WO2021023130A1 - 一种通信传输的方法及设备 - Google Patents

一种通信传输的方法及设备 Download PDF

Info

Publication number
WO2021023130A1
WO2021023130A1 PCT/CN2020/106443 CN2020106443W WO2021023130A1 WO 2021023130 A1 WO2021023130 A1 WO 2021023130A1 CN 2020106443 W CN2020106443 W CN 2020106443W WO 2021023130 A1 WO2021023130 A1 WO 2021023130A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
pdcch
csi
network device
receiving
Prior art date
Application number
PCT/CN2020/106443
Other languages
English (en)
French (fr)
Inventor
黄雯雯
铁晓磊
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20850739.2A priority Critical patent/EP4009728A4/en
Publication of WO2021023130A1 publication Critical patent/WO2021023130A1/zh
Priority to US17/587,217 priority patent/US20220159689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • H04B7/0877Hybrid systems, i.e. switching and combining using subgroups of receive antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and equipment for communication transmission.
  • the terminal equipment can save the power consumption of the terminal equipment in terms of time domain and space domain.
  • cross-slot scheduling is mainly used to save the power consumption of terminal equipment. That is, the base station schedules the physical downlink shared channel (PDCCH) to the UE through the Physical Downlink Control Channel (PDCCH). Physical Downlink Shared Channel, PDSCH), the time slot offset between the PDCCH and the scheduled PDSCH is greater than 0. Because, when the terminal device knows that the scheduled PDSCH and PDCCH are not in the same time slot before detecting the PDCCH, the terminal device can reduce unnecessary data buffering and relax the processing time of the PDCCH, thereby achieving the effect of saving power consumption. When reducing the power consumption of the terminal equipment from the spatial domain, the power consumption of the terminal equipment is saved by turning off some antennas.
  • PDCCH physical downlink shared channel
  • PDSCH Physical Downlink Control Channel
  • One of the methods is to turn off some receiving antennas when detecting the PDCCH, and then after detecting the PDCCH, the terminal device turns on more receiving antennas to receive the scheduled PDSCH.
  • the terminal device needs a switching time to open or close the receiving antenna. Therefore, if the cross-slot scheduling method in the prior art makes the time slot offset between the PDCCH and the scheduled PDSCH cover the antenna switching time, the terminal device can save the power consumption of the terminal device in the space domain through internal implementation.
  • the main problem of the above-mentioned method of internally implementing the method of saving power consumption in the space domain for the terminal device is that in the communication process, the base station is not aware of the change in the number of antennas used by the terminal device to receive the PDCCH. Therefore, when the terminal device switches the number of receiving antennas in order to save power consumption, for example, the terminal device uses 2 receiving antennas (2Rx) after switching, but the base station still believes that the terminal device uses 4Rx, resulting in the base station
  • the selection of PDCCH parameters when transmitting the PDCCH is inappropriate, for example, the selection of aggregation level (AL) is inappropriate, etc., which leads to problems such as degradation of the performance of the terminal device in detecting the PDCCH.
  • AL aggregation level
  • the present application provides a communication transmission method and device, which are used to achieve the problem of effectively saving the power consumption of the terminal device without affecting the PDCCH performance.
  • an embodiment of the present application provides a communication transmission method.
  • a terminal device receives a scheduling minimum time slot offset indicated by a network device; the terminal device receives first indication information sent by the network device; or, the The terminal device sends the second indication information to the network device; when the scheduling minimum time slot offset is greater than 0, the terminal device uses the first reception state to detect the PDCCH.
  • the first indication information and/or the second indication information are used to determine that the terminal device detects the first receiving state of the PDCCH; or optionally, the first indication information and/or the The second indication information is used to determine the number of first antennas for the terminal device to detect the PDCCH, where the number of first antennas is less than the maximum number of receiving antennas configured or supported by the terminal device.
  • the terminal device when the embodiment of the application saves the power consumption of the terminal device by switching the current receiving state to the first receiving state, if the terminal device receives the instruction information sent by the network device, it is determined that the first receiving State detection PDCCH; or, if the terminal device determines that the current receiving state needs to be switched to the first receiving state, it sends indication information to the network device; that is, the network device and the terminal device send instructions to each other Notify the other party by means of indication information, so that the network device knows that the terminal device uses the first receiving state to detect the PDCCH, which ensures that the terminal device saves the power consumption of the terminal device by switching the current receiving state to the first receiving state At this time, the PDCCH sent by the network device can also be received normally.
  • the first indication information includes at least one of the following: when the network device needs to send a PDCCH to the terminal device, compensate for the sent PDCCH; or the terminal device reports channels in at least two receiving states State information (Channel State Information, CSI) and/or Channel Quality Indicator (CQI) information; or used to assist the network device in determining the compensation factor of the PDCCH parameter.
  • CSI Channel State Information
  • CQI Channel Quality Indicator
  • the embodiments of the present application provide several situations of the first indication information sent by the network device and received by the terminal device.
  • the indication information mainly indicates that the network device has compensated for the sent PDCCH, that is, it can be guaranteed that the terminal device normally receives the PDCCH in the first receiving state, so that the terminal device receives the indication When information, the current receiving state can be switched to the first receiving state.
  • the indication information instructs the terminal device to report information about measuring CSI and/or CQI using at least two antenna numbers, so that the network device can know information about measuring CSI and/or CQI using at least two antenna numbers. This helps the terminal device to normally receive the PDCCH in the first receiving state.
  • the second indication information is used to indicate at least one of the following: used to assist the network device in determining the compensation factor of the PDCCH parameter; or instruct the terminal device to determine at least two types of reception State CSI and/or CQI information; or the network device compensates the PDCCH when sending the PDCCH to the terminal device.
  • the embodiment of the present application specifically introduces the second indication information sent by the terminal device to the network device.
  • the second indication information indicates the compensation factor of the PDCCH parameter.
  • the network device can adjust the PDCCH sent to the terminal device according to the compensation factor in the instruction information, so as to ensure that the terminal device normally receives it in the first receiving state. To PDCCH.
  • the terminal device uses the first reception state to detect the PDCCH when the scheduling minimum time slot offset is not less than Y; wherein, the Y is the terminal device turning on and/or turning off The time required for the antenna.
  • the terminal device before the terminal device reports at least two types of CSI and/or CQI information to the network device, it further includes: the terminal device adopts the maximum receiving antenna configured or supported by the terminal device The number of received signal status information reference signals CSI-RS, and the calculation of N CSI and/or CQIs corresponding to the N receiving states; the terminal device reports the N CSI and/or CQI to the network device; wherein, The N receiving states include the first receiving state.
  • the terminal device in the embodiment of the present application reports the CSI and/or CQI corresponding to the number of N antennas to the network device, so that the network device can know the CSI and/or CQI corresponding to the number of N antennas , And select one of the CSI according to the actual situation to determine the PDCCH sent to the terminal device, which is more applicable.
  • the terminal device before the terminal device reports at least two types of CSI and/or CQI information, it further includes: the terminal device receives the CSI-RS in the second reception state, and calculates the first reception The first CSI and/or the first CQI corresponding to the state and the second CSI and/or the second CQI corresponding to the second reception state; the terminal device compares the first CSI and/or the first CQI with the The second CSI and/or the second CQI are used as the CSI and/or CQI reported for the network device; wherein, the number of first receiving antennas corresponding to the first receiving state is less than the number of second antennas corresponding to the second receiving state , And the number of the second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device.
  • the network device in the embodiment of the present application instructs the terminal device to report at least two types of antenna quantity measurement CSI and/or CQI information, including the first CSI and/or CQI corresponding to the first antenna quantity.
  • the PDCCH of the device to ensure that the terminal device normally receives the PDCCH in the first receiving state.
  • the first indication information includes a compensation factor used to assist the network device in determining PDCCH parameters.
  • the terminal device in the embodiment of the present application can determine whether the PDCCH compensated by the network device according to the compensation factor can adopt the first receiving state according to the compensation factor in the received first indication information Normal reception, if not possible, the terminal device does not switch the receiving state, if possible, the current receiving state is switched to the first receiving state.
  • the terminal device uses the first A PDCCH is detected in the receiving state.
  • the embodiment of the present application determines that the condition for switching to the first receiving state is satisfied by setting a threshold duration, that is, the terminal device does not receive the information requesting scheduling data sent by the network device within the threshold duration, then The terminal device uses the first receiving state to detect the PDCCH when the scheduling minimum time slot offset is greater than 0.
  • an embodiment of the present application also provides a communication transmission method, where a network device instructs a terminal device to schedule a minimum time slot offset; the network device receives the second indication information sent by the terminal device; or, the The network device sends first indication information to the terminal device; when the scheduling minimum time slot offset is greater than 0 and the PDCCH needs to be sent to the terminal device, the network device sends to the terminal device that it is suitable for the first receiving PDCCH status received.
  • the first indication information and/or the second indication information are used to determine that the terminal device detects the first receiving state of the PDCCH; or optionally, the first indication information and/or the The second indication information is used to determine the number of first antennas for the terminal device to detect the PDCCH, where the number of first antennas is less than the maximum number of receiving antennas configured or supported by the terminal device.
  • the terminal device when the embodiment of the application saves the power consumption of the terminal device by switching the current receiving state to the first receiving state, if the terminal device receives the instruction information sent by the network device, it is determined that the first receiving State detection PDCCH; or, if the terminal device determines that the current receiving state needs to be switched to the first receiving state, it sends indication information to the network device; that is, the network device and the terminal device send instructions to each other Notify the other party by means of indication information, so that the network device knows that the terminal device uses the first receiving state to detect the PDCCH, which ensures that the terminal device saves the power consumption of the terminal device by switching the current receiving state to the first receiving state At this time, the PDCCH sent by the network device can also be received normally.
  • the first indication information includes at least one of the following: when the network device needs to send a PDCCH to the terminal device, compensate for the sent PDCCH; or the terminal device reports Channel state information CSI and/or channel quality indicator CQI information of at least two receiving states; or a compensation factor used to assist the network device in determining PDCCH parameters.
  • the embodiments of the present application provide several situations in which the network device sends the first indication information to the terminal device.
  • the indication information mainly indicates that the network device has compensated for the sent PDCCH, that is, it can be guaranteed that the terminal device normally receives the PDCCH in the first receiving state, so that the terminal device receives the indication When information, the current receiving state can be switched to the first receiving state.
  • the indication information instructs the terminal device to report information about measuring CSI and/or CQI using at least two antenna numbers, so that the network device can know information about measuring CSI and/or CQI using at least two antenna numbers. This helps the terminal device to normally receive the PDCCH in the first receiving state.
  • the second indication information is used to indicate at least one of the following: a compensation factor used to assist the network device in determining PDCCH parameters; or at least two receiving states determined by the terminal device CSI and/or CQI information; or the network device compensates the PDCCH when sending the PDCCH to the terminal device.
  • the embodiment of the present application specifically introduces a situation in which the network device receives the second instruction information sent by the terminal device.
  • the indication information indicates the compensation factor of the PDCCH parameter.
  • the network device can adjust the PDCCH sent to the terminal device according to the compensation factor in the instruction information, so as to ensure that the terminal device normally receives it in the first receiving state. To PDCCH.
  • the network device when the scheduling minimum time slot offset is not less than Y and the PDCCH needs to be sent to the terminal device, the network device sends a PDCCH suitable for receiving in the first receiving state to the terminal device.
  • PDCCH wherein, the Y is the time required for the terminal device to turn on and/or turn off the antenna.
  • the receiving, by the network device, of the CSI and/or CQI information in at least two receiving states reported by the terminal device includes: the network device receiving N CSI reported by the terminal device And/or CQI; wherein the N CSI and/or CQI are measured after receiving the CSI-RS by the terminal device using the configured or supported maximum number of receive antennas, and the N CSI and/or CQI Includes the CSI and/or CQI corresponding to the first receiving state.
  • the network device in the embodiment of the present application may select one of the CSI according to the actual situation to determine the PDCCH parameters sent to the terminal device.
  • the N CSI and/or CQIs include the CSI and/or CQI corresponding to the first number of antennas. Therefore, the network device may determine to send the CSI and/or CQI corresponding to the first number of antennas to The PDCCH of the terminal device is used to ensure that the terminal device normally receives the PDCCH in the first receiving state.
  • the receiving, by the network device, the CSI and/or CQI information in at least two receiving states reported by the terminal device includes: the network device receiving the first antenna reported by the terminal device The first CSI and/or the first CQI corresponding to the number and the second CSI and/or the second CQI corresponding to the second antenna number; wherein the first CSI and/or the first CQI and the second CSI and/or Or the second CQI is calculated after the terminal device receives the CSI-RS in the second receiving state, and the number of first antennas corresponding to the first receiving state is less than the number of second antennas corresponding to the second receiving state , And the number of the second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device.
  • the network device in the embodiment of the application according to the first CSI and/or the first CQI corresponding to the first antenna quantity reported by the terminal device and the second CSI and/or second CSI corresponding to the second antenna quantity CQI, the first CSI and/or the first CQI corresponding to the first antenna quantity can be known. Therefore, the network device may determine the PDCCH to be sent to the terminal device according to the CSI and/or CQI corresponding to the first antenna quantity, so as to ensure that the terminal device normally receives the PDCCH in the first receiving state.
  • the first indication information includes: a compensation factor used to assist the network device in determining PDCCH parameters.
  • the terminal device in the embodiment of the present application can determine whether the PDCCH compensated by the network device according to the compensation factor can adopt the first receiving state according to the compensation factor in the received first indication information Normal reception, if not possible, the terminal device does not switch the receiving state, if possible, the current receiving state is switched to the first receiving state.
  • the network device when the scheduling minimum time slot offset is greater than 0 and the PDCCH needs to be sent to the terminal device, the network device sends a PDCCH suitable for reception in the first receiving state to the terminal device Before, the network device determines the parameters suitable for receiving the PDCCH in the first reception state.
  • the embodiment of the present application needs to determine the parameters applicable to the PDCCH received in the first receiving state, so as to ensure that when the terminal device is in the first receiving state, the network device sends to the terminal device the The PDCCH received in the first receiving state enables the terminal device to receive the PDCCH normally.
  • the network device if the network device does not send the information requesting scheduling data to the terminal device within the threshold time period, the network device will send the information to the terminal device when the minimum scheduling time slot offset is greater than 0.
  • the PDCCH of the terminal equipment is compensated.
  • the embodiment of the present application determines that the condition for compensating the sent PDCCH is satisfied by setting a threshold duration, that is, if the network device does not send information requesting scheduling data to the terminal device within the threshold duration, then the The network device compensates the PDCCH sent to the terminal device when the scheduling minimum time slot offset is greater than 0.
  • the network device determines the PDCCH parameters applicable to the first reception state in the following manner: the network device determines the PDCCH parameters applicable to the first reception state according to a predefined compensation factor PDCCH parameters; or the network device determines the PDCCH parameters suitable for the first receiving state according to the second indication information sent by the terminal device; or the network device determines the parameters suitable for the PDCCH according to the compensation factor configured by itself; The parameters of the PDCCH in the first reception state; or the network device determines the PDCCH applicable to the first reception state according to the information including the CSI and/or CQI corresponding to the first reception state reported by the terminal device.
  • the embodiment of the present application describes in detail the method for the network device to determine the PDCCH suitable for reception in the first receiving state. For example, the network device determines the PDCCH parameter applicable to the first receiving state according to a predefined compensation factor; or the network device determines that it is applicable to the first receiving state according to the second indication information sent by the terminal device A parameter of the PDCCH in the receiving state; or the network device determines the PDCCH parameter suitable for the first receiving state according to the compensation factor configured by itself; or the network device includes the first receiving state according to the first receiving state reported by the terminal device The corresponding CSI and/or CQI information determines the parameters of the PDCCH applicable to the first reception state.
  • an embodiment of the present application also provides a terminal device, which can be used to perform operations in the foregoing first aspect and any possible implementation manner of the first aspect.
  • the terminal device may include modules or units for performing the operations in the foregoing first aspect or any possible implementation of the first aspect.
  • it includes a processing unit and a communication unit.
  • the embodiments of the present application also provide a network device, which can be used to perform operations in the foregoing second aspect and any possible implementation manner of the second aspect.
  • the network device may include modules or units for performing the above-mentioned second aspect or any possible implementation of the second aspect.
  • it includes a processing unit and a communication unit.
  • an embodiment of the present application also provides a terminal device, which includes a processor, a transceiver, and optionally a memory.
  • the processor, transceiver, and memory communicate with each other through internal connection paths.
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory.
  • the terminal device is caused to execute the foregoing first aspect or any method in any possible implementation manner of the first aspect.
  • an embodiment of the present application also provides a network device, which includes a processor, a transceiver, and optionally a memory.
  • the processor, transceiver, and memory communicate with each other through internal connection paths.
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory.
  • the terminal device is caused to execute the foregoing second aspect or any method in any possible implementation manner of the second aspect.
  • an embodiment of the present application also provides a communication system, including the foregoing terminal device and the foregoing network device.
  • the embodiments of the present application provide a chip system, including a processor, and optionally a memory; where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the The communication device of the chip system executes any method of the first aspect or any possible implementation of the first aspect; and/or, the communication device installed with the chip system executes the second aspect or any of the second aspects Any one of the implementation methods.
  • the embodiments of the present application provide a computer program product, the computer program product includes: computer program code, when the computer program code is run by the communication unit, processing unit or transceiver, or processor of the communication device, the communication device Perform any of the above-mentioned first aspect or any of the possible implementations of the first aspect; and/or make the communication device installed with the chip system execute the above-mentioned second aspect or any of the possible implementations of the second aspect Any method.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program.
  • the program enables a communication device (for example, a terminal device) to execute the first aspect or any of the first aspects described above. Any method in the implementation manners; and/or so that a communication device (for example, a network device) installed with a chip system executes any method in the foregoing second aspect or any possible implementation manner of the second aspect.
  • Figure 1 is a schematic diagram of a communication transmission scenario provided by this application.
  • Figure 2 is a schematic diagram of an existing scenario for saving power consumption of terminal equipment provided by this application;
  • FIG. 3 is a schematic flowchart of a communication transmission method provided by this application.
  • FIG. 4 is a schematic diagram of the difference in detection performance of different antenna numbers provided by this application.
  • FIG. 5 is a schematic diagram of the flow of the first network device provided in this application for sending instruction information to terminal devices to achieve energy saving;
  • FIG. 6 is a schematic diagram of the flow of the second type of network device provided in this application sending instruction information to the terminal device to achieve energy saving;
  • FIG. 7 is a schematic diagram of a flow of a terminal device sending instruction information to a network device to achieve energy saving according to this application;
  • FIG. 8 is a schematic diagram of the first terminal device provided by this application.
  • FIG. 9 is a schematic diagram of the second type of terminal device provided by this application.
  • FIG. 10 is a schematic diagram of the first network device provided by this application.
  • FIG. 11 is a schematic diagram of the second type of network equipment provided by this application.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation of the future
  • NR new-generation radio access technology
  • 6G systems future communication systems, such as 6G systems.
  • 5G system also known as the new radio system
  • a new communication scenario is defined in the 5G system: ultra-reliable and low-latency communication (URLLC), enhanced Mobile broadband (enhanced mobile broadband, eMBB) and massive machine type communication (mMTC).
  • URLLC ultra-reliable and low-latency communication
  • eMBB enhanced Mobile broadband
  • mMTC massive machine type communication
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system to which the embodiments of the present application are applicable.
  • the communication system includes a network device 100 and a terminal device 101.
  • the network device 100 is a device that provides a wireless communication function for the terminal device 101 in a communication system, and can connect the terminal device 101 to a wireless network.
  • the network device 100 may also be referred to as a base station (base station, BS).
  • base station base station
  • some examples of network equipment 100 are: next-generation base station (gnodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit) , BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • gnodeB, gNB next-generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC
  • the terminal device 101 is a device that provides voice and/or data connectivity to users. It can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety (transportation safety) Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), etc.
  • VR virtual reality
  • AR augmented reality
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding.
  • the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the CSI in the embodiments of this application refers to the channel attributes of the communication link in the wireless communication field. Generally, the receiving end evaluates the CSI and feeds it back to the transmitting end.
  • CSI content may include: CQI, precoding matrix indicator (precoding matrix indicator, PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), SS/PBCH block resource indicator (SS/PBCH Block Resource indicator, SSBRI) ), layer indicator (LI), rank indicator (RI), L1-RSRP.
  • the network device can select communication parameters according to the CSI, so that the channel/signal transmission can adapt to the current channel conditions.
  • the CSI provides a guarantee for high-reliability and high-speed communication.
  • the signal-noise ratio (SNR) in the embodiments of the present application that is, the ratio of the power between the useful signal and the noise signal, is often expressed in decibels (dB).
  • SNR signal-noise ratio
  • the signal-to-noise ratio is an important parameter to measure the influence of noise on the signal.
  • the size of SNR reflects the quality of the current channel. The larger the signal-to-noise ratio, the better the quality of the wireless communication channel. In practical applications, the signal-to-noise ratio can often be improved by improving transmission means and enhancing equipment capabilities.
  • the CQI in the embodiment of this application is a channel quality indicator, representing the current quality of the channel, corresponding to the signal-to-noise ratio, and is the result of quantifying the signal-to-noise ratio.
  • the CQI value is 0, the channel quality is the worst; the larger the CQI value, the better the channel quality.
  • the PDCCH in the embodiment of this application is used to carry scheduling and other control information, and is used at least for one or more of the following functions:
  • the downlink scheduling information is also called downlink assignment (downlink assignment) information.
  • the downlink scheduling information includes PDSCH transmission parameters so that terminal equipment can receive the PDSCH. Among them, PDSCH is used to carry downlink data sent by network equipment to terminal equipment;
  • the uplink scheduling information is also called uplink grant information.
  • the uplink scheduling information includes PUSCH transmission parameters so that the terminal device can send the PUSCH to the network device.
  • the PUSCH is used to carry the uplink data sent by the terminal equipment to the network equipment.
  • DCI downlink control information
  • a PDCCH is sent in the form of a control channel element (control-channel element, CCE), which can also be called a time-frequency resource of a PDCCH includes one or more CCEs.
  • a CCE is composed of multiple resource element groups (REG), for example, a CCE is composed of 6 REGs, where 1 REG is equal to 1 orthogonal frequency division multiplexing (OFDM)
  • REG resource element groups
  • PDCCH can support different ALs.
  • the aggregation levels supported by the PDCCH may include ⁇ 1, 2, 4, 8, 16 ⁇ and so on. Among them, the aggregation level indicates the number of CCEs occupied by a candidate PDCCH.
  • the network equipment will determine the current aggregation level used by the PDCCH according to factors such as channel quality.
  • the network device can use aggregation level 1 to send the PDCCH; if the PDCCH is sent to a downlink channel with poor quality
  • the network device can use an aggregation level of 8 or even 16 to transmit the PDCCH to achieve sufficient robustness.
  • the PDSCH in the embodiment of the present application is a downlink channel carrying user data, and PDSCH transmission is usually scheduled by the PDCCH.
  • the block error rate (BLER) in the embodiments of the present application is a type of metric, which represents the ratio of blocks with errors to the total number of received blocks, and is mainly used to measure system performance.
  • the scheduling minimum slot offset (minimum K0) in the embodiment of this application indicates the minimum slot offset between the PDCCH and the scheduled PDSCH.
  • the time unit of the time domain parameter mentioned in the embodiment of the present application can be extended to symbols, time slots, frames, subframes, milliseconds, seconds, etc., and is not limited to “time slots”.
  • the following specifically introduces the process of saving power consumption of the terminal device.
  • the more antennas the terminal device operates the greater the power consumption of the terminal device. Therefore, one way for the terminal device to save power consumption is to reduce the power consumption of the terminal device by turning off a part of the antennas when data transmission with the network device is not required, that is, to reduce the number of receiving antennas for receiving the PDCCH.
