WO2021022584A1 - 一种角型多孔介质燃烧器 - Google Patents

一种角型多孔介质燃烧器 Download PDF

Info

Publication number
WO2021022584A1
WO2021022584A1 PCT/CN2019/101558 CN2019101558W WO2021022584A1 WO 2021022584 A1 WO2021022584 A1 WO 2021022584A1 CN 2019101558 W CN2019101558 W CN 2019101558W WO 2021022584 A1 WO2021022584 A1 WO 2021022584A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
burner
porous medium
combustion
angular
Prior art date
Application number
PCT/CN2019/101558
Other languages
English (en)
French (fr)
Inventor
刘慧�
康刘胜
宋雯煜
薛原
郜晓晖
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021022584A1 publication Critical patent/WO2021022584A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention belongs to the technical field of burners, and in particular relates to an angular porous medium burner.
  • porous media burners as a new type of energy-saving and environmentally friendly burners, have attracted more and more attention with their unique advantages.
  • Porous media itself has heat accumulation and feedback effects. Due to the large specific surface area of the porous medium, sufficient heat exchange can be carried out between the gas and the solid; at the same time, because the specific heat capacity of the solid itself is much greater than that of the gas, the heat released during the combustion of combustible gas is stored in the solid through convection heat exchange. Part of it is fed back to the upstream in the form of thermal radiation to preheat unburned combustible gas.
  • Premixed combustion in porous media has the following advantages: it improves fuel combustion efficiency, reduces pollutant emissions, and can significantly broaden the lean burn limit of combustion. At the same time, it does not require traditional heat exchange equipment for the recovery and transfer of combustion waste heat. It has powerful advantages in equipment volume and miniaturization of combustion equipment, providing a new way for efficient and clean combustion of gas, liquid, solid and other fuels, especially low-calorific value gas fuels.
  • Traditional porous media burners are basically cylindrical or rectangular parallelepiped burners with the same axial width.
  • the phenomenon of backfire and defire of the burner appeared, and even caused safety problems such as explosion.
  • it also causes a series of problems such as steep temperature gradient near the flame surface, uneven temperature distribution, excessive local temperature, incomplete combustion, and excessive internal pressure destroys the burner structure and shortens the service life of the burner. .
  • the present invention provides an angular porous medium burner, which can effectively solve the instability problem of burner backfire and defire, and has a large power adjustment range, more complete combustion, and higher combustion efficiency. advantage.
  • An angular porous medium burner which is characterized in that it includes a gas inlet (1), a combustion front chamber (2), a burner shell (3), a protection zone (4), a preheating zone (5), and a buffer zone ( 6)
  • Combustion zone (7) and flue gas outlet (8), buffer zone (6) is arranged between preheat zone (5) and combustion zone (7), preheat zone (5), buffer zone (6)
  • the combustion zone (7) is collectively referred to as the porous medium zone, and both are filled with porous medium materials.
  • the preheating zone 5 and the burner zone 7 respectively taper and expand outwards by a certain angle.
  • the shape of the burner body is that two funnels are symmetric about the center.
  • the preheating zone (5), the buffer zone (6) and the combustion zone (7) are respectively filled with small pore porous medium, mesoporous porous medium and large pore porous medium.
  • the porous medium material is alumina foam ceramic or zirconia foam ceramic
  • the small-pore porous medium uses alumina foam ceramic or zirconia foam ceramic with a pore density of 50PPI-60PPI and a porosity of 80% or more
  • mesoporous porous medium Use alumina foam ceramic or zirconia foam ceramic with a pore density of 30PPI ⁇ 40PPI and a porosity of more than 80%
  • for macroporous porous media use alumina foam ceramic or an oxide ceramic with a pore density of 10PPI ⁇ 20PPI and a porosity of more than 80%.
  • Zirconium foam ceramics are used.
  • the protected area (4) is baffle bricks, the plate thickness of the baffle bricks is 10-40mm, the porosity is 80%-90%, the baffle bricks are provided with multiple through holes, and the average diameter of the through holes is 2 ⁇ 4mm.
  • the through holes of the baffle bricks are arranged in parallel along the axial direction of the burner shell.
  • the burner shell 3 is made of thermal insulation material.
  • the gas inlet (1) and the combustion front chamber (2) are arranged at the bottom of the burner housing (3), and the flue gas outlet (8) is arranged at the burner housing (3)
  • the gas inlet (1) and the combustion front chamber (2) are arranged in the upper part of the burner shell (3), and the flue gas outlet (8) is arranged in the burner shell (3) bottom;
  • the gas inlet (1) and the combustion front chamber (2) are arranged on the left side of the burner housing (3), and the flue gas outlet (8) Is arranged on the right side of the burner housing (3); when gas enters the burner from the right, the gas inlet (1) and the combustion front chamber (2) are arranged on the right side of the burner housing (3).
  • the flue gas outlet (8) is arranged on the left side of the burner housing (3).
  • the present invention provides an angular porous medium burner.
  • the preheating zone of the burner adopts an inwardly tapered structure, so that the speed of the incoming gas Gradually increase, so that the gas is not easy to stay in the preheating zone or return to the gas inlet; because the burner combustion zone adopts an outwardly diverging structure, the speed of the incoming gas is gradually reduced, making the flame easy to stay in the combustion
  • the area may not easily move to the exit or even detach from the burner.
  • the exit cross-sectional area is enlarged, and the porous medium burner is used as a radiant heating device, which will strengthen the external radiation exchange of the exit.
  • Heat so that the outlet radiation efficiency is as high as about 30%; setting buffer zones in the preheating zone and combustion zone can make the speed of the incoming gas have a buffer effect, so as to prevent the local speed from being too high, causing the flame surface to tilt or unevenly .
  • the present invention can significantly broaden the limit range of flame stabilization speed, which not only effectively prevents flame backfire and defire, but also improves the outlet radiation efficiency, and also reduces the thermal shock damage of the porous medium. occur.
  • Figure 1 is an axial cross-sectional view of an angular porous medium burner of the present invention
  • FIG. 2 is a schematic diagram of the porous media area of the present invention.
  • Figure 3 is a top view of an angular porous medium burner of the present invention.
  • an angular porous media burner consists of gas inlet 1, combustion front chamber 2, protection zone 4, preheating zone 5, buffer zone 6, combustion zone 7 and flue gas outlet 8.
  • the surrounding is enclosed by the burner shell 3, the burner shell 3 is made of thermal insulation material, the preheating zone 5, the buffer zone 6, and the combustion zone 7 are collectively referred to as the porous medium zone.
  • the preheating zone 5 and the burning zone 7 are all funnel-shaped, respectively set at both ends of the buffer zone 6, the preheating zone 5 and the combustion zone 7 are symmetrical about the center of the buffer zone 6.
  • the protected area 4 is baffle bricks, the plate thickness of the baffle bricks is 10-40mm, the porosity is 80%-90%, the baffle bricks are provided with multiple through holes, and the average diameter of the through holes is 2 to 4mm.
  • the through holes of the baffle bricks are arranged in parallel along the axial direction of the burner shell 3. In this embodiment, the thickness of the baffle bricks is 10 mm, the porosity is 80%, and the average hole diameter of the through holes is 2 mm.
  • the porous medium area is composed of preheating zone 5, buffer zone 6, and combustion zone 7.
  • the preheating zone 5 and the combustion zone 7 respectively expand inward and outward by a certain angle ⁇ , and the range is 0° ⁇ 40°, in this embodiment, the angle is set to.
  • the porous media area is filled with porous media materials.
  • the porous media materials are alumina foam ceramics or zirconia foam ceramics.
  • the preheating zone 5 is filled with small pore porous media.
  • the pore density is 50PPI ⁇ 60PPI and the porosity is above 80%.
  • Alumina ceramic foam or zirconia ceramic foam; buffer 6 is filled with mesoporous porous media, using alumina foam ceramic or zirconia foam ceramic with a pore density of 30PPI ⁇ 40PPI and a porosity of 80% or more; combustion zone 7 is filled with large pores
  • the porous medium uses alumina foam ceramics or zirconia foam ceramics with a pore density of 10PPI-20PPI and a porosity of over 80%; in this embodiment, the preheating zone 5 is filled with a pore density of 60PPI and a porosity of 83.5%
  • the buffer zone 6 is filled with alumina foam ceramic with a pore density of 40 PPI and a porosity of 85%, and the combustion zone 7 is filled with alumina foam ceramic with a pore density of 10 PPI and a porosity of 87%.
  • the angular porous medium burner provided by the present invention can be used in four forms.
  • the gas inlet 1 and the combustion front chamber 2 are arranged at the bottom of the burner shell 3.
  • the flue gas outlet 8 is arranged at the upper part of the burner housing 3, that is, the gas enters the burner from above, and the gas inlet 1 and the combustion front chamber 2 are arranged at the upper part of the burner housing 3.
  • the flue gas outlet 8 is set at the bottom of the burner housing 3, that is, it enters from the top and the bottom exits; when the gas enters the burner from the left, the gas inlet 1 and the combustion front chamber 2 are set on the left side of the burner housing 3.
  • the flue gas outlet 8 is arranged on the right side of the burner housing 3, that is, left in and right out; when gas enters the burner from the right, the gas inlet 1 and the combustion front chamber 2 are arranged on the right side of the burner housing 3.
  • the flue gas outlet 8 is arranged on the left side of the burner housing 3, that is, right in and left out; as shown in Fig. 1, in this embodiment, the method of gas in and up out is adopted.
  • the gas enters the combustion front chamber 2 from the gas inlet 1, and then passes through the porous medium upstream to the preheating zone 5. After the gas is preheated, it ignites in the buffer zone 6 in the middle of the porous medium and starts to burn. With the continuous supply of, the burning flame gradually settles in the combustion zone 7, and the high-temperature smoke formed by the final combustion is discharged from the burner through the smoke outlet 8.
  • the preheating zone 5 of the angular porous media burner adopts a structure that is tapered inward, the speed of the incoming gas gradually increases, so that the gas is not easy to stay in the preheating zone 5 or return to the gas inlet 1
  • the angle-shaped porous medium burner combustion zone 7 adopts an outwardly diverging structure, the speed of the incoming gas is gradually reduced, so that the flame is easy to stay in the combustion zone 7 or difficult Move to the flue gas outlet 8 or even leave the burner, which suppresses the occurrence of defiring.
  • the preheating zone 5 and the combustion zone 7 are interposed with a buffer zone 6 to allow the velocity of the incoming gas to have a buffer effect, so as to prevent local velocity from being too high, resulting in tilting or uneven distribution of the flame surface, and reducing thermal shock in the burner structure Sexual destruction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

一种角型多孔介质燃烧器,包括燃气进口(1)、燃烧前室(2)、燃烧器外壳(3)、保护区(4)、预热区(5)、缓冲区(6)、燃烧区(7)和烟气出口(8),预热区(5)、缓冲区(6)、燃烧区(7)统称为多孔介质区域,均采用多孔介质材料填充;将预热区(5)和燃烧区(7)分别向内减缩和向外渐扩一定的角度,同时在预热区(5)和燃烧区(7)设置一个缓冲区(6),减小气流速度,防止火焰发生倾斜现象。该燃烧器能够明显拓宽火焰稳定速度极限范围,不仅有效地防止了火焰回火和脱火,也提高了出口辐射效率,同时也减小了多孔介质热震性损坏的发生。

Description

一种角型多孔介质燃烧器 技术领域
本发明属于燃烧器技术领域,尤其涉及一种角型多孔介质燃烧器。
背景技术
近年来,随着中国经济的迅猛发展,能源和环境问题越来越成为人们关注的重点。我国目前面临着化石燃料的不断减少,环境污染的不断加剧的困境,因此要建立可持续发展的经济模式,改善能源结构,改进能源消费方式,提高能源有效利用率,必须充分利用工业生产及能源生产中的各种低热值燃气,实现常规能源的高效清洁利用。低热值气体的可燃成分稀薄,使用常规燃烧技术难以有效利用,如何实现该种气体的有效燃烧、减缓直接排放造成的环境问题,一直是燃烧界的难题。
近年来,为了解决上述问题,不得不持续寻找更为高效、低排放的燃烧技术。在诸多强化燃烧和控制排放的新技术中,多孔介质燃烧器作为一种新型的节能环保燃烧器,以其独特的优势越来越受到人们的关注。多孔介质本身具有热能积累和反馈效应。由于多孔介质较大的比表面积,气体和固体之间可进行充分的热交换;同时,由于固体本身的比热容远大于气体的比热容,可燃气体燃烧时释放的热量经对流换热存储在固体内,其中的一部分再以热福射的形式反馈到上游,用来预热未燃的可燃气体。多孔介质中的预混燃烧有如下优点:提高燃料的燃烧效率,降低污染物排放,而且能够显著拓宽燃烧贫燃极限,同时无需传统的换热设备来进行燃烧余热的回收和传递,在减小设备体积、实现燃烧设备小型化方面具有强大的优势,为气体、液体、固体等燃料,特别低热值气体燃料高效清洁燃烧提供一条新途径。
传统的多孔介质燃烧器基本上都是轴向等宽的圆柱体或者是长方体燃烧器。在实践探究中出现了燃烧器的回火和脱火现象,甚至造成了爆炸等安全问题。除此之外,还造成火焰面附近温度梯度陡,温度分布不均,局部温度过高,燃烧不完全,同时内部压力过大破坏了燃烧器结构,缩短了燃烧器的使用寿命等一 系列问题。
因此,亟需一种能够有效解决燃烧器回火和脱火的不稳定现象,保证功率调节范围大,燃烧更加充分,燃烧效率更高的多孔介质燃烧器。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术存在的不足,本发明提供一种角型多孔介质燃烧器,能够有效解决燃烧器回火和脱火的不稳定问题,具有功率调节范围大,燃烧更加充分,燃烧效率更高的优点。
一种角型多孔介质燃烧器,其特征在于:包括燃气进口(1)、燃烧前室(2)、燃烧器外壳(3)、保护区(4)、预热区(5)、缓冲区(6)、燃烧区(7)和烟气出口(8),缓冲区(6)设置在预热区(5)和燃烧区(7)之间,预热区(5)、缓冲区(6)、燃烧区(7)统称为多孔介质区域,均采用多孔介质材料填充,预热区5和燃烧器区7分别向外渐缩和渐扩一定的角度,角度范围为。
所述燃烧器主体形状为两个漏斗关于中心对称。
所述预热区(5)、缓冲区(6)和燃烧区(7)分别装填小孔多孔介质、中孔多孔介质和大孔多孔介质。
所述多孔介质材料选用氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷,其中小孔多孔介质采用孔密度为50PPI~60PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;中孔多孔介质采用孔密度为30PPI~40PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;大孔多孔介质采用孔密度为10PPI~20PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷。
所述保护区(4)为挡板砖,挡板砖的板厚为10~40mm,孔隙率为80%~90%,挡板砖上开设有多个通孔,通孔的平均孔径为2~4mm。
所述挡板砖的通孔沿燃烧器外壳的轴向平行设置。
所述燃烧器外壳3采用保温材料。
当燃气从下方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧 器外壳(3)的底部,所述烟气出口(8)设置在燃烧器外壳(3)的上部;当燃气从上方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的上部,所述烟气出口(8)设置在燃烧器外壳(3)的底部;当燃气从左方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的左侧,所述烟气出口(8)设置在燃烧器外壳(3)的右侧;当燃气从右方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的右侧,所述烟气出口(8)设置在燃烧器外壳(3)的左侧。
发明的有益效果
有益效果
本发明的有益效果是:本发明提供一种角型多孔介质燃烧器,当超低热值燃气进入燃烧器燃烧,由于燃烧器预热区采用了向内渐缩的结构,使来流气体的速度逐渐增大,让燃气不易停留在预热区或回流至燃气进口处;由于燃烧器燃烧区采用了向外渐扩的结构,使来流气体的速度逐渐减小,让火焰易驻定在燃烧区或不易移动到出口处甚至脱离燃烧器,同时由于燃烧区采用了向外渐扩的结构,扩大了出口截面积,而多孔介质燃烧器作为一个辐射加热装置,这样会强化出口的对外辐射换热,使出口辐射效率高达30%左右;在预热区和燃烧区间设置缓冲区,能够使来流气体的速度得到一个缓冲效果,这样防止局部速度过大,造成火焰面的倾斜或分布不均。
与现有技术相比,本发明的能够明显拓宽火焰稳定速度极限范围,不仅有效地防止了火焰回火和脱火,也提高了出口辐射效率,同时也减小了多孔介质热震性损坏的发生。
对附图的简要说明
附图说明
图1为本发明一种角型多孔介质燃烧器轴向剖视图;
图2为本发明中多孔介质区域示意图;
图3为本发明一种角型多孔介质燃烧器的俯视图;
其中,
1燃气进口,2燃烧前室,3燃烧器外壳,4保护区,5预热区,6缓冲区,7燃烧 区,8烟气出口。
发明实施例
本发明的实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明的技术方案和效果作详细描述。
如图1-3所示,一种角型多孔介质燃烧器内部依次由燃气进口1、燃烧前室2、保护区4、预热区5、缓冲区6、燃烧区7和烟气出口8构成,四周由燃烧器外壳3封闭而成,燃烧器外壳3采用保温材料,预热区5、缓冲区6、燃烧区7统称为多孔介质区域,所述多介质区域中预热区5和燃烧区7均为漏斗状,分别设置在缓冲区6两端,预热区5和燃烧区7关于缓冲区6中心对称。所述保护区4为挡板砖,挡板砖的板厚为10~40mm,孔隙率为80%~90%,挡板砖上开设有多个通孔,通孔的平均孔径为2~4mm,将挡板砖的通孔沿燃烧器外壳3的轴向平行设置,本实施例中挡板砖的厚度为10mm、孔隙率为80%、通孔的平均孔径为2mm。
如图2所示,多孔介质区域由预热区5、缓冲区6、燃烧区7组成,预热区5和燃烧区7分别向内和向外渐扩一定的角度α,其范围是0°<α<40°,在本实施例中将该角度设置为。多孔介质区域均采用多孔介质材料填充,多孔介质材料选用氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷,其中预热区5装填小孔多孔介质,采用孔密度为50PPI~60PPI、孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;缓冲区6装填中孔多孔介质,采用孔密度为30PPI~40PPI、孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;燃烧区7装填大孔多孔介质,采用孔密度为10PPI~20PPI、孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;本实施例中预热区5装填的是孔密度为60PPI、孔隙率为83.5%的氧化铝泡沫陶瓷,缓冲区6装填的是孔密度为40PPI、孔隙率为85%的氧化铝泡沫陶瓷,燃烧区7装填的是孔密度为10PPI、孔隙率为87%的氧化铝泡沫陶瓷。
本发明所提供的一种角型多孔介质燃烧器可以有四种使用形式,当燃气从下方进入燃烧器时,所述燃气进口1、燃烧前室2设置在燃烧器外壳3的底部,所述烟气出口8设置在燃烧器外壳3的上部,即燃气下进上出;当燃气从上方进入燃烧器时,所述燃气进口1、燃烧前室2设置在燃烧器外壳3的上部,所述烟气出口8 设置在燃烧器外壳3的底部,即上进下出;当燃气从左方进入燃烧器时,所述燃气进口1、燃烧前室2设置在燃烧器外壳3的左侧,所述烟气出口8设置在燃烧器外壳3的右侧,即左进右出;当燃气从右方进入燃烧器时,所述燃气进口1、燃烧前室2设置在燃烧器外壳3的右侧,所述烟气出口8设置在燃烧器外壳3的左侧,即右进左出;如图1所示,本实施例中采用的是燃气下进上出的方式。
一种角型多孔介质燃烧器燃气燃烧过程如下:
如图1所示,首先,燃气从燃气进口1进入燃烧前室2,然后经过多孔介质上游至预热区5,燃气被预热之后在多孔介质中游缓冲区6中点火开始燃烧,随着燃气的不断供给,燃烧的火焰逐渐驻定在燃烧区7,最后燃烧所形成的高温烟气由烟气出口8排出燃烧器外。
在本实例中,由于角型多孔介质燃烧器预热区5采用了向内渐缩的结构,使来流气体的速度逐渐增大,让燃气不易停留在预热区5或回流至燃气进口1处,遏制了回火现象的产生;由于角型多孔介质燃烧器燃烧区7采用了向外渐扩的结构,使来流气体的速度逐渐减小,让火焰易驻定在燃烧区7或不易移动到烟气出口8处甚至脱离燃烧器,抑制了脱火现象的产生,同时由于燃烧区7采用了向外渐扩的结构,扩大了烟气出口8的截面积,而多孔介质燃烧器作为一个辐射加热装置,这样会强化出口的对外辐射换热,在本实施例中,定义出口辐射效率是出口辐射热量与燃烧释放热量之比,通过fluent16.0仿真模拟,在当量比
Figure PCTCN2019101558-appb-000001
、入口流速v=0.4-0.6时,出口辐射效率高达30%。预热区5和燃烧区7间置缓冲区6是为了让来流气体的速度得到一个缓冲效果,这样防止局部速度过大,造成火焰面的倾斜或分布不均,使燃烧器结构减少热震性的破坏。

Claims (8)

  1. 一种角型多孔介质燃烧器,其特征在于:包括燃气进口(1)、燃烧前室(2)、燃烧器外壳(3)、保护区(4)、预热区(5)、缓冲区(6)、燃烧区(7)和烟气出口(8),缓冲区(6)设置在预热区(5)和燃烧区(7)之间,预热区(5)、缓冲区(6)、燃烧区(7)统称为多孔介质区域,均采用多孔介质材料填充,预热区5和燃烧器区7分别向外渐缩和渐扩一定的角度α,角度范围为0°<α<40°。
  2. 根据权利要求1所述的一种角型多孔介质燃烧器,其特征在于:所述多介质区域中预热区(5)和燃烧区(7)均为漏斗状,分别设置在缓冲区(6)两端,预热区(5)和燃烧区(7)关于缓冲区(6)中心对称。
  3. 根据权利要求1所述的一种角型多孔介质燃烧器,其特征在于:所述预热区(5)、缓冲区(6)和燃烧区(7)分别装填小孔多孔介质、中孔多孔介质和大孔多孔介质。
  4. 根据权利要求3所述的一种角型多孔介质燃烧器,其特征在于:所述多孔介质材料选用氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷,其中小孔多孔介质采用孔密度为50PPI~60PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;中孔多孔介质采用孔密度为30PPI~40PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷;大孔多孔介质采用孔密度为10PPI~20PPI,孔隙率为80%以上的氧化铝泡沫陶瓷或者氧化锆泡沫陶瓷。
  5. 根据权利要求1所述的一种角型多孔介质燃烧器,其特征在于:所述保护区(4)为挡板砖,挡板砖的板厚为10~40mm,孔隙率为80%-90%,挡板砖上开设有多个通孔,通孔的平均孔径为2~4mm。
  6. 根据权利要求5所述的一种角型多孔介质燃烧器,其特征在于:所述挡板砖的通孔沿燃烧器外壳的轴向平行设置。
  7. 根据权利要求1所述的一种角型多孔介质燃烧器,其特征在于:所 述燃烧器外壳3采用保温材料。
  8. 根据权利要求1所述的一种角型多孔介质燃烧器,其特征在于:当燃气从下方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的底部,所述烟气出口(8)设置在燃烧器外壳(3)的上部;当燃气从上方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的上部,所述烟气出口(8)设置在燃烧器外壳(3)的底部;当燃气从左方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的左侧,所述烟气出口(8)设置在燃烧器外壳(3)的右侧;当燃气从右方进入燃烧器时,所述燃气进口(1)、燃烧前室(2)设置在燃烧器外壳(3)的右侧,所述烟气出口(8)设置在燃烧器外壳(3)的左侧。
PCT/CN2019/101558 2019-08-06 2019-08-20 一种角型多孔介质燃烧器 WO2021022584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910720848.4 2019-08-06
CN201910720848.4A CN110425536B (zh) 2019-08-06 2019-08-06 一种角型多孔介质燃烧器

Publications (1)

Publication Number Publication Date
WO2021022584A1 true WO2021022584A1 (zh) 2021-02-11

Family

ID=68414297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101558 WO2021022584A1 (zh) 2019-08-06 2019-08-20 一种角型多孔介质燃烧器

Country Status (2)

Country Link
CN (1) CN110425536B (zh)
WO (1) WO2021022584A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143456A (zh) * 2022-06-06 2022-10-04 武汉科技大学 一种多层结构的多孔介质燃烧器及其制备方法
CN115894015A (zh) * 2022-11-29 2023-04-04 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128751B (zh) * 2020-08-19 2023-02-17 江苏大学 一种配合泡沫陶瓷的多孔介质燃烧器
CN114623443B (zh) * 2022-04-11 2023-01-03 西安交通大学 一种分段式多孔介质燃烧器及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522723A (en) * 1993-07-02 1996-06-04 Franz Durst Burner having porous material of varying porosity
CN2484481Y (zh) * 2001-06-06 2002-04-03 浙江大学 渐变型多孔介质燃烧器
US20060035190A1 (en) * 2003-04-16 2006-02-16 Sgl Carbon Ag Pore-type burner with silicon-carbide porous body
CN101556040A (zh) * 2009-05-15 2009-10-14 大连理工大学 一种燃用液体燃料的多孔介质燃烧装置
CN108413395A (zh) * 2018-05-15 2018-08-17 武汉科技大学 一种多孔介质预混燃烧器
CN109185882A (zh) * 2018-09-26 2019-01-11 东北大学 一种渐扩式多孔介质燃烧器
CN109724085A (zh) * 2017-10-31 2019-05-07 芜湖美的厨卫电器制造有限公司 混气结构和燃气热水器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522723A (en) * 1993-07-02 1996-06-04 Franz Durst Burner having porous material of varying porosity
CN2484481Y (zh) * 2001-06-06 2002-04-03 浙江大学 渐变型多孔介质燃烧器
US20060035190A1 (en) * 2003-04-16 2006-02-16 Sgl Carbon Ag Pore-type burner with silicon-carbide porous body
CN101556040A (zh) * 2009-05-15 2009-10-14 大连理工大学 一种燃用液体燃料的多孔介质燃烧装置
CN109724085A (zh) * 2017-10-31 2019-05-07 芜湖美的厨卫电器制造有限公司 混气结构和燃气热水器
CN108413395A (zh) * 2018-05-15 2018-08-17 武汉科技大学 一种多孔介质预混燃烧器
CN109185882A (zh) * 2018-09-26 2019-01-11 东北大学 一种渐扩式多孔介质燃烧器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143456A (zh) * 2022-06-06 2022-10-04 武汉科技大学 一种多层结构的多孔介质燃烧器及其制备方法
CN115143456B (zh) * 2022-06-06 2024-04-19 武汉科技大学 一种多层结构的多孔介质燃烧器及其制备方法
CN115894015A (zh) * 2022-11-29 2023-04-04 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法
CN115894015B (zh) * 2022-11-29 2023-08-15 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法

Also Published As

Publication number Publication date
CN110425536A (zh) 2019-11-08
CN110425536B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021022584A1 (zh) 一种角型多孔介质燃烧器
CN101158469B (zh) 一种分段式多孔陶瓷介质气体燃料燃烧器
CN108180475B (zh) 一种轴向和径向稳燃的预混气体多孔介质燃烧器
WO2016107383A1 (zh) 一种带有堆积床结构多孔介质燃烧器
CN104595897B (zh) 一种单层多孔泡沫陶瓷板部分预混气体燃料燃烧器
CN207716414U (zh) 一种轴向和径向稳燃的预混气体多孔介质燃烧器
CN100406802C (zh) 一种多孔金属-陶瓷介质气体燃料燃烧器
CN104879753A (zh) 一种单层多孔泡沫陶瓷板全预混气体燃料燃烧器
CN204388057U (zh) 一种带有堆积床结构多孔介质燃烧器
CN202012917U (zh) 一种空气烟气管道切换型催化/蓄热燃烧锅炉
CN202598491U (zh) 水煤浆低氮旋流燃烧锅炉
CN109185882A (zh) 一种渐扩式多孔介质燃烧器
CN109268829B (zh) 一种楔形过渡区多孔介质燃烧器及火焰面调控方法
CN103868055A (zh) 一种适合低热值燃气切流与直流复合稳燃蓄热燃烧装置
CN202141052U (zh) 一种辐射管燃烧器
CN104633657A (zh) 带锥型钝体的多孔介质燃烧器
CN114935146B (zh) 一种均流式多孔介质燃烧器及其工作方法
WO2022096021A1 (zh) 燃烧器及其应用
CN112443838B (zh) 具有二次风的鼓风预混多孔介质燃烧辐射器及其燃烧方法
CN107420890A (zh) 一种醇基燃料汽化燃烧装置
CN209977990U (zh) 一种低氮全预混蒸汽锅炉
CN216897289U (zh) 一种可多次燃烧的多孔介质燃烧器
CN102330980B (zh) 煤气与空气射流引射混合多孔体稳焰对冲均流燃烧器
CN202532478U (zh) 一种窑炉醇基燃料燃烧机
CN217503651U (zh) 一种便于布气的多孔介质燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940818

Country of ref document: EP

Kind code of ref document: A1