) in the direction of the polarizer absorption axis was 0.8 ⁇ 10-5 / ° C.
  • First Phase Difference Layer and Second Phase Difference Layer 10 g of a polymerizable liquid crystal (manufactured by BASF, trade name “Pariocolor LC242", represented by the following formula) showing a nematic liquid crystal phase, and the polymerizable liquid crystal compound.
  • a liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a photopolymerization initiator (manufactured by BASF: trade name “Irgacure 907”) in 40 g of toluene.
  • the surface of a polyethylene terephthalate (PET) film was rubbed with a rubbing cloth and subjected to an orientation treatment.
  • the direction of the alignment treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached.
  • the liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film.
  • the thickness of the liquid crystal oriented solidified layer A was 2.5 ⁇ m, and the in-plane retardation Re (550) was 270 nm.
  • the liquid crystal oriented solidified layer A was used as the first retardation layer.
  • a liquid crystal oriented solidified layer B was formed.
  • the thickness of the liquid crystal oriented solidified layer B was 1.5 ⁇ m, and the in-plane retardation Re (550) was 140 nm.
  • the liquid crystal oriented solidifying layer B was used as the second retardation layer.
  • an acrylic pressure-sensitive adhesive layer (thickness 15 ⁇ m) was placed on the surface of the orientation solidification layer B (second retardation layer). In this way, it has a structure of a protective layer / adhesive / polarizing element / first adhesive layer / first retardation layer / second adhesive layer / second retardation layer / adhesive layer.
  • a polarizing plate with a phase difference layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 55 ⁇ m.
  • the obtained polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above. In the evaluation of warpage, "Kapton (registered trademark)" (thickness 50 ⁇ m) manufactured by DuPont Toray Industries, Inc. was used as the polyimide film. The results are shown in Table 1.
  • Example 2 A polarizing plate with a retardation layer was produced in the same manner as in Example 1. A polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1 except that "UPIREX" (thickness 50 ⁇ m) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
  • Example 3 A polarizing plate with a retardation layer was produced in the same manner as in Example 1. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Example 1 except that "UPIREX" (thickness 75 ⁇ m) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
  • Example 4 A long roll of a PVA-based resin film having a thickness of 30 ⁇ m is uniaxially stretched in the long direction so that the total stretching ratio becomes 6.0 times by a roll stretching machine, and at the same time, it is swelled, dyed, crosslinked and washed. Finally, a drying treatment was performed to prepare a polarizer having a thickness of 12 ⁇ m. A COP-HC film similar to that in Example 1 was attached to one surface of the obtained polarizer as a protective layer on the visible side via a PVA-based adhesive.
  • a triacetyl cellulose (TAC) film (manufactured by Konica Minolta, product name "KC2CT1", thickness 20 ⁇ m) is attached to the other surface of the polarizing element via a PVA-based adhesive, and a protective layer (COP-HC) is attached.
  • Example 2 The following procedure is the same as in Example 1 to form a first retardation layer, a second retardation layer and an adhesive layer on the TAC film side, and a visible side protective layer / adhesive / polarizer / adhesive /
  • a polarizing plate with a retardation layer having a structure of a protective layer / a first adhesive layer / a first retardation layer / a second adhesive layer / a second retardation layer / an adhesive layer was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 82 ⁇ m.
  • the obtained polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above. In the evaluation of warpage, "UPIREX" (thickness 50 ⁇ m) manufactured by Ube Industries, Ltd. was used as the polyimide film.
  • Table 1 Table 1
  • Example 5 A polarizing plate with a retardation layer was produced in the same manner as in Example 4. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Example 4 except that "UPIREX" (thickness 75 ⁇ m) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
  • Example 6 Except for the fact that an acrylic resin film (manufactured by Toyo Kohan Co., Ltd., product name "RV-20UB", thickness 20 ⁇ m) was used instead of the COP-HC film as the protective layer, and that the thickness of the adhesive layer was 50 ⁇ m.
  • the total thickness of the obtained polarizing plate with a retardation layer was 81 ⁇ m.
  • the coefficient of linear expansion of the protective layer (acrylic film) in the direction of the polarizer absorption axis was 3.9 ⁇ 10 -5 / ° C.
  • the obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A polarizing plate with a retardation layer was produced in the same manner as in Example 6 except that a different acrylic resin film (manufactured by Toyo Kohan Co., Ltd., product name “HX-40UC”, thickness 40 ⁇ m) was used as the protective layer.
  • the total thickness of the obtained polarizing plate with a retardation layer was 101 ⁇ m.
  • the coefficient of linear expansion of the protective layer (acrylic film) in the direction of the polarizer absorption axis was 3.9 ⁇ 10 -5 / ° C.
  • the obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
  • an acrylic resin film manufactured by Toyo Kogyo Co., Ltd., product name "RV-20UB", thickness 20 ⁇ m
  • a protective layer TAC-HC
  • Example 2 The following procedure is the same as in Example 1 to form a first retardation layer, a second retardation layer and an adhesive layer on the acrylic film side, and a visible side protective layer / adhesive / polarizer / adhesive /
  • a polarizing plate with a retardation layer having a structure of a protective layer / a first adhesive layer / a first retardation layer / a second adhesive layer / a second retardation layer / an adhesive layer was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 110 ⁇ m.
  • the coefficient of linear expansion of the humidifying line in the polarizing element absorption axis direction of the visible side protective layer (TAC-HC film) was 6.3 ⁇ 10-5 / ° C.
  • the obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
  • TAC-HC film (manufactured by Konica Minolta, product name "KC2UA-HC”: TAC film with a thickness of 25 ⁇ m and a hard coat layer with a thickness of 7 ⁇ m formed) is used as a protective layer on the visual side. Except for the fact that a different TAC film (manufactured by Konica Minolta, product name "KC2UA", thickness 25 ⁇ m) was used as the protective layer on the side opposite to the visible side, and the thickness of the adhesive layer was set to 30 ⁇ m. A polarizing plate with a retardation layer was produced in the same manner as in Example 4.
  • the total thickness of the obtained polarizing plate with a retardation layer was 105 ⁇ m.
  • the coefficient of linear expansion of the humidifying line in the polarizing element absorption axis direction of the visible side protective layer (TAC-HC film) was 6.3 ⁇ 10-5 / ° C.
  • the obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
  • a TAC-HC film (manufactured by Konica Minolta, product name "KC2UA-HC": a TAC film having a thickness of 25 ⁇ m and a hard coat layer having a thickness of 7 ⁇ m formed) is used as a protective layer on the visual side.
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except for the above.
  • the total thickness of the obtained polarizing plate with a retardation layer was 58 ⁇ m.
  • the coefficient of linear expansion of the protective layer (TAC-HC film) in the direction of the polarizer absorption axis was 6.3 ⁇ 10-5 / ° C.
  • the obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
  • the polarizing plate with a retardation layer of the present invention is suitably used as a circular polarizing plate for a liquid crystal display device, an organic EL display device, and an inorganic EL display device.
  • Polarizing plate 11 Polarizer 12 Protective layer 13 Protective layer 21 First retardation layer 22 Second retardation layer 31 First adhesive layer 32 Second adhesive layer 100 Polarizing plate with retardation layer

Abstract

Provided is a retardation-layer-equipped polarizing plate that is thin and in which warping can be inhibited when the plate is applied to an image display device. The retardation-layer-equipped polarizing plate according to the present invention comprises: a polarizing plate that includes a polarizer and a protective layer that is on at least the visible side of the polarizer; a first retardation layer bonded by a first adhesive layer to the side, of the polarizing plate, opposite the visible side; a second retardation layer bonded by a second adhesive layer to the first retardation layer; and an adhesive agent layer provided on the side, of the second retardation layer, opposite from the first retardation layer. The visible-side protective layer has a humidification linear expansion coefficient, in the direction of the absorption axis of the polarizer, of 6×10–5/% RH or less, and the distance from the center point of the total thickness to the visible-side surface of the visible-side protective layer is 45 μm or less.

