WO2021023272A1 - 一种atr抑制剂的晶型及其应用 - Google Patents

一种atr抑制剂的晶型及其应用 Download PDF

Info

Publication number
WO2021023272A1
WO2021023272A1 PCT/CN2020/107474 CN2020107474W WO2021023272A1 WO 2021023272 A1 WO2021023272 A1 WO 2021023272A1 CN 2020107474 W CN2020107474 W CN 2020107474W WO 2021023272 A1 WO2021023272 A1 WO 2021023272A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
cancer
formula
angles
Prior art date
Application number
PCT/CN2020/107474
Other languages
English (en)
French (fr)
Inventor
王剑
姚婷
钱文远
黎健
陈曙辉
Original Assignee
石家庄智康弘仁新药开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄智康弘仁新药开发有限公司 filed Critical 石家庄智康弘仁新药开发有限公司
Priority to JP2022507699A priority Critical patent/JP2022543856A/ja
Priority to BR112022001393A priority patent/BR112022001393A2/pt
Priority to AU2020325416A priority patent/AU2020325416A1/en
Priority to EP20851028.9A priority patent/EP4011881A4/en
Priority to CA3147322A priority patent/CA3147322A1/en
Priority to US17/632,823 priority patent/US20220281858A1/en
Priority to CN202080054862.6A priority patent/CN114728957B/zh
Publication of WO2021023272A1 publication Critical patent/WO2021023272A1/zh
Priority to IL290106A priority patent/IL290106A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of an ATR inhibitor and a preparation method thereof, and relates to its application in the preparation of drugs for treating ATR-related diseases.
  • ATR capillary dilatation ataxia mutations and RAD-3 related protein kinases
  • PIKKs phosphatidylinositol-3-kinase-related kinases
  • ATR protein kinase produces a coordinated response to DNA damage, replication stress and cell cycle interference.
  • Both ATR and ATM belong to the PIKK family of serine/threonine protein kinases. They are a common part of cell cycle and DNA damage repair. Others include Chkl, BRCA1, and p53.
  • ATR is mainly responsible for DNA replication stress (replication fork stagnation) and repair of single-strand breaks.
  • DNA double-strand breaks are excised or replication forks are stalled, ATR is activated by the DNA single-stranded structure.
  • DNA polymerase stays in the DNA replication process, and the replication helicase continues to unwind at the front end of the DNA replication fork, resulting in the production of long single-stranded DNA (ssDNA), which is then combined by single-stranded DNA and RPA (replication protein A).
  • ATR/ATR-acting protein complex recruited by RPA to the damage site activates the RAD17/rfc2-5 complex to bind to the damage site, and the DNA-ssDNA junction Activating Rad9-HUS1-RAD1(9-1-1) heterotrimer, 9-1-1 in turn recruits TopBP1 to activate ATR.
  • ATR promotes DNA repair, stabilizes and restarts stalled replication forks and transient cell cycle arrest through downstream targets. These functions are achieved by ATR by mediating the downstream target Chk1.
  • ATR acts as a checkpoint for the cell cycle of DNA damage in the S phase.
  • ATR can mediate the degradation of CDC25A through Chk1, thereby delaying the process of DNA replication and giving time to repair the replication fork.
  • ATR is also the main regulator of G2/M cell cycle checkpoints, preventing cells from entering mitosis prematurely before DNA replication is complete or DNA damage.
  • This ATR-dependent G2/M cell cycle arrest is mainly mediated by two mechanisms: 1. Degradation of CDC25A. 2. Phosphorylate Cdc25C by Chk1 to bind it to 14-3-protein. The binding of Cdc25C to 14-3-3 protein promotes its export from the nucleus and cytoplasmic isolation, thereby inhibiting its ability to dephosphorylate and activate nuclear Cdc2, which in turn prevents entry into mitosis.
  • ATR gene mutations in the ATR gene are extremely rare. Only a few patients with Seckel syndrome have ATR gene mutations, which are characterized by developmental delay and microcephaly. Disruption of ATR-related pathways can cause genome instability, and ATR protein is activated by most cancer chemotherapy. In addition, duplication of the ATR gene has been described as a risk factor for rhabdomyosarcoma.
  • ATR is essential for the self-replication of cells, and is activated in the S phase to regulate the origin of replication and repair damaged replication forks. Replication fork damage can increase the sensitivity of cancer cells to platinum and hydroxyurea anticancer drugs, and reduce the resistance of cancer cells. Therefore, inhibiting ATR may be an effective method in future cancer treatment.
  • the present invention provides that the X-ray powder diffraction pattern of crystal form A of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 8.10 ⁇ 0.20°, 18.33 ⁇ 0.20° and 22.63 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.46 ⁇ 0.20°, 8.10 ⁇ 0.20°, 13.03 ⁇ 0.20°, 15.07 ⁇ 0.20°, 15.58 ⁇ 0.20 °, 16.19 ⁇ 0.20°, 18.33 ⁇ 0.20° and 22.63 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.46 ⁇ 0.20°, 8.10 ⁇ 0.20°, 13.03 ⁇ 0.20°, 13.46 ⁇ 0.20°, 15.07 ⁇ 0.20 °, 15.58 ⁇ 0.20°, 16.19 ⁇ 0.20°, 18.33 ⁇ 0.20°, 21.17 ⁇ 0.20° and 22.63 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.46°, 8.10°, 11.24°, 13.03°, 13.46°, 15.07°, 15.58°, 15.98° , 16.19°, 17.70°, 18.33°, 19.60°, 21.17°, 22.63°, 23.84°, 25.56° and 26.57°.
  • the XRPD pattern of the above crystal form A is shown in FIG. 1.
  • the XRPD pattern analysis data of the above-mentioned crystal form A is shown in Table 1:
  • the present invention provides that the X-ray powder diffraction pattern of the B crystal form of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 8.45 ⁇ 0.20°, 10.87 ⁇ 0.20° and 20.56 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 8.45 ⁇ 0.20°, 10.87 ⁇ 0.20°, 14.83 ⁇ 0.20°, 15.54 ⁇ 0.20°, 17.33 ⁇ 0.20 °, 20.56 ⁇ 0.20°, 22.00 ⁇ 0.20° and 22.63 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 8.45 ⁇ 0.20°, 10.87 ⁇ 0.20°, 14.83 ⁇ 0.20°, 15.54 ⁇ 0.20°, 17.33 ⁇ 0.20 °, 20.08 ⁇ 0.20°, 20.56 ⁇ 0.20°, 22.00 ⁇ 0.20°, 22.63 ⁇ 0.20° and 25.26 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 8.45°, 9.20°, 10.87°, 12.57°, 14.14°, 14.53°, 14.83°, 15.54° , 16.80°, 17.33°, 18.43°, 19.84°, 20.08°, 20.56°, 21.39°, 22.00°, 22.44°, 22.63°, 23.26°, 25.26°, 25.85° and 26.98°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 2.
  • the XRPD pattern analysis data of the above-mentioned crystal form B is shown in Table 2:
  • the differential scanning calorimetry (DSC) of the above-mentioned crystal form B has an endothermic peak at 174.3 ⁇ 3°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 3.
  • thermogravimetric analysis curve (TGA) of the above-mentioned crystal form B has a weight loss of 1.49% at 150°C ⁇ 3°C.
  • the TGA pattern of the above-mentioned crystal form B is shown in FIG. 4.
  • the present invention provides a method for preparing the crystal form of compound A of formula (I), including:
  • the present invention provides a method for preparing the crystal form of compound B of formula (I), including:
  • the solvent is: methanol, methyl tert-butyl ether, methanol/water (V/V, 1:0.3 ⁇ 1), acetone/water (V/V, 1:1), iso Propanol/water (V/V, 1:1), ethyl acetate/n-heptane (V/V, 1:1), isopropyl acetate/n-heptane (V/V, 1:1), ethanol /N-heptane (V/V, 1:1), acetonitrile/n-heptane (V/V, 1:1), isopropanol/n-heptane (V/V, 1:1) or methylene chloride/ N-heptane (V/V, 1:1).
  • the temperature is 25 to 70°C.
  • the present invention provides a method for preparing the crystal form of compound B of formula (I), including:
  • the volume ratio of the alcohol solvent to water is 1:1 to 1:4.
  • the aforementioned alcohol solvent is selected from: methanol.