  • the network device will schedule the PDSCH to the terminal device through the PDCCH, and the transmission rate of the PDSCH is related to the number of layers for transmitting the PDSCH. If the number of layers is reduced, the transmission rate will decrease.
  • the number of layers for transmitting PDSCH is also related to the number of antennas, that is, the number of receiving antennas used by the terminal equipment to receive PDSCH must be greater than or equal to the number of layers for transmitting PDSCH. For example, if the maximum number of layers configured by the network device to transmit the PDSCH to the terminal device is 4, the network device defaults that the terminal device has at least 4 receiving antennas. Therefore, when the terminal device and the network device need to perform data transmission, in order to ensure the PDSCH transmission rate scheduled by the network device to the terminal device through the PDCCH, the terminal device may turn on the closed receiving antenna to receive the PDSCH again.
  • the terminal device can reduce unnecessary data buffering and relax the processing time of the PDCCH. Therefore, the effect of saving power consumption of the terminal device can also be achieved.
  • the terminal device When the power consumption of the terminal device is saved from the perspective of the spatial domain, the terminal device needs a switching time Y when turning on or turning off the receiving antenna. Therefore, in the prior art, when the power consumption of the terminal device is saved through the space domain, the cross-slot scheduling method in the time domain can also be combined, so that the time slot offset between the PDCCH and the scheduled PDSCH can cover the antenna switching time. That is, as long as the value of the minimum K0 used to indicate the minimum time slot offset for scheduling is appropriate, the minimum K0 can cover the antenna switching time Y.
  • the terminal equipment will periodically blindly detect the PDCCH, but the network equipment may not necessarily send the PDCCH. Therefore, the terminal equipment is detecting When the PDCCH of the network device is used, the situation of empty detection often occurs, that is, the base station does not send the PDCCH. Therefore, those skilled in the art can understand that, when the terminal device detects the PDCCH from the network device, it includes the situation that the terminal device receives the PDCCH sent by the network device, and also includes the terminal device. The situation of equipment empty inspection.
  • the device uses 2Rx to receive and detect the PDCCH, and when the base station has data to be scheduled, it sends the scheduling downlink control information (downlink control information, DCI) to the terminal device through the PDCCH.
  • DCI downlink control information
  • the terminal device After the terminal device detects the scheduled DCI, it will turn on 4Rx. Since the minimum K0>0 at this time, the terminal device can have enough switching time to turn on 4Rx.
  • 4Rx is used to receive PDCCH and PDSCH, and the terminal device can also start a timer to switch from 4Rx to 2Rx.
  • the PDCCH only shown in Figure 2 means that the base station does not send a PDCCH.
  • the timer is used to re-timing each time the terminal device receives a schedule. When the timer times out, the terminal device turns off some of the receiving antennas and falls back to 2Rx to save power. Consumption.
  • the base station is not aware of the change in the number of antennas for the terminal device to receive PDCCH. Therefore, when the terminal device switches the number of receiving antennas in order to save power consumption For example, the terminal device uses 2Rx after handover, but the base station may think that the terminal device uses 4Rx, which leads to the inappropriate selection of PDCCH parameters when the base station sends PDCCH, such as the inappropriate selection of AL (aggregation level), which causes the terminal
  • AL aggregation level
  • an embodiment of the present application provides a communication transmission method, which will be described in detail below by way of enumerating the drawings and embodiments.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A , B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • the following at least one item (item) or similar expressions refer to any combination of these items, including any combination of single item (item) or plural items (item).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the specific process of the communication transmission method provided by the embodiment of the present application includes:
  • Step 300 The network device instructs the terminal device to schedule a minimum time slot offset minimum K0;
  • the network device in addition to instructing the terminal device minimum K0 by the network device, the network device also configures a PDSCH time domain resource allocation list for the terminal device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the time-domain resource allocation list includes the set of slot offset K0 between the PDCCH and the scheduled PDSCH and the set of the start symbol and length of the PDSCH in this slot.
  • the value of K0 in the K0 set can be greater than or equal to 0, and multiple values can be configured for the K0, for example, the time slot offset K0 can be configured as ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the minimum K0 indicated by the network device to the terminal device may be a value in the K0 set, or may be another value.
  • the manner in which the network device indicates the minimum K0 to the terminal device is not limited.
  • the network device may directly or indirectly indicate the minimum K0 to the terminal device through RRC, MAC CE, and DCI signaling. Said minimum K0.
  • the terminal device may also obtain the minimum K0 in a direct or indirect manner.
  • Step 301 The terminal device receives the minimum K0 sent by the network device.
  • the terminal device may also receive the time domain resource allocation list configured by the network device.
  • Step 302 The network device sends second indication information to the terminal device.
  • the second indication information is used to determine the first receiving state of the terminal equipment for detecting the PDCCH; or, the second indication information is used to determine the number of first antennas for the terminal equipment to detect the PDCCH, and The number of first antennas is less than the maximum number of receiving antennas configured or supported by the terminal device.
  • the first receiving state is a receiving manner that can save power consumption of the terminal device.
  • the terminal device receives the PDCCH in different receiving states, the power consumption of the terminal device is different.
  • the receiving state of the terminal device may be expressed as the second receiving state.
  • the receiving state described in the embodiment of this application can also be embodied in that the terminal device uses a certain number of antennas to detect PDCCH, and the terminal device uses a different number of receiving antennas to correspond to the terminal device’s Different reception status.
  • the first receiving state is that the terminal device uses the first number of antennas to detect the PDCCH, and the first number of antennas is less than the maximum number of receiving antennas configured or supported by the terminal device.
  • the second receiving state is that the terminal device uses the second number of antennas to detect the PDCCH. Wherein, the number of the second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device.
  • the number of second antennas is equal to the number of receiving antennas of the terminal device to receive the PDSCH.
  • the first receiving state in step 302 in the embodiment of the present application mainly represents the receiving state of the terminal device after some antennas are turned off in order to save power consumption of the terminal device.
  • the first receiving state can also be understood as the terminal device using the first number of antennas to detect the PDCCH. Wherein, the number of the first antennas is smaller than the number of the second antennas.
  • the current second receiving state is the state in which the terminal device uses 4Rx to detect the PDCCH, and the first receiving state may be expressed as the receiving state after the terminal device switches the current 4Rx to 2Rx.
  • the current second receiving state is the state in which the terminal device uses 8Rx to detect the PDCCH, and the first receiving state may be expressed as the receiving state after the terminal device switches the current 8Rx to 4Rx or 2Rx.
  • receiving state is only a clearer introduction to the embodiments of the invention of the present application, and is not meant as a limitation, and the term “receiving state” is a well-known word in the art. All technicians should know what it means.
  • the terminal device may also send instruction information to the network device.
  • Step 303 When the minimum K0 is greater than 0, the terminal device uses the first reception state to detect the PDCCH.
  • detecting the PDCCH refers to the action of the terminal device performing PDCCH detection, and does not limit whether the PDCCH is detected as a result. Detecting PDCCH can also be equivalent to receiving PDCCH. It includes the situation that the terminal device receives the PDCCH sent by the network device, and also includes the situation that the terminal device has an empty check.
  • Step 304 The network device sends a PDCCH suitable for reception in the first receiving state to the terminal device when the minimum K0 is greater than 0 and needs to send a PDCCH to the terminal device.
  • step 303 and step 304 the sequence may not be distinguished.
  • the embodiment of the application saves the power consumption of the terminal device by switching the receiving state of the current PDCCH to the first receiving state, if the terminal device receives the instruction information sent by the network device, it is determined that the A PDCCH is detected in the receiving state; or, if the terminal device determines that it is necessary to switch the receiving state of the currently receiving PDCCH to the first receiving state, sending indication information to the network device.
  • the network device and the terminal device when communicating, they notify the other party by sending instruction information, so that the network device knows that the terminal device uses the first reception state to detect the PDCCH, thereby ensuring the When the terminal device saves the power consumption of the terminal device by switching the current receiving state to the first receiving state, it may also receive the PDCCH sent by the network device normally.
  • the different receiving states in the embodiments of the present application may reflect different detection performances of the terminal device when detecting the PDCCH, for example, different signal-to-noise ratio thresholds required by the same BLER.
  • the signal-to-noise ratio threshold of the first receiving state under the same time-frequency resource, the same channel condition and the same BLER requirement is higher than that of the second receiving state.
  • the signal-to-noise ratio threshold of the state is high, that is, the PDCCH detection performance of the second receiving state is higher than that of the first receiving state.
  • the network device can use multiple methods to send the PDCCH to the terminal device.
  • PDCCH adjustment is not limited to the following:
  • the network device adjusts the parameters of the PDCCH that needs to be sent to the terminal device by means of compensation.
  • the parameters may include but are not limited to some or all of AL, SNR, CQI, CSI, and BLER.
  • the second receiving state is a state in which the terminal device uses 4Rx to detect PDCCH
  • the first receiving state is a state in which the terminal device uses 2Rx to detect PDCCH
  • the detected SNR must be greater than or equal to SNR2 to ensure that the terminal device can receive the PDCCH at 2Rx. Only when the detected SNR is greater than or equal to SNR1 can it be guaranteed that the terminal device receives the PDCCH at 4Rx.
  • the SNR threshold of 2Rx that is, SNR2
  • the SNR threshold of 4Rx that is, SNR1
  • the network device in the embodiment of the present application can compensate for 2Rx to ensure that the terminal device can still normally receive the PDCCH sent by the network device in the first receiving state.
  • the larger the resources used to transmit the PDCCH the better the PDCCH detection performance.
  • the parameter AL reflects the size of the resource for sending the PDCCH. Therefore, the network device can compensate for the AL, that is, use more resources to send the PDCCH. For example, the larger the AL, the more the 2Rx curve shown in Figure 4 shifts to the left. When the AL reaches a certain size, 2Rx in Fig. 4 can be made close to 4Rx in Fig. 4, so that the SNR corresponding to the current channel quality is equal to SNR1, and the terminal device can also receive the PDCCH at 2Rx.
  • the embodiment of the present application also introduces a compensation factor for assisting the network device in determining the parameters of the PDCCH.
  • the compensation factor in the embodiment of the present application is mainly used to compensate one or more of factors such as AL, SNR, CQI or CSI, BLER.
  • the network device can directly compensate the AL.
  • the better the channel quality, the less the interference the network equipment can choose a smaller AL to send the PDCCH; conversely, the worse the channel quality, the greater the interference, the network equipment needs Select a larger AL to send the PDCCH.
  • the network device adjusts SNR, CQI or CSI, BLER, and then determines the PDCCH to be sent according to the adjusted SNR, CQI or CSI, BLER AL.
  • the quality of the channel can be characterized by SNR, CSI, and CQI.
  • SNR SNR
  • CQI CQI
  • the BLER is an indicator of PDCCH detection performance.
  • the BLER of the PDCCH in the eMBB scenario is generally required to be 1%.
  • the channel quality measured with 4Rx is better than the channel quality measured with 2Rx, and the SNR of 4Rx is larger than that of 2Rx.
  • the network device determines the AL used to send the PDCCH through the SNR measured by the 4Rx, it is assumed that the measured SNR is 2 dB, and the AL selected by the network device is 4.
  • the terminal device uses 2Rx, it may not receive the PDCCH sent by the network device when the AL used by the network device is 4. Because the SNR measured by the terminal device with 2Rx does not reach 2dB.
  • the network device in this embodiment of the application can compensate the PDCCH that needs to be sent according to the compensation factor, that is, The network device uses the compensated SNR to determine the AL used to send the PDCCH.
  • SNR_A in the formula represents the SNR corresponding to the first receiving state
  • SNR_B represents the SNR corresponding to the second receiving state
  • C represents the compensation factor
  • the SNR corresponding to 2Rx can be calculated as -1dB through the above formula 1. Then, the network device determines the AL according to the SNR corresponding to 2Rx. It is assumed that when the SNR is -1dB, the corresponding AL is 8. Therefore, the network device selects the AL to 8 to send the PDCCH, thereby ensuring the terminal The device can use 2Rx to receive the PDCCH sent by the network device.
  • the compensation factor can also be used to compensate the SNR threshold of a specific BLER, and the compensation formula can be expressed as formula 2:
  • SNR_A in the formula represents the SNR threshold corresponding to the first receiving state
  • SNR_B represents the SNR threshold corresponding to the second receiving state
  • C represents the compensation factor
  • the network device determines the AL according to the currently received SNR, assuming that the currently received SNR is 2dB, and the AL less than 2Rx is the SNR threshold corresponding to 4, so at this time the network device selects the AL to 8 to send the PDCCH , Thereby ensuring that the terminal device can receive the PDCCH sent by the network device by using 2Rx.
  • the network device described in the embodiment of the present application may determine the compensation factor used to compensate the transmitted PDCCH during cross-slot scheduling in multiple ways, which are respectively introduced below.
  • Determination method 1 Determine the compensation factor used for the compensation operation according to the preset value of the agreement.
  • the network device and the terminal device specify the value of the compensation factor in a communication protocol, and when the network device needs to compensate for the PDCCH sent by the terminal device, the network device determines the value of the compensation factor according to the protocol Compensation factor, and then compensate the PDCCH that needs to be sent according to the compensation factor.
  • the terminal device may also determine the first receiving state according to the compensation factor specified in the communication protocol with the network device. For example, assuming that the terminal device normally uses 8Rx to detect the status of the PDCCH, when the terminal device needs to save energy by turning off part of the number of antennas, the terminal device may determine the antenna closing method according to the compensation factor in the communication protocol. Quantity.
  • the terminal device may determine to turn off 4Rx, that is, determine that the first receiving state is a state of using 4Rx to detect the PDCCH.
  • multiple compensation factors may be preset in the protocol. If multiple compensation factors are preset in the protocol, the network device selects one compensation factor from the multiple compensation factors preset in the protocol , And determine the parameters used by the PDCCH sent by the network device to the terminal device according to the selected compensation factor.
  • Determination method 2 The network device uses the compensation factor determined by itself as the compensation factor for performing the compensation operation.
  • the network device may determine the PDCCH to be sent to the terminal device according to the compensation factor 1. Parameters.
  • the network device may define multiple compensation factors.
  • the network device may select a compensation factor from the multiple defined compensation factors, and select a compensation factor based on the selected one.
  • the compensation factor determines the parameters used in the PDCCH sent to the terminal device.
  • the network device defines multiple compensation factors, including compensation factors 1-9.
  • the network device selects a compensation factor from compensation factors 1-9, and assuming that the selected compensation factor is compensation factor 2, the network device determines to send to the terminal device according to the compensation factor 2.
  • the parameters used by the PDCCH are the parameters used by the PDCCH.
  • Determination method 3 The network device determines the compensation factor reported by the terminal device as a compensation factor used to compensate the PDCCH sent to the terminal device.
  • the network device receives the compensation factor 1 reported by the terminal device 1, and then determines the compensation factor 1 as a compensation factor for compensating the PDCCH sent to the terminal device 1.
  • the network device After receiving the compensation factor 2 reported by the terminal device 2, the compensation factor 2 is determined as a compensation factor for compensating the PDCCH sent to the terminal device 2.
  • the terminal device may report multiple compensation factors, and if the network device receives multiple compensation factors reported by the terminal device, the network device selects from the multiple compensation factors reported by the terminal device A compensation factor is selected, and the parameters used by the PDCCH sent by the network device to the terminal device are determined according to the selected compensation factor.
  • the specific selection method may be but not limited to the following selection method:
  • the network device in the embodiment of the present application may define the same or different compensation factors for different terminal devices.
  • the size of the compensation factor may be related to the location of the terminal device or the cell coverage. For example, a smaller compensation factor may be configured for the cell center or terminal devices with good coverage, and a larger compensation factor may be configured for terminal devices with poor coverage at the cell edge.
  • the network device determines the PDCCH parameters and sends the PDCCH according to the CSI and/or CQI respectively corresponding to the N receiving states reported by the terminal device.
  • the terminal device periodically receives CSI-RS for measuring downlink channel quality, and feeds back CSI and/or CQI to the network device.
  • the terminal device may use 2Rx to receive CSI-RS, or use 4Rx to receive CSI-RS.
  • the network device may use the CSI and/or CQI fed back by the terminal device to determine the parameters of the PDCCH and the scheduling information of the PDSCH.
  • the terminal equipment in order not to affect the network equipment scheduling PDSCH, the terminal equipment by default uses the number of antennas that can support the maximum number of layers configured by the network equipment to the terminal equipment to receive the CSI-RS, for example, the network equipment
  • the maximum number of layers configured by the terminal device is 4, and the number of antennas required by the terminal device is at least 4.
  • the terminal device uses 4Rx to receive and measure CSI-RS, and feed back the measured CSI and/or CQI to the network device.
  • the network device may send an instruction to the terminal device to instruct the terminal device to report at least two types of CSI and/or CQI.
  • the second receiving state of the terminal device is 4Rx
  • the number of receiving antennas of the terminal device to receive the PDSCH is also 4Rx.
  • the terminal device uses the number of receiving antennas in the second receiving state to receive the CSI-RS. After the terminal device receives the instruction sent by the network device, the terminal device needs to feed back at least two types of CSI to the network device.
  • it may include at least two of the following: the corresponding CSI when the receiving state of the terminal device is 4Rx, the corresponding CSI when the receiving state of the terminal device is 2Rx, and the corresponding CSI when the receiving state of the terminal device is 1Rx .
  • the terminal device feeds back to the network device, it is necessary to ensure that the CSI or CQI corresponding to the number of receiving antennas in the second receiving state is included to ensure that the network device can report to the terminal device. Accurate scheduling of PDSCH.
  • the network device may determine the AL for sending the PDCCH according to the received CSI corresponding to the 2Rx, and send the PDCCH to the terminal device.
  • the network device can adjust the PDCCH sent to the terminal device in time. Therefore, the terminal device only switches the current receiving state to the first receiving state after determining that the second receiving state is adjusted to the first receiving state, that is, the terminal device determines that the number of antennas is turned off. When the conditions are met, switch the current number of second antennas to the number of first antennas.
  • Case 1 The terminal device receives the indication information sent by the network device to indicate that the terminal device can adjust the second receiving state to the first receiving state.
  • the indication information sent by the network device to the terminal device may be sent through RRC signaling, MAC CE signaling, or DCI signaling.
  • the instruction information sent by the network device to the terminal device may include multiple situations, which are respectively introduced below.
  • Network side indication information 1 Information for the network device to compensate for the sent PDCCH.
  • the network side indication information 1 indicates that the network device will compensate for the PDCCH that needs to be sent when sending the PDCCCH to the terminal device.
  • the terminal device After the terminal device receives the network-side indication information 1 sent by the network device, it can be known that when the network device needs to send the PDCCH to the terminal device, it will compensate for the sent PDCCH.
  • the terminal device adjusts the second reception state to the first reception state, the PDCCH reception performance is not affected, and the terminal device can correctly receive the PDCCH in the first reception state.
  • PDCCH sent by network equipment Therefore, after the terminal device receives the network-side indication information 1 sent by the network device, in order to save the power consumption of the terminal device, the current second receiving state of the terminal device may be adjusted to the first Receive status.
  • the current receiving state of the terminal device is to detect the PDCCH from the network device through 4Rx.
  • the network device sends the network-side indication information 1 to the terminal device through RRC signaling.
  • the terminal device receives the network-side indication information 1 sent by the network device, in order to save the terminal device
  • the current 4Rx of the terminal device can be switched to 2Rx, that is, the current second receiving state can be adjusted to the first receiving state.
  • the current network-side instruction information 1 may also include the network device's use of Compensation factor for compensation of the sent PDCCH.
  • the network-side indication information 1 includes a compensation factor, so that the terminal device can determine the network according to the compensation factor in the network-side indication information 1 after receiving the network-side indication information 1. Whether the PDCCH compensated by the device through the compensation factor is applicable to the first receiving state of the terminal device.
  • the terminal device determines according to the compensation factor that the PDCCH compensated by the network device by the compensation factor is not applicable to the first receiving state of the terminal device, the terminal device is to ensure normal reception of the network
  • the PDCCH sent by the device does not switch the receiving state; or the terminal device determines according to the compensation factor that the PDCCH compensated by the network device by the compensation factor does not apply to the first receiving state of the terminal device
  • the terminal device may send notification information to the network device to notify the network device to reselect a compensation factor to compensate for the PDCCH that needs to be sent, so as to ensure that the terminal device can receive normally in the first receiving state PDCCH sent by the network device.
  • the network-side indication information 1 includes a compensation factor, so that after receiving the network-side indication information 1, the terminal device may determine the first reception according to the compensation factor in the network-side indication information 1. status. That is, the terminal device may determine the number of antennas to be turned off according to the compensation factor in the instruction information.
  • the second receiving state of the terminal device is 4Rx
  • the terminal device receives the network-side indication information 1 sent by the network device, it determines the value according to the compensation factor 1 contained in the network-side indication information 1.
  • the network device compensates for the sent PDCCH according to the compensation factor 1, it can ensure that the terminal device receives the PDCCH normally when the receiving state is 2Rx, but cannot ensure that the terminal device can receive the PDCCH normally when the receiving state is 1Rx.
  • the PDCCH is the second receiving state of the terminal device.
  • the terminal device switches the number of working receiving antennas from 4Rx to 1Rx, the power consumption of the terminal device can be better saved.
  • the compensation factor cannot guarantee that the terminal device uses 1Rx to correctly receive the PDCCH. Therefore, the terminal device can determine that the first receiving state is 2Rx according to the compensation factor 1, that is, after the terminal device receives the network side indication information 1 sent by the network device, it saves the terminal device’s cost. Power consumption, you can switch the receiving state of 4Rx to the receiving state of 2Rx to receive PDCCH.
  • the network-side indication information 1 may also include only the compensation factor, that is, only the compensation factor is sent to the terminal device.
  • the terminal device determines that the second receiving state can be switched to the first receiving state according to the network-side instruction information 1, and subsequently, the network device further adjusts according to the compensation factor before sending the PDCCH to the terminal device.
  • the PDCCH that needs to be sent is compensated.
  • the embodiment of the present application uses the network device to send the network side indication information 1 to the terminal device to perform the process of saving power consumption of the terminal device.
  • the specific steps include:
  • Step 500 The network device notifies the terminal device minimum K0.
  • Step 501 The terminal device receives the minimum K0 sent by the network device.
  • Step 502 The network device sends the network side indication information 1 to the terminal device.
  • Step 503 The terminal device receives the network side indication information 1 sent by the network device.
  • Step 504 The terminal device switches the receiving state of receiving the PDCCH to the first receiving state when determining that the current minimum K0 is not less than Y.
  • the Y is the switching time required for the terminal device to turn on and/or turn off the number of antennas.
  • Step 505 The terminal device uses the first receiving state to detect the PDCCH sent by the network device.
  • Step 506 When the minimum K0 is not less than Y, the network device compensates the PDCCH that needs to be sent to the terminal device according to the compensation factor in the network side indication information 1, and determines the PDCCH parameter.
  • Step 507 The network device sends a PDCCH to the terminal device according to the parameters of the PDCCH.
  • step 500 and step 502 may not be restricted, and the order of step 505, step 506, and step 507 may also be not restricted.
  • Network side indication information 2 The terminal device receives the indication information sent by the network device that the terminal device reports at least two types of CSI and/or CQI.
  • the CSI measured by the terminal equipment according to the signals of different numbers of receiving antennas will be different.
  • the CSI corresponding to 4Rx is fed back.
  • the CQI is relatively large.
  • the terminal device uses 2Rx to receive CSI-RS, the CSI corresponding to 2Rx is fed back. At this time, the CQI is relatively small.
  • the terminal device uses the number of antennas that can support the maximum number of layers configured by the network device to the terminal device to receive the CSI-RS and feed back the CSI and/or CQI corresponding to the number of antennas.
  • minimum K0>0 the network device does not know the corresponding channel quality when the terminal device receives the PDCCH in the first receiving state. Therefore, the network device cannot send a PDCCH suitable for reception in the first reception state to the terminal device when the terminal device adopts the first reception state.
  • the terminal device when the terminal device receives the network-side indication information 2 sent by the network device, the terminal device needs to report at least two types of CSI to the network device, and the minimum K0 When it is less than Y, the current receiving state is switched to the first receiving state.
  • the number of antennas for receiving PDCCH corresponding to the second receiving state of the terminal device is 4Rx
  • the number of antennas for receiving PDCCH corresponding to the first receiving state is 2Rx.
  • the terminal device After determining the CSI corresponding to the first reception state and the CSI corresponding to the second reception state, the terminal device feeds back the CSI corresponding to the second reception state and the CSI corresponding to the first reception state to the network equipment.
  • the PDCCH parameters are determined by the received CSI or CQI information corresponding to the 2Rx, which can more effectively guarantee the accuracy of PDCCH parameter selection.
  • the embodiment of the present application uses the network device to send the network-side indication information 2 to the terminal device to perform the process of saving power consumption of the terminal device.
  • the specific steps include:
  • Step 600 The network device notifies the terminal device minimum K0.
  • Step 601 The terminal device receives the minimum K0 sent by the network device.
  • Step 602 The network device sends the network side indication information 2 to the terminal device.
  • Step 603 The terminal device receives the network side indication information 2 sent by the network device.
  • Step 604 When determining that the minimum K0 is not less than Y, the terminal device switches the receiving state of detecting the PDCCH to the first receiving state.