Description

位相差層付偏光板およびそれを用いた画像表示装置Polarizing plate with retardation layer and image display device using it
 本発明は、位相差層付偏光板およびそれを用いた画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられているところ(例えば、特許文献1)、最近、画像表示装置の薄型化への要望が強くなるに伴って、位相差層付偏光板についても薄型化の要望が強まっている。また、近年、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に対する要望が高まっている。このような画像表示装置に薄型の位相差層付偏光板を適用すると、反りが発生するという問題がある。 In recent years, image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (for example, organic EL display devices and inorganic EL display devices) have rapidly become widespread. A polarizing plate and a retardation plate are typically used in the image display device. Practically, a polarizing plate with a retardation layer in which a polarizing plate and a retardation plate are integrated is widely used (for example, Patent Document 1), and recently, there is a strong demand for a thinner image display device. As a result, there is an increasing demand for thinner polarizing plates with retardation layers. Further, in recent years, there has been an increasing demand for a curved image display device and / or a bendable or bendable image display device. When a thin polarizing plate with a retardation layer is applied to such an image display device, there is a problem that warpage occurs.
特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、薄型で、かつ、画像表示装置に適用した場合に反りを抑制し得る位相差層付偏光板を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing plate with a retardation layer which is thin and can suppress warpage when applied to an image display device. There is.
 本発明の位相差層付偏光板は、偏光子と該偏光子の少なくとも視認側に保護層とを含む偏光板と、該偏光板の視認側と反対側に第1の接着剤層を介して貼り合わせられた第1の位相差層と、該第1の位相差層に第2の接着剤層を介して貼り合わせられた第2の位相差層と、該第2の位相差層の該第1の位相差層と反対側に設けられた粘着剤層と、を有する。該視認側の保護層の該偏光子の吸収軸方向の加湿線膨張係数は6×10-5/%RH以下であり、総厚みの中間点から該視認側の保護層の視認側表面までの距離は45μm以下である。
 1つの実施形態においては、上記第1の位相差層および上記第2の位相差層はそれぞれ、液晶化合物の配向固化層である。
 1つの実施形態においては、上記位相差層付偏光板は、総厚みが100μm以下である。
 1つの実施形態においては、上記第1の位相差層のRe(550)は200nm~300nmであり、その遅相軸と上記偏光子の吸収軸とのなす角度は10°~20°であり;上記第2の位相差層のRe(550)は100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度は70°~80°である。
 1つの実施形態においては、上記位相差層付偏光板は、上記粘着剤層を介してポリイミドフィルムに貼り合わせ、20℃、98%RHの条件下で24時間放置した際の反り量の絶対値が30mm以下である。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の位相差層付偏光板を備える。
 1つの実施形態においては、上記画像表示装置は、有機エレクトロルミネセンス表示装置である。
The polarizing plate with a retardation layer of the present invention is provided via a polarizing plate, a polarizing plate including a protective layer at least on the visible side of the polarizing element, and a first adhesive layer on the side opposite to the visible side of the polarizing plate. The first retardation layer bonded to the first retardation layer, the second retardation layer bonded to the first retardation layer via the second adhesive layer, and the second retardation layer. It has a pressure-sensitive adhesive layer provided on the opposite side of the first retardation layer. The coefficient of linear expansion of the humidifying line in the absorption axis direction of the polarizing element of the protective layer on the visible side is 6 × 10 -5 /% RH or less, from the midpoint of the total thickness to the visible surface of the protective layer on the visible side. The distance is 45 μm or less.
In one embodiment, the first retardation layer and the second retardation layer are each an orientation-solidified layer of a liquid crystal compound.
In one embodiment, the polarizing plate with a retardation layer has a total thickness of 100 μm or less.
In one embodiment, the Re (550) of the first retardation layer is 200 nm to 300 nm, and the angle between its slow axis and the absorber absorption axis is 10 ° to 20 °; The Re (550) of the second retardation layer is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is 70 ° to 80 °.
In one embodiment, the polarizing plate with a retardation layer is attached to a polyimide film via the pressure-sensitive adhesive layer, and is left to stand for 24 hours under the conditions of 20 ° C. and 98% RH. Is 30 mm or less.
According to another aspect of the present invention, an image display device is provided. This image display device includes the above-mentioned polarizing plate with a retardation layer.
In one embodiment, the image display device is an organic electroluminescence display device.
 本発明によれば、薄型の位相差層付偏光板において、視認側保護層の偏光子吸収軸方向の加湿線膨張係数、ならびに総厚みの中間点から視認側保護層の視認側表面までの距離を最適化することにより、画像表示装置に適用した場合に反りを抑制し得る位相差層付偏光板を実現することができる。 According to the present invention, in a thin polarizing plate with a retardation layer, the coefficient of linear expansion of the humidifying line in the direction of the polarizer absorption axis of the viewing side protective layer and the distance from the midpoint of the total thickness to the viewing side surface of the viewing side protective layer. By optimizing, it is possible to realize a polarizing plate with a retardation layer that can suppress warpage when applied to an image display device.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。It is schematic cross-sectional view of the polarizing plate with a retardation layer by one Embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、偏光板10と、第1の位相差層21と、第2の位相差層22と、を代表的には視認側からこの順に有する。偏光板10は、偏光子11と偏光子11の少なくとも視認側に保護層12とを含む。図示例では、偏光子11の視認側と反対側に保護層13が設けられているが、保護層13は目的等に応じて省略されてもよい。第1の位相差層21は、偏光板10の視認側と反対側に第1の接着剤層31を介して貼り合わせられている。第2の位相差層22は、第1の位相差層21の視認側と反対側に第2の接着剤層32を介して貼り合わせられている。実用的には、第2の位相差層22の第1の位相差層21と反対側に(すなわち、視認側と反対側の最外層として)粘着剤層40が設けられ、位相差層付偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層40の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルム(図示せず)が仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、位相差層付偏光板のロール形成が可能となる。
A. Overall Configuration of Polarizing Plate with Difference Layer FIG. 1 is a schematic cross-sectional view of the polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10, a first retardation layer 21, and a second retardation layer 22 in this order from the viewing side. The polarizing plate 10 includes a polarizing element 11 and a protective layer 12 at least on the visible side of the polarizing element 11. In the illustrated example, the protective layer 13 is provided on the side opposite to the visible side of the polarizer 11, but the protective layer 13 may be omitted depending on the purpose or the like. The first retardation layer 21 is bonded to the side opposite to the visible side of the polarizing plate 10 via the first adhesive layer 31. The second retardation layer 22 is bonded to the side opposite to the visible side of the first retardation layer 21 via the second adhesive layer 32. Practically, the pressure-sensitive adhesive layer 40 is provided on the side of the second retardation layer 22 opposite to the first retardation layer 21 (that is, as the outermost layer on the side opposite to the viewing side), and polarized light with a retardation layer is provided. The board can be attached to the image display cell. Further, it is preferable that a release film (not shown) is temporarily attached to the surface of the pressure-sensitive adhesive layer 40 until the polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and a roll of the polarizing plate with a retardation layer can be formed.
 第1の位相差層21および第2の位相差層22はそれぞれ、代表的には、液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板の顕著な薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第1の位相差層21および第2の位相差層22においては、代表的には、棒状の液晶化合物が第1の位相差層または第2の位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。代表的には、第1の位相差層21または第2の位相差層22のいずれか一方はλ/2板として機能し得、他方はλ/4板として機能し得る。例えば、第1の位相差層21がλ/2板として機能し得、第2の位相差層22がλ/4板として機能し得る場合には、第1の位相差層21のRe(550)は好ましくは200nm~300nmであり、その遅相軸と偏光子10の吸収軸とのなす角度は好ましくは10°~20°であり;第2の位相差層22のRe(550)は好ましくは100nm~190nmであり、その遅相軸と偏光子10の吸収軸とのなす角度は好ましくは70°~80°である。 The first retardation layer 21 and the second retardation layer 22 are typically oriented solidification layers of liquid crystal compounds, respectively. By using the liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be remarkably increased as compared with the non-liquid crystal material, so that the thickness of the retardation layer for obtaining a desired in-plane retardation can be obtained. Can be made much smaller. As a result, it is possible to realize a remarkable reduction in thickness of the polarizing plate with a retardation layer. As used herein, the term "oriented solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the first retardation layer 21 and the second retardation layer 22, typically, rod-shaped liquid crystal compounds are arranged in the slow axis direction of the first retardation layer or the second retardation layer. Oriented in (homogeneous orientation). Typically, either one of the first retardation layer 21 or the second retardation layer 22 can function as a λ / 2 plate and the other can function as a λ / 4 plate. For example, when the first retardation layer 21 can function as a λ / 2 plate and the second retardation layer 22 can function as a λ / 4 plate, the Re (550) of the first retardation layer 21 ) Is preferably 200 nm to 300 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer 10 is preferably 10 ° to 20 °; Re (550) of the second retardation layer 22 is preferable. Is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer 10 is preferably 70 ° to 80 °.
 本発明の実施形態においては、保護層12の偏光子11の吸収軸方向の加湿線膨張係数は6×10-5/%RH以下であり、好ましくは5×10-5/%RH以下であり、より好ましくは4×10-5/%RH以下であり、さらに好ましくは2×10-5/%RH以下であり、特に好ましくは1×10-5/%RH以下である。加湿線膨張係数の下限は、例えば0.3×10-5/%RHであり得る。加湿線膨張係数がこのような範囲であれば、位相差層付偏光板の総厚みの中間点から視認側最表面までの距離を最適化すること(後述)による効果との相乗的な効果により、位相差層付偏光板を画像表示装置に適用した場合に反りを顕著に抑制することができる。なお、本明細書において「加湿線膨張係数」とは、温度25℃において相対湿度を10%~90%に変化させたときの線膨張係数をいう。線膨張係数は、例えば熱機械分析(TMA)で測定され得る。 In the embodiment of the present invention, the humidification line expansion coefficient of the polarizing element 11 of the protective layer 12 in the absorption axis direction is 6 × 10-5 /% RH or less, preferably 5 × 10-5 /% RH or less. , More preferably 4 × 10 -5 /% RH or less, further preferably 2 × 10 -5 /% RH or less, and particularly preferably 1 × 10 -5 /% RH or less. The lower limit of the humidification line expansion coefficient can be, for example, 0.3 × 10-5 /% RH. If the coefficient of expansion of the humidified line is within such a range, the distance from the midpoint of the total thickness of the polarizing plate with a retardation layer to the outermost surface on the visual side is optimized (described later) due to a synergistic effect. When a polarizing plate with a retardation layer is applied to an image display device, warpage can be remarkably suppressed. In the present specification, the "humidified linear expansion coefficient" means the linear expansion coefficient when the relative humidity is changed from 10% to 90% at a temperature of 25 ° C. The coefficient of linear expansion can be measured, for example, by thermomechanical analysis (TMA).
 さらに、本発明の実施形態においては、位相差層付偏光板の総厚みの中間点から視認側の保護層の視認側表面(実質的には、位相差層付偏光板の視認側最表面)までの距離Lは45μm以下であり、好ましくは42μm以下であり、より好ましくは35μm以下であり、さらに好ましくは30μm以下である。距離Lの下限は、例えば20μmであり得る。距離Lがこのような範囲であれば、上記の加湿線膨張係数を最適化する効果との相乗的な効果により、位相差層付偏光板を画像表示装置に適用した場合に反りを顕著に抑制することができる。より詳細には以下のとおりである。距離Lを上記所定値以下とすることにより、位相差層付偏光板の力のモーメントを小さくすることができ、結果として反りを抑制し得る。力のモーメントは中心から最表面までの距離に相関し得るので、当該距離に対応する距離Lを最適化することは技術的意義を有する。さらに、視認側保護層の加湿線膨張係数を所定値以下とすることにより、中心から最表面までの部分の力のモーメントをさらに小さくすることができ、相乗的な効果を実現することができる。なお、本明細書において「位相差層付偏光板の総厚み」とは、視認側保護層から粘着剤層までの厚みをいう。 Further, in the embodiment of the present invention, the viewing side surface of the protective layer on the viewing side from the midpoint of the total thickness of the polarizing plate with the retardation layer (substantially, the outermost surface on the viewing side of the polarizing plate with the retardation layer). The distance L to the distance L is 45 μm or less, preferably 42 μm or less, more preferably 35 μm or less, and further preferably 30 μm or less. The lower limit of the distance L can be, for example, 20 μm. When the distance L is in such a range, the warp is remarkably suppressed when the polarizing plate with a retardation layer is applied to the image display device due to the synergistic effect with the effect of optimizing the humidification line expansion coefficient. can do. More details are as follows. By setting the distance L to the above-mentioned predetermined value or less, the moment of force of the polarizing plate with a retardation layer can be reduced, and as a result, warpage can be suppressed. Since the moment of force can correlate with the distance from the center to the outermost surface, optimizing the distance L corresponding to the distance has technical significance. Further, by setting the coefficient of linear expansion of the humidifying line of the visible side protective layer to a predetermined value or less, the moment of force of the portion from the center to the outermost surface can be further reduced, and a synergistic effect can be realized. In the present specification, the "total thickness of the polarizing plate with the retardation layer" means the thickness from the visual side protective layer to the pressure-sensitive adhesive layer.