  • the concentration range of the compound of formula (I) is selected from 25 mg/mL to 50 mg/mL.
  • the present invention also provides the application of the compound of the above formula (I), the above crystal form A or the above crystal form B in the preparation of drugs for treating ATR-related diseases.
  • the above application is characterized in that the drug is a drug for treating solid tumors or hematomas.
  • the above application is characterized in that the drug is used to treat colorectal cancer, gastric cancer, esophageal cancer, primary peritoneal cancer, adrenal cortical cancer, renal clear cell carcinoma, prostate cancer, bladder Drugs for urothelial cancer, ovarian cancer, breast cancer, endometrial cancer, fallopian tube cancer, non-small cell lung cancer or small cell lung cancer.
  • the crystal form A and crystal form B of the compound of the formula (I) of the present invention are stable, are less affected by light, heat and humidity, have good drug effects in vivo, and have broad prospects for preparing medicines.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following acronyms: EtOH stands for ethanol; MeOH stands for methanol; TFA stands for trifluoroacetic acid; TsOH stands for p-toluenesulfonic acid; mp stands for melting point; EtSO 3 H stands for ethanesulfonic acid; MeSO 3 H stands for methanesulfonic acid; THF stands for tetrahydrofuran; EtOAc stands for ethyl acetate.
  • Test method Approximately 10-20mg sample is used for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • the first solar slit 0.04rad
  • the second solar slit 0.04rad
  • Anti-scatter slit 7.5mm
  • Test method Take a sample (about 1-5 mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL/min N 2 and at a heating rate of 10°C/min, heat the sample from 25°C (room temperature) to before the sample is decomposed .
  • Thermogravimetric analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take a sample (about 1-5 mg) and place it in a TGA aluminum pan for testing. Under the condition of 10 mL/min N 2 and at a heating rate of 10° C./min, heat the sample from room temperature to 350° C.
  • Figure 1 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound A of formula (I);
  • Figure 2 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound B of formula (I);
  • Figure 3 is a DSC spectrum of the crystal form of compound B of formula (I);
  • Figure 4 is a TGA spectrum of the B crystal form of compound of formula (I).
  • Example 7 Solid stability test of crystal form A under high temperature and high humidity conditions
  • Example 8 Solid physical stability test of crystal form A under different temperature, humidity and light conditions
  • Example 9 Solid physical stability test of crystal form B under high temperature, high humidity and light conditions
  • Test Example 1 In vitro evaluation
  • the inhibitory activity of the test compound on human ATR kinase was evaluated by measuring the IC 50 value.
  • ATR/ATRIP(h) was incubated in an assay buffer containing 50 nM GST-cMyc-p53 and Mg/ATP (concentration as required). The reaction is initiated by adding a Mg/ATP mixture. After incubating for 30 minutes at room temperature, a stop solution containing EDTA was added to terminate the reaction. Finally, anti-phospho-Ser15 antibody containing buffer d 2 labeled anti-GST monoclonal antibody and anti-phospho-53-labeled Europium p. Then read the plate in time-resolved fluorescence mode and perform homogeneous time resolution
  • the compound of formula (I) of the present invention has a good inhibitory effect on kinase ATR.
  • Test Example 2 In vitro cell activity test
  • IR (%) (1-(RLU compound-RLU blank control) / (RLU vehicle control-RLU blank control)) * 100%.
  • the inhibition rate of different concentration of compound in Excel and GraphPad Prism software used for calculating inhibition curves and associated parameters, including the minimum inhibitory rate, the maximum inhibition rate and IC 50.
  • the compound TR of the formula (1) of the present invention has a good inhibitory effect on LoVo tumor cells with ATM signaling pathway mutations.
  • Test samples On the basis of the above test, select some of the compounds with high activity and representative structure to carry out further tests.
  • Test method The purpose of this study is to determine the pharmacokinetic parameters of the compound and calculate its gavage bioavailability in female Balb/c Nude mice.
  • This project uses six female Balb/c Nude mice, and three mice are injected intravenously at a dose of 1 mg/kg. Collect 0h (before administration) and 0.0833, 0.25, 0.5, 1, after administration. Plasma samples at 2, 4, 6, 8, and 24 hours, and the other three mice were given intragastrically at a dose of 10 mg/kg or 25 mg/kg.
  • C 0 (nM) is the concentration of the drug in the body at 0 minutes; Cl (mL/min/kg) is the clearance rate of the drug in the body; Vd ss (L/kg) is the volume of distribution in the body of the drug; T 1/2 (h) is Half-life; AUC 0-t (nM.h) is the amount of drug exposure in the body; C max (nM) is the highest concentration of the drug in the body; F is the bioavailability.
  • the compound of formula (1) of the present invention has better absorption and exposure in intragastric administration, and is suitable for oral administration.
  • LoVo is a colorectal adenocarcinoma tumor cell with MRE11A mutation (MRE11A is a key component of the ATM signaling pathway for DNA double-strand break repair), and it is sensitive to ATR inhibitors. This test will use the LoVo CDX model of rectal cancer to verify the inhibitory effect of a single ATR inhibitor on tumors with defective ATM signaling pathways.
  • Human colon cancer LoVo cells (ECACC, article number: 87060101), in vitro monolayer culture, culture conditions are Ham's F-12 medium plus 10% fetal bovine serum, 100U/mL penicillin, 100 ⁇ g/mL streptomycin and 2mM glutamine Incubate in amide, 37°C, 5% CO 2 . Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90%, the cells are collected, counted, and seeded. 0.1mL (10x106 cells) of LoVo cells were subcutaneously inoculated on the right back of each nude mouse, and group administration was started when the average tumor volume reached 173mm 3 .
  • Dosage 25 mg/kg of all test compounds were administered by intragastric administration twice a day with an interval of 8 hours within one day.
  • the tumor diameter was measured with vernier calipers twice a week.
  • TGI total tumor growth rate
  • T/C relative tumor growth rate
  • Relative tumor proliferation rate T/C (%) TRTV/CRTV ⁇ 100% (TRTV: average RTV of the treatment group; CRTV: average RTV of the negative control group).
  • RTV relative tumor volume
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the beginning of the treatment group)/(Average tumor volume at the end of treatment in the solvent control group-average tumor volume at the start of treatment in the solvent control group Tumor volume)] ⁇ 100%.
  • Tweight and Cweight represent the tumor weight of the administration group and the vehicle control group, respectively.
  • This test evaluated the efficacy of the compound in a human colorectal cancer xenograft tumor model, with a solvent control group as a reference.
  • the T/C and TGI of the compound of formula (1) (25 mg/kg) group were 27.8% and 90.7%, respectively, compared with the vehicle control group.
  • the compound of formula (1) of the present invention has a certain inhibitory effect on the growth of human colorectal cancer LoVo cell subcutaneous xenograft tumor model mice.

