WO2021022896A1 - 风道部件及空调器 - Google Patents

风道部件及空调器 Download PDF

Info

Publication number
WO2021022896A1
WO2021022896A1 PCT/CN2020/095223 CN2020095223W WO2021022896A1 WO 2021022896 A1 WO2021022896 A1 WO 2021022896A1 CN 2020095223 W CN2020095223 W CN 2020095223W WO 2021022896 A1 WO2021022896 A1 WO 2021022896A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
fan blade
assembly
duct component
air
Prior art date
Application number
PCT/CN2020/095223
Other languages
English (en)
French (fr)
Inventor
梁博
王千千
陈诚
何振健
吴晓岳
戴志炜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021022896A1 publication Critical patent/WO2021022896A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans

Definitions

  • This application relates to the technical field of air conditioners, and specifically to an air duct component and an air conditioner.
  • the currently widely used fan blades of air conditioning products known to the inventor mainly include centrifugal fan blades, cross-flow fan blades and axial fan blades.
  • centrifugal fan blades For different use requirements and air inlet and outlet methods, different fan blades need to be configured to meet Model development.
  • the distributed air supply technology known to the inventor can achieve air supply from the upper and lower air outlets, cold air will also be blown from the lower air outlet in cooling mode, and hot air from the upper air outlet in heating mode, which is not optimal. Energy utilization.
  • Some embodiments of the present application provide an air duct component and an air conditioner to solve the problem that the air inlet and outlet directions of the air conditioner cannot be switched and the work is not enough as known to the inventor.
  • an air duct component including: an air duct body on which a circulation channel is provided; a fan blade assembly, a plurality of fan blade assemblies are arranged in the circulation channel and along the axial direction of the circulation channel It is arranged at intervals, and one of the plurality of fan blade assemblies is located at the first end of the air duct body and protrudes from the end surface of the first end of the air duct body.
  • end surface of the first end of the air duct body is perpendicular to the axis of the circulation channel.
  • the air duct component further includes a driving assembly, which is drivingly connected to the fan blade assembly to drive the fan blade assembly to rotate in a clockwise direction or a counterclockwise direction.
  • the air duct component further includes a mounting plate, the mounting plate passes through the circulation channel, and the driving component is mounted on the mounting plate.
  • the drive assembly includes a drive motor, and the fan blade assembly is installed on the output shaft of the drive motor.
  • the mounting plate is provided with a diversion cover, the diversion cover is arranged in a horn-shaped structure, the end of the horn-shaped structure with a larger opening is set toward the second end of the circulation channel, and the driving assembly is located inside the diversion cover.
  • annular channel is provided on the outer circumference of the flow deflector, and a plurality of rectifying blades arranged at intervals are arranged in the annular channel.
  • the air duct component further includes a flow guide assembly, which is arranged at the second end of the circulation channel.
  • the flow guide assembly includes: a positioning column; guide vanes, and a plurality of guide vanes are arranged at intervals along the outer circumference of the positioning column.
  • the wind blade assembly includes a positioning sleeve and a plurality of wind blades, and the plurality of wind blades are evenly arranged along the outer circumference of the positioning sleeve.
  • the fan blade assembly further includes a splitter blade, which is fixed on the outer side wall of the positioning sleeve and is located between two adjacent fan blades.
  • the two fan blade assemblies are arranged in the same manner, and the two fan blade assemblies are respectively located on both sides of the mounting plate.
  • the air duct body includes: a first air duct body, the middle section of the circulation channel on the first air duct body is provided with an inner recessed neck, and a plurality of blade assemblies are respectively located on both sides of the inner recessed neck; second The air duct body, the cross-sectional area of the middle section of the circulation channel on the second air duct body does not change along the axial direction, and the fan blade assembly is located in the middle section; the first air duct body and the second air duct body are switchably sleeved Set on the outer circumference of the fan blade assembly.
  • the distance between the fan blade assembly closest to the inner recessed neck in the first air duct body and the first end of the circulation channel is smaller than the distance between the inner recessed neck and the first end of the circulation channel.
  • an air conditioner including an air duct component, the air duct component being the aforementioned air duct component.
  • the fan blade assembly in this application can rotate in a clockwise direction, and the airflow flows from the first end to the second end of the circulation channel;
  • the fan blade assembly rotates clockwise in the circulation channel, and the airflow flows from the second end to the first end of the circulation channel.
  • the first end of the air duct body in the present application has a fan blade assembly protruding from the end surface of the first end of the air duct body, that is, the fan blade assembly is partially exposed to the outside of the air duct body.
  • the fan blade assembly at the first end of the air duct body has both axial suction and lateral (radial) suction, which increases the function of the fan blade assembly and improves the efficiency of the fan blade assembly; in the upper air inlet and lower air outlet mode, The fan blade assembly at the first end of the air duct body can throw part of the air flow out of the air duct in advance, the internal resistance of the air duct body is reduced, and the work efficiency is greatly improved.
  • Fig. 1 schematically shows a front view of the air duct component of the present application when the first air duct body is assembled
  • Figure 2 schematically shows a cross-sectional view of the air duct component of the present application when it is in a lower air inlet and upper air outlet mode;
  • Figure 3 schematically shows a front view of the air duct component of the present application when the second air duct body is assembled
  • FIG. 4 schematically shows a cross-sectional view of the air duct component of the present application when it is in an upper air inlet and lower air outlet mode
  • Fig. 5 schematically shows a first perspective perspective view of the air duct component of the present application when the first air duct body is assembled
  • Fig. 6 schematically shows a second perspective perspective view of the air duct component of the present application when the first air duct body is assembled
  • Fig. 7 schematically shows a first perspective perspective view of the air duct component of the present application when the second air duct body is assembled
  • Fig. 8 schematically shows a second perspective perspective view of the air duct component of the present application when the second air duct body is assembled
  • Fig. 9 schematically shows a perspective view of the flow guide assembly of the present application.
  • Fig. 10 schematically shows a perspective view of the first embodiment of the fan blade assembly of the present application
  • Fig. 11 schematically shows a front view of the first embodiment of the fan blade assembly of the present application
  • Figure 12 schematically shows a perspective view of a second embodiment of the fan blade assembly of the present application.
  • Fig. 13 schematically shows a front view of a second embodiment of the fan blade assembly of the present application
  • Fig. 14 schematically shows a first perspective perspective view of the mounting board of the present application
  • Figure 15 schematically shows a top view of the mounting board of the present application
