WO2016001952A1 - Air-cooled type liquefied gas production facility - Google Patents

Air-cooled type liquefied gas production facility Download PDF

Info

Publication number
WO2016001952A1
WO2016001952A1 PCT/JP2014/003541 JP2014003541W WO2016001952A1 WO 2016001952 A1 WO2016001952 A1 WO 2016001952A1 JP 2014003541 W JP2014003541 W JP 2014003541W WO 2016001952 A1 WO2016001952 A1 WO 2016001952A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooled
liquefied gas
heat exchanger
gas production
Prior art date
Application number
PCT/JP2014/003541
Other languages
French (fr)
Japanese (ja)
Inventor
久保田 圭
謙 角谷
直之 竹澤
英史 大森
謙一郎 門
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2014/003541 priority Critical patent/WO2016001952A1/en
Publication of WO2016001952A1 publication Critical patent/WO2016001952A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Definitions

  • the present invention relates to an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method.
  • the liquefied gas production facility is a facility for purifying and liquefying natural gas LNG (Liquid Natural Gas), LPG (Liquid Petroleum Gas), and SNG (Synthetic Natural Gas) to produce the target liquefied gas.
  • LNG Liquid Natural Gas
  • LPG Liquid Petroleum Gas
  • SNG Synthetic Natural Gas
  • Examples thereof include LNG manufacturing equipment, LPG manufacturing equipment, and SNG manufacturing equipment.
  • FIG. 1 is a functional block diagram showing an example of an LNG manufacturing facility.
  • the gas supplied from the gas field is provided to the LNG manufacturing facility after the liquid separation step.
  • LNG is produced by obtaining processes such as mercury removal, acid gas removal, moisture removal, liquefaction, nitrogen removal and the like from the gas.
  • the refrigerant used in the liquefaction process is circulated and used in a vapor compression refrigeration cycle.
  • the refrigerant is compressed by a compressor in a gaseous state.
  • the compressed refrigerant is cooled by a condenser and liquefied.
  • the liquefied refrigerant having a high pressure is lowered in temperature by an expansion valve or the like.
  • the low-temperature refrigerant is naturalized and becomes gas again by heat exchange with natural gas, which is a process fluid. In this way, natural gas is liquefied through a refrigeration cycle using compressor power and condenser heat exchange.
  • a water-cooled or air-cooled condenser In the LNG production facility, a water-cooled or air-cooled condenser is used for the refrigeration cycle. Water-cooled condensers often use seawater to cool the cooling water, but the effect of seawater heated by heat exchange on the environment has become a problem. In recent years, LNG that uses air-cooled condensers has become a problem. Manufacturing facilities are increasing. The liquefaction process is essential not only for LNG production equipment but also for LPG production equipment and SNG production equipment.
  • LNG manufacturing equipment is rectangular as a whole when viewed from above.
  • a pipe rack is provided in the center of the facility along the longitudinal direction of the rectangle, and a refrigerant compressor, a heat exchanger for cooling natural gas, a distillation tower for purifying natural gas, etc. are arranged on both sides of the pipe rack. It is normal.
  • a plurality of air-cooled heat exchangers (hereinafter also referred to as “ACHE”) are arranged on the top of the pipe rack portion in the vertical direction.
  • the plurality of air-cooled heat exchangers are arranged in a straight line of at least one row and have a rectangular shape as a whole. Since the LNG manufacturing facility has related facilities on both sides of the pipe rack with the air-cooled heat exchanger disposed at the top, the LNG manufacturing facility has a rectangular shape as a whole when viewed from above.
  • the air-cooled heat exchanger sucks up the air below the air-cooled heat exchanger by the rotation of the fan, passes it through the fan, and exhausts it upward.
  • air flows through the tube bundle of the air-cooling heat exchanger from the lower side to the upper side in the vertical direction heat is exchanged between the air and the fluid in the tube bundle. Air is warmed by heat exchange with the warm fluid flowing through the tube bundle, and the temperature of the exhaust from the air-cooled heat exchanger is higher than that of the intake air.
  • the LNG manufacturing department which will be constructed as the project progresses, is modularized and has approximately the same format, and is called “LNG train”, “LNG module”, “LNG unit” or the like.
  • hot air recirculation HAR
  • Non-Patent Document 1 in order not to increase the recirculation rate, the height position of the ACHE is aligned with the upper part of the structure, or the windward side is sealed and sucked from the leeward side, thereby causing a strong downward flow ( It is described that the downdraft is reduced.
  • FIG. 2 is a schematic vertical cross-sectional view showing the problem of hot air in the LNG manufacturing department that employs an air-cooled heat exchanger.
  • the air-cooled heat exchanger of the LNG manufacturing unit sucks air from below by a fan, exchanges heat with the warm fluid flowing in the tube bundle, and exhausts the warmed air upward.
  • the inventors of the present invention have a crosswise wind (cross wind) with respect to the longitudinal direction when viewed from above the LNG train. It has been found that this is a factor of the wind (downwash or downdraft) that blows down the exhaust of ACHE to the intake side. HAR is caused by the downwash wrapping around the intake of ACHE. HAR reduces the heat exchange amount of ACHE and makes it difficult to remove the heat of condensation for liquefying the gas, resulting in a decrease in LNG production.
  • an object of the present invention is to provide an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method capable of improving the efficiency of heat exchange by ACHE and suppressing a decrease in the amount of liquefied gas produced by HAR.
  • An air-cooled liquefied gas production facility having an air-cooled liquefied gas production section that liquefies a supply gas mainly composed of methane to produce a liquefied gas
  • the air-cooled liquefied gas production department A heat exchanger for cooling the supply gas by heat exchange with a refrigerant;
  • a compressor that compresses the refrigerant evaporated by heat exchange with the supply gas;
  • a plurality of air-cooled heat exchangers for cooling the compressed refrigerant by heat exchange with air;
  • An inflating part for inflating and cooling the cooled refrigerant;
  • a pipe for sending the refrigerant to the heat exchanger is arranged, A liquefied gas production facility, wherein the vertical length of the space is longer than the short length of the space when viewed from above. 2.
  • the space is a second space through which a counterflow against downwash is passed, in addition to the first space that secures the desired suction flow rate of the air-cooled heat exchanger.
  • the liquefied gas production facility according to 1 comprising a space.
  • a pipe for sending refrigerant evaporated by heat exchange with the supply gas to the compressor is disposed outside the pipe rack portion. 4).
  • the air-cooled liquefied gas production facility according to any one of 1 to 3, wherein the air-cooled heat exchanger includes a shielding plate member. 5.
  • the compressor shelter that accommodates the compressor is disposed adjacent to the pipe rack portion, and the space of the pipe rack portion exists in a position higher than the compressor shelter in the vertical direction.
  • a plurality of the air-cooled liquefied gas production units, and the distance between any two adjacent air-cooled liquefied gas production units is the shortness of the space when the vertical length of the space is viewed from above.
  • the air-cooled liquefied gas production facility according to any one of 1 to 6, wherein the facility is shorter than the distance in the case of being shorter than the length in the direction. 8).
  • An air-cooled liquefied gas production method for producing a liquefied gas by removing unnecessary substances from a supply gas containing methane as a main component and liquefying An air-cooled liquefied gas production facility comprising a heat exchanger, a compressor, a plurality of air-cooled heat exchangers, an expansion part, and a pipe rack part in which the plurality of air-cooled heat exchangers are arranged at the top in the vertical direction Use
  • the air-cooled liquefied gas production facility is In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction.
  • a pipe for sending the refrigerant to the heat exchanger is arranged,
  • the vertical length of the space is an air-cooled liquefied gas production facility that is longer than the length in the short direction of the space when viewed from above.
  • the heat exchanger cools the supply gas by exchanging heat with the refrigerant
  • the compressor compresses the refrigerant evaporated by heat exchange with the supply gas
  • the plurality of air-cooled heat exchangers cool the compressed refrigerant by heat exchange with air, Expanding and cooling the cooled refrigerant by the expansion unit;
  • an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method capable of improving the efficiency of heat exchange by ACHE and suppressing a decrease in the amount of liquefied gas produced by HAR.
  • FIG. 1 is a functional block diagram illustrating an example of an LNG manufacturing facility.
  • FIG. 2 is a schematic longitudinal sectional view showing the problem of HAR in the air-cooled LNG manufacturing unit.
  • FIG. 3 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • FIG. 4 is a process flow diagram showing a liquefaction process in the air-cooled liquefied gas production unit.
  • FIG. 5 is an example of CFD analysis showing an air-cooled LNG manufacturing facility in which self-HAR occurs.
  • FIG. 6 is an example of a CFD analysis of an air-cooled LNG manufacturing facility according to the present invention.
  • FIG. 7 is a plan view of the air-cooled LNG manufacturing unit corresponding to the CFD analysis of FIG. 5 as viewed from above.
  • FIG. 8 is a plan view of the air-cooled LNG manufacturing unit corresponding to the CFD analysis of FIG. 6 as viewed from above.
  • FIG. 9 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • FIG. 10 is a schematic longitudinal sectional view showing an aspect of the air-cooled liquefied gas production section of the present invention.
  • FIG. 11 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • FIG. 12 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • FIG. 13 is a schematic longitudinal sectional view showing a problem of HAR of an air-cooled LNG manufacturing facility.
  • FIG. 14 is a plan view of the air-cooled LNG manufacturing facility related to the CFD analysis of FIG. 5 as viewed from above.
  • FIG. 15 is a plan view of the air-cooled LNG manufacturing facility related to the CFD analysis of FIG
  • the air-cooled liquefied gas production facility and the air-cooled liquefied gas production section are assumed to be substantially rectangular when viewed from above.
  • the substantially rectangular shape means a rectangle and does not necessarily have to be a complete rectangle.
  • the direction of the long side of the rectangle is called the longitudinal direction
  • the direction of the short side is called the short direction.
  • Various devices and pipes are arranged in a substantially rectangular area.
  • An air-cooled liquefied gas production facility of the present invention is: An air-cooled liquefied gas production facility having an air-cooled liquefied gas production section that liquefies a supply gas mainly composed of methane to produce a liquefied gas,
  • the air-cooled liquefied gas production department A heat exchanger for cooling the supply gas by heat exchange with a refrigerant;
  • a compressor that compresses the refrigerant evaporated by heat exchange with the supply gas;
  • a plurality of air-cooled heat exchangers for cooling the compressed refrigerant by heat exchange with air;
  • An inflating part for inflating and cooling the cooled refrigerant;
  • FIG. 3 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention. About the air-cooled liquefied gas production department, the longitudinal section parallel to the transversal direction when seen from the sky is shown.
  • an air-cooled heat exchanger 2 is installed at the top of the pipe rack section 1.
  • the air-cooled heat exchanger 2 includes a tube bundle 5 constituting a heat transfer surface for heat exchange, a fan, a motor for driving the fan, and the like.
  • a certain space is opened below the air-cooling heat exchanger 2, and a pipe bundle 4 including a plurality of pipes is installed.
  • the pipe bundle arranged in the pipe rack part is a specific pipe, that is, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that sends the expanded refrigerant to the heat exchanger. including.
  • FIG. 4 is a process flow diagram showing a liquefaction process in the air-cooled liquefied gas production unit. An example of a liquefaction process is shown roughly.
  • the supply gas mainly composed of methane is sent to the heat exchanger 2 via the pipe 1 that sends the supply gas to the heat exchanger.
  • the pipe 1 for sending the supply gas to the heat exchanger is disposed in the pipe rack portion, and the supply gas flowing through the pipe is air-cooled by the air-cooling heat exchanger.
  • heat exchanger 2 heat exchange between the supply gas and the refrigerant is performed.
  • the supply gas is cooled and liquefied by heat exchange with the refrigerant to produce a liquefied gas.
  • the produced liquefied gas is stored in the tank 3.
  • FIG. 4 only one heat exchanger is shown in FIG. 4, the number of heat exchangers and the number of refrigerants used are not limited and can be appropriately determined depending on the process.