Abstract

一种ATR抑制剂的晶型及其制备方法和在制备治疗与ATR相关疾病的药物的应用。 (I)

Description

一种ATR抑制剂的晶型及其应用
本申请主张如下优先权
CN201910722102.7,申请日:2019.08.06。
技术领域
本发明涉及一种ATR抑制剂的晶型及其制备方法,并涉及其在制备治疗与ATR相关疾病的药物的应用。
背景技术
ATR(毛细管扩张共济失调突变和RAD-3相关蛋白激酶)属于PIKKs(磷脂酰肌醇-3-激酶-相关激酶)家族,参与DNA的损伤修复以维护基因的稳定。ATR蛋白激酶对DNA的损伤,复制压力应激和细胞周期的干扰产生协同应答。ATR和ATM同属于丝氨酸/苏氨酸蛋白激酶的PIKK家族,他们是细胞周期和DNA损伤修复的共同组成部分,其他还包括,Chkl,BRCAl,p53。ATR主要负责DNA复制应激(复制叉停滞)、单链断裂的修复工作。
当DNA双链断裂出现切除或复制叉停滞时,ATR被DNA单链结构所激活。DNA聚合酶停留在DNA复制过程中,复制解旋酶继续在DNA复制叉前端解旋,导致长的单链DNA(ssDNA)的产生,然后由单链DNA和RPA(复制蛋白A)结合。复制应激或DNA损伤时由RPA招募的ATR/ATR作用蛋白的复合物到损伤位点,RPA-单链DNA复合物激活RAD17/rfc2-5复合物结合到损伤位点,DNA-ssDNA连接处活化Rad9-HUS1-RAD1(9-1-1)异源三聚体,9-1-1反过来招募TopBP1激活ATR。一旦ATR被激活,ATR通过下游目标促进DNA修复、稳定和重新启动停滞的复制叉和短暂的细胞周期阻滞。这些功能是ATR通过介导下游靶Chk1来得以实现。ATR在S期起着DNA损伤细胞周期检查点的作用。它能通过Chk1介导CDC25A的降解,从而延缓DNA的复制进程,给修复复制叉提供了时间。ATR也是G2/M细胞周期检查点的主要调控者,在DNA复制完成或DNA损伤之前,阻止细胞过早进入有丝分裂。这种依赖ATR的G2/M细胞周期阻滞主要是通过两种机制介导:1。CDC25A的降解。2.通过Chk1磷酸化Cdc25C使之与14-3-蛋白结合。Cdc25C与14-3-3蛋白的结合促进其从细胞核的输出和细胞质隔离,从而抑制其去磷酸化和激活核Cdc2的能力,这进而阻止进入有丝分裂。
ATR基因的突变极为罕见,只有少数Seckel综合征患者存在ATR基因突变,其特征是发育迟缓和小头畸形。ATR相关途径的中断会导致基因组不稳定,而ATR蛋白被大多数癌症化学疗法激活。此外,ATR基因的重复已被描述为横纹肌肉瘤的危险因素。
ATR对于细胞的自我复制是必不可少的,并且在S期被激活以调节复制起点和修复损坏的复制叉。复制叉损伤可增加癌细胞对铂类和羟基脲类抗癌药的敏感度,降低癌细胞的耐药性。因此,抑制ATR可能是未来的癌症治疗中一种有效的方法。
发明内容
本发明提供了式(Ⅰ)化合物的A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.10±0.20°、18.33±0.20°和22.63±0.20°。
Figure PCTCN2020107474-appb-000001
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46±0.20°、8.10±0.20°、13.03±0.20°、15.07±0.20°、15.58±0.20°、16.19±0.20°、18.33±0.20°和22.63±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46±0.20°、8.10±0.20°、13.03±0.20°、13.46±0.20°、15.07±0.20°、15.58±0.20°、16.19±0.20°、18.33±0.20°、21.17±0.20°和22.63±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46°、8.10°、11.24°、13.03°、13.46°、15.07°、15.58°、15.98°、16.19°、17.70°、18.33°、19.60°、21.17°、22.63°、23.84°、25.56°和26.57°。
本发明的一些方案中,上述A晶型的XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.A晶型的XRPD图谱解析数据
Figure PCTCN2020107474-appb-000002
Figure PCTCN2020107474-appb-000003
本发明提供了式(Ⅰ)化合物的B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°和20.56±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°、14.83±0.20°、15.54±0.20°、17.33±0.20°、20.56±0.20°、22.00±0.20°和22.63±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°、14.83±0.20°、15.54±0.20°、17.33±0.20°、20.08±0.20°、20.56±0.20°、22.00±0.20°、22.63±0.20°和25.26±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45°、9.20°、10.87°、12.57°、14.14°、14.53°、14.83°、15.54°、16.80°、17.33°、18.43°、19.84°、20.08°、20.56°、21.39°、22.00°、22.44°、22.63°、23.26°、25.26°、25.85°和26.98°。
本发明的一些方案中,上述B晶型的XRPD图谱如图2所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.B晶型的XRPD图谱解析数据
Figure PCTCN2020107474-appb-000004
Figure PCTCN2020107474-appb-000005
本发明的一些方案中,上述B晶型的差示扫描量热曲线(DSC)在174.3±3℃处有一个吸热峰的起始点。
本发明的一些方案中,上述B晶型的DSC图谱如图3所示。
本发明的一些方案中,上述B晶型的热重分析曲线(TGA)在150℃±3℃时失重达1.49%。
本发明的一些方案中,上述B晶型的TGA图谱如图4所示。
本发明提供了式(Ⅰ)化合物A晶型的制备方法,包括:
1)将式(Ⅰ)化合物加入到乙醇溶剂中;
2)再加入水;
3)搅拌100~120小时;
4)室温中重结晶制得。
本发明提供了式(Ⅰ)化合物B晶型的制备方法,包括:
1)将式(Ⅰ)化合物加入到溶剂中;
2)加热到一定温度搅拌2.5~120小时;
3)室温中重结晶制得B晶型。
本发明的一些方案中,所述溶剂为:甲醇、甲基叔丁基醚、甲醇/水(V/V,1:0.3~1)、丙酮/水(V/V,1:1)、异丙醇/水(V/V,1:1)、乙酸乙酯/正庚烷(V/V,1:1)、乙酸异丙酯/正庚烷(V/V,1:1)、乙醇/正庚烷(V/V,1:1)、乙腈/正庚烷(V/V,1:1)、异丙醇/正庚烷(V/V,1:1)或二氯甲烷/正庚烷(V/V,1:1)。
本发明的一些方案中,所述温度为25~70℃。
本发明提供了式(Ⅰ)化合物B晶型的制备方法,包括:
1)将式(Ⅰ)化合物加入到醇类溶剂中;
2)再加入水;
3)搅拌15~20小时;
4)室温中重结晶制得。
本发明的一些方案中,上述醇类溶剂与水的体积比为1:1~1:4。
本发明的一些方案中,上述醇类溶剂选自:甲醇。
本发明的一些方案中,上述式(Ⅰ)化合物的浓度范围选自25mg/mL~50mg/mL。
本发明还提供了上述式(Ⅰ)化合物、上述A晶型或上述B晶型在在制备治疗ATR相关疾病的药物中的应用。
本发明的一些方案中,上述的应用,其特征在于,所述药物是用于治疗实体瘤或血液瘤的药物。
本发明的一些方案中,上述的应用,其特征在于,所述药物是用于治疗结直肠癌、胃癌、食管癌、原发性腹膜癌、肾上腺皮质癌、肾透明细胞癌、前列腺癌、膀胱尿路上皮癌、卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、非小细胞肺癌或小细胞肺癌的药物。
