WO2021024441A1 - 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法 - Google Patents

無線通信システム、無線端末装置、無線基地局装置及び無線通信方法 Download PDF

Info

Publication number
WO2021024441A1
WO2021024441A1 PCT/JP2019/031260 JP2019031260W WO2021024441A1 WO 2021024441 A1 WO2021024441 A1 WO 2021024441A1 JP 2019031260 W JP2019031260 W JP 2019031260W WO 2021024441 A1 WO2021024441 A1 WO 2021024441A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
base station
information
authentication information
wireless
Prior art date
Application number
PCT/JP2019/031260
Other languages
English (en)
French (fr)
Inventor
谷口 友宏
真也 玉置
亮太 椎名
一貴 原
友規 村上
俊朗 中平
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021538639A priority Critical patent/JP7294428B2/ja
Priority to PCT/JP2019/031260 priority patent/WO2021024441A1/ja
Priority to US17/632,901 priority patent/US20220303004A1/en
Publication of WO2021024441A1 publication Critical patent/WO2021024441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present disclosure discloses a wireless communication system, a wireless terminal device, a wireless base station device, and wireless communication that open an RF (Radio Frequency) radio channel between a base station device and a terminal device by using optical radio for authentication. It's about the method.
  • RF Radio Frequency
  • High-speed Internet services using FTTH Fiber-To-The-Home
  • LTE Long Term Evolution
  • IoT Internet of Things
  • M2M Machine to Machine
  • 4K / 8K high-definition video distribution service online video distribution service
  • a wide variety of applications and services, such as uploading videos via SNS have rapidly become widespread.
  • new work styles such as telework using ICT have been proposed, and it is expected that demand for services using networks will continue to grow.
  • Wireless communication systems can be roughly divided into two types with 3 THz as the boundary from the viewpoint of frequency domain.
  • the frequency band of 3 THz or less is called a radio wave region, and examples thereof include a cellular system such as LTE and 5G and a wireless LAN using an unlicensed band.
  • the frequency band of 3 THz or higher (30 PHz or lower) is called the light wave region
  • Li- which uses infrared light or visible light, or in recent years, fast-modulates LEDs used for lighting to transmit and receive Fi is mentioned.
  • Wireless communication systems in the radio wave region and light wave region have different characteristics depending on the frequency band used.
  • a wireless communication system in the light wave region has extremely high directivity, so that the coverage area is narrowed.
  • a wireless communication system in the radio wave region has a wide coverage area due to the diffraction and transmission characteristics of radio waves. Since these wireless communication systems have a pair of coverage area characteristics, they are a hybrid of a radio wave region and a light wave region that complement each other's characteristics from the viewpoints of limiting the communication area, communication safety, and communication stability.
  • a type of wireless communication system can be considered.
  • Patent Document 1 aims to improve the convenience of Wi-Fi communication of an end user and enables Wi-Fi communication only in a specific area. It is a hybrid wireless communication system of optical communication and Wi-Fi communication.
  • networks such as SSID (Service Set IDentifier), password / PMK (Pairwisee Master Key), BSSID (Basic SSID), ESID (Extended SSID), channel, etc.
  • the authentication information is sent, the authentication information is received by the optical detector mounted on the wireless terminal device, and based on the received authentication information, the authentication is performed via Wi-Fi communication between the wireless base station device and the wireless terminal device. It shows how the server authenticates and establishes communication.
  • a visible light source arranged in a radio base station device transmits authentication information such as an SSID and a password on an optical modulation signal.
  • authentication information such as an SSID and password
  • a method of direct modulation in which an electric signal, which is authentication information, is current-driven via a driver circuit for modulation, and an optical device called an external modulator are used for optical modulation.
  • the wireless terminal device requires a demodulation circuit for demodulating the received optical modulation signal, and cannot be said to be an economical system.
  • the present disclosure provides an RF / optical wireless hybrid type wireless communication system that complements the characteristics of RF wireless that uses a radio wave region and optical wireless that uses an optical wave region, and a communication area.
  • the purpose is to ensure the limitation of communication, communication security, and communication stability.
  • an object of the present disclosure is to realize a wireless communication system including a wireless base station device and a wireless terminal device having a simple configuration.
  • the present disclosure solves the above-mentioned problems, and sends an optical ID having a simple configuration to a wireless terminal device according to an optical ID correspondence list previously held by the wireless base station device, and the wireless terminal device has the wireless terminal device in advance.
  • the connection authentication information corresponding to the received optical ID is selected from the optical ID correspondence list, and the predetermined authentication information is transmitted to the radio base station device by the predetermined connection method by RF radio.
  • the wireless base station apparatus confirms that the received authentication information matches the authentication information corresponding to the optical ID in the optical ID correspondence list, the wireless base station apparatus permits information communication between the wireless terminal apparatus and the upper network.
  • the wireless communication system is Radio base station equipment and A wireless terminal device that performs RF wireless communication with the wireless base station device by using an optical signal from the wireless base station device for authentication.
  • the radio base station device is A base station side optical ID correspondence list including combination information of the optical ID and the corresponding wireless communication connection information and authentication information, and An optical signal control circuit that collates connection information and authentication information with the base station side optical ID correspondence list, extracts the corresponding optical ID, and generates a signal pattern corresponding to the extracted optical ID.
  • An optical transmission circuit that outputs an optical signal according to the signal pattern from the optical signal control circuit, and an optical transmission circuit.
  • a beam controller that controls the beam shape of an optical signal from the optical transmission circuit and sends it out into space.
  • a base station-side RF receiver that receives authentication information from the radio terminal device by a predetermined RF radio according to the collated connection information of the optical signal control circuit.
  • Connection authentication control that confirms the match between the authentication information from the base station side RF receiver and the verified authentication information of the optical signal control circuit, and permits information communication between the wireless terminal device with the matching authentication information and the host network.
  • Circuit and With The wireless terminal device is An optical receiver that receives an optical signal from the beam controller and converts it into a signal pattern.
  • a terminal-side optical ID list containing combination information of the optical ID and the corresponding wireless communication connection information and authentication information An optical ID analysis circuit that reproduces an optical ID from a signal pattern from the optical receiver, collates the optical ID with the terminal-side optical ID compatible list, and extracts corresponding connection information and authentication information.
  • a terminal-side RF transmitter that transmits authentication information from the optical ID analysis circuit by a predetermined RF radio according to connection information from the optical ID analysis circuit. To be equipped.
  • the wireless communication method is A wireless communication method in which RF wireless communication is performed between the wireless base station device and the wireless terminal device by using an optical signal from the wireless base station device to the wireless terminal device for authentication.
  • the radio base station device The connection information and authentication information are collated with the base station side optical ID correspondence list including the combination information of the optical ID and the corresponding wireless communication connection information and the authentication information, the corresponding optical ID is extracted, and the extracted optical ID is used. Generate the corresponding signal pattern and Outputs an optical signal according to the generated signal pattern, Control the beam shape of the output optical signal and send it out into space.
  • the wireless terminal device The optical signal from the radio base station device is received, converted into a signal pattern, and converted into a signal pattern.
  • the optical ID is reproduced from the converted signal pattern, the optical ID is collated with the terminal-side optical ID list including the combination information of the optical ID and the corresponding wireless communication connection information and authentication information, and the corresponding connection information and authentication information are collated. Extract and The extracted authentication information is transmitted by the specified RF radio according to the extracted connection information, The radio base station device The authentication information from the wireless terminal device is received by a predetermined RF radio according to the collated connection information, and the authentication information is received. It is confirmed that the received authentication information matches the authentication information collated with the base station side optical ID correspondence list, and information communication between the wireless terminal device having the same authentication information and the upper network is permitted.
  • the wireless communication system, wireless base station apparatus, wireless terminal apparatus, and wireless communication method according to the present disclosure utilize the characteristics of optical radio and RF radio to limit the communication area, secure communication, and stabilize communication. Further, a wireless base station device or a wireless terminal device having a simple configuration can be realized.
  • An example of a wireless communication system configuration according to the present disclosure is shown.
  • An example of the base station side optical ID correspondence list or the terminal side optical ID correspondence list according to the present disclosure is shown.
  • An example of the characteristics of the optical signal output by the optical transmission circuit according to the present disclosure is shown.
  • An example of the characteristics of the optical signal output by the optical transmission circuit according to the present disclosure is shown.
  • An example of the characteristics of the optical signal output by the optical transmission circuit according to the present disclosure is shown.
