WO2021024376A1 - Module for natural gas plant - Google Patents

Module for natural gas plant Download PDF

Info

Publication number
WO2021024376A1
WO2021024376A1 PCT/JP2019/030876 JP2019030876W WO2021024376A1 WO 2021024376 A1 WO2021024376 A1 WO 2021024376A1 JP 2019030876 W JP2019030876 W JP 2019030876W WO 2021024376 A1 WO2021024376 A1 WO 2021024376A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
frame
natural gas
building
equipment
Prior art date
Application number
PCT/JP2019/030876
Other languages
French (fr)
Japanese (ja)
Inventor
佳範 廣谷
尚康 岡島
泰祐 山本
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to JP2021506010A priority Critical patent/JP6887071B1/en
Priority to CN202310623760.7A priority patent/CN116659182A/en
Priority to KR1020227001369A priority patent/KR102485278B1/en
Priority to RU2021119182A priority patent/RU2766682C1/en
Priority to PCT/JP2019/030876 priority patent/WO2021024376A1/en
Priority to CN201980069880.9A priority patent/CN112912678A/en
Publication of WO2021024376A1 publication Critical patent/WO2021024376A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the present invention relates to a technique for constructing a natural gas plant.
  • Natural gas (NG) plants that process natural gas include liquefied natural gas (LNG) plants that liquefy natural gas, and LPG (Liquefied Petroleum Gas) and heavy components separated from natural gas.
  • LNG liquefied natural gas
  • LPG Liquefied Petroleum Gas
  • the module for constructing a natural gas plant will be referred to as a module for a natural gas (NG) plant.
  • the module for the NG plant is constructed at a place different from the construction site of the NG plant, and after being transported to the construction site, it is installed in the site. Then, the NG plant is configured by combining a plurality of NG plant modules.
  • the NG plant module In the frame that constitutes the NG plant module, there are many devices (power consuming devices) that receive power for driving from the outside and devices that perform operation control based on control signals (controlled devices). Will be installed. Regarding the supply of power to power consuming equipment, the NG plant module is equipped with a transformer that performs voltage conversion, power supply control equipment that controls power supply to each power consuming equipment, and power supply equipment such as circuit breakers and circuit breakers. A substation room may be added.
  • the NG plant module has a flow rate set value, a pressure set value, and a temperature set value received from the operator or the automatic controller in the central control room that controls the entire NG plant.
  • Information related to the operation control of the controlled device such as, is output to the controller that controls the operation of the controlled device, and information such as the flow rate, pressure, and temperature controlled by the controlled device is output to the central control room.
  • an equipment control room equipped with a control information output device that outputs toward the air is installed.
  • Patent Document 2 when the applicant installs a building constituting the above-mentioned substation room and equipment control room outside the module for the NG plant, the applicant installs a building on the frame of the module at the construction site of the module.
  • Patent Document 2 We have developed a technology for connecting these modules and building together to transport them to the construction site of an NG plant (Patent Document 2).
  • Patent Document 2 At the construction site of the NG plant, by removing the connecting member that connects the NG plant module and the building, these modules and the building are separated, and the building is installed at a position adjacent to the NG plant module. ..
  • Patent Document 2 the range in which the explosion-proof structure is required is locally limited by arranging the building outside the module for the NG plant.
  • the frame itself of the module is made explosion-resistant and the frame is configured to support the high-load building due to the explosion-proof structure. It suppresses the increase in diameter of the steel frame material.
  • Patent Documents 1 and 2 do not describe where and what kind of structure the building is to be provided.
  • the present invention provides a module for a natural gas plant having a high degree of integration of equipment and strength according to a risk.
  • the module for a natural gas plant of the present invention A frame containing a group of equipment that forms part of the natural gas plant, A power supply device provided in the frame and supplying power to a power consuming device included in the device group, or a controller included in the device group that controls the operation of the controlled device using a control signal.
  • a building accommodating at least one of the control information output devices for outputting the information related to the operation control is provided.
  • the area above the layout of the building is characterized by being a pipe rack that holds a group of pipes through which the fluid handled in the natural gas plant flows in the frame.
  • the module for a natural gas plant may have the following features.
  • control information output device When the control information output device is housed in the building, the control information output device is in a state of being connected to the controlled device housed in the frame.
  • D An air intake pipe for keeping the internal pressure of the building higher than the atmospheric pressure is connected to the building, and an air intake portion at the end of the intake pipe is arranged in the frame. It must be located higher than the equipment that handles combustible materials.
  • E The building is provided with an entrance / exit so as to open toward the side surface of the frame.
  • the module for this natural gas plant is installed in the frame, and the building containing the power supply equipment or control information output equipment is located in the lower area of the pipe rack.
  • LNG liquefied natural gas
  • FIG. 1 is an example of a schematic configuration of the LNG plant of this example.
  • a gas-liquid separation unit 11 that separates a liquid from NG
  • a mercury removal unit 12 that removes mercury in NG
  • an acidic gas removal unit 13 that removes acidic gas such as carbon dioxide and hydrogen sulfide from NG.
  • the gas-liquid separation unit 11 separates liquid condensate from NG transported by a pipeline or the like at room temperature.
  • the gas-liquid separation unit 11 is added as necessary for the purpose of preventing obstruction of slanted elongated pipes and drums for separating liquid from NG by utilizing the difference in specific gravity and pipelines in the process of transportation. It is equipped with a group of equipment such as an antifreeze regeneration tower and reboiler that heats and regenerates the antifreeze, and ancillary equipment for these.
  • the mercury removing unit 12 removes a small amount of mercury contained in NG after the liquid is separated.
  • the mercury removing unit 12 includes a group of devices such as a mercury adsorption tower in which the adsorption tower is filled with a mercury removing agent and ancillary equipment thereof.
  • the acid gas removing unit 13 removes carbon dioxide, hydrogen sulfide, and other acidic gases that may solidify in LNG during liquefaction.
  • Examples of the method for removing acid gas include a method using a gas absorbing solution containing an amine compound and the like, and a method using a gas separation membrane that allows the acid gas in NG to permeate.
  • the acid gas removing unit 13 When a gas absorption liquid is adopted, the acid gas removing unit 13 includes an absorption tower that brings NG and the gas absorption liquid into countercurrent contact, a regeneration tower for regenerating the gas absorption liquid that has absorbed the acid gas, and a regeneration tower. It is equipped with a reboiler for heating the gas absorption liquid inside, and a group of equipment such as these incidental facilities.
  • the acidic gas removing unit 13 includes a group of devices such as a gas separation unit containing a large number of hollow fiber membranes in the main body and ancillary equipment thereof.
  • the water removing unit 14 removes a small amount of water contained in NG.
  • the water removing unit 14 is filled with an adsorbent such as a molecular sieve or silica gel, and a plurality of adsorption towers and regenerations are carried out by alternately switching between an NG water removing operation and a water-adsorbed adsorbent regeneration operation.
  • It is provided with a group of devices such as a heater for heating the regenerating gas (for example, NG after removing water) of the adsorbent supplied to the adsorbent tower being operated, and ancillary facilities thereof.
  • the NG after impurities have been removed by each of the processing units 11 to 14 described above is supplied to the liquefaction processing unit 15 and liquefied.
  • the liquefaction processing unit 15 includes a precooling heat exchanger that precools NG with a precooling refrigerant containing propane as a main component, a scrub column that removes heavy components from NG after precooling, nitrogen, methane, ethane, propane, and the like.
  • Ultra-low temperature heat exchanger (MCHE: Main Cryogenic Heat Exchanger) that cools NG with a mixed refrigerant (Mixed Refrigerant) containing multiple types of refrigerant raw materials to liquefy and overcool, precooling refrigerant and mixed refrigerant vaporized by heat exchange It is provided with a group of equipment such as a refrigerant compressor 21 for compressing gas and ancillary equipment thereof.
  • a mixed refrigerant Mated Refrigerant
  • FIG. 1 shows an example in which the gas turbine 22 is used as the power source for driving the refrigerant compressor 21, a motor or the like may be used depending on the scale of the refrigerant compressor 21 and the like.
  • each refrigerant compressor 21 of the above-mentioned liquefaction processing unit 15 various coolers and capacitors for cooling the compressed refrigerant may be provided.
  • a cooler for cooling the gas absorbing liquid regenerated in the regeneration tower or the tower top liquid may be provided.
  • the LNG plant is provided with a large number of air-cooled heat exchangers (ACHE: Air-Cooled Heat Exchanger) 41 for forming these coolers and condensers and cooling the fluids handled in the LNG plant.
  • ACHE Air-Cooled Heat Exchanger
  • the liquefaction processing unit 15 includes a deetanizer that separates ethane from the liquid (liquid heavy component) separated from the cooled NG, a depropanizer that separates propane from the liquid after ethane separation, and a liquid after propane separation.
  • a rectification section 16 including a debutanizer that separates butane from propane and obtains a liquid condensate at room temperature is provided.
  • the deetaizer, depropanizer, and debutanizer are each equipped with a rectification tower for rectifying each component, a reboiler for heating the liquid in each rectification tower, and a group of equipment such as ancillary equipment thereof.
  • the rectified portion 16 corresponds to the heavy component removing portion of the present embodiment.
  • Liquefied natural gas (LNG) after being liquefied and supercooled by the liquefaction processing unit 15 is sent to the storage tank 17 and stored.
  • the LNG stored in the storage tank 17 is sent by an LNG pump (not shown) and shipped to an LNG tanker or a pipeline.
  • FIG. 2 shows an example of the layout of the above-mentioned LNG plant.
  • the LNG plant of this example is configured by combining a common frame 30 with a plurality of modules M accommodating a group of devices (such as frame device 6 and ACHE 41) constituting each of the processing units 11 to 16.
  • each module M shown in FIG. 2 indicates the arrangement position of the frame equipment 6 in the lowermost layer of the frame 30 of a plurality of layers. ..
  • the ACHE group 4 provided on the upper surface of the frame 30 may be described together, and a part of the frame equipment 6 may be hidden.
  • the device group constituting the liquefaction processing unit 15 is further divided into a plurality of groups, and a plurality of modules M in which the device groups of each group are housed in the frame 30 are provided. Further, the processing units 11, 12, 13, 14, 16 and each device group (framework device 6 and ACHE41) constituting the other processing units 11, 12, 13, 14, 16 and the oil heater, the boiler, etc. are also processed. A plurality of modules M are provided, which are grouped by each group and house the equipment group of each group in the frame 30.
  • a plurality of modules M on the liquefaction processing unit 15 side are arranged in the horizontal direction, and modules M related to other processing units 11, 12, 13, 14, 16 and the like are arranged in the horizontal direction.
  • the LNG plant is composed of these two rows of modules M.
  • an MR compressor and a refrigerant compressor 21 which is a C3 compressor are arranged on both sides of the row of the module M of the liquefaction processing unit 15.
  • the coordinate axes shown by the solid lines in FIG. 2 indicate the orientation of the entire LNG plant.
  • the sub-coordinate axes shown by broken lines in FIGS. 2 to 4 indicate the direction in which each module M is focused, and the base point side of the Y'axis of the sub-coordinate axes is referred to as the rear end side, and the arrow direction side is referred to as the tip side.
  • the LNG plant of this example is provided with a module M1 in which a plurality of ACHE41s are provided on the upper surface side thereof and an ACHE41. It is composed of two types of modules M with no module M2. These modules M1 and M2 have the same basic configuration except for the presence or absence of ACHE41. In the following description of the module M, the configurations are common to the modules M1 and M2 except for the description of the ACHE 41.
  • the frame 30 constituting each module M has a substantially rectangular planar shape, and the devices included in the device groups of the processing units 11 to 16 are arranged in multiple layers in the vertical direction. It is a steel frame structure that can be used.
