WO2021022920A1 - 转子组件和交替极电机 - Google Patents
转子组件和交替极电机 Download PDFInfo
- Publication number
- WO2021022920A1 WO2021022920A1 PCT/CN2020/097586 CN2020097586W WO2021022920A1 WO 2021022920 A1 WO2021022920 A1 WO 2021022920A1 CN 2020097586 W CN2020097586 W CN 2020097586W WO 2021022920 A1 WO2021022920 A1 WO 2021022920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic pole
- rotor assembly
- rotor
- rotor core
- pole
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2746—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/021—Means for mechanical adjustment of the excitation flux
- H02K21/028—Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present disclosure is based on the application with the CN application number 201910713441.9 and the filing date on August 2, 2019, and claims its priority.
- the disclosure of the CN application is hereby incorporated into the present disclosure as a whole.
- the present disclosure relates to the technical field of motors, and in particular to a rotor assembly and an alternating-pole motor.
- the number of permanent magnets used in alternating-pole permanent magnet synchronous motors is only half of the number of permanent magnets in traditional permanent magnet synchronous motors. Therefore, it makes full use of permanent magnets and significantly reduces the amount of permanent magnets used, thereby reducing the cost of the motor.
- Some alternating-pole motors in the related art improve torque ripple by optimizing the pole arc coefficient, mainly aiming at the torque ripple caused by the cogging torque, but it has no effect on the torque ripple caused by the non-sinusoidal back EMF, so , It is not effective for the increase of torque ripple caused by the rich harmonic content of the alternating-pole motor back EMF.
- the present disclosure provides a rotor assembly, which includes a rotor iron core.
- the rotor iron core includes permanent magnetic poles and alternating poles alternately arranged in a circumferential direction.
- the permanent magnetic poles include mounting slots in which permanent magnets are installed, and the permanent magnets face the rotor iron core
- the polarity of the outer periphery is the same polarity.
- the two ends of the mounting groove are respectively provided with second air grooves.
- the second air groove includes a groove body and a first extension part and a second extension part extending from the slot body to the center line of the magnetic pole.
- the first extension portion and the second extension portion are sequentially arranged to form stepped grooves with decreasing radial thickness.
- the first extension part and the second extension part are arranged on a side of the slot body close to the outer circle of the rotor core.
- a first air slot is provided on the center line of the magnetic pole, and the distance between the second air slot and the outer periphery of the rotor core is smaller than the distance between the first air slot and the outer periphery of the rotor core.
- the angle formed by the sidewalls of the two first extensions on the same permanent magnetic pole close to the centerline of the magnetic pole is a21, and the two second extensions on the same permanent magnetic pole are close to the sidewalls of the magnetic pole centerline.
- the angle formed between the side walls of the two second extensions of the same permanent magnetic pole close to the center line of the magnetic pole is a22, and the two second air slots located on both sides of the alternating pole are close to the center of the alternating pole.
- the angle formed between the side walls of the two second extensions of the same permanent magnetic pole close to the center line of the magnetic pole is a22.
- the radial thickness of the first extension portion is t21
- the radial thickness of the first air slot is t1
- the radial thickness of the second air groove is t2
- the first air slot is symmetric about the centerline of the magnetic pole.
- an alternating-pole motor including a rotor assembly and a stator assembly, the rotor assembly being the aforementioned rotor assembly.
- the rotor assembly includes a rotor core.
- the rotor core includes permanent magnetic poles and alternating poles alternately arranged in a circumferential direction.
- the permanent magnetic poles include mounting slots in which permanent magnets are installed, and the permanent magnets face the outer circumference of the rotor core The polarities of the edges are the same.
- the two ends of the mounting groove are respectively provided with a second air groove.
- the second air groove includes a groove body and a first extension portion and a second extension portion extending from the slot body to the center line of the magnetic pole. An extension portion and a second extension portion are sequentially arranged to form stepped grooves with decreasing radial thickness.
- the rotor core of the rotor assembly is provided with a second air slot, and the second air slot includes a first extension portion and a second extension portion extending to the center line of the magnetic pole, and the first extension portion and the second extension portion form a thickness
- the unequal stepped grooves make the extension part thinner near the center line of the magnetic pole.
- part of the trough is lifted and part of the peak is lowered, so that the back EMF waveform action side is more symmetrical and the even number of harmonics is reduced.
- Wave content thereby improving the increase in torque ripple caused by back-EMF harmonics of alternating pole motors, significantly reducing back-EMF harmonic content, reducing back-EMF harmonic distortion rate, and improving motor performance.