技术效果
本发明式(Ⅰ)化合物的A晶型和B晶型稳定、受光热湿度影响小且具有良好的体内给药药效,成药前景广阔。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;TsOH代表对甲苯磺酸;mp代表熔点;EtSO 3H代表乙磺酸;MeSO 3H代表甲磺酸;THF代表四氢呋喃;EtOAc代表乙酸乙酯。
本发明X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:
测试方法:大约10-20mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα(
Figure PCTCN2020107474-appb-000006
Kα2/Kα1强度比例:0.5)
光管电压:45kV,光管电流:40mA
发散狭缝:固定1/8deg
第一索拉狭缝:0.04rad
第二索拉狭缝:0.04rad
接收狭缝:无
防散射狭缝:7.5mm
测量时间:5min
扫描角度范围:3-40deg
步宽角度:0.0263deg
步长:46.665秒
样品盘转速:15rpm
本发明差示扫描量热(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q200/Q2000/2500差示扫描量热仪
测试方法:取样品(约1-5mg)置于DSC铝盘内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到样品分解前。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000/5500热重分析仪
测试方法:取样品(约1-5mg)置于TGA铝盘内进行测试,在10mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到350℃。
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(I)化合物B晶型的Cu-Kα辐射的XRPD谱图;
图3为式(I)化合物B晶型的DSC谱图;
图4为式(I)化合物B晶型的TGA谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(Ⅰ)化合物的制备
Figure PCTCN2020107474-appb-000007
第一步:化合物1-SM1-2的制备
室温下先向50L的反应釜中加入4.0L二甲基亚砜,搅拌下向釜内依次加入1-SM1-A(1500.69g,8.39mol),(R)-3-甲基吗啡啉(854.97g,8.45mol),碳酸钾(2891g,20.92mol),再次向釜内加入6.0L二甲基亚砜稀释,加完后在95℃下搅拌3小时。检测完全转化为1-SM1-1,降低温度到45℃,向反应釜内通入氮气5分钟,然后加入1,4-二甲基吡唑-5-嚬哪醇硼酸酯(1952.44g,8.79mol),四(三苯基磷)钯(192.98g,0.167mol),加完后向釜内加入2.0L二甲基亚砜冲洗内壁,氮气氛围104℃下搅拌12小时。反应结束后降温至40℃,过滤,滤饼用20.0L乙酸乙酯冲洗,滤液倒入釜内,向釜内加入15.0L水,搅拌2分钟静置分液,水相再次用10.0L乙酸乙酯萃取,然后合并有机相,分别用水(10.0L),饱和食盐水(8.0L*2)洗涤,有机相浓缩得到粗品化合物1-SM1-2直接用于下一步反应。
MS m/z:304.0[M+H] +
第二步:化合物1-SM1的制备
-40℃下向6.0L的1,4-二氧六环中通入氯化氢(1344.0g,36.82mol)备用。先向50L反应釜内加入5.0L 1,4-二氧六环,将浓缩得到的粗品1-SM1-2用5.0L 1,4-二氧六环溶解加入釜内,搅拌下再加入15.0L 1,4-二氧六环稀释。升温至70℃,向反应液中缓慢加入上述自制的盐酸/1,4-二氧六环(1344g,6.0L),98℃反应15小时。降温至40℃,过滤,滤饼用15.0L乙酸乙酯冲洗,将固体倒入反应釜用15.0L乙酸乙酯打浆30分钟。过滤,滤饼用5.0L乙酸乙酯冲洗。固体放入真空干燥箱内烘干得到化合物1-SM1。
MS m/z:290.1[M+H] +
1H NMR(400MHz,DMSO-d 6)δppm 1.34(br d,J=6.52Hz,3H)2.08(s,3H)3.47-3.58(m,2H)3.64-3.70(m,1H)3.72-3.78(m,1H)3.87(s,3H)3.97(br s,1H)4.07-4.32(m,1H)4.47(br s,1H)6.61(s,1H)7.44(s,1H)
第三步:化合物1-SM2的制备
Figure PCTCN2020107474-appb-000008
向化合物1-SM2-1(2g,7.87mmol),双联嚬哪醇硼酸酯(4.00g,15.74mmol)和1,1-双(二苯基磷)二茂铁氯化钯(0.3g,410.00μmol,)的1,4-二氧六环(25.0mL)溶液中加入乙酸钾(2.32g,23.61mmol),用氮气置换3次,反应在100℃下加热搅拌8小时。过滤,溶液浓缩得到粗品,粗品经柱层析分离得到化合物1-SM2。
MS-ESI m/z:302.1[M+H] +.
第四步:化合物1-1的制备
Figure PCTCN2020107474-appb-000009
室温下先向50L的反应釜中加入15.0L甲苯,搅拌下向釜内依次加入化合物1-SM1(1500.0g,4.23mol),三乙胺(1175.0ml,8.45mol),分批加入三氯氧磷(1178.0ml,12.68mol),加完后反应液在103~108℃下搅拌1小时40分钟,检测反应完成后降低温度到45℃,将反应液转移至暂存桶中,向反应釜内加入15.0L纯净水,搅拌下将反应液分批加入纯水中,控制温度在20~40℃,加完后用12.0L的氢氧化钠水溶液(4M)调节pH到6~7,控制温度在20~40℃。调节完pH,向反应釜中加入7.5L乙酸乙酯搅拌均匀后分层,水相再用15.0L乙酸乙酯萃取,合并有机相用12.0L饱和食盐水洗涤。有机相减压浓缩至无馏分得到粗品,粗品用1.5L甲基叔丁基醚溶解,搅拌下分批加入12.0L正庚烷,搅拌5分钟过滤,滤饼用5.0L正庚烷冲洗继续滤饼,将固体放入托盘中自然晾干得到化合物1-1.
MS m/z:308.0[M+H] +
1H NMR(400MHz,DMSO-d 6)δppm 1.29(br d,J=6.78Hz,3H)2.17(s,3H)3.24-3.32(m,1H)3.52(br s,1H)3.63-3.69(m,1H)3.78(br d,J=11.54Hz,1H)3.96(s,3H)4.01(br s,1H)4.14(br s,1H)4.47(br s,1H)6.89(s,1H)7.42(s,1H)
Figure PCTCN2020107474-appb-000010
第五步:化合物1-2的制备
20~30℃,氮气保护下,向10L玻璃釜中加入2.1L二甲亚砜,搅拌下,用加料漏斗依次加入化合物1-1(0.21kg),化合物1-SM2(0.306kg),碳酸钠水溶液(1.3M,1.05L),1,1’-双(二苯基磷)二茂铁氯 化钯(0.00749kg),加热升温至内温60~70℃,保温反应4~16小时。将体系降温至40~45℃,在30分钟内滴加5.25L水,继续搅拌30分钟,抽滤,用2.1L水洗涤滤饼。45℃真空干燥得粗品。前段所得粗品中加入2.625L乙酸乙酯,搅拌均匀溶解后,再次加入甲基叔丁基醚10.5L,继续搅拌30分钟,经过铺有硅藻土的布氏漏斗过滤,硅藻土层再次用2.1L乙酸乙酯和甲基叔丁基醚混合溶液(体积比1:4)洗涤,合并滤液,浓缩有机相得浓缩物。收集硅藻土上层黑色滤饼,加乙酸乙酯1.5L在室温下搅拌1小时后,经过铺有硅藻土的布氏漏斗过滤,滤饼用0.5L乙酸乙酯洗,滤液浓缩,合并上述两次所得浓缩物。
前段所得浓缩物中加入1.5L乙酸乙酯溶解,缓慢滴入正在在搅拌正庚烷4.5L溶液中(1.5小时),继续搅拌2小时过滤,滤饼用0.4L乙酸乙酯和正庚烷(体积比1:3)的混合溶液洗涤。滤饼真空干燥后加入到2L的单口烧瓶中并加入0.8L的醋酸异丙酯,回流4小时后缓慢降到室温搅拌过夜,使用布氏漏斗过滤,滤饼用0.3L醋酸异丙酯洗涤,收集固体,固体真空干燥后得产物。