  • ACHE41s On the upper surface of the frame 30, a row of a plurality of ACHE41s arranged along the Y-axis direction from the front end side to the rear end side is provided. Further, a large number of ACHE groups 4 are arranged by providing a plurality of rows of ACHE 41 in the width direction of the frame 30 (for convenience of illustration, an example of three rows is shown in FIG. 2). These ACHE 41s form a part of the equipment group of each processing unit 11 to 16.
  • the space below the area where the ACHE group 4 is arranged is a pipe rack in which a large number of pipes 42 through which the fluid passed between the processing units 11 to 16 flows are arranged. .. These pipes 42 also form a part of the equipment group of each processing unit 11 to 16. Even in the module M2 in which the ACHE group 4 is not arranged, a pipe rack is provided in the rear end side region which is side by side with the arrangement region of the ACHE group 4 of the other module M1.
  • the on-site equipment 6 includes static equipment such as a tower tank and a heat exchanger, dynamic equipment such as a pump 6a, each static equipment, and connection pipes (not shown) for connecting between the dynamic equipment and the pipe 42 on the pipe rack side. ) Etc. are included.
  • the power consuming devices such as the ACHE 41 and the pump 6a that consume the driving power are adjusted according to the rated voltage of each power consuming device.
  • the transformed power is supplied via the power supply line. Therefore, in the frame 30 accommodating these power consuming devices, a substation that performs voltage conversion and a power supply control device that controls power supply to each power consuming device are installed in a building composed of an outer structure partitioned from the surroundings. , A substation (SS) that houses power supply equipment such as circuit breakers and disconnectors will be installed.
  • SS power supply equipment
  • a flow rate adjusting valve for adjusting the flow rate of the fluid for various devices housed in the frame 30, a flow rate adjusting valve for adjusting the flow rate of the fluid, a pressure adjusting valve for adjusting the pressure in the tower tank, and a heat exchanger outlet for the fluid to be adjusted for temperature are adjusted.
  • various controlled devices such as control valves such as flow rate control valves that increase or decrease the flow rate of heat medium and refrigerant, and on-off valves that perform opening and closing operations according to the liquid level in the tower tank. Is done.
  • a controller is attached to these controlled devices, and the controller outputs a control signal to the controlled device based on the result of detecting the flow rate, pressure, temperature, liquid level, etc. of the fluid by the detection unit, and each controlled device is controlled.
  • a control loop is constructed to control the operation of the device.
  • the frame 30 accommodating the equipment related to these control loops is provided with an instrument control room (CR) accommodating control information output equipment called FCS (Field Control Station) in the building.
  • the control information output device is information related to the operation control of the controlled device, such as the flow rate set value, pressure set value, and temperature set value received from the operator or automatic control device in the central control room that controls the entire LNG plant. Is output to the controller that controls the operation of the controlled device, and information such as the flow rate, pressure, temperature, and liquid level of the fluid detected by the detection unit is output to the central control room.
  • the control information output device and the controller and detection unit of each controlled device are connected via a signal line. Further, in the following description, the building constituting the above-mentioned substation room and equipment control room will be referred to as SS / CR50.
  • the SS / CR50 attached to each module M is provided inside the area surrounded by the frame 30 constituting the module M together with the other 6 groups of frame devices, and is integrated with the module M. It can be transported to.
  • the frame is as shown in FIG. 30 is composed of a plurality of layers (4 layers in the example of the figure).
  • the SS / CR50 of this example is arranged in the lowest layer of the frame 30 having the above-mentioned multi-layer structure. Further, as described above, the area above the position where the SS / CR50 is arranged is a pipe rack in which the pipe 42 group through which the fluid handled in the LNG plant flows is held by the frame. In other words, the SS / CR50 is provided in the space below the pipe rack.
  • the SS / CR50 which is a building having a closed structure, is arranged below the pipe 42 through which the flammable fluid flows.
  • the explosion-proof structure and the explosion-proof structure are examined.
  • the explosion-resistant structure means that the strength of the constituent members of the building is designed so that damage to the building can be suppressed even if an explosion occurs around the building.
  • the explosion-proof structure is a mechanism that suppresses the entry of flammable substances into the building and suppresses ignition even when flammable substances enter.
  • API RP American Petroleum Institute Recommended Practice 752 is one of the methods (Management System) for determining the strength of building components related to the explosion-resistant structure and the discharge capacity of toxic substances that have entered the building (American Petroleum Institute Recommended Practice) 752 ( Hereinafter, it is simply described as "API752").
  • API752 includes (1) assuming the maximum event that can affect the building, and quantitatively and qualitatively evaluating the resulting consequences, and (2) for the building. Consider the frequency of stay of personnel and the function of the building as an evacuation site, (3) Based on the results of these studies, formulate the standards for the explosion resistance of the building, and design the strength of the building according to the standards. That is described.
  • API752 is the recommended method in the United States, but the strength of the building may be designed according to the method even in the construction of LNG plants in other countries.
  • this method is adopted, as shown in FIG. 3, under the condition that the SS / CR50 is arranged in the space below the pipe rack in which the pipe 42 through which the flammable fluid flows is arranged, the building constituting the SS / CR50
  • it is highly likely that extremely high explosion resistance is required.
  • the weight of the SS / CR50 also increases, and in order to hold the SS / CR50, the diameter of the steel frame material constituting the frame 30 also increases, which causes an increase in the material cost and the transportation cost of the frame 30.
  • the module M of this example is the frame device 6 in each frame 30.
  • High degree of integration In other words, in the module M, it can be said that the frame equipment 6 for handling the flammable fluid is centrally arranged in a limited area.
  • each module M is arranged with a gap between the modules M and the other adjacent modules M. That is, unlike the conventional LNG plant in which a large number of devices are arranged on the ground, the LNG plant composed of the module M has a structure that can be easily evacuated through the gap once it goes out of the module M. ing. Further, unlike the central control room where the operator of the LNG plant is resident, each SS / CR50 is usually a building without personnel except at the time of inspection or maintenance.
  • the SS / CR50 arranged in each module M has a plurality of doorways at different positions so as to open toward the side surface of the frame 30 (doors of the doorways in the figure). 52) is provided.
  • the doorway By arranging the doorway in this way, even if a person is staying in the SS / CR50, it can be immediately evacuated to the outside of the module M in the event of a fire or the like.
  • the SS / CR50 can be overweight and the SS / CR50 can be increased. It is also possible to suppress an increase in the diameter of the steel frame material of the frame 30 to be held.
  • the SS / CR50 provided in the module M of this example has an air intake for keeping the internal pressure of the SS / CR50 higher than the atmospheric pressure as one of the explosion-proof structures.
  • the pipe 531 is connected.
  • the intake pipe 531 is provided so as to extend upward along the side surface of the frame 30.
  • the air intake portion 532 at the end of the intake pipe 531 is arranged at a position higher than the combustible material handling device arranged in the frame 30 of the module M.
  • the air intake unit 532 is arranged at a position higher than the arrangement position of the ACHE 41.
  • the module M is constructed in a construction site called a module yard, which is different from the construction site of the LNG plant.
  • the SS / CR50 may be assembled in a factory called a shop, which is located in a place different from the module yard and is provided near a manufacturer of a power supply device or a control information output device.
  • the module M'under construction arranges the frame equipment 6 on each floor while assembling the frame 30 in order from the lower floor. At this time, when the SS / CR50 is arranged in the lowermost layer of the frame 30, it seems that the construction of the module M'under construction cannot be started unless the assembly of the SS / CR50 in the shop is completed.
  • the module M construction period may become excessively long. Therefore, in the module M'under construction shown in FIG. 4A, the construction of the module M'under construction is advanced leaving a space in which the SS / CR50 is arranged. During this period, the SS / CR50s placed on the gantry 501 will be assembled in parallel at the shop.
  • the SS / CR50 assembled at the shop is transported to the module yard, and the SS / CR50 is inserted into the arrangement area under the pipe rack. After that, for example, by connecting the frame 501 and the frame 30, the SS / CR50 is installed in the module M (FIG. 4B).
  • the power supply equipment in the SS / CR50 and the power consumption equipment in the frame 30 are connected via a feed line, and the control information output in the SS / CR50 is output.
  • the device and the controller and the detection unit of the controlled device in the frame 30 are connected to each other via a signal line. At this time, if the connection of these feeder lines and signal lines is completed in the module M in which the SS / CR50 is already installed, the man-hours after installing the module M on the construction site will be significantly increased. Can be reduced.
  • a power supply device housed in the SS / CR50 and a power consumption device arranged in the same frame 30 are connected via a feeder line 51. Connect and perform power supply test.
  • the feeder line 51 is shown by a broken line.
  • a power consuming device having a plurality of types of voltage levels having different working voltages may be arranged.
  • a power consuming device having a medium voltage or low voltage level of less than 1000 V is relatively easy to connect to the power supply device and to perform an energization test. Therefore, it is suitable for prior connection work and energization test work before the module M is installed on the construction site.
  • a power consuming device having a high voltage level of 1000 V or higher requires a large connection jig and test device, and may not be suitable for connection work and energization test work in a module yard.
  • the power consuming device having a voltage level of 1000 V or more has the power corresponding to the voltage level. It may be in a state of not being connected to the supply device. In the example of the module M shown in FIG. 3, a large pump 6a corresponds to this.
  • the power consuming device having a voltage level of less than 1000 V is in a state of being connected to a power supply device corresponding to the voltage level. In the example shown in FIG. 3, each ACHE 41 corresponds to this.
  • control information output device when the control information output device is housed in the SS / CR50, the control information output device is connected to the controlled device housed in the frame 30 via a signal line. Work, control signal transmission / reception test work may be performed. In FIG. 3, the description of the control information output device, the controlled device, and the signal line is omitted.
  • the module M on which the SS / CR50 is installed will be transported to the construction site using a carrier or a transport vehicle.
  • the module M is connected to the foundation pre-installed in the site, and the lower end of the frame 30 and the lower end of the base 501 of the SS / CR50 are fixed to the foundation.
  • Module M is installed at a predetermined position, pipes are connected between multiple modules M and external devices of module M, and power supply lines are connected from power generation equipment to each SS / CR50 which is a substation.
  • the signal line is connected between the main control room and each SS / CR50 which is the equipment control room. Further, in each module M, if the connection between the high-voltage power consuming device of 1000 V or more and the power supply device corresponding to the voltage level and the power supply test are not completed, these operations are also performed. By carrying out these operations, an LNG plant can be constructed.
  • the module M of this example is provided in the frame 30, and the SS / CR50 in which the power supply device or the control information output device is housed is arranged in the lower region of the pipe rack. By arranging the building using the space below the pipe rack, it is possible to contribute to the reduction of the installation area of the module M.
  • the position where the SS / CR50 is arranged is not limited to the lowest layer of the frame 30.
  • SS / CR50 may be arranged at height positions of two or more layers as long as it is inside the frame 30 excluding the upper surface (top layer) of the frame 30.
  • the plant that can be constructed by using the above-mentioned module M provided with SS / CR50 is not limited to the LNG plant.
  • This technology can also be applied to a natural gas processing plant that separates and recovers LPG and natural gas liquid, which is a heavy component, from natural gas.