  • the refrigerant evaporated by heat exchange with the supply gas is sent to the compressor 11 via the pipe 10 that sends the refrigerant from the heat exchanger to the compressor, and is compressed by the compressor 11.
  • the compressed refrigerant is sent to the expansion unit 13 via a pipe 12 that sends the compressed refrigerant from the compressor to the expansion unit.
  • the pipe 12 for sending the compressed refrigerant to the expansion section is arranged in the pipe rack section, and the refrigerant flowing through the pipe is air-cooled by the air-cooling heat exchanger.
  • coolant is expanded with an expansion valve etc., a pressure is lowered
  • the expanded refrigerant is sent to the heat exchanger 2 via a pipe 14 that sends the expanded refrigerant to the heat exchanger.
  • a pipe 14 for sending the expanded refrigerant to the heat exchanger is disposed in the pipe rack portion, and the refrigerant flowing through the pipe is air-cooled by the air-cooling heat exchanger. In the heat exchanger 2, heat exchange between the supply gas and the refrigerant is performed again.
  • the space 3 below the vertical direction of the air-cooled heat exchanger 2 has a vertical length (X) when viewed from above.
  • the length in the short direction of the space (corresponding to the tube bundle length) (Y) is made longer.
  • the first space (the vertical length “Y” in FIG. 3) z is secured in the upper part of the uppermost pipe of the pipes arranged in the pipe rack to ensure the desired suction flow rate of the air-cooled heat exchanger.
  • a second space (a space having the vertical length “XY” as the dimension of the z-axis in FIG.
  • the cross wind can pass through the gap formed by the first space and the second space.
  • the wind that passes through the space is opposed to the downwash that may occur. It can be reduced and HAR can be suppressed or reduced.
  • How long the vertical length of the space is made longer than the short length of the space is not particularly limited, and can be appropriately designed and determined according to process conditions and construction costs.
  • FIG. 5 is an example of a CFD (Computational Fluid Dynamics) analysis showing an LNG manufacturing facility where HAR occurs. It is an elevational view showing the lateral side of the train in the two LNG manufacturing sections of train A and train B. Note that the train A or B has the LNG manufacturing equipment shown in FIG. 3 arranged in parallel, so the pressure loss of the wind flowing in the lower part of the air-cooled heat exchanger is larger than in the case of one train. The situation is likely to cause downwash.
  • the train A and the train B are provided with predetermined piping without providing a space below the vertical direction of the air-cooled heat exchanger.
  • the color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C.
  • FIG. 6 is an example of a CFD analysis of an air-cooled LNG manufacturing facility according to the present invention.
  • FIG. 6 is an elevational view showing the lateral direction of the train in the two LNG manufacturing facilities of train A and train B, as in FIG. 5.
  • the train A and the train B are provided with predetermined piping with a space below the vertical direction of the air-cooled heat exchanger.
  • the color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C. Downwash because the crosswind in the longitudinal direction of the train ("East Wind" in the figure), that is, when the wind parallel to the short direction blows, the crosswind passing through the space becomes the opposite flow to the wind that blows down. And the occurrence of self-HAR is avoided.
  • FIG. 7 is a plan view seen from above corresponding to the CFD analysis of FIG.
  • the LNG manufacturing department has a rectangular shape with the longitudinal direction from the top to the bottom as viewed in the drawing.
  • a cross wind with respect to the longitudinal direction of the train that is, a wind parallel to the short direction of the train blows from the right to the left of the page, downwash occurs and HAR occurs.
  • the HAR increases the intake temperature of the ACHE, and thus the exhaust temperature of the ACHE also increases. Therefore, it can be seen that the temperature above the ACHE and the left side of the drawing where the exhaust of the ACHE flows due to the cross wind are high.
  • FIG. 8 is a plan view seen from above corresponding to the CFD analysis of FIG.
  • the LNG manufacturing department has a rectangular shape with the longitudinal direction from the top to the bottom as viewed in the drawing.
  • a crosswind with respect to the longitudinal direction of the train that is, a wind parallel to the short direction of the train blows from the right to the left of the page
  • the crosswind passing through the space in the pipe rack portion becomes the countercurrent to the wind that blows down. Therefore, generation of downwash and self-HAR is avoided. Since no HAR occurs, the ACHE intake temperature does not increase as in the case of FIG. 5 and FIG. 7 described above, and therefore the ACHE exhaust temperature does not increase. It can be seen that the temperature on the left side of the drawing through which the exhaust gas flows is lower than in the case of FIG.
  • a pipe for sending the refrigerant evaporated by heat exchange with the supply gas to the compressor is arranged outside the pipe rack section.
  • a pipe 10 that sends the refrigerant evaporated by heat exchange with the supply gas to the compressor is disposed outside the pipe rack portion.
  • the pipe 10 for sending the refrigerant evaporated by heat exchange with the supply gas to the compressor is not included in the pipe bundle 4 arranged in the pipe rack portion 1 of FIG.
  • the pipe that sends the refrigerant evaporated by heat exchange from the heat exchanger to the compressor has a large diameter, and this pipe is not placed in the pipe rack part, but is placed outside the pipe rack part.
  • FIG. 9 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • FIG. 9 shows, as an example, a part of an LNG manufacturing unit that uses propane (C3) and a mixed refrigerant (MR) composed of nitrogen, methane, ethane, and propane as a refrigerant for cooling and liquefying natural gas. Is shown. This process is also called C3-MR method.
  • propane propane
  • MR mixed refrigerant
  • a pipe 110 for sending refrigerant evaporated by heat exchange with supply gas to a compressor (C3 Comp + GT) 120 in a heat exchanger (C3 heat exchanger) 100 using propane as a refrigerant is a pipe rack unit 300. Placed outside. Further, in FIG. 9, a pipe 210 that sends a refrigerant evaporated by heat exchange with a supply gas to a compressor (MR Comp + GT) 220 in a heat exchanger (MCHE heat exchanger) 200 using a mixed refrigerant as a refrigerant is a pipe. It is arranged outside the rack unit 300.
  • a pipe 130 that sends the refrigerant compressed by the compressor 120 to the expansion section a pipe 140 that sends the expanded refrigerant to the heat exchanger 100, and a pipe 230 that sends the refrigerant compressed by the compressor 220 to the expansion section.
  • the pipe 240 for sending the expanded refrigerant to the heat exchanger 200 is arranged in the pipe rack unit 300, and the air flowing through the pipe is cooled by the air cooling heat exchanger.
  • the air-cooled heat exchanger includes a shielding plate member.
  • the shielding plate member (winglet) plays a role of shielding the exhaust of the air-cooled heat exchanger from flowing downward in the vertical direction, thereby suppressing or reducing self-HAR.
  • FIG. 10 is a schematic longitudinal sectional view showing an aspect of the air-cooled liquefied gas production section of the present invention.
  • the air-cooled liquefied gas production unit of the present invention has an air-cooled heat exchanger 2 installed at the top of the pipe rack unit 1, and a fixed space 3 below the vertical direction of the air-cooled heat exchanger.
  • the pipe bundle 4 including a plurality of pipes is installed.
  • the air-cooled heat exchanger includes a shielding plate member 6. If a shielding board member plays the role which shields the exhaust_gas
  • a plate extending in the horizontal direction can be installed as a shielding plate member at the base of the air-cooled heat exchanger 2 at the top of the pipe rack portion 1.
  • the air-cooled liquefied gas production unit of the present invention is configured such that a compressor shelter that accommodates a compressor is disposed adjacent to the pipe rack unit, and the space of the pipe rack unit is a compressor shelter in the vertical direction. Present at a higher position.
  • a compressor shelter means the building which accommodates a compressor, a gas turbine, and the apparatus accompanying these.
  • FIG. 11 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention.
  • the air-cooled liquefied gas production unit of the present invention has a pipe rack unit 1 in which an air-cooled heat exchanger 2 is installed at the top, and a fixed space 3 below the air-cooled heat exchanger in the vertical direction.
  • the pipe bundle 4 including a plurality of pipes is installed.
  • the compressor shelter 7 is disposed adjacent to the pipe rack portion 1, and the space 3 is disposed at a position higher than the compressor shelter 7 in the vertical direction.
  • the air-cooled liquefied gas production unit of the present invention is configured such that the compressor is disposed adjacent to the pipe rack unit, and the air intake (air intake port) of the gas turbine for driving the compressor is directed to the pipe rack unit. It is arranged so that there is no. As a result, downwash that can occur when cross wind blows, that is, air warmed by heat exchange exhausted from the air-cooled heat exchanger (hot air) can be prevented from being introduced as intake air of the gas turbine. The reduction in compression efficiency can be suppressed or prevented.
  • FIG. 12 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention. As in FIG. 9, the C3-MR process is shown. As shown in FIG. 12, the air intakes of the gas turbines 125 and 225 are parallel to the longitudinal direction of the air-cooled liquefied gas production section having a rectangular shape when viewed from above, as indicated by the arrows in FIG. It is facing away from the pipe rack. As a result, even if a downwash occurs when crosswind (wind in the short direction) blows, the air intake (air intake) is not oriented in the short direction, so a high temperature downwash is introduced into the intake of the gas turbine. As a result, the reduction in the compression efficiency of the refrigerant can be suppressed or prevented.
  • the air-cooled liquefied gas production facility of the present invention has a plurality of air-cooled liquefied gas production units, and the length of the space in the vertical direction is short in the space when viewed from above. The distance between any two adjacent air-cooled liquefied gas production units is made shorter than when the length is shorter than the length.
  • a space is provided between the air-cooling heat exchanger arranged in the pipe rack section and the pipe bundle to reduce or suppress self-HAR, thereby reducing the external HAR in the adjacent air-cooled liquefied gas production section. Or it can be suppressed.
  • FIG. 14 is an example of CFD analysis showing the LNG manufacturing facility in which the self HAR and the external HAR are generated as shown in FIG. 5, and is a plan view seen from above. No space is provided between the air-cooled heat exchanger disposed in the pipe rack portion and the pipe bundle. The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C. When a cross wind blows, it is not possible to secure a flow of air that opposes the possible downwash, so that the self-HAR is generated by the downwash, and the downwash has an effect as an external HAR to the adjacent LNG train.
  • FIG. 15 is an example of CFD analysis showing the air-cooled LNG manufacturing facility shown in FIG. 6, and is a plan view seen from above. A space is provided between the air-cooled heat exchanger disposed in the pipe rack portion and the pipe bundle. The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C. When a cross wind blows, it is possible to secure a flow of air that opposes the possible downwash, reducing or suppressing self-HAR and reducing or suppressing external HAR.
  • the self-HAR countermeasure according to the present invention can avoid the external HAR without increasing the distance between trains, and can reduce the entire plant plot.
  • the air-cooled liquefied gas production method of the present invention is an air-cooled liquefied gas production method for producing a liquefied gas by removing unnecessary substances from a supply gas mainly composed of methane and liquefying it,
  • An air-cooled liquefied gas production facility comprising a heat exchanger, a compressor, a plurality of air-cooled heat exchangers, an expansion part, and a pipe rack part in which the plurality of air-cooled heat exchangers are arranged at the top in the vertical direction
  • the air-cooled liquefied gas production facility is In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction.
  • a pipe for sending the refrigerant to the heat exchanger is arranged,
  • the vertical length of the space is an air-cooled liquefied gas production facility that is longer than the length in the short direction of the space when viewed from above.
  • the heat exchanger cools the supply gas by exchanging heat with the refrigerant
  • the compressor compresses the refrigerant evaporated by heat exchange with the supply gas
  • the plurality of air-cooled heat exchangers cool the compressed refrigerant by heat exchange with air, Expanding and cooling the cooled refrigerant by the expansion unit;