  • An example of the characteristics of the optical signal output by the optical transmission circuit according to the present disclosure is shown.
  • An example of a wireless communication system configuration according to the present disclosure is shown.
  • FIG. 1 shows a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system 100 of the present embodiment uses the wireless base station device 10 and the optical signal from the wireless base station device 10 for authentication to perform RF wireless communication between the wireless base station device 10 and the wireless terminal device 20. And.
  • the wireless base station device 10 includes connection information and authentication in the base station side optical ID correspondence list 11 including the combination information of the optical ID and the corresponding wireless communication connection information and authentication information, and the base station side optical ID correspondence list 11.
  • An optical signal control circuit 12 that collates information, extracts a corresponding optical ID, and generates a signal pattern corresponding to the extracted optical ID, and an optical signal that outputs an optical signal according to the signal pattern from the optical signal control circuit 12.
  • a connection authentication control circuit 16 for permitting information communication between the matching wireless terminal device 20 and the host network 30 is provided.
  • the wireless terminal device 20 is a terminal that includes an optical receiver 21 that receives an optical signal from the beam controller 14 and converts it into a signal pattern, and information on a combination of an optical ID and corresponding wireless communication connection information and authentication information.
  • Optical ID analysis that reproduces the optical ID from the side optical ID list 22 and the signal pattern from the wireless base station device 10, collates the optical ID with the terminal side optical ID compatible list 22, and extracts the corresponding connection information and authentication information.
  • the circuit 23 includes a terminal-side RF transmitter 24 that transmits authentication information from the optical ID analysis circuit 23 by a predetermined RF radio according to connection information from the optical ID analysis circuit 23.
  • the wireless base station device 10 displays connection information and authentication in the base station side optical ID correspondence list 11 including combination information of the optical ID and the corresponding wireless communication connection information and authentication information.
  • the information is collated, the corresponding optical ID is extracted, a signal pattern corresponding to the extracted optical ID is generated, an optical signal corresponding to the generated signal pattern is output, and the beam shape of the output optical signal is controlled. Send to space.
  • the wireless terminal device 20 receives the optical signal from the wireless base station device 10 and converts it into a signal pattern, reproduces the optical ID from the converted signal pattern, and connects the optical ID and the corresponding wireless communication.
  • the optical ID is collated with the terminal side optical ID list 22 including the combination information with the authentication information, the corresponding connection information and the authentication information are extracted, and the extracted authentication information is extracted by a predetermined RF radio according to the extracted connection information. To send.
  • the radio base station device 10 receives the authentication information from the wireless terminal device 20 by a predetermined RF radio according to the collated connection information, and collates the received authentication information with the base station side optical ID correspondence list 11. Confirmation of matching with the authentication information is performed, and information communication between the wireless terminal device 20 having the matching authentication information and the upper network is permitted.
  • the base station side optical ID list 11 includes combination information of the optical ID and wireless communication connection information and authentication information corresponding to the optical ID.
  • An example of the base station side optical ID correspondence list 11 is shown in FIG. FIG. 2 shows an example of four optical IDs having serial numbers 1 to 4.
  • the wireless communication connection information is information that defines what kind of wireless method, what frequency is used, and which channel is used for RF wireless communication between the wireless base station device 10 and the wireless terminal device 20.
  • the wireless communication authentication information is information that defines an SSID (Service Set Identifier), a password, and an ID (Identifier) when the wireless terminal device 20 accesses the wireless base station device 10. One of these may be specified, or any plurality of them may be specified.
  • the wireless communication connection information and the wireless communication authentication information are examples, and other necessary information may be specified.
  • the optical signal control circuit 12 collates the connection information and the authentication information with the base station side optical ID correspondence list 11 and extracts the corresponding optical ID. For example, when using the connection information and the authentication information of the serial number "1", "1010" is extracted as the optical ID. A signal pattern corresponding to the extracted optical ID is generated. Here, the signal pattern is also set to "1010” according to the optical ID "1010". The signal pattern does not necessarily have to be “1010” according to the optical ID "1010", and a signal pattern such as "101011" may be used. When the signal pattern is analog, for example, when the optical ID is "1010", the signal pattern is repeated with a frequency of 1 Hz. When the optical ID is "1000”, for example, a repeating signal pattern having a frequency of 2 Hz is used.
  • the optical transmission circuit 13 outputs an optical signal according to the signal pattern from the optical signal control circuit 12.
  • the degree of photomodulation is preferably 20% or less. At this level, fluctuations in light intensity cannot be perceived when humans are concentrating on some kind of work. More preferably, the degree of photomodulation is 7% or less. At this level, fluctuations in light intensity cannot be perceived regardless of human activity.
  • FIGS. 3 to 6 Examples of the signal pattern generated by the optical signal control circuit 12 and the optical signal output by 13 of the optical transmission circuit are shown in FIGS. 3 to 6.
  • FIG. 3 shows an example in which the optical signal control circuit 12 generates a signal pattern of “1010” which is a digital signal, and the optical transmission circuit 13 outputs an optical signal of “1010” as a digital signal.
  • the optical signal output by the optical transmission circuit 13 and the light from a lighting device different from the optical transmission circuit 13 are combined, and the optical modulation degree of both lights is set to be a predetermined percentage or less. ..
  • FIG. 4 is an example in which the optical signal control circuit 12 generates a signal pattern of “1010” which is an electric signal, and the optical transmission circuit 13 outputs an optical signal of “1010” as a digital signal.
  • the optical transmission circuit 13 is set so that the optical signal of "1010” itself contains bias light and the optical modulation degree of the optical signal output by the optical transmission circuit 13 is equal to or less than a predetermined percentage. In this case, the optical transmission circuit 13 has both a function of outputting an optical signal and a function of lighting.
  • FIG. 5 is an example in which the optical signal control circuit 12 generates an analog repetitive signal pattern which is an electric signal, and the optical transmission circuit 13 outputs the repetitive optical signal as an analog signal.
  • the optical signal output by the optical transmission circuit 13 and the light from a lighting device different from the optical transmission circuit 13 are combined, and the optical modulation degree of both lights is set to be a predetermined percentage or less. ..
  • FIG. 6 is an example in which the optical signal control circuit 12 generates an analog repetitive signal pattern which is an electric signal, and the optical transmission circuit 13 outputs the repetitive optical signal as an analog signal.
  • the optical transmission circuit 13 is set so that the repeating optical signal itself contains bias light and the optical modulation degree of the optical signal output by the optical transmission circuit 13 is equal to or less than a predetermined percentage.
  • the optical transmission circuit 13 has both a function of outputting an optical signal and a function of lighting.
  • the optical transmission circuit 13 may have a configuration of frequency modulation or wavelength modulation instead of intensity modulation. In this case, the frequency or wavelength of the optical signal of the optical transmission circuit is changed according to the intensity of the signal pattern.
  • the optical beam controller 14 controls the beam shape of the optical signal from the optical transmission circuit 13 and sends it out to the space set by the radio base station device 10. This is to set the communicable area of the wireless communication system. By utilizing the linearity of the light wave output, it is possible to limit the communication area and ensure the safety of communication.
  • a reflector or a transparent refractive index body can be used to control the beam shape.
  • the optical receiver 21 receives an optical signal from the beam controller 14 and converts it into a signal pattern of an electric signal.
  • a light receiving element may be selected according to the wavelength of light generated by the light transmission circuit 13.
  • the optical receiver 21 can receive the optical signal from the beam controller 14 only when the wireless terminal device 20 is within the communicable area set by the beam controller 14. Since a high-speed demodulation circuit is not required for receiving an optical signal, a wireless terminal device having a simple configuration can be realized.
  • the optical receiver 21 receives an optical signal, removes a bias component, and extracts an electric signal pattern. When the optical signal is a digital signal of "1010", for example, the optical signal is converted into an electric signal pattern of "1010". When the optical signal is an analog signal, it is converted into, for example, an electric signal pattern having a repetition frequency of 1 Hz.
  • the terminal side optical ID compatible list 22 has the same contents as the base station side optical ID compatible list 11. That is, the combination information of the optical ID and the wireless communication connection information and the authentication information corresponding to the optical ID is included.
  • the example of the terminal-side optical ID correspondence list 11 is the same as in FIG.
  • the optical ID analysis circuit 23 reproduces the optical ID from the signal pattern from the optical receiver 21, and collates the optical ID with the terminal-side optical ID correspondence list 22. Next, the connection information and the authentication information corresponding to the optical ID are extracted. For example, the optical ID analysis circuit 23 reproduces the optical ID of "1010" from the signal pattern of "1010” from the optical receiver 21, and collates the optical ID of "1010” with the terminal side optical ID correspondence list 22. For example, the optical ID analysis circuit 23 reproduces the optical ID of "1010” from the signal pattern of the repetition frequency of 1 Hz from the optical receiver 21, and collates the optical ID of "1010” with the terminal side optical ID correspondence list 22.