Abstract

[Problem] To provide a module for a natural gas plant, with a high degree of equipment integration and risk-based strength. [Solution] A module M for a natural gas plant comprises: a frame 30 that houses a group of equipment 6 which constitutes a part of the natural gas plant; and a building 50 that houses at least power supply equipment, which is disposed in the frame 30 and supplies electric power to power-consuming equipment, or control information output equipment, which outputs operation control information to a controller that controls the operation of equipment to be controlled using control signals. The area above the location of the building serves as a pipe rack that holds, on the frame, a group of pipes through which the fluid handled in the natural gas plant flows.

Description

天然ガスプラント用モジュールModule for natural gas plant
 本発明は、天然ガスプラントを建設する技術に関する。 The present invention relates to a technique for constructing a natural gas plant.
 天然ガスの処理を行う天然ガス(NG)プラントには、天然ガスの液化を行う液化天然ガス(LNG: Liquefied Natural Gas)プラントや、天然ガスからLPG(Liquefied Petroleum Gas)や重質分の分離・回収などを行う天然ガス処理プラントなどがある。 
 近年、NGプラントを建設するにあたり、NGプラントを構成する多数の機器をブロック分けし、各ブロックの機器群を共通の架構内に組み込むモジュール化の取り組みがなされている(例えばLNGプラントにつき特許文献1)。以下、天然ガスプラントを建設するためのモジュールを天然ガス(NG)プラント用モジュールと呼ぶ。
Natural gas (NG) plants that process natural gas include liquefied natural gas (LNG) plants that liquefy natural gas, and LPG (Liquefied Petroleum Gas) and heavy components separated from natural gas. There are natural gas treatment plants that perform recovery.
In recent years, when constructing an NG plant, efforts have been made to modularize a large number of devices constituting the NG plant into blocks and incorporating the device groups of each block into a common frame (for example, Patent Document 1 for an LNG plant). ). Hereinafter, the module for constructing a natural gas plant will be referred to as a module for a natural gas (NG) plant.
 例えばNGプラント用モジュールは、NGプラントの建設敷地とは異なる場所で建造され、建設敷地へと輸送された後、その敷地内に設置される。そして、複数のNGプラント用モジュールを組み合わせることにより、NGプラントが構成される。 For example, the module for the NG plant is constructed at a place different from the construction site of the NG plant, and after being transported to the construction site, it is installed in the site. Then, the NG plant is configured by combining a plurality of NG plant modules.
 NGプラント用モジュールを構成する架構内には、外部から駆動用の電力の供給を受ける機器(電力消費機器)や、制御信号に基づいて動作制御が行われる機器(被制御機器)が多数台、設置される。 
 電力消費機器に対する電力の供給について、NGプラント用モジュールには、電圧変換を行う変電器や、各電力消費機器への給電制御を行う給電制御設備、遮断機や断路器などの電力供給機器を備えた変電室が併設される場合がある。
In the frame that constitutes the NG plant module, there are many devices (power consuming devices) that receive power for driving from the outside and devices that perform operation control based on control signals (controlled devices). Will be installed.
Regarding the supply of power to power consuming equipment, the NG plant module is equipped with a transformer that performs voltage conversion, power supply control equipment that controls power supply to each power consuming equipment, and power supply equipment such as circuit breakers and circuit breakers. A substation room may be added.
 また、被制御機器の動作制御に関して、NGプラント用モジュールには、NGプラント全体の統括制御を行う中央制御室にて、オペレータまたは自動制御装置から受け付けた流量設定値や圧力設定値、温度設定値など、被制御機器の動作制御に係る情報を、被制御機器の動作制御を行うコントローラに対して出力したり、被制御機器を用いて制御される流量、圧力、温度などの情報を中央制御室に向けて出力したりする制御情報出力機器を備えた機器制御室が併設される場合もある。 Regarding the operation control of the controlled equipment, the NG plant module has a flow rate set value, a pressure set value, and a temperature set value received from the operator or the automatic controller in the central control room that controls the entire NG plant. Information related to the operation control of the controlled device, such as, is output to the controller that controls the operation of the controlled device, and information such as the flow rate, pressure, and temperature controlled by the controlled device is output to the central control room. In some cases, an equipment control room equipped with a control information output device that outputs toward the air is installed.
 特許文献2に記載のように、出願人は、NGプラント用モジュールの外部に上述の変電室や機器制御室を構成する建屋を併設するにあたり、当該モジュールの建造地にてモジュールの架構に建屋を連結し、これらモジュールと建屋とを一緒にNGプラントの建設敷地へと輸送する技術を開発した(特許文献2)。NGプラントの建設敷地では、NGプラント用モジュールと建屋とを連結する連結部材を取り外すことにより、これらモジュールと建屋とが分離され、NGプラント用モジュールに隣接する位置に建屋が併設された状態となる。 As described in Patent Document 2, when the applicant installs a building constituting the above-mentioned substation room and equipment control room outside the module for the NG plant, the applicant installs a building on the frame of the module at the construction site of the module. We have developed a technology for connecting these modules and building together to transport them to the construction site of an NG plant (Patent Document 2). At the construction site of the NG plant, by removing the connecting member that connects the NG plant module and the building, these modules and the building are separated, and the building is installed at a position adjacent to the NG plant module. ..
 特許文献2に記載の技術においては、建屋をNGプラント用モジュールの外部に配置することにより、耐爆構造が要求される範囲を局所限定している。この結果、耐爆構造の建屋をNGプラント用モジュール内に設ける場合と比較して、前記モジュールの架構自体の耐爆化や、耐爆構造に伴う高荷重の建屋を支えることに伴う架構を構成する鉄骨材料の大径化を抑制している。
 一方で、NGプラントの敷地面積の制約などから、変電室や機器制御室である建屋の併設用の敷地を確保できない場合もある。このような場合に、いかなる構成の建屋をどこに設けるかについては、特許文献1、2には記載されていない。
In the technique described in Patent Document 2, the range in which the explosion-proof structure is required is locally limited by arranging the building outside the module for the NG plant. As a result, as compared with the case where the building with the explosion-proof structure is provided in the module for the NG plant, the frame itself of the module is made explosion-resistant and the frame is configured to support the high-load building due to the explosion-proof structure. It suppresses the increase in diameter of the steel frame material.
On the other hand, due to restrictions on the site area of the NG plant, it may not be possible to secure a site for the building that is a substation room or equipment control room. In such a case, Patent Documents 1 and 2 do not describe where and what kind of structure the building is to be provided.
国際公開第2014/028961号International Publication No. 2014/028961 国際公開第2019/008725号International Publication No. 2019/008725
 本発明は、機器の集積度が高く、リスクに応じた強度を有する天然ガスプラント用モジュールを提供する。 The present invention provides a module for a natural gas plant having a high degree of integration of equipment and strength according to a risk.
 本発明の天然ガスプラント用モジュールは、
 前記天然ガスプラントの一部を構成する機器群を収容した架構と、
 前記架構内に設けられ、前記機器群に含まれる電力消費機器に対して電力を供給する電力供給機器、または、前記機器群に含まれ、制御信号を用いて被制御機器の動作制御を行うコントローラに対して、前記動作制御に係る情報を出力する制御情報出力機器の少なくとも一方を収容した建屋と、を備え、
 前記建屋の配置の上方の領域は、前記天然ガスプラント内で取り扱われる流体が流れる配管群を前記架構に保持するパイプラックとなっていることを特徴とする。
The module for a natural gas plant of the present invention
A frame containing a group of equipment that forms part of the natural gas plant,
A power supply device provided in the frame and supplying power to a power consuming device included in the device group, or a controller included in the device group that controls the operation of the controlled device using a control signal. On the other hand, a building accommodating at least one of the control information output devices for outputting the information related to the operation control is provided.
The area above the layout of the building is characterized by being a pipe rack that holds a group of pipes through which the fluid handled in the natural gas plant flows in the frame.
 前記天然ガスプラント用モジュールは以下の特徴を備えてもよい。 
(a)前記架構が複数階層に構成されている場合に、前記建屋は、最下層に配置されること。
(b)前記建屋に前記電力供給機器が収容されている場合に、当該電力供給機器は、前記架構内に収容された電力消費機器と接続された状態となっていること。さらに前記建屋には、電圧レベルが異なる複数種の前記電力供給機器が収容されている場合に、電圧レベルが1000V以上の前記電力消費機器は、当該電圧レベルに対応する前記電力供給機器と未接続の状態であり、電圧レベルが1000V未満の前記電力消費機器について、当該電圧レベルに対応する電力供給機器と接続された状態となっていること。
(c)前記建屋に前記制御情報出力機器が収容されている場合に、当該制御情報出力機器は、前記架構内に収容された被制御機器と接続された状態となっていること。
(d)前記建屋には、当該建屋の内圧を大気圧よりも高い圧力に保つための空気の取り込み配管が接続され、前記取り込み配管の末端部の空気の取り込み部は、前記架構内に配置されている可燃物の取り扱い機器よりも高い位置に配置されていること。
(e)前記建屋には、前記架構の側面に向けて開口するように出入口が設けられていること。
The module for a natural gas plant may have the following features.
(A) When the frame is configured in a plurality of layers, the building shall be arranged in the lowest layer.
(B) When the power supply device is housed in the building, the power supply device is in a state of being connected to the power consumption device housed in the frame. Further, when a plurality of types of power supply devices having different voltage levels are housed in the building, the power consumption devices having a voltage level of 1000 V or higher are not connected to the power supply devices corresponding to the voltage levels. In this state, the power consuming device having a voltage level of less than 1000 V is connected to the power supply device corresponding to the voltage level.
(C) When the control information output device is housed in the building, the control information output device is in a state of being connected to the controlled device housed in the frame.
(D) An air intake pipe for keeping the internal pressure of the building higher than the atmospheric pressure is connected to the building, and an air intake portion at the end of the intake pipe is arranged in the frame. It must be located higher than the equipment that handles combustible materials.
(E) The building is provided with an entrance / exit so as to open toward the side surface of the frame.
 本天然ガスプラント用モジュールは、架構内に設けられ、電力供給機器または制御情報出力機器が収容された建屋をパイプラックの下方領域に配置している。パイプラック下方の空間を利用して前記建屋を配置することにより、天然ガスプラント用モジュールの設置面積の低減に資することができる。 The module for this natural gas plant is installed in the frame, and the building containing the power supply equipment or control information output equipment is located in the lower area of the pipe rack. By arranging the building using the space below the pipe rack, it is possible to contribute to the reduction of the installation area of the module for the natural gas plant.