Abstract

Provided is an air-cooled type liquefied gas production facility having an air-cooled type liquefied gas production section for producing a liquefied gas by liquefying a supply gas containing methane as the main component. In the air-cooled type liquefied gas production facility, the air-cooled type liquefied gas production section comprises: a heat exchanger for cooling the supply gas by subjecting the supply gas to heat exchange with a refrigerant; a compressor for compressing a refrigerant evaporated by the heat exchange with the supply gas; air-cooled heat exchangers for cooling the compressed refrigerant by subjecting the compressed refrigerant to heat exchange with air; an expansion section for cooling the cooled refrigerant by expanding the cooled refrigerant; and a pipe rack section having the air-cooled heat exchangers arranged at the vertically uppermost part thereof. The pipe rack section has arranged in the space thereof located vertically below the air-cooled heat exchanger: tubing for delivering the supply gas to the heat exchangers; tubing for delivering the compressed refrigerant to the expansion section; and tubing for delivering the expanded refrigerant to the heat exchanger. The vertical length of the space is greater than the transverse length of the space when viewed from above.

Description

空冷式液化ガス製造設備Air-cooled liquefied gas production facility
 本発明は、空冷式液化ガス製造設備及び空冷式液化ガス製造方法に関する。 The present invention relates to an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method.
 液化ガス製造設備とは、天然ガスであるLNG(Liquefied Natural Gas)、LPG(Liquefied Petroleum Gas)、及びSNG(Synthetic Natural Gas)を精製し液化して、目的とする液化ガスを製造する設備である。それらの例として、LNG製造設備、LPG製造設備、SNG製造設備がある。 The liquefied gas production facility is a facility for purifying and liquefying natural gas LNG (Liquid Natural Gas), LPG (Liquid Petroleum Gas), and SNG (Synthetic Natural Gas) to produce the target liquefied gas. . Examples thereof include LNG manufacturing equipment, LPG manufacturing equipment, and SNG manufacturing equipment.
 図1は、LNG製造設備の一例を示す機能ブロック図である。ガス田から供給されるガスは、液分離工程の後に、LNG製造設備に提供される。LNG製造設備では、ガスから水銀除去、酸性ガス除去、水分除去、液化、窒素除去等の工程を得て、LNGが製造される。 FIG. 1 is a functional block diagram showing an example of an LNG manufacturing facility. The gas supplied from the gas field is provided to the LNG manufacturing facility after the liquid separation step. In the LNG production facility, LNG is produced by obtaining processes such as mercury removal, acid gas removal, moisture removal, liquefaction, nitrogen removal and the like from the gas.
 液化工程で使用される冷媒は、蒸気圧縮式の冷凍サイクルにおいて循環利用される。冷凍サイクルにおいて、冷媒は、気体の状態で圧縮機により圧縮される。圧縮された冷媒は凝縮器により冷却され、液化する。液化した圧力の高い冷媒は、膨張弁等で圧力を下げ、低温化される。低温化された冷媒は、プロセス流体である天然ガスとの熱交換により、帰化して再び気体となる。このようにして、圧縮機の動力と、凝縮器の熱交換とを用いた冷凍サイクルを介して、天然ガスは液化される。 The refrigerant used in the liquefaction process is circulated and used in a vapor compression refrigeration cycle. In the refrigeration cycle, the refrigerant is compressed by a compressor in a gaseous state. The compressed refrigerant is cooled by a condenser and liquefied. The liquefied refrigerant having a high pressure is lowered in temperature by an expansion valve or the like. The low-temperature refrigerant is naturalized and becomes gas again by heat exchange with natural gas, which is a process fluid. In this way, natural gas is liquefied through a refrigeration cycle using compressor power and condenser heat exchange.
 LNG製造設備では、冷凍サイクルの凝縮器は、水冷式や空冷式のものが使われる。水冷式の凝縮器は、冷却水の冷却に海水を使う場合が多いが、熱交換により温められた海水が環境に与える影響が問題となっており、近年、空冷式の凝縮器を採用するLNG製造設備が増えてきている。
 尚、液化工程は、LNG製造設備のみならず、LPG製造設備、SNG製造設備でも必須である。
In the LNG production facility, a water-cooled or air-cooled condenser is used for the refrigeration cycle. Water-cooled condensers often use seawater to cool the cooling water, but the effect of seawater heated by heat exchange on the environment has become a problem. In recent years, LNG that uses air-cooled condensers has become a problem. Manufacturing facilities are increasing.
The liquefaction process is essential not only for LNG production equipment but also for LPG production equipment and SNG production equipment.
 LNG製造設備は、上空から見た場合、全体として長方形状である。長方形状の長手方向に沿って設備中央に、パイプラック部を設け、その両脇に、冷媒の圧縮機、天然ガスを冷却する熱交換器、天然ガスを精製する蒸留塔等を配置するのが通常である。そして、空冷式のLNG製造設備は、パイプラック部の鉛直方向の頂上に複数の空冷熱交換器(以下、「ACHE」とも言う。)を配置している。 LNG manufacturing equipment is rectangular as a whole when viewed from above. A pipe rack is provided in the center of the facility along the longitudinal direction of the rectangle, and a refrigerant compressor, a heat exchanger for cooling natural gas, a distillation tower for purifying natural gas, etc. are arranged on both sides of the pipe rack. It is normal. In the air-cooled LNG manufacturing facility, a plurality of air-cooled heat exchangers (hereinafter also referred to as “ACHE”) are arranged on the top of the pipe rack portion in the vertical direction.
 LNG製造設備では、複数の空冷熱交換器は、上空から見た場合、少なくとも1列の直線状に配置して全体として長方形状を有している。LNG製造設備は、空冷熱交換器を上部に配置したパイプラックの両脇に、関連設備を有しているので、上空から見た場合、全体として長方形状となっている。 In the LNG manufacturing facility, when viewed from above, the plurality of air-cooled heat exchangers are arranged in a straight line of at least one row and have a rectangular shape as a whole. Since the LNG manufacturing facility has related facilities on both sides of the pipe rack with the air-cooled heat exchanger disposed at the top, the LNG manufacturing facility has a rectangular shape as a whole when viewed from above.
 空冷熱交換器は、ファンの回転により、空冷熱交換器の下方の空気を吸い上げて、ファンを通過させて上方に排気する。空冷熱交換器のチューブバンドルを、鉛直方向の下方から上方へ、空気が流れることにより、空気とチューブバンドル内の流体との間で熱交換される。チューブバンドルを流れる温かい流体との熱交換により空気は温められ、空冷熱交換器からの排気は吸気よりも温度が高くなる。 The air-cooled heat exchanger sucks up the air below the air-cooled heat exchanger by the rotation of the fan, passes it through the fan, and exhausts it upward. When air flows through the tube bundle of the air-cooling heat exchanger from the lower side to the upper side in the vertical direction, heat is exchanged between the air and the fluid in the tube bundle. Air is warmed by heat exchange with the warm fluid flowing through the tube bundle, and the temperature of the exhaust from the air-cooled heat exchanger is higher than that of the intake air.
 近年、LNG製造設備の大型化に伴い、プロジェクトの最初の段階で、1つ、又は、2つのLNG製造部を建設し、需要の増大に従って、LNG製造部を増やしていくことが多い。プロジェクトの進行に伴い適宜建設されていくLNG製造部は、モジュール化され、略同形式であり、「LNGトレイン」、「LNGモジュール」、「LNGユニット」等と呼ばれる。 In recent years, with the increase in size of LNG production facilities, one or two LNG production departments are often constructed at the initial stage of a project, and the number of LNG production departments is increased as demand increases. The LNG manufacturing department, which will be constructed as the project progresses, is modularized and has approximately the same format, and is called “LNG train”, “LNG module”, “LNG unit” or the like.
 空冷式のLNGトレインにおいて、空冷熱交換器から上方に排出されるべき温かい空気(ホットエア)が、空冷熱交換器の吸気側に流れて、再び吸気として吸い込まれ、冷却用空気として使用されることにより、配管を流れる流体との交換熱量が低下してLNG製造量が減少するという問題がある。 In an air-cooled LNG train, warm air (hot air) that should be discharged upward from the air-cooled heat exchanger flows into the intake side of the air-cooled heat exchanger, is sucked again as intake air, and is used as cooling air As a result, there is a problem that the amount of heat exchanged with the fluid flowing through the piping is reduced and the amount of LNG produced is reduced.
 空冷熱交換器が排出したホットエアが、空冷熱交換器の吸込みガスとして使用される問題は、ホットエアリサーキュレーション(HAR:Hot Air Recirculation)と呼ばれている。 The problem that hot air discharged from the air-cooled heat exchanger is used as the suction gas of the air-cooled heat exchanger is called hot air recirculation (HAR).
 非特許文献1には、リサーキュレーション率を高くしないために、ACHEの高さ位置を構造物上部と合わせたり、風上側を封じて、風下側から吸入したりすることで、強い下降流(ダウンドラフト)を軽減することが記載されている。 In Non-Patent Document 1, in order not to increase the recirculation rate, the height position of the ACHE is aligned with the upper part of the structure, or the windward side is sealed and sucked from the leeward side, thereby causing a strong downward flow ( It is described that the downdraft is reduced.
 図2は、空冷熱交換器を採用するLNG製造部のホットエアの問題を示す縦断面模式図である。LNG製造部の空冷熱交換器は、ファンにより下方から空気を吸込み、チューブバンドル内を流れる温かい流体と熱交換して、温められた空気を上方へと排気する。 FIG. 2 is a schematic vertical cross-sectional view showing the problem of hot air in the LNG manufacturing department that employs an air-cooled heat exchanger. The air-cooled heat exchanger of the LNG manufacturing unit sucks air from below by a fan, exchanges heat with the warm fluid flowing in the tube bundle, and exhausts the warmed air upward.
 本発明者らは、図2に示すように、LNGトレインの上空から見た場合の長手方向に対する幅方向(短手方向)の風(横風(Crosswind))は、ACHE下部から横風が流れないため、ACHEの排気を吸気側に吹き下ろす風(ダウンウォッシュ:Downwash、又は、ダウンドラフト)の要因となることを知見した。ダウンウォッシュがACHEの吸気に回りこむことによってHARを生じる。HARにより、ACHEの熱交換量が低下し、ガスを液化するための凝縮熱の除去が困難となるため、LNG製造量が低下する。 As shown in FIG. 2, the inventors of the present invention have a crosswise wind (cross wind) with respect to the longitudinal direction when viewed from above the LNG train. It has been found that this is a factor of the wind (downwash or downdraft) that blows down the exhaust of ACHE to the intake side. HAR is caused by the downwash wrapping around the intake of ACHE. HAR reduces the heat exchange amount of ACHE and makes it difficult to remove the heat of condensation for liquefying the gas, resulting in a decrease in LNG production.
 そこで、本発明は、ACHEによる熱交換の効率を高め、HARによる液化ガス製造量の減少を抑制できる空冷式液化ガス製造設備及び空冷による液化ガス製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method capable of improving the efficiency of heat exchange by ACHE and suppressing a decrease in the amount of liquefied gas produced by HAR.
 本発明によれば、以下の空冷式液化ガス製造設備等を提供できる。
1.メタンを主成分とする供給ガスを液化して液化ガスを製造する空冷式液化ガス製造部を有する空冷式液化ガス製造設備であって、
 前記空冷式液化ガス製造部は、
 前記供給ガスを冷媒との熱交換により冷却する熱交換器と、
 前記供給ガスとの熱交換により蒸発した冷媒を圧縮する圧縮機と、
 前記圧縮された冷媒を空気との熱交換により冷却する複数の空冷熱交換器と、
 前記冷却された冷媒を膨張させて冷却する膨張部と、
 前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部と
を備え、
 前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
 前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長い、液化ガス製造設備。
2.前記空間は、前記配置される配管のうち、最上部の配管上部に、空冷熱交換器の所望の吸込み流量を確保する第1空間に加えて、ダウンウォッシュに抗う対向流を通すための第2空間から構成される、1に記載の液化ガス製造設備。
3.前記供給ガスとの熱交換により蒸発した冷媒を前記圧縮機に送る配管が、前記パイプラック部の外に配置される、請求項1又は2に記載の空冷式液化ガス製造設備。
4.前記空冷熱交換器は、遮蔽板部材を備える、1~3のいずれかに記載の空冷式液化ガス製造設備。
5.前記圧縮機を収容するコンプレッサーシェルターが前記パイプラック部に隣接して配置され、前記パイプラック部の前記空間が、鉛直方向において前記コンプレッサーシェルターより高い位置に存在する、1~4のいずれかに記載の空冷式液化ガス製造設備。
6.前記圧縮機が前記パイプラック部に隣接して配置され、前記圧縮機の駆動用ガスタービンのエアインテイクが前記パイプラック部に向かないように配置される、1~5のいずれかに記載の空冷式液化ガス製造設備。
7.前記空冷式液化ガス製造部を複数有し、隣接する任意のふたつの空冷式液化ガス製造部の間の距離を、前記空間の鉛直方向の長さが上空から見たときの前記空間の短手方向の長さよりも短い場合の前記距離と比較して短くする、1~6のいずれかに記載の空冷式液化ガス製造設備。
8.メタンを主成分とする供給ガスから不要物を除去し液化して液化ガスを製造する空冷式液化ガス製造方法であって、
 熱交換器と、圧縮機と、複数の空冷熱交換器と、膨張部と、前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部とを備える空冷式液化ガス製造設備を使用し、
 前記空冷式液化ガス製造設備は、
 前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
 前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長い、空冷式液化ガス製造設備であり、
 前記熱交換器により、前記供給ガスを冷媒と熱交換して冷却し、
 前記圧縮機により、前記供給ガスとの熱交換により蒸発した冷媒を圧縮し、
 前記複数の空冷熱交換器により、前記圧縮された冷媒を空気との熱交換により冷却し、
 前記膨張部により、前記冷却された冷媒を膨張させて冷却することを含み、
 上空から見たときに前記パイプラック部の短手方向に風が吹いた場合に、前記空冷熱交換器の上方から吹き下ろすダウンウォッシュに対して、前記空間を通過して吹き上げる対向流を発生させる、空冷式液化ガス製造方法。
According to the present invention, the following air-cooled liquefied gas production facilities and the like can be provided.
1. An air-cooled liquefied gas production facility having an air-cooled liquefied gas production section that liquefies a supply gas mainly composed of methane to produce a liquefied gas,
The air-cooled liquefied gas production department
