WO2021022462A1 - 信号处理方法、设备及系统 - Google Patents

信号处理方法、设备及系统 Download PDF

Info

Publication number
WO2021022462A1
WO2021022462A1 PCT/CN2019/099323 CN2019099323W WO2021022462A1 WO 2021022462 A1 WO2021022462 A1 WO 2021022462A1 CN 2019099323 W CN2019099323 W CN 2019099323W WO 2021022462 A1 WO2021022462 A1 WO 2021022462A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time domain
domain resource
message
control signaling
Prior art date
Application number
PCT/CN2019/099323
Other languages
English (en)
French (fr)
Inventor
苏俞婉
于映辉
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19940647.1A priority Critical patent/EP4009737A4/en
Priority to PCT/CN2019/099323 priority patent/WO2021022462A1/zh
Publication of WO2021022462A1 publication Critical patent/WO2021022462A1/zh
Priority to US17/591,068 priority patent/US20220159743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • This application relates to the field of communication technology, and in particular to signal processing methods, equipment and systems.
  • IoT Internet of Things
  • the single-hop IoT coverage enhancement of 20dB can meet the coverage requirements in most scenarios. However, in some special scenarios, such as multi-story buildings such as buildings, if the base station is on the top of the building, it is close to the floor near the base station. IoT terminal devices can be served, but IoT terminal devices on floors far away from the base station may not be served. In addition, there are some scenes, such as some gas meters, etc., which are deep underground and may not be reachable at a hop. In these scenarios, the deployment of wired backhaul links is also more difficult. Therefore, in order to further solve the problem of deep coverage of terminal equipment, a relay mechanism can be introduced to solve the problem.
  • the layer 1 relay is also known as a repeater, a repeater, or a repeater.
  • the main function is to amplify, resend or forward the attenuated signal, and solve the problem of deep coverage of terminal equipment.
  • Figure 1 shows a schematic diagram of the grid architecture of a conventional relay system. It can be seen from Figure 1 that the repeater is a relay node. The repeater node is connected to the donor evolution node B (DeNB) through the Un interface, and the repeater node is connected to the remote terminal (remote) The devices are connected through the Uu interface.
  • DeNB donor evolution node B
  • Un interface the repeater node
  • the devices are connected through the Uu interface.
  • the repeater may cause noise interference to the DeNB and other terminal equipment.
  • the embodiments of the present application provide signal processing methods, devices, and systems, which are used to reduce noise interference generated by a repeater.
  • a signal processing method includes: a first device determines a first time domain resource location for transmitting a first signal; the first device is at the start position or the start position of the first time domain resource location; The first control signaling is sent to the second device before the start position, and the first control signaling is used to enable the signal amplification function of the second device.
  • the repeater is always on, whether it is useful signal or noise, the repeater will amplify it. When the DeNB does not send data to the remote terminal equipment, the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the first device can instruct the second device to turn on the signal amplification function before the start position or the start position of the first time domain resource position for transmitting the first signal, that is to say, only when there is a signal that needs to be transferred Signal amplification, when there is no signal to be transferred, the signal amplification function does not need to be turned on, so it can avoid the problem that the amplified noise will cause noise interference to the DeNB and other terminal equipment when the DeNB does not send data to the remote terminal equipment, thereby reducing Noise interference.
  • the first device determining the location of the first time domain resource for transmitting the first signal includes: the first device receives a second signal from the network device, and the second signal includes instructions for indicating the first time. Information about the location of the domain resource; the first device determines the location of the first time domain resource according to the second signal. That is, in this embodiment of the present application, the first device may determine the location of the first time domain resource based on the information included in the second signal for indicating the location of the first time domain resource.
  • the first device determining the location of the first time domain resource according to the second signal includes: the first device uses the first wireless network temporary identifier to parse the second signal to obtain the first time domain Resource location, the first wireless network temporary identifier is a wireless network identifier used by the first remote terminal device to parse the second signal, and the first remote terminal device is a terminal device that receives the second signal. That is to say, in this embodiment of the present application, the first device may use the wireless network temporary identification of the first remote terminal device to analyze the second signal to analyze the second signal it receives.
  • the second signal is the first downlink control message carried on the first physical downlink control channel, and the first signal is the first downlink data carried on the first physical downlink shared channel; or , The second signal is the second downlink control message carried on the second physical downlink control channel, the first signal is the first uplink data carried on the first physical uplink shared channel; or the second signal is RAR, the first The signal is message 3 in the random access process; or, the second signal is the second downlink data carried on the second physical downlink shared channel, and the first signal is the third downlink control carried on the third physical downlink control channel news.
  • the method further includes: the first device determines the first common search space or the first terminal-specific search space corresponding to the second time domain resource location for transmitting the second signal; A public search space or the first terminal-specific search space, and the pre-stored mapping relationship between the first wireless network temporary identifier and the first public search space or the first terminal-specific search space, determine the first wireless network temporary logo. Based on this solution, the first device can determine the first wireless network temporary identity.
  • the method further includes: the first device analyzes the preamble carried on the physical random access channel to obtain the first wireless network temporary identity; or, the first device analyzes the preamble carried on the third physical The third downlink data on the downlink shared channel obtains the first wireless network temporary identity. Based on this solution, the first device can determine the first wireless network temporary identity.
  • the second signal is the main information block MIB, and the first signal is the system information block SIB1; or, the second signal is SIB1, and the first signal is another SIB other than the SIB1; or ,
  • the second signal is a first system information block, and the first signal is a preamble carried on a physical random access channel; or, the second signal is a second system information block, and the first signal is a 4.
  • the fourth downlink control message on the physical downlink control channel.
  • the first time domain resource location is a set time domain resource location.
  • the first signal includes a synchronization signal or a master information block MIB or SIB1.
  • the method further includes: the first device sends second control signaling to the second device at the end position of the first time domain position or after the end position, and the second control signaling uses Turn off the signal amplification function.
  • the first device is in a long connection state after being turned on and connected to the network.
  • the method further includes: the first device receives a radio resource control RRC message from the network device, where the RRC message is used to notify the first device that the system message has changed.
  • a signal processing method includes: a second device receives a first control command from a first device before or before the start position or the start position of the first time domain resource position for transmitting the first signal ; The second device turns on the signal amplification function of the second device according to the first control command, so that the second device amplifies the first signal at the first time domain resource location.
  • the repeater is always on, whether it is useful signal or noise, the repeater will amplify it. When the DeNB does not send data to the remote terminal equipment, the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the first device can instruct the second device to turn on the signal amplification function before the start position or the start position of the first time domain resource position for transmitting the first signal, that is to say, only when there is a signal that needs to be transferred Signal amplification, when there is no signal to be transferred, the signal amplification function does not need to be turned on, so it can avoid the problem that the amplified noise will cause noise interference to the DeNB and other terminal equipment when the DeNB does not send data to the remote terminal equipment, thereby reducing Noise interference.
  • the location of the first time domain resource is determined according to a second signal sent by the network device to the first remote terminal device, where the second signal includes the location for indicating the first time domain resource Information. That is, in this embodiment of the present application, the first device may determine the location of the first time domain resource based on the information included in the second signal for indicating the location of the first time domain resource.
  • the first time domain resource location is determined according to the second signal sent by the network device to the first remote terminal device, including: the first time domain resource location is the first device using the first wireless
  • the network temporary identifier is obtained by analyzing the second signal, and the first wireless network temporary identifier is the wireless network identifier used by the first remote terminal device to analyze the second signal. That is to say, in this embodiment of the present application, the first device may use the wireless network temporary identification of the first remote terminal device to analyze the second signal to analyze the second signal it receives.
  • the second signal is the first downlink control message carried on the first physical downlink control channel, and the first signal is the first downlink data carried on the first physical downlink shared channel; or , The second signal is the second downlink control message carried on the second physical downlink control channel, the first signal is the first uplink data carried on the first physical uplink shared channel; or the second signal is RAR, the first The signal is message 3 in the random access process; or, the second signal is the second downlink data carried on the second physical downlink shared channel, and the first signal is the third downlink control carried on the third physical downlink control channel news.
  • the second signal is the main information block MIB, and the first signal is the system information block SIB1; or, the second signal is SIB1, and the first signal is another SIB other than the SIB1; or, the second signal is SIB1.
  • the signal is the first system information block, and the first signal is the preamble carried on the physical random access channel; or, the second signal is the second system information block, and the first signal is the preamble carried on the fourth physical downlink control channel.
  • the fourth downlink control message is the fourth downlink control message.
  • the first time domain resource location is a set time domain resource location.
  • the first signal includes a synchronization signal or a master information block MIB.
  • the method further includes: the second device receives a second control command from the first device after the end position or the end position of the first time domain resource position of the first signal; the second device Turn off the signal amplification function of the second device according to the second control command.
  • a signal processing method includes: a third device determines a first time domain resource location for transmitting a first signal; the third device is at the start position or the start position of the first time domain resource location; Turn on the signal amplification function of the third device before the start position.
  • the repeater is always on, whether it is useful signal or noise, the repeater will amplify it.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the third device can determine the location of the first time domain resource for transmitting the first signal, and enable the signal amplification function of the third device before or before the start position of the first time domain resource location, that is It is said that signal amplification is performed when there is a signal that needs to be transferred, and the signal amplification function does not need to be turned on when there is no signal that needs to be transferred, so it can avoid that when the DeNB does not send data to the remote terminal device, the amplified noise will affect the DeNB and other terminal devices The problem of noise interference occurs, which can reduce noise interference.
  • the third device determining the location of the first time domain resource for transmitting the first signal includes: the third device receives a second signal from the network device, and the second signal includes instructions for indicating the first time. Information about the location of the domain resource; the third device determines the location of the first time domain resource according to the second signal. That is, in this embodiment of the present application, the third device may determine the location of the first time domain resource based on the information used to indicate the location of the first time domain resource included in the second signal.
  • the third device determining the location of the first time domain resource according to the second signal includes: the third device uses the first wireless network temporary identifier to parse the second signal to obtain the first time The domain resource location, the first wireless network temporary identifier is a wireless network identifier used by the first remote terminal device to parse the second signal, and the first remote terminal device is a terminal device that receives the second signal. That is to say, in this embodiment of the present application, the third device may use the wireless network temporary identification of the first remote terminal device to analyze the second signal to analyze the second signal it receives.
  • the second signal is the first downlink control message carried on the first physical downlink control channel, and the first signal is the first downlink data carried on the first physical downlink shared channel; or , The second signal is the second downlink control message carried on the second physical downlink control channel, the first signal is the first uplink data carried on the first physical uplink shared channel; or the second signal is RAR, the first The signal is message 3 in the random access process; or, the second signal is the second downlink data carried on the second physical downlink shared channel, and the first signal is the third downlink control carried on the third physical downlink control channel news.
  • the method further includes: the third device determines the first common search space or the first terminal-specific search space corresponding to the second time domain resource location for transmitting the second signal; A public search space or the first terminal-specific search space, and the pre-stored mapping relationship between the first wireless network temporary identifier and the first public search space or the first terminal-specific search space, determine the first wireless network temporary logo. Based on this solution, the third device can determine the first wireless network temporary identity.
  • the method further includes: the third device analyzes the preamble carried on the physical random access channel to obtain the first wireless network temporary identity; or, the third device analyzes the preamble carried on the third physical
  • the third downlink data on the downlink shared channel obtains the first wireless network temporary identity. Based on this solution, the third device can determine the first wireless network temporary identity.
  • the second signal is the main information block MIB, and the first signal is the system information block SIB1; or, the second signal is SIB1, and the first signal is another SIB other than the SIB1; or, the second signal is SIB1.
  • the signal is the first system information block, and the first signal is the preamble carried on the physical random access channel; or, the second signal is the second system information block, and the first signal is the preamble carried on the fourth physical downlink control channel.
  • the fourth downlink control message is the fourth downlink control message.
  • the first time domain resource location is a set time domain resource location.
  • the first signal includes a synchronization signal or a master information block MIB or SIB1.
  • the method further includes: the third device turns off the signal amplification function at an end position of the first time domain position or after the end position.
  • the third device is in a long connection state after being turned on and connected to the network.
  • the method further includes: the third device receives a radio resource control RRC message from the network device, where the RRC message is used to notify the third device that the system message has changed.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the first device in the foregoing first aspect, or a device including the foregoing first device; or, the communication device may be the second device in the foregoing second aspect, or a device including the foregoing second device; Alternatively, the communication device may be the third device in the third aspect described above, or a device including the third device described above.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the foregoing aspects.
  • the communication device may be the first device in the foregoing first aspect, or a device including the foregoing first device; or, the communication device may be the second device in the foregoing second aspect, or a device including the foregoing second device; Alternatively, the communication device may be the third device in the third aspect described above, or a device including the third device described above.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the first device in the foregoing first aspect, or a device including the foregoing first device; or, the communication device may be the second device in the foregoing second aspect, or a device including the foregoing second device; Alternatively, the communication device may be the third device in the third aspect described above, or a device including the third device described above.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a tenth aspect, includes a first device and a second device.
  • the first device is used to determine the location of a first time domain resource for transmitting a first signal, and when the The first control signaling is sent to the second device at or before the start position of the domain resource location.
  • the second device is configured to receive the first control command and enable the signal amplification function of the second device according to the first control command.
  • the first device can instruct the second device to turn on the signal amplification function before the start position or the start position of the first time domain resource position for transmitting the first signal, that is to say, only when there is a signal that needs to be transferred Signal amplification, when there is no signal to be transferred, the signal amplification function does not need to be turned on, so it can avoid the problem that the amplified noise will cause noise interference to the DeNB and other terminal equipment when the DeNB does not send data to the remote terminal equipment, thereby reducing Noise interference.
  • the communication system provided in the embodiment of the present application may further include a network device.
  • the network device is used to receive or send the first signal; the second device is also used to amplify the first signal at the first time domain resource location.
  • the network device is further configured to send a second signal, and the second signal includes information used to indicate the location of the first time domain resource for transmitting the first signal.
  • the first device in the embodiment of the present application is also used to execute the signal processing method described in the first aspect
  • the second device is also used to execute the signal processing method described in the second aspect above .
  • a communication system in an eleventh aspect, includes a third device and a network device.
  • the third device is used to determine the location of the first time domain resource for transmitting the first signal, and enable the signal amplification function of the third device at or before the start position of the first time domain resource location.
  • the network device is used to receive or send the first signal.
  • the third device is further configured to amplify the first signal at the first time domain resource location.
  • the repeater is always on, whether it is useful signal or noise, the repeater will amplify it. When the DeNB does not send data to the remote terminal equipment, the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the third device can determine the location of the first time domain resource for transmitting the first signal, and enable the signal amplification function of the third device before or before the start position of the first time domain resource location, that is It is said that signal amplification is performed when there is a signal that needs to be transferred, and the signal amplification function does not need to be turned on when there is no signal that needs to be transferred, so it can avoid that when the DeNB does not send data to the remote terminal device, the amplified noise will affect the DeNB and other terminal devices The problem of noise interference occurs, which can reduce noise interference.
  • the network device is also used to send the second signal to the third device.
  • the third device is also used to execute the signal processing method described in the third aspect.
  • Figure 1 shows a schematic diagram of the grid architecture of a conventional relay system
  • FIG. 2 illustrates a schematic diagram of an NPDCCH candidate involved in an embodiment of the present application
  • Figure 3 shows a schematic diagram of the usual repeater protocol stack architecture
  • FIG. 4 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a possible protocol stack architecture provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another possible protocol stack architecture provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another possible protocol stack architecture provided by an embodiment of the application.
  • FIG. 10 is a schematic flowchart of a signal processing method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of another signal processing method provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of yet another signal processing method provided by an embodiment of this application.
  • FIG. 13 is a schematic flowchart of yet another signal processing method provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of time-domain resource location distribution of different signals provided by an embodiment of the application.
  • FIG. 16 is a schematic flowchart of another signal processing method provided by an embodiment of this application.
  • FIG. 17 is a schematic flowchart of another signal processing method provided by an embodiment of this application.
  • FIG. 18 is a schematic flowchart of another signal processing method provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a first device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a third device provided by an embodiment of the application.
  • the search space defines the possibility of detecting the physical downlink control channel (PDCCH) in the time domain.
  • PDCCH physical downlink control channel
  • the terminal device needs to monitor an NPDCCH candidate set to obtain downlink control information (DCI).
  • DCI downlink control information
  • the NPDCCH candidate set is called Search space for NPDCCH.
  • the resources of the NPDCCH search space are periodically distributed.
  • the network device can indicate the period of the NPDCCH search space and the starting position of the NPDCCH search space in each period to the terminal device through system information block (SIB) or radio resource control (radio resource control, RRC) signaling,
  • SIB system information block
  • RRC radio resource control
  • the system information block or RRC signaling carries parameters R max , G and ⁇ offset .
  • R max represents the maximum number of repetitions of the NPDCCH search space.
  • the terminal device After receiving the system information block or RRC signaling, the terminal device determines the product of R max and G as the period of the NPDCCH search space; determines R max as the duration of the NPDCCH search space in the period of each NPDCCH search space;
  • the product of R max , G and ⁇ offset is determined as the interval between the start position of the period of the NPDCCH search space and the start position of the NPDCCH search space in the time domain, that is, G*R max * ⁇ offset is expressed in the time domain Offset from the start position of the period of the NPDCCH search space backward by G*R max * ⁇ offset is the start position of the NPDCCH search space.
  • FIG. 2 illustrates a schematic diagram of an NPDCCH candidate involved in an embodiment of the present application.
  • the period of the NPDCCH search space is G*R max
  • the duration of the NPDCCH search space in G*R max is R max effective subframes
  • the start position of the period of the NPDCCH search space and the start position of the NPDCCH search space is G*R max * ⁇ offset .
  • the repetition level of each NPDCCH candidate is R, and the 0th to 7th ones each candidate the candidate repeated equal rank R R max / 8, 0 to 7 for each candidate in the candidate length in the time domain is equal to R max / 8 (that is, per 8 R max) a
  • the repetition level R of each candidate in the 8th to 11th candidates is equal to R max /4
  • the length of each candidate in the 8th to 11th candidates in the time domain is equal to R max /4( That is, R max ) of 4 effective subframes
  • the repetition level R of each candidate in the 12th to 13th candidates is R max /2
  • each candidate in the 12th to 13th candidates is in time
  • the length of the domain is equal to R max /2 (that is, R max of 2) valid subframes
  • the repetition level R of the 14th candidate is equal to R max
  • the length of the 14th candidate in the time domain is equal to R max Effective subframe.
  • the definition of a valid subframe is related to a specific communication system.
  • the effective subframe can be called an NB-IoT downlink subframe.
  • the terminal equipment in the NB-IoT system should assume that a subframe is an NB-IoT downlink subframe:
  • the terminal device determines that it does not include a narrowband primary synchronization signal (NPSS), or a narrowband secondary synchronization signal (NSSS), or a narrowband physical broadcast channel (NPBCH), or NB
  • the subframe transmitted by the system information block type is an NB-IoT downlink subframe.
  • the terminal device receives configuration parameters, which are used to configure NB-IoT downlink subframes.
  • the terminal device can determine the NB-IoT downlink subframe according to the configuration parameter.
  • the configuration parameters can be configured through system information blocks or RRC signaling, which is not specifically limited in the embodiment of the present application.
  • the effective subframe can be referred to as a bandwidth-reduced low-complexity or coverage enhanced (BL/CE) downlink subframe.
  • the BL/CE downlink subframe can be configured through configuration parameters, which are configured through system information blocks or RRC signaling.
  • Figure 3 shows a schematic diagram of a repeater protocol stack architecture.
  • the repeater in the Uu interface facing the remote terminal device, supports the air interface protocol stack of the physical (physical, PHY) layer; in the backhaul link facing the DeNB, the repeater supports the transmission of the Un air interface of the PHY layer.
  • the remote terminal equipment protocol stack includes from bottom to top: PHY layer, media access control (MAC) layer, radio link control (RLC) layer, Packet data convergence protocol (PDCP) layer, radio resource control (RRC) layer and non-access stratum (NAS);
  • DeNB faces repeater-oriented Un port, DeNB protocol stack From bottom to top, it includes the PHY layer, MAC layer, RLC layer, PDCP layer and RRC layer. DeNB faces mobile management entities.
  • the MME protocol stack includes from bottom to top: (level1, L1) layer, L2 layer, network protocol (internet protocol, IP) layer, stream control transmission protocol (stream control transmission protocol, SCTP) layer and S1 application protocol (S1 application protocol, S1-AP) layer; MME's DeNB-oriented protocol stack includes from bottom to top: L1 layer, L2 layer, IP layer, SCTP layer, S1-AP layer and NAS layer.
  • the related description of the remote terminal equipment protocol stack, DeNB protocol stack, and MME protocol stack can refer to the communication protocol, which will not be repeated here.
  • the repeater is a combination of a DeNB and a terminal device function. Due to loss, the power of the signal transmitted on the line will gradually attenuate, and when the attenuation reaches a certain level, it will cause signal distortion, which will lead to reception errors. Repeater is designed to solve this problem. It is the simplest and cheapest interconnection device used to extend the distance of the network in the local area network environment. It mainly completes the function of the physical layer and is responsible for transmitting information on the physical layer of two nodes. , To complete the signal copy, adjust and amplify functions to extend the length of the network.
  • At least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • LTE long term evolution
  • eMTC enhanced machine type communications
  • GSM global mobile communications System
  • UMTS mobile communication system
  • CDMA code division multiple access
  • 5th generation, 5G fifth generation
  • the communication system 40 includes a first device 401 and a second device 402.
  • the first device 401 is configured to determine the first time domain resource location for transmitting the first signal, and send the first control signaling to the second device 402 before or before the start position of the first time domain resource location.
  • a control signaling is used to enable the signal amplification function of the second device 402.
  • the second device 402 is configured to receive the first control signaling from the first device 401, and enable the signal amplification function of the second device 402 according to the first control command.
  • the first device in the embodiment of the present application may be a terminal device or a chip in the terminal device.
  • the second device in the embodiment of the present application may be a layer 1 relay, for example, it may also be called a repeater, a repeater, or a repeater, etc.
  • the main function is to amplify, resend or forward the attenuated signal.
  • the communication system 40 provided in the embodiment of the present application may further include a network device 404 and one or more remote terminal devices 403.
  • the remote terminal device 403 establishes a communication connection with the network device 404 through the second device 402.
  • the remote terminal device 403 sends the first signal to the network device 404 through the second device 402, or the network device 404 sends the first signal to the network device 404 through the second device 402.
  • the remote terminal device 403 sends the first signal, etc., which is not specifically limited in the embodiment of the present application.
  • the usual repeater is always in the on state, no matter useful signal or noise, the repeater will amplify it.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the first device can instruct the second device to turn on the signal amplification function before the start position or the start position of the first time domain resource position for transmitting the first signal, that is, when there is Signal amplification is performed when the signal needs to be transferred.
  • the signal amplification function does not need to be turned on. Therefore, it can avoid that when the DeNB does not send data to the remote terminal device, the amplified noise will cause noise interference to the DeNB and other terminal devices The problem, which can reduce noise interference.
  • the communication system 50 includes a third device 501 and a network device 502.
  • the third device 501 is configured to determine the first time domain resource location for transmitting the first signal, and enable the signal amplification function of the third device before or before the start position of the first time domain resource location.
  • the network device 502 is configured to receive or send the first signal.
  • the third device in the embodiment of the present application may be a device in which the foregoing first device and second device are integrated or integrated.
  • the communication system 50 may further include one or more remote terminal devices 503.
  • the remote terminal device 503 establishes a communication connection with the network device 502 through the third device 501.
  • the remote terminal device 503 sends the first signal to the network device 502 through the third device 501, or the network device 502 sends the first signal to the network device 502 through the third device 501.
  • the remote terminal device 503 sends the first signal, etc., which is not specifically limited in the embodiment of the present application.
  • one or more third devices 501 may be included between the network device 502 and the remote terminal device 501.
  • the one or more third devices 501 can be understood as One or more relay node devices added between the remote terminal devices 503 are responsible for forwarding the wireless signal one or more times, that is, the wireless signal must go through multiple hops to reach the terminal device.
  • the simpler two-hop relay as an example, which is to divide a "network equipment-remote terminal equipment” link into two chains “network equipment-third equipment” and "third equipment-remote terminal equipment”
  • the repeater is always on, and the repeater will amplify the useful signal or noise.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the third device can determine the first time domain resource location for transmitting the first signal, and turn on the third device's start position or before the start position of the first time domain resource location
  • Signal amplification function which means that signal amplification is performed when there is a signal that needs to be transferred.