  • the Y is the switching time required for the terminal device to turn on and/or turn off the number of antennas.
  • Step 605 The terminal device uses the number of receiving antennas in the second receiving state to receive CSI-RS, measures the corresponding CSI or CQI in the second receiving state and the corresponding CSI or CQI in the first receiving state, and compares the measurement results Feedback to the network device.
  • Step 606 The network device receives the CSI or COI information measured by the two antenna quantities reported by the terminal device.
  • Step 607 When the network device needs to send the PDCCH to the terminal device, it determines the parameters of the PDCCH according to the CSI or CQI corresponding to the first receiving state, and sends the PDCCH to the terminal device.
  • step 600 and step 602 may not be distinguished.
  • Case 2 The terminal device sends to the network device indication information for instructing the terminal device to adjust the current receiving state to the first receiving state.
  • Terminal side indication information The terminal device sends information for compensating the PDCCH to the network device.
  • the terminal side indication information indicates that the network device compensates the PDCCH when sending the PDCCH to the terminal device.
  • the network device when the terminal device needs to switch the current second receiving state to the first receiving state to save power consumption of the terminal, and sends the terminal side indication information to the network device, the network device is receiving the After the terminal side indicates the information, it compensates for the PDCCH that needs to be sent to the terminal device, thereby ensuring that when the terminal device adjusts the receiving state to the first receiving state, the PDCCH receiving performance may not be affected, and the PDCCH receiving performance may be received normally. PDCCH sent by the network device.
  • the terminal-side indication information may include the compensation factor determined by the terminal device, that is, the terminal device sends the compensation factor to the network device, and after the network device receives the compensation factor, it can confirm The receiving state of the terminal device is the first receiving state. Then, the network device compensates the PDCCH that needs to be sent to the terminal device according to the compensation factor, and determines the parameters of the PDCCH. Since the terminal device knows the downlink channel quality better, the terminal device can determine the compensation factor and report the compensation factor to the network device.
  • the number of compensation factors included in the terminal-side indication information may be one or more, that is, the terminal device may determine multiple compensation factors, and carry the determined multiple compensation factors in The terminal side indication information 1 is reported to the network device.
  • the terminal side indication information may also include at least two CSI and/or CQI information. For example, suppose that the number of antennas for receiving PDCCH corresponding to the second receiving state of the terminal device is 4Rx, and the number of antennas for receiving PDCCH corresponding to the first receiving state is 2Rx.
  • the terminal device uses the number of receiving antennas in the second receiving state to receive the CSI-RS, that is, 4Rx reception CSI-RS, using the CSI-RS received by the 4 antennas to calculate the CSI corresponding to the second receiving state; and the terminal device using the CSI-RS received by any two of the 4 antennas to calculate CSI corresponding to the first receiving state.
  • the terminal device After determining the CSI corresponding to the first receiving state and the CSI corresponding to the second receiving state, the terminal device sends to the network device terminal-side indication information containing the information of the at least two types of CSI and/or CQI.
  • the network device After the network device receives the terminal-side indication information, it can confirm that the receiving state of the terminal device is the first receiving state, and then when the network device sends the PDCCH to the terminal device, it is determined according to the first receiving state.
  • the CSI and/or CQI corresponding to the number of antennas determine the parameters of the PDCCH.
  • the embodiment of the present application uses the terminal device to send the terminal side indication information 1 to the network device to perform the process of saving power consumption of the terminal device.
  • the specific steps include:
  • Step 700 The network device notifies the terminal device minimum K0.
  • Step 701 The terminal device receives the minimum K0 sent by the network device.
  • Step 702 The terminal device sends the terminal side indication information to the network device.
  • the terminal device if the terminal side indication information includes at least two CSI and/or CQI information, before step 702, the terminal device also needs to use the number of receiving antennas in the second receiving state to receive CSI-RS, And calculate the CSI and/or CQI corresponding to the first receiving state and the CSI and/or CQI corresponding to the second receiving state.
  • Step 703 The network device receives the terminal side indication information sent by the terminal device.
  • Step 704 When determining that the minimum K0 is not less than Y, the terminal device switches the receiving state of detecting PDCCH to the first receiving state; wherein, Y is required for the terminal device to turn on and/or turn off the number of antennas Switching time.
  • Step 705 After receiving the terminal-side indication information sent by the terminal device, the network device determines the parameters of the PDCCH when sending a PDCCH to the terminal device.
  • the network device may compensate the PDCCH to be sent to the terminal device according to the compensation factor, and determine the PDCCH parameter.
  • the terminal side indication information includes the CSI and/or CQI corresponding to the first reception state and the CSI and/or CQI corresponding to the second reception state
  • the network device when the network device sends the PDCCH to the terminal device
  • the parameters of the PDCCH are determined according to the CSI and/or CQI corresponding to the first reception state.
  • the PDCCH is compensated, that is, there is no need to indicate the compensation factor and the CSI of different reception states, so
  • the network device sends the PDCCH to the terminal device, it can compensate the PDCCH according to the compensation factor specified in the protocol or the compensation factor determined by itself, and determine the parameters of the PDCCH.
  • Step 706 The network device sends a PDCCH to the terminal device.
  • a threshold duration may also be set on the network device and/or terminal device, which is used to trigger the said network device and/or terminal device when the information requesting scheduling data is not sent to the terminal device within the threshold duration.
  • the network device compensates for the PDCCH that needs to be sent, and triggers the terminal device to switch the current receiving state to the first receiving state.
  • the threshold duration set by the network device and the terminal device is A milliseconds, and the network device does not send information requesting scheduling data to the terminal device within A milliseconds, then the network device will be after the threshold duration
  • the PDCCH needs to be compensated when sending the PDCCH to the terminal device; if the terminal device does not receive the information requesting scheduling data sent by the network device within A milliseconds, then the terminal device will The current receiving state is switched to the first receiving state.
  • a timer may be added to the network device and/or the terminal device to determine whether the threshold duration is reached.
  • an embodiment of the present application also provides a terminal device, which includes a processor 800, a memory 801, and a transceiver 802;
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the transceiver 802 is configured to receive and send data under the control of the processor 800 to communicate with the memory 801 for data.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 801 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 800 or implemented by the processor 800.
  • each step of the signal processing flow can be completed by the integrated logic circuit of the hardware in the processing 800 or instructions in the form of software.
  • the processor 800 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present application The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 801, and the processor 800 reads the information in the memory 801 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 800 is configured to read a program in the memory 801 and execute:
  • Used to receive the scheduling minimum time slot offset indicated by the network device receive the first indication information sent by the network device; or send the second indication information to the network device; wherein the first indication information and/or The second indication information is used to determine that the terminal device detects the first receiving state of the physical downlink control channel PDCCH; when the scheduling minimum time slot offset is greater than 0, the first receiving state is used to detect the PDCCH.
  • the terminal device not only receives the minimum K0 indicated by the network device, but also receives the time domain resource allocation list of the PDSCH configured by the network device through RRC signaling.
  • the time-domain resource allocation list includes the set of slot offset K0 between the PDCCH and the scheduled PDSCH and the set of the start symbol and length of the PDSCH in this slot.
  • the value of K0 in the K0 set can be greater than or equal to 0, and multiple values can be configured for the K0, for example, the time slot offset K0 can be configured as ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the minimum K0 indicated by the network device received by the terminal device may be a value in the K0 set, or may be another value.
  • the manner in which the terminal device in this application receives the minimum K0 indicated by the network device is not limited.
  • the network device may directly or indirectly indicate to the terminal device through RRC, MAC CE, and DCI signaling.
  • the terminal device may also obtain the minimum K0 in a direct or indirect manner.
  • the first receiving state is a receiving manner that can save power consumption of the terminal device.
  • the terminal device receives the PDCCH in different receiving states, the power consumption of the terminal device is different.
  • the receiving state of the terminal device may be expressed as the second receiving state.
  • the first receiving state is used to indicate that the terminal device uses a first number of antennas to detect PDCCH; wherein, the first antenna number is less than the maximum receiving antenna configured or supported by the terminal device Quantity.
  • the first indication information includes at least one of the following:
  • the terminal device reports at least two types of channel state information CSI and/or channel quality indicator CQI information; or,
  • the compensation factor in the embodiment of the present application is mainly used to compensate for one or more of factors such as AL, SNR, CQI or CSI, BLER.
  • the second indication information is used to indicate at least one of the following:
  • At least two types of CSI and/or CQI information determined by the terminal device are at least two types of CSI and/or CQI information determined by the terminal device.
  • the network device compensates for the PDCCH when sending the PDCCH to the terminal device.
  • the processor 800 is specifically configured to:
  • the first reception state is used to detect the PDCCH; where Y is the time required for the terminal device to turn on and/or turn off the antenna.
  • the processor 800 is further configured to:
  • the terminal device uses the maximum number of receiving antennas configured or supported by the terminal device to receive the signal state information reference signal CSI-RS, and calculates N CSI and/or CQIs corresponding to the N receiving states;
  • the network device reports the N CSI and/or CQI; wherein, the N reception states include the first reception state.
  • the processor 800 is further configured to:
  • the terminal device receives the CSI-RS in the second reception state, and calculates the first CSI and/or the first CQI corresponding to the first reception state and the second CSI and/or second CQI corresponding to the second reception state.
  • the terminal device uses the first CSI and/or the first CQI and the second CSI and/or the second CQI as the CSI and/or CQI for reporting the network device;
  • the number of first receiving antennas corresponding to the first receiving state is less than the number of second antennas corresponding to the second receiving state, and the number of second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device .
  • the first indication information includes a compensation factor used to assist the network device in determining PDCCH parameters.
  • the processor 800 is specifically configured to:
  • the PDCCH is detected in the first reception state.
  • the present application provides a terminal device.
  • the terminal device includes: at least one processing unit 900, at least one storage unit 901, and at least one communication unit 902, where the communication unit 902 is used for processing
  • the data is received and sent under the control of the unit 900, the storage unit 901 stores program code, and when the program code is executed by the processing unit 900, the processing unit 900 is caused to perform the following processes:
  • Used to receive the scheduling minimum time slot offset indicated by the network device receive the first indication information sent by the network device; or send the second indication information to the network device; wherein the first indication information and/or The second indication information is used to determine that the terminal device detects the first receiving state of the physical downlink control channel PDCCH; when the scheduling minimum time slot offset is greater than 0, the first receiving state is used to detect the PDCCH.
  • the terminal device not only receives the minimum K0 indicated by the network device, but also receives the time domain resource allocation list of the PDSCH configured by the network device through RRC signaling.
  • the time-domain resource allocation list includes the set of slot offset K0 between the PDCCH and the scheduled PDSCH and the set of the start symbol and length of the PDSCH in this slot.
  • the value of K0 in the K0 set can be greater than or equal to 0, and multiple values can be configured for the K0, for example, the time slot offset K0 can be configured as ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the minimum K0 indicated by the network device received by the terminal device may be a value in the K0 set, or may be another value.
  • the manner in which the terminal device in this application receives the minimum K0 indicated by the network device is not limited.
  • the network device may directly or indirectly indicate to the terminal device through RRC, MAC CE, and DCI signaling.
  • the terminal device may also obtain the minimum K0 in a direct or indirect manner.
  • the first receiving state is a receiving manner that can save power consumption of the terminal device.
  • the terminal device receives the PDCCH in different receiving states, the power consumption of the terminal device is different.
  • the receiving state of the terminal device may be expressed as the second receiving state.
  • the first receiving state is used to indicate that the terminal device uses the first number of antennas to detect the PDCCH
  • the number of the first antennas is less than the maximum number of receiving antennas configured or supported by the terminal device.
  • the first indication information includes at least one of the following:
  • the terminal device reports at least two types of channel state information CSI and/or channel quality indicator CQI information; or,
  • the second indication information is used to indicate at least one of the following:
  • the network device compensates for the PDCCH when sending the PDCCH to the terminal device.
  • the compensation factor in the embodiment of the present application is mainly used to compensate for one or more of factors such as AL, SNR, CQI or CSI, BLER.
  • the processing unit 900 is specifically configured to:
  • the first reception state is used to detect the PDCCH; where Y is the time required for the terminal device to turn on and/or turn off the antenna.
  • the processing unit 900 is further configured to:
  • the terminal device uses the maximum number of receiving antennas configured or supported by the terminal device to receive the signal state information reference signal CSI-RS, and calculates N CSI and/or CQIs corresponding to the N receiving states;
  • the network device reports the N CSI and/or CQI; wherein, the N reception states include the first reception state.
  • the processing unit 900 is further configured to:
  • the terminal device receives the CSI-RS in the second reception state, and calculates the first CSI and/or the first CQI corresponding to the first reception state and the second CSI and/or second CQI corresponding to the second reception state.
  • the terminal device uses the first CSI and/or the first CQI and the second CSI and/or the second CQI as the CSI and/or CQI for reporting the network device;
  • the number of first receiving antennas corresponding to the first receiving state is less than the number of second antennas corresponding to the second receiving state, and the number of second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device .
  • the first indication information includes a compensation factor used to assist the network device in determining PDCCH parameters.
  • the processing unit 900 is specifically configured to:
  • the PDCCH is detected in the first reception state.
  • a network device of the present application includes a processor 1000, a memory 1001, and a communication interface 1002.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1001 can store data used by the processor 1000 when performing operations.
  • the communication interface 1002 is used to receive and send data under the control of the processor 1000 for data communication with the memory 1001.
  • the processor 1000 may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
  • the processor 1000 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the memory 1001 may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other various media that can store program codes.
  • the processor 1000, the memory 1001, and the communication interface 1002 are connected to each other.
  • the processor 1000, the memory 1001, and the communication interface 1002 may be connected to each other through a bus 1003; the bus 1003 may be a peripheral component interconnect (PCI) bus or an extended industry Standard structure (extended industry standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry Standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1000 is configured to read a program in the memory 1001 and execute:
  • the terminal equipment Used to instruct the terminal equipment to schedule the minimum time slot offset; receive the second indication information sent by the terminal equipment; or, the network equipment sends the first indication information to the terminal equipment; wherein the first indication information And/or the second indication information is used to determine that the terminal equipment detects the first reception status of the physical downlink control channel PDCCH; when the scheduling minimum time slot offset is greater than 0 and the PDCCH needs to be sent to the terminal equipment, the terminal equipment The device sends a PDCCH suitable for reception in the first reception state.
  • the network device in addition to instructing the terminal device minimum K0 by the network device, the network device also configures a PDSCH time domain resource allocation list for the terminal device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the time-domain resource allocation list includes the set of slot offset K0 between the PDCCH and the scheduled PDSCH and the set of the start symbol and length of the PDSCH in this slot.
  • the value of K0 in the K0 set can be greater than or equal to 0, and multiple values can be configured for the K0, for example, the time slot offset K0 can be configured as ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the minimum K0 indicated by the network device to the terminal device may be a value in the K0 set, or may be another value.
  • the manner in which the network device indicates the minimum K0 to the terminal device is not limited.
  • the network device may directly or indirectly indicate the minimum K0 to the terminal device through RRC, MAC CE, and DCI signaling. Said minimum K0.
  • the terminal device may also obtain the minimum K0 in a direct or indirect manner.
  • the first receiving state is a receiving manner that can save the power consumption of the terminal device.
  • the terminal device receives the PDCCH in different receiving states, the power consumption of the terminal device is different.
  • the receiving state of the terminal device may be expressed as the second receiving state.
  • the first receiving state is used to indicate that the terminal device uses a first number of antennas to detect PDCCH; wherein, the first antenna number is less than the maximum receiving antenna configured or supported by the terminal device Quantity.
  • the first indication information includes at least one of the following:
  • the terminal device reports at least two types of channel state information CSI and/or channel quality indicator CQI information; or,
  • the second indication information is used to indicate at least one of the following:
  • the network device compensates for the PDCCH when sending the PDCCH to the terminal device.
  • the processor 1000 is specifically configured to:
  • the PDCCH suitable for reception in the first receiving state is sent to the terminal device; wherein, Y is the terminal device's enable And/or the time required to turn off the antenna.
  • the processor 1000 is further configured to:
  • the network device receives the N CSI and/or CQI reported by the terminal device; wherein the N CSI and/or CQI are obtained after the terminal device uses the configured or supported maximum number of receive antennas to receive the CSI-RS It is obtained by measurement, and the N CSI and/or CQIs include the CSI and/or CQI corresponding to the first reception state.
  • the processor 1000 is further configured to:
  • the first CSI and/or the first CQI and the second CSI and/or the second CQI are calculated after the terminal device receives the CSI-RS in the second receiving state, and the first The number of first antennas corresponding to the receiving state is less than the number of second antennas corresponding to the second receiving state, and the number of second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device.
  • the first indication information includes a compensation factor used to assist the network device in determining PDCCH parameters.
  • the processor 1000 is further configured to:
  • the compensation factor in the embodiment of the present application is mainly used to compensate for one or more of factors such as AL, SNR, CQI or CSI, BLER.
  • the processor 1000 determines the PDCCH applicable to the first receiving state in the following manner:
  • the terminal equipment According to the information including the CSI and/or CQI corresponding to the first reception state reported by the terminal equipment, determine the PDCCH parameters applicable to the first reception state.
  • the processor 1000 is specifically configured to:
  • the PDCCH sent to the terminal device is compensated.
  • the network device in the embodiment of the present application may define the same or different compensation factors for different terminal devices.
  • the size of the compensation factor may be related to the location of the terminal device or the cell coverage. For example, a smaller compensation factor may be configured for the cell center or terminal devices with good coverage, and a larger compensation factor may be configured for terminal devices with poor coverage at the cell edge.
  • the present application provides a network device that includes: at least one processing unit 1100, at least one storage unit 1101, and at least one communication unit 1102, wherein the communication unit 1102 is used for processing
  • the data is received and sent under the control of the unit 1100, and the storage unit 1101 stores program code, and when the program code is executed by the processing unit 1100, the processing unit 1100 executes the following process:
  • the terminal equipment Used to instruct the terminal equipment to schedule the minimum time slot offset; receive the second indication information sent by the terminal equipment; or, the network equipment sends the first indication information to the terminal equipment; wherein the first indication information And/or the second indication information is used to determine that the terminal equipment detects the first reception status of the physical downlink control channel PDCCH; when the scheduling minimum time slot offset is greater than 0 and the PDCCH needs to be sent to the terminal equipment, the terminal equipment The device sends a PDCCH suitable for reception in the first reception state.
  • the network device in addition to instructing the terminal device minimum K0 by the network device, the network device also configures a PDSCH time domain resource allocation list for the terminal device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the time-domain resource allocation list includes the set of slot offset K0 between the PDCCH and the scheduled PDSCH and the set of the start symbol and length of the PDSCH in this slot.
  • the value of K0 in the K0 set can be greater than or equal to 0, and multiple values can be configured for the K0, for example, the time slot offset K0 can be configured as ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the minimum K0 indicated by the network device to the terminal device may be a value in the K0 set, or may be another value.
  • the manner in which the network device indicates the minimum K0 to the terminal device is not limited.
  • the network device may directly or indirectly indicate the minimum K0 to the terminal device through RRC, MAC CE, and DCI signaling. Said minimum K0.
  • the terminal device may also obtain the minimum K0 in a direct or indirect manner.
  • the first receiving state is a receiving manner that can save the power consumption of the terminal device.
  • the terminal device receives the PDCCH in different receiving states, the power consumption of the terminal device is different.
  • the receiving state of the terminal device may be expressed as the second receiving state.
  • the first receiving state is used to indicate that the terminal device uses a first number of antennas to detect PDCCH; wherein, the first antenna number is less than the maximum receiving antenna configured or supported by the terminal device Quantity.
  • the first indication information includes at least one of the following:
  • the terminal device reports at least two types of channel state information CSI and/or channel quality indicator CQI information; or,
  • the second indication information is used to indicate at least one of the following:
  • the network device compensates for the PDCCH when sending the PDCCH to the terminal device.
  • the processing unit 1100 is specifically configured to:
  • the PDCCH suitable for reception in the first receiving state is sent to the terminal device; wherein, Y is the terminal device's enable And/or the time required to turn off the antenna.
  • the processing unit 1100 is further configured to:
  • the network device receives N CSI and/or CQI reported by the terminal device;
  • the N CSI and/or CQI are measured after receiving the CSI-RS by the terminal device using the configured or supported maximum number of receiving antennas, and the N CSI and/or CQI include the first received antenna CSI and/or CQI corresponding to the state.
  • the processing unit 1100 is further configured to:
  • the first CSI and/or the first CQI and the second CSI and/or the second CQI are calculated after the terminal device receives the CSI-RS in the second receiving state, and the first The number of first antennas corresponding to the receiving state is less than the number of second antennas corresponding to the second receiving state, and the number of second antennas is not greater than the maximum number of receiving antennas configured or supported by the terminal device.
  • the first indication information includes a compensation factor used to assist the network device in determining PDCCH parameters.
  • the processing unit 1100 is further configured to:
  • the processing unit 1100 is specifically configured to:
  • the PDCCH sent to the terminal device is compensated.
  • the compensation factor in the embodiment of the present application is mainly used to compensate for one or more of factors such as AL, SNR, CQI or CSI, BLER.
  • the processing unit 1100 determines the PDCCH parameters applicable to the first receiving state in the following manner:
  • the terminal equipment According to the information including the CSI and/or CQI corresponding to the first reception state reported by the terminal equipment, determine the PDCCH parameters applicable to the first reception state.
  • the network device in the embodiment of the present application may define the same or different compensation factors for different terminal devices.
  • the size of the compensation factor may be related to the location of the terminal device or the cell coverage. For example, a smaller compensation factor may be configured for the cell center or terminal devices with good coverage, and a larger compensation factor may be configured for terminal devices with poor coverage at the cell edge.
  • various aspects of the communication transmission method provided in the embodiments of the present application can also be implemented in the form of a program product, which includes program code, and when the program code runs on a computer device, The program code is used to make the computer device execute the steps in the communication transmission method according to various exemplary embodiments of the present application described in this specification.
  • the program product can use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the program product for performing communication transmission may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may run on a server device.
  • CD-ROM portable compact disk read-only memory
  • the program product of this application is not limited to this.
  • the readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with information transmission, devices, or devices.
  • the readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and readable program code is carried therein. This propagated data signal can take many forms, including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with a periodic network action system, apparatus, or device.
  • the program code contained on the readable medium can be transmitted by any suitable medium, including, but not limited to, wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • the program code used to perform the operations of this application can be written in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
  • the remote computing device may be connected to a user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device.
  • LAN local area network
  • WAN wide area network
  • the embodiment of the present application also provides a computing device-readable storage medium for the method for performing communication transmission on a terminal device, that is, the content is not lost after a power failure.
  • the storage medium stores a software program, including program code, and when the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors Communication transmission scheme.
  • the method for performing communication transmission on a network device in the embodiment of the present application also provides a storage medium readable by a computing device, that is, content is not lost after a power failure.
  • the storage medium stores a software program, including program code, and when the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors
  • the communication and transmission scheme of network equipment is not limited to the communication and transmission scheme of network equipment.
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used by the instruction execution system or Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, device, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信传输的方法及设备,该方法包括:终端设备接收网络设备指示的调度最小时隙偏移;所述终端设备接收所述网络设备发送的指示信息;或者,所述终端设备向所述网络设备发送指示信息;其中,所述指示信息用于确定所述终端设备检测PDCCH的第一接收状态;所述终端设备在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。通过该方法,终端设备关闭部分天线数量后,网络设备在向终端设备发送PDCCH之前,所述网络设备会对向所述终端设备发送的PDCCH进行调整,保障所述终端设备为节省功耗关闭部分天线数量后,也可正常接收所述网络设备发送的PDCCH。