A heat exchanger for cooling the supply gas by heat exchange with a refrigerant;
A compressor that compresses the refrigerant evaporated by heat exchange with the supply gas;
A plurality of air-cooled heat exchangers for cooling the compressed refrigerant by heat exchange with air;
An inflating part for inflating and cooling the cooled refrigerant;
A plurality of air-cooled heat exchangers, and a pipe rack portion arranged at the top in the vertical direction,
In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
A liquefied gas production facility, wherein the vertical length of the space is longer than the short length of the space when viewed from above.
2. In addition to the first space that secures a desired suction flow rate of the air-cooled heat exchanger, the space is a second space through which a counterflow against downwash is passed, in addition to the first space that secures the desired suction flow rate of the air-cooled heat exchanger. 2. The liquefied gas production facility according to 1, comprising a space.
3. The air-cooled liquefied gas production facility according to claim 1 or 2, wherein a pipe for sending refrigerant evaporated by heat exchange with the supply gas to the compressor is disposed outside the pipe rack portion.
4). The air-cooled liquefied gas production facility according to any one of 1 to 3, wherein the air-cooled heat exchanger includes a shielding plate member.
5. The compressor shelter that accommodates the compressor is disposed adjacent to the pipe rack portion, and the space of the pipe rack portion exists in a position higher than the compressor shelter in the vertical direction. Air-cooled liquefied gas production facility.
6). The air cooling according to any one of 1 to 5, wherein the compressor is disposed adjacent to the pipe rack portion, and is disposed so that an air intake of a gas turbine for driving the compressor does not face the pipe rack portion. Type liquefied gas production facility.
7). A plurality of the air-cooled liquefied gas production units, and the distance between any two adjacent air-cooled liquefied gas production units is the shortness of the space when the vertical length of the space is viewed from above. The air-cooled liquefied gas production facility according to any one of 1 to 6, wherein the facility is shorter than the distance in the case of being shorter than the length in the direction.
8). An air-cooled liquefied gas production method for producing a liquefied gas by removing unnecessary substances from a supply gas containing methane as a main component and liquefying,
An air-cooled liquefied gas production facility comprising a heat exchanger, a compressor, a plurality of air-cooled heat exchangers, an expansion part, and a pipe rack part in which the plurality of air-cooled heat exchangers are arranged at the top in the vertical direction Use
The air-cooled liquefied gas production facility is
In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
The vertical length of the space is an air-cooled liquefied gas production facility that is longer than the length in the short direction of the space when viewed from above.
The heat exchanger cools the supply gas by exchanging heat with the refrigerant,
The compressor compresses the refrigerant evaporated by heat exchange with the supply gas,
The plurality of air-cooled heat exchangers cool the compressed refrigerant by heat exchange with air,
Expanding and cooling the cooled refrigerant by the expansion unit;
When a wind blows in the short direction of the pipe rack when viewed from above, a counter flow that blows up through the space is generated for a downwash that blows down from above the air-cooled heat exchanger. An air-cooled liquefied gas production method.
 本発明によれば、ACHEによる熱交換の効率を高め、HARによる液化ガス製造量の減少を抑制できる空冷式液化ガス製造設備及び空冷による液化ガス製造方法を提供できる。 According to the present invention, it is possible to provide an air-cooled liquefied gas production facility and an air-cooled liquefied gas production method capable of improving the efficiency of heat exchange by ACHE and suppressing a decrease in the amount of liquefied gas produced by HAR.
図1は、LNG製造設備の一例を示す機能ブロック図である。FIG. 1 is a functional block diagram illustrating an example of an LNG manufacturing facility. 図2は、空冷式LNG製造部のHARの問題を示す縦断面模式図である。FIG. 2 is a schematic longitudinal sectional view showing the problem of HAR in the air-cooled LNG manufacturing unit. 図3は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。FIG. 3 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention. 図4は、空冷式液化ガス製造部の液化工程を示すプロセスフロー図である。FIG. 4 is a process flow diagram showing a liquefaction process in the air-cooled liquefied gas production unit. 図5は、自己HARが生じている空冷式LNG製造設備を示すCFD解析の例である。FIG. 5 is an example of CFD analysis showing an air-cooled LNG manufacturing facility in which self-HAR occurs. 図6は、本発明にしたがった空冷式LNG製造設備のCFD解析の例である。FIG. 6 is an example of a CFD analysis of an air-cooled LNG manufacturing facility according to the present invention. 図7は、図5のCFD解析に対応する空冷式LNG製造部を上空から見た平面図である。FIG. 7 is a plan view of the air-cooled LNG manufacturing unit corresponding to the CFD analysis of FIG. 5 as viewed from above. 図8は、図6のCFD解析に対応する空冷式LNG製造部を上空から見た平面図である。FIG. 8 is a plan view of the air-cooled LNG manufacturing unit corresponding to the CFD analysis of FIG. 6 as viewed from above. 図9は、本発明の空冷式液化ガス製造部の一態様を示す上空から見た平面図である。FIG. 9 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention. 図10は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。FIG. 10 is a schematic longitudinal sectional view showing an aspect of the air-cooled liquefied gas production section of the present invention. 図11は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。FIG. 11 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention. 図12は、本発明の空冷式液化ガス製造部の一態様を示す上空から見た平面図である。FIG. 12 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention. 図13は、空冷式LNG製造設備のHARの問題を示す縦断面模式図である。FIG. 13 is a schematic longitudinal sectional view showing a problem of HAR of an air-cooled LNG manufacturing facility. 図14は、図5のCFD解析に関する空冷式LNG製造設備を上空から見た平面図である。FIG. 14 is a plan view of the air-cooled LNG manufacturing facility related to the CFD analysis of FIG. 5 as viewed from above. 図15は、図6のCFD解析に関する空冷式LNG製造設備を上空から見た平面図である。FIG. 15 is a plan view of the air-cooled LNG manufacturing facility related to the CFD analysis of FIG. 6 as viewed from above.
 以下、本発明において、空冷式液化ガス製造設備及び空冷式液化ガス製造部は、上空から見たときに略長方形状であるものとする。略長方形状とは、長方形を意味するほか、必ずしも完全に長方形である必要はない。上空から見たときの長方形状の長辺の方向を長手方向、短辺の方向を短手方向と呼ぶ。略長方形状の領域に、各種の機器と配管が配置される。 Hereinafter, in the present invention, the air-cooled liquefied gas production facility and the air-cooled liquefied gas production section are assumed to be substantially rectangular when viewed from above. The substantially rectangular shape means a rectangle and does not necessarily have to be a complete rectangle. When viewed from above, the direction of the long side of the rectangle is called the longitudinal direction, and the direction of the short side is called the short direction. Various devices and pipes are arranged in a substantially rectangular area.
 本発明の空冷式液化ガス製造設備の一態様は、
 メタンを主成分とする供給ガスを液化して液化ガスを製造する空冷式液化ガス製造部を有する空冷式液化ガス製造設備であって、
 前記空冷式液化ガス製造部は、
 前記供給ガスを冷媒との熱交換により冷却する熱交換器と、
 前記供給ガスとの熱交換により蒸発した冷媒を圧縮する圧縮機と、
 前記圧縮された冷媒を空気との熱交換により冷却する複数の空冷熱交換器と、
 前記冷却された冷媒を膨張させて冷却する膨張部と、
 前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部と
を備え、
 前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
 前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長いことを特徴とする。
One aspect of the air-cooled liquefied gas production facility of the present invention is:
An air-cooled liquefied gas production facility having an air-cooled liquefied gas production section that liquefies a supply gas mainly composed of methane to produce a liquefied gas,
The air-cooled liquefied gas production department
A heat exchanger for cooling the supply gas by heat exchange with a refrigerant;
A compressor that compresses the refrigerant evaporated by heat exchange with the supply gas;
A plurality of air-cooled heat exchangers for cooling the compressed refrigerant by heat exchange with air;
An inflating part for inflating and cooling the cooled refrigerant;
A plurality of air-cooled heat exchangers, and a pipe rack portion arranged at the top in the vertical direction,
In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
The vertical length of the space is longer than the length of the space in the short direction when viewed from above.
 図3は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。空冷式液化ガス製造部について、上空から見たときの短手方向に平行な縦断面を示している。 FIG. 3 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention. About the air-cooled liquefied gas production department, the longitudinal section parallel to the transversal direction when seen from the sky is shown.
 本発明の空冷式液化ガス製造部は、図3に示すように、パイプラック部1において、最上部に空冷熱交換器2が設置される。空冷熱交換器2は、熱交換の伝熱面を構成するチューブバンドル5、ファン、ファンを駆動するモーター等を含む。空冷熱交換器2の下方に一定の空間があけられて、複数の配管を含む配管束4が設置される。パイプラック部に配置される配管束は、特定の配管、即ち、供給ガスを熱交換器に送る配管、圧縮された冷媒を膨張部に送る配管、及び膨張させた冷媒を熱交換器に送る配管を含む。 In the air-cooled liquefied gas production section of the present invention, as shown in FIG. 3, an air-cooled heat exchanger 2 is installed at the top of the pipe rack section 1. The air-cooled heat exchanger 2 includes a tube bundle 5 constituting a heat transfer surface for heat exchange, a fan, a motor for driving the fan, and the like. A certain space is opened below the air-cooling heat exchanger 2, and a pipe bundle 4 including a plurality of pipes is installed. The pipe bundle arranged in the pipe rack part is a specific pipe, that is, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that sends the expanded refrigerant to the heat exchanger. including.
 図4は、空冷式液化ガス製造部の液化工程を示すプロセスフロー図である。液化工程の一例を概略的に示している。
 空冷式液化ガス製造部において、メタンを主成分とする供給ガスは、供給ガスを熱交換器に送る配管1を介して熱交換器2に送られる。供給ガスを熱交換器に送る配管1はパイプラック部に配置され、配管を流れる供給ガスは空冷熱交換器により空冷される。
FIG. 4 is a process flow diagram showing a liquefaction process in the air-cooled liquefied gas production unit. An example of a liquefaction process is shown roughly.
In the air-cooled liquefied gas production unit, the supply gas mainly composed of methane is sent to the heat exchanger 2 via the pipe 1 that sends the supply gas to the heat exchanger. The pipe 1 for sending the supply gas to the heat exchanger is disposed in the pipe rack portion, and the supply gas flowing through the pipe is air-cooled by the air-cooling heat exchanger.
 熱交換器2では、供給ガスと冷媒との熱交換が行われる。供給ガスは、冷媒との熱交換により冷却され液化して、液化ガスが製造される。製造された液化ガスは、タンク3に貯蔵される。
 図4では、熱交換器をひとつしか示していないが、熱交換器の数と使用する冷媒の数は限定されず、プロセスに依存して適宜決定できる。
In the heat exchanger 2, heat exchange between the supply gas and the refrigerant is performed. The supply gas is cooled and liquefied by heat exchange with the refrigerant to produce a liquefied gas. The produced liquefied gas is stored in the tank 3.
Although only one heat exchanger is shown in FIG. 4, the number of heat exchangers and the number of refrigerants used are not limited and can be appropriately determined depending on the process.
 供給ガスとの熱交換により蒸発した冷媒は、冷媒を熱交換器から圧縮機へと送る配管10を介して圧縮機11に送られ、圧縮機11により圧縮される。圧縮された冷媒は、圧縮された冷媒を圧縮機から膨張部へと送る配管12を介して膨張部13に送られる。圧縮された冷媒を膨張部に送る配管12はパイプラック部に配置され、配管を流れる冷媒は空冷熱交換器により空冷される。 The refrigerant evaporated by heat exchange with the supply gas is sent to the compressor 11 via the pipe 10 that sends the refrigerant from the heat exchanger to the compressor, and is compressed by the compressor 11. The compressed refrigerant is sent to the expansion unit 13 via a pipe 12 that sends the compressed refrigerant from the compressor to the expansion unit. The pipe 12 for sending the compressed refrigerant to the expansion section is arranged in the pipe rack section, and the refrigerant flowing through the pipe is air-cooled by the air-cooling heat exchanger.