液化天然ガス(LNG)プラントに含まれる各処理部の構成例である。This is a configuration example of each processing unit included in a liquefied natural gas (LNG) plant. 前記LNGプラント内に配置される天然ガスLNGプラント用モジュールのレイアウト例を示す平面図である。It is a top view which shows the layout example of the module for a natural gas LNG plant arranged in the LNG plant. 実施の形態に係る前記モジュールの側面図である。It is a side view of the module which concerns on embodiment. 建造中の前記モジュールの第1の側面図である。It is a 1st side view of the module under construction. 建造中の前記モジュールの第2の側面図である。2 is a second side view of the module under construction.
 以下、実施の形態に係る天然ガスプラント用モジュールにより、液化天然ガス(LNG)プラントを構成する例について説明する。以下、LNGプラントを構成する前記モジュールを単に「モジュール」ともいう。 
 図1は、本例のLNGプラントの概略構成の一例である。LNGプラントは、NGから液体を分離する気液分離部11と、NG中の水銀の除去を行う水銀除去部12と、NGから二酸化炭素や硫化水素などの酸性ガスを除去する酸性ガス除去部13と、NGに含まれる微量の水分を除去する水分除去部14と、これらの不純物が除去されたNGを冷却、液化してLNを得る液化処理部15と、液化されたLNGを貯蔵する貯蔵タンク17とを備える。
Hereinafter, an example in which a liquefied natural gas (LNG) plant is configured by the module for a natural gas plant according to the embodiment will be described. Hereinafter, the module constituting the LNG plant is also simply referred to as a “module”.
FIG. 1 is an example of a schematic configuration of the LNG plant of this example. In the LNG plant, a gas-liquid separation unit 11 that separates a liquid from NG, a mercury removal unit 12 that removes mercury in NG, and an acidic gas removal unit 13 that removes acidic gas such as carbon dioxide and hydrogen sulfide from NG. A water removing unit 14 for removing a small amount of water contained in the NG, a liquefaction processing unit 15 for cooling and liquefying the NG from which these impurities have been removed to obtain LN, and a storage tank for storing the liquefied LNG. It is provided with 17.
 気液分離部11は、パイプラインなどにより輸送されてきたNGから、常温で液体のコンデンセートを分離する。例えば気液分離部11は、比重差を利用してNGから液体を分離するための傾斜配置された細長いパイプやドラム、輸送の過程におけるパイプラインの閉塞を防止する目的で必要に応じて添加される不凍液の加熱再生を行う不凍液の再生塔やリボイラー、及びこれらの付帯設備などの機器群を備えている。 The gas-liquid separation unit 11 separates liquid condensate from NG transported by a pipeline or the like at room temperature. For example, the gas-liquid separation unit 11 is added as necessary for the purpose of preventing obstruction of slanted elongated pipes and drums for separating liquid from NG by utilizing the difference in specific gravity and pipelines in the process of transportation. It is equipped with a group of equipment such as an antifreeze regeneration tower and reboiler that heats and regenerates the antifreeze, and ancillary equipment for these.
 水銀除去部12は、液体が分離された後のNGに含まれる微量の水銀を除去する。例えば水銀除去部12は、吸着塔内に水銀除去剤を充填した水銀吸着塔やその付帯設備などの機器群を備えている。 The mercury removing unit 12 removes a small amount of mercury contained in NG after the liquid is separated. For example, the mercury removing unit 12 includes a group of devices such as a mercury adsorption tower in which the adsorption tower is filled with a mercury removing agent and ancillary equipment thereof.
 酸性ガス除去部13は、液化の際にLNG中で固化するおそれのある二酸化炭素や、硫化水素などの酸性ガスを除去する。酸性ガスの除去法としては、アミン化合物などを含むガス吸収液を用いる手法や、NG中の酸性ガスを透過させるガス分離膜を用いる手法が挙げられる。 The acid gas removing unit 13 removes carbon dioxide, hydrogen sulfide, and other acidic gases that may solidify in LNG during liquefaction. Examples of the method for removing acid gas include a method using a gas absorbing solution containing an amine compound and the like, and a method using a gas separation membrane that allows the acid gas in NG to permeate.
 ガス吸収液が採用されている場合、酸性ガス除去部13は、NGとガス吸収液とを向流接触させる吸収塔や、酸性ガスを吸収したガス吸収液を再生するための再生塔、再生塔内のガス吸収液を加熱するためのリボイラー、及びこれらの付帯設備などの機器群を備える。 
 また、ガス分離膜が採用されている場合、酸性ガス除去部13は、本体内に多数本の中空糸膜を収容したガス分離ユニットやその付帯設備などの機器群を備える。
When a gas absorption liquid is adopted, the acid gas removing unit 13 includes an absorption tower that brings NG and the gas absorption liquid into countercurrent contact, a regeneration tower for regenerating the gas absorption liquid that has absorbed the acid gas, and a regeneration tower. It is equipped with a reboiler for heating the gas absorption liquid inside, and a group of equipment such as these incidental facilities.
When a gas separation membrane is adopted, the acidic gas removing unit 13 includes a group of devices such as a gas separation unit containing a large number of hollow fiber membranes in the main body and ancillary equipment thereof.
 水分除去部14は、NG中に含まれる微量の水分を除去する。例えば水分除去部14は、モレキュラーシーブやシリカゲルなどの吸着剤が充填され、NGの水分除去操作と、水分を吸着した吸着剤の再生操作とが交互に切り替えて実施される複数の吸着塔、再生操作が行われている吸着塔に供給される吸着剤の再生用ガス(例えば水分除去後のNG)の加熱を行うヒーター、及びこれらの付帯設備などの機器群を備える。 The water removing unit 14 removes a small amount of water contained in NG. For example, the water removing unit 14 is filled with an adsorbent such as a molecular sieve or silica gel, and a plurality of adsorption towers and regenerations are carried out by alternately switching between an NG water removing operation and a water-adsorbed adsorbent regeneration operation. It is provided with a group of devices such as a heater for heating the regenerating gas (for example, NG after removing water) of the adsorbent supplied to the adsorbent tower being operated, and ancillary facilities thereof.
 以上に説明した各処理部11~14にて不純物が除去された後のNGは、液化処理部15に供給されて液化される。例えば液化処理部15は、プロパンを主成分とする予冷用冷媒によってNGの予冷を行う予冷熱交換器、予冷後のNGから重質分を除去するスクラブカラム、窒素、メタン、エタン、プロパンなどの複数種類の冷媒原料を含む混合冷媒(Mixed Refrigerant)によりNGを冷却して液化、過冷却する極低温熱交換器(MCHE:Main Cryogenic Heat Exchanger)、熱交換により気化した予冷用冷媒や混合冷媒のガスを圧縮する冷媒圧縮機21、及びこれらの付帯設備などの機器群を備える。 The NG after impurities have been removed by each of the processing units 11 to 14 described above is supplied to the liquefaction processing unit 15 and liquefied. For example, the liquefaction processing unit 15 includes a precooling heat exchanger that precools NG with a precooling refrigerant containing propane as a main component, a scrub column that removes heavy components from NG after precooling, nitrogen, methane, ethane, propane, and the like. Ultra-low temperature heat exchanger (MCHE: Main Cryogenic Heat Exchanger) that cools NG with a mixed refrigerant (Mixed Refrigerant) containing multiple types of refrigerant raw materials to liquefy and overcool, precooling refrigerant and mixed refrigerant vaporized by heat exchange It is provided with a group of equipment such as a refrigerant compressor 21 for compressing gas and ancillary equipment thereof.
 なお図1においては、予冷用冷媒や混合冷媒の個別の冷媒圧縮機(混合冷媒用の低圧MR圧縮機、高圧MR圧縮機、予冷用冷媒用のC3圧縮機)を1つにまとめて記載した他は、上述の各機器の個別の記載は省略してある。 
 また図1には、冷媒圧縮機21を駆動する動力源としてガスタービン22を用いた例を示してあるが、冷媒圧縮機21の規模などに応じてモーターなどを用いてもよい。
In FIG. 1, individual refrigerant compressors (low-pressure MR compressor for mixed refrigerant, high-pressure MR compressor, and C3 compressor for pre-cooling refrigerant) of the precooling refrigerant and the mixed refrigerant are described together. Other than that, the individual description of each device described above is omitted.
Further, although FIG. 1 shows an example in which the gas turbine 22 is used as the power source for driving the refrigerant compressor 21, a motor or the like may be used depending on the scale of the refrigerant compressor 21 and the like.
 また上述の液化処理部15の各冷媒圧縮機21の後段には、圧縮された冷媒を冷却するための各種クーラーやコンデンサーが設けられている場合がある。この他、酸性ガス除去部13がガス吸収液を用いている場合に、再生塔にて再生されたガス吸収液や塔頂液を冷却するためのクーラーが設けられている場合もある。LNGプラントには、これらクーラーやコンデンサーを構成し、当該LNGプラント内で取り扱われる流体の冷却を行うための多数の空冷式熱交換器(ACHE:Air-Cooled Heat Exchanger)41が設けられている。 Further, in the subsequent stage of each refrigerant compressor 21 of the above-mentioned liquefaction processing unit 15, various coolers and capacitors for cooling the compressed refrigerant may be provided. In addition, when the acid gas removing unit 13 uses a gas absorbing liquid, a cooler for cooling the gas absorbing liquid regenerated in the regeneration tower or the tower top liquid may be provided. The LNG plant is provided with a large number of air-cooled heat exchangers (ACHE: Air-Cooled Heat Exchanger) 41 for forming these coolers and condensers and cooling the fluids handled in the LNG plant.
 さらに液化処理部15には、冷却されたNGから分離された液体(液体重質分)から、エタンを分離するデエタナイザと、エタン分離後の液体からプロパンを分離するデプロパナイザと、プロパン分離後の液体からブタンを分離し、常温で液体のコンデンセートを得るデブタナイザとを含む精留部16が併設されている。デエタナイザ、デプロパナイザ、デブタナイザは、それぞれ各成分の精留を行う精留塔、各精留塔内の液体を加熱するリボイラー、及びこれらの付帯設備などの機器群を備えている。精留部16は、本実施の形態の重質分除去部に相当する。 Further, the liquefaction processing unit 15 includes a deetanizer that separates ethane from the liquid (liquid heavy component) separated from the cooled NG, a depropanizer that separates propane from the liquid after ethane separation, and a liquid after propane separation. A rectification section 16 including a debutanizer that separates butane from propane and obtains a liquid condensate at room temperature is provided. The deetaizer, depropanizer, and debutanizer are each equipped with a rectification tower for rectifying each component, a reboiler for heating the liquid in each rectification tower, and a group of equipment such as ancillary equipment thereof. The rectified portion 16 corresponds to the heavy component removing portion of the present embodiment.
 貯蔵タンク17には、液化処理部15にて液化、過冷却された後の液化天然ガス(LNG)が送液され、貯蔵される。貯蔵タンク17に貯蔵されたLNGは、不図示のLNGポンプによって送液され、LNGタンカーやパイプラインへと出荷される。 Liquefied natural gas (LNG) after being liquefied and supercooled by the liquefaction processing unit 15 is sent to the storage tank 17 and stored. The LNG stored in the storage tank 17 is sent by an LNG pump (not shown) and shipped to an LNG tanker or a pipeline.