  • the optical ID analysis circuit 23 extracts the connection information and the authentication information of the serial number “1” corresponding to the optical ID “1010”.
  • the optical ID analysis circuit 23 collates the reproduced optical ID with the terminal-side optical ID correspondence list 22, the optical ID that completely matches may be detected, or the optical ID having the maximum correlation coefficient is detected. You may.
  • the wireless terminal device 20 exists in the area of the plurality of wireless base station devices 10, the optical signals are received from the plurality of wireless base station devices 10 and the plurality of optical IDs are reproduced. In this case, the priority of a plurality of serial numbers is extracted from the terminal side optical ID correspondence list 22, and the connection information and the authentication information of the serial numbers having high priority are extracted.
  • the terminal-side RF transmitter 24 sets RF radio standards such as a predetermined radio system, frequency, and channel according to the connection information extracted by the optical ID analysis circuit 23. Next, the terminal-side RF transmitter 24 transmits the authentication information extracted by the optical ID analysis circuit 23 by RF radio set toward the radio base station device 10. The stability of communication can be ensured by utilizing the diffusivity of radio waves for the transmission of authentication information and the information communication after authentication.
  • the base station side RF receiver 15 sets a predetermined RF radio standard according to the collated connection information of the optical signal control circuit 12. Next, the base station side RF receiver 15 receives the authentication information from the terminal side RF transmitter 24 by RF radio and outputs it to the connection authentication control circuit 16.
  • the connection authentication control circuit 16 confirms that the authentication information from the base station side RF receiver 13 matches the collated authentication information of the optical signal control circuit 12. When the two authentication information match, the connection authentication control circuit 16 permits information communication between the wireless terminal device 20 and the upper network 30. Communication safety can be ensured by adopting an RF / optical wireless hybrid type wireless communication system.
  • the radio terminal device 20 may further include a terminal-side RF receiver, and the radio base station device 10 may further include a base station-side RF transmitter.
  • the optical ID analysis circuit 23 analyzes the optical ID at the start of information communication. This is to ensure the security of communication. Further, even if the optical radio is disconnected after the analysis operation, information communication can be stably performed by RF radio between the radio base station device 10 and the radio terminal device 20.
  • the optical ID analysis circuit 23 may perform a determination operation periodically or constantly. When the wireless terminal device 20 moves out of the beam from the beam controller 14, information communication is blocked, which facilitates ensuring the safety of communication.
  • the optical ID analysis circuit 23 may perform a determination operation only within a preset time slot, for example, for 10 seconds. By limiting the time, it becomes easy to ensure the security of communication.
  • the wireless communication system, wireless base station apparatus, wireless terminal apparatus, and wireless communication method according to the present embodiment utilize the characteristics of optical radio and RF radio to limit the communication area, secure communication, and stabilize communication. Further, it is possible to realize a wireless base station device or a wireless terminal device having a simple configuration.
  • FIG. 7 shows a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system 100 of the present embodiment uses the optical signal from the wireless base station apparatus 10-1 for authentication and RF radio between the wireless base station apparatus 10-1.
  • a wireless terminal device 20 for communication and a control device 40 for controlling a plurality of wireless base station devices 10-1 are provided.
  • connection authentication control circuit 16-1 is provided in the control device 40 instead of the radio base station device 10-1.
  • the radio base station device 10-1 has connection information in the base station side optical ID correspondence list 11 including the combination information of the optical ID and the corresponding wireless communication connection information and the authentication information, and the base station side optical ID correspondence list 11. And the authentication information is collated, the corresponding optical ID is extracted, and the optical signal control circuit 12 that generates the signal pattern corresponding to the extracted optical ID and the optical signal corresponding to the signal pattern from the optical signal control circuit 12 are output.
  • the base station side RF receiver 15 for receiving the authentication information from the wireless terminal device 20 is provided.
  • the wireless terminal device 20 is the same as that of the first embodiment.
  • the control device 40 confirms that the authentication information from the base station side RF receiver 15 matches the collated authentication information of the optical signal control circuit 12, and the information of the wireless terminal device 20 and the upper network 30 in which the authentication information matches.
  • a connection authentication control circuit 16-1 for permitting communication is provided.
  • the wireless base station apparatus 10-1 displays the connection information in the base station side optical ID correspondence list 11 including the combination information of the optical ID and the corresponding wireless communication connection information and authentication information. And authentication information is collated, the corresponding optical ID is extracted, a signal pattern corresponding to the extracted optical ID is generated, an optical signal corresponding to the generated signal pattern is output, and the beam shape of the output optical signal is controlled. And send it to the space.
  • the wireless terminal device 20 receives the optical signal from the wireless base station device 10-1 and converts it into a signal pattern, reproduces the optical ID from the converted signal pattern, and transmits the optical ID and the corresponding wireless communication.
  • the optical ID is collated with the terminal side optical ID list including the connection information and the combination information with the authentication information, the corresponding connection information and the authentication information are extracted, and the extracted authentication is performed by the predetermined RF radio according to the extracted connection information. Send information.
  • the radio base station device 10-1 receives the authentication information from the wireless terminal device 20 by a predetermined RF radio according to the collated connection information.
  • control device 40 confirms that the authentication information received by the radio base station device 10-1 matches the authentication information collated with the base station side optical ID correspondence list 11 of the radio base station device 10-1 and authenticates. Information communication between the wireless terminal device 20 having the same information and the upper network 30 is permitted.
  • the configuration and operation of the base station side optical ID list 11, the optical signal control circuit 12, the optical transmission circuit 13, and the optical beam controller 14 of the radio base station apparatus 10-1 are the same as those in the first embodiment. Further, each component of the wireless terminal device 20 and its operation are the same as those in the first embodiment.
  • connection authentication control circuit 16-1 provided in the control device 40 confirms that the authentication information from the base station side RF receiver 13 matches the collated authentication information of the optical signal control circuit 12. When the two authentication information match, the connection authentication control circuit 16-1 permits information communication between the wireless terminal device 20 and the upper network 30. Communication safety can be ensured by adopting an RF / optical wireless hybrid type wireless communication system.
  • the radio terminal device 20 may further include a terminal-side RF receiver
  • the radio base station device 10 may further include a base station-side RF transmitter.
  • the optical ID analysis circuit 23 provided in the wireless terminal device 20 analyzes the optical ID at the start of information communication. This is to ensure the security of communication. Further, even if the optical radio is disconnected after the analysis operation, information communication can be stably performed by RF radio between the radio base station device 10 and the radio terminal device 20.
  • the optical ID analysis circuit 23 may perform a determination operation periodically or constantly. When the wireless terminal device 20 moves out of the beam from the beam controller 14, information communication is blocked, which facilitates ensuring the safety of communication.
  • the optical ID analysis circuit 23 may perform a determination operation only within a preset time slot, for example, for 10 seconds. By limiting the time, it becomes easy to ensure the security of communication.
  • the wireless communication system, wireless base station apparatus, wireless terminal apparatus, and wireless communication method according to the present embodiment utilize the characteristics of optical radio and RF radio to limit the communication area, secure communication, and stabilize communication. Further, it is possible to realize a wireless base station device or a wireless terminal device having a simple configuration.
  • the connection information can be changed for each wireless base station by centralized management, or for a specific wireless terminal device 20. , Information communication with the upper network can be permitted by centralized management only in a certain area.
  • an optical signal control circuit 12 a connection authentication control circuit 16, a connection authentication control circuit 16-1, and an optical ID analysis circuit 23 can also be realized by a computer and a computer program, and records a computer program. It can be recorded on a medium or provided over a network.
  • This disclosure can be applied to the information and communication industry.
  • Wireless base station device 10-1 Wireless base station device 11: Base station side ID correspondence list 12: Optical signal control circuit 13: Optical transmission circuit 14: Beam controller 15: Base station side RF receiver 16: Connection authentication Control circuit 16-1: Connection authentication control circuit 20: Wireless terminal device 21: Optical receiver 22: Terminal side optical ID correspondence list 23: Optical ID analysis circuit 24: Terminal side RF transmitter 30: Upper network 40: Control device 100 : Wireless communication system 101: Wireless communication system