- Fig. 1 is a schematic structural diagram of a rotor assembly according to an embodiment of the disclosure
- FIG. 2 is a dimensional structure diagram of a rotor assembly according to an embodiment of the disclosure
- FIG. 3 is a comparison diagram of back EMF waveforms between the rotor assembly of the embodiment of the disclosure and the rotor assembly of the related art
- Figure 5 is a distribution diagram of magnetic lines of force near the equal-thickness extension of the rotor assembly
- Fig. 6 is a distribution diagram of magnetic lines of force near the stepped extension of the rotor assembly according to an embodiment of the disclosure
- Figure 7 is a comparison diagram of back-EMF waveforms of different forms of extensions
- Figure 8 is a comparison diagram of back-EMF harmonic decomposition of different forms of extensions
- FIG. 9 is a graph showing the variation of back-EMF harmonic content with a22/a21 of the rotor assembly according to an embodiment of the disclosure.
- Fig. 10 is a graph showing the variation of back-EMF harmonic content with t22/t21 of the rotor assembly of an embodiment of the disclosure
- Fig. 11 is a graph showing the variation of back-EMF harmonic content and electromagnetic torque with a1/a22 of the rotor assembly of an embodiment of the disclosure.
- the rotor assembly includes a rotor core 1, which includes permanent magnetic poles and alternating poles alternately arranged in a circumferential direction, and the permanent magnetic poles include mounting slots 2.
- a permanent magnet 3 is installed in the installation slot 2. The polarity of the permanent magnet 3 facing the outer periphery of the rotor core 1 is the same polarity.
- the two ends of the installation slot 2 are respectively provided with a second air slot 5,
- the second air slot 5 includes a slot
- the main body and the first extending portion 6 and the second extending portion 7 extending from the slot body to the centerline of the magnetic pole, the first extending portion 6 and the second extending portion 7 are sequentially arranged to form stepped grooves with decreasing radial thickness.
- the rotor core 1 of the rotor assembly is provided with a second air slot 5, and the second air slot 5 includes a first extension portion 6 and a second extension portion 7 extending toward the center line of the magnetic pole, and the first extension portion 6 and The second extension part 7 forms stepped grooves of unequal thickness, making the extension part thinner near the center line of the magnetic pole.
- the two second air slots 5 are symmetrical about the magnetic pole center line, and the extension of the second air slot 5 extends to the magnetic pole center line.
- the air gap magnetic density on the alternating pole and the permanent magnetic pole is adjusted so that the adjacent The air gap flux density is more symmetrical, reducing torque ripple.
- the extension of the present disclosure is thinner near the center line of the magnetic pole.
- the distribution of the magnetic field lines of the two is shown by the dotted lines in Figures 5 and 6.
- the extension of the present disclosure passes through 4 lines of magnetic force, which is compared to the extension of the related technology.
- the structure that passes through 3 lines of magnetic force, and one more line of magnetic force is passed near the center line of the magnetic pole, which is more than 1/4, which is shown in the waveform of the back EMF as shown in Figure 7.
- the Some troughs in the related technology are lifted and some peaks are reduced, making the left and right sides of the back-EMF waveform more symmetrical and reducing the even-numbered harmonic content.
- the second and fourth harmonic content is further reduced, which can be further reduced compared to related technologies. Reduce the back-EMF harmonic distortion rate.
- first extension part 6 and the second extension part 7 are arranged on the side of the slot body close to the outer circle of the rotor core 1 to effectively adjust the magnetic field lines.
- a first air slot 4 is provided on the center line of the magnetic pole, and the distance between the second air slot 5 and the outer periphery of the rotor core 1 is smaller than the distance between the first air slot 4 and the outer periphery of the rotor core 1.
- the first air slot 4 prevents the magnetic field lines at the center of the magnetic pole from being too concentrated, weakens the larger magnetic density peak, and makes the adjacent magnetic pole air gap magnetic density waveform more symmetrical, and the sine of the magnetic density waveform is better, as shown in Figure 3. Attenuate the even-numbered back-EMF harmonics caused by the asymmetry of the magnetic poles in the back-EMF harmonics, as shown in Figure 4, and further reduce torque ripple compared with related technologies.
- the angle formed by the side walls of the two first extensions 6 located on the same permanent magnetic pole close to the center line of the magnetic pole is a21, which is formed between the side walls of the two second extensions 7 located on the same permanent magnetic pole close to the center line of the magnetic pole
- the plane of the sidewalls of the two first extensions 6 close to the centerline of the magnetic pole passes through the center axis of the rotor core 1, that is, the center axis of the rotor core 1 lies in this plane.
- the plane where the side walls of the two second extension portions 7 are located passes through the central axis of the rotor core 1.
- the two second extensions 7 need to meet the following conditions, that is, when perpendicular to the central axis of the rotor core 1 In the plane of, the angle between the end points of the radially outer edges of the two second extensions 7 close to the centerline of the magnetic poles and the center of the rotor core 1 is a22. In some embodiments, the plane where the side walls of the two second air slots 5 are located also passes through the central axis of the rotor core 1.