 このほか、LNGプラント内には、上述の各処理部11~16にて実施される種々の加熱操作や貯蔵タンク17の底面に設けられた地面の凍結防止用のヒーターなどに供給される熱媒(例えばホットオイルや蒸気など)の加熱を行うオイルヒーターやボイラーなどとその付帯設備、LNGプラント内で消費される電力を供給するガスタービン発電機やガスエンジン発電機とその付帯設備といった機器群も設置されている。 In addition, in the LNG plant, various heating operations performed by the above-mentioned processing units 11 to 16 and a heat medium supplied to a heater for preventing freezing of the ground provided on the bottom surface of the storage tank 17 and the like are supplied. Oil heaters and boilers that heat (for example, hot oil and steam) and their ancillary equipment, as well as equipment groups such as gas turbine generators and gas engine generators that supply power consumed in LNG plants and their ancillary equipment. is set up.
 図2は、上述のLNGプラントのレイアウトの一例を示している。本例のLNGプラントは、共通の架構30に、各処理部11~16を構成する機器群(架構内機器6やACHE41など)を収容した複数のモジュールMを組み合わせて構成されている。 
 後述する変電室や機器制御室を構成する建屋の配置位置を示す図示の便宜上、図2に示す各モジュールMは、複数階層の架構30の最下層における架構内機器6の配置位置を示している。但し、ACHE41が設けられているモジュールMについては、架構30の上面に設けられたACHE群4を併記し、一部の架構内機器6が隠れている場合もある。
FIG. 2 shows an example of the layout of the above-mentioned LNG plant. The LNG plant of this example is configured by combining a common frame 30 with a plurality of modules M accommodating a group of devices (such as frame device 6 and ACHE 41) constituting each of the processing units 11 to 16.
For convenience of illustration showing the arrangement positions of the buildings constituting the substation room and the equipment control room, which will be described later, each module M shown in FIG. 2 indicates the arrangement position of the frame equipment 6 in the lowermost layer of the frame 30 of a plurality of layers. .. However, for the module M provided with the ACHE 41, the ACHE group 4 provided on the upper surface of the frame 30 may be described together, and a part of the frame equipment 6 may be hidden.
 図2に示す例において、液化処理部15を構成する機器群は、さらに複数のグループに分けられ、各々のグループの機器群を架構30内に収容した複数のモジュールMが設けられている。また、他の処理部11、12、13、14、16や、オイルヒーター、ボイラーなどを構成する各機器群(架構内機器6やACHE41)についても、処理部11、12、13、14、16毎などにグループ分けされ、各グループの機器群を架構30に収容した複数のモジュールMが設けられている。 In the example shown in FIG. 2, the device group constituting the liquefaction processing unit 15 is further divided into a plurality of groups, and a plurality of modules M in which the device groups of each group are housed in the frame 30 are provided. Further, the processing units 11, 12, 13, 14, 16 and each device group (framework device 6 and ACHE41) constituting the other processing units 11, 12, 13, 14, 16 and the oil heater, the boiler, etc. are also processed. A plurality of modules M are provided, which are grouped by each group and house the equipment group of each group in the frame 30.
 また図2に示すように、液化処理部15側の複数のモジュールMを横方向に並べ、また、他の処理部11、12、13、14、16などに係るモジュールMを横方向に並べ、これら2列のモジュールMにより、LNGプラントが構成されている。また、液化処理部15のモジュールMの列の両脇には、MR圧縮機やC3圧縮機である冷媒圧縮機21が配置されている。 
 以下の説明では、図2中に実線で示した座標軸はLNGプラント全体についての向きを示している。また、図2~4中に破線で示した副座標軸は、各モジュールMに着目した方向を示し、副座標軸のY’軸の基点側を後端側、矢印方向側を先端側と呼ぶ。
Further, as shown in FIG. 2, a plurality of modules M on the liquefaction processing unit 15 side are arranged in the horizontal direction, and modules M related to other processing units 11, 12, 13, 14, 16 and the like are arranged in the horizontal direction. The LNG plant is composed of these two rows of modules M. Further, on both sides of the row of the module M of the liquefaction processing unit 15, an MR compressor and a refrigerant compressor 21 which is a C3 compressor are arranged.
In the following description, the coordinate axes shown by the solid lines in FIG. 2 indicate the orientation of the entire LNG plant. Further, the sub-coordinate axes shown by broken lines in FIGS. 2 to 4 indicate the direction in which each module M is focused, and the base point side of the Y'axis of the sub-coordinate axes is referred to as the rear end side, and the arrow direction side is referred to as the tip side.
 以下、モジュールMの具体的な構成例について説明するが、図2に示すように、本例のLNGプラントは、その上面側に複数台のACHE41が設けられたモジュールM1と、ACHE41が設けられていないモジュールM2との2種類のモジュールMによって構成されている。 
 これらのモジュールM1、M2は、ACHE41の有無を除いて基本的な構成は共通している。以下のモジュールMの説明においては、ACHE41に関する説明以外は、モジュールM1、M2に共通する構成である。
A specific configuration example of the module M will be described below. As shown in FIG. 2, the LNG plant of this example is provided with a module M1 in which a plurality of ACHE41s are provided on the upper surface side thereof and an ACHE41. It is composed of two types of modules M with no module M2.
These modules M1 and M2 have the same basic configuration except for the presence or absence of ACHE41. In the following description of the module M, the configurations are common to the modules M1 and M2 except for the description of the ACHE 41.
 図2、3に示すように、各モジュールMを構成する架構30は、平面形状が概略矩形に形成されると共に、各処理部11~16の機器群に含まれる機器を上下方向に多層に配置することが可能な鉄骨製の骨組み構造体である。 As shown in FIGS. 2 and 3, the frame 30 constituting each module M has a substantially rectangular planar shape, and the devices included in the device groups of the processing units 11 to 16 are arranged in multiple layers in the vertical direction. It is a steel frame structure that can be used.
 架構30の上面には、先端側から後端側へ向くY軸方向に沿ってACHE41を複数台並べた列が設けられている。さらに架構30の幅方向に向けてACHE41の列を複数列(図示の便宜上、図2には3列の例を示してある)設けることにより、多数のACHE群4が配置されている。これらACHE41は、各処理部11~16の機器群の一部を構成している。 On the upper surface of the frame 30, a row of a plurality of ACHE41s arranged along the Y-axis direction from the front end side to the rear end side is provided. Further, a large number of ACHE groups 4 are arranged by providing a plurality of rows of ACHE 41 in the width direction of the frame 30 (for convenience of illustration, an example of three rows is shown in FIG. 2). These ACHE 41s form a part of the equipment group of each processing unit 11 to 16.
 図3に示すように、ACHE群4が配置されている領域の下方側の空間は、各処理部11~16間で受け渡される流体が流れる多数の配管42を配置したパイプラックとなっている。これらの配管42についても、各処理部11~16の機器群の一部を構成している。 
 なお、ACHE群4が配置されていないモジュールM2においても、他のモジュールM1のACHE群4の配置領域と横並びとなる、後端側の領域に、パイプラックが設けられている。
As shown in FIG. 3, the space below the area where the ACHE group 4 is arranged is a pipe rack in which a large number of pipes 42 through which the fluid passed between the processing units 11 to 16 flows are arranged. .. These pipes 42 also form a part of the equipment group of each processing unit 11 to 16.
Even in the module M2 in which the ACHE group 4 is not arranged, a pipe rack is provided in the rear end side region which is side by side with the arrangement region of the ACHE group 4 of the other module M1.
 また、パイプラックに配置された配管42の下方側や、パイプラックよりも先端側の空間には、既述のACHE41と共に、各処理部11~16の機器群の一部を構成する架構内機器6が配置されている。架構内機器6には、塔槽や熱交換器などの静機器、ポンプ6aなどの動機器、各静機器、動機器間やパイプラック側の配管42との間を接続する接続配管(不図示)などが含まれる。 Further, in the space below the pipe 42 arranged in the pipe rack and on the tip side of the pipe rack, together with the above-mentioned ACHE 41, the on-site equipment forming a part of the equipment group of each processing unit 11 to 16. 6 is arranged. The on-site equipment 6 includes static equipment such as a tower tank and a heat exchanger, dynamic equipment such as a pump 6a, each static equipment, and connection pipes (not shown) for connecting between the dynamic equipment and the pipe 42 on the pipe rack side. ) Etc. are included.
 上述の構成を備えたモジュールMにおいて、架構30に収容された機器のうち、ACHE41やポンプ6aなど、駆動用の電力を消費する電力消費機器に対しては、各電力消費機器の定格電圧に応じて変圧された電力が給電線を介して供給される。 
 そこで、これらの電力消費機器を収容した架構30には、周囲から区画された外郭構造物からなる建屋内に、電圧変換を行う変電器や、各電力消費機器への給電制御を行う給電制御設備、遮断機や断路器などの電力供給機器を収容した変電室(Substation、SS)が併設される。
In the module M having the above configuration, among the devices housed in the frame 30, the power consuming devices such as the ACHE 41 and the pump 6a that consume the driving power are adjusted according to the rated voltage of each power consuming device. The transformed power is supplied via the power supply line.
Therefore, in the frame 30 accommodating these power consuming devices, a substation that performs voltage conversion and a power supply control device that controls power supply to each power consuming device are installed in a building composed of an outer structure partitioned from the surroundings. , A substation (SS) that houses power supply equipment such as circuit breakers and disconnectors will be installed.
 さらに、架構30に収容された各種の機器には、流体の流量を調整する流量調整弁や塔槽内の圧力を調整する圧力調整弁、温度調整の対象となる流体の熱交換器出口を調整するために、熱媒や冷媒の流量を増減する流量調整弁などのコントロール弁や、塔槽内の液位などに応じて、開閉動作が実行される開閉弁などの各種の被制御機器が含まれる。 Further, for various devices housed in the frame 30, a flow rate adjusting valve for adjusting the flow rate of the fluid, a pressure adjusting valve for adjusting the pressure in the tower tank, and a heat exchanger outlet for the fluid to be adjusted for temperature are adjusted. Includes various controlled devices such as control valves such as flow rate control valves that increase or decrease the flow rate of heat medium and refrigerant, and on-off valves that perform opening and closing operations according to the liquid level in the tower tank. Is done.
 これらの被制御機器にはコントローラが併設され、流体の流量、圧力、温度や液位などを検出部にて検出した結果に基づいて、コントローラから被制御機器に制御信号を出力し、各被制御機器の動作制御を行う制御ループが構築されている。 A controller is attached to these controlled devices, and the controller outputs a control signal to the controlled device based on the result of detecting the flow rate, pressure, temperature, liquid level, etc. of the fluid by the detection unit, and each controlled device is controlled. A control loop is constructed to control the operation of the device.
 このとき、これら制御ループに係る機器を収容した架構30には、建屋内に、FCS(Field Control Station)などと呼ばれる制御情報出力機器を収容した機器制御室(Instrument Control Room、CR)が併設される場合もある。制御情報出力機器は、LNGプラント全体の統括制御を行う中央制御室にて、オペレータまたは自動制御装置から受け付けた流量設定値や圧力設定値、温度設定値など、被制御機器の動作制御に係る情報を、被制御機器の動作制御を行うコントローラに対して出力したり、検出部にて検出された流体の流量、圧力、温度や液位などの情報を中央制御室に向けて出力したりする。 
 制御情報出力機器と、各被制御機器のコントローラや検出部とは、信号線を介して接続されている。また以下の説明では、上述の変電室や機器制御室を構成する建屋をSS/CR50と記す。