Abstract

本開示では、無線基地局装置が予め保有している光ID対応リストに従って、簡易な構成の光IDを無線端末装置へ送出し、無線端末装置は予め保有している光ID対応リストから受信した光IDに対応した接続認証情報を選択して、無線基地局装置へ所定の接続方法で所定の認証情報をRF無線で送信する。無線基地局装置は、受信した認証情報が光ID対応リストの光IDに対応する認証情報と一致していることを確認すると、無線端末装置と上位ネットワークとの情報通信を許可する。

Description

無線通信システム、無線端末装置、無線基地局装置及び無線通信方法
 本開示は、基地局装置と端末装置との間で、光無線を認証に利用して、RF(Radio Frequency)無線のチャネルを開通させる無線通信システム、無線端末装置、無線基地局装置及び無線通信方法に関するものである。
 FTTH(Fiber-To-The-Home)やLTE(Long Term Evolution)を利用した高速インターネットサービスは、日常生活において必要不可欠なツールとなっている。特に近年では、クラウド利用の普及やモバイル端末の利用拡大に伴いIPデータ通信だけではなくIoT(Internet of Things)/M2M(Machine to Machine)、4K/8K高精細映像配信サービス、オンライン動画配信サービス、SNSによる動画アップロード等、多種多様なアプリケーションやサービスが急速に普及してきた。さらに、ICTを活用したテレワークなど新しいワークスタイルが提案されており、今後もネットワークを利用したサービス需要が拡大していくものと考えられる。現在ではFTTHの普及に伴い、宅内まで安定した光ブロードバンドサービスが提供されている一方で、宅内環境においてはPC以外のマルチデバイスの活用やケーブル配線の取り回しの観点、上記で述べたサービス多様化の背景から無線通信方式が主流となっている。
 無線通信システムは、周波数領域の観点から3THzを境界として大きく2つに大別できる。3THz以下の周波数帯は、電波領域と呼ばれLTEや5G等のセルラ系やアンライセンス帯を利用した無線LANが挙げられる。
 一方で、3THz以上(30PHz以下)の周波数帯は光波領域と呼ばれ、赤外光あるいは可視光を利用するシステムや、近年では照明で利用されているLEDを高速変調させて送受信を行うLi-Fiが挙げられる。
 電波領域や光波領域の無線通信システムは、利用する周波数帯の違いによって異なる特性を持つ。例えば、光波領域の無線通信システムは、指向性が極めて高いことから、カバレッジエリアが狭くなる。電波領域の無線通信システムは、電波の回折、透過特性から、カバレッジエリアが広くなる。これらの無線通信システムは、カバレッジエリア特性が対となっていることから、通信エリアの限定、通信の安全性、通信の安定性などの観点で互いの特性を補完する電波領域と光波領域のハイブリッド型の無線通信システムが考えられる。
 このようなシステムは、既に提案がなされており、例えば、特許文献1の発明は、エンドユーザのWi-Fi通信の利便性向上を図り、特定エリアのみでのWi-Fi通信を可能にする可視光通信とWi-Fi通信のハイブリッド型の無線通信システムである。無線基地局装置から可視光通信を通して無線端末装置へSSID(Service Set IDentifier)、パスワード/PMK(Pairwise Master Key)、BSSID(Basuic SSID)、ESSID(Extended SSID)、channelなどのネットワークにアクセスするための認証情報を送り、無線端末装置に搭載された光検出器によって認証情報を受信し、受信した認証情報を基に、無線基地局装置と無線端末装置との間のWi-Fi通信を介して認証サーバが認証を行い、通信を確立する方法が示されている。
US2018/0139202 A1
鹿倉智明他「オフィス証明環境における明るさの変動知覚に関する研究」照明学会誌Vol.85、No.5、2001、PP.346~351
 特許文献1では、無線基地局装置に配置された可視光源がSSIDやパスワードなどの認証情報を光変調信号に載せて送信している。SSIDやパスワードなどの認証情報を送信するための光変調には、変調用のドライバ回路を介して認証情報である電気信号を電流駆動する直接変調する方法と、外部変調器と呼ばれる光デバイスにより光の物理量(強度、位相など)を変化させて変調する方法が挙げられる。いずれも変調回路や外部変調器の分だけコスト増となり、経済的なシステムとは言えない。また、無線端末装置は、受信した光変調信号を復調する復調回路が必要となり、経済的なシステムとは言えない。
 そこで、前記課題を解決するために、本開示は、電波領域を使用するRF無線と光波領域を使用する光無線の互いの特性を補完するRF/光無線ハイブリッド型の無線通信システムとし、通信エリアの限定、通信の安全性、通信の安定性を確保することを目的とする。さらに、本開示は、簡易な構成の無線基地局装置や無線端末装置を備える無線通信システムを実現することを目的とする。
 本開示は、上記課題を解決するものであって、無線基地局装置が予め保有している光ID対応リストに従って、簡易な構成の光IDを無線端末装置へ送出し、無線端末装置は予め保有している光ID対応リストの中から受信した光IDに対応した接続認証情報を選択して、無線基地局装置へ所定の接続方法で所定の認証情報をRF無線で送信する。無線基地局装置は、受信した認証情報が光ID対応リストの光IDに対応する認証情報と一致していることを確認すると、無線端末装置と上位ネットワークとの情報通信を許可する。
 本開示に係る無線通信システムは、
 無線基地局装置と、
 前記無線基地局装置からの光信号を認証に利用して、前記無線基地局装置との間でRF無線通信する無線端末装置と、
 を備え、
 前記無線基地局装置は、
 光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストと、
 前記基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路と、
 前記光信号制御回路からの信号パターンに応じた光信号を出力する光送信回路と、
 前記光送信回路からの光信号のビーム形状を制御して空間に送出するビーム制御器と、
 前記光信号制御回路の照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信する基地局側RF受信器と、
 前記基地局側RF受信器からの認証情報と前記光信号制御回路の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する接続認証制御回路と、
 を備え、
 前記無線端末装置は、
 前記ビーム制御器からの光信号を受信して信号パターンに変換する光受信器と、
 光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストと、
 前記光受信器からの信号パターンから光IDを再生し、前記端末側光ID対応リストに光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路と、
 前記光ID解析回路からの接続情報に従った所定のRF無線で、前記光ID解析回路からの認証情報を送信する端末側RF送信器と、
 を備える。
 本開示に係る無線通信方法は、
 無線基地局装置から無線端末装置への光信号を認証に利用して、前記無線基地局装置と前記無線端末装置との間でRF無線通信する無線通信方法であって、
 前記無線基地局装置が、
 光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成し、
 生成した信号パターンに応じた光信号を出力し、
 出力した光信号のビーム形状を制御して空間に送出し、
 前記無線端末装置が、
 前記無線基地局装置からの光信号を受信して信号パターンに変換し、
 変換した信号パターンから光IDを再生し、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストに光IDを照合し、対応する接続情報及び認証情報を抽出し、
 抽出した接続情報に従った所定のRF無線で、抽出した認証情報を送信し、
 前記無線基地局装置が、
 照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信し、
 受信した認証情報と前記基地局側光ID対応リストに照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する。
 本開示に係る無線通信システム、無線基地局装置、無線端末装置及び無線通信方法は、光無線及びRF無線の特性を利用して通信エリアの限定、通信の安全性、通信の安定性を図り、さらに、簡易な構成の無線基地局装置や無線端末装置を実現することができる。