 膨張部13では、膨張弁等により冷媒を膨張させて、圧力を下げ、冷媒を更に低温にする。膨張させた冷媒は、膨張させた冷媒を熱交換器に送る配管14を介して熱交換器2に送られる。膨張させた冷媒を熱交換器に送る配管14はパイプラック部に配置され、配管を流れる冷媒は空冷熱交換器により空冷される。
 熱交換器2では、再び、供給ガスと冷媒との熱交換が行われる。
In the expansion part 13, a refrigerant | coolant is expanded with an expansion valve etc., a pressure is lowered | hung and a refrigerant | coolant is made still lower temperature. The expanded refrigerant is sent to the heat exchanger 2 via a pipe 14 that sends the expanded refrigerant to the heat exchanger. A pipe 14 for sending the expanded refrigerant to the heat exchanger is disposed in the pipe rack portion, and the refrigerant flowing through the pipe is air-cooled by the air-cooling heat exchanger.
In the heat exchanger 2, heat exchange between the supply gas and the refrigerant is performed again.
 本発明の空冷式液化ガス製造部において、図3に示すように、空冷熱交換器2の鉛直方向の下方の空間3は、空間の鉛直方向の長さ(X)が、上空から見たときの空間の短手方向の長さ(チューブバンドル長さに相当する)(Y)よりも長くなるようにする。これにより、パイプラックに配置される配管のうち、最上部の配管上部に、空冷熱交換器の所望の吸込み流量を確保する第1空間(図3中、鉛直方向の長さ「Y」をz軸の寸法とする空間)に加えて、ダウンウォッシュに抗う対向流を通すための第2空間(図3中、鉛直方向の長さ「X-Y」をz軸の寸法とする空間)を設けることができ、このような第1空間と第2空間からなる空隙を、横風が通過できる。液化ガス製造部の長手方向に対する幅方向(短手方向)の風(横風)が吹いた場合に、生じ得るダウンウォッシュに対して、空間を通過する風(Anti wind)が対向してダウンウォッシュを軽減でき、HARを抑制又は低減できる。 In the air-cooled liquefied gas production section of the present invention, as shown in FIG. 3, the space 3 below the vertical direction of the air-cooled heat exchanger 2 has a vertical length (X) when viewed from above. The length in the short direction of the space (corresponding to the tube bundle length) (Y) is made longer. As a result, the first space (the vertical length “Y” in FIG. 3) z is secured in the upper part of the uppermost pipe of the pipes arranged in the pipe rack to ensure the desired suction flow rate of the air-cooled heat exchanger. In addition to the space having the dimension of the axis, a second space (a space having the vertical length “XY” as the dimension of the z-axis in FIG. 3) for allowing the counter flow to resist downwash is provided. The cross wind can pass through the gap formed by the first space and the second space. When the wind (cross wind) in the width direction (short direction) with respect to the longitudinal direction of the liquefied gas production department blows, the wind that passes through the space (Anti wind) is opposed to the downwash that may occur. It can be reduced and HAR can be suppressed or reduced.
 空間の鉛直方向の長さを空間の短手方向の長さよりどれだけ長くするかについては、特に限定されず、プロセス条件や建設コストに応じて、適宜、設計し決定できる。 How long the vertical length of the space is made longer than the short length of the space is not particularly limited, and can be appropriately designed and determined according to process conditions and construction costs.
 図5は、HARが生じているLNG製造設備を示すCFD(Computational Fluid Dynamics)解析の例である。トレインAとトレインBのふたつのLNG製造部についてトレインの短手方向の側面を示す立面図である。尚、トレインA又はBは、図3に示すLNG製造設備が並列して配置しているため、一つのトレインの場合と比べて、空冷熱交換器の下部を流れる風の圧力損失が大きくなり、ダウンウウォッシュが生じやすい状況にある。トレインAとトレインBは、空冷熱交換器の鉛直方向の下方に空間を設けずに、所定の配管を配置している。
 色の濃淡は、34.0℃~39.0℃の温度分布を示している。
 トレインの長手方向に対する横風(図中、「East Wind」)、即ち、短手方向に平行な風が吹いた場合に、ダウンウォッシュが生じ、自己HAR(図中、「Self recirculation」と言う。)が生じている。
FIG. 5 is an example of a CFD (Computational Fluid Dynamics) analysis showing an LNG manufacturing facility where HAR occurs. It is an elevational view showing the lateral side of the train in the two LNG manufacturing sections of train A and train B. Note that the train A or B has the LNG manufacturing equipment shown in FIG. 3 arranged in parallel, so the pressure loss of the wind flowing in the lower part of the air-cooled heat exchanger is larger than in the case of one train. The situation is likely to cause downwash. The train A and the train B are provided with predetermined piping without providing a space below the vertical direction of the air-cooled heat exchanger.
The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C.
When a cross wind ("East Wind" in the figure) with respect to the longitudinal direction of the train, that is, a wind parallel to the short direction, a downwash occurs, and self-HAR (referred to as "Self recirculation" in the figure). Has occurred.
 図6は、本発明にしたがった空冷式LNG製造設備のCFD解析の例である。図5と同様に、トレインAとトレインBのふたつのLNG製造設備についてトレインの短手方向の側面を示す立面図である。トレインAとトレインBは、空冷熱交換器の鉛直方向の下方に、空間を空けて、所定の配管を配置している。
 色の濃淡は、34.0℃~39.0℃の温度分布を示している。
 トレインの長手方向に対する横風(図中、「East Wind」)、即ち、短手方向に平行な風が吹いた場合に、空間を通過する横風が、吹き下ろす風に対する対向流となるため、ダウンウォッシュと自己HARの発生が回避される。
FIG. 6 is an example of a CFD analysis of an air-cooled LNG manufacturing facility according to the present invention. FIG. 6 is an elevational view showing the lateral direction of the train in the two LNG manufacturing facilities of train A and train B, as in FIG. 5. The train A and the train B are provided with predetermined piping with a space below the vertical direction of the air-cooled heat exchanger.
The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C.
Downwash because the crosswind in the longitudinal direction of the train ("East Wind" in the figure), that is, when the wind parallel to the short direction blows, the crosswind passing through the space becomes the opposite flow to the wind that blows down. And the occurrence of self-HAR is avoided.
 図7は、図5のCFD解析に対応する上空から見た平面図である。LNG製造部は、紙面に向かって上から下の方向を長手方向とする長方形状を有する。トレインの長手方向に対する横風、即ち、トレインの短手方向に平行な風が、紙面の右から左に吹いた場合に、ダウンウォッシュが生じ、HARが生じている。HARにより、ACHEの吸気温度が高くなり、そのためACHEの排気温度も高くなるため、ACHEの上空と、横風によりACHEの排気が流れる紙面左側は温度が高くなっていることが分かる。 FIG. 7 is a plan view seen from above corresponding to the CFD analysis of FIG. The LNG manufacturing department has a rectangular shape with the longitudinal direction from the top to the bottom as viewed in the drawing. When a cross wind with respect to the longitudinal direction of the train, that is, a wind parallel to the short direction of the train blows from the right to the left of the page, downwash occurs and HAR occurs. The HAR increases the intake temperature of the ACHE, and thus the exhaust temperature of the ACHE also increases. Therefore, it can be seen that the temperature above the ACHE and the left side of the drawing where the exhaust of the ACHE flows due to the cross wind are high.
 図8は、図6のCFD解析に対応する上空から見た平面図である。LNG製造部は、紙面に向かって上から下の方向を長手方向とする長方形状を有する。
 トレインの長手方向に対する横風、即ち、トレインの短手方向に平行な風が、紙面の右から左に吹いた場合に、パイプラック部の空間を通過する横風が、吹き下ろす風に対する対向流となるため、ダウンウォッシュと自己HARの発生が回避される。HARが生じないため、前述の図5及び図7の場合のように、ACHEの吸気温度が高くなることはなく、そのためACHEの排気温度が高くなることもなく、ACHEの上空と、横風によりACHEの排気が流れる紙面左側は、図7の場合よりも温度が低くなっていることが分かる。
FIG. 8 is a plan view seen from above corresponding to the CFD analysis of FIG. The LNG manufacturing department has a rectangular shape with the longitudinal direction from the top to the bottom as viewed in the drawing.
When a crosswind with respect to the longitudinal direction of the train, that is, a wind parallel to the short direction of the train blows from the right to the left of the page, the crosswind passing through the space in the pipe rack portion becomes the countercurrent to the wind that blows down. Therefore, generation of downwash and self-HAR is avoided. Since no HAR occurs, the ACHE intake temperature does not increase as in the case of FIG. 5 and FIG. 7 described above, and therefore the ACHE exhaust temperature does not increase. It can be seen that the temperature on the left side of the drawing through which the exhaust gas flows is lower than in the case of FIG.
 本発明の空冷式液化ガス製造部は、別の態様において、供給ガスとの熱交換により蒸発した冷媒を圧縮機に送る配管が、前記パイプラック部の外に配置される。 In another aspect of the air-cooled liquefied gas production section of the present invention, a pipe for sending the refrigerant evaporated by heat exchange with the supply gas to the compressor is arranged outside the pipe rack section.
具体的には、例えば図4において、供給ガスとの熱交換により蒸発した冷媒を圧縮機に送る配管10が、パイプラック部の外に配置される。言い換えれば、供給ガスとの熱交換により蒸発した冷媒を圧縮機に送る配管10は、図3のパイプラック部1に配置される配管束4には含まれない。
 熱交換により蒸発した冷媒を熱交換器から圧縮機へと送る配管は大口径であり、この配管をパイプラック部に配置せずにパイプラック部の外に配置することにより、パイプラック部に配置される配管束において、配管の込み具合や密集の度合い(Contingency)を緩和でき、横風が吹いた場合に生じ得るダウンウォッシュに対して、対向する風が通過する空間を確保できる。
 横風が吹いた場合に風が空間を通過してダウンウォッシュに対向するため、ダウンウォッシュを軽減でき、自己HARを抑制又は低減できる。
Specifically, for example, in FIG. 4, a pipe 10 that sends the refrigerant evaporated by heat exchange with the supply gas to the compressor is disposed outside the pipe rack portion. In other words, the pipe 10 for sending the refrigerant evaporated by heat exchange with the supply gas to the compressor is not included in the pipe bundle 4 arranged in the pipe rack portion 1 of FIG.
The pipe that sends the refrigerant evaporated by heat exchange from the heat exchanger to the compressor has a large diameter, and this pipe is not placed in the pipe rack part, but is placed outside the pipe rack part. In the bundle of pipes, it is possible to reduce the degree of congestion and the degree of congestion (Contingency), and it is possible to secure a space through which the opposing wind passes against the downwash that can occur when a cross wind blows.
When a cross wind blows, the wind passes through the space and faces the down wash, so that the down wash can be reduced and the self-HAR can be suppressed or reduced.
 図9は、本発明の空冷式液化ガス製造部の一態様を示す上空から見た平面図である。
 図9は、例として、天然ガスを冷却して液化するための冷媒として、プロパン(C3)と、窒素、メタン、エタン、及びプロパンからなる混合冷媒(MR)とを用いるLNG製造部の一部を示している。このプロセスはC3-MR方式とも呼ばれる。
FIG. 9 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention.
FIG. 9 shows, as an example, a part of an LNG manufacturing unit that uses propane (C3) and a mixed refrigerant (MR) composed of nitrogen, methane, ethane, and propane as a refrigerant for cooling and liquefying natural gas. Is shown. This process is also called C3-MR method.
 図9において、プロパンを冷媒とする熱交換器(C3熱交換器)100にて、供給ガスとの熱交換により蒸発した冷媒を圧縮機(C3 Comp+GT)120に送る配管110は、パイプラック部300の外に配置される。
 また、図9において、混合冷媒を冷媒とする熱交換器(MCHE熱交換器)200にて、供給ガスとの熱交換により蒸発した冷媒を圧縮機(MR Comp+GT)220に送る配管210は、パイプラック部300の外に配置される。
In FIG. 9, a pipe 110 for sending refrigerant evaporated by heat exchange with supply gas to a compressor (C3 Comp + GT) 120 in a heat exchanger (C3 heat exchanger) 100 using propane as a refrigerant is a pipe rack unit 300. Placed outside.
Further, in FIG. 9, a pipe 210 that sends a refrigerant evaporated by heat exchange with a supply gas to a compressor (MR Comp + GT) 220 in a heat exchanger (MCHE heat exchanger) 200 using a mixed refrigerant as a refrigerant is a pipe. It is arranged outside the rack unit 300.
 一方、圧縮機120にて圧縮された冷媒を膨張部に送る配管130、膨張させた冷媒を熱交換器100に送る配管140と、圧縮機220にて圧縮された冷媒を膨張部に送る配管230、膨張させた冷媒を熱交換器200に送る配管240とは、パイプラック部300に配置され、空冷熱交換器により、配管を流れる冷媒が空冷される。 On the other hand, a pipe 130 that sends the refrigerant compressed by the compressor 120 to the expansion section, a pipe 140 that sends the expanded refrigerant to the heat exchanger 100, and a pipe 230 that sends the refrigerant compressed by the compressor 220 to the expansion section. The pipe 240 for sending the expanded refrigerant to the heat exchanger 200 is arranged in the pipe rack unit 300, and the air flowing through the pipe is cooled by the air cooling heat exchanger.
 本発明の空冷式液化ガス製造部は、別の態様において、空冷熱交換器が、遮蔽板部材を備える。
 遮蔽板部材(ウイングレット)は、空冷熱交換器の排気が鉛直方向の下向きに流れるのを遮蔽する役割を果たし、これにより、自己HARを抑制又は低減できる。
In another aspect of the air-cooled liquefied gas production unit of the present invention, the air-cooled heat exchanger includes a shielding plate member.