At this time, the frame 30 accommodating the equipment related to these control loops is provided with an instrument control room (CR) accommodating control information output equipment called FCS (Field Control Station) in the building. In some cases. The control information output device is information related to the operation control of the controlled device, such as the flow rate set value, pressure set value, and temperature set value received from the operator or automatic control device in the central control room that controls the entire LNG plant. Is output to the controller that controls the operation of the controlled device, and information such as the flow rate, pressure, temperature, and liquid level of the fluid detected by the detection unit is output to the central control room.
The control information output device and the controller and detection unit of each controlled device are connected via a signal line. Further, in the following description, the building constituting the above-mentioned substation room and equipment control room will be referred to as SS / CR50.
 本実施の形態において、各モジュールMに併設されているSS/CR50は、他の架構内機器6群と共に、モジュールMを構成する架構30によって囲まれた領域の内側に設けられ、モジュールMと一体に輸送可能となっている。 
 架構30の骨組みを構成する多数の柱と梁のうち、同じ高さ位置に横架された複数の梁によって形成される面を架構30の各階層としたとき、図3に示すように、架構30は複数階層(同図の例では4階層)に構成されている。
In the present embodiment, the SS / CR50 attached to each module M is provided inside the area surrounded by the frame 30 constituting the module M together with the other 6 groups of frame devices, and is integrated with the module M. It can be transported to.
As shown in FIG. 3, when the surfaces formed by the plurality of beams laid horizontally at the same height position among the large number of columns and beams constituting the frame of the frame 30 are set as each layer of the frame 30, the frame is as shown in FIG. 30 is composed of a plurality of layers (4 layers in the example of the figure).
 本例のSS/CR50は、上記複数階層構造の架構30の最下層に配置されている。また、当該SS/CR50が配置されている位置の上方の領域は、既述のように、LNGプラント内で取り扱われる流体が流れる配管42群が架構によって保持されたパイプラックとなっている。言い替えると、SS/CR50は、パイプラックの下方側の空間に設けられている。 The SS / CR50 of this example is arranged in the lowest layer of the frame 30 having the above-mentioned multi-layer structure. Further, as described above, the area above the position where the SS / CR50 is arranged is a pipe rack in which the pipe 42 group through which the fluid handled in the LNG plant flows is held by the frame. In other words, the SS / CR50 is provided in the space below the pipe rack.
 以上に説明したように、本例のモジュールMにおいては、可燃性の流体が流れる配管42の下方側に密閉構造の建屋であるSS/CR50が配置されている。一般に、可燃性流体を取り扱う機器(配管42を含む)の近傍に建屋を配置する場合には、耐爆構造、防爆構造の検討が行われる。 
 耐爆構造とは、建屋の周囲で爆発が発生した場合であっても、建屋の損壊を抑制することを可能なように、建屋の構成部材の強度設計が行われていることである。また防爆構造とは、建屋の内部への可燃性物質の進入を抑制し、また可燃性物質が進入した場合であっても着火を抑制する仕組みである。
As described above, in the module M of this example, the SS / CR50, which is a building having a closed structure, is arranged below the pipe 42 through which the flammable fluid flows. Generally, when the building is arranged near the equipment (including the pipe 42) that handles flammable fluids, the explosion-proof structure and the explosion-proof structure are examined.
The explosion-resistant structure means that the strength of the constituent members of the building is designed so that damage to the building can be suppressed even if an explosion occurs around the building. The explosion-proof structure is a mechanism that suppresses the entry of flammable substances into the building and suppresses ignition even when flammable substances enter.
 耐爆構造に係る建屋の構成部材の強度や、建屋内に進入した毒性物質の排出能力などを決定する手法(Management System)の1つとして、API RP(American Petroleum Institute Recommended Practice)752がある(以下、単に「API752」と記載)。 
 耐爆構造の決定手法に関し、API752には、(1)建屋に影響を及ぼし得る最大の事象を想定して、その結果生じる帰結の定量的、定性的評価を行うこと、(2)当該建屋に対する人員の滞在頻度や避難場所としての建屋の機能を考慮すること、(3)これらの検討結果を踏まえて、建屋の耐爆強度の基準を策定し、当該基準に則って建屋の強度設計を行うことなどが記載されている。
API RP (American Petroleum Institute Recommended Practice) 752 is one of the methods (Management System) for determining the strength of building components related to the explosion-resistant structure and the discharge capacity of toxic substances that have entered the building (American Petroleum Institute Recommended Practice) 752 ( Hereinafter, it is simply described as "API752").
Regarding the method for determining the explosion-resistant structure, API752 includes (1) assuming the maximum event that can affect the building, and quantitatively and qualitatively evaluating the resulting consequences, and (2) for the building. Consider the frequency of stay of personnel and the function of the building as an evacuation site, (3) Based on the results of these studies, formulate the standards for the explosion resistance of the building, and design the strength of the building according to the standards. That is described.
 API752は、米国の推奨手法であるが、他国におけるLNGプラントの建設においても当該手法に則って建屋の強度設計が行われることがある。
 この手法を採用した場合、図3に示すように可燃性の流体が流れる配管42が配置されたパイプラックの下方の空間にSS/CR50を配置する条件下では、SS/CR50を構成する建屋に対しては、極めて高い耐爆性が必要とされる可能性が高い。この結果、SS/CR50の重量も増大し、当該SS/CR50を保持するために、架構30を構成する鉄骨材料も大径化して、架構30の材料コスト、輸送コストが上昇する要因となる。
API752 is the recommended method in the United States, but the strength of the building may be designed according to the method even in the construction of LNG plants in other countries.
When this method is adopted, as shown in FIG. 3, under the condition that the SS / CR50 is arranged in the space below the pipe rack in which the pipe 42 through which the flammable fluid flows is arranged, the building constituting the SS / CR50 On the other hand, it is highly likely that extremely high explosion resistance is required. As a result, the weight of the SS / CR50 also increases, and in order to hold the SS / CR50, the diameter of the steel frame material constituting the frame 30 also increases, which causes an increase in the material cost and the transportation cost of the frame 30.
 一方で、建設敷地内に多数の機器やこれらの機器を支持するラックを順次、設置していく従来のLNGプラントと比較して、本例のモジュールMは、各架構30における架構内機器6の集積度が高い。言い替えると、モジュールMは、限定された領域に可燃性の流体を取り扱う架構内機器6が集中的に配置されているといえる。 On the other hand, as compared with the conventional LNG plant in which a large number of devices and racks supporting these devices are sequentially installed in the construction site, the module M of this example is the frame device 6 in each frame 30. High degree of integration. In other words, in the module M, it can be said that the frame equipment 6 for handling the flammable fluid is centrally arranged in a limited area.
 そして、図2に示すように、各モジュールMは隣り合う他のモジュールMとの間に隙間を空けて配置されている。即ち、地上に多数の機器が配置された従来のLNGプラントと異なり、モジュールMによって構成されるLNGプラントは、モジュールMの外に出てしまえば、前記隙間を介して退避がしやすい構造となっている。
 さらに、LNGプラントのオペレータが常駐している中央制御室とは異なり、各SS/CR50は、点検時やメンテナンス実施時などを除いて、通常は人員が不在の建屋である。
Then, as shown in FIG. 2, each module M is arranged with a gap between the modules M and the other adjacent modules M. That is, unlike the conventional LNG plant in which a large number of devices are arranged on the ground, the LNG plant composed of the module M has a structure that can be easily evacuated through the gap once it goes out of the module M. ing.
Further, unlike the central control room where the operator of the LNG plant is resident, each SS / CR50 is usually a building without personnel except at the time of inspection or maintenance.
 これらのことを考慮すると、LNGプラントにおける建屋の耐爆構造の設計手法(例えば既述のAPI752)に従い、人員の安全確保を行ったうえで、SS/CR50の強度設計を行うことが本例のモジュールMにおいては合理的と言える。 
 人員の安全確保については、火災などが発生した場合にSS/CR50内に人員が滞在していた場合には、当該SS/CR50内に留まるのではなく、速やかにモジュールM外に退避しやすい構造を採用し、そのうえでSS/CR50の保持する安全に関する機能を限定することが合理的である。
Considering these facts, in this example, it is necessary to design the strength of SS / CR50 after ensuring the safety of personnel according to the design method of the explosion-resistant structure of the building in the LNG plant (for example, API752 described above). It can be said that it is rational in module M.
Regarding ensuring the safety of personnel, if personnel are staying in the SS / CR50 in the event of a fire, etc., the structure makes it easy to quickly evacuate to the outside of the module M instead of staying in the SS / CR50. It is rational to adopt, and then limit the safety-related functions held by the SS / CR50.
 この観点で図2に示すように、各モジュールM内に配置されたSS/CR50には、架構30の側面に向けて開口するように、異なる位置に複数の出入口(図中には出入り口のドア52を記してある)が設けられている。このように、出入口を配置することにより、SS/CR50内に人員が滞在していた場合であっても、火災などが発生した場合には直ちにモジュールMの外部へ退避することができる。 From this point of view, as shown in FIG. 2, the SS / CR50 arranged in each module M has a plurality of doorways at different positions so as to open toward the side surface of the frame 30 (doors of the doorways in the figure). 52) is provided. By arranging the doorway in this way, even if a person is staying in the SS / CR50, it can be immediately evacuated to the outside of the module M in the event of a fire or the like.
 一方、上述のように、モジュールMの外部へ退避することが人員の安全確保の前提となっている場合、過剰な耐爆構造のSS/CR50を設けることは合理的ではない。 On the other hand, as described above, when evacuation to the outside of the module M is a prerequisite for ensuring the safety of personnel, it is not rational to provide SS / CR50 with an excessive explosion-proof structure.
 架構内機器6の集積度が高く、人員が退避しやすいモジュールMの構造に着目し、リスクに応じた耐爆強度を採用することで、SS/CR50の過剰な重量化や、SS/CR50を保持する架構30の鉄骨材料の大径化も抑制することができる。 Focusing on the structure of the module M, which has a high degree of integration of the framed equipment 6 and makes it easy for personnel to evacuate, by adopting explosion-resistant strength according to the risk, the SS / CR50 can be overweight and the SS / CR50 can be increased. It is also possible to suppress an increase in the diameter of the steel frame material of the frame 30 to be held.
 また、図4に示すように、本例のモジュールMに設けられたSS/CR50には、防爆構造の1つとして、SS/CR50の内圧を大気圧よりも高い圧力に保つための空気の取り込み配管531が接続されている。例えば取り込み配管531は、架構30の側面に沿って上方側へ向けて伸びるように設けられる。この取り込み配管531の末端部の空気の空気取り込み部532は、モジュールMの架構30内に配置されている可燃物の取り扱い機器よりも高い位置に配置されている。特にACHE41が設けられたモジュールM1においては、空気取り込み部532はACHE41の配置位置よりも高い位置に配置される。 Further, as shown in FIG. 4, the SS / CR50 provided in the module M of this example has an air intake for keeping the internal pressure of the SS / CR50 higher than the atmospheric pressure as one of the explosion-proof structures. The pipe 531 is connected. For example, the intake pipe 531 is provided so as to extend upward along the side surface of the frame 30. The air intake portion 532 at the end of the intake pipe 531 is arranged at a position higher than the combustible material handling device arranged in the frame 30 of the module M. In particular, in the module M1 provided with the ACHE 41, the air intake unit 532 is arranged at a position higher than the arrangement position of the ACHE 41.
 以上に説明した、架構30の内側にSS/CR50が設けられたモジュールMの建造工程について図4を参照しながら説明する。 
 図4Aに示すように、モジュールMは、モジュールヤードと呼ばれる、LNGプラントの建設敷地とは異なる建造地にて建造される。一方、SS/CR50は、当該モジュールヤードとは異なる場所であって、電力供給機器や制御情報出力機器のメーカーの近くなどに設けられた、ショップと呼ばれる工場で組み立てられる場合がある。
The construction process of the module M in which the SS / CR50 is provided inside the frame 30 described above will be described with reference to FIG.
As shown in FIG. 4A, the module M is constructed in a construction site called a module yard, which is different from the construction site of the LNG plant. On the other hand, the SS / CR50 may be assembled in a factory called a shop, which is located in a place different from the module yard and is provided near a manufacturer of a power supply device or a control information output device.
 モジュールヤードにおいて、建造中モジュールM’は、下方側の階層から順に架構30を組み上げながら、各階層に架構内機器6を配置していく。このとき、架構30の最下層にSS/CR50が配置される場合には、ショップにおけるSS/CR50の組み立てが完了しないと、建造中モジュールM’の建造に着手できないようにも思える。 In the module yard, the module M'under construction arranges the frame equipment 6 on each floor while assembling the frame 30 in order from the lower floor. At this time, when the SS / CR50 is arranged in the lowermost layer of the frame 30, it seems that the construction of the module M'under construction cannot be started unless the assembly of the SS / CR50 in the shop is completed.
 しかしながら、SS/CR50の組み立ての完了を待っていると、モジュールMの建造期間が過度に長くなってしまうおそれがある。そこで、図4Aに示す建造中モジュールM’においては、SS/CR50が配置される空間を残して建造中モジュールM’の建造を進める。この期間、ショップにおいては、架台501上に配置された状態のSS/CR50が並行して組み立てられていく。 However, if you wait for the SS / CR50 to be assembled, the module M construction period may become excessively long. Therefore, in the module M'under construction shown in FIG. 4A, the construction of the module M'under construction is advanced leaving a space in which the SS / CR50 is arranged. During this period, the SS / CR50s placed on the gantry 501 will be assembled in parallel at the shop.
 そして図4Bに示すように、モジュールMの建造がほぼ完成すると、ショップにて組み立てられたSS/CR50をモジュールヤードへ搬送し、パイプラック下の配置領域にSS/CR50を挿入する。しかる後、例えば架台501と架構30とを連結することにより、モジュールM内にSS/CR50が設置された状態となる(図4B)。 Then, as shown in FIG. 4B, when the construction of the module M is almost completed, the SS / CR50 assembled at the shop is transported to the module yard, and the SS / CR50 is inserted into the arrangement area under the pipe rack. After that, for example, by connecting the frame 501 and the frame 30, the SS / CR50 is installed in the module M (FIG. 4B).
 ここで既述のように、LNGプラントの完成後には、SS/CR50内の電力供給機器と架構30内の電力消費機器とは給電線を介して接続され、またSS/CR50内の制御情報出力機器と架構30内の被制御機器のコントローラや検出部とは信号線を介して接続された状態となる。 
 このとき、既にSS/CR50が設置された状態のモジュールM内において、これら給電線や信号線の繋ぎ込みも完了させておいた方が、モジュールMを建設敷地に設置した後の工数を大幅に低減できる。
As described above, after the completion of the LNG plant, the power supply equipment in the SS / CR50 and the power consumption equipment in the frame 30 are connected via a feed line, and the control information output in the SS / CR50 is output. The device and the controller and the detection unit of the controlled device in the frame 30 are connected to each other via a signal line.
At this time, if the connection of these feeder lines and signal lines is completed in the module M in which the SS / CR50 is already installed, the man-hours after installing the module M on the construction site will be significantly increased. Can be reduced.
 そこで架構30内にSS/CR50を設置した後は、SS/CR50内に収容されている不図示の電力供給機器と、同じ架構30内に配置された電力消費機器とを給電線51を介して接続し、給電試験を行う。図3中、給電線51は破線で示してある。 Therefore, after the SS / CR50 is installed in the frame 30, a power supply device (not shown) housed in the SS / CR50 and a power consumption device arranged in the same frame 30 are connected via a feeder line 51. Connect and perform power supply test. In FIG. 3, the feeder line 51 is shown by a broken line.
 ここでモジュールM内には、使用電圧が異なる複数種の電圧レベルの電力消費機器が配置されている場合がある。このとき、例えば1000V未満の中圧、低圧の電圧レベルの電力消費機器は、電力供給機器との接続作業や通電試験も比較的容易である。このため、モジュールMが建設敷地に設置される前の事前の接続作業、通電試験作業に適している。 
 一方で、1000V以上の高圧の電圧レベルの電力消費機器は、大型の接続治具や試験機器が必要となるため、モジュールヤード内での接続作業、通電試験作業には適していない場合もある。
Here, in the module M, power consuming devices having a plurality of types of voltage levels having different working voltages may be arranged. At this time, for example, a power consuming device having a medium voltage or low voltage level of less than 1000 V is relatively easy to connect to the power supply device and to perform an energization test. Therefore, it is suitable for prior connection work and energization test work before the module M is installed on the construction site.
On the other hand, a power consuming device having a high voltage level of 1000 V or higher requires a large connection jig and test device, and may not be suitable for connection work and energization test work in a module yard.
 そこで、本例のモジュールMは、SS/CR50に電圧レベルが異なる複数種の電力供給機器が収容されている場合に、電圧レベルが1000V以上の電力消費機器は、当該電圧レベルに対応する前記電力供給機器と未接続の状態としてもよい。図3に示すモジュールMの例では、大型のポンプ6aがこれに相当する。 
 一方、電圧レベルが1000V未満の前記電力消費機器については、当該電圧レベルに対応する電力供給機器と接続された状態となっている。図3に示す例では、各ACHE41がこれに相当する。
Therefore, in the module M of this example, when a plurality of types of power supply devices having different voltage levels are housed in the SS / CR50, the power consuming device having a voltage level of 1000 V or more has the power corresponding to the voltage level. It may be in a state of not being connected to the supply device. In the example of the module M shown in FIG. 3, a large pump 6a corresponds to this.
On the other hand, the power consuming device having a voltage level of less than 1000 V is in a state of being connected to a power supply device corresponding to the voltage level. In the example shown in FIG. 3, each ACHE 41 corresponds to this.
 さらにモジュールヤードにおいては、SS/CR50に制御情報出力機器が収容されている場合に、これらの制御情報出力機器については、架構30内に収容された被制御機器と信号線を介して接続する接続作業、制御信号の送受信試験作業を行ってもよい。なお、図3においては、制御情報出力機器、被制御機器、信号線の記載は省略してある。 Further, in the module yard, when the control information output device is housed in the SS / CR50, the control information output device is connected to the controlled device housed in the frame 30 via a signal line. Work, control signal transmission / reception test work may be performed. In FIG. 3, the description of the control information output device, the controlled device, and the signal line is omitted.
 以上に説明した作業が完了した後、SS/CR50が設置されたモジュールMは、運搬船や輸送車を用いて建設敷地まで輸送される。次いで、前記敷地内に予め設置された基礎に対してモジュールMを接続し、架構30の下端部や、SS/CR50の基台部501の下端部を基礎に固定する。 After the work described above is completed, the module M on which the SS / CR50 is installed will be transported to the construction site using a carrier or a transport vehicle. Next, the module M is connected to the foundation pre-installed in the site, and the lower end of the frame 30 and the lower end of the base 501 of the SS / CR50 are fixed to the foundation.
 所定の位置にモジュールMを設置し、複数のモジュールM間やモジュールMの外部の機器との間での配管の繋ぎ込み、発電設備などから変電室である各SS/CR50への給電線の繋ぎ込みや、中央制御室と機器制御室である各SS/CR50との間の信号線の繋ぎ込みなどを行う。また、各モジュールM内において、1000V以上の高圧の電力消費機器と、当該電圧レベルに対応する電力供給機器との接続、給電試験が完了していない場合は、これらの作業も実施する。 
 これらの作業を実施することにより、LNGプラントを構成することができる。
Module M is installed at a predetermined position, pipes are connected between multiple modules M and external devices of module M, and power supply lines are connected from power generation equipment to each SS / CR50 which is a substation. The signal line is connected between the main control room and each SS / CR50 which is the equipment control room. Further, in each module M, if the connection between the high-voltage power consuming device of 1000 V or more and the power supply device corresponding to the voltage level and the power supply test are not completed, these operations are also performed.
By carrying out these operations, an LNG plant can be constructed.
 本実施の形態に係るモジュールMによれば以下の効果がある。本例のモジュールMは、架構30内に設けられ、電力供給機器または制御情報出力機器が収容されたSS/CR50をパイプラックの下方領域に配置している。パイプラック下方の空間を利用して前記建屋を配置することにより、モジュールMの設置面積の低減に資することができる。 According to the module M according to the present embodiment, there are the following effects. The module M of this example is provided in the frame 30, and the SS / CR50 in which the power supply device or the control information output device is housed is arranged in the lower region of the pipe rack. By arranging the building using the space below the pipe rack, it is possible to contribute to the reduction of the installation area of the module M.
 ここで、SS/CR50を配置する位置は、架構30の最下層に限定されない。架構30の上面(最上層)を除く架構30の内側であれば、2階層以上の高さ位置にSS/CR50を配置してもよい。 Here, the position where the SS / CR50 is arranged is not limited to the lowest layer of the frame 30. SS / CR50 may be arranged at height positions of two or more layers as long as it is inside the frame 30 excluding the upper surface (top layer) of the frame 30.
 また、SS/CR50が設けられた上述のモジュールMを利用して建設可能なプラントは、LNGプラントに限定されない。天然ガスからLPGや重質分である天然ガス液の分離・回収処理などを行う天然ガス処理プラントに対しても本技術は適用することができる。 Further, the plant that can be constructed by using the above-mentioned module M provided with SS / CR50 is not limited to the LNG plant. This technology can also be applied to a natural gas processing plant that separates and recovers LPG and natural gas liquid, which is a heavy component, from natural gas.
M、M1、M2
      モジュール
30    架構
50    SS/CR
51    給電線
6     架構内機器
 

 
M, M1, M2
Module 30 Frame 50 SS / CR
51 Feed line 6 On-site equipment

Claims (7)

  1.  天然ガスプラント用モジュールにおいて、
     前記天然ガスプラントの一部を構成する機器群を収容した架構と、
     前記架構内に設けられ、前記機器群に含まれる電力消費機器に対して電力を供給する電力供給機器、または、前記機器群に含まれ、制御信号を用いて被制御機器の動作制御を行うコントローラに対して、前記動作制御に係る情報を出力する制御情報出力機器の少なくとも一方を収容した建屋と、を備え、
     前記建屋の配置の上方の領域は、前記天然ガスプラント内で取り扱われる流体が流れる配管群を前記架構に保持するパイプラックとなっていることを特徴とする天然ガスプラント用モジュール。
    In modules for natural gas plants
    A frame containing a group of equipment that forms part of the natural gas plant,
    A power supply device provided in the frame and supplying power to a power consuming device included in the device group, or a controller included in the device group that controls the operation of the controlled device using a control signal. On the other hand, a building accommodating at least one of the control information output devices for outputting the information related to the operation control is provided.
    A module for a natural gas plant, characterized in that the area above the arrangement of the building is a pipe rack that holds a group of pipes through which a fluid handled in the natural gas plant flows in the frame.
  2.  前記架構が複数階層に構成されている場合に、前記建屋は、最下層に配置されることを特徴とする請求項1に記載の天然ガスプラント用モジュール。 The module for a natural gas plant according to claim 1, wherein when the frame is configured in a plurality of layers, the building is arranged in the lowest layer.
  3.  前記建屋に前記電力供給機器が収容されている場合に、当該電力供給機器は、前記架構内に収容された電力消費機器と接続された状態となっていることを特徴とする請求項1に記載の天然ガスプラント用モジュール。 The first aspect of claim 1, wherein when the power supply device is housed in the building, the power supply device is connected to the power consumption device housed in the frame. Module for natural gas plants.
  4.  前記建屋には、電圧レベルが異なる複数種の前記電力供給機器が収容されている場合に、電圧レベルが1000V以上の前記電力消費機器は、当該電圧レベルに対応する前記電力供給機器と未接続の状態であり、電圧レベルが1000V未満の前記電力消費機器について、当該電圧レベルに対応する電力供給機器と接続された状態となっていることを特徴とする請求項3に記載の天然ガスプラント用モジュール。 When a plurality of types of power supply devices having different voltage levels are housed in the building, the power consumption devices having a voltage level of 1000 V or higher are not connected to the power supply devices corresponding to the voltage levels. The module for a natural gas plant according to claim 3, wherein the power consuming device having a voltage level of less than 1000 V is in a state of being connected to a power supply device corresponding to the voltage level. ..
  5.  前記建屋に前記制御情報出力機器が収容されている場合に、当該制御情報出力機器は、前記架構内に収容された被制御機器と接続された状態となっていることを特徴とする請求項1に記載の天然ガスプラント用モジュール。 Claim 1 is characterized in that when the control information output device is housed in the building, the control information output device is in a state of being connected to the controlled device housed in the frame. Modules for natural gas plants as described in.
  6.  前記建屋には、当該建屋の内圧を大気圧よりも高い圧力に保つための空気の取り込み配管が接続され、前記取り込み配管の末端部の空気の取り込み部は、前記架構内に配置されている可燃物の取り扱い機器よりも高い位置に配置されていることを特徴とする請求項1に記載の天然ガスプラント用モジュール。 An air intake pipe for maintaining the internal pressure of the building at a pressure higher than the atmospheric pressure is connected to the building, and an air intake portion at the end of the intake pipe is flammable arranged in the frame. The module for a natural gas plant according to claim 1, wherein the module is arranged at a position higher than a device for handling an object.
  7.  前記建屋には、前記架構の側面に向けて開口するように出入口が設けられていることを特徴とする請求項1に記載の天然ガスプラント用モジュール。
     
    The module for a natural gas plant according to claim 1, wherein the building is provided with an entrance / exit so as to open toward the side surface of the frame.
PCT/JP2019/030876 2019-08-06 2019-08-06 Module for natural gas plant WO2021024376A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021506010A JP6887071B1 (en) 2019-08-06 2019-08-06 Module for natural gas plant
CN202310623760.7A CN116659182A (en) 2019-08-06 2019-08-06 Method for manufacturing module for natural gas equipment
KR1020227001369A KR102485278B1 (en) 2019-08-06 2019-08-06 Modules for natural gas plants
RU2021119182A RU2766682C1 (en) 2019-08-06 2019-08-06 Module for natural gas processing plant
PCT/JP2019/030876 WO2021024376A1 (en) 2019-08-06 2019-08-06 Module for natural gas plant
CN201980069880.9A CN112912678A (en) 2019-08-06 2019-08-06 Module for natural gas equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030876 WO2021024376A1 (en) 2019-08-06 2019-08-06 Module for natural gas plant

Publications (1)

Publication Number Publication Date
WO2021024376A1 true WO2021024376A1 (en) 2021-02-11

Family

ID=74503354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030876 WO2021024376A1 (en) 2019-08-06 2019-08-06 Module for natural gas plant

Country Status (5)

Country Link
JP (1) JP6887071B1 (en)
KR (1) KR102485278B1 (en)
CN (2) CN116659182A (en)
RU (1) RU2766682C1 (en)
WO (1) WO2021024376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001952A1 (en) * 2014-07-02 2016-01-07 日揮株式会社 Air-cooled type liquefied gas production facility
JP2018531356A (en) * 2015-10-06 2018-10-25 エクソンモービル アップストリーム リサーチ カンパニー Modularization of hydrocarbon processing plant
WO2018198573A1 (en) * 2017-04-26 2018-11-01 千代田化工建設株式会社 Method for constructing natural gas liquefaction plant
WO2019008725A1 (en) * 2017-07-06 2019-01-10 日揮株式会社 Module for natural gas liquefaction devices, natural gas liquefaction device, and method for manufacturing natural gas liquefaction devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014272A1 (en) 2005-03-24 2006-09-28 Rhein Chemie Rheinau Gmbh Microgel and thickener containing compositions
BR112013018814A2 (en) * 2011-01-28 2017-08-29 1Nsite Tech Ltd TRANSPORTABLE MODULAR SYSTEM FOR SAGD PROCESS.
RU2451250C1 (en) * 2011-03-22 2012-05-20 Закрытое акционерное общество Финансовая компания "Центр Космос-Нефть-Газ" Block-module of gas processing facility of gas field of oil and gas condensate deposit
ITUB20153957A1 (en) * 2015-09-28 2017-03-28 Nuovo Pignone Tecnologie Srl GAS TURBINE MODULE AND COMPRESSOR FOR GROUND LNG SYSTEMS
KR20180032863A (en) * 2016-09-23 2018-04-02 현대중공업 주식회사 deck structure for topside Module of floating prpduction storage offloading, topside Module and pipe rack Arrange structure using the same
JP6619775B2 (en) 2017-06-28 2019-12-11 キヤノン株式会社 COMMUNICATION DEVICE, SYSTEM, CONTROL METHOD, AND PROGRAM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001952A1 (en) * 2014-07-02 2016-01-07 日揮株式会社 Air-cooled type liquefied gas production facility
JP2018531356A (en) * 2015-10-06 2018-10-25 エクソンモービル アップストリーム リサーチ カンパニー Modularization of hydrocarbon processing plant
WO2018198573A1 (en) * 2017-04-26 2018-11-01 千代田化工建設株式会社 Method for constructing natural gas liquefaction plant
WO2019008725A1 (en) * 2017-07-06 2019-01-10 日揮株式会社 Module for natural gas liquefaction devices, natural gas liquefaction device, and method for manufacturing natural gas liquefaction devices

Also Published As

Publication number Publication date
RU2766682C1 (en) 2022-03-15
CN116659182A (en) 2023-08-29
JPWO2021024376A1 (en) 2021-09-13
KR102485278B1 (en) 2023-01-09
KR20220013453A (en) 2022-02-04
CN112912678A (en) 2021-06-04
JP6887071B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US10060670B2 (en) Air-cooled modular LNG production facility
KR101915007B1 (en) Modular lng production facility
RU2727948C1 (en) Module for natural gas liquefaction devices, natural gas liquefaction device and method of producing natural gas liquefaction devices
AU2018380882B2 (en) Compact lng production train and method
AU2022200199A1 (en) Method of operating a liquefied natural gas production facility
WO2018198573A1 (en) Method for constructing natural gas liquefaction plant
JP6887071B1 (en) Module for natural gas plant
AU2017416235B2 (en) Module for natural gas liquefier device, and natural gas liquefier device
AU2017419936B2 (en) Natural gas liquefaction device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021506010

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940776

Country of ref document: EP

Kind code of ref document: A1