- This ratio represents the pole-arc ratio of adjacent magnetic poles.
- the smaller the ratio the greater the amplitude of the magnetic density under the permanent magnet pole, the smaller the alternating pole magnetic density, and the increase in magnetic density asymmetry.
- the larger the ratio the lower the permanent magnetic pole.
- the wider the shoe width the smaller the restraint effect on the magnetic field lines and the smaller the magnetic density.
- the angle formed between the side walls of the two second extensions 7 of the same permanent magnetic pole close to the central line of the magnetic pole is a22, and the permanent magnet 3 is radially outward
- the ratio of the two is too large to form an effective magnetic density under the permanent magnet poles, and the ratio of the two is too small, and the extension part blocks the magnetic field lines too much, resulting in a low utilization rate of the permanent magnet 3.
- Research shows that a22/am The effect is best when 0.6 ⁇ 0.8.
- the radial thickness of the first extension 6 is t21
- the angle formed by the line connecting the two end points of the radially outer edge of the first air slot 4 and the center of the rotor core 1 is a1, which is located at the same permanent magnet pole
- the ratio characterizes the proportion of pole shoes occupied by the first air slot 4. The larger the ratio, the stronger the effective magnetic resistance formed by the first air slot 4 and the stronger the adjustment effect on the magnetic lines of force, but too large a value will cause the electromagnetic torque to decrease.
- the radial thickness of the first air groove 4 is t1
- the ratio characterizes the radial space of the pole shoe occupied by the first air slot 4, the larger the ratio, the stronger the blocking effect on the lines of magnetic force, too much will cause the electromagnetic torque to drop, while the ratio is too small, the first air slot 4
- the radial thickness of the second air groove 5 is t2
- the first air slot 4 is symmetrical with respect to the magnetic pole center line, which further ensures the uniformity of the magnetic field lines on both sides of the first air slot 4 and makes the entire air gap magnetic density more sinusoidal.
- the permanent magnet 3 is, for example, a straight shape.
- the rotor core 1 is made of laminated soft magnetic material sheets, so that the rotor core 1 with alternating poles can be magnetized to another polarity under the influence of the permanent magnetic poles.