  • Fig. 16 schematically shows a second perspective perspective view of the mounting board of the present application
  • Figure 17 schematically shows a bottom view of the mounting plate of the present application
  • Figure 18 schematically shows a cross-sectional view of the mounting plate of the present application
  • Fig. 19 schematically shows a fluid flow diagram when the air duct component of the present application is in the downward air inlet and upper air exit;
  • Fig. 20 schematically shows a fluid flow diagram of the air duct component of the present application when the wind is in the upper and the lower is in the wind.
  • Air duct body 11. First air duct body; 111. Inner recessed necking; 12. Second air duct body; 121. Circulation channel; 123. End face; 20. Fan blade assembly; 21. Positioning sleeve; 22 23. Splitter blades; 30. Drive assembly; 31. Output shaft; 40. Mounting plate; 41. Diversion cover; 42, Annular channel; 43. Rectifier blades; 50. Diversion assembly; 51. Positioning column ; 52, guide vane.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations, and the relative description of the space used here is explained accordingly.
  • an air conditioner in this embodiment includes an air duct component.
  • the air duct component in this embodiment includes an air duct body 10 and a fan blade assembly 20.
  • the air duct body 10 is provided with a circulation channel 121; a plurality of fan blade assemblies 20 are arranged in the circulation channel 121 and arranged at intervals along the axial direction of the circulation channel 121, and one of the plurality of fan blade assemblies 20 is located in the air duct body 10
  • the first end protrudes from the end surface 123 of the first end of the air duct body 10.
  • the fan blade assembly 20 in this embodiment can rotate in a clockwise direction, and the airflow flows from the first end to the second end of the circulation channel 121;
  • the fan blade assembly 20 rotates clockwise in the circulation channel 121, and the airflow flows from the second end to the first end of the circulation channel 121.
  • the fan blade assembly 20 at the first end of the air duct body 10 has both axial suction and lateral (radial) suction, which increases the function of the fan assembly 20 and improves the efficiency of the fan assembly 20
  • the fan blade assembly 20 at the first end of the air duct body 10 can throw part of the air flow out of the air duct in advance, the internal resistance of the air duct body 10 is reduced, and the work efficiency is greatly improved.
  • the end surface 123 in this embodiment is perpendicular to the axis of the circulation channel 121, and the structure is simple, stable and reliable.
  • the end surface 123 can also be arranged to be inclined to the axis of the circulation channel 121.
  • the air duct component in this embodiment further includes a drive assembly 30, which is drivingly connected to the fan blade assembly 20 to drive the fan assembly 20 to rotate in a clockwise direction or counterclockwise, so as to facilitate the upward movement of the air duct component. Switch between the under-wind mode and the under-wind and upper-out modes.
  • the air duct component in this embodiment further includes a mounting plate 40, the mounting plate 40 passes through the circulation channel 121, and the drive assembly 30 is mounted on the mounting plate 40.
  • the drive assembly 30 in this embodiment is a drive motor.
  • the fan blade assembly 20 is installed on the output shaft 31 of the drive motor, and the fan blade is driven by the forward and reverse rotation of the drive motor.
  • the assembly 20 rotates in a clockwise direction or in a counterclockwise direction, so that the air duct component can switch between the upper air inlet and lower air outlet mode and the lower air inlet and upper air outlet modes.
  • An air deflector 41 is provided on the mounting plate 40, and the drive assembly 30 is located inside the air deflector 41. Through the function of the air deflector 41, it is convenient to protect the driving motor, and can also play a role of diversion and rectification of air flow.
  • the deflector 41 in this embodiment is arranged in a horn-like structure.
  • the end of the horn-like structure with a larger opening is set toward the second end of the circulation channel 121.
  • the outer periphery of the deflector 41 has an annular channel 42 to facilitate the passage of fluid.
  • a rectifying component is arranged in the channel 42 to facilitate the rectification of the air flow in the circulation channel 121.
  • the rectifying assembly in this embodiment includes a plurality of rectifying blades 43.
  • the plurality of rectifying blades 43 are evenly arranged along the circumferential direction of the annular channel 42 to facilitate rectification of the airflow in the circulation channel 121, increase the area of the guide vanes in the circulation channel 121, and reduce Energy loss.
  • the air duct component in this embodiment also includes a flow guide assembly 50, which is arranged at the second end of the flow channel 121, and can turn the direction of the airflow from the circumferential movement to the axis To move to reduce vortex loss between airflows and improve fan efficiency.
  • the guide assembly 50 in this embodiment includes a positioning column 51 and a plurality of guide vanes 52.
  • the plurality of guide vanes 52 are arranged at intervals along the outer circumference of the positioning column 51, and one end of the guide vane 52 away from the positioning column 51 Fixed on the air duct body 10, the structure is simple, stable and reliable.
  • the fan blade assembly 20 includes a positioning sleeve 21 and a plurality of fan blades 22, and the plurality of fan blades 22 are evenly arranged along the outer circumference of the positioning sleeve 21.
  • the structure of the fan blade assembly 20 is basically the same as that of Figures 10 and 11. The difference is that the fan blade assembly 20 in this embodiment is also The diverter blade 23 is included, and the diverter blade 23 is fixed on the outer side wall of the positioning sleeve 21 and located between two adjacent wind blades 22.
  • the air duct body 10 in this embodiment includes a first air duct body 11 and a second air duct body 12, wherein the middle section of the circulation channel 121 on the first air duct body 11 is provided There is a recessed recess 111, a plurality of fan blade assemblies 20 are respectively located on both sides of the recessed recess 111, the end of one of the multiple fan blade assemblies 20 protrudes from the recessed recess 111; the second air duct body
  • the cross-sectional area of the middle section of the circulation channel 121 on 12 does not change along the axial direction, and the fan blade assembly 20 is located in the middle section; the first air duct body 11 and the second air duct body 12 are switchably sleeved on the fan blades
  • the middle section of the circulation channel 121 in this embodiment refers to the interval section of the circulation channel 121 between the flow guide assembly 50 and the fan assembly 20 at the first end of the air duct body 10.
  • the first air duct body 11 and the second air duct body 12 in this embodiment are switchably sleeved on the fan blade assembly 20, the fan blade assembly 20, the mounting plate 40, the drive assembly 30, and the guide assembly.
  • the outer circumference of 50 can adapt to different wind demand.
  • the first air duct body 11 in this embodiment is particularly suitable for a lower air inlet and upper air outlet mode
  • the second air duct body 12 is particularly suitable for an upper air inlet and lower air outlet mode.
  • the distance between the blade assembly 20 that is closest to the inner recessed neck 111 and the first end of the circulation channel 121 is smaller than the distance between the inner recessed neck 111 and the first end of the circulation channel 121. That is to say, the position of the recessed recess 111 of the first air duct body 11 in this embodiment is located above the bottom end of the top blade assembly 20 (see FIG. 2), so that the top blade assembly 20 can have both The effect of axial suction and lateral (radial) suction, and at the same time increase the secondary air duct's secondary function, and improve the efficiency of the fan blade assembly 20, the effect is very significant.