产物溶于4.2L乙酸乙酯,在搅拌下加活性炭42g后在回流下搅拌过夜,热过滤,经过铺有硅藻土的布氏漏斗过滤,硅藻土层再次用2.0L乙酸乙酯洗涤,合并滤液,有机相浓缩至3.0L。向上述有机相中加入1.2L乙酸乙酯和43g活性炭,回流下搅拌8h后热过滤,经过铺有硅藻土的布氏漏斗过滤,硅藻土层用2.0L乙酸乙酯洗涤,合并滤液,有机相浓缩并真空干燥得化合物1-2。
MS m/z:447.0[M+H] +
1H NMR(CHCl 3-d,400MHz):δ=8.98(d,J=1.3Hz,1H),8.57(br s,1H),8.27(s,1H),7.58(d,J=2.0Hz,1H),7.49(t,J=2.8Hz,1H),7.42(s,1H),6.50(s,1H),4.48(br s,1H),4.29(br d,J=12.5Hz,1H),4.17(s,3H),4.13(dd,J=11.9,2.9Hz,1H),3.98(s,3H),3.87-3.93(m,1H),3.80-3.87(m,1H),3.69(td,J=11.9,3.0Hz,1H),3.44(td,J=12.8,3.8Hz,1H),2.25(s,3H),1.44ppm(d,J=7.0Hz,3H)
Figure PCTCN2020107474-appb-000011
第六步:式(1)化合物1的制备
在20℃下,向化合物1-2(35.0g,78.39mmol)的四氢呋喃(50.0mL)加入四氢铝锂(63.0mL,2.5M),反应在20℃搅拌1小时。在0-5℃下向反应液中缓慢依次加入6.9mL水、6.9mL 15%的氢氧化钠和20.7mL水,然后过滤,滤液浓缩得到粗品,粗品经柱层析分离(乙酸乙酯/石油醚:50-100%)得到产物。在室温下将上述产物溶解于20.0mL二甲亚砜,缓慢的滴入搅拌的400mL水中,过滤烘干得式(Ⅰ)化合物。
MS m/z:419.1[M+H] +
1H NMR(400MHz,CHCl 3-d)δppm 8.39(br s,1H),8.28(s,1H),7.58(s,1H),7.51(br s,1H),7.42(s,1H),7.35(t,J=2.76Hz,1H),6.49(s,1H),4.89(s,2H),4.51(br s,1H),4.30(br d,J=14.05Hz,1H),4.11-4.18(m,4H),3.81-3.94(m,2H),3.70(td,J=11.86,3.14Hz,1H),3.44(td,J=12.86,3.89Hz,1H),2.26(s,3H),1.45(d,J=6.78Hz,3H)
实施例2:式(1)化合物A晶型的制备
称量约500.0mg式(I)化合物溶于5mL乙醇中,逐滴滴加15mL纯化水。滴加完毕后置于磁力搅拌器上(20℃)进行搅拌120小时。将混悬液过滤得固体,固体真空干燥箱中干燥过夜,得到式(Ⅰ)化合物的A晶型。
1H NMR(400MHz,CHCl 3-d)δ=8.39(br s,1H),8.25(d,J=1.3Hz,1H),7.53(s,1H),7.49(t,J=2.3Hz,1H),7.40(s,1H),7.31(t,J=2.8Hz,1H),6.46(s,1H),4.86(s,2H),4.48(br d,J=4.8Hz,1H),4.28(br d,J=12.5Hz,1H),4.15-4.07(m,4H),3.91-3.86(m,1H),3.84-3.79(m,1H),3.67(dt,J=3.0,11.9Hz,1H),3.42(dt,J=3.9,12.9Hz,1H),2.23(s,3H),1.42(d,J=7.0Hz,3H)
实施例3:式(1)化合物B晶型的制备
取大约100mg式(1)化合物别加入到不同的玻璃瓶中,分别加入适量的有机溶剂或溶剂混合物(表3)。将上述样品置于恒温混匀仪(40℃)进行搅拌(搅拌时长见表3)(避光)。然后将固体过滤置于真空干燥箱中(40℃)干燥过夜,均得到晶型B。
表3.各适量有机溶剂及搅拌时间
溶剂(mL) 搅拌时间(h)
丙酮0.7+水0.7 120
异丙醇1+水1 72
甲醇1+水1 120
甲基叔丁基醚1 72
乙酸乙酯1+正庚烷1 120
乙酸异丙酯1+正庚烷1 120
乙醇1+正庚烷1 120
乙腈1+正庚烷1 120
异丙醇1+正庚烷1 120
二氯甲烷2+正庚烷2 120
实施例4:式(1)化合物B晶型的制备
取式(1)化合物(质量见表4)缓慢加入温度在(60-70℃)的甲醇溶剂中(体积量见表4)后,再缓慢滴加水(体积量见表4),在60℃搅拌0.5h后,降温到55℃搅拌0.5h后,降温到50℃搅拌0.5h后,降温到45℃搅拌0.5h后,降温到40℃搅拌0.5h后,降温到35℃搅拌0.5h后,降温到30℃搅拌0.5h后, 降温到20-25℃搅拌10h后,将固体过滤得到晶型B。
表4.各适量有机溶剂及搅拌时间
式(1)(g) 溶剂(mL) 搅拌时间(h)
3 甲醇30 13.5
2 甲醇40+水40 13.5
2 甲醇40+水20 13.5
2 甲醇40+水13.3 13.5
实施例5:式(1)化合物B晶型的制备
实验步骤:取大约5.5g式(1)化合物缓慢加入温度在(60-70℃)的甲醇50mL溶剂中,在60℃搅拌0.5h后,降温到25℃搅拌2h后,将固体过滤得到晶型B。
实施例6:式(1)化合物B晶型的制备
将式(I)化合物900.0g溶于9.0L甲醇后,在室温下(25℃)缓慢滴加9.0L纯化水,后继续搅拌20小时.减压过滤,滤饼用6.0L纯化水洗涤,固体真空干燥得式(Ⅰ)化合物的B晶型。
MS m/z:419.0[M+H] +
1H NMR(CHCl 3-d,400MHz):δ=8.60(br s,1H),8.21(s,1H),7.45(br s,1H),7.42(br s,1H),7.40(s,1H),7.25(br d,J=2.5Hz,1H),6.45(s,1H),4.81(br s,2H),4.47(br d,J=5.8Hz,1H),4.27(br d,J=13.8Hz,1H),4.07-4.13(m,4H),3.85-3.91(m,1H),3.78-3.84(m,1H),3.66(td,J=11.9,3.0Hz,1H),3.41(td,J=12.8,3.8Hz,1H),2.22(s,3H),1.41ppm(d,J=6.8Hz,3H)
实施例7:A晶型在高温,高湿条件下的固体稳定性试验
平行称取2份A晶型样品,每份大约100mg,置于玻璃样品瓶的底部,摊成薄薄一层。样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,置于40℃/75%湿度条件恒温恒湿箱。在上述条件下放置的样品于第30天取样检测,检测结果与0天的初始检测结果进行比较,试验结果见下表5所示:
表5 A晶型的固体稳定性试验
时间点(天) 外观 晶型 含量(%) 总杂质(%)
0 白色粉末 A晶型 99.61 0.39
30 白色粉末 A晶型 99.59 0.45
实验结论:式(I)化合物A晶型稳定性好,易于成药。
实施例8:A晶型在不同温度和湿度及光照条件下固体物理稳定性试验
平行称取4份式A晶型样品,每份大约100mg,放置于玻璃样品瓶的底部,摊成薄薄一层,铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触。把制备的4份样品分别放置于25℃/92.5%的相对湿度,60℃,40℃/75%及光照条件下,考察样品第10天的物理稳定性。同时,单独称取一份大约100mg A晶型样品,放置于玻璃样品瓶的底部,用螺纹瓶盖密封后,保存于-20℃条件下,作为对照品使 用。在第10天,取出所有样品,恢复至室温,观察样品外观变化,并用XRPD检测样品晶型。通过对加速样品与对照样品的比较,判断式(Ⅰ)化合物A晶型的固体物理稳定性。下表6为A晶型固体物理稳定性实验结果。
表6 A晶型在不同温度和湿度条件下及光照下固体物理稳定性试验
Figure PCTCN2020107474-appb-000012
实验结论:式(I)化合物A晶型稳定性好,易于成药。
实施例9:B晶型在高温,高湿及光照条件下的固体物理稳定性试验
每组平行称取2份B晶型样品,置于玻璃样品瓶的底部,摊成薄薄一层。样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,置于不同条件湿度条件恒温恒湿或光照箱。在上述条件下放置的样品于第5天、10天、30天、1月、3月或6月取样检测,检测结果与0天的初始检测结果进行比较,试验结果见下表7~11所示:
表7.B晶型的固体高温60℃稳定性试验
时间点(天) 晶型 含量(%) 总杂质(%)
0 B晶型 99.0 0.42
5 B晶型 101.5 0.43
10 B晶型 101.6 0.39
30 B晶型 99.4 0.41
实验结论:式(I)化合物B晶型高温稳定性好,易于成药。
表8.B晶型的固体高湿25℃/92.5%RH稳定性试验
时间点(天) 晶型 含量(%) 总杂质(%)
0 B晶型 99.0 0.42
5 B晶型 98.9 0.44
10 B晶型 100.1 0.41
30 B晶型 99.7 0.41
实验结论:式(I)化合物B晶型高湿稳定性好,易于成药。
表9.B晶型的固体光照稳定性试验
时间点(天) 晶型 含量(%) 总杂质(%)
0 B晶型 99.0 0.42
5 B晶型 101.0 0.44
10 B晶型 100.7 0.42
实验结论:式(I)化合物B晶型光照稳定性好。
表10.B晶型的固体40℃/75%RH稳定性试验
时间点(天) 晶型 含量(%) 总杂质(%)
0 B晶型 99.0 0.42
1月 B晶型 100.6 0.45
2月 B晶型 100.4 0.42
3月 B晶型 98.8 0.44
6月 B晶型 99.8 0.43
实验结论:式(I)化合物B晶型稳定性好,易于成药。
表11.B晶型的25℃/65%RH稳定性试验
时间点(天) 晶型 含量(%) 总杂质(%)
0 B晶型 99.0 0.42
3月 B晶型 98.4 0.45
6月 B晶型 99.8 0.43
实验结论:式(I)化合物B晶型稳定性好,易于成药。
试验例1:体外评价
通过测定IC 50值来评价受试化合物对人的ATR激酶的抑制活性.
将ATR/ATRIP(h)在含有50nM GST-cMyc-p53和Mg/ATP(根据需要的浓度)的测定缓冲液中培育。反应通过添加Mg/ATP混合物来引发。在室温下培育30分钟后,加入含有EDTA的终止溶液终止反应。最后,加入含有d 2标记的抗GST单克隆抗体的检测缓冲液和抗磷酸化p 53的铕标记的抗磷酸Ser15抗体。然后以时间分辨荧光模式读取平板并进行均相时间分辨
根据公式HTRF=10000×(Em665nm/Em620nm)确定荧光(HTRF)信号。
使用XLFit版本5.3(ID Business Solutions)分析IC 50数据。使用非线性回归分析来拟合S形剂量反应(可变斜率)曲线。试验结果如表12所示:
表12本发明化合物体外筛选试验结果
化合物编号 ATR average IC 50(nM)
式(1)化合物 29
结论:本发明式(I)化合物对于激酶ATR有着良好的抑制作用。
试验例2:体外细胞活性试验
本试验通过检测化合物在肿瘤细胞系LoVo中对体外细胞活性的影响而研究化合物抑制细胞增殖的作用。
CellTiter-Glo发光法细胞活性检测
以下步骤按照PromegaCellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1).将CellTiter-Glo缓冲液融化并放置至室温。
(2).将CellTiter-Glo底物放置至室温。
(3).在一瓶CellTiter-Glo底物中加入CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在SpectraMax i3x of Molecular Devices读板器上检测发光信号。
数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(1–(RLU化合物–RLU空白对照)/(RLU溶媒对照–RLU空白对照))*100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
试验结果见表13:
表13体外LoVo细胞抑制增殖试验结果
  式(1)化合物
IC 50(μM) 0.51
试验结论:本发明式(1)化合物TR针对ATM信号通路突变的LoVo肿瘤细胞均有较好的抑制作用。
试验例3:体内药代动力学性质研究
供试样品:在上述试验的基础上,选择其中一些高活性、结构有代表性的化合物开展进一步试验。
试验方法:该研究的目的是为了测定该化合物药代动力学参数,并计算其在雌性Balb/c Nude小鼠中的灌胃给药生物利用度。该项目使用六只雌性Balb/c Nude小鼠,三只小鼠进行静脉注射给药,给药剂量为1mg/kg,收集0h(给药前)和给药后0.0833,0.25,0.5,1,2,4,6,8,24h的血浆样品,另外三只小鼠灌胃给药,给药剂量为10mg/kg或者25mg/kg,收集0h(给药前)和给药后0.5,1,2,3,4,6,8,24h的血浆样品,然后对收集的样品进行LC-MS/MS分析并采集数据,采集的分析数据用Phoenix WinNonlin6.2.1软件计算相关药代动力学参数。试验结果见表14.1和14.2:
14.1静脉注射给药结果
  式(1)化合物(1mg/kg IV)
C 0(nM) 1955
Cl(mL/min/kg) 34.3
Vd ss(L/kg) 2.21
T 1/2(h) 2.57
AUC 0-t(nM.h) 1087
14.2灌胃给药结果
  式(1)化合物(10mg/kg)
C max(nM) 6500
T 1/2(h) 2.02
AUC 0-t(nM.h) 14983
F(%) 129.0
注:C 0(nM)为0分钟时体内药物浓度;Cl(mL/min/kg)为药物体内清除率;Vd ss(L/kg)为药物体内分布容积;T 1/2(h)为半衰期;AUC 0-t(nM.h)为体内药物暴露量;C max(nM)为体内药物最高浓度;F为生物利用度。
试验结论:本发明式(1)化合物在灌胃给药均有较好的吸收及暴露量,适合于口服给药。
试验例4:结直肠癌LoVo CDX体内药效研究
试验目的:
LoVo是MRE11A突变(MRE11A是关于DNA双链断裂修复ATM信号通路的关键组成部分)的结直肠腺癌肿瘤细胞,其对ATR抑制剂敏感。本试验将通过直肠癌LoVo CDX模型以验证ATR抑制剂单药对ATM信号通路缺陷的肿瘤的抑制作用。
实验方法:
1.实验动物
种属:小鼠
品系:BALB/c裸小鼠
供应商:北京维通利华实验动物技术有限公司
周龄及体重:6-8周龄,体重18-22克
性别:雌性
2.细胞培养
人结肠癌LoVo细胞(ECACC,货号:87060101),体外单层培养,培养条件为Ham’s F-12培养基中加10%胎牛血清,100U/mL青霉素,100μg/mL链霉素和2mM谷氨酰胺,37℃,5%CO 2培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%时,收取细胞,计数,接种。将0.1mL(10x106个)LoVo细胞皮下接种于每只裸小鼠的右后背,肿瘤平均体积达到173mm 3时开始分组给药。
3.受试物的配制及给药剂量
称取25.51mg式(1)化合物溶于0.500mL DMSO中,加入2.000mL丙二醇和2.500mL去离子水,涡旋混匀,调整PH=6.0,得澄清溶液。
给药剂量:所有受试化合物采用25mg/kg,一天两次灌胃给药,一天内给药时间间隔8小时。
4.肿瘤测量和实验指标
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%(TRTV:治疗组RTV平均值;CRTV:阴性对照组RTV平均值)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=Vt/V0,其中V0是分组给药时(即D0)测量所得肿瘤体积,Vt为某一次测量时的肿瘤体积,TRTV与CRTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
在实验结束后将检测肿瘤重量,并计算T/Cweight百分比,Tweight和Cweight分别表示给药组和溶媒对照组的瘤重。
5.试验结果
本试验评价了化合物在人结直肠癌异种移植瘤模型中的药效,以溶剂对照组为参照。给药17天时,式(1)化合物(25mg/kg)组与溶媒对照组相比T/C和TGI分别为27.8%和90.7%。
6.结论
在本试验中,本发明式(1)化合物对人结直肠癌LoVo细胞皮下异种移植瘤模型荷瘤鼠生长有一定的抑制作用。