Description

一种通信传输的方法及设备
相关申请的交叉引用
本申请要求在2019年08月02日提交中国专利局、申请号为201910711769.7、申请名称为“一种通信传输的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信传输的方法及设备。
背景技术
随着通信技术的不断发展,在进行无线通信的过程中,越来越注重降低终端设备的功耗,其中,为了在无线通信过程中降低终端设备的功耗,更好的节省终端设备的电量,终端设备可以从时间域、空间域等方面节省终端设备的功耗。
现有从时间域降低终端设备功耗时,主要采用跨时隙调度的方式节省终端设备的功耗,即基站通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向UE调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH),PDCCH与被调度的PDSCH之间的时隙偏移大于0。因为,当终端设备在检测PDCCH之前就知道被调度的PDSCH和PDCCH不在同一个时隙时,终端设备可以减少不必要的数据缓存,以及放松PDCCH的处理时间,从而可以达到节省功耗的效果。从空间域降低终端设备功耗时,通过关闭部分天线的方式节省终端设备功耗。其中一种方法是在检测PDCCH时关闭部分接收天线,然后当检测到PDCCH后,终端设备打开更多的接收天线接收调度的PDSCH。其中,因为终端设备打开或关闭接收天线都需要一个切换时间。所以,现有技术中如果跨时隙调度的方式使得PDCCH与被调度的PDSCH之间的时隙偏移涵盖天线切换时间,终端设备可以通过内部实现在空间域节省终端设备功耗。
上述终端设备通过内部实现在空间域节省功耗的方法存在的主要问题是:在通信过程中,基站并不清楚终端设备接收PDCCH的天线数的变化。因此,当终端设备为了实现节省功耗而进行接收天线数量的切换时,例如,终端设备进行切换后使用的是2个接收天线(2Rx),但是基站仍认为终端设备使用的是4Rx,导致基站发送PDCCH时的PDCCH参数选择不合适,例如,聚合等级(aggregation level,AL)选择不合适等,从而导致终端设备检测PDCCH的性能降低等问题。
发明内容
本申请提供一种通信传输的方法及设备,用以实现不影响PDCCH性能的前提下,有效节省终端设备的功耗的问题。
第一方面,本申请实施例提供一种通信传输的方法,终端设备接收网络设备指示的调度最小时隙偏移;所述终端设备接收所述网络设备发送的第一指示信息;或者,所述终端设备向所述网络设备发送第二指示信息;所述终端设备在调度最小时隙偏移大于0时, 采用第一接收状态检测PDCCH。可选的,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测PDCCH的第一接收状态;或者可选的,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测PDCCH的第一天线数量,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
基于该方案,本申请实施例通过将当前的接收状态切换为第一接收状态的方式来节省终端设备的功耗时,若终端设备接收到网络设备发送的指示信息,则确定可以通过第一接收状态检测PDCCH;或者,若所述终端设备在确定需要将当前接收状态切换为第一接收状态时,向所述网络设备发送指示信息;也就是所述网络设备与所述终端设备通过向对方发送指示信息的方式通知对方,从而使所述网络设备知晓所述终端设备采用第一接收状态检测PDCCH,保障了所述终端设备在通过将当前接收状态切换为第一接收状态来节省终端设备功耗时,也可以正常的接收到所述网络设备发送的PDCCH。
相应地,所述第一指示信息包含下列中的至少一个:所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或所述终端设备上报至少两种接收状态的信道状态信息(Channel State Information,CSI)和/或信道质量指示(Channel Quality Indicator,CQI)的信息;或用于辅助所述网络设备确定PDCCH参数的补偿因子。
基于该方案,本申请实施例提供了所述终端设备接收到的所述网络设备发送的第一指示信息的几种情况。例如,所述指示信息主要指示所述网络设备对发送的PDCCH进行了补偿,也就是可以保障所述终端设备在第一接收状态时正常接收到PDCCH,从而所述终端设备在接收到所述指示信息时,可以将当前的接收状态切换为第一接收状态。再例如,所述指示信息指示所述终端设备上报通过至少两种天线数量测量CSI和/或CQI的信息,从而可以使所述网络设备知晓至少两种天线数量测量CSI和/或CQI的信息,有助于所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述第二指示信息用于指示下列中的至少一个:用于辅助所述网络设备确定PDCCH参数的补偿因子;或指示所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
基于该方案,本申请实施例具体介绍了所述终端设备向所述网络设备发送的第二指示信息的情况。其中,所述第二指示信息指示PDCCH参数的补偿因子。从而可以使所述网络设备在接收到所述指示信息后,可以根据所述指示信息中的补偿因子调整发送给所述终端设备的PDCCH,以保障所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述终端设备在所述调度最小时隙偏移不小于Y时,采用第一接收状态检测PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
基于该方案,本申请实施例中为保障所述终端设备有足够的时间进行接收状态的切换,故需要使所述调度最小时隙偏移大于所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方式中,所述终端设备向所述网络设备上报至少两种CSI和/或CQI的信息之前,还包括:所述终端设备采用所述终端设备配置或者支持的最大接收天线数量接收信号状态信息参考信号CSI-RS,并计算N种接收状态对应的N个CSI和/或CQI;所述终端设备向所述网络设备上报所述N个CSI和/或CQI;其中,所述N种接收状态中包括第一接收状态。
基于该方案,本申请实施例中所述终端设备向所述网络设备上报N种天线数量对应的 CSI和/或CQI,从而可以使所述网络设备知晓N种天线数量对应的CSI和/或CQI,并根据实际情况选择其中的一种CSI确定发送给所述终端设备的PDCCH,适用性更强。
在一种可能的实现方式中,所述终端设备上报至少两种CSI和/或CQI的信息之前,还包括:所述终端设备采用第二接收状态接收CSI-RS,并计算所述第一接收状态对应的第一CSI和/或第一CQI以及所述第二接收状态对应的第二CSI和/或第二CQI;所述终端设备将所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI作为上报所述网络设备的CSI和/或CQI;其中,所述第一接收状态对应的第一接收天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
基于该方案,本申请实施例中所述网络设备指示所述终端设备上报至少两种天线数量测量CSI和/或CQI的信息,其中,包括所述第一天线数量对应的第一CSI和/或第一CQI以及所述第二天线数量对应的第二CSI和/或第二CQI;从而可以使所述网络设备根据接收到的所述第一CSI和/或第一CQI确定发送给所述终端设备的PDCCH,以保障所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述第一指示信息包括用于辅助所述网络设备确定PDCCH参数的补偿因子。
基于该方案,本申请实施例中所述终端设备可以根据所接收到的第一指示信息中的补偿因子,确定所述网络设备根据所述补偿因子进行补偿后的PDCCH是否可以采用第一接收状态正常接收,若不可以,则所述终端设备不进行接收状态的切换,若可以,则将当前的接收状态切换为第一接收状态。
在一种可能的实现方式中,所述终端设备在阈值时长内没有收到所述网络设备发送的请求调度数据的信息,则所述终端设备在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
基于该方案,本申请实施例通过设置阈值时长的方式确定满足切换为第一接收状态的条件,即所述终端设备在阈值时长内没有收到所述网络设备发送的请求调度数据的信息,则所述终端设备在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
第二方面,本申请实施例还提供一种通信传输的方法,网络设备向终端设备指示调度最小时隙偏移;所述网络设备接收所述终端设备发送的第二指示信息;或者,所述网络设备向所述终端设备发送第一指示信息;所述网络设备在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH。可选的,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测PDCCH的第一接收状态;或者可选的,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测PDCCH的第一天线数量,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
基于该方案,本申请实施例通过将当前的接收状态切换为第一接收状态的方式来节省终端设备的功耗时,若终端设备接收到网络设备发送的指示信息,则确定可以通过第一接收状态检测PDCCH;或者,若所述终端设备在确定需要将当前接收状态切换为第一接收状态时,向所述网络设备发送指示信息;也就是所述网络设备与所述终端设备通过向对方发送指示信息的方式通知对方,从而使所述网络设备知晓所述终端设备采用第一接收状态 检测PDCCH,保障了所述终端设备在通过将当前接收状态切换为第一接收状态来节省终端设备功耗时,也可以正常的接收到所述网络设备发送的PDCCH。
在一种可能的实现方式中,所述第一指示信息包含下列中的至少一种:所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或所述终端设备上报至少两种接收状态的信道状态信息CSI和/或信道质量指示CQI的信息;或用于辅助所述网络设备确定PDCCH参数的补偿因子。
基于该方案,本申请实施例提供了所述网络设备向所述终端设备发送第一指示信息的几种情况。例如,所述指示信息主要指示所述网络设备对发送的PDCCH进行了补偿,也就是可以保障所述终端设备在第一接收状态时正常接收到PDCCH,从而所述终端设备在接收到所述指示信息时,可以将当前的接收状态切换为第一接收状态。再例如,所述指示信息指示所述终端设备上报通过至少两种天线数量测量CSI和/或CQI的信息,从而可以使所述网络设备知晓至少两种天线数量测量CSI和/或CQI的信息,有助于所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述第二指示信息用于指示下列中的至少一个:用于辅助所述网络设备确定PDCCH参数的补偿因子;或所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
基于该方案,本申请实施例具体介绍了所述网络设备接收所述终端设备发送第二指示信息的情况。其中,所述指示信息指示PDCCH参数的补偿因子。从而可以使所述网络设备在接收到所述指示信息后,可以根据所述指示信息中的补偿因子调整发送给所述终端设备的PDCCH,以保障所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述网络设备在调度最小时隙偏移不小于Y且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
基于该方案,本申请实施例中为保障所述终端设备有足够的时间进行接收状态的切换,故需要使所述调度最小时隙偏移大于所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方式中,所述网络设备接收所述终端设备上报的至少两种接收状态的CSI和/或CQI的信息,包括:所述网络设备接收所述终端设备上报的N个CSI和/或CQI;其中,所述N个CSI和/或CQI是通过所述终端设备采用配置或者支持的最大接收天线数量接收CSI-RS后测量得到的,且所述N个CSI和/或CQI中包括第一接收状态对应的CSI和/或CQI。
基于该方案,本申请实施例中所述网络设备根据所述终端设备上报的N个CSI和/或CQI,可以根据实际情况选择其中的一种CSI确定发送给所述终端设备的PDCCH的参数。并且,所述N个CSI和/或CQI中包括第一天线数量对应的CSI和/或CQI,因此,所述网络设备可以根据所述第一天线数量对应的CSI和/或CQI,确定发送给所述终端设备的PDCCH,以保障所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述网络设备接收所述终端设备上报的至少两种接收状态的CSI和/或CQI的信息,包括:所述网络设备接收所述终端设备上报的第一天线数量对应的第一CSI和/或第一CQI与第二天线数量对应的第二CSI和/或第二CQI;其中,所述 第一CSI和/或第一CQI与所述第二CSI和/或第二CQI是通过所述终端设备采用第二接收状态接收CSI-RS后计算得到的,且所述第一接收状态对应的第一天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
基于该方案,本申请实施例中所述网络设备根据所述终端设备上报的第一天线数量对应的第一CSI和/或第一CQI与第二天线数量对应的第二CSI和/或第二CQI,可以知晓所述第一天线数量对应的第一CSI和/或第一CQI。因此,所述网络设备可以根据所述第一天线数量对应的CSI和/或CQI,确定发送给所述终端设备的PDCCH,以保障所述终端设备在第一接收状态时正常接收到PDCCH。
在一种可能的实现方式中,所述第一指示信息包括:用于辅助所述网络设备确定PDCCH参数的补偿因子。
基于该方案,本申请实施例中所述终端设备可以根据所接收到的第一指示信息中的补偿因子,确定所述网络设备根据所述补偿因子进行补偿后的PDCCH是否可以采用第一接收状态正常接收,若不可以,则所述终端设备不进行接收状态的切换,若可以,则将当前的接收状态切换为第一接收状态。
在一种可能的实现方式中,所述网络设备在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH之前,所述网络设备确定适用于所述第一接收状态接收PDCCH的参数。
基于该方案,本申请实施例需要确定适用于所述第一接收状态接收的PDCCH的参数,以保障所述终端设备在第一接收状态时,所述网络设备向所述终端设备发送适用于所述第一接收状态接收的PDCCH,使所述终端设备正常接收到所述PDCCH。
在一种可能的实现方式中,所述网络设备在阈值时长内没有向所述终端设备发送请求调度数据的信息,则所述网络设备在调度最小时隙偏移大于0时,对发送给所述终端设备的PDCCH进行补偿。
基于该方案,本申请实施例通过设置阈值时长的方式确定满足对发送的PDCCH进行补偿的条件,即所述网络设备在阈值时长内没有向所述终端设备发送请求调度数据的信息,则所述网络设备在调度最小时隙偏移大于0时,对发送给所述终端设备的PDCCH进行补偿。
在一种可能的实现方式中,所述网络设备通过下列方式确定适用于所述第一接收状态的PDCCH的参数:所述网络设备根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据所述终端设备发送的所述第二指示信息确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态的PDCCH。
基于该方案,本申请实施例详细介绍了所述网络设备确定适用于所述第一接收状态接收的PDCCH的方法。例如,所述网络设备根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据所述终端设备发送的所述第二指示信息确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或所述网络设备根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态的 PDCCH的参数。
第三方面,本申请实施例还提供一种终端设备,该终端设备可以用来执行上述第一方面及第一方面的任意可能的实现方式中的操作。例如,终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的各个操作的模块或单元。比如包括处理单元和通信单元。
第四方面,本申请实施例还提供了一种网络设备,该网络设备可以用来执行上述第二方面及第二方面的任意可能的实现方式中的操作。例如,网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的各个操作的模块或单元。比如包括处理单元和通信单元。
第五方面,本申请实施例还提供了一种终端设备,该设备包括:处理器、收发器,可选的还包括存储器。其中,处理器、收发器和存储器之间通过内部连接通路互相通信。存储器用于存储指令,处理器用于执行所述存储器存储的指令。当处理器执行存储器存储的指令时,使得终端设备执行上述第一方面或第一方面的任意可能的实现方式中的任一方法。
第六方面,本申请实施例还提供了一种网络设备,该设备包括:处理器、收发器,可选的还包括存储器。其中,处理器、收发器和存储器之间通过内部连接通路互相通信。存储器用于存储指令,处理器用于执行所述存储器存储的指令。当处理器执行存储器存储的指令时,使得终端设备执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
第七方面,本申请实施例还提供一种通信系统,包括上述终端设备和上述网络设备。
第八方面,本申请实施例提供了一种芯片系统,包括处理器,可选的还包括存储器;其中,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片系统的通信设备执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得安装有芯片系统的通信设备执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
第九方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码被通信设备的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得安装有芯片系统的通信设备执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
第十方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有程序,程序使得通信设备(例如,终端设备)执行上述第一方面或第一方面的任意可能的实现方式中的任一方法;和/或,使得安装有芯片系统的通信设备(例如,网络设备)执行上述第二方面或第二方面的任意可能的实现方式中的任一方法。
附图说明
图1为本申请提供的一种通信传输的场景示意图;
图2为本申请提供的现有进行终端设备节省功耗的场景示意图;
图3为本申请提供的一种通信传输的方法流程示意图;
图4为本申请提供的不同天线数量检测性能的区别示意图;
图5为本申请提供的第一种网络设备向终端设备发送指示信息实现节能的流程示意图;
图6为本申请提供的第二种网络设备向终端设备发送指示信息实现节能的流程示意图;
图7为本申请提供的一种终端设备向网络设备发送指示信息实现节能的流程示意图;
图8为本申请提供的第一种终端设备示意图;
图9为本申请提供的第二种终端设备示意图;
图10为本申请提供的第一种网络设备示意图;
图11为本申请提供的第二种网络设备示意图。
具体实施方式
下面将结合附图对申请实施例的具体实施过程进行详尽的描述。
首先,介绍本申请实施例可以应用到的场景。本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
以5G系统(也可以称为new radio系统)为例,具体来说,5G系统中定义了新的通信场景:超高可靠低时延通信(ultra-reliable and low-latency communication,URLLC)、增强移动宽带(enhanced mobile broadband,eMBB)和海量机器连接通信(massive machine type communication,mMTC)。这些通信场景对通信质量以及节省功耗方面有更严苛的需求。因此,在进行调度过程中,如何在不影响PDCCH性能的前提下,更有效的进行终端设备功耗节能尤为重要。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明本申请实施例适用的通信系统。如图1所示,该通信系统包括网络设备100和终端设备101。
网络设备100,是通信系统中为终端设备101提供无线通信功能的设备,可以将终端设备101接入到无线网络中。网络设备100也可称为基站(base station,BS)。目前,一些网络设备100的举例为:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
终端设备101,是一种向用户提供语音和/或数据连通性的设备,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的 技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
以下再对本申请实施例中涉及的部分用语进行解释说明,以便于理解。
1)本申请实施例中的CSI,在无线通信领域是指通信链路的信道属性,一般情况下,接收端评估CSI并将其反馈给发送端。CSI的内容可以包括:CQI,预编码矩阵指示(precoding matrix indicator,PMI),CSI-RS资源指示(CSI-RS resource indicator,CRI),SS/PBCH块资源指示(SS/PBCH Block Resource indicator,SSBRI),层指示(layer indicator,LI),秩指示(rank indicator,RI),L1-RSRP。
在通信过程中,网络设备可以根据所述CSI选择通信参数,从而使信道/信号传输适应当前的信道条件。尤其对于多天线系统来说,所述CSI为高可靠性高速率的通信提供了保障。
2)本申请实施例中的信噪比(signal-noise ratio,SNR),即有用信号和噪声信号之间功率的比值,经常用分贝数dB表示。信噪比是衡量噪声对信号影响程度的重要参数。在通信系统中,SNR的大小反映了当前信道质量的好坏,信噪比越大,说明无线通信信道质量越好。而实际应用中经常可通过改善传输手段和增强设备能力来提高信噪比。
3)本申请实施例中的CQI,是信道质量指示,代表当前信道质量的好坏,和信噪比的大小相对应,是对信噪比量化的结果。CQI取值为0时,信道质量最差;CQI取值越大,说明信道质量越好。
4)本申请实施例中的PDCCH,用于承载调度以及其他控制信息,至少用于以下功能中的一种或者多种功能:
(1)承载下行调度信息,下行调度信息也称为下行分配(downlink assignment)信息,下行调度信息中包括PDSCH的传输参数,以便终端设备接收PDSCH。其中,PDSCH用于承载网络设备向终端设备发送的下行数据;
(2)承载上行调度信息,上行调度信息也称之为上行授权(uplink grant)信息,上行调度信息中包括PUSCH的传输参数,以便终端设备向网络设备发送PUSCH。其中PUSCH用于承载终端设备向网络设备发送的上行数据。
其中,PDCCH携带的信息可称为下行控制信息(downlink control information,DCI)。
一个PDCCH以控制信道单元(control-channel element,CCE)的形式进行发送,也可称为,一个PDCCH的时频资源包括一个或多个CCE。其中,一个CCE由多个资源单元组(resource element group,REG)组成,例如,一个CCE由6个REG组成,其中1个REG等于1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上的1个资源块(resource block,RB),1个REG由12个资源单元(resource element,RE)构成,一个REG中12个RE的编号从0到11。
Figure PCTCN2020106443-appb-000001
表1 PDCCH支持的聚合等级
如表1所示,PDCCH可支持不同的AL。比如,PDCCH所支持的聚合等级可包括{1,2,4,8,16}等。其中,聚合等级表示一个候选PDCCH占用的CCE个数。
比如,如表1所示,如果PDCCH所支持的聚合等级为4,那么表示该候选PDCCH占用4个CCE。在实际应用中,网络设备会根据信道质量等因素,决定当前PDCCH所使用的聚合等级。例如,如果PDCCH是发送给下行信道质量很好的终端设备(比如,位于小区中心的终端设备),则网络设备可使用聚合等级1来发送该PDCCH;如果PDCCH是发送给下行信道质量很差的终端设备(比如,位于小区边缘的终端设备),则网络设备可使用聚合等级8甚至16发送该PDCCH,以达到足够的健壮性。
5)本申请实施例中的PDSCH,物理下行信道中的一种,是承载用户数据的下行链路通道,通常PDSCH的传输由PDCCH调度。
6)本申请实施例中的块差错率(block error rate,BLER),是一种度量类型,表示有差错的块与接收的总块数之比,主要用来衡量系统性能的。
7)本申请实施例中的调度最小时隙偏移(minimum K0),表示PDCCH与被调度的PDSCH之间最小的时隙偏移。其中,本申请实施例中所提到的时域参数的时间单元可以扩展到符号、时隙、帧、子帧、毫秒、秒等,不仅仅局限于“时隙”。
通过本申请实施例中上述应用场景的介绍,下面针对终端设备节省功耗的过程进行具体介绍。目前,终端设备与网络设备进行通信过程中,终端设备工作的天线数越多,则终端设备的功耗越大。因此,终端设备节省功耗的一种方式是在不需要与网络设备进行数据传输时,通过关闭一部分的天线来实现节省终端设备的功耗,即减少接收PDCCH的接收天线数量。其中,在调度过程中,以下行为例,网络设备会通过PDCCH向终端设备调度PDSCH,而PDSCH的传输速率和传输PDSCH的层数有关,层数减少,传输速率就会降低。
进一步的,传输PDSCH的层数还和天线数有关,即终端设备用于接收PDSCH的接收天线数量必须大于或等于传输PDSCH的层数。例如,若网络设备向终端设备配置的传输PDSCH的最大层数为4,那么网络设备则默认终端设备至少有4个接收天线。因此,在终端设备与网络设备需要进行数据传输时,为保障所述网络设备通过PDCCH向终端设备进行调度的PDSCH的传输速率,终端设备可以将上述关闭的接收天线再次开启接收PDSCH。
另外,终端设备与网络设备进行通信过程中,从时间域角度考虑,若PDCCH与被调度的PDSCH之间的时隙偏移大于0,即被调度的PDSCH和该PDCCH不在同一个时隙,则终端设备可以减少不必要的数据缓存,以及放松PDCCH的处理时间,因此,也可以达到节省所述终端设备的功耗的效果。
而通过空间域角度节省终端设备功耗时,终端设备在进行打开或关闭接收天线时,都需要一个切换时间Y。所以,现有技术中在通过空间域节省终端设备的功耗时还可以结合时间域中跨时隙调度的方式,使PDCCH与被调度的PDSCH之间的时隙偏移可以涵盖天线切换时间。即只要用于表示调度最小时隙偏移的minimum K0的取值合适,使minimum K0可以涵盖天线切换时间Y。
例如,假设终端设备的支持或配置的接收天线数量为4,记为4Rx,终端设备为了节能只用2Rx检测PDCCH,当所述终端设备由2Rx切换到4Rx时,需要的切换时间为Y,则所述网络设备需要将所述minimum K0设置为minimum K0>=Y。
所以当所述网络设备不需要进行数据调度时,所述终端设备为了节省终端设备的功耗,可以只用2Rx来检测PDCCH,而当所述网络设备需要进行数据调度时,因minimum K0>=Y,则所述终端设备有足够时间从2Rx切换到4Rx接收PDSCH。