本開示に係る無線通信システム構成例を示す。 本開示に係る基地局側光ID対応リスト又は端末側光ID対応リストの一例を示す。 本開示に係る光送信回路の出力する光信号の特性の一例を示す。 本開示に係る光送信回路の出力する光信号の特性の一例を示す。 本開示に係る光送信回路の出力する光信号の特性の一例を示す。 本開示に係る光送信回路の出力する光信号の特性の一例を示す。 本開示に係る無線通信システム構成例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 本開示の実施の例を以下に示す。
 本実施形態に係る無線通信システムの構成例を図1に示す。本実施形態の無線通信システム100は、無線基地局装置10と、無線基地局装置10からの光信号を認証に利用して、無線基地局装置10との間でRF無線通信する無線端末装置20と、を備える。
 無線基地局装置10は、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リスト11と、基地局側光ID対応リスト11に接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路12と、光信号制御回路12からの信号パターンに応じた光信号を出力する光送信回路13と、光送信回路13からの光信号のビーム形状を制御して空間に送出するビーム制御器14と、光信号制御回路12の照合した接続情報に従った所定のRF無線で、無線端末装置20からの認証情報を受信する基地局側RF受信器15と、基地局側RF受信器15からの認証情報と光信号制御回路12の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置20と上位ネットワーク30との情報通信を許可する接続認証制御回路16と、を備える。
 無線端末装置20は、ビーム制御器14からの光信号を受信して信号パターンに変換する光受信器21と、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリスト22と、無線基地局装置10からの信号パターンから光IDを再生し、端末側光ID対応リスト22に光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路23と、光ID解析回路23からの接続情報に従った所定のRF無線で、光ID解析回路23からの認証情報を送信する端末側RF送信器24と、を備える。
 本実施形態に係る無線通信方法では、無線基地局装置10が、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リスト11に接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成し、生成した信号パターンに応じた光信号を出力し、出力した光信号のビーム形状を制御して空間に送出する。
 次に、無線端末装置20が、無線基地局装置10からの光信号を受信して信号パターンに変換し、変換した信号パターンから光IDを再生し、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリスト22に光IDを照合し、対応する接続情報及び認証情報を抽出し、抽出した接続情報に従った所定のRF無線で、抽出した認証情報を送信する。
 さらに、無線基地局装置10が、照合した接続情報に従った所定のRF無線で、無線端末装置20からの認証情報を受信し、受信した認証情報と基地局側光ID対応リスト11に照合した認証情報との一致を確認し、認証情報の一致した無線端末装置20と上位ネットワークとの情報通信を許可する。
 以下、図1を利用して無線通信システムの動作を説明する。
 基地局側光IDリスト11は光IDと光IDに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む。基地局側光ID対応リスト11の例を図2に示す。図2では、通番1から4までの4個の光IDの例を示している。無線通信の接続情報は、無線基地局装置10と無線端末装置20との間でどのような無線方式で、どの周波数を使用して、どのチャネルでRF無線通信するかを規定する情報である。無線通信の認証情報は、無線端末装置20が無線基地局装置10にアクセスする際にSSID(Service Set Identifier)、パスワード、ID(Identifier)を規定する情報である。これらのうち1つでもよく、任意の複数を規定することでもよい。無線通信の接続情報及び無線通信の認証情報は例であって、この他に必要な情報を規定してもよい。
 光信号制御回路12は、基地局側光ID対応リスト11に接続情報及び認証情報を照合し、対応する光IDを抽出する。例えば、通番“1”の接続情報及び認証情報を利用する場合は、光IDとして“1010”を抽出する。抽出した光IDに応じた信号パターンを生成する。ここでは、光IDの“1010”に応じて、信号パターンも“1010”としている。必ずしも、光IDの“1010”に応じて、信号パターンも“1010”とする必要はなく、例えば“101011”のような信号パターンでもよい。信号パターンをアナログとする場合は、光IDが“1010”のときに、例えば、周波数1Hzの繰り返しの信号パターンとする。光IDが“1000”のとき、例えば、周波数2Hzの繰り返しの信号パターンとする。
 光送信回路13は、光信号制御回路12からの信号パターンに応じた光信号を出力する。無線端末装置20の保有者が、無前基地局装置10のエリアに入ったとき、ビーム制御器14の送出する光信号の変動が人間に知覚できない程度の変調度であれば、人間に不快感を与えることがない。非特許文献1によると、光変調度は20%以下が望ましい。この程度であれば、人間が何らかの作業に集中している状況では、光の強度の変動を知覚できない。より望ましくは、光変調度は7%以下である。この程度であれば、人間の活動状況によらず、光の強度の変動を知覚できない。
 光信号制御回路12の生成する信号パターンと光送信回路の13の出力する光信号の例を図3から図6に示す。図3は、光信号制御回路12がディジタル信号である“1010”の信号パターンを生成し、光送信回路13がディジタル信号として、“1010”の光信号を出力する例である。この場合、光送信回路13の出力する光信号と、光送信回路13とは別の照明装置からの光とを合成し、両方の光で、光変調度が所定のパーセンテージ以下になるよう設定する。
 図4は、光信号制御回路12が電気信号である“1010”の信号パターンを生成し、光送信回路13がディジタル信号として、“1010”の光信号を出力する例である。光送信回路13は、“1010”の光信号自体にバイアス光を含み、光送信回路13の出力する光信号の光変調度が所定のパーセンテージ以下になるよう設定する。この場合、光送信回路13は、光信号を出力する機能と照明の機能を兼用して有することになる。
 図5は、光信号制御回路12が電気信号であるアナログの繰り返しの信号パターンを生成し、光送信回路13がアナログ信号として、繰り返しの光信号を出力する例である。この場合、光送信回路13の出力する光信号と、光送信回路13とは別の照明装置からの光とを合成し、両方の光で、光変調度が所定のパーセンテージ以下になるよう設定する。
 図6は、光信号制御回路12が電気信号であるアナログの繰り返しの信号パターンを生成し、光送信回路13がアナログ信号として、繰り返しの光信号を出力する例である。図6では、光送信回路13は、繰り返しの光信号自体にバイアス光を含み、光送信回路13の出力する光信号の光変調度が所定のパーセンテージ以下になるよう設定する。この場合、光送信回路13は、光信号を出力する機能と照明の機能を兼用して有することになる。
 光送信回路13は、強度変調に代えて、周波数変調又は波長変調とする構成でもよい。この場合、信号パターンの強度に応じて光送信回路の光信号の周波数又は波長を変動させることになる。
 光ビーム制御器14は、光送信回路13からの光信号のビーム形状を制御して、無線基地局装置10の設定された空間に送出する。本無線通信システムの通信可能なエリアを設定するためである。光波出力の直線性を利用して、通信エリアの限定、通信の安全性を確保することができる。ビーム形状の制御には、反射板や透明な屈折率体を利用することができる。
 光受信器21は、ビーム制御器14からの光信号を受信して電気信号の信号パターンに変換する。受光には、光送信回路13の発生する光の波長に合わせて受光素子を選択すればよい。無線端末装置20が、ビーム制御器14の設定する通信可能なエリア内にあるときに限って、光受信器21は、ビーム制御器14からの光信号を受信することができる。光信号の受信には、高速の復調回路が不要なため、簡易な構成の無線端末装置を実現することができる。光受信器21は、光信号を受信して、バイアス成分を除去して電気の信号パターンを抽出する。光信号が“1010”のディジタル信号の場合は、例えば、光信号を“1010”の電気の信号パターンに変換する。光信号がアナログ信号の場合は、例えば、1Hzの繰り返し周波数の電気の信号パターンに変換する。
 端末側光ID対応リスト22は、基地局側光ID対応リスト11と同じ内容を有する。即ち、光IDと光IDに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む。端末側光ID対応リスト11の例を図2と同様である。