  • the two fan blade assemblies 20 there are two fan blade assemblies 20 in this embodiment, and the two fan blade assemblies 20 are arranged in the same manner, and the two fan blade assemblies 20 are respectively located on both sides of the mounting plate 40.
  • the number of fan blade assemblies 20 can also be set to three or more.
  • the two fan blade assemblies 20 are placed in the same manner, which means that the two fan blade assemblies 20 in the air duct body 10 are placed in the same manner, that is, the two fan blade assemblies 20 are placed in the same manner.
  • the direction of rotation of the blades 22 is the same, and the end with the larger outer diameter of the blade assembly 20 is set close to the second end of the air duct body 10, and the end with the smaller outer diameter of the blade assembly 20 is set close to the first end of the air duct body 10 In this way, the function of the fan blade assembly 20 can be increased.
  • the air duct component in this embodiment is a two-stage mixed-flow air duct.
  • the air duct component can switch the direction of air inlet and outlet to achieve top in and bottom out. Or two air supply modes from bottom to top.
  • Figures 2 and 4 are respectively the upper and lower air outlet modes of the air duct component of this application.
  • the blade assembly 20 of the fan blade assembly 20 in this embodiment has a wide blade without an outer closed ring, and has a splitter blade 23 and Without the splitter blade 23, the fan blade assembly 20 can achieve both axial and centrifugal effects during the work process.
  • the fan assembly 20 is matched with the first air duct body 11 and the second air duct body 12 shown in FIG. 2 and FIG. 4 to realize two air supply modes: top in and bottom out or bottom in and top out.
  • the air conditioner adopts a bottom-in and top-out air supply mode.
  • the two-stage fan blade assembly 20 rotates in a counterclockwise direction at this time.
  • the air flow enters from the lower end of the fan blade assembly 20 at the bottom, and after blowing out from the fan blade assembly 20 at the bottom, it passes through the mounting plate 40 with rectifying blades 43.
  • the mounting plate 40 meets the function of fixing the drive motor and can move from the bottom fan blade
  • the airflow blown out by the assembly 20 is rectified to convert the circumferential movement of the airflow into axial movement to reduce the vortex loss between the airflows.
  • the rectified airflow enters the circulation channel 121 from the lower end of the fan blade assembly 20 at the bottom, and passes through the upper fan blades. After the component 20 performs the second work, it is blown out from the upper end of the upper fan blade assembly 20, and then passed through the guide assembly 50 for secondary rectification and then blown out of the air duct body 10, thereby realizing the air supply mode of bottom in and top out.
  • the internal flow is shown in Figure 19.
  • the air conditioner adopts a top-in and bottom-out air supply mode.
  • the two-stage fan blade assembly 20 rotates in a clockwise direction at this time.
  • the flow guide assembly 50 plays the dual role of inlet preselection and rectification, and then passes through the upper fan blade assembly 20 to perform work, and then passes through the rectifier blade 43.
  • Install the plate 40, the rectifying blades 43 can rectify the air flow blown from the upper wind blade assembly 20, and convert the circumferential motion of the air flow into axial motion, so as to reduce the vortex loss between the airflows.
  • the upper end of the blade assembly 20 enters, and after the second work of the bottom fan blade assembly 20, the air duct body 10 is finally blown out from the lower end of the bottom fan blade assembly 20 to achieve a top-in and bottom-out air supply mode.
  • the airflow is inside the fan blade assembly 20
  • the flow direction is shown in Figure 20.
  • the two fan blade assemblies 20 are respectively located at both ends of the mounting plate 40. While the mounting plate 40 satisfies the function of fixing the drive motor, it can also achieve the air flow rectification effect between the fan blade assemblies 20.
  • the guide on the mounting plate 40 The flow cover 41 is connected with the rectifying blades 43. This structure can guide the airflow, so that the air flows are converged to the rectifying blades 43. At the same time, the area of the guide vanes in the air duct body 10 is increased, and energy loss is reduced.
  • the guide vanes 52 on the upper flow guide assembly 50 can perform the effects of outlet rectification and inlet preselection in two modes respectively.
  • the rectifying blades 43 on the mounting plate 40 can change the direction of the airflow from the circumferential movement to the axial movement, reduce the vortex loss between the airflows, greatly improve the efficiency of the fan, and increase the air output.
  • the air duct component in the present application can realize the secondary work process of the fan blade assembly 20, and this way can increase the working power of the entire fan blade assembly 20. Take the following entry and exit as an example. After the bottom fan assembly 20 performs work, it is rectified by the mounting plate 40 with rectifying blades 43, which can reduce the eddy current loss between the airflows, and then passes through the top fan assembly 20 to perform secondary work. The performance of the fan blade assembly 20 is greatly improved, and the effect of secondary pressurization can be achieved. Therefore, the air duct component can greatly increase the air output, reduce the energy loss of the fan, and at the same time have a greater supercharging effect, and can overcome greater resistance. It can be applied to two air supply modes: top in and bottom out or bottom in and top out. The air conditioner has a significant effect.
  • the air duct component is not limited to use in an air conditioner, nor is it limited to the use of heating mode or cooling mode, as long as it needs to use other structures of the air duct component of this application, it Within the protection scope of this application.
  • the air duct component of the present application can realize the switching of the air inlet and outlet directions.
  • the air duct component of the present application can greatly increase the air volume and at the same time achieve the effect of secondary pressurization.
  • the mounting plate with rectifying components of the present application reduces the eddy current loss between airflows and improves the efficiency of the fan blade components.
  • the combination of the mounting plate and the rectifying component can make it have a rectifying effect on the airflow while satisfying the installation and fixing of the motor.
  • the deflector at the lower part of the mounting plate is connected with the rectifying component, which can guide the airflow, increase the area of the guide vane, and reduce energy loss.
  • the position of the recessed neck between the two-stage air ducts is placed above the bottom end of the top blade assembly, so that the top blade assembly can simultaneously have axial suction and lateral (radial) suction functions , And at the same time increase the secondary function of the secondary air duct and improve the efficiency of the blade assembly.
  • the fan blade assembly of the present application is partially exposed to the outside of the air duct body.
  • the fan blade assembly at the first end of the air duct body has both axial suction and lateral (radial) suction. It can increase the functional strength of the fan blade assembly and improve the efficiency of the fan blade assembly; in the upper air inlet and lower air outlet mode, the fan blade assembly at the first end of the air duct body can throw part of the air flow out of the air duct in advance. Reduce, greatly improve work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风道部件及空调器,风道部件包括:风道本体(10),风道本体(10)上设置流通通道(121);风叶组件(20),多个风叶组件(20)设置在流通通道(121)内并沿流通通道(121)的轴向间隔设置,多个风叶组件(20)中的一个位于风道本体(10)的第一端并凸出于风道本体(10)第一端的端面(123)。