The shielding plate member (winglet) plays a role of shielding the exhaust of the air-cooled heat exchanger from flowing downward in the vertical direction, thereby suppressing or reducing self-HAR.
 図10は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。図10に示すように、本発明の空冷式液化ガス製造部は、パイプラック部1において、最上部に空冷熱交換器2が設置され、空冷熱交換器の鉛直方向の下方に一定の空間3があけられて、複数の配管を含む配管束4が設置される。本発明の一態様において、空冷熱交換器は遮蔽板部材6を備える。遮蔽板部材は、空冷熱交換器の上方へと排出される排気が鉛直方向の下向きに流れるのを遮蔽する役割を果たすものであれば、形状、寸法、設置場所等は適宜決定できる。例えば、図10に示すように、パイプラック部1の最上部にある空冷熱交換器2の基部において、水平方向に広がる板を遮蔽板部材として設置できる。 FIG. 10 is a schematic longitudinal sectional view showing an aspect of the air-cooled liquefied gas production section of the present invention. As shown in FIG. 10, the air-cooled liquefied gas production unit of the present invention has an air-cooled heat exchanger 2 installed at the top of the pipe rack unit 1, and a fixed space 3 below the vertical direction of the air-cooled heat exchanger. The pipe bundle 4 including a plurality of pipes is installed. In one aspect of the present invention, the air-cooled heat exchanger includes a shielding plate member 6. If a shielding board member plays the role which shields the exhaust_gas | exhaustion discharged | emitted above the air-cooling heat exchanger from flowing down in the perpendicular direction, a shape, a dimension, an installation place, etc. can be determined suitably. For example, as shown in FIG. 10, a plate extending in the horizontal direction can be installed as a shielding plate member at the base of the air-cooled heat exchanger 2 at the top of the pipe rack portion 1.
 本発明の空冷式液化ガス製造部は、別の態様において、圧縮機を収容するコンプレッサーシェルター(Compressor shelter)がパイプラック部に隣接して配置され、パイプラック部の空間が、鉛直方向においてコンプレッサーシェルターより高い位置に存在する。これにより、横風が吹いた場合、横風が吹いた場合に生じ得るダウンウォッシュに対して、対向する風が通過する空間を確保でき、かつ、対向する風の通り道から障害となり得る物をなくすことができる。
 ここで、コンプレッサーシェルターとは、圧縮機、ガスタービン、及びこれらに付随する機器を収容する建屋を意味する。
In another aspect, the air-cooled liquefied gas production unit of the present invention is configured such that a compressor shelter that accommodates a compressor is disposed adjacent to the pipe rack unit, and the space of the pipe rack unit is a compressor shelter in the vertical direction. Present at a higher position. As a result, when a cross wind blows, it is possible to secure a space through which the opposing wind passes against downwash that may occur when a cross wind blows, and to eliminate objects that may become an obstacle from the path of the opposing wind. it can.
Here, a compressor shelter means the building which accommodates a compressor, a gas turbine, and the apparatus accompanying these.
 図11は、本発明の空冷式液化ガス製造部の一態様を示す縦断面模式図である。図11に示すように、本発明の空冷式液化ガス製造部は、パイプラック部1において、最上部に空冷熱交換器2が設置され、空冷熱交換器の鉛直方向の下方に一定の空間3があけられて、複数の配管を含む配管束4が設置される。コンプレッサーシェルター7がパイプラック部1に隣接して配置され、空間3は、鉛直方向においてコンプレッサーシェルター7より高い位置に配置される。 FIG. 11 is a schematic longitudinal sectional view showing an embodiment of the air-cooled liquefied gas production section of the present invention. As shown in FIG. 11, the air-cooled liquefied gas production unit of the present invention has a pipe rack unit 1 in which an air-cooled heat exchanger 2 is installed at the top, and a fixed space 3 below the air-cooled heat exchanger in the vertical direction. The pipe bundle 4 including a plurality of pipes is installed. The compressor shelter 7 is disposed adjacent to the pipe rack portion 1, and the space 3 is disposed at a position higher than the compressor shelter 7 in the vertical direction.
 本発明の空冷式液化ガス製造部は、別の態様において、圧縮機がパイプラック部に隣接して配置され、圧縮機の駆動用ガスタービンのエアインテイク(空気取入れ口)がパイプラック部に向かないように配置される。これにより、横風が吹いた場合に生じ得るダウンウォッシュ、即ち、空冷熱交換器から排気された熱交換により温められた空気(ホットエア)をガスタービンの吸気として導入されないようにすることができ、冷媒の圧縮効率の低減を抑制又は防止できる。 In another aspect, the air-cooled liquefied gas production unit of the present invention is configured such that the compressor is disposed adjacent to the pipe rack unit, and the air intake (air intake port) of the gas turbine for driving the compressor is directed to the pipe rack unit. It is arranged so that there is no. As a result, downwash that can occur when cross wind blows, that is, air warmed by heat exchange exhausted from the air-cooled heat exchanger (hot air) can be prevented from being introduced as intake air of the gas turbine. The reduction in compression efficiency can be suppressed or prevented.
 図12は、本発明の空冷式液化ガス製造部の一態様を示す上空から見た平面図である。図9と同様に、C3-MR方式のプロセスを示している。図12に示すように、ガスタービン125、225のエアインテイクは、図12中の矢印で示すように上空から見た場合に長方形状を有する空冷式液化ガス製造部の長手方向に平行な方向に向けてあり、パイプラック部に向かないようにしてある。これにより、横風(短手方向の風)が吹いた場合にダウンウォッシュが生じたとしても、エアインテイク(空気取入れ口)が短手方向に向いていないので温度の高いダウンウォッシュがガスタービンの吸気として導入されることはなく、冷媒の圧縮効率の低減を抑制又は防止できる。 FIG. 12 is a plan view seen from above showing an embodiment of the air-cooled liquefied gas production section of the present invention. As in FIG. 9, the C3-MR process is shown. As shown in FIG. 12, the air intakes of the gas turbines 125 and 225 are parallel to the longitudinal direction of the air-cooled liquefied gas production section having a rectangular shape when viewed from above, as indicated by the arrows in FIG. It is facing away from the pipe rack. As a result, even if a downwash occurs when crosswind (wind in the short direction) blows, the air intake (air intake) is not oriented in the short direction, so a high temperature downwash is introduced into the intake of the gas turbine. As a result, the reduction in the compression efficiency of the refrigerant can be suppressed or prevented.
 本発明の空冷式液化ガス製造設備は、別の態様において、空冷式液化ガス製造部を複数有し、前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも短い場合よりも、隣接する任意のふたつの空冷式液化ガス製造部の間の距離を短くする。 In another aspect, the air-cooled liquefied gas production facility of the present invention has a plurality of air-cooled liquefied gas production units, and the length of the space in the vertical direction is short in the space when viewed from above. The distance between any two adjacent air-cooled liquefied gas production units is made shorter than when the length is shorter than the length.
 尚、異なるトレイン間での問題は、外部にあるトレインのホットエアを吸込むため、「外部HAR(External Hot Air Recirculation)」と言う。
 空冷式液化ガス製造施設において空冷式液化ガス製造部(トレイン)が複数存在する場合、図13に示すように、横風が吹いた場合に生じ得る一の空冷式液化ガス製造部(LNGトレインB)からのダウンウォッシュは、その空冷式液化ガス製造部において自己HARの原因となり、また、風下にある隣接する空冷式液化ガス製造部(LNGトレインA)の空冷熱交換器の吸気として吸い込まれる外部HARの原因となる。
The problem between different trains is referred to as “external hot air recirculation (HAR)” because hot air from the external train is sucked in.
When there are a plurality of air-cooled liquefied gas production units (trains) in the air-cooled liquefied gas production facility, as shown in FIG. 13, one air-cooled liquefied gas production unit (LNG train B) that can be generated when a cross wind blows. Downwash from the air causes self-HAR in the air-cooled liquefied gas production department, and the external HAR sucked as the intake air of the air-cooled heat exchanger of the adjacent air-cooled liquefied gas production department (LNG train A) in the leeward Cause.
 本発明において、パイプラック部に配置される空冷熱交換器と配管束との間に空間を設けて自己HARを低減又は抑制することにより、隣接する空冷式液化ガス製造部での外部HARも低減又は抑制できる。 In the present invention, a space is provided between the air-cooling heat exchanger arranged in the pipe rack section and the pipe bundle to reduce or suppress self-HAR, thereby reducing the external HAR in the adjacent air-cooled liquefied gas production section. Or it can be suppressed.
 図14は、図5に示す、自己HAR及び外部HARが生じているLNG製造設備を示すCFD解析の例であり、上空から見た平面図である。パイプラック部に配置される空冷熱交換器と配管束との間には空間が設けられていない。
  色の濃淡は、34.0℃~39.0℃の温度分布を示している。
 横風が吹いた場合に、生じ得るダウンウォッシュに対して対向する空気の流れを確保できないため、ダウンウォッシュにより自己HARが発生し、さらにダウンウォッシュが隣りのLNGトレインへの外部HARとして影響する。
FIG. 14 is an example of CFD analysis showing the LNG manufacturing facility in which the self HAR and the external HAR are generated as shown in FIG. 5, and is a plan view seen from above. No space is provided between the air-cooled heat exchanger disposed in the pipe rack portion and the pipe bundle.
The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C.
When a cross wind blows, it is not possible to secure a flow of air that opposes the possible downwash, so that the self-HAR is generated by the downwash, and the downwash has an effect as an external HAR to the adjacent LNG train.
 図15は、図6に示す、空冷式LNG製造設備を示すCFD解析の例であり、上空から見た平面図である。パイプラック部に配置される空冷熱交換器と配管束との間には空間が設けられている。
  色の濃淡は、34.0℃~39.0℃の温度分布を示している。
 横風が吹いた場合に、生じ得るダウンウォッシュに対して対向する空気の流れを確保でき、自己HARを低減又は抑制するとともに、外部HARも低減又は抑制する。
FIG. 15 is an example of CFD analysis showing the air-cooled LNG manufacturing facility shown in FIG. 6, and is a plan view seen from above. A space is provided between the air-cooled heat exchanger disposed in the pipe rack portion and the pipe bundle.
The color shading shows a temperature distribution of 34.0 ° C to 39.0 ° C.
When a cross wind blows, it is possible to secure a flow of air that opposes the possible downwash, reducing or suppressing self-HAR and reducing or suppressing external HAR.
 外部HARは、隣り合うトレイン間の距離を拡大することで回避できる。しかしながら、トレイン間距離を長くすると、プラント全体プロットが大きくなり、コストアップの原因につながる。本発明にしたがった自己HAR対策により、トレイン間距離を拡大することなく、外部HARを回避でき、プラント全体プロットを小さくできる。 External HAR can be avoided by increasing the distance between adjacent trains. However, if the distance between trains is made longer, the plot of the entire plant becomes larger, leading to a cost increase. The self-HAR countermeasure according to the present invention can avoid the external HAR without increasing the distance between trains, and can reduce the entire plant plot.
 以上説明した本発明の空冷式液化ガス製造設備の各態様は、任意の態様を適宜組み合わせてもよい。 Each aspect of the air-cooled liquefied gas production facility of the present invention described above may be arbitrarily combined with any aspect.
 本発明の空冷式液化ガス製造方法は、メタンを主成分とする供給ガスから不要物を除去し液化して液化ガスを製造する空冷式液化ガス製造方法であって、
 熱交換器と、圧縮機と、複数の空冷熱交換器と、膨張部と、前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部とを備える空冷式液化ガス製造設備を使用し、
 前記空冷式液化ガス製造設備は、
 前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
 前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長い、空冷式液化ガス製造設備であり、
 前記熱交換器により、前記供給ガスを冷媒と熱交換して冷却し、
 前記圧縮機により、前記供給ガスとの熱交換により蒸発した冷媒を圧縮し、
 前記複数の空冷熱交換器により、前記圧縮された冷媒を空気との熱交換により冷却し、
 前記膨張部により、前記冷却された冷媒を膨張させて冷却することを含み、
 前記パイプラック部を上空から見たときに短手方向に風が吹いた場合に、前記空冷熱交換器の上方から吹き下ろすダウンウォッシュに対して、前記空間を通過して吹き上げる対向流を発生させる。
The air-cooled liquefied gas production method of the present invention is an air-cooled liquefied gas production method for producing a liquefied gas by removing unnecessary substances from a supply gas mainly composed of methane and liquefying it,
An air-cooled liquefied gas production facility comprising a heat exchanger, a compressor, a plurality of air-cooled heat exchangers, an expansion part, and a pipe rack part in which the plurality of air-cooled heat exchangers are arranged at the top in the vertical direction Use
The air-cooled liquefied gas production facility is
In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
The vertical length of the space is an air-cooled liquefied gas production facility that is longer than the length in the short direction of the space when viewed from above.
The heat exchanger cools the supply gas by exchanging heat with the refrigerant,
The compressor compresses the refrigerant evaporated by heat exchange with the supply gas,
The plurality of air-cooled heat exchangers cool the compressed refrigerant by heat exchange with air,
Expanding and cooling the cooled refrigerant by the expansion unit;
When the wind blows in a short direction when the pipe rack part is viewed from above, a counterflow that blows up through the space is generated for the downwash that blows down from above the air-cooled heat exchanger. .
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
 