- an alternating pole motor includes a rotor assembly and a stator assembly 8, the rotor assembly being the aforementioned rotor assembly.
- the alternating-pole motor designed with the technical solution of the present disclosure has a back-EMF harmonic decomposition diagram as shown in Fig. 4. Compared with the related art, the alternating-pole motor of the present disclosure has a smaller harmonic content.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
本公开提供一种转子组件和交替极电机。该转子组件包括转子铁芯(1),转子铁芯(1)包括沿周向交替排布的永磁极和交替极,永磁极包括安装槽(2),安装槽(2)内安装有永磁体(3),永磁体(3)面向转子铁芯(1)外周缘的极性为同一极性,安装槽(2)的两端分别设置有第二空气槽(5),第二空气槽(5)包括槽本体和从槽本体向磁极中心线延伸的第一延伸部(6)和第二延伸部(7),第一延伸部(6)和第二延伸部(7)依次设置形成径向厚度递减的阶梯槽。根据本公开的转子组件,改善交替极电机反电势谐波引起的转矩脉动增加问题,显著降低反电势谐波含量,提高电机性能。
Description
相关申请的交叉引用
本公开是以CN申请号为201910713441.9,申请日为2019年8月2日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
本公开涉及电机技术领域,具体涉及一种转子组件和交替极电机。
交替极永磁同步电机使用的永磁体数量仅为传统永磁同步电机永磁体数量的一半,因此,其对永磁体的利用更加充分,显著降低永磁体使用量,从而降低电机成本。
但是其特殊的磁路结构也带来了很多问题,包括永磁体使用量减少带来的输出转矩下降、相邻磁极结构不对称导致转矩波动增加的问题,限制了交替极电机的进一步推广应用。
相关技术中的一些交替极电机是通过优化极弧系数改善转矩波动,主要针对的是由齿槽转矩引起的转矩波动,而对于非正弦反电势引起的转矩脉动,没有效果,因此,对于交替极电机反电势谐波含量丰富引起的转矩脉动增加问题,起到的效果不佳。
发明内容
本公开提供一种转子组件,包括转子铁芯,转子铁芯包括沿周向交替排布的永磁极和交替极,永磁极包括安装槽,安装槽内安装有永磁体,永磁体面向转子铁芯外周缘的极性为同一极性,安装槽的两端分别设置有第二空气槽,第二空气槽包括槽本体和从槽本体向磁极中心线延伸的第一延伸部和第二延伸部,第一延伸部和第二延伸部依次设置形成径向厚度递减的阶梯槽。
在一些实施例中,第一延伸部和第二延伸部设置在槽本体靠近转子铁芯的外圆的一侧。
在一些实施例中,磁极中心线上设置有第一空气槽,第二空气槽与转子铁芯的外周缘之间的距离小于第一空气槽与转子铁芯的外周缘之间的距离。
在一些实施例中,位于同一永磁极的两个第一延伸部靠近磁极中心线的侧壁所形成 的夹角为a21,位于同一永磁极的两个第二延伸部靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a22/a21=0.7~0.9。
在一些实施例中,位于同一永磁极的两个第二延伸部靠近磁极中心线的侧壁之间所形成的夹角为a22,位于交替极两侧的两个第二空气槽靠近交替极中心线的侧壁之间所形成的夹角为a2,其中a22/a2=0.7~1。
在一些实施例中,在垂直于转子铁芯的中心轴线的平面内,位于同一永磁极的两个第二延伸部靠近磁极中心线的侧壁之间所形成的夹角为a22,永磁体的径向外边缘的两个端点与转子铁芯的中心的连线所形成的夹角为am,其中a22/am=0.65~0.75。
在一些实施例中,第一延伸部的径向厚度为t21,第二延伸部的径向厚度为t22,其中t21/t22=0.4~0.6。
在一些实施例中,在垂直于转子铁芯的中心轴线的平面内,第一空气槽的径向外边缘的两个端点与转子铁芯的中心的连线所形成的夹角为a1,位于同一永磁极的两个第二延伸部靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a1/a22=0.1~0.15。
在一些实施例中,第一空气槽的径向厚度为t1,磁极中心线上的极靴厚度为ts1,其中t1/ts1=0.4~0.6。
在一些实施例中,第二空气槽的径向厚度为t2,第一延伸部的径向厚度为t21,其中t21/t2=0.2~0.4。
在一些实施例中,第一空气槽关于磁极中心线对称。
根据本公开的另一方面,提供了一种交替极电机,包括转子组件和定子组件,该转子组件为上述的转子组件。
本公开提供的转子组件,包括转子铁芯,转子铁芯包括沿周向交替排布的永磁极和交替极,永磁极包括安装槽,安装槽内安装有永磁体,永磁体面向转子铁芯外周缘的极性为同一极性,安装槽的两端分别设置有第二空气槽,第二空气槽包括槽本体和从槽本体向磁极中心线延伸的第一延伸部和第二延伸部,第一延伸部和第二延伸部依次设置形成径向厚度递减的阶梯槽。该转子组件的转子铁芯上设置有第二空气槽,且第二空气槽包括有向磁极中心线延伸的第一延伸部和第二延伸部,且第一延伸部和第二延伸部形成厚度不等的阶梯槽,使得延伸部在靠近磁极中心线的位置厚度更薄,在反电势靠近峰值的位置,将部分波谷提起,部分波峰降低,使反电势波形作用侧更加对称,降低偶数次谐波含量,进而改善交替极电机反电势谐波引起的转矩脉动增加问题,显著降低反电势谐波含量,降低反电势谐波畸变率,提高电机性能。
图1为本公开实施例的转子组件的结构示意图;
图2为本公开实施例的转子组件的尺寸结构图;
图3为本公开实施例的转子组件与相关技术的转子组件的反电势波形对比图;
图4为本公开实施例的转子组件与相关技术的转子组件的反电势谐波分解对比图;