 位相差層付偏光板の総厚みは、好ましくは100μm以下であり、より好ましくは85μm以下であり、さらに好ましくは60μm以下であり、特に好ましくは55μm以下である。総厚みの下限は、例えば28μmであり得る。このような総厚みを有する位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。その結果、位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に特に好適に適用され得る。 The total thickness of the polarizing plate with a retardation layer is preferably 100 μm or less, more preferably 85 μm or less, further preferably 60 μm or less, and particularly preferably 55 μm or less. The lower limit of the total thickness can be, for example, 28 μm. A polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability. As a result, the polarizing plate with a retardation layer can be particularly preferably applied to a curved image display device and / or a bendable or bendable image display device.
 1つの実施形態においては、位相差層付偏光板は、粘着剤層40を介してポリイミドフィルムに貼り合わせ、20℃、98%RHの条件下で24時間放置(加湿試験)した際の反り量の絶対値が、好ましくは30mm以下であり、より好ましくは25mm以下であり、さらに好ましくは20mm以下であり、特に好ましくは15mm以下である。反り量の絶対値は小さいほど好ましく、その下限は例えば2mmであり得る。ポリイミドフィルムの厚みは、例えば30μm~100μmであり、好ましくは40μm~80μmである。このような位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に適用した場合に、反りを顕著に抑制することができる。反り量は、以下の式で表される。
     反り量=(反り量1-反り量2)
ここで、「反り量1」は位相差層付偏光板とポリイミドフィルムの積層体の加湿試験前の反り量であり、「反り量2」は当該積層体の加湿試験後の反り量である。なお、本明細書においては、反りが画像表示セル側に凸である場合を「正(+)」、反りが視認側に凸である場合を「負(-)」で表す。
In one embodiment, the polarizing plate with a retardation layer is attached to a polyimide film via an adhesive layer 40 and left to stand for 24 hours (humidification test) at 20 ° C. and 98% RH. The absolute value of is preferably 30 mm or less, more preferably 25 mm or less, still more preferably 20 mm or less, and particularly preferably 15 mm or less. The smaller the absolute value of the amount of warpage, the more preferable, and the lower limit thereof can be, for example, 2 mm. The thickness of the polyimide film is, for example, 30 μm to 100 μm, preferably 40 μm to 80 μm. Such a polarizing plate with a retardation layer can remarkably suppress warpage when applied to a curved image display device and / or a bendable or bendable image display device. The amount of warpage is expressed by the following formula.
Warp amount = (warp amount 1-warp amount 2)
Here, the "warp amount 1" is the warp amount of the laminated body of the polarizing plate with the retardation layer and the polyimide film before the humidification test, and the "warp amount 2" is the warp amount of the laminated body after the humidification test. In the present specification, the case where the warp is convex toward the image display cell side is represented by "positive (+)", and the case where the warp is convex toward the visual recognition side is represented by "negative (-)".
 位相差層付偏光板は、その他の光学機能層をさらに含んでいてもよい。位相差層付偏光板に設けられ得る光学機能層の種類、特性、数、組み合わせ、配置位置等は、目的に応じて適切に設定され得る。例えば、位相差層付偏光板は、導電層または導電層付等方性基材をさらに有していてもよい(いずれも図示せず)。導電層または導電層付等方性基材は、代表的には、第2の位相差層22の外側(偏光板10と反対側)に設けられる。導電層または導電層付等方性基材は、代表的には、必要に応じて設けられる任意の層であり、省略されてもよい。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。また例えば、位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The polarizing plate with a retardation layer may further include other optical functional layers. The type, characteristics, number, combination, arrangement position, and the like of the optical functional layers that can be provided on the polarizing plate with the retardation layer can be appropriately set according to the purpose. For example, the polarizing plate with a retardation layer may further have a conductive layer or an isotropic base material with a conductive layer (neither is shown). The conductive layer or the isotropic base material with the conductive layer is typically provided on the outside (opposite side of the polarizing plate 10) of the second retardation layer 22. The conductive layer or the isotropic base material with the conductive layer is typically an arbitrary layer provided as needed, and may be omitted. When an isotropic base material with a conductive layer or a conductive layer is provided, the polarizing plate with a retardation layer is a so-called inner in which a touch sensor is incorporated between an image display cell (for example, an organic EL cell) and the polarizing plate. It can be applied to a touch panel type input display device. Further, for example, the polarizing plate with a retardation layer may further include other retardation layers. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, and the like of the other retardation layers can be appropriately set according to the purpose.
 上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよく、上記の実施形態における構成を光学的に等価な構成に置き換えてもよい。 The above-described embodiments may be combined as appropriate, the components in the above-described embodiments may be modified in the art, and the configurations in the above-described embodiments may be replaced with optically equivalent configurations.
 本発明の位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。 The polarizing plate with a retardation layer of the present invention may be single-wafered or elongated. As used herein, the term "long" means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including. The elongated polarizing plate with a retardation layer can be wound in a roll shape.
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 Hereinafter, the components of the polarizing plate with a retardation layer will be described in more detail.
B.偏光板
B-1.偏光子
 偏光子11としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer As the polarizer 11, any suitable polarizer can be adopted. For example, the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical characteristics, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is preferably 15 μm or less, more preferably 1 μm to 12 μm, further preferably 3 μm to 12 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above. The degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.保護層
 保護層12および保護層13(存在する場合)は、それぞれ、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective Layer The protective layer 12 and the protective layer 13 (if any) are each formed of any suitable film that can be used as a protective layer for the polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
 本発明の位相差層付偏光板は、後述するように代表的には画像表示装置の視認側に配置され、保護層12は、その視認側に配置される。したがって、保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層12には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、位相差層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The polarizing plate with a retardation layer of the present invention is typically arranged on the visible side of an image display device as described later, and the protective layer 12 is arranged on the visible side thereof. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 12 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, providing a (elliptical) circular polarization function, ultra-high phase difference). May be given). By performing such a process, excellent visibility can be realized even when the display screen is visually recognized through a polarized lens such as polarized sunglasses. Therefore, the polarizing plate with a retardation layer can be suitably applied to an image display device that can be used outdoors.
 保護層12の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。なお、表面処理が施されている場合、保護層12の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 12 is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 10 μm to 30 μm. When the surface treatment is applied, the thickness of the protective layer 12 is a thickness including the thickness of the surface treatment layer.
 保護層13は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。保護層13は、別の実施形態においては、任意の適切な位相差値を有する位相差層であり得る。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmである。保護層13の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。薄型化の観点からは、保護層13は好ましくは省略され得る。 The protective layer 13 is preferably optically isotropic in one embodiment. In the present specification, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. Say. In another embodiment, the protective layer 13 can be a retardation layer having any suitable retardation value. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm. The thickness of the protective layer 13 is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 10 μm to 30 μm. From the viewpoint of thinning, the protective layer 13 may be preferably omitted.
C.第1の位相差層および第2の位相差層
 上記のとおり、第1の位相差層21および第2の位相差層22(以下、まとめて位相差層と称する場合がある)はそれぞれ、液晶化合物の配向固化層(以下、液晶配向固化層)である。液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。
C. First Phase Difference Layer and Second Phase Difference Layer As described above, the first phase difference layer 21 and the second phase difference layer 22 (hereinafter, may be collectively referred to as a phase difference layer) are liquid crystals, respectively. It is an orientation solidification layer of a compound (hereinafter, a liquid crystal orientation solidification layer). Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the retardation layer becomes an extremely stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US521187), EP66137 (US4388453), WO93 / 22397, EP02671712, DE19504224, DE4408171, GB2280445 and the like can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Sillicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された液晶配向固化層(第1の位相差層21)は、第1の接着剤層31を介して偏光板10の表面に転写され得る。同様に、基材上に形成された液晶配向固化層(第2の位相差層22)は、第2の接着剤層32を介して第1の位相差層21の表面に転写され得る。 The liquid crystal alignment solidified layer is subjected to an orientation treatment on the surface of a predetermined base material, and a coating liquid containing a liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the state. In one embodiment, the substrate is any suitable resin film, and the liquid crystal oriented solidified layer (first retardation layer 21) formed on the substrate comprises the first adhesive layer 31. It can be transferred to the surface of the polarizing plate 10 via. Similarly, the liquid crystal oriented solidifying layer (second retardation layer 22) formed on the substrate can be transferred to the surface of the first retardation layer 21 via the second adhesive layer 32.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 As the orientation treatment, any appropriate orientation treatment can be adopted. Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the orientation state is fixed by cooling the liquid crystal compound oriented as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
 位相差層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。なお、「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 The retardation layer typically shows a relationship in which the refractive index characteristic is nx> ny = nz. It should be noted that "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effects of the present invention.