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (8)

  1.  メタンを主成分とする供給ガスを液化して液化ガスを製造する空冷式液化ガス製造部を有する空冷式液化ガス製造設備であって、
     前記空冷式液化ガス製造部は、
     前記供給ガスを冷媒との熱交換により冷却する熱交換器と、
     前記供給ガスとの熱交換により蒸発した冷媒を圧縮する圧縮機と、
     前記圧縮された冷媒を空気との熱交換により冷却する複数の空冷熱交換器と、
     前記冷却された冷媒を膨張させて冷却する膨張部と、
     前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部と
    を備え、
     前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
     前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長い、液化ガス製造設備。
    An air-cooled liquefied gas production facility having an air-cooled liquefied gas production section that liquefies a supply gas mainly composed of methane to produce a liquefied gas,
    The air-cooled liquefied gas production department
    A heat exchanger for cooling the supply gas by heat exchange with a refrigerant;
    A compressor that compresses the refrigerant evaporated by heat exchange with the supply gas;
    A plurality of air-cooled heat exchangers for cooling the compressed refrigerant by heat exchange with air;
    An inflating part for inflating and cooling the cooled refrigerant;
    A plurality of air-cooled heat exchangers, and a pipe rack portion arranged at the top in the vertical direction,
    In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
    A liquefied gas production facility, wherein the vertical length of the space is longer than the short length of the space when viewed from above.
  2.  前記空間は、前記配置される配管のうち、最上部の配管上部に、空冷熱交換器の所望の吸込み流量を確保する第1空間に加えて、ダウンウォッシュに抗う対向流を通すための第2空間から構成される、請求項1に記載の液化ガス製造設備。 In addition to the first space that secures a desired suction flow rate of the air-cooled heat exchanger, the space is a second space through which a counterflow against downwash is passed, in addition to the first space that secures the desired suction flow rate of the air-cooled heat exchanger. The liquefied gas manufacturing facility according to claim 1, which is configured from a space.
  3.  前記供給ガスとの熱交換により蒸発した冷媒を前記圧縮機に送る配管が、前記パイプラック部の外に配置される、請求項1又は2に記載の空冷式液化ガス製造設備。 The air-cooled liquefied gas production facility according to claim 1 or 2, wherein a pipe for sending refrigerant evaporated by heat exchange with the supply gas to the compressor is disposed outside the pipe rack portion.
  4.  前記空冷熱交換器は、遮蔽板部材を備える、請求項1~3のいずれかに記載の空冷式液化ガス製造設備。 The air-cooled liquefied gas production facility according to any one of claims 1 to 3, wherein the air-cooled heat exchanger includes a shielding plate member.
  5.  前記圧縮機を収容するコンプレッサーシェルターが前記パイプラック部に隣接して配置され、前記パイプラック部の前記空間が、鉛直方向において前記コンプレッサーシェルターより高い位置に存在する、請求項1~4のいずれかに記載の空冷式液化ガス製造設備。 The compressor shelter for accommodating the compressor is disposed adjacent to the pipe rack portion, and the space of the pipe rack portion is present at a position higher than the compressor shelter in the vertical direction. The air-cooled liquefied gas production facility described in 1.
  6.  前記圧縮機が前記パイプラック部に隣接して配置され、前記圧縮機の駆動用ガスタービンのエアインテイクが前記パイプラック部に向かないように配置される、請求項1~5のいずれかに記載の空冷式液化ガス製造設備。 6. The compressor according to claim 1, wherein the compressor is disposed adjacent to the pipe rack portion, and an air intake of a gas turbine for driving the compressor is disposed not to face the pipe rack portion. Air-cooled liquefied gas production facility.
  7.  前記空冷式液化ガス製造部を複数有し、隣接する任意のふたつの空冷式液化ガス製造部の間の距離を、前記空間の鉛直方向の長さが上空から見たときの前記空間の短手方向の長さよりも短い場合の前記距離と比較して短くする、請求項1~6のいずれかに記載の空冷式液化ガス製造設備。 A plurality of the air-cooled liquefied gas production units, and the distance between any two adjacent air-cooled liquefied gas production units is the shortness of the space when the vertical length of the space is viewed from above. The air-cooled liquefied gas production facility according to any one of claims 1 to 6, wherein the facility is shorter than the distance in the case of being shorter than the length in the direction.
  8.  メタンを主成分とする供給ガスから不要物を除去し液化して液化ガスを製造する空冷式液化ガス製造方法であって、
     熱交換器と、圧縮機と、複数の空冷熱交換器と、膨張部と、前記複数の空冷熱交換器が鉛直方向の最上部に配置されたパイプラック部とを備える空冷式液化ガス製造設備を使用し、
     前記空冷式液化ガス製造設備は、
     前記パイプラック部には、前記空冷熱交換器の鉛直方向の下方の空間に、前記供給ガスを前記熱交換器に送る配管、前記圧縮された冷媒を前記膨張部に送る配管、及び前記膨張させた冷媒を前記熱交換器に送る配管が配置され、
     前記空間の鉛直方向の長さが、上空から見たときの前記空間の短手方向の長さよりも長い、空冷式液化ガス製造設備であり、
     前記熱交換器により、前記供給ガスを冷媒と熱交換して冷却し、
     前記圧縮機により、前記供給ガスとの熱交換により蒸発した冷媒を圧縮し、
     前記複数の空冷熱交換器により、前記圧縮された冷媒を空気との熱交換により冷却し、
     前記膨張部により、前記冷却された冷媒を膨張させて冷却することを含み、
     上空から見たときに前記パイプラック部の短手方向に風が吹いた場合に、前記空冷熱交換器の上方から吹き下ろすダウンウォッシュに対して、前記空間を通過して吹き上げる対向流を発生させる、空冷式液化ガス製造方法。
     