  • the signal amplification function does not need to be turned on. Therefore, it can avoid the amplified noise when the DeNB does not send data to the remote terminal device.
  • the problem of noise interference to DeNB and other terminal equipment which can reduce noise interference.
  • the first time domain resource location for transmitting the first signal determined by the first device or the third device may be the actual time domain resource location for transmitting the first signal, or it may include transmission A possible location area of the actual time domain resource location of the first signal.
  • the first signal is a downlink control message carried on a physical downlink control channel
  • the first time domain resource location is actually a physical downlink control channel search space, that is, it needs to be in the physical downlink control channel search space Always turn on the signal amplification function.
  • the relevant description of the search space of the physical downlink control channel can refer to the preamble part of the specific implementation, which will not be repeated here.
  • the first time domain resource location is the actual time domain for transmitting the first signal
  • the resource location is explained here in a unified manner, and will not be repeated here.
  • the signal amplification function in the embodiment of the present application may also be referred to as a signal transfer function or a relay function, etc., which are explained here in a unified manner, and will not be repeated in the following.
  • the network device in the embodiment of the present application is a device used to communicate with a terminal device.
  • the network device can be any device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller) , RNC), node B (node B, NB), donor base station (donor evolved nodeB, DeNB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless Return node, transmission point (TP), or transmission and reception point (TRP), etc.
  • WIFI wireless fidelity
  • TP transmission point
  • TRP transmission and reception point
  • the antenna panel may also be a network node that constitutes a gNB or transmission point, such as a BBU or a distributed unit (DU).
  • gNB next generation NB
  • TRP transmission point
  • TP new radio
  • the antenna panel may also be a network node that constitutes a gNB or transmission point, such as a BBU or a distributed unit (DU).
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some of the functions of the gNB
  • the DU implements some of the functions of the gNB.
  • the CU implements the functions of the RRC layer and the PDCP layer
  • the DU implements the functions of no RLC layer, MAC layer, and PHY layer. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, in this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also It is considered to be sent by DU or DU+RU.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network, and the CU can also be divided into network devices in the core network (core network, CN), which is not limited here.
  • the terminal device or remote terminal device in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device in the LTE system, the NR system, or the future evolution of the PLMN. , Wireless communication equipment, terminal agents or terminal devices, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the network device and the remote terminal device in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • the related functions of the first device 401, the second device 402, or the third device 501 in the embodiment of the present application may be implemented by one device, or jointly implemented by multiple devices, or by a device in one device.
  • One or more functional modules are implemented, which is not specifically limited in the embodiment of the present application. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 6 shows a schematic structural diagram of a communication device 600 provided by an embodiment of the application.
  • the communication device 600 includes one or more processors 601, a communication line 602, and at least one communication interface (in FIG. 6 it is only an example that includes a communication interface 604 and a processor 601 as an example), optional
  • the memory 603 may also be included.
  • the processor 601 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 602 may include a path for connecting different components.
  • the communication interface 604 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, and wireless local area networks (WLAN).
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 604 may also be a transceiver circuit located in the processor 601 to implement signal input and signal output of the processor.
  • the memory 603 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently and is connected to the processor through the communication line 602. The memory can also be integrated with the processor.
  • the memory 603 is used to store computer-executed instructions for executing the solution of the present application, and the processor 601 controls the execution.
  • the processor 601 is configured to execute computer-executable instructions stored in the memory 603, so as to implement the signal processing method provided in the embodiment of the present application.
  • the processor 601 may also perform processing related functions in the signal processing method provided in the following embodiments of the present application, and the communication interface 604 is responsible for communicating with other devices or communication networks. This is not specifically limited.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6.
  • the communication device 600 may include multiple processors, such as the processor 601 and the processor 608 in FIG. 6. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 600 may further include an output device 605 and an input device 606.
  • the output device 605 communicates with the processor 601, and can display information in a variety of ways.
  • the aforementioned communication device 600 may be a general-purpose device or a dedicated device.
  • the communication device 600 may be a desktop computer, a portable computer, a network server, a PDA, a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 4.
  • the embodiment of the present application does not limit the type of the communication device 600.
  • the first signal in the embodiment of the present application may include, for example, uplink data carried on a physical downlink shared channel or downlink data carried on a physical downlink shared channel.
  • the information indicating the position of the first time domain resource for transmitting the first signal can be obtained by decoding the downlink control information carried on the physical downlink control channel.
  • the first signal in the embodiment of the present application may include, for example, downlink control information carried on a physical downlink control channel.
  • the information indicating the location of the first time domain resource for transmitting the first signal may be obtained through SIB.
  • the first signal in the embodiment of the present application may include, for example, a synchronization signal
  • the synchronization signal may include NPSS or NSSS.
  • NPSS is located in subframe 5 of each radio frame
  • NSSS is located in subframe 9 of every two radio frames (even-numbered radio frames).
  • the first time domain resource location for transmitting NPSS and NSSS is the set time domain resource location.
  • the first signal in the embodiment of the present application may include MIB, for example.
  • MIB is carried by NPBCH and is located in subframe 0 of each radio frame. It can also be understood that the first time domain resource location for transmitting the MIB is the set time domain resource location.
  • the first signal in the embodiment of the present application may include SIB, for example.
  • SIB includes SIB1 and other SIBs.
  • the other SIBs here may include, for example, SIB2, SIB3, SIB4, SIB5, SIB14, SIB15, SIB16, SIB20, SIB22, or SIB23.
  • SIB1 is located in subframe 4 of the radio frame, but the position of the radio frame for transmitting SIB1 needs to be determined according to the SIB1 scheduling information of the MIB. That is, in the NB-IOT system, the information indicating the location of the first time domain resource for transmitting SIB1 is carried in the MIB.
  • the transmission positions of other SIBs are scheduled through SIB1, that is, the information indicating the position of the first time domain resource for transmitting other SIBs is carried in SIB1.
  • SIB1 In the LTE system, the time domain resource location of SIB1 is fixed, the period of SIB1 is 80 ms, and SIB1 is repeatedly sent on subframe 5 of the even-numbered frame in each period.
  • the transmission position and period of other SIBs are scheduled through SIB1.
  • SIB1 will indicate the time domain position and length of the SI window of other SIBs, but it will not directly indicate which subframes in the SI window schedule other SIBs.
  • Which subframe has other SIBs can be determined by decoding the downlink control information carried on the physical downlink control channel on the subframe, that is, the information indicating the position of the first time domain resource for transmitting other SIBs is carried in SIB1 and the bearer In the downlink control information on the physical downlink control channel.
  • the first signal in the embodiment of the present application may include, for example, a reference signal
  • the reference signal includes a cell-specific reference signal (CRS), a narrowband reference signal (narrowband reference signal, NRS), or a modulation reference signal (demodulation reference signal). signal, DMRS).
  • CRS cell-specific reference signal
  • NRS narrowband reference signal
  • DMRS modulation reference signal
  • the transmission position of the reference signal may be obtained through the SIB, that is, the information indicating the position of the first time domain resource for transmitting the reference signal is carried in the SIB.
  • the first signal in the embodiment of the present application may include a paging message, for example.
  • the terminal equipment only has a paging opportunity (PO) in a discontinuous reception (DRX) cycle in a subframe (hereinafter also referred to as PO position) as the physical downlink control channel of the starting subframe
  • PO position a subframe
  • the physical downlink control channel is detected in the form of blind detection in the search space.
  • multiple POs can be configured in one DRX cycle, so the physical downlink control channels at these multiple POs need to be amplified when signal amplification is performed.
  • the time domain resource location for transmitting the first signal here is a possible location area including the actual time domain resource location for transmitting the first signal, that is, the physical downlink control channel search with multiple PO locations as the starting subframe The location of the space.
  • the paging configuration information can be obtained through SIB, such as through SIB2 or SIB22, that is, the information indicating the location of the first time domain resource for transmitting the paging message is carried in the SIB.
  • the first signal in the embodiment of the present application may include, for example, various messages in the random access process.
  • the first signal may include a preamble, random access response (RAR), message 3 and message 4 in the random access process.
  • RAR random access response
  • the specific process of the random access process can refer to the normal random access process, which will not be repeated here.
  • the time domain resource position of the physical random access channel carrying the preamble can be configured in the SIB, for example, in SIB2/SIB22/SIB23, information indicating the position of the first time domain resource for transmitting the preamble is configured; indicating the transmission of RAR or message
  • the information of the first time domain resource location of 4 is carried in the downlink control information on the physical downlink control channel; the information indicating the first time domain resource location of the transmission message 3 is carried in the RAR.
  • the above-mentioned signal including the information used to indicate the position of the first time domain resource for transmitting the first signal may also be referred to as the second signal.
  • the first signal is uplink data carried on the physical downlink shared channel.
  • the second signal is the downlink control information carried on the physical downlink control channel; or, when the first signal is the reference signal or the paging message or the preamble in the random access process Code or downlink control information carried on the physical downlink control channel, the second signal is SIB; or, when the first signal is SIB1, the second signal is MIB; or, when the first signal is other SIB, the second signal
  • the signal is SIB1; or, when the first signal is RAR or message 4 in the random access process, the second signal is the downlink control information carried on the physical downlink control channel; or, when the first signal is the random access process
  • the second signal is RAR in the case of message 3, which will be explained here, and will not be repeated here.
  • the first time domain resource location of the first signal may be at a superframe granularity, a radio frame granularity, a subframe granularity, a slot granularity, or a symbol granularity. That is, the first time domain resource position of the first signal may occupy at least one superframe, or the first time domain resource position of the first signal may occupy at least one radio frame, or the first time domain of the first signal The resource location may occupy at least one subframe, or the first time domain resource location of the first signal may occupy at least one time slot, or the first time domain resource location of the first signal may occupy at least one symbol. This is a unified description, and will not be repeated here.
  • Figure 7 shows a possible protocol stack architecture.
  • the third device supports the air interface protocol stack of the PHY layer; in the backhaul link facing the DeNB, the third device protocol stack includes from bottom to top: PHY layer, MAC layer, RLC layer And the RRC layer.
  • the protocol stack of the third device may also include a PDCP layer (not shown), which is not specifically limited in the embodiment of the present application.
  • Figure 8 shows a possible protocol stack architecture.
  • the first device supports the PHY layer, the MAC layer, the RLC layer, and the PDCP layer from bottom to top on the air interface facing the remote terminal device, wherein the PDCP layer and the RLC layer are optional.
  • the first device supports the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer from bottom to top on the air interface facing the DeNB, wherein the PDCP layer is optional.
  • the second device only supports the PHY layer whether it is an air interface facing the remote terminal device or an air interface facing the DeNB.
  • Figure 9 shows another possible protocol stack architecture.
  • the first device supports the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer in order from bottom to top on the air interface facing the remote terminal device.
  • the first device supports the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer from bottom to top on the air interface facing the DeNB, wherein the PDCP layer is optional.
  • the second device only supports the PHY layer whether it is an air interface facing the remote terminal device or an air interface facing the DeNB.
  • protocol stack architectures shown in FIGS. 7-9 are only exemplary descriptions. Of course, for the communication system shown in FIG. 4 or FIG. 5, there may be other protocol stack architectures. The embodiments of the present application There is no specific restriction on this.
  • the first device or the third device before performing signal processing, needs to first send a connection establishment request to the network device.
  • the connection establishment request carries indication information of the first device or the third device, so that the network device recognizes the first device according to the indication information of the first device or the third device according to the indication information of the third device.
  • the indication information of the first device may be, for example, the cell radio network temporary identifier (C-RNTI) of the first device
  • the indication information of the third device may be, for example, the C-RNTI of the third device.
  • the first device or the third device may also perform authentication and authentication with the core network to ensure that the first device or the third device is a legal device, which is not specifically limited in the embodiment of the present application.
  • the network device in the embodiment of the present application may be, for example, a DeNB.
  • the first device and the third device please refer to the communication system part, which is not repeated here.
  • the NPSS processing flow is given, including the following steps:
  • S1001a The first device sends control signaling 1 to the second device before subframe 5 or subframe 5 of each radio frame.
  • the second device receives the control signaling 1 from the first device before subframe 5 or subframe 5 of each radio frame, and the control signaling 1 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before subframe 5 or subframe 5 of each radio frame.
  • the second device amplifies the NPSS signal in subframe 5 of each radio frame, and sends the amplified NPSS to the first remote terminal device.
  • the first remote terminal device receives the amplified NPSS from the second device.
  • S1004a The first device sends control signaling 2 to the second device after subframe 5 or subframe 5 of each radio frame.
  • the second device receives control signaling 2 from the first device after subframe 5 or subframe 5 of each radio frame, and the control signaling 2 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after subframe 5 or subframe 5 of each radio frame.
  • the transmission time of the control signaling 2 is later than the transmission time of the control signaling 1.
  • the first device sends control signaling 1 to the second device in subframe 5 of each radio frame
  • the first device sends control signaling 2 to the second device after subframe 5 of each radio frame; or If the first device sends control signaling 1 to the second device before subframe 5 of each radio frame, the first device sends a control signal to the second device after subframe 5 or subframe 5 of each radio frame.
  • Order 2 which is explained here uniformly, and will not be repeated here.
  • the NSSS processing flow is given, including the following steps:
  • S1001b The first device sends control signaling 3 to the second device before subframe 9 or subframe 9 of every other radio frame.
  • the second device receives the control signaling 3 from the first device before subframe 9 or subframe 9 of every other radio frame, and the control signaling 3 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before subframe 9 or subframe 9 of every other radio frame.
  • the second device amplifies the signal of the NSSS in subframe 9 of every other radio frame, and sends the amplified NSSS to the first remote terminal device.
  • the first remote terminal device receives the amplified NSSS from the second device.
  • S1004b The first device sends control signaling 4 to the second device after subframe 9 or subframe 9 of every other radio frame.
  • the second device receives the control signaling 4 from the first device after every other subframe 9 or subframe 9 of the radio frame, and the control signaling 4 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after subframe 9 or subframe 9 of every other radio frame.
  • the sending time of the control signaling 4 is later than the sending time of the control signaling 3.
  • the first device sends control signaling 3 to the second device in every other subframe 9 of the radio frame
  • the first device sends control signaling 4 to the second device after every other subframe 9 of the radio frame.
  • the first device sends control signaling 3 to the second device before subframe 9 of every other radio frame
  • the first device sends control signaling 3 to the second device after subframe 9 of every other radio frame or after subframe 9
  • the device sends control signaling 4, which is explained here in a unified manner, and will not be repeated here.
  • the MIB processing flow is given, including the following steps:
  • the first device sends control signaling 5 to the second device before subframe 0 or subframe 0 of each radio frame.
  • the second device receives control signaling 5 from the first device before subframe 0 or subframe 0 of each radio frame, and the control signaling 5 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before subframe 0 or subframe 0 of each radio frame.
  • the second device amplifies the MIB signal in subframe 0 of each wireless frame, and sends the MIB after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the MIB after signal amplification from the second device.
  • the first device sends control signaling 6 to the second device after subframe 0 or subframe 0 of each radio frame.
  • the second device receives the control signaling 6 from the first device after subframe 0 or subframe 0 of each radio frame, and the control signaling 6 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after subframe 0 or subframe 0 of each radio frame.
  • the transmission time of the control signaling 6 is later than the transmission time of the control signaling 5.
  • the first device sends control signaling 5 to the second device in subframe 0 of each radio frame
  • the first device sends control signaling 6 to the second device after subframe 0 of each radio frame; or If the first device sends control signaling 5 to the second device before subframe 0 of each radio frame, the first device sends a control signal to the second device after subframe 0 or subframe 0 of each radio frame.
  • Order 6, here is a unified description, and will not be repeated here.
  • NPSS, NSSS and MIB are all sent cyclically, there is no inevitable order of execution among the first part, the second part and the third part in the embodiments of this application, and any of them can be executed first.
  • the SIB1 processing flow is given, including the following steps:
  • the first device After receiving the MIB, the first device determines the position of the radio frame sent by SIB1 according to the scheduling information of SIB1 included in the MIB, and then sends control signaling to the second device before subframe 4 or subframe 4 of the radio frame 7.
  • the second device receives control signaling 7 from the first device before subframe 4 or subframe 4 of the radio frame, and the control signaling 7 is used to enable the signal amplification function of the second device.
  • the MIB includes the scheduling information of SIB1, which is used to indicate the transport block size (TBS) and the number of repetitions of SIB1.
  • the scheduling period of SIB1 is fixed at 2560ms, and the period of SIB1, TBS and The number of repetitions can determine the position of the radio frame sent by SIB1.
  • the second device turns on the signal amplification function before subframe 4 or subframe 4 of the radio frame.
  • the second device amplifies the signal of SIB1 in subframe 4 of the radio frame, and sends the amplified SIB1 to the first remote terminal device.
  • the first remote terminal device receives the amplified SIB1 from the second device.
  • the first device sends control signaling 8 to the second device after subframe 4 or subframe 4 of the radio frame.
  • the second device receives control signaling 8 from the first device after subframe 4 or subframe 4 of the radio frame, and the control signaling 8 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after subframe 4 or subframe 4 of the radio frame.
  • the sending time of the control signaling 8 is later than the sending time of the control signaling 7.
  • the first device sends control signaling 7 to the second device in subframe 4 of the radio frame
  • the first device sends control signaling 8 to the second device after subframe 4 of the radio frame; or, if The first device sends control signaling 7 to the second device before subframe 4 of the radio frame, and the first device sends control signaling 8 to the second device after subframe 4 or subframe 4 of the radio frame.
  • the first device determines the location of time domain resources for transmitting other SIBs according to the scheduling information of other SIBs included in SIB1, and then determines the starting position or starting position of time domain resources for transmitting other SIBs Before sending control signaling 9 to the second device.
  • the second device receives the control signaling 9 from the first device before transmitting the start position or the start position of the time domain resources of other SIBs, and the control signaling 9 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before transmitting the start position or the start position of the time domain resources of other SIBs.
  • the second device amplifies signals of other SIBs at the time domain resource location for transmitting other SIBs, and sends the other SIBs after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives other SIBs after the signal from the second device is amplified.
  • the first device sends control signaling 10 to the second device after transmitting the end position or the end position of the time domain resources of other SIBs.
  • the second device receives the control signaling 10 from the first device after transmitting the end position or the end position of the time domain resources of other SIBs, and the control signaling 10 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after transmitting the end position or end position of the time domain resources of other SIBs.
  • the transmission time of the control signaling 10 is later than the transmission time of the control signaling 9.
  • the first device sends control signaling 9 to the second device in this subframe
  • the first device sends control signaling 10 to the second device after this subframe
  • the first device sends the control signaling 10 to the second device in this subframe or after the subframe, which is explained here in a unified manner, and will not be repeated in the following.
  • SIB1 may include scheduling information of multiple other SIBs. At this time, for each other SIB, the above steps S1011-S1015 are executed in a unified manner. Repeat.
  • the first device after the first device completes the above SIB1 processing flow or other SIB processing flow, it can also continue to execute the above NPSS process, NSSS process or MIB process, which will be explained here in a unified manner and will not be repeated hereafter .
  • the terminal device may initiate a random access procedure.
  • the signal processing method in the random access procedure is given below, as shown in Figure 11, including the following steps:
  • the first device After receiving the first SIB, the first device sends to the second device the start time domain position of the NPRACH resource or before the start time domain position according to the time domain position indication information of the NPRACH resource included in the first SIB Control signaling 11.
  • the second device receives the control signaling 11 from the first device before or before the start time domain position of the NPRACH resource, and the control signaling 11 is used to enable the signal amplification function of the second device.
  • the first SIB here may be, for example, SIB2, SIB22, or SIB23.
  • the second device turns on the signal amplification function before the start time domain position or the start time domain position of the NPRACH resource.
  • S1103 The first remote terminal device sends the preamble carried on the NPRACH resource to the second device.
  • the second device receives the preamble carried on the NPRACH resource from the first remote terminal device.
  • the second device amplifies the preamble at the NPRACH resource location, and sends the preamble after signal amplification to the network device.
  • the network device receives the amplified preamble from the second device.
  • the first device may also detect the preamble from the first remote terminal device, and parse the preamble to obtain the first random access (RA).
  • RA random access
  • the first device sends control signaling 12 to the second device at the end time domain position or after the end time domain position of the NPRACH resource.
  • the second device receives the control signaling 12 from the first device at or after the end time domain position of the NPRACH resource, and the control signaling 12 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function at the end time domain position of the NPRACH resource or after the end time domain position.
  • the first device After detecting the preamble carried on the NPRACH resource, the first device sets the start time domain position or the start time domain of NPDCCH resource 1 according to the time domain position indication information of NPDCCH resource 1 included in the second SIB Send control signaling 13 to the second device before the location.
  • the second device receives the control signaling 13 from the first device before the start time domain position or the start time domain position of the NPDCCH resource 1, and the control signaling 13 is used to enable the signal amplification function of the second device.
  • the time domain position indication information of NPDCCH resource 1 may specifically be information of a specific time window.
  • the size of the specific time window is related to coverage and is indicated by the second SIB with a size of ⁇ 2,3, 4,5,6,7,8,10 ⁇ *The multiple of the NPDCCH search space period, but the maximum cannot exceed 10.24s.
  • the second SIB here may be SIB2, SIB22, and SIB23, for example.
  • the second device turns on the signal amplification function before the start time domain position or the start time domain position of the NPDCCH resource 1.
  • the network device After receiving the preamble, the network device sends the DCI1 carried on the NPDCCH resource 1 to the second device within a specific time window.
  • the DCI1 is used to schedule RAR (also called message 2 (message, Msg2)).
  • the second device receives the DCI1 carried on the NPDCCH resource 1 from the network device.
  • the first device may also use the first RA-RNTI descrambling (also called analytical) scheduling on the NPDCCH resource 1 of the scheduling RAR within a specific time window
  • the DCI1 of the RAR obtains the scheduling information of the RAR, such as the number of repetitions of the RAR, which are described here in a unified manner, and will not be described in detail below.
  • the first RA-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to resolve and schedule the DCI1 of the RAR.
  • the first wireless network temporary identifier is the wireless network identifier of the first remote terminal device to resolve and schedule the DCI1 of the RAR, that is, the first remote terminal device will use the first RA-RNTI to descramble the DCI1 of the scheduled RAR, This is a unified description, and will not be repeated here.
  • the second device amplifies the DCI1 at the position of the NPDCCH resource 1, and sends the DCI1 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI1 from the second device.
  • the first device sends control signaling 14 to the second device at the end time domain position of the NPDCCH resource 1 or after the end time domain position.
  • the second device receives the control signaling 14 from the first device at the end time domain position or after the end time domain position of the NPDCCH resource 1, and the control signaling 14 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function at the end time domain position of the NPDCCH resource 1 or after the end time domain position.
  • the first device sends control signaling 15 to the second device before the start position or the start position of the time domain resource position of the RAR is transmitted according to the acquired scheduling information of the RAR.
  • the second device receives the control signaling 15 from the first device before the start position or the start position of the time domain resource position of the RAR transmission, and the control signaling 15 is used to enable the signal amplification function of the second device.
  • the second device starts the signal amplification function before the start position or the start position of the time domain resource position of the RAR is transmitted.
  • the network device sends the RAR to the second device.
  • the second device receives the RAR from the network device.
  • the second device amplifies the RAR at the time domain resource location of the RAR transmission, and sends the amplified RAR to the first remote terminal device.
  • the first remote terminal device receives the amplified RAR from the second device.
  • the first device may also detect the RAR from the network device, and parse the RAR to obtain the first temporary cell (temporal cell) allocated by the network device to the first remote terminal device.
  • the scheduling information of cell, TC)-RNTI and message 3 (msg3) are described here in a unified manner, and will not be repeated here.
  • the first device sends control signaling 16 to the second device after transmitting the end position or the end position of the time domain resource position of the RAR.
  • the second device receives the control signaling 16 from the first device after transmitting the end position or the end position of the time domain resource position of the RAR, and the control signaling 16 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after transmitting the end position or the end position of the time domain resource position of the RAR.
  • the first device sends the control signaling 17 to the second device before the start position or the start position of the time domain resource position of the transmission message 3.
  • the second device receives the control signaling 17 from the first device before the start position or the start position of the time domain resource position of the transmission message 3, and the control signaling 17 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 3.
  • the first remote terminal device sends a message 3 to the second device.
  • the second device receives the message 3 from the first remote terminal device.
  • the message 3 carries information such as the terminal identifier of the first remote terminal device and the reason for triggering the sending of the message 3.
  • the second device amplifies the message 3 at the time domain resource location of the transmission message 3, and sends the message 3 after the signal amplification to the network device.
  • the network device receives the amplified message 3 from the second device.
  • the first device sends the control signaling 18 to the second device after transmitting the end position or the end position of the time domain resource position of the message 3.
  • the second device receives the control signaling 18 from the first device after the end position or the end position of the time domain resource position of the transmission message 3, and the control signaling 18 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 3.
  • the first device sends control signaling 19 to the second device before or before the start time domain position of the NPDCCH resource 2 according to the time domain position indication information of the NPDCCH resource 2 included in the third SIB.
  • the second device receives the control signaling 19 from the first device before or before the start time domain position of the NPDCCH resource 2 and the control signaling 19 is used to enable the signal amplification function of the second device.
  • the third SIB here may be, for example, SIB2, SIB20, or SIB22.
  • the time domain position indication information of the NPDCCH resource 2 may be the same as the time domain position indication information of the NPDCCH resource 1, which is not specifically limited in the embodiment of this application.
  • the second device turns on the signal amplification function before the start time domain position or the start time domain position of the NPDCCH resource 2.
  • the network device After receiving the message 3, the network device sends the DCI2 carried on the NPDCCH resource 2 to the second device, and the DCI2 is used for scheduling the message 4.
  • the second device receives the DCI4 carried on the NPDCCH resource 2 from the network device.
  • the first device may also use the first TC-RNTI to descramble the DCI2 of the scheduling message 4 on the NPDCCH resource 2 to obtain the scheduling information of the message 4, such as message 4.
  • the number of repetitions is uniformly explained here and will not be repeated here.
  • the first TC-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to resolve the DCI2 of the scheduling message 4.
  • the first wireless network temporary identifier is the wireless network identifier of the first remote terminal device that parses the DCI2 of the scheduling message 4, that is, the first remote terminal device will use the first TC-RNTI to descramble the scheduling message 4 DCI2, here is a unified description, and will not be repeated here.
  • the second device amplifies the DCI2 at the position of the NPDCCH resource 2 and sends the DCI2 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI2 from the second device.
  • the first device sends control signaling 20 to the second device at the end time domain position of the NPDCCH resource 2 or after the end time domain position.
  • the second device receives the control signaling 20 from the first device at or after the end time domain position of the NPDCCH resource 2 and the control signaling 20 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function at the end time domain position of the NPDCCH resource 2 or after the end time domain position.
  • the first device sends the control signaling 21 to the second device before the start position or the start position of the time domain resource position of the transmission message 4 according to the acquired scheduling information of the message 4.
  • the second device receives the control signaling 21 from the first device before the start position or the start position of the time domain resource position of the transmission message 4, and the control signaling 21 is used to enable the signal amplification function of the second device.
  • the second device starts the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 4.
  • the network device sends a message 4 to the second device.
  • the second device receives the message 4 from the network device.
  • the second device amplifies the message 4 at the time domain resource location of the transmission message 4, and sends the message 4 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified message 4 from the second device.
  • the first device may also use the first TC-RNTI to descramble the NPDSCH carrying message 4, and parse the message 4 to obtain the first C of the first remote terminal device.
  • -RNTI so that the first TC-RNTI can be upgraded to the first C-RNTI in the subsequent, which will be described in a unified manner here and will not be repeated in the following.
  • the first TC-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to resolve the NPDSCH carrying the message 4.
  • the first wireless network temporary identifier is the wireless network identifier for the first remote terminal device to parse the NPDSCH carrying message 4, that is, the first remote terminal device will use the first TC-RNTI to descramble the message 4 bearer NPDSCH, here is a unified description, and will not be repeated here.
  • the first device sends the control signaling 22 to the second device after transmitting the end position or the end position of the time domain resource position of the message 4.
  • the second device receives the control signaling 22 from the first device after the end position or the end position of the time domain resource position of the transmission message 4, and the control signaling 22 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 4.
  • RAR or message 4 in the embodiment of this application can be understood as downlink data carried on the NPDSCH; message 3 in the embodiment of this application can be understood as uplink data carried on the NPUSCH. Unified description, no more details below.
  • steps S1105-S1108, steps S1111-S1114, steps S1117-S1120, steps S1123-S1126, and steps S1129-S1132 in the embodiment shown in FIG. 11 may be optional steps. That is, the signal amplification function is turned on during the entire random access process, and the signal method function is not turned off until the random access process ends. The embodiment of the present application does not specifically limit this situation.
  • uplink or downlink data scheduling process includes the following steps:
  • the first device learns the time domain position of the NPDCCH resource 3 of the DCI3 carrying the scheduling message 5 according to the configuration information of the first terminal specific search space (UE specific search space, USS) carried in the message 4 in the random access procedure Indication information, and then send the control signaling 23 to the second device before the start time domain position of the NPDCCH resource 3 or before the start time domain position.
  • the second device receives the control signaling 23 from the first device before or before the start time domain position of the NPDCCH resource 3, and the control signaling 23 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before the start time domain position or the start time domain position of the NPDCCH resource 3.
  • the network device sends the DCI3 carried on the NPDCCH resource 3 to the second device, where the DCI3 is used for the scheduling message 5.
  • the second device receives the DCI3 carried on the NPDCCH resource 3 from the network device.
  • the first device may also use the first C-RNTI on the NPDCCH resource 3 to descramble the DCI3 of the scheduling message 5 to obtain the scheduling information of the message 5, such as message 5.
  • the number of repetitions is uniformly explained here and will not be repeated here.
  • the first C-RNTI in the embodiment of the present application may also be referred to as a first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to parse the DCI3 of the scheduling message 5.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI3 of the first remote terminal device parsing the scheduling message 5, that is, the first remote terminal device will use the first C-RNTI to descramble the scheduling message 5 DCI3, here is a unified description, and will not be repeated here.
  • the second device amplifies the DCI3 at the position of the NPDCCH resource 3, and sends the DCI3 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI3 from the second device.
  • the first device sends the control signaling 24 to the second device at the end time domain position of the NPDCCH resource 3 or after the end time domain position.
  • the second device receives the control signaling 24 from the first device at or after the end time domain position of the NPDCCH resource 3, and the control signaling 24 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function at the end time domain position of the NPDCCH resource 3 or after the end time domain position.
  • the first device sends the control signaling 25 to the second device before the start position or the start position of the time domain resource position of the transmission message 5 according to the acquired scheduling information of the message 5.
  • the second device receives the control signaling 25 from the first device before the start position or the start position of the time domain resource position of the transmission message 5, and the control signaling 25 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 5.
  • the first remote terminal device sends a message 5 to the second device.
  • the second device receives the message 5 from the first remote terminal device.
  • the second device amplifies the message 5 at the time domain resource location of the transmission message 5, and sends the message 5 after the signal amplification to the network device.
  • the network device receives the amplified message 5 from the second device.
  • the first device sends the control signaling 26 to the second device after transmitting the end position or the end position of the time domain resource position of the message 5.
  • the second device receives the control signaling 26 from the first device after the end position or the end position of the time domain resource position of the transmission message 5, and the control signaling 26 is used to turn off the signal amplification function of the second device.
  • S1212a The second device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 5 according to the control signaling 26.
  • the message 5 in the embodiment of the present application can also be understood as the uplink data carried on the NPUSCH, which is explained here in a unified manner, and will not be repeated in the following.
  • the signal processing method in the downlink data scheduling process includes the following steps:
  • the first device learns the time domain position indication information of the NPDCCH resource 4 of the DCI 4 carrying the scheduling message 6 according to the configuration information of the first USS carried in the message 4, and then sets the start time domain position or start of the NPDCCH resource 4
  • the time domain location sends control signaling 27 to the second device before.
  • the second device is
  • the start time domain position of the NPDCCH resource 4 or before the start time domain position receives the control signaling 27 from the first device, and the control signaling 27 is used to enable the signal amplification function of the second device.
  • the second device turns on the signal amplification function before the start time domain position or the start time domain position of the NPDCCH resource 4.
  • the network device sends the DCI4 carried on the NPDCCH resource 4 to the second device, where the DCI4 is used for the scheduling message 6.
  • the second device receives the DCI4 carried on the NPDCCH resource 4 from the network device.
  • the first device may also use the first C-RNTI on the NPDCCH resource 4 to descramble the DCI 4 of the scheduling message 6 to obtain the scheduling information of the message 6, such as message 6.
  • the number of repetitions is uniformly explained here and will not be repeated here.
  • the first C-RNTI in the embodiment of the present application may also be referred to as a first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to resolve the DCI 4 of the scheduling message 6.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI4 of the first remote terminal device that parses the scheduling message 6, that is, the first remote terminal device will use the first C-RNTI to descramble the scheduling message 6 DCI4, here is a unified description, and will not be repeated here.
  • the second device amplifies the DCI4 at the position of the NPDCCH resource 4, and sends the DCI4 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI4 from the second device.
  • S1205b The first device sends control signaling 28 to the second device at the end time domain position of the NPDCCH resource 4 or after the end time domain position.
  • the second device receives the control signaling 28 from the first device at or after the end time domain position of the NPDCCH resource 4, and the control signaling 28 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after the end time domain position of the NPDCCH resource 4 or the end time domain position.
  • the first device sends the control signaling 29 to the second device before the start position or the start position of the time domain resource position of the transmission message 6.
  • the second device receives the control signaling 29 from the first device before the start position or the start position of the time domain resource position of the transmission message 6, and the control signaling 29 is used to enable the signal amplification function of the second device.
  • the network device sends a message 6 to the second device.
  • the second device receives the message 6 from the network device.
  • the second device amplifies the message 6 at the time domain resource location of the transmission message 6, and sends the message 6 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified message 6 from the second device.
  • the first device sends the control signaling 30 to the second device after transmitting the end position or the end position of the time domain resource position of the message 6.
  • the second device receives the control signaling 30 from the first device after the end position or the end position of the time domain resource position of the transmission message 6, and the control signaling 30 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 6.
  • the message 6 in the embodiment of the present application can also be understood as the downlink data carried on the NPDSCH, which is explained here in a unified manner, and will not be repeated in the following.
  • the random access process, the downlink data processing process, and the uplink data processing process described above are all described for the network device and a remote terminal device.
  • the network device may interact with multiple remote terminal devices.
  • the first device may pre-store the mapping relationship between the wireless network temporary identifier and the USS or CSS, and the mapping relationship includes the mapping relationship between the first wireless network temporary identifier and the first USS or CSS.
  • the first wireless network temporary identifier here may be the foregoing first C-RNTI, first RA-RNTI, or first TC-RNTI.
  • the first device determining the first wireless network temporary identifier may include: the first device determining the first USS or the first CSS corresponding to the second time domain resource location for transmitting the second signal; the first device according to the first USS or the first CSS, And the pre-stored mapping relationship between the first wireless network temporary identifier and the first USS or the first CSS to determine the first wireless network temporary identifier.
  • the first device determining the first C-RNTI may include: the first device determines to transmit the first USS corresponding to the NPDCCH resource x carrying the DCIx, and then according to the first USS A USS and a pre-stored mapping relationship between the first C-RNTI and the first USS determine the first C-RNTI.
  • the first device determining the first RA-RNTI may include: the first device determining the first CSS corresponding to the NPDCCH resource x carrying the DCIx, and then according to the first CSS, and the pre-stored first RA-RNTI and the first CSS The mapping relationship determines the first RA-RNTI.
  • the first device determining the first TC-RNTI may include: the first device determining the first CSS corresponding to the NPDCCH resource x carrying the DCIx, and then according to the first CSS, the pre-stored first TC-RNTI and the first CSS The mapping relationship determines the first TC-RNTI.
  • the mapping relationship between the first wireless network temporary identity stored in advance by the first device and the first USS or the first CSS may be obtained in the following manner: the first USS may be based on the random access procedure The configuration information of the first USS carried in the message 4 is determined, and the first CSS may be determined according to the time domain position indication information of the NPDCCH resource 1 included in the second SIB.
  • the first device determines the first CSS
  • the mapping relationship between the first RA-RNTI and the first CSS can be established; the first device parses the RAR to obtain
  • the network device allocates the first TC-RNTI to the first remote terminal device
  • the first device may establish a mapping relationship between the first TC-RNTI and the first CSS.
  • the first device determines the first USS
  • the first device parses the message 4 to obtain the first C-RNTI of the first remote terminal device, the mapping relationship between the first C-RNTI and the first USS can be established.
  • the first USS or the first CSS may be characterized by the parameters of the NPDCCH search space in the pre-stored maintenance list: parameters R max , G and ⁇ offset .
  • the mapping relationship between the wireless network temporary identifier stored in advance by the first device and the USS or CSS may be maintained in the manner shown in Table 1 below:
  • the first remote terminal device when the first remote terminal device is in the idle state, the first remote terminal device may perform blind detection in the physical downlink control channel search space with the PO position as the starting subframe
  • the process of detecting the physical downlink control channel is called the paging process.
  • the above random access procedure can be entered.
  • the signal processing method in the paging process is given below, as shown in Figure 13, including the following steps:
  • the first device sends the control signaling 31 to the second device before or before the start time domain position of the NPDCCH resource 5 according to the time domain position indication information of the NPDCCH resource 5 included in the fourth SIB.
  • the second device receives the control signaling 31 from the first device before or before the start time domain position of the NPDCCH resource 5, and the control signaling 31 is used to enable the signal amplification function of the second device.
  • the time domain position indication information of NPDCCH resource 5 may specifically be the size of the DRX cycle, the paging density (that is, the number of paging opportunities included in a DRX cycle), and paging (paging, P) -The number of repetitions of NPDCCH scrambled by RNTI.
  • the PO position can be determined by the paging density and the size of the DRX cycle, and the PO position is the starting position of the NPDCCH resource 5.
  • the fourth SIB here may be SIB2, for example.
  • the second device turns on the signal amplification function before the start time domain position of the NPDCCH resource 5 or before the start time domain position.
  • the network device sends the DCI5 carried on the NPDCCH resource 5 to the second device, where the DCI5 is used for scheduling paging messages.
  • the second device receives the DCI5 carried on the NPDCCH resource 5 from the network device.
  • the first device may also use P-RNTI on NPDCCH resource 5 to descramble the DCI5 of the scheduling paging message to obtain scheduling information of the paging message, such as paging
  • P-RNTI on NPDCCH resource 5 to descramble the DCI5 of the scheduling paging message to obtain scheduling information of the paging message, such as paging
  • the number of repetitions of the message is explained here in a unified manner, and will not be repeated here.
  • the first P-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the first device uses the first wireless network temporary identifier to resolve and schedule the DCI5 of the paging message.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI5 that the first remote terminal device parses and dispatches the paging message, that is, the first remote terminal device will use the first P-RNTI to descramble the scheduling paging message.
  • the DCI5 of the call message is described here in a unified manner, and will not be repeated here.
  • the second device amplifies the DCI5 at the position of the NPDCCH resource 5, and sends the DCI5 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI5 from the second device.
  • the first device sends control signaling 32 to the second device at the end time domain position of the NPDCCH resource 5 or after the end time domain position.
  • the second device receives the control signaling 32 from the first device at or after the end time domain position of the NPDCCH resource 5, and the control signaling 32 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function at the end time domain position of the NPDCCH resource 5 or after the end time domain position.
  • the first device sends the control signaling 33 to the second device before the start position or the start position of the time domain resource position for transmitting the paging message.
  • the second device receives the control signaling 33 from the first device before the start position or the start position of the time domain resource position for transmitting the paging message, and the control signaling 33 is used to enable the signal amplification function of the second device .
  • the second device starts the signal amplification function before the start position or the start position of the time domain resource position for transmitting the paging message.
  • the network device sends a paging message to the second device.
  • the second device receives the paging message from the network device.
  • the second device amplifies the paging message at the time domain resource location where the paging message is transmitted, and sends the paging message after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified paging message from the second device.
  • the first device sends a control signaling 34 to the second device after the end position or the end position of the time domain resource position of the transmission of the paging message.
  • the second device receives the control signaling 34 from the first device after the end position or the end position of the time domain resource position for transmitting the paging message, and the control signaling 34 is used to turn off the signal amplification function of the second device.
  • the second device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission paging message according to the control signaling 34.
  • the network device does not need to page the remote terminal device, it does not send DCI5 at the location of the NPDCCH resource 5.
  • the first device still needs to amplify the resource where the NPDCCH resource 5 is located. That is to say, the above-mentioned processes in S1301 to S1312 only include S1301, S1302, S1305, and S1306, which are described here in a unified manner, and will not be repeated here.
  • the second device should enable the signal amplification function after receiving an instruction for the first signal.
  • the signal amplification function is turned on after the control signaling, and the signal amplification function is turned off after receiving the control signaling for the last signal instructing to turn off the signal amplification function.
  • the first signal here is a certain signal at the front of the start position of the time domain resource position
  • the last signal here is a certain signal at the end position of the time domain resource position at the back.
  • the start time of the time domain resource location corresponding to signal a is time 1, and the end time is time 4; the start time of the time domain resource location corresponding to signal b is time 2, end Time is time 7; the start time of the time domain resource location corresponding to signal c is time 3, and the end time is time 5; the start time of the time domain resource location corresponding to signal d is time 6, and the end time is time 8; signal The start time of the time domain resource location corresponding to e is time 9 and the end time is time 10.
  • the time sequence is time 1 ⁇ time 2 ⁇ time 3 ⁇ time 4 ⁇ time 5 ⁇ time 6 ⁇ time 7 ⁇ time 8 ⁇ time 9 ⁇ time 10
  • the second device should receive the instruction to turn on signal for signal a
  • the signal amplification function is turned on after the control signaling of the amplification function (that is, the signal amplification function is turned on before time 1 or time 1), and the second device should turn off the signal amplification after receiving the control signaling for the signal d instructing to turn off the signal amplification function
  • the function that is, the signal amplification function is turned off after time 8 or time 8
  • the second device needs to maintain a relationship list after receiving the control signaling from the first device.
  • the relationship list may be as shown in Table 2, including control signaling indicating to turn on the signal amplification function, turn-on time, control signaling indicating to turn off the signal amplification function, and a mapping relationship at the turn-off time, so that the second device is based on the
  • the mapping relationship can know whether there is overlap between the time domain positions of different signals, and in the case of overlap, the control signaling for the first signal to turn on the signal amplification function and the last signal to turn off the signal amplification Function control signaling.
  • the first device after determining the time domain resource location for transmitting each signal, the first device maintains a relationship list as shown in Table 2, and then the first device targets the first signal Send a control signaling instructing to turn on the signal amplification function to the second device, and send a control signaling instructing to turn off the signal amplification function for the last signal to the second device.
  • the first signal here is a certain signal at the front of the start position of the time domain resource position
  • the last signal here is a certain signal at the end position of the time domain resource position at the back. For example, as shown in FIG.
  • the first device transmits to the start position or before the start position of the time domain resource position (that is, before time 1 or time 1)
  • the second device sends a control signaling instructing to turn on the signal amplification function; after the first device determines the time domain resource location of the transmission signal d, after the end location or the end location of the time domain resource location (that is, at time 8 or time 8) Afterwards) send a control signal instructing to turn off the signal amplification function to the second device, so as to ensure that the signal amplification function is always on from time 1 to time 8.
  • the first device in the embodiment of the present application is in a long connection state after being powered on and connected to the network, that is, it is always in a connected state.
  • the network device directly instructs an RRC message to notify the first device that there is a system message change.
  • This RRC message can be a new RRC message, and the first device knows after receiving the RRC message
  • the system message is changed, and the resource locations such as paging, random access, and reference signal can be re-determined, which are explained here in a unified manner, and will not be repeated here.
  • the first device may inform the network device of its C-RNTI through an RRC message.
  • the RRC message carries the C-RNTI of the first device.
  • the network device knows the C-RNTI of the first device. In the case of RNTI, it can communicate with the first device, such as instructing the first device to change the system message through an RRC message, which is described here in a unified manner, and will not be repeated here.
  • the foregoing embodiment of the present application is described by taking as an example the first device separately sending to the second device control signaling instructing to enable the signal amplification function and control signaling to disable the signal amplification function.
  • the first device may also indicate the duration of the signal amplification function being turned on or the time when the signal amplification function is turned off when the first device instructs the second device to turn on the signal amplification function, so that the second device is turning on the signal amplification function.
  • the signal amplification function is turned off at a time when the signal amplification function needs to be turned off, which is not specifically limited in the embodiment of the present application.
  • the NPSS processing procedures, NSS processing procedures, MIB processing procedures, SIB1 processing procedures, other SIB processing procedures, random access procedures, uplink or downlink data scheduling procedures, and paging procedures in the above-mentioned embodiments of this application are mutually exclusive. Decoupling, independent of each other.
  • the paging process before the above random access process may also be other paging processes, or the random access process after the above paging process may also be other random access processes, etc., which is not described in this embodiment of the application. Specific restrictions.
  • the repeater is always on, and the repeater will amplify the useful signal or noise.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the first device can indicate the start position or before the start position of the first time domain resource position for transmitting the first signal
  • the second device turns on the signal amplification function, that is to say, it only performs signal amplification when there is a signal that needs to be transferred, and does not need to turn on the signal amplification function when there is no signal that needs to be transferred, so it can avoid when the DeNB does not send data to the remote terminal device.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment, thereby reducing noise interference.
  • the actions of the first device or the second device in each step of FIG. 10 to FIG. 13 may be executed by the processor 601 in the communication device 600 shown in FIG. 6 calling the application program code stored in the memory 603.
  • the embodiment of the present application There are no restrictions on this.
  • the NPSS processing flow is given, including the following steps:
  • S1501a The third device turns on the signal amplification function before subframe 5 or subframe 5 of each radio frame.
  • the third device amplifies the NPSS signal in subframe 5 of each radio frame, and sends the amplified NPSS to the first remote terminal device.
  • the first remote terminal device receives the amplified NPSS from the third device.
  • S1503a The third device turns off the signal amplification function after subframe 5 or subframe 5 of each radio frame.
  • the NSSS processing flow is given, including the following steps:
  • S1501b The third device turns on the signal amplification function before subframe 9 or subframe 9 of every other radio frame.
  • the third device amplifies the signal of the NSSS in every subframe 9 of the radio frame, and sends the amplified NSSS to the first remote terminal device.
  • the first remote terminal device receives the amplified NSSS from the third device.
  • S1503b The third device turns off the signal amplification function after subframe 9 or subframe 9 of every other radio frame.
  • the MIB processing flow is given, including the following steps:
  • S1501c The third device turns on the signal amplification function before subframe 0 or subframe 0 of each radio frame.
  • the third device amplifies the MIB signal in subframe 0 of each wireless frame, and sends the MIB after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the MIB after signal amplification from the third device.
  • S1503c The third device turns off the signal amplification function after subframe 0 or subframe 0 of each radio frame.
  • NPSS, NSSS and MIB are all sent cyclically, there is no inevitable order of execution among the first part, the second part and the third part in the embodiments of this application, and any of them can be executed first.
  • the SIB1 processing flow is given, including the following steps:
  • the third device After receiving the MIB, the third device determines the position of the radio frame sent by the SIB1 according to the scheduling information of the SIB1 included in the MIB, and then turns on the signal amplification function before subframe 4 or subframe 4 of the radio frame.
  • the MIB includes the scheduling information of SIB1, which is used to indicate the TBS of SIB1 and the number of repetitions.
  • the scheduling period of SIB1 is fixed at 2560ms. Through the period of SIB1, TBS and the number of repetitions, the wireless transmission of SIB1 can be determined. Frame position.
  • the third device amplifies the signal of SIB1 in subframe 4 of the radio frame, and sends the amplified SIB1 to the first remote terminal device.
  • the first remote terminal device receives the amplified SIB1 from the second device.
  • the third device turns off the signal amplification function after subframe 4 or subframe 4 of the radio frame.
  • the third device After receiving SIB1, the third device determines the position of transmitting time domain resources of other SIBs according to the scheduling information of other SIBs included in SIB1, and then determines the starting position or starting position of transmitting time domain resources of other SIBs Turn on the signal amplification function before.