需要说明的是,终端设备与网络设备在进行PDCCH的收发过程中,所述终端设备会周期性的盲检PDCCH,但是所述网络设备不一定会发送PDCCH,因此,所述终端设备在检测来自网络设备的PDCCH时,经常会出现空检情况,即基站没有发送PDCCH。因此,本领域技术人员可以理解的是,所述终端设备在检测来自所述网络设备的PDCCH时,包括了所述终端设备接收到所述网络设备发送的PDCCH的情况,还包括了所述终端设备空检的情况。
其中,现有综合空间域与时间域节省终端设备的功耗的大致流程如图2所示,包括:基站向终端设备指示调度的最小时隙偏移minimum K0,假设minimum K0=1时,终端设备使用2Rx接收和检测PDCCH,当基站有数据要调度,则通过PDCCH向终端设备发送调度下行控制信息(downlink control information,DCI)。
而终端设备在检测到调度DCI后,会打开4Rx,由于此时minimum K0>0,终端设备可以有足够的切换时间用来打开4Rx。在终端设备打开4Rx后则采用4Rx接收PDCCH和PDSCH,并且终端设备还可以启动一个计时器(timer)从4Rx切换到2Rx。其中,图2中所示的PDCCH only表示基站没有发送PDCCH,所述timer用于在终端设备每收到一次调度时重新计时,当timer超时后,终端设备关闭部分接收天线回退到2Rx节省功耗。
但是,上述节省功耗的方法存在的主要问题是:在通信过程中,基站并不清楚终端设备接收PDCCH的天线数的变化,因此,当终端设备为了实现节省功耗而进行接收天线数量的切换时,例如终端设备进行切换后使用的是2Rx,但是基站可能认为终端设备使用的是4Rx,导致基站发送PDCCH时的PDCCH参数选择不合适,例如AL(聚合等级)选择不合适等,从而导致终端设备检测PDCCH的性能降低等问题。
为解决该问题,本申请实施例提供一种通信传输的方法,下面将通过附图和实施例列举的方式进行详尽说明。
另外,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中,A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。以下至少一项(个)下或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。此外,本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备,不限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。
如图3所示,本申请实施例提供的通信传输方法的,具体流程包括:
步骤300:所述网络设备向所述终端设备指示调度最小时隙偏移minimum K0;
进一步的,所述网络设备除指示所述终端设备minimum K0外,所述网络设备还会通过无线资源控制(Radio Resource Control,RRC)信令向所述终端设备配置PDSCH的时域资源分配列表。
其中,所述时域资源分配列表包含了PDCCH与被调度的PDSCH之间的时隙偏移K0的集合以及PDSCH在这个时隙内的起始符号和长度的集合。所述K0集合中的K0取值可以大于或等于0,并且可以为所述K0配置多个数值,比如时隙偏移K0可以配置为{0、1、2、3、4、5、6}。
而所述网络设备向所述终端设备指示的所述minimum K0可以是K0集合中的一个值,也可以是其他值。minimum K0反映了K0集合中最小的可用K0值,例如,minimum K0=1,则上述K0集合中可用的K0值为1、2、3、4、5、6。
本申请中所述网络设备向所述终端设备指示所述minimum K0的方式不限,例如,所述网络设备可以通过RRC,MAC CE,DCI信令直接或者间接的方式向所述终端设备指示所述minimum K0。所述终端设备也可以通过直接或者间接的方式获取所述minimum K0。
步骤301:所述终端设备接收所述网络设备发送的minimum K0。
进一步的,所述终端设备还可以接收所述网络设备配置的所述时域资源分配列表。
步骤302:所述网络设备向所述终端设备发送第二指示信息。
可选的,所述第二指示信息用于确定所述终端设备检测PDCCH的第一接收状态;或者,所述第二指示信息用于确定所述终端设备检测PDCCH的第一天线数量,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
一种实现方式中,第一接收状态为能够节省终端设备的功耗的接收方式。当终端设备采用不同的接收状态接收PDCCH时,终端设备的功耗不同。
进一步的,本申请实施例中所述终端设备未进行节能时,所述终端设备的接收状态可以表示为第二接收状态。
另一种实现方式中,本申请实施例中所述的接收状态还可以具体体现为所述终端设备采用某一数量的天线进行检测PDCCH,终端设备采用不同的接收天线数量对应所述终端设备的不同接收状态。例如,第一接收状态为所述终端设备采用第一天线数量进行检测PDCCH,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。第二接收状态为所述终端设备采用第二天线数量进行检测PDCCH。其中,所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。第二天线数量等于终端设备接收PDSCH的接收天线数。
而本申请实施例步骤302中的第一接收状态主要表示所述终端设备为节省所述终端设备的功耗,关闭部分天线数量后的接收状态。所述第一接收状态同样可以理解为所述终端设备采用第一天线数量进行检测PDCCH。其中,所述第一天线数量小于所述第二天线数 量。
例如,当前第二接收状态为所述终端设备采用4Rx检测PDCCH的状态,则所述第一接收状态可以表示为所述终端设备将当前4Rx切换成2Rx后的接收状态。再例如,当前第二接收状态为所述终端设备采用8Rx检测PDCCH的状态,则所述第一接收状态可以表示为所述终端设备将当前8Rx切换成4Rx或2Rx后的接收状态。
需要说明的是,上述对“接收状态”一词的描述仅为更清晰的对本申请发明实施例进行介绍,并不作为限定,且所述“接收状态”一词为本领域公知词汇,本领域技术人员都应知晓其表示含义。
当然,所述步骤302中也可以是所述终端设备向所述网络设备发送指示信息。
步骤303:所述终端设备在minimum K0大于0时,采用第一接收状态检测PDCCH。
本实施例中检测PDCCH指所述终端设备执行PDCCH检测的动作,并不限定是否检测到PDCCH的结果。检测PDCCH也可以等同于接收PDCCH。其包括了所述终端设备接收到所述网络设备发送的PDCCH的情况,还包括了所述终端设备空检的情况。
步骤304:所述网络设备在minimum K0大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH。
需要说明的是,上述步骤303与步骤304在实际执行过程中,可以不区分先后顺序。
通过该方法,本申请实施例通过将当前接收PDCCH的接收状态切换为第一接收状态的方式来节省终端设备的功耗时,若终端设备接收到网络设备发送的指示信息,则确定可以通过第一接收状态检测PDCCH;或者,若所述终端设备在确定需要将当前接收PDCCH的接收状态切换为第一接收状态时,向所述网络设备发送指示信息。也就是所述网络设备与所述终端设备在进行通信时,通过向对方发送指示信息的方式通知对方,从而使所述网络设备知晓所述终端设备采用第一接收状态检测PDCCH,从而保障所述终端设备在通过将当前接收状态切换为第一接收状态来节省终端设备功耗时,也可以正常的接收到所述网络设备发送的PDCCH。
通过本申请实施例中上述应用场景的介绍,下面针对终端设备节省功耗的过程进行具体介绍。其中,本申请实施例中不同的接收状态可以反映所述终端设备检测PDCCH时的不同检测性能,比如,满足相同BLER要求的不同的信噪比门限。本申请实施例中所介绍的第二接收状态可以表示minimum K0=0时接收PDCCH的接收状态,相同时频资源相同信道条件相同BLER要求下第一接收状态的信噪比门限要比第二接收状态的信噪比门限高,即所述第二接收状态的检测PDCCH的检测性能高于所述第一接收状态。
进一步的,为保障所述终端设备在第一接收状态下,依旧可以正常接收到所述网络设备发送的所述PDCCH,则所述网络设备可以通过多种方式对需要发送给所述终端设备的PDCCH进行调整,具体并不限于下述几种:
一、调整方式1:
所述网络设备通过补偿的方式,对需要发送给所述终端设备的PDCCH的参数进行调整。
其中,所述参数可以包括但并不限于AL、SNR、CQI、CSI以及BLER中的部分或全部。
如图4所示,假设所述第二接收状态为所述终端设备采用4Rx检测PDCCH的状态, 所述第一接收状态为所述终端设备采用2Rx检测PDCCH的状态,则在相同时频资源、相同信道条件以及特定的BLER下,例如BLER为1%时,可以看出检测到的SNR要大于等于SNR2时才能保证所述终端设备在2Rx时能够收到PDCCH。检测到的SNR大于等于SNR1时才能保证所述终端设备在4Rx时收到PDCCH。
需要说明的是,图4中所示的两条曲线并不局限于表示采用不同的接收天线数检测到的SNR。
也就是说,相同时频资源,2Rx的SNR门限,即SNR2,要比4Rx的SNR门限,即SNR1高,才能保证2Rx和4Rx相同的检测性能。
因此,本申请实施例中所述网络设备可以通过对2Rx进行补偿的方式,来保障所述终端设备在第一接收状态下,依旧可以正常接收到所述网络设备发送的所述PDCCH。通常,用于发送所述PDCCH的资源越大,PDCCH的检测性能越好。
而参数AL反映了发送PDCCH的资源大小,因此,所述网络设备可以对所述AL进行补偿,即使用更多的资源来发送所述PDCCH。例如,AL越大,图4中所示的2Rx的曲线就越往左移。当所述AL达到一定大小后,则可以使图4中的2Rx和图4中的4Rx接近,从而使得当前信道质量对应的SNR等于SNR1,所述终端设备在2Rx时也能收到PDCCH。
进一步的,本申请实施例中还引入了用于辅助所述网络设备确定PDCCH的参数的补偿因子。其中,本申请实施例中所述补偿因子主要用于对AL,SNR,CQI或者CSI,BLER等因素中的一种或多种进行补偿。
可选的,所述网络设备可以直接针对AL进行补偿。当AL=1时,表示PDCCH占用1个CCE,当AL=2时,表示PDCCH占用2个CCE。通常来说,信道质量越好,受干扰越小,所述网络设备就可以选择较小的AL用来发送所述PDCCH;反之,信道质量越差,受干扰越大,所述网络设备就需要选择较大的AL用来发送所述PDCCH。
例如,网络设备需要根据4Rx的信道质量确定2Rx的PDCCH的AL。假设4Rx的PDCCH需要AL=m,那么网络设备在发送PDCCH时需要对AL进行调整AL’=f(m,delta),f()表示一种函数关系,m表示4Rx的PDCCH需要的AL,delta表示AL补偿因子,例如,补偿后的AL’=delta*m。因此,所述网络设备以AL’=delta*m发送PDCCH。
可选的,若补偿因子是SNR,CQI或者CSI,BLER,则所述网络设备对SNR,CQI或者CSI,BLER进行调整,然后根据调整后的SNR,CQI或者CSI,BLER确定要发送的PDCCH的AL。
信道质量的好坏可以用SNR,CSI,CQI表征,例如CQI或者SNR越高表示信道质量越好。而BLER是PDCCH检测性能的一项指标,BLER越高,可靠性越好,例如eMBB场景中PDCCH的BLER一般要求为1%。下面以SNR为例,针对SNR进行补偿来具体介绍。所述网络设备在发送PDCCH之前会根据SNR选择用于发送所述PDCCH的AL。
通常来说,用4Rx测量的信道质量是比用2Rx测量的信道质量要好,4Rx的SNR比2Rx的SNR要大。当所述网络设备通过4Rx测量的SNR确定用于发送所述PDCCH的AL时,假设测量的SNR是2dB,所述网络设备选择的AL为4。此时,所述终端设备若用2Rx可能就收不到所述网络设备用AL为4时所述网络设备发送的PDCCH。因为所述终端设备用2Rx测量的SNR没有达到2dB。
因此,若想要保障所述终端设备在2Rx时也可以接收到所述网络设备所发送的PDCCH, 则本申请实施例中所述网络设备可以根据补偿因子对需要发送的PDCCH进行补偿,即所述网络设备利用补偿后的SNR确定用于发送PDCCH的AL。补偿后的SNR可以表示为SNR’=g(SNR,C),其中g()表示补偿前的SNR和补偿后的SNR之间的关系,C表示SNR补偿因子。
可选的,假设利用补偿因子对测量到的SNR进行补偿的公式为下述公式1:
SNR_A=(SNR_B-C)dB     公式1
其中,公式中的SNR_A表示第一接收状态对应的SNR,SNR_B表示第二接收状态对应的SNR,C表示补偿因子。
假设,补偿因子为3dB,4Rx对应的SNR为2dB,则通过上述公式1可计算得到2Rx对应的SNR为-1dB。然后,所述网络设备根据2Rx对应的SNR确定AL,假设,当SNR为-1dB时对应的AL为8,故此时所述网络设备选择AL为8来发送所述PDCCH,从而保障了所述终端设备可以用2Rx收到所述网络设备发送的PDCCH。
可选的,也可以利用补偿因子对特定BLER的SNR门限进行补偿,补偿的公式可以表示为公式2:
SNR_A=(SNR_B+C)dB     公式2
其中,公式中的SNR_A表示第一接收状态对应的SNR门限,SNR_B表示第二接收状态对应的SNR门限,C表示补偿因子。
假设,补偿因子为3dB,4Rx AL为4对应的SNR门限为2dB,则通过上述公式2可计算得到2Rx的AL为4对应的SNR门限为5dB。然后,所述网络设备根据当前收到的SNR确定AL,假设当前收到的SNR是2dB,小于2Rx的AL为4对应的SNR门限,故此时所述网络设备选择AL为8来发送所述PDCCH,从而保障了所述终端设备可以用2Rx收到所述网络设备发送的PDCCH。
进一步的,本申请实施例中所述网络设备可以有多种方式确定在跨时隙调度时用于对发送的PDCCH进行补偿的补偿因子,下面分别进行介绍。
确定方式1:根据协议的预设值,确定用于进行补偿操作的补偿因子。
所述网络设备与所述终端设备在通信协议中规定所述补偿因子取值,当所述网络设备需要对发送所述终端设备的PDCCH进行补偿时,所述网络设备根据所述协议确定所述补偿因子,然后根据所述补偿因子对需要发送的所述PDCCH进行补偿。
进一步的,所述终端设备还可根据与所述网络设备在通信协议中规定的补偿因子,确定第一接收状态。例如,假设所述终端设备正常采用8Rx检测PDCCH的状态,当所述终端设备需要通过关闭部分天线数量进行节能时,所述终端设备可根据所述通信协议中的所述补偿因子确定关闭天线的数量。
进一步的,假设,所述终端设备认为所述补偿因子仅能保障所述终端设备在4Rx时正常接收,而无法保障所述终端设备在2Rx时接收。则所述终端设备为保障正常接收到所述网络设备发送的PDCCH,可以确定关闭4Rx,即确定第一接收状态为采用4Rx检测PDCCH的状态。
可选的,所述协议中可以预设多个补偿因子,若所述协议中预设了多个补偿因子,则所述网络设备从所述协议预设的多个补偿因子中选取一个补偿因子,并根据所选取的补偿因子确定所述网络设备向所述终端设备发送的PDCCH所采用的参数。
确定方式2:所述网络设备将自身确定的补偿因子作为进行补偿操作的补偿因子。
例如,若所述网络设备自行确定的补偿因子为补偿因子1,则当所述网络设备需要发送PDCCH时,所述网络设备可以根据所述补偿因子1确定向所述终端设备发送的PDCCH所采用的参数。
可选的,所述网络设备可以定义多个补偿因子,当所述网络设备需要发送PDCCH时,所述网络设备可以从所述定义的多个补偿因子中选取一个补偿因子,并根据所选取的补偿因子确定向所述终端设备发送的PDCCH所采用的参数。
例如,所述网络设备定义多个补偿因子,包括补偿因子1~9。当需要发送PDCCH时,所述网络设备从补偿因子1~9中选取一个补偿因子,假设选取的补偿因子为补偿因子2,则所述网络设备根据所述补偿因子2确定向所述终端设备发送的PDCCH所采用的参数。
确定方式3:所述网络设备将所述终端设备上报的补偿因子确定为用于对发送给所述终端设备的PDCCH进行补偿的补偿因子。
例如,所述网络设备接收到所述终端设备1上报的补偿因子1,则将所述补偿因子1确定为用于对发送给所述终端设备1的PDCCH进行补偿的补偿因子;所述网络设备接收到所述终端设备2上报的补偿因子2,则将所述补偿因子2确定为用于对发送给所述终端设备2的PDCCH进行补偿的补偿因子。
可选的,所述终端设备可以上报多个补偿因子,若所述网络设备接收到所述终端设备上报的多个补偿因子,则所述网络设备从所述终端设备上报的多个补偿因子中选取一个补偿因子,并根据所选取的补偿因子确定所述网络设备向所述终端设备发送的PDCCH所采用的参数。
进一步的,本申请实施例中确定所述PDCCH的参数的补偿因子时,可以根据实际需求进行设置,具体选取方式可以但并不限于下述选取方式:
可选的,本申请实施例中所述网络设备可以针对不同的终端设备定义相同或者不同的补偿因子。补偿因子的大小可以与终端设备的位置或小区覆盖有关,例如,为小区中心或者覆盖好的终端设备配置较小的补偿因子,为小区边缘后者覆盖差的终端设备配置较大的补偿因子。
二、调整方式2:
所述网络设备根据终端设备上报的N种接收状态分别对应的CSI和/或CQI确定PDCCH参数并发送PDCCH。
所述终端设备会周期性的接收CSI-RS,用于测量下行信道质量,并向所述网络设备反馈CSI和/或CQI。其中,假设所述终端设备最大天线数量为4Rx,则所述终端设备可以采用2Rx接收CSI-RS,也可以采用4Rx接收CSI-RS。而所述网络设备可以利用所述终端设备反馈的CSI和/或CQI确定PDCCH的参数以及PDSCH的调度信息。
其中,现有技术中为了不影响网络设备调度PDSCH,所述终端设备默认采用能支持网络设备向终端设备配置的最大层数的天线数量来接收CSI-RS,例如,所述网络设备向所述 终端设备配置的最大层数为4,所述终端设备至少需要的天线数量为4,所述终端设备采用4Rx接收和测量CSI-RS,并向所述网络设备反馈测量的CSI和/或CQI。
本申请实施例中,所述网络设备可以向所述终端设备发送指令,指示所述终端设备上报至少两种CSI和/或CQI。
例如,假设所述终端设备第二接收状态为4Rx,且所述终端设备接收PDSCH的接收天线数量也为4Rx。终端设备采用第二接收状态的接收天线数接收CSI-RS,当所述终端设备接收到所述网络设备发送的所述指令后,所述终端设备需要向所述网络设备反馈至少两种CSI。
具体可以包括下列中的至少两种:所述终端设备的接收状态为4Rx时对应的CSI、所述终端设备的接收状态为2Rx时对应的CSI、所述终端设备接收状态为1Rx时对应的CSI。
其中,所述终端设备向所述网络设备反馈的至少两种CSI或者CQI中,需要保证包含第二接收状态的接收天线数对应的CSI或者CQI,以保障所述网络设备可以向所述终端设备准确的调度PDSCH。
假设,所述网络设备接收到所述终端设备上报的4Rx对应的CSI以及所述终端设备2RX对应的CSI。此时,所述网络设备在需要向所述终端设备发送PDCCH时,可以根据接收到的2Rx对应的CSI确定发送PDCCH的AL,并向所述终端设备发送PDCCH。
进一步的,本申请实施例中为保障终端设备采用第一接收状态检测来自所述网络设备发送的PDCCH时,所述网络设备可以及时的调整向所述终端设备发送的PDCCH。因此,所述终端设备在确定满足将第二接收状态调整为第一接收状态的情况后,才将当前的接收状态切换为第一接收状态,即所述终端设备在确定满足关闭部分天线数量的条件时,将当前的第二天线数量切换为第一天线数量。
本申请实施例中,满足所述终端设备将当前的第二接收状态调整为第一接收状态的情况有多种,具体并不限于下述几种:
情况1:所述终端设备接收所述网络设备发送的用于指示所述终端设备可将第二接收状态调整为第一接收状态的指示信息。
其中,所述网络设备向所述终端设备发送的指示信息可以通过RRC信令,MAC CE信令或者DCI信令发送。
进一步的,所述网络设备向所述终端设备发送的所述指示信息可以包括多种情况,下面分别进行介绍。
网络侧指示信息1:所述网络设备对发送的PDCCH进行补偿的信息。
其中,所述网络侧指示信息1指示所述网络设备会在向所述终端设备发送PDCCCH时,对需要发送的PDCCH进行补偿。
因此,当所述终端设备接收到所述网络设备发送的所述网络侧指示信息1后,可知所述网络设备需要发送给所述终端设备PDCCH时,会对发送的PDCCH进行补偿。
也就是说,在该种情况下,可以保障所述终端设备将第二接收状态调整为第一接收状态后,不影响PDCCH接收性能,所述终端设备采用第一接收状态能够正确接收到所述网络设备发送的PDCCH。因此,所述终端设备在收到所述网络设备发送的所述网络侧指示信息1后,为了节省所述终端设备的功耗,可以将所述终端设备当前的第二接收状态调整为第一接收状态。
例如,假设所述终端设备当前的接收状态为通过4Rx检测来自所述网络设备的PDCCH。所述网络设备通过RRC信令向所述终端设备发送所述网络侧指示信息1,所述终端设备在收到所述网络设备发送的所述网络侧指示信息1后,为了节省所述终端设备的功耗,可以将所述终端设备当前的4Rx切换成2Rx,即将当前的第二接收状态调整为第一接收状态。
进一步的,当前所述的网络侧指示信息1中除了包括指示所述网络设备会在向所述终端设备发送PDCCH时,对PDCCH进行补偿的通知信息外,还可以包括所述网络设备用于对发送的所述PDCCH进行补偿的补偿因子。
可选的,所述网络侧指示信息1中包含补偿因子,可以使所述终端设备在接收到所述网络侧指示信息1后,根据所述网络侧指示信息1中的补偿因子判断所述网络设备通过所述补偿因子补偿后的PDCCH是否适用于所述终端设备第一接收状态。
若所述终端设备根据所述补偿因子确定所述网络设备通过所述补偿因子补偿后的PDCCH并不适用于所述终端设备的第一接收状态,则所述终端设备为保障正常接收所述网络设备发送的PDCCH,不进行接收状态的切换;或者,所述终端设备在根据所述补偿因子确定所述网络设备通过所述补偿因子补偿后的PDCCH并不适用所述终端设备的第一接收状态,则所述终端设备可以向所述网络设备发送通知信息,通知所述网络设备重新选取补偿因子对所述需要发送的PDCCH进行补偿,以保障所述终端设备在第一接收状态下能够正常接收所述网络设备发送的PDCCH。
可选的,所述网络侧指示信息1中包含补偿因子,可以使所述终端设备在接收到所述网络侧指示信息1后,根据所述网络侧指示信息1中的补偿因子确定第一接收状态。即所述终端设备可以根据所述指示信息中的补偿因子确定关闭的天线数量。
例如,所述终端设备第二接收状态为4Rx,所述终端设备接收到所述网络设备发送的所述网络侧指示信息1后,根据所述网络侧指示信息1中包含的补偿因子1确定所述网络设备根据所述补偿因子1对发送的PDCCH进行补偿后,可以保障所述终端设备接收状态为2Rx时正常接收所述PDCCH,但是无法保障所述终端设备接收状态为1Rx时能够正常接收所述PDCCH。
虽然所述终端设备将工作的接收天线数从4Rx的天线数量切换为1Rx的情况,可以更好的节省终端设备的功耗。但是补偿因子无法保障所述终端设备使用1Rx正确接收PDCCH。因此,所述终端设备可以根据所述补偿因子1,确定第一接收状态为2Rx,即所述终端设备在接收到所述网络设备发送的所述网络侧指示信息1后,为节省终端设备的功耗,可以将4Rx的接收状态切换为2Rx的接收状态,进行PDCCH的接收。
进一步的,所述网络侧指示信息1中还可以仅包含补偿因子,即仅将所述补偿因子发送给所述终端设备。从而使所述终端设备根据所述网络侧指示信息1确定可以将第二接收状态切换为第一接收状态,后续所述网络设备在向所述终端设备发送PDCCH前,再根据所述补偿因子对需要发送的PDCCH进行补偿。
如图5所示,本申请实施例通过所述网络设备向所述终端设备发送所述网络侧指示信息1的方式进行终端设备节省功耗的流程,具体步骤包括:
步骤500:所述网络设备通知所述终端设备minimum K0。
步骤501:所述终端设备接收所述网络设备发送的minimum K0。
步骤502:所述网络设备向所述终端设备发送所述网络侧指示信息1。
步骤503:所述终端设备接收所述网络设备发送的所述网络侧指示信息1。
步骤504:所述终端设备在确定当前所述minimum K0不小于Y时,将接收PDCCH的接收状态切换为第一接收状态。
其中,所述Y为所述终端设备开启和/或关闭天线数量所需的切换时间。
步骤505:所述终端设备采用第一接收状态检测所述网络设备发送的PDCCH。
步骤506:在所述minimum K0不小于Y时,所述网络设备根据所述网络侧指示信息1中的补偿因子对需要发送给所述终端设备的PDCCH进行补偿,确定PDCCH的参数。
步骤507:所述网络设备根据所述PDCCH的参数向所述终端设备发送PDCCH。
需要说明的是,上述步骤500与步骤502可以不限制先后顺序,步骤505、步骤506以及步骤507也可以不限制先后顺序。
网络侧指示信息2:所述终端设备接收到所述网络设备发送的所述终端设备上报至少两种CSI和/或CQI的指示信息。
因为不同数量的接收天线对应了不同的信道质量,所以所述终端设备根据不同的接收天线数量的信号测量的CSI会不一样。
例如,假设终端设备用4Rx接收CSI-RS时,则反馈的是4Rx对应的CSI,此时,CQI相对较大。而当所述终端设备用2Rx接收CSI-RS时,则反馈的是2Rx对应的CSI,此时,CQI相对较小。
其中,根据现有协议规定,所述终端设备采用能支持网络设备向终端设备配置的最大层数的天线数量来接收CSI-RS并反馈所述天线数量对应的CSI和/或CQI。在minimum K0>0时,所述网络设备不知道所述终端设备采用第一接收状态接收PDCCH时所对应的信道质量。因此,所述网络设备无法在所述终端设备采用第一接收状态时,向所述终端设备发送适用第一接收状态接收的PDCCH。
而本申请实施例中,当所述终端设备接收到所述网络设备发送所述网络侧指示信息2时,则所述终端设备需要向所述网络设备上报至少两种CSI,并在minimum K0不小于Y时将当前接收状态切换为第一接收状态。
进一步的,假设所述终端设备第二接收状态对应接收PDCCH的天线数量为4Rx,所述第一接收状态对应接收PDCCH的天线数量为2Rx。所述终端设备接收到所述网络设备发送的所述网络侧指示信息2后,所述终端设备仍采用第二接收状态的接收天线数接收CSI-RS,即采用4Rx接收CSI-RS,利用所述4个天线接收到的CSI-RS计算获得第二接收状态对应的CSI;以及所述终端设备利用所述4个天线中任意两个天线接收到的CSI-RS计算获得第一接收状态对应的CSI。所述终端设备在确定第一接收状态对应的CSI和所述第二接收状态对应的CSI后,将所述第二接收状态对应的CSI以及所述第一接收状态对应的CSI反馈给所述网络设备。当所述网络设备接收到所述终端设备上报的反馈信息后,假设,所述网络设备接收到所述终端设备上报的4Rx对应的CSI为CSI_1、所述终端设备上报的2Rx对应的CSI为CSI_2。因此,当minimum K0>=Y时,所述网络设备可以利用接收到的2Rx对应的CSI_2确定发送给所述终端设备的PDCCH的参数,并发送所述PDCCH;利用4Rx对应的CSI_1确定PDSCH的调度信息。
所述网络设备需要想所述终端设备发送PDCCH时,通过接收到的2Rx对应的CSI或者CQI信息来确定PDCCH参数,可以更有效的保障PDCCH参数选取的准确性。
如图6所示,本申请实施例通过所述网络设备向所述终端设备发送所述网络侧指示信 息2的方式进行终端设备节省功耗的流程,具体步骤包括:
步骤600:所述网络设备通知所述终端设备minimum K0。
步骤601:所述终端设备接收所述网络设备发送的minimum K0。
步骤602:所述网络设备向所述终端设备发送所述网络侧指示信息2。
步骤603:所述终端设备接收所述网络设备发送的所述网络侧指示信息2。
步骤604:所述终端设备在确定所述minimum K0不小于Y时,将检测PDCCH的接收状态切换为第一接收状态。
其中,所述Y为所述终端设备开启和/或关闭天线数量所需的切换时间。
步骤605:所述终端设备使用第二接收状态的接收天线数接收CSI-RS,测量第二接收状态时对应的CSI或CQI以及第一接收状态时对应的CSI或CQI,并将所述测量结果反馈给所述网络设备。
步骤606:所述网络设备接收所述终端设备上报的两种天线数量所测量的CSI或COI的信息。
步骤607:所述网络设备需要向所述终端设备发送PDCCH时,根据所述第一接收状态对应的CSI或CQI,确定PDCCH的参数,并向所述终端设备发送PDCCH。
需要说明的是,上述步骤600与步骤602可以不区分先后顺序。
情况2:所述终端设备向所述网络设备发送用于指示所述终端设备将当前接收状态调整为第一接收状态的指示信息。
终端侧指示信息:所述终端设备向所述网络设备发送对PDCCH进行补偿的信息。