    An air-cooled liquefied gas production method for producing a liquefied gas by removing unnecessary substances from a supply gas containing methane as a main component and liquefying,
    An air-cooled liquefied gas production facility comprising a heat exchanger, a compressor, a plurality of air-cooled heat exchangers, an expansion part, and a pipe rack part in which the plurality of air-cooled heat exchangers are arranged at the top in the vertical direction Use
    The air-cooled liquefied gas production facility is
    In the pipe rack part, a pipe that sends the supply gas to the heat exchanger, a pipe that sends the compressed refrigerant to the expansion part, and a pipe that is expanded in a space below the air-cooled heat exchanger in the vertical direction. A pipe for sending the refrigerant to the heat exchanger is arranged,
    The vertical length of the space is an air-cooled liquefied gas production facility that is longer than the length in the short direction of the space when viewed from above.
    The heat exchanger cools the supply gas by exchanging heat with the refrigerant,
    The compressor compresses the refrigerant evaporated by heat exchange with the supply gas,
    The plurality of air-cooled heat exchangers cool the compressed refrigerant by heat exchange with air,
    Expanding and cooling the cooled refrigerant by the expansion unit;
    When a wind blows in the short direction of the pipe rack when viewed from above, a counter flow that blows up through the space is generated for a downwash that blows down from above the air-cooled heat exchanger. An air-cooled liquefied gas production method.
PCT/JP2014/003541 2014-07-02 2014-07-02 Air-cooled type liquefied gas production facility WO2016001952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003541 WO2016001952A1 (en) 2014-07-02 2014-07-02 Air-cooled type liquefied gas production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003541 WO2016001952A1 (en) 2014-07-02 2014-07-02 Air-cooled type liquefied gas production facility

Publications (1)

Publication Number Publication Date
WO2016001952A1 true WO2016001952A1 (en) 2016-01-07

Family

ID=55018555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003541 WO2016001952A1 (en) 2014-07-02 2014-07-02 Air-cooled type liquefied gas production facility

Country Status (1)

Country Link
WO (1) WO2016001952A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038193A (en) * 2014-08-11 2016-03-22 日揮株式会社 Liquefied gas manufacturing equipment
WO2017175384A1 (en) * 2016-04-08 2017-10-12 日揮株式会社 Gas-processing apparatus
JP6360987B1 (en) * 2017-11-14 2018-07-18 日揮株式会社 Natural gas liquefaction device and method for designing natural gas liquefaction device
WO2019110769A1 (en) * 2017-12-07 2019-06-13 Shell Internationale Research Maatschappij B.V. Compact lng production train and method
WO2020240696A1 (en) * 2019-05-28 2020-12-03 日揮グローバル株式会社 Operation analysis method for production plant
WO2021024376A1 (en) * 2019-08-06 2021-02-11 日揮グローバル株式会社 Module for natural gas plant
WO2021084621A1 (en) * 2019-10-29 2021-05-06 日揮グローバル株式会社 Natural gas liquefier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346402A (en) * 1999-06-01 2000-12-15 Osaka Gas Co Ltd Concentrated installing structure of heat pump outdoor unit
JP2013083422A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Outdoor unit and refrigeration device
WO2014103332A1 (en) * 2012-12-28 2014-07-03 日揮株式会社 Liquefied gas production facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346402A (en) * 1999-06-01 2000-12-15 Osaka Gas Co Ltd Concentrated installing structure of heat pump outdoor unit
JP2013083422A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Outdoor unit and refrigeration device
WO2014103332A1 (en) * 2012-12-28 2014-07-03 日揮株式会社 Liquefied gas production facility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAFUMI KAWAI: "Thermal diffusion of an air fin cooler. Recirculation phenomena and their features", HAIKAN GIJUTSU, vol. 36, no. 14, 1 December 1994 (1994-12-01), pages 96 - 100 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038193A (en) * 2014-08-11 2016-03-22 日揮株式会社 Liquefied gas manufacturing equipment
WO2017175384A1 (en) * 2016-04-08 2017-10-12 日揮株式会社 Gas-processing apparatus
US10823500B2 (en) 2016-04-08 2020-11-03 Jgc Corporation Gas processing facility
JP6360987B1 (en) * 2017-11-14 2018-07-18 日揮株式会社 Natural gas liquefaction device and method for designing natural gas liquefaction device
WO2019097571A1 (en) * 2017-11-14 2019-05-23 日揮株式会社 Natural gas liquification device, and natural gas liquification device design method
WO2019110769A1 (en) * 2017-12-07 2019-06-13 Shell Internationale Research Maatschappij B.V. Compact lng production train and method
US20200309450A1 (en) * 2017-12-07 2020-10-01 Shell Oil Company Compact lng production train and method
WO2020240696A1 (en) * 2019-05-28 2020-12-03 日揮グローバル株式会社 Operation analysis method for production plant
WO2021024376A1 (en) * 2019-08-06 2021-02-11 日揮グローバル株式会社 Module for natural gas plant
CN112912678A (en) * 2019-08-06 2021-06-04 日挥环球株式会社 Module for natural gas equipment
JP6887071B1 (en) * 2019-08-06 2021-06-16 日揮グローバル株式会社 Module for natural gas plant
RU2766682C1 (en) * 2019-08-06 2022-03-15 ДжГК Корпорейшн Module for natural gas processing plant
WO2021084621A1 (en) * 2019-10-29 2021-05-06 日揮グローバル株式会社 Natural gas liquefier
JPWO2021084621A1 (en) * 2019-10-29 2021-05-06
JP7313466B2 (en) 2019-10-29 2023-07-24 日揮グローバル株式会社 natural gas liquefier
US11913717B2 (en) 2019-10-29 2024-02-27 Jgc Corporation Natural gas liquefying apparatus

Similar Documents

Publication Publication Date Title
WO2016001952A1 (en) Air-cooled type liquefied gas production facility
US11112180B2 (en) Modular air cooled condenser apparatus and method
CN100575838C (en) The equipment that is used for cryogenic separation admixture of gas, particularly air
JP2016065643A (en) Liquefaction gas manufacturing equipment
JP2009174844A (en) Air stream compressing method and air stream compressing device
EP2979049A1 (en) Air-cooled modular lng production facility
US10161675B2 (en) Natural gas liquefaction system
US20160290714A1 (en) Optimized heat exchange in a co2 de-sublimation process
JP6360987B1 (en) Natural gas liquefaction device and method for designing natural gas liquefaction device
JP5781487B2 (en) Oxygen-enriched air production system
RU2665015C1 (en) Gas liquefaction unit
US20140026611A1 (en) Method and apparatus for liquefying a gas or cooling a feed gas at supercritical pressure
TW538225B (en) Evaporator for refrigerating system and refrigeration apparatus using thereof
JP2018185103A (en) Natural gas liquefaction plant
RU2009117466A (en) METHOD AND DEVICE FOR COOLING A HYDROCARBON FLOW
WO2019097728A1 (en) Method for operating natural gas liquefaction device
Anisimov et al. Advanced cooling tower concept for commercial and industrial applications
US9797653B2 (en) Method and device for condensing a carbon dioxide-rich gas stream
JP7291472B2 (en) Nitrogen gas production equipment
US11913717B2 (en) Natural gas liquefying apparatus
RU2747868C1 (en) Module for natural gas liquefaction device and natural gas liquefaction device
WO2020021668A1 (en) Natural gas treatment apparatus
JP7313459B2 (en) natural gas liquefier
CN210374296U (en) Liquid nitrogen preparation system
CN204176819U (en) Direct evaporation and evaporative condenser convolution air-conditioner set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP