WO2021022573A1 - 振感相似度评价方法、装置及存储介质 - Google Patents

振感相似度评价方法、装置及存储介质 Download PDF

Info

Publication number
WO2021022573A1
WO2021022573A1 PCT/CN2019/100052 CN2019100052W WO2021022573A1 WO 2021022573 A1 WO2021022573 A1 WO 2021022573A1 CN 2019100052 W CN2019100052 W CN 2019100052W WO 2021022573 A1 WO2021022573 A1 WO 2021022573A1
Authority
WO
WIPO (PCT)
Prior art keywords
similarity
acceleration
vibration
peak
waveforms
Prior art date
Application number
PCT/CN2019/100052
Other languages
English (en)
French (fr)
Inventor
向征
王修越
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to US16/992,152 priority Critical patent/US20210042519A1/en
Publication of WO2021022573A1 publication Critical patent/WO2021022573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • G06F2218/14Classification; Matching by matching peak patterns

Definitions

  • the invention relates to waveform similarity calculation, in particular to a vibration-sensing similarity evaluation method, device and storage medium.
  • vibration feedback applied to mobile phone interaction, gunfighting games, boxing games and other scenarios can bring users a good immersive experience. Therefore, more and more electronic products have higher and higher requirements for the similarity of vibration feedback. How to replicate the same vibration feedback in different devices is an increasingly urgent problem.
  • One of the objectives of the present invention is to provide a vibration similarity evaluation method, which can quantify the vibration similarity, and then intuitively feedback the user's subjective vibration.
  • the second objective of the present invention is to provide a vibration similarity evaluation device, which can quantify the vibration similarity, and then intuitively feedback the user's subjective vibration.
  • the third object of the present invention is to provide a computer storage medium that can quantify the similarity of vibration feeling, and then intuitively feedback the user's subjective vibration feeling.
  • a vibration similarity evaluation method includes:
  • Steps to obtain data obtain the waveforms of the two acceleration signals and the waveforms of the two excitation signals respectively;
  • the similarity of the waveforms of the two acceleration signals is calculated by the corresponding acceleration similarity calculation method, so as to calculate the similarity of the waveforms of the two acceleration signals according to the The similarity of the waveform evaluates the similarity of the vibration inductance of the equipment corresponding to the two acceleration signals;
  • the acceleration similarity calculation method includes: a method of calculating the similarity of two acceleration signals from a numerical perspective and/or a method of calculating the similarity of two acceleration signals from a user experience perspective.
  • the step of calculating the similarity of two acceleration signals from the perspective of user experience includes:
  • the indicators include the peak-to-peak acceleration difference in the signal phase, the peak-to-peak acceleration difference in the after-vibration phase, the difference in signal duration, and the difference in the number of peaks in the signal phase.
  • the step of calculating the similarity of two acceleration signals according to each index includes:
  • the similarity of the peak-to-peak acceleration waveform is calculated.
  • the step of calculating the similarity of the two acceleration signals according to each index further includes:
  • the similarity of the number of local peaks of the acceleration signals of the two acceleration waveforms is calculated.
  • the step of calculating the similarity of the two acceleration signals from a numerical point of view includes: calculating the similarity of the two acceleration signals according to the similarity calculation method of the two curves.
  • the method for calculating the similarity of the two curves includes: a method based on EVM, a method based on Minkowski distance, or a method based on Fletcher similarity.
  • a method for evaluating vibration similarity includes a memory and a processor.
  • the memory stores a similarity evaluation program that can be run on the processor.
  • the similarity evaluation program is a computer program, and the processor executes the
  • the similarity evaluation program is the step of realizing the vibration similarity evaluation method adopted as one of the objectives of the present invention.
  • a storage medium is a computer-readable storage medium, on which a similarity evaluation program is stored, the similarity evaluation program is a computer program, and the similarity evaluation program is executed by a processor to realize the present invention
  • One of the purposes is to adopt the steps of the vibration similarity evaluation method.
  • the beneficial effect of the present invention is that by adding factors related to human user experience into the similarity calculation process for acceleration waveforms, the present invention can better reflect the objective quantification of the evaluation of vibration similarity and subjective vibration. Consistency of similarity evaluation.
  • Fig. 1 is a waveform diagram of an excitation signal of acceleration acc1 provided by the present invention
  • Figure 2 is a waveform diagram of acceleration acc1, acc2, acc3 provided by the present invention.
  • Fig. 3 is a schematic diagram of the signal phase and after-vibration phase of the excitation signal U provided by the present invention.
  • FIG. 4 is a structural diagram of the acceleration detection hardware provided by the present invention.
  • Fig. 5 is a flowchart of a method for evaluating vibration similarity provided by the present invention.
  • FIG. 6 is a flowchart of a method for calculating the similarity of acceleration signals from the perspective of user experience provided by the present invention
  • Fig. 7 is a block diagram of a vibration similarity evaluation device provided by the present invention.
  • the quantification of vibration similarity evaluation is realized by converting it into the calculation of waveform similarity, that is to say, the evaluation of vibration similarity is converted into the calculation of waveform similarity.
  • the technical problem to be solved by the present invention is how to calculate the similarity of two waveforms, and the process is illustrated by combining the following examples:
  • the waveform of acceleration acc1 is L1
  • the waveform of its excitation voltage is U
  • the other two accelerations are acc2 and acc3, the waveforms are L2 and L3, and the corresponding excitation voltage waveforms are U2 and U3, as shown in the figure.
  • different accelerations have different excitation voltages.
  • Fig. 1 shows the waveform of the excitation voltage U
  • Fig. 2 shows the waveforms of acceleration acc1, acceleration acc2, and acceleration acc3.
  • the acceleration acc1 is the standard: from the waveform shape, the acceleration acc1 and the acceleration acc2 are very close, but the difference between the acceleration acc1 and the acceleration acc3 is relatively large.
  • EVM Error Vector Magnitude
  • vibration feeling is not only related to the value, but also related to people. That is to say, for the curve, different stages, duration and other factors will affect people's vibration feeling. That is, it is impossible to describe the similarity of the waveform from the perspective of human user experience.
  • the present invention provides a vibration similarity evaluation method, which combines the foregoing calculation of waveform similarity from a numerical perspective, and describes the similarity of two waveforms from a numerical perspective and from a user experience perspective. And then realize the evaluation of vibration similarity.
  • the corresponding angle can be selected according to the actual application scenario to calculate the similarity of the two waveforms, and then the similarity of the user's subjective vibration perception can be evaluated.
  • the similarity of the two waveforms calculated from the point of view of the value, that is, the index for calculating the similarity is formulated from the perspective of pure signal processing, and used as the upper frame line.
  • the similarity of the waveform similarity calculation method is used to calculate the similarity, specifically:
  • the EVM-based method as described above can be used to calculate the similarity of the two curves.
  • the similarity between acceleration acc1 and acceleration acc2 is 92%, and the similarity between acc1 and acc3 is 60%.
  • the similarity of the two waveforms is calculated from the perspective of user experience.
  • the present invention obtains user experience based on actual experience, and introduces factors related to user experience, such as vibration strength, tailing strength, vibration duration, vibration frequency, etc., into the calculation of acceleration waveform similarity.
  • Serial number Indicator (100%) user experience 1 Signal phase acceleration peak-to-peak difference Vibration strength 2 Acceleration peak-to-peak difference during after vibration Tail strength 3 Signal duration difference Vibration duration 4 Signal phase peak number difference Vibration frequency
  • the similarity of the acceleration waveform is calculated based on these indicators, and these indicators are related to the user experience, so the similarity of the acceleration waveform calculated by these indicators can better reflect Outstanding vibration similarity.
  • FIG 3 shows the signal phase of the excitation signal U and the after vibration phase.
  • For each acceleration signal it can be divided into signal phase and after-vibration phase.
  • the peak-to-peak difference of the acceleration of the signal phase refers to the difference of the peak-to-peak value of the corresponding acceleration waveform in the signal phase of the excitation signal of each acceleration. Because the peak-to-peak value of different acceleration waveforms are different, the corresponding user experience vibration feel is also different. Therefore, the similarity of the two acceleration waveforms is calculated by calculating the similarity of the peak-to-peak acceleration waveforms of the two accelerations in the signal phase of the respective excitation signals. Among them, the peak-to-peak value refers to the difference between the highest value and the lowest value of a signal in a period, which is the range between the maximum and the minimum, that is, the Gpp value.
  • the method of calculating the similarity of the acceleration waveform based on the peak-to-peak difference of the acceleration in the signal phase can be calculated: in the after-vibration phase, the similarity of acceleration acc1 and acceleration acc2 is 92%, and the acceleration acc1 and acceleration acc3 are similar. The similarity is 83%.
  • the duration of the signal also has a certain impact on human vibration, such as the duration of vibration.
  • the signal duration here refers to the signal duration of the excitation signal corresponding to each acceleration. Therefore, the similarity of the two acceleration waveforms is indicated by calculating the similarity of the signal duration of the excitation signal. That is, the similarity of the two accelerations is calculated according to the duration of the excitation signals of the two accelerations.
  • the similarity between acceleration acc1 and acceleration acc2 is 84%
  • the similarity between acceleration acc1 and acceleration acc3 is 88%.
  • the difference in the number of peaks of the signal stage the number of peaks of acceleration is different, and it also has a certain impact on the vibration of the human body, such as the impact of the strength of the vibration.
  • the number of local peaks of the acceleration signal refers to the number of peaks in the acceleration during the signal phase of the excitation signal. Therefore, the similarity of the two accelerations is calculated based on the difference in the number of peaks in the signal phase of the excitation signal.
  • the similarity between acceleration acc1 and acceleration acc2 is 100%
  • the similarity between acceleration acc1 and acceleration acc3 is 100%
  • acceleration acc1 The similarity between acceleration acc1 and acceleration acc2 is:
  • acceleration acc1 The similarity between acceleration acc1 and acceleration acc3 is:
  • the similarity of acceleration acc1 and acc2 is 93.5 calculated based on the angle of user experience, and the similarity of acceleration acc1 and acc3 is 91.2%.
  • acceleration acc1 and acceleration acc2 are relatively similar, and the difference between acceleration acc1 and acceleration acc3 is greater.
  • the similarity between acceleration acc1 and acceleration acc2 is 92%, and the similarity between acc1 and acc3 is 60%.
  • acceleration 1 and acceleration 3 show that the two are quite different, when calculated from the perspective of user experience, the similarity of the acceleration waveform is relatively high. Therefore, in the actual use process, when evaluating the vibration similarity, different angles can be selected to calculate the waveform similarity according to the actual application scenario to realize the evaluation of the vibration similarity. As the vibration similarity is evaluated, it is converted into the calculation of the similarity of the acceleration waveform, and the above calculation results show that in the present invention, the similarity of the acceleration waveform is calculated from the perspective of user experience, which can better reflect In terms of objective quantification, the evaluation of vibration similarity is consistent with the user's subjective vibration.
  • an embodiment provided by the present invention is a method for calculating vibration similarity, including:
  • Step S100 Acquire the waveform of the acceleration signal and the waveform of the excitation signal of the two devices respectively.
  • the present invention converts the evaluation of the vibration similarity of the device into the calculation of the similarity of the corresponding acceleration, so the acceleration signal that causes the corresponding device to vibrate can be obtained through detection by the corresponding detection device or module.
  • FIG. 4 it is a hardware connection diagram of a method for measuring the acceleration of a motor through an accelerometer provided by the present invention, and the acceleration waveform of the motor on the vibration axis system can be obtained.
  • a PC Pulson Comuter, personal computer
  • the PC sends control signals to the power amplifier through the capture card, and transmits the tooling to make the tooling vibrate.
  • the accelerometer detects the vibration of the tooling in real time and amplifies it through a signal amplifier, and then sends it to the PC through the capture card, so that the PC can obtain the acceleration of the vibration of the tooling.
  • a certain type of motor is used to test the acceleration signal on a 100g tooling.
  • the acceleration measurement method is not limited to the method provided by the present invention, and other methods capable of measuring acceleration are within the protection scope of the present invention.
  • Step S200 select and determine the acceleration similarity calculation method according to the demand
  • Step S300 The waveforms of the acceleration signals of the two devices and the waveform meters corresponding to the excitation signals are used to obtain the similarity of the acceleration signals of the two devices according to the selected acceleration similarity calculation method.
  • Step S400 According to the similarity of the acceleration signal, the vibration similarity of the two devices is obtained.
  • the acceleration similarity calculation method includes: a method of calculating the similarity of two acceleration signals from a numerical angle and a method of calculating the similarity of two acceleration signals from the angle of user experience.
  • the method of calculating the similarity of two acceleration signals from the perspective of user experience specifically includes:
  • Step S501 Set indicators related to user experience according to requirements.
  • Step S502 Calculate the similarity of the two acceleration signals according to each index.
  • Step S503 According to the weighted average method, the similarity of the two acceleration signals corresponding to each index is obtained to obtain the similarity of the acceleration signals of the two devices.
  • indicators are divided according to the empirical perspective of human user experience.
  • indicators include the peak-to-peak acceleration difference in the signal phase, the peak-to-peak acceleration difference in the after-vibration phase, the difference in signal duration, and the difference in the number of peaks in the signal phase. That is, the similarity of acceleration is calculated according to each index.
  • step S402 also includes: when the indicator is the peak-to-peak difference of acceleration in the signal phase, calculating the similarity of the peak-to-peak values of the two acceleration waveforms during the duration of the excitation signal.
  • the specific calculation method refers to the aforementioned calculation.
  • the indicator is the peak-to-peak difference of acceleration during the after-vibration phase
  • the excitation signal calculate the peak-to-peak similarity of the acceleration waveform.
  • the similarity of the duration of the excitation signal of the two acceleration waveforms is calculated.
  • the similarity of the local peak number of the acceleration signal of the two acceleration waveforms is calculated.
  • the method of calculating the similarity of two acceleration signals from a numerical point of view refers to calculating from a purely digital point of view.
  • the similarity of two acceleration signals is calculated by using the similarity calculation method of two curves. .
  • the invention provides a vibration similarity evaluation device.
  • FIG. 7 a schematic diagram of the internal structure of a vibration similarity evaluation device provided by an embodiment of the present invention.
  • the vibration similarity evaluation device may be a PC (Personal Computer, personal computer), or a terminal device such as a smart phone, a tablet computer, or a portable computer.
  • the vibration similarity evaluation device includes at least a processor 12, a communication bus 13, a network interface 14, and a memory 11.
  • the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, etc.
  • the memory 11 may be an internal storage unit of the vibration similarity evaluation device, such as a hard disk of the vibration similarity evaluation device.
  • the memory 11 may also be an external storage device of the vibration similarity evaluation device, such as a plug-in hard disk equipped on the vibration similarity evaluation device, a smart media card (SMC), and a secure digital (Secure Digital, SD) card, flash card (Flash Card), etc.
  • the memory 11 may also include both an internal storage unit of the vibration similarity evaluation device and an external storage device.
  • the memory 11 can be used not only to store application software installed in the vibration similarity evaluation device and various data, such as codes of similarity evaluation programs, but also to temporarily store data that has been output or will be output.
  • the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor, or other data processing chip, and is used to run the program code or processing stored in the memory 11 Data, such as the implementation of similarity evaluation procedures.
  • CPU central processing unit
  • controller microcontroller
  • microprocessor or other data processing chip
  • the communication bus 13 is used to realize the connection and communication between these components.
  • the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is usually used to establish a communication connection between the vibration similarity evaluation device and other electronic devices.
  • a standard wired interface and a wireless interface such as a WI-FI interface
  • the vibration similarity evaluation device may further include a user interface.
  • the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include a standard wired interface and a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light emitting diode) touch device, etc.
  • the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the vibration similarity evaluation device and to display a visualized user interface.
  • FIG. 7 only shows the vibration similarity evaluation device with components 11-14 and the similarity evaluation program. Those skilled in the art can understand that the structure shown in FIG. 7 does not constitute an important part of the vibration similarity evaluation device. Limited, it may include fewer or more components than shown, or a combination of certain components, or a different component arrangement.
  • Step S100 obtain two The waveform of the acceleration signal of each device and the waveform of the excitation signal.
  • Step S200 select and determine the acceleration similarity calculation method according to the demand
  • Step S300 The waveforms of the acceleration signals of the two devices and the waveform meters corresponding to the excitation signals are used to obtain the similarity of the acceleration signals of the two devices according to the selected acceleration similarity calculation method.
  • Step S400 According to the similarity of the acceleration signal, the vibration similarity of the two devices is obtained.
  • the acceleration similarity calculation method includes: a method of calculating the similarity of two acceleration signals from a numerical angle and a method of calculating the similarity of two acceleration signals from the angle of user experience.
  • the method for calculating the similarity of two acceleration signals from the perspective of user experience specifically includes:
  • Step S501 Set indicators related to user experience according to requirements.
  • Step S502 Calculate the similarity of the two acceleration signals according to each index.
  • Step S503 According to the weighted average method, the similarity of the two acceleration signals corresponding to each index is obtained to obtain the similarity of the acceleration signals of the two devices.
  • the indicators include the peak-to-peak difference of acceleration in the signal phase, the peak-to-peak difference of acceleration in the after-vibration phase, the difference in signal duration and the difference in the number of peaks in the signal phase.
  • step S402 also includes: when the indicator is the peak-to-peak difference of acceleration in the signal phase, calculating the similarity of the peak-to-peak values of the two acceleration waveforms during the duration of the excitation signal.
  • the specific calculation method refers to the aforementioned calculation.
  • the indicator is the peak-to-peak difference of acceleration during the after-vibration phase
  • the excitation signal calculate the peak-to-peak similarity of the acceleration waveform.
  • the similarity of the duration of the excitation signal of the two acceleration waveforms is calculated.
  • the similarity of the local peak number of the acceleration signal of the two acceleration waveforms is calculated.
  • the embodiment of the present invention also provides a storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores a similarity evaluation program, and the similarity evaluation program can be configured by one or more Each processor executes to achieve the following operations:
  • Step S100 Acquire the waveform of the acceleration signal and the waveform of the excitation signal of the two devices respectively.
  • Step S200 select and determine the acceleration similarity calculation method according to the demand
  • Step S300 The waveforms of the acceleration signals of the two devices and the waveform meters corresponding to the excitation signals are used to obtain the similarity of the acceleration signals of the two devices according to the selected acceleration similarity calculation method.
  • Step S400 According to the similarity of the acceleration signal, the vibration similarity of the two devices is obtained.
  • the specific implementation of the storage medium of the present invention is basically the same as the foregoing embodiments of the vibration similarity evaluation method and device, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种振感相似度评价方法、装置及存储介质,评价方法通过从数值角度和/或从用户体验的角度来计算两个加速度波形的相似度,进而将两个加速度波形的相似度转换为振感相似度,用来评价人的主观振感的差异;其中,从用户体验的角度来计算加速度波形的相似度是指将与用户体验的相关的考虑因素加入到了计算加速度波形相似度中,因而更能体现出在客观量化的方式上对振感相似度评价与人的主观振感评价的一致性。

Description

振感相似度评价方法、装置及存储介质 【技术领域】
本发明涉及波形相似度计算,尤其涉及一种振感相似度评价方法、装置及存储介质。
【背景技术】
目前,振动反馈应用于手机交互、枪战游戏、拳击游戏等场景中能够给用户带来良好地沉浸式体验。因此,越来越多的电子产品对于振动反馈的相似度要求越来越高,如何在不同设备中复制出相同的振动反馈称为越来越迫切解决的问题。
因此,为了保证用户相同的振动反馈体验,有必要提供一种振感相似度评价方法。
【发明内容】
本发明的目的之一在于提供一种振感相似度评价方法,其能够将振感相似度进行量化,进而直观地将用户的主观振感反馈出来。
本发明的目的之二在于提供一种振感相似度评价装置,其能够将振感相似度进行量化,进而直观地将用户的主观振感反馈出来。
本发明的目的之三在于提供一种计算机存储介质,其能够将振感相似度进行量化,进而直观地将用户的主观振感反馈出来。
本发明的技术方案之一如下:
一种振感相似度评价方法,所述振感相似度评价方法包括:
获取数据步骤:分别获取两个加速度信号的波形以及两个激励信号的波形;
计算步骤:根据所述两个加速度信号的波形和对应激励信号的波形,通过相应的加速度相似度计算方法计算出所述两个加速度信号的波形的相似度,以根据所述两个加速度信号的波形的相似度评估两个加速度信号对 应的设备的振感相似度;
其中,加速度相似度计算方法包括:从数值的角度计算两个加速度信号的相似度的方法和/或从用户体验的角度计算两个加速度信号的相似度的方法。
作为一种改进所述从用户体验的角度计算两个加速度信号的相似度的步骤包括:
设定指标;
根据每个指标计算得出两个加速度信号的相似度;
根据加权平均法计算每个指标对应的两个加速度信号的相似度。
作为一种改进,所述指标包括信号阶段加速度峰峰值差异、余振阶段加速度峰峰值差异、信号持续时间差异和信号阶段峰值数差异。
作为一种改进,所述根据每个指标计算得出两个加速度信号的相似度步骤,包括:
当指标为信号阶段加速度峰峰值差异时,在激励信号的持续阶段,计算两个加速度波形的峰峰值的相似度;
当指标为余振阶段加速度峰峰值差异时,在激励信号结束之后,计算加速度波形的峰峰值的相似度。
作为一种改进,所述根据每个指标计算得出两个加速度信号的相似度步骤,还包括:
当指标为信号持续时间差异时,计算两个加速度波形的激励信号的持续时间的相似度;
当指标为信号阶段峰值数差异时,计算两个加速度波形的加速度信号的局部峰值个数的相似度。
作为一种改进,从数值的角度计算两个加速度信号的相似度的步骤包括:根据两个曲线的相似度计算方法计算得出两个加速度信号的相似度。
进一步地,所述两个曲线的相似度计算方法包括:基于EVM的方法、基于闵可夫斯基距离的方法或基于弗莱彻相似的方法。
作为一种改进,所述基于EVM的方法的计算公式如下:
Figure PCTCN2019100052-appb-000001
其中,两个曲线的相似度为1-evm。
本发明的技术方案之二如下:
一种振感相似度评价方法,包括存储器和处理器,所述存储器上存储有可在处理器上运行的相似度评价程序,所述相似度评价程序为计算机程序,所述处理器执行所述相似度评价程序时实现如本发明目的之一采用的振感相似度评价方法的步骤。
本发明的技术方案之三如下:
一种存储介质,所述存储介质为计算机可读存储介质,其上存储有相似度评价程序,所述相似度评价程序为计算机程序,所述相似度评价程序被处理器执行时实现如本发明目的之一采用的振感相似度评价方法的步骤。
本发明的有益效果在于:本发明通过将与人的用户体验相关的因素加入到对于加速度波形的相似度计算过程中,更能体现出在客观量化上对振感相似度评价与主观振感的相似度评价的一致性。
【附图说明】
图1为本发明提供的加速度acc1的激励信号的波形图;
图2为本发明提供的加速度acc1、acc2、acc3的波形图;
图3为本发明提供的激励信号U的信号阶段和余振阶段示意图;
图4为本发明提供的加速度检测硬件结构图;
图5为本发明提供的振感相似度评价方法的流程图;
图6为本发明提供的从用户体验的角度计算加速度信号的相似度方法的流程图;
图7为本发明提供的振感相似度评价装置的模块图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
一般来说,对于振感相似度评价的量化,均是将其转换为对波形相似 度的计算来实现的,也即是说,将振感相似度的评价转换为波形性相似度的计算。
也即是说,本发明所要解决的技术难题是如何计算两个波形的相似度,结合以下事例来说明其过程:
假设如图1和2所示,加速度acc1的波形L1,其激励电压的波形为U。另外两个加速度分别为acc2和acc3,其波形分别为L2和L3,对应的激励电压波形为U2、U3,图中为示出。其中,不同的加速度,其激励电压不同。图1中标识激励电压U的波形图,图2中标识加速度acc1、加速度acc2以及加速度acc3的波形图。
从图2中可知,以加速度acc1为准:从波形形状上来看,加速度acc1和加速度acc2很接近,而加速度acc1和加速度acc3的差异较大。
另外,对于波形相似度的算法,一般来说,传统的技术通常采用诸如EVM(全称为:Error Vector Magnitude,误差向量幅度)的方法来描述两个曲线的相似度,也即是两个波形的相似度。比如基于EVM的方法是逐点计算两个数据的误差,并计算误差和参考信号(比如加速度acc1)的比例。
例如,对于信号x和信号y的EVM计算公式如下:
Figure PCTCN2019100052-appb-000002
通过公式(1)可以计算得出加速度acc1和加速度acc2的相似度为92%,而加速度acc1和加速度acc3的相似度是60%。
从上可知,通过诸如基于EVM的方法计算波形之间的相似度时,是纯粹基于信号处理的方法,是不考虑曲线的物理意义,只是单纯地从数值的角度来计算两个波形的相似度。
但是,对于判断振感相似度时,振感不仅仅与数值有关,还与人有关,也即是说对于曲线来说,不同的阶段、持续时间的长短等因素均会影响人 的振感,也即是不能够从人的用户体验的角度来描述波形的相似度。
因此,本发明提供了一种振感相似度评价方法,结合上述从数值的角度来计算波形相似度的基础上,分别从数值的角度和从用户体验的角度来描述两个波形的相似度,进而实现振感相似度的评价。在实际的应用过程中,可根据实际的应用场景来选择相应的角度计算两个波形的相似度,进而来评价用户主观振感的相似度。其中,从数值的角度来计算的两个波形的相似度,也即是从纯信号处理的角度制定计算相似度的指标,并作为上框线。
从用户体验的角度来计算两个波形的相似度,首先从用户体验的角度制定计算加速度波形相似度的指标,并为下框线。
例如,针对上述加速度acc1和加速度acc2、加速度acc1和加速度acc3分别通过本发明提供的关于波形相似度的计算方法来进行计算其相似度,具体为:
1、加速度波形相似度的上框线:
对于上框线来说,也即是从数值的角度来计算的两个加速度波形的相似度,因此,可采用如上述所述的基于EVM的方法来计算两个曲线的相似度。
也即是,加速度acc1和加速度acc2的相似度为92%,而acc1和acc3的相似度是60%。
另外,对于从数值的角度来计算两个加速度波形的相似度时,还可以通过比如其他类似的方法:基于闵可夫斯基距离的方法、基于弗莱彻相似的方法等进行实现,这些方法均为本领域技术人员所熟知的方法,本发明不做介绍。
2、加速度波形相似度的下框线:
对于下框线,也即是从用户体验的角度来计算两个波形的相似度。
本发明根据实际经验得出用户的体验,将与用户体验有关的因素,比如振动强弱、拖尾强弱、振感时长、振感频率等,引入到了计算加速度波形相似度。
如表1所示,为与用户体验有关的因素,比如:振动强弱、拖尾强弱、振感时长、振感频率等,设定相应的计算加速度波形相似度的指标。
序号 指标(100%) 用户体验
1 信号阶段加速度峰峰值差异 振动强弱
2 余振阶段加速度峰峰值差异 拖尾强弱
3 信号持续时间差异 振感时长
4 信号阶段峰值数差异 振感频率
表1
也即是说,在计算加速度波形相似度时,基于这些指标来分别计算加速度波形相似度,而这些指标是与用户体验相关的,因此通过这些指标计算得出的加速度波形的相似度更能够体现出人的振感相似度。
基于上述指标,计算加速度波形相似度的过程具体如下:
(1)、信号阶段加速度峰峰值(加速度峰峰值,peak to peak的G值,简称Gpp)差异:
如图3所示,表明激励信号U的信号阶段以及余振阶段。对于每个加速度的激励信号来说,其均可划分为信号阶段和余振阶段。
本发明中定义:信号阶段加速度峰峰值差异是指,在每个加速度的激励信号的信号阶段,对应的加速度波形的峰峰值的差异。因为不同加速度波形的峰峰值不同时,其对应的用户体验的振感强弱也不同。因此,通过计算两个加速度在各自的激励信号的信号阶段的加速度波形的峰峰值的相似度,来计算两个加速度波形的相似度。其中,峰峰值是指一个周期内信号最高值和最低值之间差的值,就是最大与最小之间的范围,也即是Gpp值。
例如:加速度acc1的Gpp1=3,acc2的Gpp2=2.8,acc3的Gpp3=3.1。
那么:
acc1和acc2在信号阶段加速度峰峰值差异上的相似度为:
(1-abs(3-2.8)/3)*100%。
acc1和acc3在信号阶段加速度峰峰值差异上的相似度为:
(1-abs(3-3.1)/3)*100%。
也即是:加速度acc1和加速度acc2的相似度是98%,acc1和acc3的相似度是94%。
(2)、余振阶段加速度峰峰值差异:一般情况下,在激励信号结束之后,马达等设备会以自身的谐振频率进行余振。也即是说,在激励信号的余振阶段,对于人的振感也具有一定的影响,比如拖尾振动的强弱。同理,在激励信号结束之后,也即是在余振阶段,根据两个加速度波形的峰峰值的相似度,来计算两个加速度波形的相似度。
例如:基于信号阶段加速度峰峰值差异计算加速度波形相似度的方法,可计算得出:在余振阶段加速度峰峰值差异上,加速度acc1和加速度acc2的相似度是92%,加速度acc1和加速度acc3的相似度是83%。
(3)、信号持续时间差异:对于信号的持续时间的长短对于人的振感也有一定的影响,比如振感时长。这里的信号持续时间是指各个加速度对应的激励信号的信号持续时间。因此,通过计算激励信号的信号持续时间相似度,来表明两个加速度波形的相似度。也即是,根据两个加速度的激励信号的持续时间的长短来计算两个加速度的相似度。
例如:加速度acc1和加速度acc2的相似度是84%,加速度acc1和加速度acc3的相似度是88%。
(4)、信号阶段峰值数差异:加速度的峰值数量不同,其对于人体的振感也有一定的影响,比如振感强弱的影响。其中,加速度信号局部峰值数指的是在激励信号的信号阶段加速度中的峰值的个数。因此,根据在激励信号的信号阶段峰值数量的差异来计算两个加速度的相似度。
例如:加速度acc1和加速度acc2的相似度是100%,加速度acc1和加速度acc3的相似度是100%。
为了让上述每个指标的振感的标量一致化,需要通过一定的算法对上述计算得出在4个指标下两个加速度波形的相似度进行一定的处理,比如采用加权平均的方法进行处理,即得出加速度波形相似度的下框线。
例如,采用最简单的平均的方法,将上述4个指标的相似度结果进行 处理:
加速度acc1和加速度acc2的相似度为:
(98%+92%+84%+100%)/4=93.5%。
加速度acc1和加速度acc3的相似度为:
(94%+83%+88%+100%)/4=91.2%。
也即是,基于用户体验的角度来计算得出加速度acc1和acc2的相似度为93.5,而对于加速度acc1和acc3的相似度为91.2%。
综上,以加速度acc1为基础:
从波形的形状上来看:加速度acc1和加速度acc2较为相似,加速度acc1和加速度acc3的差异较大。
从数值的角度(比如以EVM的方法来计算):加速度acc1和加速度acc2的相似度为92%,而acc1和acc3的相似度是60%。
从用户体验的角度来看:加速度acc1和acc2的相似度为93.5,而对于加速度acc1和acc3的相似度为91.2%。
很明显,尽管加速度1和加速度3其在形状上,以及数值上的计算结果表明,二者差异较大,但是从用户体验的角度来计算时,加速度波形的相似度相对较高。因此,在实际的使用过程中,对于振感相似度的评价时,可根据实际的应用场景来对选择不同的角度计算波形相似度,实现振感相似度的评价。由于在对振感相似度评价时,将其转换为对加速度波形的相似度的计算,以及以上计算结果可知,本发明中通过从用户体验的角度来计算加速度波形的相似度,更能够体现出在客观量化上对振感相似度评价与用户的主观振感保持一致。
也即是说:在振感相似度评价时,首先获取两个设备振动时的加速度波形以及对应的激励信号,然后根据实际的应用场景来选择根据波形相似度上框线来计算两个加速度波形的相似度,还是选择根据波形相似度下框线来计算两个加速度波形的相似度,进而根据计算得出两个加速度波形的相似度的量化结果来对振感相似度进行评价。
如图5所示,本发明提供的一实施例为一种振感相似度计算方法,包 括:
步骤S100:分别获取两个设备的加速度信号的波形以及激励信号的波形。本发明将设备的振感相似度的评价转换为对应的加速度的相似度的计算,因此可通过对应的检测设备或模块等检测得到使得对应设备产生振动的加速度信号。
在实际的应用过程中,一般是通过振动加速度来描述一个马达或致动器的振感,因此,在对振感相似度评价时,首先需要测量得出马达或致动器等设备的加速度波形,如图4所示,为本发明提供的一种通过加速度计测量马达的加速度的方法的硬件连接图,可获取马达在振动轴系上的加速度波形。如图4所示,包括PC(Penson Comuter,个人电脑)、采集卡、信号放大器、功率放大器、工装和用于检测工装的振动的加速度计。PC通过采集卡向功率放大器发送控制信号,并传输送工装,使得工装产生振动。加速度计实时对工装的振动进行检测并通过信号放大器进行放大后通过采集卡发送给PC,进而使得PC获取工装的振动的加速度。基于图4的实验环境,在100g工装上,使用某型号马达进行加速度信号的测试。当然,对于加速度的测量方法,并不仅仅限于本发明所提供的方法,诸如其他能够对加速度的测量的方法均在本发明的保护范围之内。
步骤S200:根据需求选择确定加速度相似度计算方法;
步骤S300:将两个设备的加速度信号的波形和对应激励信号的波形计根据选择的加速度相似度计算方法得出两个设备的加速度信号的相似度。
步骤S400:根据加速度信号的相似度得出两个设备的振感相似度。
其中,加速度相似度计算方法包括:从数值的角度计算两个加速度信号的相似度的方法和从用户体验的角度计算两个加速度信号的相似度的方法。
当然也可以通过人工观察两个加速度信号的波形图来进行判断是否相似,不过这种方法是基于人眼观察的,其结果有待商榷。
其中,如图6所示,从用户体验的角度计算两个加速度信号的相似度的方法具体包括:
步骤S501:根据需求设定与用户体验相关的指标。
步骤S502:根据每个指标计算得出两个加速度信号的相似度。
步骤S503:根据加权平均法将每个指标对应的两个加速度信号的相似度得出两个设备的加速度信号的相似度。
其中,指标是根据人的用户体验的经验角度来进行划分的,比如指标包括信号阶段加速度峰峰值差异、余振阶段加速度峰峰值差异、信号持续时间差异和信号阶段峰值数差异。也即是,根据每个指标来计算加速度的相似度。
例如:步骤S402还包括:当指标为信号阶段加速度峰峰值差异时,在激励信号的持续阶段,计算两个加速度波形的峰峰值的相似度,其具体的计算方法参考前述的计算。
当指标为余振阶段加速度峰峰值差异时,计算激励信号结束之后,计算加速度波形的峰峰值的相似度。
当指标为信号持续时间差异时,计算两个加速度波形的激励信号的持续时间的相似度。
当指标为信号阶段峰值数差异时,计算两个加速度波形的加速度信号局部峰值数的相似度。
而从数值的角度计算两个加速度信号的相似度的方法,是指从纯数字的角度来计算,一般来说,通过采用两个曲线的相似度计算方法计算得出两个加速度信号的相似度。
对于,两个曲线的相似度计算方法,有很多种,比如包括基于EVM的方法、基于闵可夫斯基距离的方法和基于弗莱彻相似的方法等等。
实施例二
本发明提供了一种振感相似度评价装置。如图7所示,本发明一实施例提供的振感相似度评价装置的内部结构示意图。
在本实施例中,振感相似度评价装置可以是PC(Personal Computer,个人电脑),也可以是智能手机、平板电脑、便携计算机等终端设备。该振感相似 度评价装置至少包括:处理器12、通信总线13、网络接口14以及存储器11。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是振感相似度评价装置的内部存储单元,例如该振感相似度评价装置的硬盘。存储器11在另一些实施例中也可以是振感相似度评价装置的外部存储设备,例如振感相似度评价装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括振感相似度评价装置的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于振感相似度评价装置的应用软件及各类数据,例如相似度评价程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行相似度评价程序等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该振感相似度评价装置与其他电子设备之间建立通信连接。
可选地,该振感相似度评价装置还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在振感相似度评价装置中处理的信息以及用于显示可视化的用户界面。
图7仅示出了具有组件11-14以及相似度评价程序的振感相似度评价装置,本领域技术人员可以理解的是,图7示出的结构并不构成对振感相似度评价装置的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
在图7所示的振感相似度评价装置实施例中,存储器11中存储有相似度评价程序;处理器12执行存储器11中存储的相似度评价程序时实现如下步骤: 步骤S100:分别获取两个设备的加速度信号的波形以及激励信号的波形。
步骤S200:根据需求选择确定加速度相似度计算方法;
步骤S300:将两个设备的加速度信号的波形和对应激励信号的波形计根据选择的加速度相似度计算方法得出两个设备的加速度信号的相似度。
步骤S400:根据加速度信号的相似度得出两个设备的振感相似度。
其中,加速度相似度计算方法包括:从数值的角度计算两个加速度信号的相似度的方法和从用户体验的角度计算两个加速度信号的相似度的方法。
当然也可以通过人工观察两个加速度信号的波形图来进行判断是否相似,不过这种方法是基于人眼观察的,其结果有待商榷。
其中,从用户体验的角度计算两个加速度信号的相似度的方法具体包括:
步骤S501:根据需求设定与用户体验相关的指标。
步骤S502:根据每个指标计算得出两个加速度信号的相似度。
步骤S503:根据加权平均法将每个指标对应的两个加速度信号的相似度得出两个设备的加速度信号的相似度。
其中,指标包括信号阶段加速度峰峰值差异、余振阶段加速度峰峰值差异、信号持续时间差异和信号阶段峰值数差异。
例如:步骤S402还包括:当指标为信号阶段加速度峰峰值差异时,在激励信号的持续阶段,计算两个加速度波形的峰峰值的相似度,其具体的计算方法参考前述的计算。
当指标为余振阶段加速度峰峰值差异时,计算激励信号结束之后,计算加速度波形的峰峰值的相似度。
当指标为信号持续时间差异时,计算两个加速度波形的激励信号的持续时间的相似度。
当指标为信号阶段峰值数差异时,计算两个加速度波形的加速度信号局部峰值数的相似度。
实施例三
此外,本发明实施例还提出一种存储介质,所述存储介质为计算机可读存储介质,所述计算机可读存储介质上存储有相似度评价程序,所述相似度评价程序可被一个或多个处理器执行,以实现如下操作:
步骤S100:分别获取两个设备的加速度信号的波形以及激励信号的波形。
步骤S200:根据需求选择确定加速度相似度计算方法;
步骤S300:将两个设备的加速度信号的波形和对应激励信号的波形计根据选择的加速度相似度计算方法得出两个设备的加速度信号的相似度。
步骤S400:根据加速度信号的相似度得出两个设备的振感相似度。
本发明存储介质具体实施方式与上述振感相似度评价方法和装置各实施例基本相同,在此不作累述。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种振感相似度评价方法,其特征在于,所述振感相似度评价方法包括:
    获取数据步骤:分别获取两个加速度信号的波形以及两个激励信号的波形;
    计算步骤:根据所述两个加速度信号的波形和对应激励信号的波形,通过相应的加速度相似度计算方法计算出所述两个加速度信号的波形的相似度,以根据所述两个加速度信号的波形的相似度评估两个加速度信号对应的设备的振感相似度;
    其中,加速度相似度计算方法包括:从数值的角度计算两个加速度信号的相似度的方法和/或从用户体验的角度计算两个加速度信号的相似度的方法。
  2. 根据权利要求1所述的振感相似度评价方法,其特征在于:所述从用户体验的角度计算两个加速度信号的相似度的步骤包括:
    设定指标;
    根据每个指标计算得出两个加速度信号的相似度;
    根据加权平均法计算每个指标对应的两个加速度信号的相似度。
  3. 根据权利要求2所述的振感相似度评价方法,其特征在于:所述指标包括信号阶段加速度峰峰值差异、余振阶段加速度峰峰值差异、信号持续时间差异和信号阶段峰值数差异。
  4. 根据权利要求3所述的振感相似度评价方法,其特征在于:所述根据每个指标计算得出两个加速度信号的相似度步骤,包括:
    当指标为信号阶段加速度峰峰值差异时,在激励信号的持续阶段,计算两个加速度波形的峰峰值的相似度;
    当指标为余振阶段加速度峰峰值差异时,在激励信号结束之后,计算加速度波形的峰峰值的相似度。
  5. 根据权利要求3或4所述的振感相似度评价方法,其特征在于:所 述根据每个指标计算得出两个加速度信号的相似度步骤,还包括:
    当指标为信号持续时间差异时,计算两个加速度波形的激励信号的持续时间的相似度;
    当指标为信号阶段峰值数差异时,计算两个加速度波形的加速度信号的局部峰值个数的相似度。
  6. 根据权利要求1所述的振感相似度评价方法,其特征在于:从数值的角度计算两个加速度信号的相似度的步骤包括:根据两个曲线的相似度计算方法计算得出两个加速度信号的相似度。
  7. 根据权利要求1所述的振感相似度评价方法,其特征在于:所述两个曲线的相似度计算方法包括:基于EVM的方法、基于闵可夫斯基距离的方法或基于弗莱彻相似的方法。
  8. 根据权利要求7所述的振感相似度评价方法,其特征在于:所述基于EVM的方法的计算公式如下:
    Figure PCTCN2019100052-appb-100001
    其中,两个曲线的相似度为1-evm。
  9. 一种振感相似度评价装置,包括存储器和处理器,所述存储器上存储有可在处理器上运行的相似度评价程序,所述相似度评价程序为计算机程序,其特征在于:所述处理器执行所述相似度评价程序时实现如权利要求1-8中任一项所述的振感相似度评价方法的步骤。
  10. 一种存储介质,所述存储介质为计算机可读存储介质,其上存储有相似度评价程序,所述相似度评价程序为计算机程序,其特征在于:所述相似度评价程序被处理器执行时实现如权利要求1-8中任一项所述的振感相似度评价方法的步骤。
PCT/CN2019/100052 2019-08-07 2019-08-09 振感相似度评价方法、装置及存储介质 WO2021022573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/992,152 US20210042519A1 (en) 2019-08-07 2020-08-13 Method for evaluating vibrating sensation similarity, apparatus and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910727391.XA CN110503013B (zh) 2019-08-07 2019-08-07 振感相似度评价方法、装置及存储介质
CN201910727391.X 2019-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,152 Continuation US20210042519A1 (en) 2019-08-07 2020-08-13 Method for evaluating vibrating sensation similarity, apparatus and storage medium

Publications (1)

Publication Number Publication Date
WO2021022573A1 true WO2021022573A1 (zh) 2021-02-11

Family

ID=68587097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100052 WO2021022573A1 (zh) 2019-08-07 2019-08-09 振感相似度评价方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN110503013B (zh)
WO (1) WO2021022573A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113821873A (zh) * 2021-08-31 2021-12-21 重庆长安汽车股份有限公司 用于自动驾驶的目标关联的校验方法及存储介质
CN116108563A (zh) * 2023-01-10 2023-05-12 广州汽车集团股份有限公司 加速度信号点火标定适用性判定方法、装置、设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030412B (zh) * 2019-12-04 2022-04-29 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达
CN111352509A (zh) * 2020-03-03 2020-06-30 瑞声科技(新加坡)有限公司 一种振动控制方法、存储介质及设备
CN111783030B (zh) * 2020-06-30 2023-11-10 瑞声新能源发展(常州)有限公司科教城分公司 触觉体验的评估方法、装置和存储介质
CN114942718A (zh) 2021-02-08 2022-08-26 腾讯科技(深圳)有限公司 虚拟按键的设置方法、装置、介质以及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154209A (ja) * 2004-11-29 2006-06-15 Ntt Advanced Technology Corp 声色類似度評価方法および評価装置
JP2008026836A (ja) * 2006-07-25 2008-02-07 Yamaha Corp 音声の類似度を評価する方法、装置およびプログラム
CN104921731A (zh) * 2015-05-14 2015-09-23 传世未来(北京)信息科技有限公司 一种胎动监测方法及胎动监测装置
CN105306982A (zh) * 2015-05-22 2016-02-03 维沃移动通信有限公司 移动终端界面图像的感官反馈方法及其移动终端
CN107506684A (zh) * 2016-06-14 2017-12-22 中兴通讯股份有限公司 步态识别方法及装置
CN108089710A (zh) * 2017-12-29 2018-05-29 安徽华米信息科技有限公司 一种电子设备控制方法、装置及电子设备
CN109257311A (zh) * 2017-07-14 2019-01-22 北京中科晶上科技股份有限公司 确定误差矢量幅度的方法及系统
CN110058676A (zh) * 2018-11-28 2019-07-26 瑞声科技(新加坡)有限公司 一种振动方法、电子设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090001B (zh) * 2015-07-20 2017-05-03 北京化工大学 一种基于相似性分析的往复压缩机信号整周期相位校准方法
CN109241860A (zh) * 2018-08-13 2019-01-18 瑞声科技(新加坡)有限公司 马达振动波的生成方法
CN110058679B (zh) * 2018-12-29 2022-06-14 瑞声科技(新加坡)有限公司 一种马达的激励信号搜索方法及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154209A (ja) * 2004-11-29 2006-06-15 Ntt Advanced Technology Corp 声色類似度評価方法および評価装置
JP2008026836A (ja) * 2006-07-25 2008-02-07 Yamaha Corp 音声の類似度を評価する方法、装置およびプログラム
CN104921731A (zh) * 2015-05-14 2015-09-23 传世未来(北京)信息科技有限公司 一种胎动监测方法及胎动监测装置
CN105306982A (zh) * 2015-05-22 2016-02-03 维沃移动通信有限公司 移动终端界面图像的感官反馈方法及其移动终端
CN107506684A (zh) * 2016-06-14 2017-12-22 中兴通讯股份有限公司 步态识别方法及装置
CN109257311A (zh) * 2017-07-14 2019-01-22 北京中科晶上科技股份有限公司 确定误差矢量幅度的方法及系统
CN108089710A (zh) * 2017-12-29 2018-05-29 安徽华米信息科技有限公司 一种电子设备控制方法、装置及电子设备
CN110058676A (zh) * 2018-11-28 2019-07-26 瑞声科技(新加坡)有限公司 一种振动方法、电子设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113821873A (zh) * 2021-08-31 2021-12-21 重庆长安汽车股份有限公司 用于自动驾驶的目标关联的校验方法及存储介质
CN113821873B (zh) * 2021-08-31 2023-08-04 重庆长安汽车股份有限公司 用于自动驾驶的目标关联的校验方法及存储介质
CN116108563A (zh) * 2023-01-10 2023-05-12 广州汽车集团股份有限公司 加速度信号点火标定适用性判定方法、装置、设备及介质

Also Published As

Publication number Publication date
CN110503013A (zh) 2019-11-26
CN110503013B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2021022573A1 (zh) 振感相似度评价方法、装置及存储介质
US10095851B2 (en) Electronic device and inputted signature processing method of electronic device
KR102260721B1 (ko) 전자 장치 및 전자 장치에서의 음악 연주 방법
CN110517785A (zh) 相似病例的查找方法、装置及设备
EP3133473A1 (en) Method of sensing pressure by touch sensor and electronic device adapted thereto
EP2816554A2 (en) Method of executing voice recognition of electronic device and electronic device using the same
CN107862660B (zh) 数据优化方法、装置及超声平台
CN110675017A (zh) 基于人工智能的绩效评价方法和装置
CN111225603A (zh) 提供与用户活动相对应的压力指数的电子设备和方法
JP2015059965A (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
CN110070063A (zh) 目标对象的动作识别方法、装置和电子设备
WO2021031349A1 (zh) 一种辐射风险评估方法、装置及电子设备和存储介质
US20230177326A1 (en) Method and apparatus for compressing neural network model
WO2021248849A1 (zh) 一种驱动电压生成方法、装置、存储介质和电子设备
EP4202637A1 (en) Integrated circuit chip verification method and apparatus, electronic device, and storage medium
CN116578704A (zh) 文本情感分类方法、装置、设备及计算机可读介质
CN109993875A (zh) 医疗排号方法、系统及电子设备
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
CN117312140A (zh) 测试用例的生成方法、装置、电子设备及存储介质
CN114330221B (zh) 计分板实现方法、计分板、电子设备及存储介质
CN113345069A (zh) 三维人体模型的建模方法、装置、系统及存储介质
WO2022000560A1 (zh) 触觉体验的评估方法、装置和存储介质
CN114864043A (zh) 基于vr设备的认知训练方法、装置及介质
KR20150145774A (ko) 필기 애니메이션을 제공하는 전자장치 및 방법
CN115249058A (zh) 神经网络模型的量化方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940892

Country of ref document: EP

Kind code of ref document: A1