图5为转子组件的等厚延伸部附近的磁力线分布图;
图6为本公开实施例的转子组件的阶梯状延伸部附近的磁力线分布图;
图7为不同形式延伸部的反电势波形对比图;
图8为不同形式延伸部的反电势谐波分解对比图;
图9为本公开实施例的转子组件的反电势谐波含量随a22/a21变化的曲线图;
图10为本公开实施例的转子组件的反电势谐波含量随t22/t21变化的曲线图;
图11为本公开实施例的转子组件的反电势谐波含量、电磁转矩随a1/a22变化的曲线图。
附图标记表示为:
1、转子铁芯;2、安装槽;3、永磁体;4、第一空气槽;5、第二空气槽;6、第一延伸部;7、第二延伸部;8、定子组件。
结合参见图1至图11所示,根据本公开的实施例,转子组件包括转子铁芯1,转子铁芯1包括沿周向交替排布的永磁极和交替极,永磁极包括安装槽2,安装槽2内安装有永磁体3,永磁体3面向转子铁芯1外周缘的极性为同一极性,安装槽2的两端分别设置有第二空气槽5,第二空气槽5包括槽本体和从槽本体向磁极中心线延伸的第一延伸部6和第二延伸部7,第一延伸部6和第二延伸部7依次设置形成径向厚度递减的阶梯槽。
该转子组件的转子铁芯1上设置有第二空气槽5,且第二空气槽5包括有向磁极中心线延伸的第一延伸部6和第二延伸部7,且第一延伸部6和第二延伸部7形成厚度不等的阶梯槽,使得延伸部在靠近磁极中心线的位置厚度更薄,在反电势靠近峰值的位置,将部分波谷提起,部分波峰降低,使反电势波形作用侧更加对称,降低偶数次谐波含量,进而改善交替极电机反电势谐波引起的转矩脉动增加问题,显著降低反电势谐波含量,降低反电势谐波畸变率,提高电机性能。
在一些实施例中,两个第二空气槽5关于磁极中线线对称,第二空气槽5的延伸部向磁极中心线延伸,调整了交替极与永磁极上的气隙磁密,让相邻的气隙磁密更加对称,降低转矩波动。
本公开方案的延伸部在靠近磁极中心线位置更薄,二者的磁力线分布如图5、6中加点线所示,本公开方案的延伸部中穿过4条磁力线,相比于相关技术延伸部穿过3条磁力线的结构,在靠近磁极中心线的位置多穿过一条磁力线,多出1/4,表现在反电势的波形上如图7所示,在反电势靠近峰值的位置,将相关技术中的部分波谷提起,部分波峰降低,使反电势波形左右侧更加对称,降低偶数次谐波含量,如图8所示,2、4次谐波含量进一步降低,相比相关技术可进一步降低反电势谐波畸变率。
在一些实施例中,第一延伸部6和第二延伸部7设置在槽本体靠近转子铁芯1的外圆的一侧,对磁力线起到有效的调节作用。
磁极中心线上设置有第一空气槽4,第二空气槽5与转子铁芯1的外周缘之间的距离小于第一空气槽4与转子铁芯1的外周缘之间的距离。
第一空气槽4避免磁极中心处的磁力线过于集中,削弱较大的磁密峰值,使相邻磁极气隙磁密波形更加对称,磁密波形的正弦度更好,如图3所示,大幅削弱反电势谐波中由于磁极不对称引起的偶数次反电势谐波,如图4所示,相比相关技术进一步降低转矩脉动。
位于同一永磁极的两个第一延伸部6靠近磁极中心线的侧壁所形成的夹角为a21,位于同一永磁极的两个第二延伸部7靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a22/a21=0.7~0.9。在本实施例中,两个第一延伸部6靠近磁极中心线的侧壁所在平面经过转子铁芯1的中心轴线,即,转子铁芯1的中心轴线位于该平面内。
二者的比值越小,厚度较薄的延伸部越长,在磁极中心部对磁力线的限制作用越弱,磁力线无法在永磁极下聚拢,相反,二者的比值越大,厚度较薄的延伸部越短,延伸部逐渐演变为等厚延伸部,如图8所示,反电势偶数次谐波含量增加。研究表明,a22/a21=0.7~0.9时反电势谐波含量较小,如图9所示。
位于同一永磁极的两个第二延伸部7靠近磁极中心线的侧壁之间所形成的夹角为a22,位于交替极两侧的两个第二空气槽5靠近交替极中心线的侧壁之间所形成的夹角为a2,其中a22/a2=0.7~1。在本实施例中,两个第二延伸部7的侧壁所在平面经过转子铁芯1的中心轴线。当两个第二延伸部7的侧壁所在平面不经过转子铁芯1的中心轴线时,此时两个第二延伸部7需要满足如下条件,即,在垂直于转子铁芯1的中心轴线的平面内,两个第二延伸部7的径向外边缘靠近磁极中心线的端点与转子铁芯1的中心的连线的夹角为a22。在一些实施例中,两个第二空气槽5的侧壁所在平面也经过转子铁芯1的中心轴线。
此比值表征了相邻磁极的极弧比,比值越小,永磁极极下磁密幅值越大,交替极磁密越小,磁密不对称性增加,反之比值越大,永磁极下极靴宽度越宽,对磁力线的约束作用越小,磁密也越小,交替极下磁密较大,磁密不对称性同样增加。研究表明, a22/a2=0.7~1磁密对称性最好。
在垂直于转子铁芯1的中心轴线的平面内,位于同一永磁极的两个第二延伸部7靠近磁极中心线的侧壁之间所形成的夹角为a22,永磁体3的径向外边缘的两个端点与转子铁芯1的中心的连线所形成的夹角为am,其中a22/am=0.65~0.75。二者的比值过大,无法在永磁极下形成有效的磁密,二者的比值过小,延伸部过多地阻挡磁力线,导致永磁体3的利用率较低,研究表明,a22/am=0.6~0.8时效果最好。
第一延伸部6的径向厚度为t21,第二延伸部7的径向厚度为t22,其中t21/t22=0.4~0.6。比值表征了延伸部的厚度之比。比值过小,第二延伸部7无法有效阻挡磁力线通过,从而无法调整气隙磁密的波形,而第一延伸部6则过多阻挡磁力线通过。反之,比值过大,第二延伸部7过多地阻挡磁力线,造成永磁体利用率降低,并且较多的磁力线将从第一延伸部6处通过,形成较大的漏磁。研究表明t22/t21=0.4~0.6时效果最好,如图10所示。
在垂直于转子铁芯1的中心轴线的平面内,第一空气槽4的径向外边缘的两个端点与转子铁芯1的中心的连线所形成的夹角为a1,位于同一永磁极的两个第二延伸部7靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a1/a22=0.1~0.15。比值表征了第一空气槽4占据的极靴比例。比值越大,第一空气槽4形成的有效磁阻越强,对磁力线的调整作用越强,但是过大会引起电磁转矩下降。反之比值越小,第一空气槽4不足以形成有效的磁阻,从而调整磁力线,降低反电势谐波畸变率。研究表明,比值在0.1~0.15时效果最好。如图11所示。