Description

风道部件及空调器
本申请要求于2019年08月02日提交至中国国家知识产权局,申请号为201910713852.8,发明名称为“风道部件及空调器”的专利申请的优先权。
技术领域
本申请涉及空调技术领域,具体而言,涉及一种风道部件及空调器。
背景技术
为了提高空调器的能量利用率,同时提高人体舒适性,在不同的模式下需要不同的出风方式。制冷模式时,冷空气从上方吹出可以实现沐浴式制冷效果;制热模式时,热空气从下方吹出可以实现地毯式制热效果。沐浴式制冷和地毯式制热可以更加高效的利用气体自身性能,实现更高的能量利用率。
然而,目前发明人所知道的空调产品使用比较广的风叶主要有离心风叶、贯流风叶和轴流风叶三种,对于不同使用需求和进出风方式,需要配置不同的风叶形式满足机型开发。但是还没有一种风叶及其风道可以仅通过风叶旋转方向的改变来切换气流进、出口的方向,这就使得传统的空调进风口只能进风,出风口只能出风。虽然发明人所知道的分布式送风技术可以实现上下两个风口送风,但是制冷模式时,下风口也会吹出冷风,制热模式时,上风口也会吹出热风,并不能最佳的实现能量利用率。
因此,需要提供一种可以实现切换气流进、出口的方向的风道结构。
发明内容
本申请的一些实施例提供了一种风道部件及空调器,以解决发明人所知道的空调器的气流进、出口方向不能切换,做功不够的问题。
根据本申请的一个方面,提供了一种风道部件,包括:风道本体,风道本体上设置流通通道;风叶组件,多个风叶组件设置在流通通道内并沿流通通道的轴向间隔设置,多个风叶组件中的一个位于风道本体的第一端并凸出于风道本体第一端的端面。
进一步地,风道本体的第一端的端面垂直流通通道的轴线。
进一步地,风道部件还包括:驱动组件,驱动组件与风叶组件驱动连接以驱动风叶组件沿顺时针方向转动或者沿逆时针方向转动。
进一步地,风道部件还包括:安装板,安装板穿过流通通道,驱动组件安装在安装板上。
进一步地,驱动组件包括驱动电机,风叶组件安装在驱动电机的输出轴上。
进一步地,安装板上设置有导流罩,导流罩呈喇叭状结构设置,喇叭状结构的开口较大的一端朝向流通通道的第二端设置,驱动组件位于导流罩的内部。
进一步地,导流罩外周设置有环形通道,环形通道内设置有多块间隔设置的整流叶片。
进一步地,风道部件还包括导流组件,导流组件设置在流通通道第二端处。
进一步地,导流组件包括:定位柱;导叶,多块导叶沿定位柱的外周间隔布置。
进一步地,风叶组件包括定位套和多块风叶,多块风叶沿定位套的外周间隔均匀布置。
进一步地,风叶组件还包括分流叶片,分流叶片固定在定位套的外侧壁上并位于相邻两块风叶之间。
进一步地,风叶组件为两个,两个风叶组件的摆放方式相同,两个风叶组件分别位于安装板的两侧。
进一步地,风道本体包括:第一风道本体,第一风道本体上的流通通道的中间段设置有内凹缩口,多个风叶组件分别位于内凹缩口的两侧;第二风道本体,第二风道本体上的流通通道的中间段的横截面积沿轴向不发生变化,风叶组件位于中间段内;第一风道本体和第二风道本体可切换地套设在风叶组件的外周。
进一步地,第一风道本体内距离内凹缩口最近的一个风叶组件与流通通道第一端的间距小于内凹缩口与流通通道第一端的间距。
根据本申请的另一方面,提供了一种空调器,包括风道部件,风道部件为上述的风道部件。
应用本申请的技术方案,实际工作时,在下进风上出风模式下,本申请中的风叶组件可沿顺时针方向转动,气流从流通通道的第一端向第二端方向流动;在上进风下出风模式下,风叶组件在流通通道内沿顺时针方向旋转,气流从流通通道的第二端向第一端方向流动。通过多个风叶组件的作用,能够增加风道部件的风量,同时起到多次增压的效果。
由于本申请的中的风道本体第一端处具有凸出于风道本体第一端的端面的风叶组件,即风叶组件部分露出风道本体外部,在下进风上出风模式时,风道本体第一端的风叶组件同时具有轴向吸风和侧向(径向)吸风作用,加大风叶组件做功能力,提高风叶组件效率;在上进风下出风模式时,风道本体第一端的风叶组件可以将部分气流提前甩出风道,风道本体内部阻力减小,做功效率大幅度提高。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示意性示出了本申请的风道部件装配上第一风道本体时的主视图;
图2示意性示出了本申请的风道部件处于下进风上出风模式时的剖视图;
图3示意性示出了本申请的风道部件装配上第二风道本体时的主视图;
图4示意性示出了本申请的风道部件处于上进风下出风模式时的剖视图;
图5示意性示出了本申请的风道部件装配上第一风道本体时的第一视角立体图;
图6示意性示出了本申请的风道部件装配上第一风道本体时的第二视角立体图;
图7示意性示出了本申请的风道部件装配上第二风道本体时的第一视角立体图;
图8示意性示出了本申请的风道部件装配上第二风道本体时的第二视角立体图;
图9示意性示出了本申请的导流组件的立体图;
图10示意性示出了本申请的风叶组件的第一实施例的立体图;
图11示意性示出了本申请的风叶组件的第一实施例的主视图;
图12示意性示出了本申请的风叶组件的第二实施例的立体图;
图13示意性示出了本申请的风叶组件的第二实施例的主视图;
图14示意性示出了本申请的安装板的第一视角立体图;
图15示意性示出了本申请的安装板的俯视图;