  • the third device amplifies signals of other SIBs at the time domain resource location of transmitting other SIBs, and sends the other SIBs after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives other SIBs after the signal from the second device is amplified.
  • S1509 The third device turns off the signal amplification function after transmitting the end position or end position of the time domain resources of other SIBs.
  • SIB1 may include scheduling information of multiple other SIBs. At this time, for each other SIB, the above steps S1507-S1509 are executed in a unified manner, and will not be described below. Repeat.
  • the third device after the third device completes the above SIB1 processing flow or other SIB processing flow, it can also continue to execute the above NPSS process, NSSS process or MIB process, which will be explained here in a unified manner and will not be repeated hereafter .
  • the terminal device may initiate a random access procedure.
  • the signal processing method in the random access process is given below, as shown in Figure 16, including the following steps:
  • the third device after receiving the first SIB, the third device turns on the signal amplification function before the start time domain position of the NPRACH resource or before the start time domain position according to the time domain position indication information of the NPRACH resource included in the first SIB.
  • the first SIB here may be, for example, SIB2, SIB22, or SIB23.
  • the first remote terminal device sends the preamble carried on the NPRACH resource to the third device.
  • the third device receives the preamble carried on the NPRACH resource from the first remote terminal device.
  • the third device amplifies the preamble at the NPRACH resource location, and sends the amplified preamble to the network device.
  • the network device receives the amplified preamble from the third device.
  • the third device may also parse the preamble to obtain the first RA-RNTI, which is described here in a unified manner, and will not be described in detail below.
  • the third device turns off the signal amplification function after the end time domain position of the NPRACH resource or the end time domain position.
  • the third device After detecting the preamble carried on the NPRACH resource, the third device sets the start time domain position or the start time domain of NPDCCH resource 1 according to the time domain position indication information of NPDCCH resource 1 included in the second SIB Turn on the signal amplification function before the position.
  • the time domain position indication information of NPDCCH resource 1 may specifically be information of a specific time window.
  • the size of the specific time window is related to coverage and is indicated by the second SIB with a size of ⁇ 2,3, 4,5,6,7,8,10 ⁇ *The multiple of the NPDCCH search space period, but the maximum cannot exceed 10.24s.
  • the second SIB here may be SIB2, SIB22, and SIB23, for example.
  • the network device After receiving the preamble, the network device sends the DCI1 carried on the NPDCCH resource 1 to the third device within a specific time window.
  • the DCI1 is used for scheduling RAR (also referred to as message 2 (message, Msg2)).
  • the third device receives the DCI1 carried on the NPDCCH resource 1 from the network device.
  • the third device may also use the first RA-RNTI to descramble (also be referred to as parsing) the DCI1 of the scheduled RAR on the NPDCCH resource 1 of the scheduled RAR within a specific time window to obtain the RAR
  • the scheduling information such as the number of repetitions of the RAR, is described here in a unified manner, and will not be repeated here.
  • the first RA-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to resolve and schedule the DCI1 of the RAR.
  • the first wireless network temporary identifier is the wireless network identifier of the first remote terminal device to resolve and schedule the DCI1 of the RAR, that is, the first remote terminal device will use the first RA-RNTI to descramble the DCI1 of the scheduled RAR, This is a unified description, and will not be repeated here.
  • the third device amplifies the DCI1 at the position of the NPDCCH resource 1, and sends the DCI1 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI1 from the third device.
  • the third device turns off the signal amplification function at the end time domain position of the NPDCCH resource 1 or after the end time domain position.
  • the third device turns on the signal amplification function before the start position or the start position of the time domain resource position of the RAR transmission according to the acquired scheduling information of the RAR.
  • the network device sends the RAR to the third device.
  • the third device receives the RAR from the network device.
  • the third device amplifies the RAR at the time domain resource location of the RAR transmission, and sends the amplified RAR to the first remote terminal device.
  • the first remote terminal device receives the amplified RAR from the third device.
  • the third device may also parse the RAR to obtain the first TC-RNTI assigned to the first remote terminal device by the network device and the scheduling information of the message 3 (msg3), which is explained here in a unified manner. No longer.
  • the third device turns off the signal amplification function after transmitting the end position or the end position of the time domain resource position of the RAR.
  • the third device turns on the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 3 according to the acquired scheduling information of the message 3.
  • the first remote terminal device sends a message 3 to the third device.
  • the third device receives message 3 from the first remote terminal device.
  • the message 3 carries information such as the terminal identifier of the first remote terminal device and the reason for triggering the sending of the message 3.
  • the third device amplifies the message 3 at the time domain resource location of the transmission message 3, and sends the message 3 after the signal amplification to the network device.
  • the network device receives the amplified message 3 from the third device.
  • S1616 The third device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 3.
  • the third device turns on the signal amplification function before or before the start time domain position of the NPDCCH resource 2 according to the time domain position indication information of the NPDCCH resource 2 included in the third SIB.
  • the third SIB here may be, for example, SIB2, SIB20, or SIB22.
  • the time domain position indication information of the NPDCCH resource 2 may be the same as the time domain position indication information of the NPDCCH resource 1, which is not specifically limited in the embodiment of this application.
  • the network device After receiving the message 3, the network device sends the DCI2 carried on the NPDCCH resource 2 to the third device, and the DCI2 is used for scheduling the message 4.
  • the third device receives the DCI4 carried on the NPDCCH resource 2 from the network device.
  • the third device may also use the first TC-RNTI on the NPDCCH resource 2 to descramble the DCI2 of the scheduling message 4 to obtain the scheduling information of the message 4, such as the number of repetitions of the message 4.
  • the first TC-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to parse the DCI2 of the scheduling message 4.
  • the first wireless network temporary identifier is the wireless network identifier of the first remote terminal device that parses the DCI2 of the scheduling message 4, that is, the first remote terminal device will use the first TC-RNTI to descramble the scheduling message 4 DCI2, here is a unified description, and will not be repeated here.
  • the third device amplifies the DCI2 at the position of the NPDCCH resource 2 and sends the DCI2 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI2 from the third device.
  • S1620 The third device turns off the signal amplification function at the end time domain position of the NPDCCH resource 2 or after the end time domain position.
  • the third device starts the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 4 according to the acquired scheduling information of the message 4.
  • the network device sends a message 4 to the third device.
  • the third device receives the message 4 from the network device.
  • the third device amplifies the message 4 at the time domain resource location of the transmission message 4, and sends the message 4 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified message 4 from the third device.
  • the third device may also use the first TC-RNTI to descramble the NPDSCH carrying message 4, and parse the message 4 to obtain the first C-RNTI of the first remote terminal device, so that it can be subsequently
  • the upgrade of the first TC-RNTI to the first C-RNTI is described here in a unified manner, and will not be repeated here.
  • the first TC-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to analyze the NPDSCH carrying the message 4.
  • the first wireless network temporary identifier is the wireless network identifier for the first remote terminal device to parse the NPDSCH carrying message 4, that is, the first remote terminal device will use the first TC-RNTI to descramble the message 4 bearer NPDSCH, here is a unified description, and will not be repeated here.
  • S1624 The third device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 4.
  • RAR or message 4 in the embodiment of this application can be understood as downlink data carried on the NPDSCH; message 3 in the embodiment of this application can be understood as uplink data carried on the NPUSCH. Unified description, no more details below.
  • uplink or downlink data scheduling process includes the following steps:
  • the third device learns the time domain position indication information of the NPDCCH resource 3 of the DCI3 carrying the scheduling message 5 according to the configuration information of the first USS carried in the message 4 in the random access procedure, and then starts the NPDCCH resource 3 Turn on the signal amplification function before the time domain position or the start time domain position.
  • the network device sends the DCI3 carried on the NPDCCH resource 3 to the third device, where the DCI3 is used for the scheduling message 5.
  • the third device receives the DCI3 carried on the NPDCCH resource 3 from the network device.
  • the third device may also use the first C-RNTI on the NPDCCH resource 3 to descramble the DCI 3 of the scheduling message 5 to obtain the scheduling information of the message 5, such as the number of repetitions of the message 5, here Unified instructions, and will not repeat them below.
  • the first C-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to parse the DCI3 of the scheduling message 5.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI3 of the first remote terminal device parsing the scheduling message 5, that is, the first remote terminal device will use the first C-RNTI to descramble the scheduling message 5 DCI3, here is a unified description, and will not be repeated here.
  • the third device amplifies the DCI3 at the position of the NPDCCH resource 3, and sends the DCI3 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI3 from the third device.
  • the third device turns off the signal amplification function at the end time domain position of the NPDCCH resource 3 or after the end time domain position.
  • the third device According to the acquired scheduling information of the message 5, the third device starts the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 5.
  • the first remote terminal device sends a message 5 to the third device.
  • the third device receives the message 5 from the first remote terminal device.
  • the third device amplifies the message 5 at the time domain resource location of the transmission message 5, and sends the message 5 after the signal amplification to the network device.
  • the network device receives the amplified message 5 from the third device.
  • S1708a The third device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 5.
  • the message 5 in the embodiment of the present application can also be understood as the uplink data carried on the NPUSCH, which is explained here in a unified manner, and will not be repeated in the following.
  • the signal processing method in the downlink data scheduling process includes the following steps:
  • the third device learns the time domain position indication information of the NPDCCH resource 4 of the DCI 4 carrying the scheduling message 6 according to the configuration information of the first USS carried in the message 4, and then sets the start time domain position or start of the NPDCCH resource 4 Turn on the signal amplification function before the time domain position.
  • the network device sends the DCI4 carried on the NPDCCH resource 4 to the third device, where the DCI4 is used for the scheduling message 6.
  • the third device receives the DCI4 carried on the NPDCCH resource 4 from the network device.
  • the third device may also use the first C-RNTI on the NPDCCH resource 4 to descramble the DCI 4 of the scheduling message 6 to obtain the scheduling information of the message 6, such as the number of repetitions of the message 6, here Unified description, no more details below.
  • the first C-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to parse the DCI 4 of the scheduling message 6.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI4 of the first remote terminal device that parses the scheduling message 6, that is, the first remote terminal device will use the first C-RNTI to descramble the scheduling message 6 DCI4, here is a unified description, and will not be repeated here.
  • the third device amplifies the DCI4 at the position of the NPDCCH resource 4, and sends the DCI4 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI4 from the third device.
  • the third device turns off the signal amplification function at the end time domain position of the NPDCCH resource 4 or after the end time domain position.
  • the third device According to the acquired scheduling information of the message 6, the third device starts the signal amplification function before the start position or the start position of the time domain resource position of the transmission message 6.
  • the network device sends a message 6 to the third device.
  • the third device receives the message 6 from the network device.
  • the third device amplifies the message 6 at the time domain resource location of the transmission message 6, and sends the message 6 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified message 6 from the third device.
  • S1708b The third device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission message 6.
  • the message 6 in the embodiment of the present application can also be understood as the downlink data carried on the NPDSCH, which is explained here in a unified manner, and will not be repeated in the following.
  • the random access process, the downlink data processing process, and the uplink data processing process described above are all described for the network device and a remote terminal device.
  • the network device may interact with multiple remote terminal devices.
  • the third device may pre-store the mapping relationship between the wireless network temporary identifier and the USS or CSS, and the mapping relationship includes the mapping relationship between the first wireless network temporary identifier and the first USS or CSS.
  • the first wireless network temporary identifier here may be the foregoing first C-RNTI, first RA-RNTI, or first TC-RNTI.
  • the manner in which the third device determines the temporary identification of the first wireless network may refer to the manner in which the first device determines the temporary identification of the first wireless network in the foregoing embodiment, and details are not described herein again.
  • the method for acquiring the mapping relationship between the first wireless network temporary identifier and the first USS or the first CSS pre-stored by the third device may refer to the first device pre-stored in the above embodiment.
  • the method of acquiring the mapping relationship between the wireless network temporary identifier and the first USS or the first CSS will not be repeated here.
  • the first remote terminal device when the first remote terminal device is in the idle state, the first remote terminal device may perform blind detection in the physical downlink control channel search space with the PO position as the starting subframe
  • the process of detecting the physical downlink control channel is called the paging process.
  • the above random access procedure can be entered.
  • the signal processing method in the paging process is given below, as shown in Figure 18, including the following steps:
  • the third device turns on the signal amplification function before the start time domain position of the NPDCCH resource 5 or before the start time domain position according to the time domain position indication information of the NPDCCH resource 5 included in the fourth SIB.