第一空气槽4的径向厚度为t1,磁极中心线上的极靴厚度为ts1,其中t1/ts1=0.4~0.6。比值表征了第一空气槽4占据的极靴的径向空间,比值越大,对磁力线的阻挡作用越强,过大会引起电磁转矩的下降,而比值过小,会让第一空气槽4无法有效调制磁力线,研究表明,在t1/ts1=0.4~0.6的范围内时效果最好。
第二空气槽5的径向厚度为t2,第一延伸部6的径向厚度为t21,其中t21/t2=0.2~0.4。由于交替极与永磁体的磁力线分布不一致,交替极上的磁力线更容易受到电枢反应的影响,因此,第二空气槽5两侧需要设置不同的厚度调制磁力线。研究表明,t21/t2=0.2~0.4时对磁力线的调制作用最好。
在一些实施例中,第一空气槽4关于磁极中心线对称,进一步保证第一空气槽4两侧磁力线分布的均匀性,让整个气隙磁密更正弦。
永磁体3例如为一字型。
转子铁芯1采用软磁材料薄片叠压而成,从而便于使交替极的转子铁芯1在永磁极的影响下磁化呈另一极性。
根据本公开的实施例,交替极电机包括转子组件和定子组件8,该转子组件为上述 的转子组件。
采用本公开的技术方案设计的交替极电机,其反电势谐波分解图如图4所示,相对于相关技术而言,本公开的交替极电机具有更小的谐波含量。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各技术特征可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。
Claims (12)
- 一种转子组件,包括转子铁芯(1),所述转子铁芯(1)包括沿周向交替排布的永磁极和交替极,所述永磁极包括安装槽(2),所述安装槽(2)内安装有永磁体(3),所述永磁体(3)面向转子铁芯(1)外周缘的极性为同一极性,所述安装槽(2)的两端均设置有第二空气槽(5),所述第二空气槽(5)包括槽本体和从所述槽本体向磁极中心线延伸的第一延伸部(6)和第二延伸部(7),所述第一延伸部(6)和所述第二延伸部(7)依次设置形成径向厚度递减的阶梯槽。
- 根据权利要求1所述的转子组件,其中所述第一延伸部(6)和所述第二延伸部(7)设置在所述槽本体靠近所述转子铁芯(1)的外周的一侧。
- 根据权利要求1所述的转子组件,其中所述磁极中心线上设置有第一空气槽(4),所述第二空气槽(5)与所述转子铁芯(1)的外周缘之间的距离小于所述第一空气槽(4)与所述转子铁芯(1)的外周缘之间的距离。
- 根据权利要求1所述的转子组件,其中位于同一永磁极的两个第一延伸部(6)靠近磁极中心线的侧壁所形成的夹角为a21,位于同一永磁极的两个第二延伸部(7)靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a22/a21=0.7~0.9。
- 根据权利要求1所述的转子组件,其中位于同一永磁极的两个第二延伸部(7)靠近磁极中心线的侧壁之间所形成的夹角为a22,位于交替极两侧的两个所述第二空气槽(5)靠近交替极中心线的侧壁之间所形成的夹角为a2,其中a22/a2=0.7~1。
- 根据权利要求1所述的转子组件,其中在垂直于转子铁芯(1)的中心轴线的平面内,位于同一永磁极的两个第二延伸部(7)靠近磁极中心线的侧壁之间所形成的夹角为a22,所述永磁体(3)的径向外边缘的两个端点与所述转子铁芯(1)的中心的连线所形成的夹角为am,其中a22/am=0.65~0.75。
- 根据权利要求1所述的转子组件,其中所述第一延伸部(6)的径向厚度为t21,所述第二延伸部(7)的径向厚度为t22,其中t21/t22=0.4~0.6。
- 根据权利要求3所述的转子组件,其中在垂直于转子铁芯(1)的中心轴线的平面内,所述第一空气槽(4)的径向外边缘的两个端点与所述转子铁芯(1)的中心的连线所形成的夹角为a1,位于同一永磁极的两个第二延伸部(7)靠近磁极中心线的侧壁之间所形成的夹角为a22,其中a1/a22=0.1~0.15。
- 根据权利要求3所述的转子组件,其中所述第一空气槽(4)的径向厚度为t1,磁极中心线上的极靴厚度为ts1,其中t1/ts1=0.4~0.6。
- 根据权利要求1所述的转子组件,其中所述第二空气槽(5)的径向厚度为t2,所述第一延伸部(6)的径向厚度为t21,其中t21/t2=0.2~0.4。
- 根据权利要求3所述的转子组件,其中所述第一空气槽(4)关于磁极中心线对称。
- 一种交替极电机,包括定子组件(8)和转子组件,其中所述转子组件为权利要求1至11中任一项所述的转子组件。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021572955A JP7299352B2 (ja) | 2019-08-02 | 2020-06-23 | ロータコンポーネント及びコンシクエントポール型モータ |
EP20850654.3A EP4009494B1 (en) | 2019-08-02 | 2020-06-23 | Rotor assembly and consequent-pole motor |
US17/576,003 US20220140679A1 (en) | 2019-08-02 | 2022-01-14 | Rotor assembly and alternating-pole motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910713441.9 | 2019-08-02 | ||