Claims (22)

  1. 式(Ⅰ)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.10±0.20°、18.33±0.20°和22.63±0.20°。
    Figure PCTCN2020107474-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46±0.20°、8.10±0.20°、13.03±0.20°、15.07±0.20°、15.58±0.20°、16.19±0.20°、18.33±0.20°和22.63±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46±0.20°、8.10±0.20°、13.03±0.20°、13.46±0.20°、15.07±0.20°、15.58±0.20°、16.19±0.20°、18.33±0.20°、21.17±0.20°和22.63±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.46°、8.10°、11.24°、13.03°、13.46°、15.07°、15.58°、15.98°、16.19°、17.70°、18.33°、19.60°、21.17°、22.63°、23.84°、25.56°和26.57°。
  5. 根据权利要求4所述的A晶型,其XRPD图谱如图1所示。
  6. 式(Ⅰ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°和20.56±0.20°。
  7. 根据权利要求6所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°、14.83±0.20°、15.54±0.20°、17.33±0.20°、20.56±0.20°、22.00±0.20°和22.63±0.20°。
  8. 根据权利要求7所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45±0.20°、10.87±0.20°、14.83±0.20°、15.54±0.20°、17.33±0.20°、20.08±0.20°、20.56±0.20°、22.00±0.20°、22.63±0.20°和25.26±0.20°。
  9. 根据权利要求8所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.45°、9.20°、10.87°、12.57°、14.14°、14.53°、14.83°、15.54°、16.80°、17.33°、18.43°、19.84°、20.08°、20.56°、21.39°、22.00°、22.44°、22.63°、23.26°、25.26°、25.85°和26.98°。
  10. 根据权利要求9所述的B晶型,其XRPD图谱如图2所示。
  11. 根据权利要求6~10所述的B晶型,其差示扫描量热曲线(DSC)在174.3±3℃处有一个吸热峰的起始点。
  12. 根据权利要求11所述的B晶型,其DSC图谱如图3所示。
  13. 根据权利要求6~10所述的B晶型,其热重分析曲线(TGA)在150℃±3℃时失重达1.49%。
  14. 根据权利要求13所述的B晶型,其TGA图谱如图4所示。
  15. 式(Ⅰ)化合物A晶型的制备方法,包括:
    1)将式(Ⅰ)化合物加入到乙醇溶剂中;
    2)再加入水;
    3)搅拌100~120小时;
    4)室温中重结晶制得。
  16. 式(Ⅰ)化合物B晶型的制备方法,包括:
    1)将式(Ⅰ)化合物加入到溶剂中;
    2)加热到一定温度搅拌2.5~120小时;
    3)室温中重结晶制得B晶型。
  17. 根据权利要求16所述的制备方法,其中,所述溶剂为:甲醇、甲基叔丁基醚、甲醇/水(V/V,1:0.3~1)、丙酮/水(V/V,1:1)、异丙醇/水(V/V,1:1)、乙酸乙酯/正庚烷(V/V,1:1)、乙酸异丙酯/正庚烷(V/V,1:1)、乙醇/正庚烷(V/V,1:1)、乙腈/正庚烷(V/V,1:1)、异丙醇/正庚烷(V/V,1:1)或二氯甲烷/正庚烷(V/V,1:1)。
  18. 根据权利要求17所述的制备方法,其中,所述温度为25~70℃。
  19. 根据权利要求16所述的制备方法,其中,式(Ⅰ)化合物的浓度范围选自25mg/mL~50mg/mL。
  20. 根据权利要求1~5任意一项所述的A晶型或权利要求6~14任意一项所述的B晶型在制备治疗ATR相关疾病的药物中的应用。
  21. 根据权利要求20所述的应用,其特征在于,所述药物是用于治疗实体瘤或血液瘤的药物。
  22. 根据权利要求20所述的应用,其特征在于,所述药物是用于治疗结直肠癌、胃癌、食管癌、原发性腹膜癌、肾上腺皮质癌、肾透明细胞癌、前列腺癌、膀胱尿路上皮癌、卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、非小细胞肺癌或小细胞肺癌的药物。
PCT/CN2020/107474 2019-08-06 2020-08-06 一种atr抑制剂的晶型及其应用 WO2021023272A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2022507699A JP2022543856A (ja) 2019-08-06 2020-08-06 Atr阻害剤の結晶形及びその使用
BR112022001393A BR112022001393A2 (pt) 2019-08-06 2020-08-06 Forma cristalina do inibidor de atr e seu uso
AU2020325416A AU2020325416A1 (en) 2019-08-06 2020-08-06 Crystalline form of ATR inhibitor and use thereof
EP20851028.9A EP4011881A4 (en) 2019-08-06 2020-08-06 CRYSTALLINE FORM OF ATR INHIBITORS AND THEIR USE
CA3147322A CA3147322A1 (en) 2019-08-06 2020-08-06 Crystalline form of atr inhibitor and use thereof
US17/632,823 US20220281858A1 (en) 2019-08-06 2020-08-06 Crystalline form of atr inhibitor and use thereof
CN202080054862.6A CN114728957B (zh) 2019-08-06 2020-08-06 一种atr抑制剂的晶型及其应用
IL290106A IL290106A (en) 2019-08-06 2022-01-25 A crystalline form of an atr inhibitor and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910722102 2019-08-06
CN201910722102.7 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021023272A1 true WO2021023272A1 (zh) 2021-02-11