其中,所述终端侧指示信息指示所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
例如,所述终端设备在需要将当前第二接收状态切换为第一接收状态以节省终端功耗时,向所述网络设备发送所述终端侧指示信息,则所述网络设备在接收到所述终端侧指示信息后,对需要发送给所述终端设备的PDCCH进行补偿,从而保障了在所述终端设备将接收状态调整为第一接收状态时,也可以不影响PDCCH接收性能,正常的接收到所述网络设备发送的PDCCH。
进一步的,所述终端侧指示信息中可以包括所述终端设备确定的补偿因子,即所述终端设备向所述网络设备发送补偿因子,所述网络设备接收到所述补偿因子后,则可以确认所述终端设备的接收状态为第一接收状态。然后,所述网络设备根据所述补偿因子对需要发送给所述终端设备的PDCCH进行补偿,确定PDCCH的参数。由于所述终端设备更清楚下行的信道质量,因此所述终端设备可以确定所述补偿因子,并将所述补偿因子上报所述网络设备。
可选的,所述终端侧指示信息中所包含的补偿因子数量可以为一个或多个,也就是说,所述终端设备可以确定多个补偿因子,并将所确定的多个补偿因子携带在所述终端侧指示信息1中上报给所述网络设备。
进一步的,所述终端侧指示信息中还可以包括至少两个CSI和/或CQI的信息。例如,假设所述终端设备第二接收状态对应接收PDCCH的天线数量为4Rx,所述第一接收状态对应接收PDCCH的天线数量为2Rx。当所述终端设备在需要将当前接收PDCCH的接收状态切换为第一接收状态以节省终端设备功耗时,所述终端设备采用第二接收状态的接收 天线数接收CSI-RS,即采用4Rx接收CSI-RS,利用所述4个天线接收到的CSI-RS计算获得第二接收状态对应的CSI;以及所述终端设备利用所述4个天线中任意两个天线接收到的CSI-RS计算获得第一接收状态对应的CSI。所述终端设备在确定第一接收状态对应的CSI和所述第二接收状态对应的CSI后,向所述网络设备发送包含所述至少两种CSI和/或CQI的信息的终端侧指示信息。所述网络设备接收到所述终端侧指示信息后,则可以确认所述终端设备的接收状态为第一接收状态,然后所述网络设备向所述终端设备发送PDCCH时,根据第一接收状态的天线数量对应的CSI和/或CQI确定PDCCH的参数。
如图7所示,本申请实施例通过所述终端设备向所述网络设备发送所述终端侧指示信息1的方式进行终端设备节省功耗的流程,具体步骤包括:
步骤700:所述网络设备通知所述终端设备minimum K0。
步骤701:所述终端设备接收所述网络设备发送的minimum K0。
步骤702:所述终端设备向所述网络设备发送所述终端侧指示信息。
其中,若所述终端侧指示信息中包括至少两个CSI和/或CQI的信息,则在所述步骤702之前,所述终端设备还需要采用第二接收状态的接收天线数接收CSI-RS,并计算第一接收状态对应的CSI和/或CQI以及第二接收状态对应的CSI和/或CQI。
步骤703:所述网络设备接收所述终端设备发送的所述终端侧指示信息。
步骤704:所述终端设备在确定所述minimum K0不小于Y时,将检测PDCCH的接收状态切换为第一接收状态;其中,所述Y为所述终端设备开启和/或关闭天线数量所需的切换时间。
步骤705:所述网络设备接收到所述终端设备发送的所述终端侧指示信息后,向所述终端设备发送PDCCH时,确定所述PDCCH的参数。
可选的,当所述终端侧指示信息中包含补偿因子时,所述网络设备可以根据所述补偿因子对需要发送给所述终端设备的PDCCH进行补偿,确定PDCCH的参数。
可选的,当所述终端侧指示信息中包含第一接收状态对应的CSI和/或CQI以及第二接收状态对应的CSI和/或CQI时,所述网络设备向所述终端设备发送PDCCH时根据所述第一接收状态对应的CSI和/或CQI确定所述PDCCH的参数。
可选的,当所述终端侧指示信息中仅指示所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿,即不需要指示补偿因子和不同接收状态的CSI,则所述网络设备向所述终端设备发送PDCCH时可根据协议规定的补偿因子或者自身确定的补偿因子对所述PDCCH进行补偿,确定PDCCH的参数。
步骤706:所述网络设备向所述终端设备发送PDCCH。
需要说明的是,图5-7中所述实施例中涉及到的第一接收状态、第二接收状态、minimum K0等的描述与图3相似,在此不再赘述。
可选的,本申请实施例中,还可以在所述网络设备和/或终端设备设置一个阈值时长,用于在阈值时长内没有向所述终端设备发送请求调度数据的信息时,触发所述网络设备对需要发送的PDCCH进行补偿,并且触发所述终端设备将当前接收状态切换为第一接收状态。
例如,所述网络设备和所述终端设备设置的阈值时长为A毫秒,所述网络设备在A毫秒内没有向所述终端设备发送请求调度数据的信息,则所述阈值时长以后所述网络设备向 所述终端设备发送PDCCH时需要对所述PDCCH进行补偿;所述终端设备在A毫秒内没有接收到所述网络设备发送的请求调度数据的信息,则所述阈值时长以后所述终端设备将当前接收状态切换为第一接收状态。
可选的,可以通过在所述网络设备和/或所述终端设备中增加一个定时器,用来判断是否到达阈值时长。
基于以上实施例,如图8所示,本申请实施例还提供了一种终端设备,该终端设备包括处理器800、存储器801和收发机802;
处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。收发机802用于在处理器800的控制下接收和发送数据与存储器801进行数据通信。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器800中,或者由处理器800实现。在实现过程中,信号处理流程的各步骤可以通过处理800中的硬件的集成逻辑电路或者软件形式的指令完成。处理器800可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器800读取存储器801中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器800,用于读取存储器801中的程序并执行:
用于接收网络设备指示的调度最小时隙偏移;接收所述网络设备发送的第一指示信息;或者,向所述网络设备发送第二指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
其中,本申请实施例中所述终端设备除接收所述网络设备指示的minimum K0外,还会接收所述网络设备通过RRC信令配置PDSCH的时域资源分配列表。所述时域资源分配列表包含了PDCCH与被调度的PDSCH之间的时隙偏移K0的集合以及PDSCH在这个时隙内的起始符号和长度的集合。所述K0集合中的K0取值可以大于或等于0,并且可以为所述K0配置多个数值,比如时隙偏移K0可以配置为{0、1、2、3、4、5、6}。
而所述终端设备接收到所述网络设备指示的所述minimum K0可以是K0集合中的一个值,也可以是其他值。minimum K0反映了K0集合中最小的可用K0值,例如,minimum K0=1,则上述K0集合中可用的K0值为1、2、3、4、5、6。
本申请中所述终端设备接收所述网络设备指示的所述minimum K0的方式不限,例如, 所述网络设备可以通过RRC,MAC CE,DCI信令直接或者间接的方式向所述终端设备指示所述minimum K0。所述终端设备也可以通过直接或者间接的方式获取所述minimum K0。
在一种实现方式中,第一接收状态为能够节省终端设备的功耗的接收方式。当终端设备采用不同的接收状态接收PDCCH时,终端设备的功耗不同。
进一步的,本申请实施例中所述终端设备未进行节能时,所述终端设备的接收状态可以表示为第二接收状态。
在一种可能的实现方法中,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,第一指示信息包含下列中的至少一个:
所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或,
所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或,
用于辅助所述网络设备确定PDCCH参数的补偿因子。
可选的,本申请实施例中所述补偿因子主要用于对AL,SNR,CQI或者CSI,BLER等因素中的一种或多种进行补偿。
在一种可能的实现方法中,第二指示信息用于指示下列中的至少一个:
用于辅助所述网络设备确定PDCCH参数的补偿因子;或,
所述终端设备确定的至少两种CSI和/或CQI的信息;或,
所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
在一种可能的实现方法中,所述处理器800具体用于:
在所述调度最小时隙偏移不小于Y时,采用第一接收状态检测PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方法中,所述处理器800还用于:
所述终端设备采用所述终端设备配置或者支持的最大接收天线数量接收信号状态信息参考信号CSI-RS,并计算N种接收状态对应的N个CSI和/或CQI;所述终端设备向所述网络设备上报所述N个CSI和/或CQI;其中,所述N种接收状态中包括第一接收状态。
在一种可能的实现方法中,所述处理器800还用于:
所述终端设备采用第二接收状态接收CSI-RS,并计算所述第一接收状态对应的第一CSI和/或第一CQI以及所述第二接收状态对应的第二CSI和/或第二CQI;
所述终端设备将所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI作为上报所述网络设备的CSI和/或CQI;
其中,所述第一接收状态对应的第一接收天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,所述第一指示信息包括用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,所述处理器800具体用于:
在阈值时长内没有收到所述网络设备发送的请求调度数据的信息,则在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
如图9所示,本申请提供一种终端设备,该终端设备包括:至少一个处理单元900、 至少一个存储单元901以及至少一个通信单元902,其中,所述通信单元902用于在所述处理单元900的控制下接收和发送数据,所述存储单元901存储有程序代码,当所述程序代码被所述处理单元900执行时,使得所述处理单元900执行下列过程:
用于接收网络设备指示的调度最小时隙偏移;接收所述网络设备发送的第一指示信息;或者,向所述网络设备发送第二指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
其中,本申请实施例中所述终端设备除接收所述网络设备指示的minimum K0外,还会接收所述网络设备通过RRC信令配置PDSCH的时域资源分配列表。所述时域资源分配列表包含了PDCCH与被调度的PDSCH之间的时隙偏移K0的集合以及PDSCH在这个时隙内的起始符号和长度的集合。所述K0集合中的K0取值可以大于或等于0,并且可以为所述K0配置多个数值,比如时隙偏移K0可以配置为{0、1、2、3、4、5、6}。
而所述终端设备接收到所述网络设备指示的所述minimum K0可以是K0集合中的一个值,也可以是其他值。minimum K0反映了K0集合中最小的可用K0值,例如,minimum K0=1,则上述K0集合中可用的K0值为1、2、3、4、5、6。
本申请中所述终端设备接收所述网络设备指示的所述minimum K0的方式不限,例如,所述网络设备可以通过RRC,MAC CE,DCI信令直接或者间接的方式向所述终端设备指示所述minimum K0。所述终端设备也可以通过直接或者间接的方式获取所述minimum K0。
在一种实现方式中,第一接收状态为能够节省终端设备的功耗的接收方式。当终端设备采用不同的接收状态接收PDCCH时,终端设备的功耗不同。
进一步的,本申请实施例中所述终端设备未进行节能时,所述终端设备的接收状态可以表示为第二接收状态。
在一种可能的实现方法中,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;
其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,第一指示信息包含下列中的至少一个:
所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或,
所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或,
用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,第二指示信息用于指示下列中的至少一个:
用于辅助所述网络设备确定PDCCH参数的补偿因子;或,
所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或,
所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
可选的,本申请实施例中所述补偿因子主要用于对AL,SNR,CQI或者CSI,BLER等因素中的一种或多种进行补偿。
在一种可能的实现方法中,所述处理单元900,具体用于:
在所述调度最小时隙偏移不小于Y时,采用第一接收状态检测PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方法中,所述处理单元900,还用于:
所述终端设备采用所述终端设备配置或者支持的最大接收天线数量接收信号状态信 息参考信号CSI-RS,并计算N种接收状态对应的N个CSI和/或CQI;所述终端设备向所述网络设备上报所述N个CSI和/或CQI;其中,所述N种接收状态中包括第一接收状态。
在一种可能的实现方法中,所述处理单元900,还用于:
所述终端设备采用第二接收状态接收CSI-RS,并计算所述第一接收状态对应的第一CSI和/或第一CQI以及所述第二接收状态对应的第二CSI和/或第二CQI;
所述终端设备将所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI作为上报所述网络设备的CSI和/或CQI;
其中,所述第一接收状态对应的第一接收天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,所述第一指示信息包括用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,所述处理单元900具体用于:
在阈值时长内没有收到所述网络设备发送的请求调度数据的信息,则在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
如图10所示,本申请一种网络设备,该网络设备包括处理器1000、存储器1001和通信接口1002。
处理器1000负责管理总线架构和通常的处理,存储器1001可以存储处理器1000在执行操作时所使用的数据。通信接口1002用于在处理器1000的控制下接收和发送数据与存储器1001进行数据通信。
所述处理器1000可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1000还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器1001可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
所述处理器1000、所述存储器1001以及所述通信接口1002之间相互连接。可选的,所述处理器1000、所述存储器1001以及所述通信接口1002可以通过总线1003相互连接;所述总线1003可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体地,所述处理器1000,用于读取存储器1001中的程序并执行:
用于向终端设备指示调度最小时隙偏移;接收所述终端设备发送的第二指示信息;或者,所述网络设备向所述终端设备发送第一指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于 所述第一接收状态接收的PDCCH。
进一步的,所述网络设备除指示所述终端设备minimum K0外,所述网络设备还会通过无线资源控制(Radio Resource Control,RRC)信令向所述终端设备配置PDSCH的时域资源分配列表。
其中,所述时域资源分配列表包含了PDCCH与被调度的PDSCH之间的时隙偏移K0的集合以及PDSCH在这个时隙内的起始符号和长度的集合。所述K0集合中的K0取值可以大于或等于0,并且可以为所述K0配置多个数值,比如时隙偏移K0可以配置为{0、1、2、3、4、5、6}。
而所述网络设备向所述终端设备指示的所述minimum K0可以是K0集合中的一个值,也可以是其他值。minimum K0反映了K0集合中最小的可用K0值,例如,minimum K0=1,则上述K0集合中可用的K0值为1、2、3、4、5、6。
本申请中所述网络设备向所述终端设备指示所述minimum K0的方式不限,例如,所述网络设备可以通过RRC,MAC CE,DCI信令直接或者间接的方式向所述终端设备指示所述minimum K0。所述终端设备也可以通过直接或者间接的方式获取所述minimum K0。
在一种实现方式中,第一接收状态为能够节省终端设备的功耗的接收方式,当终端设备采用不同的接收状态接收PDCCH时,终端设备的功耗不同。
进一步的,本申请实施例中所述终端设备未进行节能时,所述终端设备的接收状态可以表示为第二接收状态。
在一种可能的实现方法中,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,所述第一指示信息包含下列中的至少一个:
所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或,
所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或,
用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,第二指示信息用于指示下列中的至少一个:
用于辅助所述网络设备确定PDCCH参数的补偿因子;或,
所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或,
所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
在一种可能的实现方法中,所述处理器1000具体用于:
在调度最小时隙偏移不小于Y且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方法中,所述处理器1000还用于:
所述网络设备接收所述终端设备上报的N个CSI和/或CQI;其中,所述N个CSI和/或CQI是通过所述终端设备采用配置或者支持的最大接收天线数量接收CSI-RS后测量得到的,且所述N个CSI和/或CQI中包括第一接收状态对应的CSI和/或CQI。
在一种可能的实现方法中,所述处理器1000还用于:
所述网络设备接收所述终端设备上报的第一天线数量对应的第一CSI和/或第一CQI与第二天线数量对应的第二CSI和/或第二CQI;
其中,所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI是通过所述终端设备采用第二接收状态接收CSI-RS后计算得到的,且所述第一接收状态对应的第一天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,所述第一指示信息包括用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,所述处理器1000还用于:
确定适用于所述第一接收状态接收的PDCCH的参数。
可选的,本申请实施例中所述补偿因子主要用于对AL,SNR,CQI或者CSI,BLER等因素中的一种或多种进行补偿。
在一种可能的实现方法中,所述处理器1000通过下列方式确定适用于所述第一接收状态的PDCCH:
根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据所述终端设备发送的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态的PDCCH的参数。
在一种可能的实现方法中,所述处理器1000具体用于:
在阈值时长内没有向所述终端设备发送请求调度数据的信息,则在调度最小时隙偏移大于0时,对发送给所述终端设备的PDCCH进行补偿。
可选的,本申请实施例中所述网络设备可以针对不同的终端设备定义相同或者不同的补偿因子。补偿因子的大小可以与终端设备的位置或小区覆盖有关,例如,为小区中心或者覆盖好的终端设备配置较小的补偿因子,为小区边缘后者覆盖差的终端设备配置较大的补偿因子。
如图11所示,本申请提供一种网络设备,该网络设备包括:至少一个处理单元1100、至少一个存储单元1101以及至少一个通信单元1102,其中,所述通信单元1102用于在所述处理单元1100的控制下接收和发送数据,所述存储单元1101存储有程序代码,当所述程序代码被所述处理单元1100执行时,使得所述处理单元1100执行下列过程:
用于向终端设备指示调度最小时隙偏移;接收所述终端设备发送的第二指示信息;或者,所述网络设备向所述终端设备发送第一指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH。
进一步的,所述网络设备除指示所述终端设备minimum K0外,所述网络设备还会通过无线资源控制(Radio Resource Control,RRC)信令向所述终端设备配置PDSCH的时域资源分配列表。
其中,所述时域资源分配列表包含了PDCCH与被调度的PDSCH之间的时隙偏移K0的集合以及PDSCH在这个时隙内的起始符号和长度的集合。所述K0集合中的K0取值可 以大于或等于0,并且可以为所述K0配置多个数值,比如时隙偏移K0可以配置为{0、1、2、3、4、5、6}。
而所述网络设备向所述终端设备指示的所述minimum K0可以是K0集合中的一个值,也可以是其他值。minimum K0反映了K0集合中最小的可用K0值,例如,minimum K0=1,则上述K0集合中可用的K0值为1、2、3、4、5、6。
本申请中所述网络设备向所述终端设备指示所述minimum K0的方式不限,例如,所述网络设备可以通过RRC,MAC CE,DCI信令直接或者间接的方式向所述终端设备指示所述minimum K0。所述终端设备也可以通过直接或者间接的方式获取所述minimum K0。
在一种实现方式中,第一接收状态为能够节省终端设备的功耗的接收方式,当终端设备采用不同的接收状态接收PDCCH时,终端设备的功耗不同。
进一步的,本申请实施例中所述终端设备未进行节能时,所述终端设备的接收状态可以表示为第二接收状态。
在一种可能的实现方法中,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
在一种可能的实现方法中,所述第一指示信息包含下列中的至少一个:
所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或,
所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或,
用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,第二指示信息用于指示下列中的至少一个:
用于辅助所述网络设备确定PDCCH参数的补偿因子;或,
所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或,
所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
在一种可能的实现方法中,所述处理单元1100,具体用于:
在调度最小时隙偏移不小于Y且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH;其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
在一种可能的实现方法中,所述处理单元1100,还用于:
所述网络设备接收所述终端设备上报的N个CSI和/或CQI;
其中,所述N个CSI和/或CQI是通过所述终端设备采用配置或者支持的最大接收天线数量接收CSI-RS后测量得到的,且所述N个CSI和/或CQI中包括第一接收状态对应的CSI和/或CQI。
在一种可能的实现方法中,所述处理单元1100,还用于:
所述网络设备接收所述终端设备上报的第一天线数量对应的第一CSI和/或第一CQI与第二天线数量对应的第二CSI和/或第二CQI;
其中,所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI是通过所述终端设备采用第二接收状态接收CSI-RS后计算得到的,且所述第一接收状态对应的第一天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。在一种可能的实现方法中,所述第一指示信息包括用于辅助所述网络设备确定PDCCH参数的补偿因子。
在一种可能的实现方法中,所述处理单元1100还用于:
确定适用于所述第一接收状态接收的PDCCH的参数。
在一种可能的实现方法中,所述处理单元1100具体用于:
在阈值时长内没有向所述终端设备发送请求调度数据的信息,则在调度最小时隙偏移大于0时,对发送给所述终端设备的PDCCH进行补偿。
可选的,本申请实施例中所述补偿因子主要用于对AL,SNR,CQI或者CSI,BLER等因素中的一种或多种进行补偿。
在一种可能的实现方法中,所述处理单元1100通过下列方式确定适用于所述第一接收状态的PDCCH的参数:
根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据所述终端设备发送的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或,
根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态的PDCCH的参数。
可选的,本申请实施例中所述网络设备可以针对不同的终端设备定义相同或者不同的补偿因子。补偿因子的大小可以与终端设备的位置或小区覆盖有关,例如,为小区中心或者覆盖好的终端设备配置较小的补偿因子,为小区边缘后者覆盖差的终端设备配置较大的补偿因子。
在一些可能的实施方式中,本申请实施例提供的通信传输的方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序代码在计算机设备上运行时,所述程序代码用于使所述计算机设备执行本说明书中描述的根据本申请各种示例性实施方式的通信传输的方法中的步骤。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
根据本申请的实施方式的用于执行通信传输的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在服务器设备上运行。然而,本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被信息传输、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由周期网络动作系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算设备,或者,可以连接到外部计算设备。
本申请实施例针对终端设备执行通信传输的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种通信传输的方案。
本申请实施例针对网络设备执行通信传输的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种网络设备通信传输的方案。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (36)

  1. 一种通信传输的方法,其特征在于,包括:
    终端设备接收网络设备指示的调度最小时隙偏移;
    所述终端设备接收所述网络设备发送的第一指示信息;或者,所述终端设备向所述网络设备发送第二指示信息;其中,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;
    所述终端设备在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
  2. 如权利要求1所述的方法,其特征在于,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;
    其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息包含下列中的至少一个:
    所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或
    所述终端设备上报至少两种接收状态的信道状态信息CSI和/或信道质量指示CQI的信息;或
    用于辅助所述网络设备确定PDCCH参数的补偿因子。
  4. 如权利要求1或2所述的方法,其特征在于,所述第二指示信息用于指示下列中的至少一个:
    用于辅助所述网络设备确定PDCCH参数的补偿因子;或
    所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或
    所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
  5. 如权利要求2所述的方法,其特征在于,所述终端设备在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH,包括:
    所述终端设备在所述调度最小时隙偏移不小于Y时,采用第一接收状态检测PDCCH;
    其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
  6. 如权利要求3或4所述的方法,其特征在于,所述终端设备向所述网络设备上报至少两种接收状态的CSI和/或CQI的信息之前,还包括:
    所述终端设备采用所述终端设备配置或者支持的最大接收天线数量接收信号状态信息参考信号CSI-RS,并计算N种接收状态对应的N个CSI和/或CQI;
    所述终端设备向所述网络设备上报所述N个CSI和/或CQI;
    其中,所述N种接收状态中包括第一接收状态。
  7. 如权利要求3或4所述的方法,其特征在于,所述终端设备上报至少两种接收状态的CSI和/或CQI的信息之前,还包括:
    所述终端设备采用第二接收状态的接收天线数量接收CSI-RS,并计算所述第一接收状态对应的第一CSI和/或第一CQI以及所述第二接收状态对应的第二CSI和/或第二CQI;
    所述终端设备将所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI上报所述;
    其中,所述第一接收状态对应的第一接收天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
  8. 一种通信传输的方法,其特征在于,包括:
    网络设备向终端设备指示调度最小时隙偏移;
    所述网络设备接收所述终端设备发送的第二指示信息;或者,所述网络设备向所述终端设备发送第一指示信息;其中,所述第一指示信息和/或所述第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;
    所述网络设备在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH。
  9. 如权利要求8所述的方法,其特征在于,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;
    其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一指示信息包含下列中的至少一个:
    所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或
    所述终端设备上报至少两种接收状态的信道状态信息CSI和/或信道质量指示CQI的信息;或
    用于辅助所述网络设备确定PDCCH参数的补偿因子。
  11. 如权利要求8或9所述的方法,其特征在于,所述第二指示信息用于指示下列中的至少一个:
    用于辅助所述网络设备确定PDCCH参数的补偿因子;或
    所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或
    所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
  12. 如权利要求9所述的方法,其特征在于,所述网络设备在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH,包括:
    所述网络设备在调度最小时隙偏移不小于Y且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH;
    其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
  13. 如权利要求10或11所述的方法,其特征在于,所述网络设备接收所述终端设备上报的至少两种接收状态的CSI和/或CQI的信息,包括:
    所述网络设备接收所述终端设备上报的N个CSI和/或CQI;
    其中,所述N个CSI和/或CQI是所述终端设备采用配置或者支持的最大接收天线数量接收CSI-RS后测量得到的,且所述N个CSI和/或CQI中包括第一接收状态对应的CSI和/或CQI。
  14. 如权利要求10或11所述的方法,其特征在于,所述网络设备接收所述终端设备上报的至少两种接收状态的CSI和/或CQI的信息,包括:
    所述网络设备接收所述终端设备上报的第一接收状态的天线数量对应的第一CSI和/或第一CQI与第二接收状态的天线数量对应的第二CSI和/或第二CQI;
    其中,所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI是通过所述终端设备采用第二接收状态接收CSI-RS后计算得到的,且所述第一接收状态对应的第一天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备 配置或者支持的最大接收天线数量。
  15. 如权利要求10-14任一所述的方法,其特征在于,所述网络设备在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH之前,还包括:
    所述网络设备确定适用于所述第一接收状态接收PDCCH的参数。
  16. 如权利要求15所述的方法,其特征在于,所述网络设备通过下列方式确定适用于所述第一接收状态的PDCCH的参数:
    所述网络设备根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    所述网络设备根据所述终端设备发送的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    所述网络设备根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    所述网络设备根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态接收PDCCH的参数。
  17. 一种终端设备,其特征在于,包括:处理单元和通信单元;
    所述通信单元,用于接收网络设备指示的调度最小时隙偏移;接收所述网络设备发送的第一指示信息;或者,向所述网络设备发送第二指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;
    所述处理单元,用于在调度最小时隙偏移大于0时,采用第一接收状态检测PDCCH。
  18. 如权利要求17所述的终端设备,其特征在于,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;
    其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
  19. 如权利要求17或18所述的终端设备,其特征在于,第一指示信息包含下列中的至少一个:
    所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或
    所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或
    用于辅助所述网络设备确定PDCCH参数的补偿因子。
  20. 如权利要求17或18所述的终端设备,其特征在于,第二指示信息用于指示下列中的至少一个:
    用于辅助所述网络设备确定PDCCH参数的补偿因子;或
    所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或
    所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
  21. 如权利要求18所述的终端设备,其特征在于,所述处理单元,具体用于:
    在所述调度最小时隙偏移不小于Y时,采用第一接收状态检测PDCCH;
    其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
  22. 如权利要求19或20所述的终端设备,其特征在于,所述处理单元,还用于:
    所述终端设备采用所述终端设备配置或者支持的最大接收天线数量接收信号状态信息参考信号CSI-RS,并计算N种接收状态对应的N个CSI和/或CQI;
    所述终端设备向所述网络设备上报所述N个CSI和/或CQI;
    其中,所述N种接收状态中包括第一接收状态。
  23. 如权利要求19或20所述的终端设备,其特征在于,所述处理单元,还用于:
    所述终端设备采用第二接收状态接收CSI-RS,并计算所述第一接收状态对应的第一CSI和/或第一CQI以及所述第二接收状态对应的第二CSI和/或第二CQI;
    所述终端设备将所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI作为上报所述网络设备的CSI和/或CQI;
    其中,所述第一接收状态对应的第一接收天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
  24. 一种网络设备,其特征在于,包括:处理单元和通信单元;
    所述通信单元,用于向终端设备指示调度最小时隙偏移;接收所述终端设备发送的第二指示信息;或者,所述网络设备向所述终端设备发送第一指示信息;其中,所述第一指示信息和/或第二指示信息用于确定所述终端设备检测物理下行控制信道PDCCH的第一接收状态;
    所述处理单元,用于在调度最小时隙偏移大于0且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH。
  25. 如权利要求24所述的网络设备,其特征在于,所述第一接收状态用于表示所述终端设备采用第一天线数量检测PDCCH;
    其中,所述第一天线数量小于所述终端设备配置或者支持的最大接收天线数量。
  26. 如权利要求24或25所述的网络设备,其特征在于,所述第一指示信息包含下列中的至少一个:
    所述网络设备需要向所述终端设备发送PDCCH时,对发送的PDCCH进行补偿;或
    所述终端设备上报至少两种信道状态信息CSI和/或信道质量指示CQI的信息;或
    用于辅助所述网络设备确定PDCCH参数的补偿因子。
  27. 如权利要求24或25所述的网络设备,其特征在于,第二指示信息用于指示下列中的至少一个:
    用于辅助所述网络设备确定PDCCH参数的补偿因子;或
    所述终端设备确定的至少两种接收状态的CSI和/或CQI的信息;或
    所述网络设备在向所述终端设备发送PDCCH时,对所述PDCCH进行补偿。
  28. 如权利要求25所述的网络设备,其特征在于,所述处理单元,具体用于:
    在调度最小时隙偏移不小于Y且需要向所述终端设备发送PDCCH时,向所述终端设备发送适用于所述第一接收状态接收的PDCCH;
    其中,所述Y为所述终端设备开启和/或关闭天线所需的时间。
  29. 如权利要求27或28所述的网络设备,其特征在于,所述处理单元,还用于:
    所述网络设备接收所述终端设备上报的N个CSI和/或CQI;
    其中,所述N个CSI和/或CQI是通过所述终端设备采用配置或者支持的最大接收天线数量接收CSI-RS后测量得到的,且所述N个CSI和/或CQI中包括第一接收状态对应的CSI和/或CQI。
  30. 如权利要求27或28所述的网络设备,其特征在于,所述处理单元,还用于:
    所述网络设备接收所述终端设备上报的第一天线数量对应的第一CSI和/或第一CQI与第二天线数量对应的第二CSI和/或第二CQI;
    其中,所述第一CSI和/或第一CQI与所述第二CSI和/或第二CQI是通过所述终端设备采用第二接收状态接收CSI-RS后计算得到的,且所述第一接收状态对应的第一天线数量小于所述第二接收状态对应的第二天线数量,且所述第二天线数量不大于所述终端设备配置或者支持的最大接收天线数量。
  31. 如权利要求26~30任一所述的网络设备,其特征在于,所述处理单元还用于:
    确定适用于所述第一接收状态接收的PDCCH的参数。
  32. 如权利要求31所述的网络设备,其特征在于,所述处理单元通过下列方式确定适用于所述第一接收状态的PDCCH的参数:
    根据预定义的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    根据所述终端设备发送的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    根据自身配置的补偿因子确定适用于所述第一接收状态的PDCCH的参数;或
    根据所述终端设备上报的包含第一接收状态对应的CSI和/或CQI的信息,确定适用于所述第一接收状态的PDCCH的参数。
  33. 一种终端设备,其特征在于,包括:处理器、收发器和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,用于通过调用所述存储器存储的程序指令,通过所述收发器执行如权利要求1至7中任一项所述的方法。
  34. 一种网络设备,其特征在于,包括:处理器、通信接口和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,用于通过调用所述存储器存储的程序指令,通过所述通信接口执行如权利要求8至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1至7中任一项所述的方法或如权利要求8至16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包含有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1至7中任一项所述的方法或如权利要求8至16中任一项所述的方法。
PCT/CN2020/106443 2019-08-02 2020-07-31 一种通信传输的方法及设备 WO2021023130A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20850739.2A EP4009728A4 (en) 2019-08-02 2020-07-31 COMMUNICATION TRANSMISSION METHOD AND DEVICE
US17/587,217 US20220159689A1 (en) 2019-08-02 2022-01-28 Communication transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910711769.7A CN112312574A (zh) 2019-08-02 2019-08-02 一种通信传输的方法
CN201910711769.7 2019-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/587,217 Continuation US20220159689A1 (en) 2019-08-02 2022-01-28 Communication transmission method and device