 上記のとおり、第1の位相差層21または第2の位相差層22のいずれか一方はλ/2板として機能し得、他方はλ/4板として機能し得る。ここでは、第1の位相差層21がλ/2板として機能し得、第2の位相差層22がλ/4板として機能し得る場合を説明するが、これらは逆であってもよい。第1の位相差層21の厚みは、λ/2板の所望の面内位相差が得られるよう調整され得、例えば2.0μm~4.0μmであり得る。第2の位相差層22の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得、例えば1.0μm~2.5μmであり得る。第1の位相差層の面内位相差Re(550)は、上記のとおり好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。第2の位相差層の面内位相差Re(550)は、上記のとおり好ましくは100nm~190nmであり、より好ましくは110nm~170nmであり、さらに好ましくは130nm~160nmである。第1の位相差層21の遅相軸と偏光子10の吸収軸とのなす角度は、上記のとおり好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。第2の位相差層22の遅相軸と偏光子10の吸収軸とのなす角度は、上記のとおり好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。 As described above, either one of the first retardation layer 21 or the second retardation layer 22 can function as a λ / 2 plate, and the other can function as a λ / 4 plate. Here, the case where the first retardation layer 21 can function as a λ / 2 plate and the second retardation layer 22 can function as a λ / 4 plate will be described, but these may be reversed. .. The thickness of the first retardation layer 21 can be adjusted to obtain the desired in-plane retardation of the λ / 2 plate, for example 2.0 μm to 4.0 μm. The thickness of the second retardation layer 22 can be adjusted to obtain the desired in-plane retardation of the λ / 4 plate, for example 1.0 μm to 2.5 μm. The in-plane retardation Re (550) of the first retardation layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm as described above. The in-plane retardation Re (550) of the second retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 130 nm to 160 nm as described above. The angle formed by the slow axis of the first retardation layer 21 and the absorption axis of the polarizer 10 is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably, as described above. Is about 15 °. The angle formed by the slow axis of the second retardation layer 22 and the absorption axis of the polarizer 10 is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably, as described above. Is about 75 °. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics.
 位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained polarizing plate with a retardation layer is used in an image display device.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 The retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It is also possible to exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
D.接着剤層
 第1の接着剤層31および第2の接着剤層32をまとめて接着剤層として説明する。なお、第1の接着剤層および第2の接着剤層は、同一の構成を有していてもよく、互いに異なる構成を有していてもよい。接着剤層を構成する接着剤としては、任意の適切な接着剤が採用され得る。接着剤としては、代表的には活性エネルギー線硬化型接着剤が挙げられる。活性エネルギー線硬化型接着剤としては、例えば、紫外線硬化型接着剤、電子線硬化型接着剤が挙げられる。また、硬化メカニズムの観点からは、活性エネルギー線硬化型接着剤としては、例えば、ラジカル硬化型、カチオン硬化型、アニオン硬化型、ラジカル硬化型とカチオン硬化型とのハイブリッドが挙げられる。代表的には、ラジカル硬化型の紫外線硬化型接着剤が用いられ得る。汎用性に優れ、および、特性(構成)の調整が容易だからである。
D. Adhesive Layer The first adhesive layer 31 and the second adhesive layer 32 will be collectively described as an adhesive layer. The first adhesive layer and the second adhesive layer may have the same structure or may have different structures from each other. Any suitable adhesive may be adopted as the adhesive constituting the adhesive layer. A typical example of the adhesive is an active energy ray-curable adhesive. Examples of the active energy ray-curable adhesive include an ultraviolet curable adhesive and an electron beam-curable adhesive. From the viewpoint of the curing mechanism, examples of the active energy ray-curable adhesive include radical curing type, cationic curing type, anion curing type, and a hybrid of radical curing type and cationic curing type. Typically, a radical curable UV curable adhesive can be used. This is because it has excellent versatility and its characteristics (configuration) can be easily adjusted.
 接着剤は、代表的には、硬化成分と光重合開始剤とを含有する。硬化成分としては、代表的には、(メタ)アクリレート基、(メタ)アクリルアミド基などの官能基を有するモノマーおよび/またはオリゴマーが挙げられる。硬化成分の具体例としては、トリプロピレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、フェノキシジエチレングリコールアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート、γ-ブチロラクトンアクリレート、アクリロイルモルホリン、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン、N-メチルピロリドン、ヒドロキシエチルアクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミドが挙げられる。これらの硬化成分は、単独で用いてもよく2種以上を併用してもよい。 The adhesive typically contains a curing component and a photopolymerization initiator. Typical examples of the curing component include monomers and / or oligomers having a functional group such as a (meth) acrylate group and a (meth) acrylamide group. Specific examples of the curing component include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, phenoxydiethylene glycol acrylate, cyclic trimethylolpropaneformal acrylate, dioxane glycol diacrylate, and EO modification. Diglycerin tetraacrylate, γ-butyrolactone acrylate, acryloylmorpholine, unsaturated fatty acid hydroxyalkyl ester modified ε-caprolactone, N-methylpyrrolidone, hydroxyethylacrylamide, N-methylolacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide Can be mentioned. These curing components may be used alone or in combination of two or more.
 好ましくは、接着剤は、複素環を有する硬化成分を含む。複素環を有する硬化成分としては、例えば、アクリロイルモルホリン、γ-ブチロラクトンアクリレート、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン、N-メチルピロリドンが挙げられる。より好ましい硬化成分は、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトンおよびアクリロイルモルホリンであり、特に好ましい硬化成分は、アクリロイルモルホリンである。複素環を有する硬化成分は、硬化成分(後述のオリゴマー成分が存在する場合には硬化成分とオリゴマー成分との合計)100重量部に対して、好ましくは50重量部以上、より好ましくは60重量部以上、さらに好ましくは70重量部~95重量部の割合で接着剤に含有され得る。アクリロイルモルホリンは、硬化成分(オリゴマー成分が存在する場合には硬化成分とオリゴマー成分との合計)100重量部に対して、好ましくは5重量部~60重量部、より好ましくは10重量部~50重量部の割合で接着剤に含有され得る。 Preferably, the adhesive contains a curing component having a heterocycle. Examples of the curing component having a heterocycle include acryloyl morpholine, γ-butyrolactone acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone, and N-methylpyrrolidone. More preferred curing components are unsaturated fatty acid hydroxyalkyl ester modified ε-caprolactone and acryloyl morpholine, and particularly preferred curing components are acryloyl morpholine. The cured component having a heterocycle is preferably 50 parts by weight or more, more preferably 60 parts by weight, based on 100 parts by weight of the cured component (the total of the cured component and the oligomer component when the oligomer component described later is present). As described above, more preferably, it can be contained in the adhesive in a proportion of 70 parts by weight to 95 parts by weight. Acryloylmorpholin is preferably 5 parts by weight to 60 parts by weight, more preferably 10 parts by weight to 50 parts by weight, based on 100 parts by weight of the curing component (the total of the curing component and the oligomer component when the oligomer component is present). It can be contained in the adhesive in proportions of parts.
 接着剤は、上記の硬化成分に加えてオリゴマー成分をさらに含有してもよい。オリゴマー成分を用いることにより、硬化前の接着剤の粘度を低減し、操作性を高めることができる。オリゴマー成分の代表例としては、(メタ)アクリル系オリゴマーが挙げられる。(メタ)アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、例えば、(メタ)アクリル酸(炭素数1~20)アルキルエステル類、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)が挙げられる。(メタ)アクリル酸(炭素数1~20)アルキルエステル類の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートが挙げられる。これらの(メタ)アクリレートは、単独で用いてもよく2種以上を併用してもよい。 The adhesive may further contain an oligomer component in addition to the above-mentioned curing component. By using the oligomer component, the viscosity of the adhesive before curing can be reduced and the operability can be improved. A typical example of the oligomer component is a (meth) acrylic oligomer. Examples of the (meth) acrylic monomer constituting the (meth) acrylic oligomer include (meth) acrylic acid (1 to 20 carbon atoms) alkyl esters, cycloalkyl (meth) acrylates (for example, cyclohexyl (meth) acrylates, etc. Cyclopentyl (meth) acrylate, etc.), Aralkyl (meth) acrylate (eg, benzyl (meth) acrylate, etc.), Polycyclic (meth) acrylate (eg, 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) ) Acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) acrylic acid esters (eg, hydroxyethyl (eg, hydroxyethyl) (Meta) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl-butyl (meth) methacrylate, etc.), alkoxy group- or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl (meth)) Acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, etc.), containing epoxy group (Meta) acrylic acid esters (eg, glycidyl (meth) acrylate, etc.), halogen-containing (meth) acrylic acid esters (eg, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2- Trifluoroethyl ethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, etc.), alkylaminoalkyl (meth) Acrylate (eg, dimethylaminoethyl (meth) acrylate, etc.) can be mentioned. Specific examples of (meth) acrylic acid (1 to 20 carbon atoms) alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and 2-methyl. -2-Nitropropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t- Pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl Examples thereof include (meth) acrylate, 4-methyl-2-propylpentyl (meth) acrylate, and n-octadecyl (meth) acrylate. These (meth) acrylates may be used alone or in combination of two or more.
 光重合開始剤は、業界で周知の光重合開始剤が業界に周知の配合量で用いられ得るので、詳細な説明は省略する。 As the photopolymerization initiator, a photopolymerization initiator known in the industry can be used in a blending amount well known in the industry, so detailed description thereof will be omitted.
 接着剤層(接着剤硬化後)の厚みは、好ましくは0.1μm~3.0μmである。このような厚みとなるように接着剤を塗布することにより、所望の距離Lを実現することができる。 The thickness of the adhesive layer (after curing of the adhesive) is preferably 0.1 μm to 3.0 μm. A desired distance L can be achieved by applying the adhesive so as to have such a thickness.
 接着剤の詳細は、例えば、特開2018-017996号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Details of the adhesive are described in, for example, JP-A-2018-017996. The description of this publication is incorporated herein by reference.
E.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
E. Conductive layer or isotropic base material with conductive layer The conductive layer is made of any suitable base material by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming a metal oxide film on top of it. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層は、上記基材から第2の位相差層に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として第2の位相差層に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。 The conductive layer may be transferred from the base material to the second retardation layer to form a constituent layer of a polarizing plate with a retardation layer by itself, or a laminate with the base material (base material with a conductive layer). It may be laminated on the second retardation layer. Preferably, the substrate is optically isotropic, and therefore the conductive layer can be used as an isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みの下限は、例えば20μmである。 Any suitable isotropic base material can be adopted as the optically isotropic base material (isotropic base material). Examples of the material constituting the isotropic base material include a material having a resin having no conjugate system such as a norbornene resin and an olefin resin as a main skeleton, and an acrylic resin having a cyclic structure such as a lactone ring and a glutarimide ring. Examples include the material contained in the main chain. When such a material is used, when an isotropic base material is formed, the expression of the phase difference due to the orientation of the molecular chains can be suppressed to be small. The thickness of the isotropic substrate is preferably 50 μm or less, more preferably 35 μm or less. The lower limit of the thickness of the isotropic substrate is, for example, 20 μm.
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer and / or the conductive layer of the isotropic base material with the conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. As the patterning method, any suitable method can be adopted. Specific examples of the patterning method include a wet etching method and a screen printing method.
F.画像表示装置
 上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。1つの実施形態においては、画像表示装置は、有機EL表示装置である。1つの実施形態においては、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。このような画像表示装置においては、本発明の位相差層付偏光板の効果が顕著となる。
F. Image display device The polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Therefore, the present invention includes an image display device using such a polarizing plate with a retardation layer. Typical examples of the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device). The image display device according to the embodiment of the present invention includes the polarizing plate with a retardation layer according to the above items A to E on the visible side thereof. The polarizing plate with a retardation layer is laminated so that the retardation layer is on the image display cell side (for example, a liquid crystal cell, an organic EL cell, an inorganic EL cell) (so that the polarizer is on the visual recognition side). In one embodiment, the image display device is an organic EL display device. In one embodiment, the image display device has a curved shape (substantially a curved display screen) and / or is bendable or bendable. In such an image display device, the effect of the polarizing plate with a retardation layer of the present invention becomes remarkable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)反り