 光ID解析回路23は、光受信器21からの信号パターンから光IDを再生し、端末側光ID対応リスト22に光IDを照合する。次に、光IDに対応する接続情報及び認証情報を抽出する。例えば、光ID解析回路23が光受信器21からの“1010”の信号パターンから“1010”の光IDを再生し、端末側光ID対応リスト22に“1010”の光IDを照合する。例えば、光ID解析回路23が光受信器21からの1Hzの繰り返し周波数の信号パターンから“1010”の光IDを再生し、端末側光ID対応リスト22に“1010”の光IDを照合する。光ID解析回路23は、光ID“1010”に対応するのは通番“1”の接続情報及び認証情報を抽出する。光ID解析回路23が、再生した光IDを端末側光ID対応リスト22に照合する際に、完全に一致する光IDを検出してもよいし、相関係数が最大となる光IDを検出してもよい。無線端末装置20が複数の無線基地局装置10のエリアに存在していると、複数の無線基地局装置10からそれぞれ光信号を受信し、複数の光IDを再生することになる。この場合は、端末側光ID対応リスト22の中から、複数の通番の優先度を抽出し、優先度の高い通番の接続情報及び認証情報を抽出する。
 端末側RF送信器24は、光ID解析回路23の抽出した接続情報に従って、所定の無線方式、周波数、チャネル等のRF無線規格を設定する。次に、端末側RF送信器24は、光ID解析回路23の抽出した認証情報を無線基地局装置10に向けて設定したRF無線で送信する。認証情報の送信や認証後の情報通信に電波の拡散性を利用して、通信の安定性を確保することができる。
 基地局側RF受信器15は、光信号制御回路12の照合した接続情報に従った所定のRF無線規格を設定する。次に、基地局側RF受信器15は、端末側RF送信器24からの認証情報をRF無線で受信し、接続認証制御回路16に出力する。
 接続認証制御回路16は、基地局側RF受信器13からの認証情報と、光信号制御回路12の照合した認証情報との一致を確認する。接続認証制御回路16は、2つの認証情報が一致すると、無線端末装置20と上位ネットワーク30との情報通信を許可する。RF/光無線ハイブリッド型の無線通信システムとすることにより、通信の安全性を確保することができる。認証後の情報通信のために、無線端末装置20は端末側RF受信器を、無線基地局装置10は基地局側RF送信器をさらに備えてもよい。
 光ID解析回路23は、情報通信の開始時に光IDを解析動作することが望ましい。通信の安全性を確保するためである。また、解析動作の後に光無線が切断されても、無線基地局装置10と無線端末装置20との間で、安定してRF無線で情報通信することができる。光ID解析回路23は、定期的又は常時、判定動作をしてもよい。無線端末装置20が、ビーム制御器14からのビーム外に移動したときに、情報通信を遮断することによって通信の安全性の確保が容易になる。光ID解析回路23は、予め設定されたタイムスロット内、例えば、10秒間の間だけ判定動作してもよい。時間を限ることにより、通信の安全性の確保が容易になる。
 本実施形態に係る無線通信システム、無線基地局装置、無線端末装置及び無線通信方法は、光無線及びRF無線の特性を利用して通信エリアの限定、通信の安全性、通信の安定性を図り、さらに、簡易な構成の無線基地局装置や無線端末装置を実現することができる。
(実施形態2)
 本開示の実施の例を以下に示す。
 本実施形態に係る無線通信システムの構成例を図7に示す。本実施形態の無線通信システム100は、無線基地局装置10-1と、無線基地局装置10-1からの光信号を認証に利用して、無線基地局装置10-1との間でRF無線通信する無線端末装置20と、複数の無線基地局装置10-1を制御する制御装置40備える。
 実施形態1との違いは、接続認証制御回路16-1が無線基地局装置10-1ではなく、制御装置40に備えられる点である。
 無線基地局装置10-1は、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リスト11と、基地局側光ID対応リスト11に接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路12と、光信号制御回路12からの信号パターンに応じた光信号を出力する光送信回路13と、光送信回路13からの光信号のビーム形状を制御して空間に送出するビーム制御器14と、光信号制御回12路の照合した接続情報に従った所定のRF無線で、無線端末装置20からの認証情報を受信する基地局側RF受信器15と、を備える。
 無線端末装置20は、実施形態1と同様である。
 制御装置40は、基地局側RF受信器15からの認証情報と光信号制御回路12の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置20と上位ネットワーク30との情報通信を許可する接続認証制御回路16-1を備える。
 本実施形態に係る無線通信方法では、無線基地局装置10-1が、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リスト11に接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成し、生成した信号パターンに応じた光信号を出力し、出力した光信号のビーム形状を制御して空間に送出する。
 次に、無線端末装置20が、無線基地局装置10-1からの光信号を受信して信号パターンに変換し、変換した信号パターンから光IDを再生し、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストに光IDを照合し、対応する接続情報及び認証情報を抽出し、抽出した接続情報に従った所定のRF無線で、抽出した認証情報を送信する。
 さらに、無線基地局装置10-1が、照合した接続情報に従った所定のRF無線で、無線端末装置20からの認証情報を受信する。
 この後、制御装置40が、無線基地局装置10-1の受信した認証情報と無線基地局装置10-1の基地局側光ID対応リスト11に照合した認証情報との一致を確認し、認証情報の一致した無線端末装置20と上位ネットワーク30との情報通信を許可する。
 以下、図7を利用して無線通信システムの動作を説明する。
 無線基地局装置10-1の基地局側光IDリスト11、光信号制御回路12、光送信回路13及び光ビーム制御器14の構成及び動作は実施形態1と同様である。また、無線端末装置20の各構成要素とその動作は実施形態1と同様である。
 制御装置40に備えられる接続認証制御回路16-1は、基地局側RF受信器13からの認証情報と、光信号制御回路12の照合した認証情報との一致を確認する。接続認証制御回路16-1は、2つの認証情報が一致すると、無線端末装置20と上位ネットワーク30との情報通信を許可する。RF/光無線ハイブリッド型の無線通信システムとすることにより、通信の安全性を確保することができる。認証後の情報通信のために、無線端末装置20は端末側RF受信器を、無線基地局装置10は基地局側RF送信器をさらに備えてもよい。
 無線端末装置20に備えられる光ID解析回路23は、情報通信の開始時に光IDを解析動作することが望ましい。通信の安全性を確保するためである。また、解析動作の後に光無線が切断されても、無線基地局装置10と無線端末装置20との間で、安定してRF無線で情報通信することができる。光ID解析回路23は、定期的又は常時、判定動作をしてもよい。無線端末装置20が、ビーム制御器14からのビーム外に移動したときに、情報通信を遮断することによって通信の安全性の確保が容易になる。光ID解析回路23は、予め設定されたタイムスロット内、例えば、10秒間の間だけ判定動作してもよい。時間を限ることにより、通信の安全性の確保が容易になる。
 本実施形態に係る無線通信システム、無線基地局装置、無線端末装置及び無線通信方法は、光無線及びRF無線の特性を利用して通信エリアの限定、通信の安全性、通信の安定性を図り、さらに、簡易な構成の無線基地局装置や無線端末装置を実現することができる。接続認証制御回路16-1が複数の無線基地局装置10-1を制御することにより、接続情報を無線基地局毎に集中管理で変更することができたり、特定の無線端末装置20に対して、あるエリアでのみ上位ネットワークとの情報通信を集中管理で許可することができる。
 本発明の装置の一部、例えば、光信号制御回路12、接続認証制御回路16、接続認証制御回路16-1、光ID解析回路23は、コンピュータとコンピュータプログラムによっても実現でき、コンピュータプログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 本開示は情報通信産業に適用することができる。
10:無線基地局装置
10-1:無線基地局装置
11: 基地局側ID対応リスト
12:光信号制御回路
13:光送信回路
14:ビーム制御器
15:基地局側RF受信器
16:接続認証制御回路
16-1:接続認証制御回路
20:無線端末装置
21:光受信器
22:端末側光ID対応リスト
23:光ID解析回路
24:端末側RF送信器
30:上位ネットワーク
40:制御装置
100:無線通信システム
101:無線通信システム