CN201910713441.9A CN110401283B (zh) | 2019-08-02 | 2019-08-02 | 转子组件和交替极电机 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/576,003 Continuation US20220140679A1 (en) | 2019-08-02 | 2022-01-14 | Rotor assembly and alternating-pole motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021022920A1 true WO2021022920A1 (zh) | 2021-02-11 |
Family
ID=68327365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/097586 WO2021022920A1 (zh) | 2019-08-02 | 2020-06-23 | 转子组件和交替极电机 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220140679A1 (zh) |
EP (1) | EP4009494B1 (zh) |
JP (1) | JP7299352B2 (zh) |
CN (1) | CN110401283B (zh) |
WO (1) | WO2021022920A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110401283B (zh) * | 2019-08-02 | 2024-09-24 | 珠海格力电器股份有限公司 | 转子组件和交替极电机 |
CN114189077B (zh) * | 2021-12-13 | 2023-04-28 | 珠海格力电器股份有限公司 | 电机转子、电机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102939699A (zh) * | 2010-03-30 | 2013-02-20 | 沃尔沃技术公司 | 具有嵌入式永磁体的电机转子以及电机 |
DE102013110141A1 (de) * | 2012-09-27 | 2014-03-27 | Denso Corporation | Drehende elektrische Maschine |
CN107196434A (zh) * | 2017-06-21 | 2017-09-22 | 珠海格力节能环保制冷技术研究中心有限公司 | 转子组件和永磁电机 |
CN110401283A (zh) * | 2019-08-02 | 2019-11-01 | 珠海格力电器股份有限公司 | 转子组件和交替极电机 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2978057B2 (ja) * | 1994-06-07 | 1999-11-15 | 株式会社東芝 | 永久磁石形モータ及び冷却装置用コンプレッサ |
JP2004350345A (ja) * | 2003-05-20 | 2004-12-09 | Matsushita Electric Ind Co Ltd | 永久磁石電動機 |
JP4131276B2 (ja) * | 2005-12-19 | 2008-08-13 | ダイキン工業株式会社 | 電動機並びにその回転子及び回転子用磁心 |
JP2013094041A (ja) * | 2011-10-07 | 2013-05-16 | Asmo Co Ltd | 埋込磁石型ロータ及びブラシレスモータ |
CN203219035U (zh) * | 2012-12-10 | 2013-09-25 | 艾默生环境优化技术(苏州)有限公司 | 转子组件和包括该转子组件的永磁体电机 |
CN103117611B (zh) * | 2013-02-01 | 2016-04-20 | 广东威灵电机制造有限公司 | 一种永磁体电机 |
JP6605160B2 (ja) * | 2017-01-31 | 2019-11-13 | 三菱電機株式会社 | 電動機、圧縮機、送風機、及び空気調和機 |
CN107196478B (zh) * | 2017-06-21 | 2023-07-04 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁电机 |
CN207442555U (zh) * | 2017-06-21 | 2018-06-01 | 珠海格力节能环保制冷技术研究中心有限公司 | 转子组件和永磁电机 |
CN208190372U (zh) * | 2018-05-30 | 2018-12-04 | 广东威灵电机制造有限公司 | 电机转子和交替极永磁电机 |
KR102647099B1 (ko) * | 2018-06-08 | 2024-03-14 | 삼성전자주식회사 | 내부 영구자석 모터 |
CN108768023B (zh) * | 2018-08-13 | 2020-01-07 | 珠海格力电器股份有限公司 | 转子组件及交替极电机 |
CN209948818U (zh) * | 2019-08-02 | 2020-01-14 | 珠海格力电器股份有限公司 | 转子组件和交替极电机 |
-
2019
- 2019-08-02 CN CN201910713441.9A patent/CN110401283B/zh active Active
-
2020
- 2020-06-23 JP JP2021572955A patent/JP7299352B2/ja active Active
- 2020-06-23 EP EP20850654.3A patent/EP4009494B1/en active Active
- 2020-06-23 WO PCT/CN2020/097586 patent/WO2021022920A1/zh unknown
-
2022
- 2022-01-14 US US17/576,003 patent/US20220140679A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102939699A (zh) * | 2010-03-30 | 2013-02-20 | 沃尔沃技术公司 | 具有嵌入式永磁体的电机转子以及电机 |