 実施例および比較例で得られた位相差層付偏光板を140mm×70mmサイズに切り出した。このとき、偏光子の吸収軸方向が長辺方向となるように切り出した。一方、ポリイミドフィルム(厚み50μmまたは75μm)を140mm×70mmサイズに切り出した。切り出した位相差層付偏光板およびポリイミドフィルムを、23℃、55%RHの条件下に1日以上置いて調湿した。調湿した位相差層付偏光板およびポリイミドフィルムを、位相差層付偏光板の粘着剤層を介して貼り合わせ、試験サンプルとした。試験サンプルを、20℃、98%RHの条件下に24時間置いて加湿試験に供した。加湿試験前後の試験サンプルの反り量を測定した。試験サンプルを平面上に静置した時に、当該平面から最も高い部分の高さを反り量とした。また、反りがポリイミドフィルム側に凸である場合を「正(+)」、反りが位相差層付偏光板側に凸である場合を「負(-)」で表す。加湿試験前の反り量を「反り量1」、加湿試験後の反り量を「反り量2」として、以下の式から反り量を求め、その絶対値を評価の指標とした。
     反り量=(反り量1-反り量2)
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness The thickness of 10 μm or less was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). The thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) Warpage The polarizing plates with retardation layers obtained in Examples and Comparative Examples were cut out to a size of 140 mm × 70 mm. At this time, it was cut out so that the absorption axis direction of the polarizer was the long side direction. On the other hand, a polyimide film (thickness 50 μm or 75 μm) was cut out to a size of 140 mm × 70 mm. The cut out polarizing plate with a retardation layer and the polyimide film were placed under the conditions of 23 ° C. and 55% RH for 1 day or more to control the humidity. The humidity-controlled polarizing plate with a retardation layer and the polyimide film were bonded together via an adhesive layer of the polarizing plate with a retardation layer to prepare a test sample. The test sample was subjected to a humidification test under the conditions of 20 ° C. and 98% RH for 24 hours. The amount of warpage of the test sample before and after the humidification test was measured. When the test sample was allowed to stand on a flat surface, the height of the highest portion from the flat surface was defined as the amount of warpage. Further, the case where the warp is convex toward the polyimide film side is represented by "positive (+)", and the case where the warp is convex toward the polarizing plate with a retardation layer is represented by "negative (-)". The amount of warpage before the humidification test was defined as "warp amount 1", and the amount of warpage after the humidification test was defined as "warp amount 2". The amount of warpage was calculated from the following formula, and the absolute value was used as an evaluation index.
Warp amount = (warp amount 1-warp amount 2)
[実施例1]
1.偏光板の作製
  A-PET(アモルファス-ポリエチレンテレフタレート)フィルム(三菱樹脂(株)製  商品名:ノバクリアSH046、厚み200μm)を基材として用意し、表面にコロナ処理(58W/m2/min)を施した。一方、アセトアセチル変性PVA(日本合成化学工業(株)製、商品名:ゴーセファイマーZ200、重合度1200、ケン化度99.0%以上、アセトアセチル変性度4.6%)を1wt%添加したPVA(重合度4200、ケン化度99.2%)を用意して、乾燥後の膜厚が12μmになるように塗布し、60℃の雰囲気下において熱風乾燥により10分間乾燥して、基材上にPVA系樹脂層を設けた積層体を作製した。次いで、この積層体をまず空気中130℃で2.0倍に延伸して、延伸積層体を得た。次に、延伸積層体を液温30℃のホウ酸不溶化水溶液に30秒間浸漬することによって、延伸積層体に含まれるPVA分子が配向されたPVA系樹脂層を不溶化する工程を行った。本工程のホウ酸不溶化水溶液は、ホウ酸含有量を水100重量%に対して3重量%とした。この延伸積層体を染色することによって着色積層体を生成した。着色積層体は、延伸積層体を液温30℃のヨウ素およびヨウ化カリウムを含む染色液に浸漬することにより、延伸積層体に含まれるPVA系樹脂層にヨウ素を吸着させたものである。ヨウ素濃度および浸漬時間は、得られる偏光子の単体透過率が44.5%になるように調整した。具体的には、染色液は、水を溶媒として、ヨウ素濃度を0.08~0.25重量%の範囲内とし、ヨウ化カリウム濃度を0.56~1.75重量%の範囲内とした。ヨウ素とヨウ化カリウムの濃度の比は1対7であった。次に、着色積層体を30℃のホウ酸架橋水溶液に60秒間浸漬することによって、ヨウ素を吸着させたPVA系樹脂層のPVA分子同士に架橋処理を施す工程を行った。本工程のホウ酸架橋水溶液は、ホウ酸含有量を水100重量%に対して3重量%とし、ヨウ化カリウム含有量を水100重量%に対して3重量%とした。さらに、得られた着色積層体をホウ酸水溶液中で延伸温度70℃として、上記の空気中での延伸と同様の方向に2.7倍に延伸して、最終的な延伸倍率を5.4倍として、基材/偏光子の積層体を得た。偏光子の厚みは5μmであった。本工程のホウ酸架橋水溶液は、ホウ酸含有量を水100重量%に対して6.5重量%とし、ヨウ化カリウム含有量を水100重量%に対して5重量%とした。得られた積層体をホウ酸水溶液から取り出し、偏光子の表面に付着したホウ酸を、ヨウ化カリウム含有量が水100重量%に対して2重量%とした水溶液で洗浄した。洗浄された積層体を60℃の温風で乾燥した。
  上記で得られた基材/偏光子の積層体の偏光子表面に、PVA系接着剤を介してCOP-HCフィルム(日本ゼオン社製、製品名「ZD12-099063UHC」:厚み26μmのシクロオレフィン系フィルムに厚み2μmのハードコート層が形成されたもの)を貼り合わせ、保護層(COP-HCフィルム)/偏光子/樹脂基材の構成を有する積層体を得た。さらに、この積層体から樹脂基材を剥離し、保護層(COP-HCフィルム)/偏光子の構成を有する積層体(偏光板)を得た。なお、保護層(COP-HCフィルム)の偏光子吸収軸方向の加湿線膨張係数は、0.8×10-5/℃であった。
[Example 1]
1. 1. Preparation of polarizing plate A-PET (amorphous-polyethylene terephthalate) film (manufactured by Mitsubishi Resin Co., Ltd., trade name: NovaClear SH046, thickness 200 μm) is prepared as a base material, and the surface is subjected to corona treatment (58 W / m2 / min). did. On the other hand, 1 wt% of acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gosefima Z200, degree of polymerization 1200, degree of saponification 99.0% or more, degree of acetacetyl modification 4.6%) is added. PVA (polymerization degree 4200, saponification degree 99.2%) was prepared, applied so that the film thickness after drying was 12 μm, and dried by hot air drying in an atmosphere of 60 ° C. for 10 minutes. A laminate having a PVA-based resin layer provided on the material was produced. Next, this laminate was first stretched 2.0 times in air at 130 ° C. to obtain a stretched laminate. Next, a step of insolubilizing the PVA-based resin layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insoluble aqueous solution having a liquid temperature of 30 ° C. for 30 seconds. The boric acid insolubilized aqueous solution in this step had a boric acid content of 3% by weight based on 100% by weight of water. A colored laminate was produced by dyeing this stretched laminate. The colored laminate is obtained by immersing the stretched laminate in a dyeing solution containing iodine and potassium iodide at a liquid temperature of 30 ° C., so that iodine is adsorbed on the PVA-based resin layer contained in the stretched laminate. The iodine concentration and immersion time were adjusted so that the simple substance transmittance of the obtained polarizer was 44.5%. Specifically, the staining solution had an iodine concentration in the range of 0.08 to 0.25% by weight and a potassium iodide concentration in the range of 0.56 to 1.75% by weight using water as a solvent. .. The ratio of iodine to potassium iodide concentrations was 1: 7. Next, a step of cross-linking the PVA molecules of the PVA-based resin layer on which iodine was adsorbed was performed by immersing the colored laminate in a boric acid cross-linked aqueous solution at 30 ° C. for 60 seconds. The boric acid crosslinked aqueous solution in this step had a boric acid content of 3% by weight based on 100% by weight of water and a potassium iodide content of 3% by weight based on 100% by weight of water. Further, the obtained colored laminate was stretched 2.7 times in the same direction as the above stretching in air at a stretching temperature of 70 ° C. in a boric acid aqueous solution, and the final stretching ratio was 5.4. In doubling, a substrate / polarizer laminate was obtained. The thickness of the polarizer was 5 μm. The boric acid crosslinked aqueous solution in this step had a boric acid content of 6.5% by weight based on 100% by weight of water and a potassium iodide content of 5% by weight based on 100% by weight of water. The obtained laminate was taken out from the boric acid aqueous solution, and the boric acid adhering to the surface of the polarizer was washed with an aqueous solution having a potassium iodide content of 2% by weight based on 100% by weight of water. The washed laminate was dried with warm air at 60 ° C.
COP-HC film (manufactured by Nippon Zeon Co., Ltd., product name "ZD12-099063UHC": cycloolefin-based film with a thickness of 26 μm) on the polarizer surface of the laminate of the substrate / polarizer obtained above via a PVA-based adhesive. A hard coat layer having a thickness of 2 μm was formed on the film), and a laminate having a protective layer (COP-HC film) / polarizer / resin base material was obtained. Further, the resin base material was peeled off from this laminate to obtain a laminate (polarizing plate) having a protective layer (COP-HC film) / polarizer configuration. The coefficient of linear expansion of the protective layer (COP-HC film) in the direction of the polarizer absorption axis was 0.8 × 10-5 / ° C.
2.第1の位相差層および第2の位相差層の作製
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000001
ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率分布を有していた。液晶配向固化層Aを第1の位相差層として用いた。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率分布を有していた。液晶配向固化層Bを第2の位相差層として用いた。
2. 2. Preparation of First Phase Difference Layer and Second Phase Difference Layer 10 g of a polymerizable liquid crystal (manufactured by BASF, trade name "Pariocolor LC242", represented by the following formula) showing a nematic liquid crystal phase, and the polymerizable liquid crystal compound. A liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a photopolymerization initiator (manufactured by BASF: trade name “Irgacure 907”) in 40 g of toluene.
Figure JPOXMLDOC01-appb-C000001
The surface of a polyethylene terephthalate (PET) film (thickness 38 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The direction of the alignment treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer A on the PET film. The thickness of the liquid crystal oriented solidified layer A was 2.5 μm, and the in-plane retardation Re (550) was 270 nm. Further, the liquid crystal oriented solidified layer A had a refractive index distribution of nx> ny = nz. The liquid crystal oriented solidified layer A was used as the first retardation layer.
On the PET film in the same manner as above, except that the coating thickness was changed and the orientation treatment direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis. A liquid crystal oriented solidified layer B was formed. The thickness of the liquid crystal oriented solidified layer B was 1.5 μm, and the in-plane retardation Re (550) was 140 nm. Further, the liquid crystal oriented solidified layer B had a refractive index distribution of nx> ny = nz. The liquid crystal oriented solidifying layer B was used as the second retardation layer.
3.位相差層付偏光板の作製
 上記1.で得られた偏光板の偏光子表面に、上記2.で得られた液晶配向固化層A(第1の位相差層)および液晶配向固化層B(第2の位相差層)をこの順に転写した。このとき、偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。なお、それぞれの転写(貼り合わせ)は、紫外線硬化型接着剤(厚み1.0μm)を介して行った。最後に、配向固化層B(第2の位相差層)の表面にアクリル系粘着剤層(厚み15μm)を配置した。このようにして、保護層/接着剤/偏光子/第1の接着剤層/第1の位相差層/第2の接着剤層/第2の位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは55μmであった。得られた位相差層付偏光板を上記(2)の反りの評価に供した。なお、反りの評価においては、ポリイミドフィルムとしてデュポン・東レ社製「カプトン(登録商標)」(厚み50μm)を用いた。結果を表1に示す。
3. 3. Fabrication of polarizing plate with retardation layer 1. On the polarizer surface of the polarizing plate obtained in 2. above. The liquid crystal oriented solidified layer A (first retardation layer) and the liquid crystal oriented solidified layer B (second retardation layer) obtained in the above were transferred in this order. At this time, the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer A is 15 °, and the angle between the absorption axis of the polarizer and the slow axis of the alignment solidification layer B is 75 °. Transferred (bonded). Each transfer (bonding) was carried out via an ultraviolet curable adhesive (thickness 1.0 μm). Finally, an acrylic pressure-sensitive adhesive layer (thickness 15 μm) was placed on the surface of the orientation solidification layer B (second retardation layer). In this way, it has a structure of a protective layer / adhesive / polarizing element / first adhesive layer / first retardation layer / second adhesive layer / second retardation layer / adhesive layer. A polarizing plate with a phase difference layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 55 μm. The obtained polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above. In the evaluation of warpage, "Kapton (registered trademark)" (thickness 50 μm) manufactured by DuPont Toray Industries, Inc. was used as the polyimide film. The results are shown in Table 1.
[実施例2]
 実施例1と同様にして位相差層付偏光板を作製した。ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み50μm)を用いたこと以外は実施例1と同様にして、位相差層付偏光板を上記(2)の反りの評価に供した。結果を表1に示す。