Claims (7)

  1.  無線基地局装置と、
     前記無線基地局装置からの光信号を認証に利用して、前記無線基地局装置との間でRF無線通信する無線端末装置と、
     を備え、
     前記無線基地局装置は、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストと、
     前記基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路と、
     前記光信号制御回路からの信号パターンに応じた光信号を出力する光送信回路と、
     前記光送信回路からの光信号のビーム形状を制御して空間に送出するビーム制御器と、
     前記光信号制御回路の照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信する基地局側RF受信器と、
     前記基地局側RF受信器からの認証情報と前記光信号制御回路の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する接続認証制御回路と、
     を備え、
     前記無線端末装置は、
     前記ビーム制御器からの光信号を受信して信号パターンに変換する光受信器と、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストと、
     前記光受信器からの信号パターンから光IDを再生し、前記端末側光ID対応リストに光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路と、
     前記光ID解析回路からの接続情報に従った所定のRF無線で、前記光ID解析回路からの認証情報を送信する端末側RF送信器と、
     を備える無線通信システム。
  2.  無線端末装置への光信号を認証に利用して、無線端末装置との間でRF無線通信する無線基地局装置であって、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストと、
     前記基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路と、
     前記光信号制御回路からの信号パターンに応じた光信号を出力する光送信回路と、
     前記光送信回路からの光信号のビーム形状を制御して空間に送出するビーム制御器と、
     前記光信号制御回路の照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信する基地局側RF受信器と、
     前記基地局側RF受信器からの認証情報と前記光信号制御回路の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する接続認証制御回路と、
     を備える無線基地局装置。
  3.  無線基地局装置からの光信号を認証に利用して、前記無線基地局装置との間でRF無線通信する無線端末装置であって、
     前記ビーム制御器からの光信号を受信して信号パターンに変換する光受信器と、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストと、
     前記無線基地局装置からの信号パターンから光IDを再生し、前記端末側光ID対応リストに光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路と、
     前記光ID解析回路からの接続情報に従った所定のRF無線で、前記光ID解析回路からの認証情報を送信する端末側RF送信器と、
     を備える無線端末装置。
  4.  無線基地局装置と、
     無線基地局装置から無線端末装置への光信号を認証に利用して、前記無線基地局装置との間でRF無線通信する無線端末装置と、
     複数の前記無線基地局装置を制御する制御装置と
     を備え、
     前記無線基地局装置は、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストと、
     前記基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路と、
     前記光信号制御回路からの信号パターンに応じた光信号を出力する光送信回路と、
     前記光送信回路からの光信号のビーム形状を制御して空間に送出するビーム制御器と、
     前記光信号制御回路の照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信する基地局側RF受信器と、
     を備え、
      前記無線端末装置は、
     前記ビーム制御器からの光信号を受信して信号パターンに変換する光受信器と、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストと、
     前記光受信器からの信号パターンから光IDを再生し、前記端末側光ID対応リストに光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路と、
     前記光ID解析回路からの接続情報に従った所定のRF無線で、前記光ID解析回路からの認証情報を送信する端末側RF送信器と、
     を備え、
     前記制御装置は、
     前記基地局側RF受信器からの認証情報と前記光信号制御回路の照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する接続認証制御回路を
     備える無線通信システム。
  5.  無線端末装置への光信号を認証に利用して、無線端末装置との間でRF無線通信する無線基地局装置であって、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストと、
     前記基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成する光信号制御回路と、
     前記光信号制御回路からの信号パターンに応じた光信号を出力する光送信回路と、
     前記光送信回路からの光信号のビーム形状を制御して空間に送出するビーム制御器と、
     前記光信号制御回路の照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信する基地局側RF受信器と、
     を備える無線基地局装置。
  6.  無線基地局装置から無線端末装置への光信号を認証に利用して、前記無線基地局装置と前記無線端末装置との間でRF無線通信する無線通信方法であって、
     前記無線基地局装置が、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成し、
     生成した信号パターンに応じた光信号を出力し、
     出力した光信号のビーム形状を制御して空間に送出し、
     前記無線端末装置が、
     前記無線基地局装置からの光信号を受信して信号パターンに変換し、
     変換した信号パターンから光IDを再生し、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストに光IDを照合し、対応する接続情報及び認証情報を抽出し、
     抽出した接続情報に従った所定のRF無線で、抽出した認証情報を送信し、
     前記無線基地局装置が、
     照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信し、
     受信した認証情報と前記基地局側光ID対応リストに照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する無線通信方法。
  7.  無線基地局装置から無線端末装置への光信号を認証に利用して、前記無線基地局装置と前記無線端末装置との間でRF無線通信する無線通信方法であって、
     前記無線基地局装置が、
     光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む基地局側光ID対応リストに接続情報及び認証情報を照合し、対応する光IDを抽出し、抽出した光IDに応じた信号パターンを生成し、
     生成した信号パターンに応じた光信号を出力し、
     出力した光信号のビーム形状を制御して空間に送出し、
     前記無線端末装置が、
     前記無線基地局装置からの光信号を受信して信号パターンに変換し、
     変換した信号パターンから光IDを再生し、光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリストに光IDを照合し、対応する接続情報及び認証情報を抽出し、
     抽出した接続情報に従った所定のRF無線で、抽出した認証情報を送信し、
     前記無線基地局装置が、
     照合した接続情報に従った所定のRF無線で、前記無線端末装置からの認証情報を受信し、
     制御装置が、
     前記無線基地局装置の受信した認証情報と前記無線基地局装置の前記基地局側光ID対応リストに照合した認証情報との一致を確認し、認証情報の一致した無線端末装置と上位ネットワークとの情報通信を許可する無線通信方法。
PCT/JP2019/031260 2019-08-07 2019-08-07 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法 WO2021024441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021538639A JP7294428B2 (ja) 2019-08-07 2019-08-07 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法
PCT/JP2019/031260 WO2021024441A1 (ja) 2019-08-07 2019-08-07 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法
US17/632,901 US20220303004A1 (en) 2019-08-07 2019-08-07 Wireless communication system, wireless terminal equipment, wireless base station equipment and wireless communication methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031260 WO2021024441A1 (ja) 2019-08-07 2019-08-07 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021024441A1 true WO2021024441A1 (ja) 2021-02-11

Family

ID=74503165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031260 WO2021024441A1 (ja) 2019-08-07 2019-08-07 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法

Country Status (3)

Country Link
US (1) US20220303004A1 (ja)
JP (1) JP7294428B2 (ja)
WO (1) WO2021024441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015539A1 (en) * 2021-08-13 2023-02-16 Qualcomm Incorporated Techniques for visible light communication-assisted broadcast transmissions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007844A1 (en) * 2019-12-13 2023-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Access Network and Wireless Device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164882A (ja) * 2008-01-07 2009-07-23 Hitachi Ltd 移動端末及び移動体通信管理システム
WO2011080867A1 (ja) * 2009-12-28 2011-07-07 パナソニック株式会社 機器間の距離に応じてセキュリティレベルを設定するサーバ装置、クライアント装置、通信システム、サーバ制御用集積回路、クライアント制御用集積回路、サーバプログラム、クライアントプログラム、クライアント装置への接続方法、サーバ装置への接続方法、及び通信システム接続方法
JP2015015693A (ja) * 2013-06-04 2015-01-22 ユニバーリンク株式会社 可視光受信方法及びその装置
JP2015091089A (ja) * 2013-11-07 2015-05-11 カシオ計算機株式会社 情報端末、通信システム、サーバ、通信方法及びプログラム
JP2016504794A (ja) * 2012-11-07 2016-02-12 クアルコム,インコーポレイテッド 可視光信号および/または無線信号を用いて情報を伝送するための方法および装置
JP2016167805A (ja) * 2015-02-27 2016-09-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 信号生成方法、信号生成装置およびプログラム
JP2017220435A (ja) * 2016-06-10 2017-12-14 パナソニックIpマネジメント株式会社 通信アドレス設定方法、操作端末、および、照明システム
US20180139202A1 (en) * 2015-05-19 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Communications system, a station, a controller of a light source, and methods therein for authenticating the station to access a network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181143B2 (en) * 2002-06-05 2007-02-20 Canon Kabushiki Kaisha Free space optics communication apparatus and free space optics communication system
US20060256070A1 (en) * 2005-05-13 2006-11-16 Research In Motion Limited Communications system including units with LCD optical transmitters/receivers and related methods
JP5393917B1 (ja) * 2012-05-24 2014-01-22 パナソニック株式会社 情報通信方法および情報通信装置
JP2015012538A (ja) * 2013-07-01 2015-01-19 パナソニックIpマネジメント株式会社 可視光通信システム
WO2018206107A1 (en) * 2017-05-11 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Establishing connections between wifi access points and wireless devices via light fidelity access points

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164882A (ja) * 2008-01-07 2009-07-23 Hitachi Ltd 移動端末及び移動体通信管理システム
WO2011080867A1 (ja) * 2009-12-28 2011-07-07 パナソニック株式会社 機器間の距離に応じてセキュリティレベルを設定するサーバ装置、クライアント装置、通信システム、サーバ制御用集積回路、クライアント制御用集積回路、サーバプログラム、クライアントプログラム、クライアント装置への接続方法、サーバ装置への接続方法、及び通信システム接続方法
JP2016504794A (ja) * 2012-11-07 2016-02-12 クアルコム,インコーポレイテッド 可視光信号および/または無線信号を用いて情報を伝送するための方法および装置
JP2015015693A (ja) * 2013-06-04 2015-01-22 ユニバーリンク株式会社 可視光受信方法及びその装置
JP2015091089A (ja) * 2013-11-07 2015-05-11 カシオ計算機株式会社 情報端末、通信システム、サーバ、通信方法及びプログラム
JP2016167805A (ja) * 2015-02-27 2016-09-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 信号生成方法、信号生成装置およびプログラム
US20180139202A1 (en) * 2015-05-19 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Communications system, a station, a controller of a light source, and methods therein for authenticating the station to access a network
JP2017220435A (ja) * 2016-06-10 2017-12-14 パナソニックIpマネジメント株式会社 通信アドレス設定方法、操作端末、および、照明システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015539A1 (en) * 2021-08-13 2023-02-16 Qualcomm Incorporated Techniques for visible light communication-assisted broadcast transmissions

Also Published As

Publication number Publication date
JP7294428B2 (ja) 2023-06-20
JPWO2021024441A1 (ja) 2021-02-11
US20220303004A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US9788352B2 (en) System and method for multiple Wi-Fi devices automatically connecting to specified access point
EP3078142B1 (en) Methods and systems for enabling communication with a receiver device in a network
KR101560416B1 (ko) 근거리 통신에서 보안 채널 형성 방법 및 장치
US9094826B2 (en) Wireless communication system and terminal-device authentication method in wireless communication system
US20110023097A1 (en) Authentication method and framework
WO2021024441A1 (ja) 無線通信システム、無線端末装置、無線基地局装置及び無線通信方法
US20230337068A1 (en) Secure handover in a lifi network
Blinowski Practical aspects of physical and MAC layer security in visible light communication systems
CN113068181B (zh) 多类型智能终端安全入网方法
Linnartz et al. ELIoT: enhancing LiFi for next-generation Internet of things
US20110090942A1 (en) System and methods for wireless networking
CN104521261B (zh) 用于使得在电信网络中能够合法侦听的方法、用户装置和基站收发台
CN114390521A (zh) 密钥更新方法、装置、设备及存储介质
WO2020054394A1 (ja) 光/rf無線ハイブリッド通信システム、及び制御方法
US10455423B2 (en) Control of access to an on-line service via a Li-Fi network
Suduwella et al. Visible light communication based authentication protocol designed for location based network connectivity
US11728904B2 (en) Wireless communication system, wireless communication method and wireless terminal equipment
Ashimbayeva et al. Hard and soft switching for indoor hybrid VLC/RF systems
EP3876571A1 (en) Fast secure handover
CN110649970B (zh) 可见光通信业务控制方法和系统
WO2021002023A1 (ja) 通信システム、端末、通信方法、及びプログラム
Nguyen et al. On achievable rate region using location assisted coding (LAC) for FSO communication
US10285055B2 (en) Authentication system, authentication method, server device, and client device
US11968581B2 (en) Fast secure handover
Sheriff et al. ENABLING AUTOMATED PEER-TO-PEER COLLABORATION BETWEEN AR/VR-ENABLED WI-FI CLIENTS FOR REMOTE WORKERS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940617

Country of ref document: EP

Kind code of ref document: A1