Publications (1)

Publication Number Publication Date
WO2021023130A1 true WO2021023130A1 (zh) 2021-02-11

Family

ID=74486543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106443 WO2021023130A1 (zh) 2019-08-02 2020-07-31 一种通信传输的方法及设备

Country Status (4)

Country Link
US (1) US20220159689A1 (zh)
EP (1) EP4009728A4 (zh)
CN (1) CN112312574A (zh)
WO (1) WO2021023130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210999A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 하향링크 신호를 측정하는 방법 및 이를 위한 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN113259971B (zh) * 2021-05-12 2022-10-21 展讯通信(上海)有限公司 接收模式设置方法、装置、存储介质和电子设备
CN115361047A (zh) * 2022-08-03 2022-11-18 北京小米移动软件有限公司 天线切换方法、装置、电子设备和存储介质
CN116782177B (zh) * 2023-08-23 2024-01-02 北京小米移动软件有限公司 车载天线系统配置调整方法、装置、车辆、介质及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150373668A1 (en) * 2012-09-16 2015-12-24 Lg Electronics Inc. Method for receiving or transmitting broadcast signal in wireless communication system and apparatus therefor
CN108347277A (zh) * 2018-02-11 2018-07-31 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
WO2018152153A1 (en) * 2017-02-17 2018-08-23 Intel IP Corporation Physical downlink control channel (pdcch) demodulation reference signal (dmrs) transmission and reception
WO2020089267A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Antenna selection for user equipment (ue) power saving during pdcch monitoring

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105760723B (zh) * 2014-12-15 2019-10-25 联芯科技有限公司 移动终端及其解锁方法
US10638346B2 (en) * 2015-09-25 2020-04-28 Qualcomm Incorporated Channel state computation for enhanced carrier aggregation
CN105872255A (zh) * 2016-05-31 2016-08-17 努比亚技术有限公司 一种实现快捷解锁的设备及方法
CN117202358A (zh) * 2017-03-22 2023-12-08 苹果公司 用于5g无线接入网小区的定时确定技术
CN109152050B (zh) * 2017-06-15 2021-03-23 华为技术有限公司 下行控制信道参数的配置方法、网络设备和终端设备
CN110035546B (zh) * 2018-01-12 2020-07-28 维沃移动通信有限公司 一种传输方法、移动终端及网络设备
CN110719623B (zh) * 2018-07-11 2021-05-04 维沃移动通信有限公司 配置方法和设备
US10972972B2 (en) * 2018-07-17 2021-04-06 FG Innovation Company Limited Methods and apparatuses for operating multiple antenna panels
US11166238B2 (en) * 2018-09-13 2021-11-02 Qualcomm Incorporated Methods and apparatus for supporting multiple power and spectrum efficient modes for power saving
US10924250B2 (en) * 2018-09-13 2021-02-16 Samsung Electronics Co., Ltd. UE operation with reduced power consumption
US11165472B2 (en) * 2018-11-02 2021-11-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for saving user equipment power with MIMO operation
US11201658B2 (en) * 2019-02-14 2021-12-14 Qualcomm Incorporated Adaptive receive diversity
CN111586848B (zh) * 2019-02-15 2023-05-30 大唐移动通信设备有限公司 一种调度时序确定方法、终端及网络侧设备
CN113396614B (zh) * 2019-03-29 2024-04-16 Lg电子株式会社 无线通信系统中最小适用k0例外情况的方法及使用该方法的终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150373668A1 (en) * 2012-09-16 2015-12-24 Lg Electronics Inc. Method for receiving or transmitting broadcast signal in wireless communication system and apparatus therefor
WO2018152153A1 (en) * 2017-02-17 2018-08-23 Intel IP Corporation Physical downlink control channel (pdcch) demodulation reference signal (dmrs) transmission and reception
CN108347277A (zh) * 2018-02-11 2018-07-31 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
WO2020089267A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Antenna selection for user equipment (ue) power saving during pdcch monitoring

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Adaptation aspects of NR UE power saving", 3GPP DRAFT; R1-1811501 ADAPTATION ASPECTS OF NR UE POWER SAVING, vol. RAN WG1, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 4, XP051518904 *
HUAWEI; HISILICON: "Power consumption reduction based on time/frequency/antenna adaptation", 3GPP DRAFT; R1-1810154, vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 5, XP051517569 *
QUALCOMM INCORPORATED: "UE Adaptation to the Traffic and UE Power Consumption Characteristics", 3GPP DRAFT; R1-1811282 UE ADAPTATION FOR POWER SAVING, vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 17, XP051518685 *
See also references of EP4009728A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210999A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 하향링크 신호를 측정하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
CN112312574A (zh) 2021-02-02
EP4009728A1 (en) 2022-06-08
US20220159689A1 (en) 2022-05-19
EP4009728A4 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2021023130A1 (zh) 一种通信传输的方法及设备
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
US20220376965A1 (en) Switching Waveforms for Uplink Transmission in NR Network
US10057830B2 (en) Handover between cells based on signal quality and interference estimation
WO2020143752A1 (zh) 信息传输的方法和通信装置
US9628151B2 (en) Selection of access points for coordinated multipoint uplink reception
US8725153B2 (en) Methods and devices for adjusting resource management procedures in heterogeneous communication networks
US10284314B2 (en) Measurements in a wireless system
US10110294B2 (en) Adaptive use of receiver diversity
KR102328669B1 (ko) 비인가 대역을 지원하는 무선 통신 시스템에서 신호 송/수신 장치 및 방법
US8649282B2 (en) System and method for combined MAC level message with CQI channel control message for channel feedback report
US20240187128A1 (en) Indication of proposed channel state information reporting scheme
WO2014047766A1 (zh) 通信方法、用户设备、基站与通信系统
WO2019049347A1 (ja) ユーザ端末及び無線通信方法
WO2015027469A1 (zh) 下行信道聚合级别的确定方法、设备和系统
US20230261723A1 (en) Apparatus, Method, and Computer Program
US20210184787A1 (en) Transmission apparatus, reception apparatus, and communication method
US20230224004A1 (en) Method and apparatus for detecting interference in radio carrier band
WO2020151640A1 (zh) 波束失败恢复响应的发送方法、监测方法、基站及终端
US11502810B2 (en) Methods and devices for PDCCH monitoring
JP2023545848A (ja) サイドリンクリソース選択方法及び装置
US20240298200A1 (en) Method for estimating signal to interference plus noise ratio (sinr) distribution from statistical channel quality indicator (cqi) report
WO2020252619A1 (en) Methods and devices for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020850739

Country of ref document: EP

Effective date: 20220301