[Example 2]
A polarizing plate with a retardation layer was produced in the same manner as in Example 1. A polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1 except that "UPIREX" (thickness 50 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[実施例3]
 実施例1と同様にして位相差層付偏光板を作製した。ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み75μm)を用いたこと以外は実施例1と同様にして、位相差層付偏光板を上記(2)の反りの評価に供した。結果を表1に示す。
[Example 3]
A polarizing plate with a retardation layer was produced in the same manner as in Example 1. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Example 1 except that "UPIREX" (thickness 75 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[実施例4]
 厚み30μmのPVA系樹脂フィルムの長尺ロールを、ロール延伸機により総延伸倍率が6.0倍になるようにして長尺方向に一軸延伸しながら、同時に膨潤、染色、架橋および洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。得られた偏光子の一方の面に、PVA系接着剤を介して実施例1と同様のCOP-HCフィルムを視認側保護層として貼り合わせた。さらに、偏光子のもう一方の面に、PVA系接着剤を介してトリアセチルセルロース(TAC)フィルム(コニカミノルタ社製、製品名「KC2CT1」、厚み20μm)を貼り合わせ、保護層(COP-HCフィルム)/偏光子/保護層(TACフィルム)の構成を有する偏光板を得た。以下の手順は実施例1と同様にしてTACフィルム側に第1の位相差層、第2の位相差層および粘着剤層を形成し、視認側保護層/接着剤/偏光子/接着剤/保護層/第1の接着剤層/第1の位相差層/第2の接着剤層/第2の位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは82μmであった。得られた位相差層付偏光板を上記(2)の反りの評価に供した。反りの評価においては、ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み50μm)を用いた。結果を表1に示す。
[Example 4]
A long roll of a PVA-based resin film having a thickness of 30 μm is uniaxially stretched in the long direction so that the total stretching ratio becomes 6.0 times by a roll stretching machine, and at the same time, it is swelled, dyed, crosslinked and washed. Finally, a drying treatment was performed to prepare a polarizer having a thickness of 12 μm. A COP-HC film similar to that in Example 1 was attached to one surface of the obtained polarizer as a protective layer on the visible side via a PVA-based adhesive. Further, a triacetyl cellulose (TAC) film (manufactured by Konica Minolta, product name "KC2CT1", thickness 20 μm) is attached to the other surface of the polarizing element via a PVA-based adhesive, and a protective layer (COP-HC) is attached. A polarizing plate having a structure of (film) / polarizer / protective layer (TAC film) was obtained. The following procedure is the same as in Example 1 to form a first retardation layer, a second retardation layer and an adhesive layer on the TAC film side, and a visible side protective layer / adhesive / polarizer / adhesive / A polarizing plate with a retardation layer having a structure of a protective layer / a first adhesive layer / a first retardation layer / a second adhesive layer / a second retardation layer / an adhesive layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 82 μm. The obtained polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above. In the evaluation of warpage, "UPIREX" (thickness 50 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[実施例5]
 実施例4と同様にして位相差層付偏光板を作製した。ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み75μm)を用いたこと以外は実施例4と同様にして、位相差層付偏光板を上記(2)の反りの評価に供した。結果を表1に示す。
[Example 5]
A polarizing plate with a retardation layer was produced in the same manner as in Example 4. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Example 4 except that "UPIREX" (thickness 75 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[実施例6]
 保護層としてCOP-HCフィルムの代わりにアクリル系樹脂フィルム(東洋鋼鈑社製、製品名「RV-20UB」、厚み20μm)を用いたこと、および、粘着剤層の厚みを50μmとしたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは81μmであった。また、保護層(アクリルフィルム)の偏光子吸収軸方向の加湿線膨張係数は、3.9×10-5/℃であった。得られた位相差層付偏光板を、実施例1と同様にして上記(2)の反りの評価に供した。結果を表1に示す。
[Example 6]
Except for the fact that an acrylic resin film (manufactured by Toyo Kohan Co., Ltd., product name "RV-20UB", thickness 20 μm) was used instead of the COP-HC film as the protective layer, and that the thickness of the adhesive layer was 50 μm. Made a polarizing plate with a retardation layer in the same manner as in Example 1. The total thickness of the obtained polarizing plate with a retardation layer was 81 μm. The coefficient of linear expansion of the protective layer (acrylic film) in the direction of the polarizer absorption axis was 3.9 × 10 -5 / ° C. The obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
[比較例1]
 保護層として異なるアクリル系樹脂フィルム(東洋鋼鈑社製、製品名「HX-40UC」、厚み40μm)を用いたこと以外は実施例6と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは101μmであった。また、保護層(アクリルフィルム)の偏光子吸収軸方向の加湿線膨張係数は、3.9×10-5/℃であった。得られた位相差層付偏光板を、実施例1と同様にして上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 1]
A polarizing plate with a retardation layer was produced in the same manner as in Example 6 except that a different acrylic resin film (manufactured by Toyo Kohan Co., Ltd., product name “HX-40UC”, thickness 40 μm) was used as the protective layer. The total thickness of the obtained polarizing plate with a retardation layer was 101 μm. The coefficient of linear expansion of the protective layer (acrylic film) in the direction of the polarizer absorption axis was 3.9 × 10 -5 / ° C. The obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
[比較例2]
 厚み55μmのPVA系樹脂フィルムの長尺ロールを、ロール延伸機により総延伸倍率が6.0倍になるようにして長尺方向に一軸延伸しながら、同時に膨潤、染色、架橋および洗浄処理を施し、最後に乾燥処理を施すことにより厚み22μmの偏光子を作製した。得られた偏光子の一方の面に、PVA系接着剤を介してTAC-HCフィルム(コニカミノルタ社製、製品名「KC4UYW」:厚み40μmのTACフィルムに厚み7μmのハードコート層が形成されたもの)を貼り合わせた。さらに、偏光子のもう一方の面に、PVA系接着剤を介してアクリル系樹脂フィルム(東洋鋼鈑社製、製品名「RV-20UB」、厚み20μm)を貼り合わせ、保護層(TAC-HCフィルム)/偏光子/保護層(アクリルフィルム)の構成を有する偏光板を得た。以下の手順は実施例1と同様にしてアクリルフィルム側に第1の位相差層、第2の位相差層および粘着剤層を形成し、視認側保護層/接着剤/偏光子/接着剤/保護層/第1の接着剤層/第1の位相差層/第2の接着剤層/第2の位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは110μmであった。また、視認側保護層(TAC-HCフィルム)の偏光子吸収軸方向の加湿線膨張係数は、6.3×10-5/℃であった。得られた位相差層付偏光板を実施例1と同様にして上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 2]
A long roll of a PVA-based resin film having a thickness of 55 μm is uniaxially stretched in the long direction so that the total stretching ratio becomes 6.0 times by a roll stretching machine, and at the same time, it is swelled, dyed, crosslinked and washed. Finally, a drying treatment was performed to prepare a polarizer having a thickness of 22 μm. A TAC-HC film (manufactured by Konica Minolta, product name "KC4UYW": TAC film having a thickness of 40 μm) was formed with a hard coat layer having a thickness of 7 μm on one surface of the obtained polarizer via a PVA-based adhesive. Things) were pasted together. Further, an acrylic resin film (manufactured by Toyo Kogyo Co., Ltd., product name "RV-20UB", thickness 20 μm) is attached to the other surface of the polarizing element via a PVA adhesive, and a protective layer (TAC-HC) is attached. A polarizing plate having a structure of (film) / polarizer / protective layer (acrylic film) was obtained. The following procedure is the same as in Example 1 to form a first retardation layer, a second retardation layer and an adhesive layer on the acrylic film side, and a visible side protective layer / adhesive / polarizer / adhesive / A polarizing plate with a retardation layer having a structure of a protective layer / a first adhesive layer / a first retardation layer / a second adhesive layer / a second retardation layer / an adhesive layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 110 μm. The coefficient of linear expansion of the humidifying line in the polarizing element absorption axis direction of the visible side protective layer (TAC-HC film) was 6.3 × 10-5 / ° C. The obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
[比較例3]
 比較例2と同様にして位相差層付偏光板を作製した。ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み50μm)を用いたこと以外は比較例2と同様にして、位相差層付偏光板を上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 3]
A polarizing plate with a retardation layer was produced in the same manner as in Comparative Example 2. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Comparative Example 2 except that "UPIREX" (thickness 50 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[比較例4]
 比較例2と同様にして位相差層付偏光板を作製した。ポリイミドフィルムとして宇部興産社製「ユーピレックス」(厚み75μm)を用いたこと以外は比較例2と同様にして、位相差層付偏光板を上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 4]
A polarizing plate with a retardation layer was produced in the same manner as in Comparative Example 2. A polarizing plate with a retardation layer was used for the evaluation of the warp of (2) above in the same manner as in Comparative Example 2 except that "UPIREX" (thickness 75 μm) manufactured by Ube Industries, Ltd. was used as the polyimide film. The results are shown in Table 1.
[比較例5]
 視認側保護層としてCOP-HCフィルムの代わりにTAC-HCフィルム(コニカミノルタ社製、製品名「KC2UA-HC」:厚み25μmのTACフィルムに厚み7μmのハードコート層が形成されたもの)を用いたこと、視認側と反対側の保護層として異なるTACフィルム(コニカミノルタ社製、製品名「KC2UA」、厚み25μm)を用いたこと、および、粘着剤層の厚みを30μmとしたこと以外は実施例4と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは105μmであった。また、視認側保護層(TAC-HCフィルム)の偏光子吸収軸方向の加湿線膨張係数は、6.3×10-5/℃であった。得られた位相差層付偏光板を、実施例1と同様にして上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 5]
Instead of COP-HC film, TAC-HC film (manufactured by Konica Minolta, product name "KC2UA-HC": TAC film with a thickness of 25 μm and a hard coat layer with a thickness of 7 μm formed) is used as a protective layer on the visual side. Except for the fact that a different TAC film (manufactured by Konica Minolta, product name "KC2UA", thickness 25 μm) was used as the protective layer on the side opposite to the visible side, and the thickness of the adhesive layer was set to 30 μm. A polarizing plate with a retardation layer was produced in the same manner as in Example 4. The total thickness of the obtained polarizing plate with a retardation layer was 105 μm. The coefficient of linear expansion of the humidifying line in the polarizing element absorption axis direction of the visible side protective layer (TAC-HC film) was 6.3 × 10-5 / ° C. The obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
[比較例6]
 視認側保護層としてCOP-HCフィルムの代わりにTAC-HCフィルム(コニカミノルタ社製、製品名「KC2UA-HC」:厚み25μmのTACフィルムに厚み7μmのハードコート層が形成されたもの)を用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板の総厚みは58μmであった。また、保護層(TAC-HCフィルム)の偏光子吸収軸方向の加湿線膨張係数は、6.3×10-5/℃であった。得られた位相差層付偏光板を、実施例1と同様にして上記(2)の反りの評価に供した。結果を表1に示す。
[Comparative Example 6]
Instead of the COP-HC film, a TAC-HC film (manufactured by Konica Minolta, product name "KC2UA-HC": a TAC film having a thickness of 25 μm and a hard coat layer having a thickness of 7 μm formed) is used as a protective layer on the visual side. A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except for the above. The total thickness of the obtained polarizing plate with a retardation layer was 58 μm. The coefficient of linear expansion of the protective layer (TAC-HC film) in the direction of the polarizer absorption axis was 6.3 × 10-5 / ° C. The obtained polarizing plate with a retardation layer was subjected to the evaluation of the warp of (2) above in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
 表1から明らかなように、本発明の実施例によれば、視認側保護層の偏光子吸収軸方向の加湿線膨張係数、ならびに総厚みの中間点から視認側保護層の視認側表面までの距離を最適化することにより、位相差層付偏光板をポリイミドフィルムに貼り合わせた際の反りを顕著に抑制することができる。ポリイミドフィルムは機械的特性が屈曲もしくは折り曲げ可能な画像表示装置に対応し得るので、本発明の実施例による位相差層付偏光板は、屈曲もしくは折り曲げ可能な画像表示装置に適用された場合に反りを顕著に抑制し得ることがわかる。
[Evaluation]
As is clear from Table 1, according to the embodiment of the present invention, the coefficient of linear expansion of the humidified line in the direction of the polarizing element absorption axis of the visible side protective layer, and from the midpoint of the total thickness to the visible side surface of the visible side protective layer. By optimizing the distance, it is possible to remarkably suppress the warp when the polarizing plate with a retardation layer is attached to the polyimide film. Since the polyimide film can correspond to an image display device whose mechanical properties are bendable or bendable, the polarizing plate with a retardation layer according to the embodiment of the present invention warps when applied to a bendable or bendable image display device. It can be seen that can be significantly suppressed.
 本発明の位相差層付偏光板は、液晶表示装置、有機EL表示装置および無機EL表示装置用の円偏光板として好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used as a circular polarizing plate for a liquid crystal display device, an organic EL display device, and an inorganic EL display device.
 10   偏光板
 11   偏光子
 12   保護層
 13   保護層
 21   第1の位相差層
 22   第2の位相差層
 31   第1の接着剤層
 32   第2の接着剤層
100   位相差層付偏光板
 
10 Polarizing plate 11 Polarizer 12 Protective layer 13 Protective layer 21 First retardation layer 22 Second retardation layer 31 First adhesive layer 32 Second adhesive layer 100 Polarizing plate with retardation layer

Claims (7)

  1.  偏光子と該偏光子の少なくとも視認側に保護層とを含む偏光板と、該偏光板の視認側と反対側に第1の接着剤層を介して貼り合わせられた第1の位相差層と、該第1の位相差層に第2の接着剤層を介して貼り合わせられた第2の位相差層と、該第2の位相差層の該第1の位相差層と反対側に設けられた粘着剤層と、を有し、
     該視認側の保護層の該偏光子の吸収軸方向の加湿線膨張係数が6×10-5/%RH以下であり、
     総厚みの中間点から該視認側の保護層の視認側表面までの距離が45μm以下である、
     位相差層付偏光板。
    A polarizing plate containing a polarizing element and a protective layer at least on the visible side of the polarizing element, and a first retardation layer bonded to the side opposite to the visible side of the polarizing plate via a first adhesive layer. , A second retardation layer bonded to the first retardation layer via a second adhesive layer, and the second retardation layer provided on the opposite side of the first retardation layer. With an adhesive layer,
    The coefficient of linear expansion of the humidifying line in the absorption axis direction of the polarizer of the protective layer on the visual side is 6 × 10 -5 /% RH or less.
    The distance from the midpoint of the total thickness to the visible surface of the visible protective layer is 45 μm or less.
    Polarizing plate with retardation layer.
  2.  前記第1の位相差層および前記第2の位相差層がそれぞれ、液晶化合物の配向固化層である、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein each of the first retardation layer and the second retardation layer is an orientation-solidifying layer of a liquid crystal compound.
  3.  総厚みが100μm以下である、請求項1または2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1 or 2, wherein the total thickness is 100 μm or less.
  4.  前記第1の位相差層のRe(550)が200nm~300nmであり、その遅相軸と前記偏光子の吸収軸とのなす角度が10°~20°であり、
     前記第2の位相差層のRe(550)が100nm~190nmであり、その遅相軸と該偏光子の吸収軸とのなす角度が70°~80°である、
     請求項1から3のいずれかに記載の位相差層付偏光板。
    The Re (550) of the first retardation layer is 200 nm to 300 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is 10 ° to 20 °.
    The Re (550) of the second retardation layer is 100 nm to 190 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is 70 ° to 80 °.
    The polarizing plate with a retardation layer according to any one of claims 1 to 3.
  5.  前記粘着剤層を介してポリイミドフィルムに貼り合わせ、20℃、98%RHの条件下で24時間放置した際の反り量の絶対値が30mm以下である、請求項1から4のいずれかに記載の位相差層付偏光板。 The invention according to any one of claims 1 to 4, wherein the absolute value of the amount of warpage when the film is attached to a polyimide film via the pressure-sensitive adhesive layer and left at 20 ° C. and 98% RH for 24 hours is 30 mm or less. Polarizing plate with retardation layer.
  6.  請求項1から5のいずれかに記載の位相差層付偏光板を備える、画像表示装置。 An image display device including the polarizing plate with a retardation layer according to any one of claims 1 to 5.
  7.  有機エレクトロルミネセンス表示装置である、請求項6に記載の画像表示装置。 The image display device according to claim 6, which is an organic electroluminescence display device.
PCT/JP2020/012254 2019-08-02 2020-03-19 Retardation-layer-equipped polarizing plate, and image display device using same WO2021024544A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227001646A KR20220038342A (en) 2019-08-02 2020-03-19 Polarizing plate with retardation layer and image display device using same
CN202080053918.6A CN114207484A (en) 2019-08-02 2020-03-19 Polarizing plate with retardation layer and image display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019142663A JP2021026086A (en) 2019-08-02 2019-08-02 Polarization plate having retardation layer and picture display unit using the same
JP2019-142663 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024544A1 true WO2021024544A1 (en) 2021-02-11

Family

ID=74503404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012254 WO2021024544A1 (en) 2019-08-02 2020-03-19 Retardation-layer-equipped polarizing plate, and image display device using same

Country Status (5)

Country Link
JP (1) JP2021026086A (en)
KR (1) KR20220038342A (en)
CN (1) CN114207484A (en)
TW (1) TW202107128A (en)
WO (1) WO2021024544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209791A1 (en) * 2021-03-31 2022-10-06 日東電工株式会社 Manufacturing method for polarizing plate equipped with phase-difference layer and storage method for polarizing plate equipped with phase-difference layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023089701A (en) * 2021-12-16 2023-06-28 日東電工株式会社 sensor laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142638A (en) * 1999-09-03 2001-05-25 Gunze Ltd Touch panel
JP2002156528A (en) * 1998-10-30 2002-05-31 Teijin Ltd Thermoplastic polymer film
JP2013109354A (en) * 2010-09-03 2013-06-06 Nitto Denko Corp Adhesive optical film, manufacturing method of the same, and image display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39753E1 (en) 1998-10-30 2007-07-31 Teijin Limited Retardation film and optical device employing it
JP2004198614A (en) * 2002-12-17 2004-07-15 Fuji Photo Film Co Ltd Circular polarizer, its manufacturing method, touch panel, and display arrangement
JP2008203460A (en) * 2007-02-19 2008-09-04 Mitsui Chemicals Inc Optical film excellent in moisture permeability
JP5495458B1 (en) * 2013-09-11 2014-05-21 日東電工株式会社 Method for producing optical film laminate
JP6615520B2 (en) * 2015-07-15 2019-12-04 日東電工株式会社 Optical laminate
JP6380566B2 (en) * 2017-02-06 2018-08-29 大日本印刷株式会社 Optical film, optical film transfer body, image display device
JP6937169B2 (en) * 2017-06-09 2021-09-22 日東電工株式会社 Polarizing plate with retardation layer and image display device
WO2019093474A1 (en) * 2017-11-10 2019-05-16 住友化学株式会社 Circularly polarizing plate and display device
WO2019124456A1 (en) * 2017-12-20 2019-06-27 日本ゼオン株式会社 CIRCULARLY POLARIZING PLATE, LONG BROADBAND λ/4 PLATE, ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156528A (en) * 1998-10-30 2002-05-31 Teijin Ltd Thermoplastic polymer film
JP2001142638A (en) * 1999-09-03 2001-05-25 Gunze Ltd Touch panel
JP2013109354A (en) * 2010-09-03 2013-06-06 Nitto Denko Corp Adhesive optical film, manufacturing method of the same, and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209791A1 (en) * 2021-03-31 2022-10-06 日東電工株式会社 Manufacturing method for polarizing plate equipped with phase-difference layer and storage method for polarizing plate equipped with phase-difference layer

Also Published As

Publication number Publication date
CN114207484A (en) 2022-03-18
KR20220038342A (en) 2022-03-28
TW202107128A (en) 2021-02-16
JP2021026086A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2021024544A1 (en) Retardation-layer-equipped polarizing plate, and image display device using same
JP6900213B2 (en) Polarizing plate with anti-reflection layer and anti-reflection layer and its manufacturing method
JP2024007555A (en) Polarizing plate having retardation layer and picture display unit using the same
WO2020246321A1 (en) Production method for polarizing plate having phase difference layer and hard coat layer
JP7114664B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7273769B2 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using these
JP7046127B2 (en) An image display device including an optical laminate and a polarizing plate with a retardation layer of the optical laminate.
WO2022034774A1 (en) Retardation layer-equipped polarizing plate and image display device using same
WO2021149313A1 (en) Polarizing plate and phase difference layer-equipped polarizing plate, and image display device using same
WO2021149311A1 (en) Retardation layer–equipped polarizing plate and image display device using same
WO2022074872A1 (en) Method for manufacturing phase difference layer-equipped polarizing plate
WO2021149312A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
WO2021149314A1 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using said plates
JP7114665B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2022102166A1 (en) Method for producing phase difference layer-equipped polarizing plate
WO2022185802A1 (en) Circular polarizing plate and image display device using same
JP2021117483A (en) Polarizing plate, polarizing plate with retardation layer, and image display device having the same
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same
KR20230038790A (en) Circular polarizing plate, organic electroluminescence display device, display device
JP2023075790A (en) Polarizing plate with retardation layer, and image display device using the same
JP2019219434A (en) Polarizing plate set and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850084

Country of ref document: EP

Kind code of ref document: A1