图16示意性示出了本申请的安装板的第二视角立体图;
图17示意性示出了本申请的安装板的仰视图;
图18示意性示出了本申请的安装板的剖视图;
图19示意性示出了本申请的风道部件处于下进风上出风时的流体流向图;
图20示意性示出了本申请的风道部件处于上进风下出风时的流体流向图。
其中,上述附图包括以下附图标记:
10、风道本体;11、第一风道本体;111、内凹缩口;12、第二风道本体;121、流通通道;123、端面;20、风叶组件;21、定位套;22、风叶;23、分流叶片;30、驱动组件;31、输出轴;40、安装板;41、导流罩;42、环形通道;43、整流叶片;50、导流组件;51、定位柱;52、导叶。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位,并且对这里所使用的空间相对描述作出相应解释。
参见图1至图20所示,根据本申请的实施例,提供了一种空调器,本实施例中的空调器包括风道部件。
参见图1至图8所示,本实施例中的风道部件包括风道本体10以及风叶组件20。其中,风道本体10上设置流通通道121;多个风叶组件20设置在流通通道121内并沿流通通道121的轴向间隔设置,多个风叶组件20中的一个位于风道本体10的第一端并凸出于风道本体10第一端的端面123。
实际工作时,在下进风上出风模式下,本实施例中的风叶组件20可沿顺时针方向转动,气流从流通通道121的第一端向第二端方向流动;在上进风下出风模式下,风叶组件20在流通通道121内沿顺时针方向旋转,气流从流通通道121的第二端向第一端方向流动。通过多个风叶组件20的作用,能够增加风道部件的风量,同时起到多次增压的效果。
由于本申请的中的风道本体10第一端处具有凸出于风道本体10第一端的端面123的风叶组件20,即风叶组件20部分露出风道本体10外部,在下进风上出风模式时,风道本体10第一端的风叶组件20同时具有轴向吸风和侧向(径向)吸风作用,加大风叶组件20做功能力,提高风叶组件20效率;在上进风下出风模式时,风道本体10第一端的风叶组件20可以将部分气流提前甩出风道,风道本体10内部阻力减小,做功效率大幅度提高。
在一些实施例中,本实施例中的端面123垂直流通通道121的轴线,结构简单,稳定可靠。当然,在本申请的其他实施例中,还可以将端面123设置为倾斜于流通通道121的轴线的方式。
本实施例中的风道部件还包括驱动组件30,该驱动组件30与风叶组件20驱动连接以驱动风叶组件20沿顺时针方向转动或者沿逆时针方向转动,便于使得风道部件在上进风下出风模式和下进风和上出风模式之间的切换。
为了便于对驱动组件30进行安装,本实施例中的风道部件还包括安装板40,该安装板40穿过流通通道121,驱动组件30安装在安装板40上。
在一些实施例中,本实施例中的驱动组件30为驱动电机,实际安装时,将风叶组件20安装在驱动电机的输出轴31上,通过驱动电机的正转和反转,驱动风叶组件20沿顺时针方向旋转或者沿逆时针方向旋转,进而使得风道部件在上进风下出风模式和下进风和上出风模式之间的切换。
安装板40上设置有导流罩41,驱动组件30位于导流罩41的内部,通过导流罩41的作用,便于对驱动电机进行保护,还能够起到导流和整流气流的作用。
本实施例中的导流罩41呈喇叭状结构设置,喇叭状结构开口较大的一端朝向流通通道121的第二端设置,导流罩41的外周具有环形通道42,便于流体通过,该环形通道42内设置有整流组件,便于对流通通道121内的气流进行整流。
本实施例中的整流组件包括多块整流叶片43,多块整流叶片43沿环形通道42周向均匀布置,便于对流通通道121内的气流进行整流,增加流通通道121内的导叶面积,减少能量损耗。
参见图1至图9所示,本实施例中的风道部件还包括导流组件50,该导流组件50设置在流通通道121第二端处,可以将气流方向从周向运动转为轴向运动,减少气流间涡流损失,提高风机效率。
参见图9所示,本实施例中的导流组件50包括定位柱51和多块导叶52,多块导叶52沿定位柱51的外周间隔布置,且导叶52远离定位柱51的一端固定在风道本体10上,结构简单,稳定可靠。
参见图10至11所示,在本申请的一些实施例中,风叶组件20包括定位套21和多块风叶22,多块风叶22沿定位套21的外周间隔均匀布置。
参见图12和图13所示,在本申请的另一些实施例中,风叶组件20的结构与图10和图11的基本相同,所不同的是,本实施例中的风叶组件20还包括分流叶片23,分流叶片23固定在定位套21的外侧壁上并位于相邻两块风叶22之间。
参见图1至图9所示,本实施例中的风道本体10包括第一风道本体11和第二风道本体12,其中,第一风道本体11上的流通通道121的中间段设置有内凹缩口111,多个风叶组件20分别位于内凹缩口111的两侧,多个风叶组件20中一个的端部凸出于内凹缩口111处;第二风道本体12上的流通通道121的中间段的横截面积沿轴向不发生变化,风叶组件20位于中间段内;第一风道本体11和第二风道本体12可切换地套设在风叶组件20、风叶组件20、安装板40、驱动组件30、导流组件50的外周。
需要说明的是,本实施例中的流通通道121的中间段是指流通通道121的位于导流组件50与风道本体10第一端的风叶组件20之间的间隔段。
实际工作时,本实施例中的第一风道本体11和第二风道本体12是可切换地套设在风叶组件20、风叶组件20、安装板40、驱动组件30、导流组件50的外周,能够适应不同的出风需求。具体来说,本实施例中的第一风道本体11尤其适用于下进风上出风模式,第二风道本体12尤其适用于上进风下出风模式。
第一风道本体11内距离内凹缩口111最近一个风叶组件20与流通通道121第一端的间距小于内凹缩口111与流通通道121第一端的间距。也就是说,本实施例中的第一风道本体11的内凹缩口111的位置位于顶端的风叶组件20底端上方(见附图2),使得顶端的风叶组件20可以同时具有轴向吸风和侧向(径向)吸风作用,同时加大次级风道二次做功能力,提高风叶组件20效率,效果十分显著。
在一些实施例中,本实施例中的风叶组件20为两个,两个风叶组件20的摆放方式相同,两个风叶组件20分别位于安装板40的两侧。当然,在本申请的其他实施例中,还可以将风叶组件20设置为三个或者三个以上。
本实施例中的两个风叶组件20的摆放方式相同,这里的意思是指:风道本体10内的两个风叶组件20的放置方式一样,即两个风叶组件20上的风叶22的旋向一致,且风叶组件20的外径大的一端靠近风道本体10的第二端设置,风叶组件20的外径较小的一端靠近风道本体10的第一端设置的方式,这种方式可以增大风叶组件20做功能力。
再次结合图1至图20所示,本实施例中的风道部件为一种两级混流风道,实际工作时,该风道部件可以实现气流进、出口方向的切换,以实现上进下出或者下进上出两种送风模式。图2以及图4分别为本申请的风道部件的上下两种出风模式,本实施例中的风叶组件20的风叶组件20的叶片宽大、无外封闭圈,有带分流叶片23和不带分流叶片23两种形式,风叶组件20做功过程可以实现轴向和离心方向两种效果。该风叶组件20搭配图2和图4所示的第一风道本体11和第二风道本体12,可实现上进下出或者下进上出两种送风模式。
制冷模式时,空调器采用下进上出的送风模式,如图2所示,沿风道部件的俯视图来看,此时两级风叶组件20均逆时针方向旋转。气流从底部的风叶组件20下端进入,从底部的风叶组件20吹出后,经过带整流叶片43的安装板40,该安装板40在满足固定驱动电机功能的同时可将从底部的风叶组件20吹出的气流进行整流,将气流的周向运动转化成轴向运动,以减少气流间涡流损失,经过整流后的气流由底部的风叶组件20下端进入流通通道121,经过上端的风叶组件20二次做功后,从上端的风叶组件20上端吹出后经过导流组件50进行二次整流后吹出风道本体10,从而实现下进上出的送风模式,气流在风叶组件20内部的流向见图19所示。
制热模式时,空调器采用上进下出的送风模式,如图3所示,沿风道部件的俯视图来看,此时两级风叶组件20均沿顺时针方向旋转。气流从顶端的进入流通通道121后,首先经过导流组件50,此时导流组件50起到进口预选和整流的双重作用,之后经过上端的风叶组件20做功后,经过带整流叶片43的安装板40,整流叶片43可将从上端的风叶组件20吹出的气流进行整流,将气流的周向运动转化成轴向运动,以减少气流间涡流损失,经过整流后的气流 由底端风叶组件20上端进入,经过底端风叶组件20二次做功后,最终从底端风叶组件20下端吹出风道本体10,实现上进下出的送风模式,气流在风叶组件20内部的流向见图20所示。
实际安装时,两个风叶组件20分别位于安装板40的两端,该安装板40在满足固定驱动电机功能的同时,可以起到风叶组件20间气流整流效果,安装板40上的导流罩41与整流叶片43连接,此结构可以对气流起到导向作用,使得气流都向整流叶片43处汇集,同时也增大了风道本体10内的导叶的面积,减少了能量损耗。上端的导流组件50上的导叶52可以在两种模式下分别起到出口整流和进口预选的效果。安装板40上的整流叶片43可以将气流方向从周向运动转为轴向运动,减少气流间涡流损失,极大地提高风机效率,增大出风量。
本申请中的风道部件可以实现风叶组件20的二次做功过程,这种方式可以加大整个风叶组件20的做功能力。以下进上出为例,底端的风叶组件20做功后,经过带整流叶片43的安装板40进行整流,可以减少气流间涡流损失,之后再经过顶端的风叶组件20二次做功,可以极大的提高风叶组件20的做功能力,且可以起到二次增压的效果。因此,该风道部件可以极大的提高出风量,降低风机能量损耗,同时起到较大增压效果,可以克服更大的阻力,应用到上进下出或者下进上出两种送风模式的空调上,具有显著效果。
当然,在本申请的其他实施例中,风道部件不限于使用在空调器中,也不限于制热模式或者是制冷模式的使用,只要是需要使用本申请的风道部件的其他结构,均在本申请的保护范围内。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
(1)本申请的风道部件可以实现气流进、出口方向的切换。
(2)本申请的风道部件可以极大地增加风量,,同时起到二次增压的效果。
(3)本申请的带整流组件的安装板减少气流间涡流损失,提高风叶组件效率。将安装板与整流组件相结合,可以使其在满足电机安装固定的同时起到对气流的整流效果。安装板下部的导流罩与整流组件连接,可以对气流起到导向作用,增大导叶面积,减少能量损耗。
(4)本申请中的两级风道间内凹缩口处位置置于顶端风叶组件底端上方,使得顶端风叶组件可以同时具有轴向吸风和侧向(径向)吸风作用,同时加大次级风道二次做功能力,提高风叶组件效率。
(5)本申请的风叶组件部分露出风道本体外部,在下进风上出风模式时,风道本体第一端的风叶组件同时具有轴向吸风和侧向(径向)吸风作用,加大风叶组件做功能力,提高风叶组件效率;在上进风下出风模式时,风道本体第一端的风叶组件可以将部分气流提前甩出风道,风道本体内部阻力减小,做功效率大幅度提高。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描 述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种风道部件,其特征在于,包括:
    风道本体(10),所述风道本体(10)上设置流通通道(121);
    风叶组件(20),多个所述风叶组件(20)设置在所述流通通道(121)内并沿所述流通通道(121)的轴向间隔设置,多个所述风叶组件(20)中的一个位于所述风道本体(10)的第一端并凸出于所述风道本体(10)第一端的端面(123)。
  2. 根据权利要求1所述的风道部件,其特征在于,所述风道本体(10)的第一端的端面(123)垂直所述流通通道(121)的轴线。
  3. 根据权利要求1所述的风道部件,其特征在于,所述风道部件还包括:
    驱动组件(30),所述驱动组件(30)与所述风叶组件(20)驱动连接以驱动所述风叶组件(20)沿顺时针方向转动或者沿逆时针方向转动。
  4. 根据权利要求3所述的风道部件,其特征在于,所述风道部件还包括:
    安装板(40),所述安装板(40)穿过所述流通通道(121),所述驱动组件(30)安装在所述安装板(40)上。
  5. 根据权利要求3所述的风道部件,其特征在于,所述驱动组件(30)包括驱动电机,所述风叶组件(20)安装在所述驱动电机的输出轴(31)上。
  6. 根据权利要求4所述的风道部件,其特征在于,所述安装板(40)上设置有导流罩(41),所述导流罩(41)呈喇叭状结构设置,所述喇叭状结构的开口较大的一端朝向所述流通通道(121)的第二端设置,所述驱动组件(30)位于所述导流罩(41)的内部。
  7. 根据权利要求6所述的风道部件,其特征在于,所述导流罩(41)外周设置有环形通道(42),所述环形通道(42)内设置有多块间隔设置的整流叶片(43)。
  8. 根据权利要求1所述的风道部件,其特征在于,所述风道部件还包括导流组件(50),所述导流组件(50)设置在所述流通通道(121)第二端处。
  9. 根据权利要求8所述的风道部件,其特征在于,所述导流组件(50)包括:
    定位柱(51);
    导叶(52),多块所述导叶(52)沿所述定位柱(51)的外周间隔布置。
  10. 根据权利要求1所述的风道部件,其特征在于,所述风叶组件(20)包括定位套(21)和多块风叶(22),多块所述风叶(22)沿所述定位套(21)的外周间隔均匀布置。
  11. 根据权利要求10所述的风道部件,其特征在于,所述风叶组件(20)还包括分流叶片(23),所述分流叶片(23)固定在所述定位套(21)的外侧壁上并位于相邻两块所述风叶(22)之间。
  12. 根据权利要求4所述的风道部件,其特征在于,所述风叶组件(20)为两个,两个所述风叶组件(20)的摆放方式相同,两个所述风叶组件(20)分别位于所述安装板(40)的两侧。
  13. 根据权利要求1至12中任一项所述的风道部件,其特征在于,所述风道本体(10)包括:
    第一风道本体(11),所述第一风道本体(11)上的所述流通通道(121)的中间段设置有内凹缩口(111),多个所述风叶组件(20)分别位于所述内凹缩口(111)的两侧;
    第二风道本体(12),所述第二风道本体(12)上的所述流通通道(121)的中间段的横截面积沿轴向不发生变化,所述风叶组件(20)位于所述中间段内;
    所述第一风道本体(11)和所述第二风道本体(12)可切换地套设在所述风叶组件(20)的外周。
  14. 根据权利要求13所述的风道部件,其特征在于,所述第一风道本体(11)内距离所述内凹缩口(111)最近的一个所述风叶组件(20)与所述流通通道(121)第一端的间距小于所述内凹缩口(111)与所述流通通道(121)第一端的间距。
  15. 一种空调器,包括风道部件,其特征在于,所述风道部件为权利要求1至14中任一项所述的风道部件。
PCT/CN2020/095223 2019-08-02 2020-06-09 风道部件及空调器 WO2021022896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713852.8A CN112303015A (zh) 2019-08-02 2019-08-02 风道部件及空调器
CN201910713852.8 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021022896A1 true WO2021022896A1 (zh) 2021-02-11

Family

ID=74486646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095223 WO2021022896A1 (zh) 2019-08-02 2020-06-09 风道部件及空调器

Country Status (2)

Country Link
CN (1) CN112303015A (zh)
WO (1) WO2021022896A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524588A (en) * 1983-11-21 1985-06-25 Amana Refrigeration, Inc. Air conditioner with improved fresh air path
CN208108283U (zh) * 2018-03-20 2018-11-16 广东美的制冷设备有限公司 空调柜机及空调器
CN210509735U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509736U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509737U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509720U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风机组件及具有其的空调柜机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524588A (en) * 1983-11-21 1985-06-25 Amana Refrigeration, Inc. Air conditioner with improved fresh air path
CN208108283U (zh) * 2018-03-20 2018-11-16 广东美的制冷设备有限公司 空调柜机及空调器
CN210509735U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509736U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509737U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风道部件及空调器
CN210509720U (zh) * 2019-08-02 2020-05-12 珠海格力电器股份有限公司 风机组件及具有其的空调柜机

Also Published As

Publication number Publication date
CN112303015A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2017107820A1 (zh) 空调室内机
WO2018018877A1 (zh) 一种吊顶式空调室内机
CN103868147A (zh) 空调器
CN105546647B (zh) 轴流柜机
JP2015108316A (ja) 送風機、およびその送風機を搭載した室外ユニット
WO2018188370A1 (zh) 空气调节机构
WO2021022896A1 (zh) 风道部件及空调器
WO2021022895A1 (zh) 混流风机和空调器
CN105864896B (zh) 空调室内机及空调器
CN210509737U (zh) 风道部件及空调器
CN112303016A (zh) 风道部件及空调器
CN112303012A (zh) 风道部件及空调器
CN210509736U (zh) 风道部件及空调器
CN210509735U (zh) 风道部件及空调器
CN210509753U (zh) 安装板结构、风道结构和空调室内机
CN112303020A (zh) 风道部件及空调器
CN108731246A (zh) 一种散热器、控制器及空调
CN105570991A (zh) 轴流柜机
CN205783340U (zh) 空调室内机及空调器
CN104214839A (zh) 分体壁挂吸顶两用型室内机
CN210509740U (zh) 风道部件及空调器
EP3006853B1 (en) Air conditioner with an air supply device
CN210509742U (zh) 风道结构及具有其的空调室内机
CN209415590U (zh) 一种空调器
CN210509752U (zh) 安装板结构、风道结构和空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851181

Country of ref document: EP

Kind code of ref document: A1