Family

ID=74503892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107474 WO2021023272A1 (zh) 2019-08-06 2020-08-06 一种atr抑制剂的晶型及其应用

Country Status (9)

Country Link
US (1) US20220281858A1 (zh)
EP (1) EP4011881A4 (zh)
JP (1) JP2022543856A (zh)
CN (1) CN114728957B (zh)
AU (1) AU2020325416A1 (zh)
BR (1) BR112022001393A2 (zh)
CA (1) CA3147322A1 (zh)
IL (1) IL290106A (zh)
WO (1) WO2021023272A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3967694A4 (en) * 2019-06-06 2022-12-07 Beijing Tide Pharmaceutical Co., Ltd. TRI-SUBSTITUTED PYRIMIDINE COMPOUND IN POSITIONS 2, 4, 6 USED AS ATR KINASE INHIBITOR
WO2023093447A1 (zh) * 2021-11-26 2023-06-01 深圳市瓴方生物医药科技有限公司 氟代吡啶并吡咯类化合物的晶型及其制备方法
WO2023242302A1 (en) 2022-06-15 2023-12-21 Astrazeneca Ab Combination therapy for treating cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010318A (zh) * 2004-07-09 2007-08-01 阿斯利康(瑞典)有限公司 作为磷脂酰肌醇(pi)3-激酶抑制剂的2,4,6-三取代的嘧啶及其在癌症治疗中的用途
WO2009093981A1 (en) * 2008-01-23 2009-07-30 S Bio Pte Ltd Triazine compounds as kinase inhibitors
CN103068391A (zh) * 2010-06-11 2013-04-24 阿斯利康(瑞典)有限公司 吗啉代嘧啶及其治疗用途
WO2019050889A1 (en) * 2017-09-08 2019-03-14 Bluevalley Pharmaceutical Llc SUBSTITUTED PYRROLOPYRIDINES AS ATR INHIBITORS
WO2019154365A1 (zh) * 2018-02-07 2019-08-15 南京明德新药研发有限公司 一种atr抑制剂及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800774B2 (en) * 2017-08-17 2020-10-13 Board Of Regents, The University Of Texas System Heterocyclic inhibitors of ATR kinase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010318A (zh) * 2004-07-09 2007-08-01 阿斯利康(瑞典)有限公司 作为磷脂酰肌醇(pi)3-激酶抑制剂的2,4,6-三取代的嘧啶及其在癌症治疗中的用途
WO2009093981A1 (en) * 2008-01-23 2009-07-30 S Bio Pte Ltd Triazine compounds as kinase inhibitors
CN103068391A (zh) * 2010-06-11 2013-04-24 阿斯利康(瑞典)有限公司 吗啉代嘧啶及其治疗用途
WO2019050889A1 (en) * 2017-09-08 2019-03-14 Bluevalley Pharmaceutical Llc SUBSTITUTED PYRROLOPYRIDINES AS ATR INHIBITORS
WO2019154365A1 (zh) * 2018-02-07 2019-08-15 南京明德新药研发有限公司 一种atr抑制剂及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3967694A4 (en) * 2019-06-06 2022-12-07 Beijing Tide Pharmaceutical Co., Ltd. TRI-SUBSTITUTED PYRIMIDINE COMPOUND IN POSITIONS 2, 4, 6 USED AS ATR KINASE INHIBITOR
WO2023093447A1 (zh) * 2021-11-26 2023-06-01 深圳市瓴方生物医药科技有限公司 氟代吡啶并吡咯类化合物的晶型及其制备方法
WO2023242302A1 (en) 2022-06-15 2023-12-21 Astrazeneca Ab Combination therapy for treating cancer

Also Published As

Publication number Publication date
JP2022543856A (ja) 2022-10-14
BR112022001393A2 (pt) 2022-03-22
CN114728957A (zh) 2022-07-08
IL290106A (en) 2022-03-01
CA3147322A1 (en) 2021-02-11
AU2020325416A1 (en) 2022-02-03
EP4011881A4 (en) 2023-08-09
US20220281858A1 (en) 2022-09-08
CN114728957B (zh) 2023-09-22
EP4011881A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2021023272A1 (zh) 一种atr抑制剂的晶型及其应用
CN109689641A (zh) 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法
TWI812223B (zh) 雜環取代的嘌呤酮衍生物的鹽型及晶型
WO2023093447A1 (zh) 氟代吡啶并吡咯类化合物的晶型及其制备方法
EP3943498A1 (en) Brd4 inhibitor compound in solid form and preparation method therefor and application thereof
KR102374933B1 (ko) c-Met 억제제의 결정형과 이의 염 형태 및 제조 방법
WO2020147838A1 (zh) 一种egfr抑制剂的盐、晶型及其制备方法
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
CN114380800B (zh) 吡啶-嘧啶胺-苯并咪唑衍生物及其制备方法和用途
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
CN114644615B (zh) 一种吲唑类衍生物的结晶形式及其制备方法
WO2023155841A1 (zh) 嘧啶并环类化合物的盐型、晶型
WO2021047466A1 (zh) 一种p53-MDM2抑制剂的晶型及其制备方法
WO2021143875A1 (zh) 一种氮杂吲哚衍生物的晶型及其应用
EP4286382A1 (en) Crystal form of methylpyrazole-substituted pyridoimidazole compound and preparation method therefor
EP4089086A1 (en) Crystal form of pyrrolidinyl urea derivative and application thereof
WO2023125947A1 (zh) 四氢异喹啉类化合物的可药用盐、晶型及其用途
WO2022237808A1 (zh) 吡咯并嘧啶类化合物的晶型及其制备方法
WO2022048545A1 (zh) 一种吡啶并嘧啶化合物的晶型
CN108658945A (zh) 一种微管蛋白抑制剂(vda-1)的a晶型
TW202313614A (zh) 咪唑啉酮衍生物的晶型
CN116615418A (zh) 一种吲唑类衍生物的药学上可接受的盐、结晶形式及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3147322

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001393

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020325416

Country of ref document: AU

Date of ref document: 20200806

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022507699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022101889

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020851028

Country of ref document: EP

Effective date: 20220307

ENP Entry into the national phase

Ref document number: 112022001393

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220125