DE102013110141A1 (de) * | 2012-09-27 | 2014-03-27 | Denso Corporation | Drehende elektrische Maschine |
CN107196434A (zh) * | 2017-06-21 | 2017-09-22 | 珠海格力节能环保制冷技术研究中心有限公司 | 转子组件和永磁电机 |
CN110401283A (zh) * | 2019-08-02 | 2019-11-01 | 珠海格力电器股份有限公司 | 转子组件和交替极电机 |
Non-Patent Citations (1)
Title |
---|
MENG SI, YANG 2, XIANG-YU, SHI-WEI ZHAO, JI-KAI SI: "Optimal design of an interior permanent magnet synchronous motor with a spliced type rotor", ELECTRIC MACHINES AND CONTROL, vol. 21, no. 8, 15 August 2017 (2017-08-15), pages 62 - 71, XP055777511, ISSN: 1007-449X, DOI: 10.15938/j.emc.2017.08.009 * |
Also Published As
Publication number | Publication date |
---|---|
CN110401283B (zh) | 2024-09-24 |
JP2022535940A (ja) | 2022-08-10 |
US20220140679A1 (en) | 2022-05-05 |
JP7299352B2 (ja) | 2023-06-27 |
EP4009494A4 (en) | 2022-10-12 |
CN110401283A (zh) | 2019-11-01 |
EP4009494A1 (en) | 2022-06-08 |
EP4009494B1 (en) | 2023-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10320274B2 (en) | Combination structure between stator and rotor in a brushless motor | |
US9871419B2 (en) | Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor | |
US8937420B2 (en) | Rotor of permanent magnet embedded motor, blower, and compressor | |
US9496759B2 (en) | Rotor of interior permanent magnet motor, compressor, and refrigerating air-conditioning apparatus | |
US11183913B2 (en) | Permanent magnet motor | |
US20140167550A1 (en) | Motor rotor and motor having same | |
WO2021022920A1 (zh) | 转子组件和交替极电机 | |
JP2021516530A (ja) | 回転子構造、永久磁石補助型同期リラクタンスモータ及び電気自動車 | |
WO2021057144A1 (zh) | 同步磁阻电机 | |
US11670996B2 (en) | Rotor core with different groove and skew angle configuration of step-skewing synchronous motor | |
CN110401282A (zh) | 转子组件和交替极电机 | |
CN210246575U (zh) | 电机、压缩机及制冷设备 | |
WO2021022922A1 (zh) | 转子组件和交替极电机 | |
WO2024148910A1 (zh) | 一种电机转子和永磁辅助式同步磁阻电机 | |
CN110994838A (zh) | 转子组件和交替极电机 | |
CN209948818U (zh) | 转子组件和交替极电机 | |
CN209948821U (zh) | 转子组件和交替极电机 | |
CN209948822U (zh) | 转子组件和交替极电机 | |
CN209948819U (zh) | 转子组件和交替极电机 | |
CN110350691B (zh) | 转子结构、电机及家用电器 | |
JP2000253633A (ja) | 回転機 | |
CN203674936U (zh) | 同步磁阻电机 | |
CN211351857U (zh) | 转子组件和交替极电机 | |
US20180041076A1 (en) | Permanent magnet synchronous motor | |
CN205791830U (zh) | 一种电机定子冲片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20850654 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572955 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020850654 Country of ref document: EP Effective date: 20220302 |