  • the time domain position indication information of NPDCCH resource 5 may specifically be the size of the DRX cycle, the paging density (that is, the number of paging opportunities included in a DRX cycle), and the NPDCCH scrambled by P-RNTI The number of repetitions.
  • the PO position can be determined by the paging density and the size of the DRX cycle, and the PO position is the starting position of the NPDCCH resource 5.
  • the fourth SIB here may be SIB2, for example.
  • the network device sends the DCI5 carried on the NPDCCH resource 5 to the third device, where the DCI5 is used to schedule a paging message.
  • the third device receives the DCI5 carried on the NPDCCH resource 5 from the network device.
  • the third device may also use P-RNTI on NPDCCH resource 5 to descramble the DCI5 that schedules the paging message, and obtain the scheduling information of the paging message, such as the number of repetitions of the paging message.
  • P-RNTI on NPDCCH resource 5 to descramble the DCI5 that schedules the paging message, and obtain the scheduling information of the paging message, such as the number of repetitions of the paging message.
  • the first P-RNTI in the embodiment of the present application may also be referred to as the first wireless network temporary identifier, that is, the third device uses the first wireless network temporary identifier to resolve and schedule the DCI5 of the paging message.
  • the first wireless network temporary identifier is the wireless network identifier of the DCI5 that the first remote terminal device parses and dispatches the paging message, that is, the first remote terminal device will use the first P-RNTI to descramble the scheduling paging message.
  • the DCI5 of the call message is described here in a unified manner, and will not be repeated here.
  • the third device amplifies the DCI5 at the position of the NPDCCH resource 5, and sends the DCI5 after the signal amplification to the first remote terminal device.
  • the first remote terminal device receives the amplified DCI5 from the third device.
  • the third device turns off the signal amplification function at the end time domain position of the NPDCCH resource 5 or after the end time domain position.
  • the third device turns on the signal amplification function before the start position or the start position of the time domain resource position for transmitting the paging message.
  • the network device sends a paging message to the third device.
  • the third device receives the paging message from the network device.
  • the third device amplifies the paging message at the time domain resource location where the paging message is transmitted, and sends the amplified paging message to the first remote terminal device.
  • the first remote terminal device receives the amplified paging message from the third device.
  • the third device turns off the signal amplification function after the end position or the end position of the time domain resource position of the transmission of the paging message.
  • the network device does not need to page the remote terminal device, it does not send DCI5 at the location of the NPDCCH resource 5.
  • the third device still needs to amplify the resource where the NPDCCH resource 5 is located. That is to say, the above-mentioned procedures in S1801 to S1808 only include S1801 and S1804, which are described here in a unified manner, and will not be described in detail below.
  • the third device should be at the start position of the time-frequency resource position for transmitting the first signal Or turn on the signal amplification function before the start position, and turn off the signal amplification function before the end position or the end position of the time-frequency resource position of the last signal.
  • the first signal here is a certain signal at the front of the start position of the time domain resource position
  • the last signal here is a certain signal at the end position of the time domain resource position at the back.
  • the start time of the time domain resource location corresponding to signal a is time 1, and the end time is time 4; the start time of the time domain resource location corresponding to signal b is time 2, end Time is time 7; the start time of the time domain resource location corresponding to signal c is time 3, and the end time is time 5; the start time of the time domain resource location corresponding to signal d is time 6, and the end time is time 8; signal The start time of the time domain resource location corresponding to e is time 9 and the end time is time 10.
  • the third device should be in the position of the time-frequency resource of the transmission signal a
  • the signal amplification function is turned on before the start position or the start position (that is, the signal amplification function is turned on before time 1 or time 1), and the signal amplification function is turned off before the end position or the end position of the time-frequency resource position of the transmission signal d (that is, at The signal amplification function is turned off at time 8 or after time 8), which will be explained here in a unified manner, and will not be repeated here.
  • the third device maintains a relationship list as shown in Table 3 after determining the time domain resource location for transmitting each signal, including: the signal and the corresponding signal amplification function are turned on The mapping relationship between time and closing time, so that the third device can know whether there is overlap between the time domain positions of different signals according to the mapping relationship, and if there is overlap, the signal amplification function corresponding to the first signal Turn-on time and turn-off time of the signal amplification function corresponding to the last signal.
  • the third device in the embodiment of the present application is in a long connection state after being turned on and connected to the network, that is, it is always in a connected state.
  • the network device directly instructs an RRC message to notify the third device that there is a system message change.
  • This RRC message can be a new RRC message, and the third device knows after receiving the RRC message
  • the system message is changed, and the resource locations such as paging, random access, and reference signal can be re-determined, which are explained here in a unified manner, and will not be repeated here.
  • the third device can tell the network device its C-RNTI through an RRC message.
  • the RRC message carries the C-RNTI of the third device, and the network device knows the C-RNTI of the third device.
  • RNTI it can communicate with the third device.
  • the system message of the third device is instructed to change through the RRC message.
  • the NPSS processing procedures, NSS processing procedures, MIB processing procedures, SIB1 processing procedures, other SIB processing procedures, random access procedures, uplink or downlink data scheduling procedures, and paging procedures in the above-mentioned embodiments of this application are mutually exclusive. Decoupling, independent of each other.
  • the paging process before the above random access process may also be other paging processes, or the random access process after the above paging process may also be other random access processes, etc., which is not described in this embodiment of the application. Specific restrictions.
  • the repeater is always on, whether it is useful signal or noise, the repeater will amplify it.
  • the amplified noise will cause noise interference to the DeNB and other terminal equipment.
  • the third device can determine the location of the first time domain resource for transmitting the first signal, and The signal amplification function of the third device is turned on before the starting position or the starting position, that is, the signal amplification is performed when there is a signal that needs to be transferred.
  • the signal amplification function When there is no signal to be transferred, the signal amplification function does not need to be turned on, so it can avoid when the DeNB does not When sending data to the remote terminal equipment, the amplified noise will cause noise interference to the DeNB and other terminal equipment, thereby reducing noise interference.
  • the actions of the third device in each step of FIG. 15 to FIG. 18 can be executed by the processor 601 in the communication device 600 shown in FIG. 6 calling the application program code stored in the memory 603, and this embodiment of the application does not do anything about this. limit.
  • the methods and/or steps implemented by the first device can also be implemented by the chip system that implements the functions of the first device, and the methods and/or steps implemented by the third device may also It can be implemented by a chip system that implements the above-mentioned third device function.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the first device in the foregoing method embodiment or a chip system that implements the function of the foregoing first device; or, the communication device may be the third device in the foregoing method embodiment or a chip that implements the function of the foregoing third device system.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 19 shows a schematic structural diagram of a first device 190.
  • the terminal device 190 includes a processing module 1901 and a transceiver module 1902.
  • the transceiver module 1902 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, may be a transceiver circuit, transceiver, transceiver, or communication interface.
  • the processing module 1901 is used to determine the position of the first time domain resource for transmitting the first signal; the transceiver module 1902 is used to send the first control signal to the second device before or before the start position of the first time domain resource position Command, the first control signaling is used to enable the signal amplification function of the second device.
  • the processing module 1901 is specifically configured to: receive a second signal from the network device through the transceiver module 1902, the second signal including information for indicating the location of the first time domain resource; and determine the first time domain according to the second signal Resource location.
  • a processing module 1901 configured to determine the first time domain resource location according to the second signal, includes: a processing module 1901, configured to use the first wireless network temporary identifier to parse the second signal to obtain the first time domain resource location ,
  • the first wireless network temporary identifier is a wireless network identifier used by the first remote terminal device to parse the second signal, and the first remote terminal device is a terminal device that receives the second signal.
  • the processing module 1901 is further configured to determine the first public search space or the first terminal-specific search space corresponding to the second time domain resource location for transmitting the second signal; the processing module 1901 is also configured to determine the first public search space according to the first public search The space or the first terminal specific search space, and the pre-stored mapping relationship between the first wireless network temporary identifier and the first public search space or the first terminal specific search space, determine the first wireless network temporary identifier.
  • the processing module 1901 is also used to parse the preamble carried on the physical random access channel to obtain the first wireless network temporary identity; or the processing module 1901 is also used to parse the preamble carried on the third physical downlink shared channel The third downlink data on the upper side obtains the temporary identification of the first wireless network.
  • the transceiver module 1902 is further configured to send a second control signaling to the second device after the end position or the end position of the first time domain position, and the second control signaling is used to turn off the signal amplification function.
  • the first device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first device 190 may take the form of the communication device 600 shown in FIG. 6.
  • the processor 601 in the communication device 600 shown in FIG. 6 may invoke the computer execution instructions stored in the memory 603 to make the communication device 600 execute the signal processing method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 1902 and the processing module 1901 in FIG. 19 may be implemented by the processor 601 in the communication device 600 shown in FIG. 6 calling a computer execution instruction stored in the memory 603.
  • the function/implementation process of the processing module 1901 in FIG. 19 can be implemented by the processor 601 in the communication device 600 shown in FIG. 6 calling a computer execution instruction stored in the memory 603, and the function of the transceiver module 1902 in FIG. 19 /The implementation process can be implemented through the communication interface 604 in the communication device 600 shown in FIG. 6.
  • the first device 190 provided in this embodiment can execute the above-mentioned signal processing method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 20 shows a schematic structural diagram of a third device 200.
  • the third device 200 includes a processing module 2001, and optionally includes a transceiver module 2002.
  • the transceiver module 2002 may also be referred to as a transceiver unit for implementing sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 2001 is used to determine the location of the first time domain resource for transmitting the first signal; the processing module 2001 is also used to turn on the signal of the third device at the start position or before the start position of the first time domain resource position Zoom function.
  • the processing module 2001 is specifically configured to: receive a second signal from the network device through the transceiver module 2002, the second signal including information for indicating the location of the first time domain resource; and determine the first time domain according to the second signal Resource location.
  • a processing module 2001 configured to determine the location of the first time domain resource according to the second signal, includes: a processing module 2001, configured to use the first wireless network temporary identifier to parse the second signal to obtain the first time domain resource Location, the first wireless network temporary identifier is a wireless network identifier used by the first remote terminal device to parse the second signal, and the first remote terminal device is a terminal device that receives the second signal.
  • the processing module 2001 is further configured to determine the first public search space or the first terminal-specific search space corresponding to the second time domain resource location for transmitting the second signal; the processing module 2001 is also configured to determine the first public search space according to the first public search The space or the first terminal specific search space, and the pre-stored mapping relationship between the first wireless network temporary identifier and the first public search space or the first terminal specific search space, determine the first wireless network temporary identifier.
  • the processing module 2001 is also used to parse the preamble carried on the physical random access channel to obtain the temporary identification of the first wireless network; or the processing module 2001 is also used to parse the preamble carried on the third physical downlink shared channel The third downlink data on the upper side obtains the temporary identification of the first wireless network.
  • the processing module 2001 is further configured to turn off the signal amplification function after the end position or the end position of the first time domain position.
  • the third device 200 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the third device 200 may take the form of the communication device 600 shown in FIG. 6.
  • the processor 601 in the communication device 600 shown in FIG. 6 may invoke the computer execution instructions stored in the memory 603 to make the communication device 600 execute the signal processing method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 2002 and the processing module 2001 in FIG. 20 may be implemented by the processor 601 in the communication device 600 shown in FIG. 6 calling the computer execution instructions stored in the memory 603.
  • the function/implementation process of the processing module 2001 in FIG. 20 can be implemented by the processor 601 in the communication device 600 shown in FIG. 6 calling a computer execution instruction stored in the memory 603, and the function of the transceiver module 2002 in FIG. /The implementation process can be implemented through the communication interface 604 in the communication device 600 shown in FIG. 6.
  • the third device 200 provided in this embodiment can execute the above-mentioned signal processing method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

信号处理方法、设备及系统,减少repeater产生噪声干扰。方法包括:第一设备确定传输第一信号的第一时域资源位置;第一设备在第一时域资源位置的起始位置或该起始位置之前向第二设备发送第一控制信令。第二设备接收第一控制信令,并根据第一控制信令开启第二设备的信号放大功能。

Description

信号处理方法、设备及系统 技术领域
本申请涉及通信技术领域,尤其涉及信号处理方法、设备及系统。
背景技术
随着无线通信的快速发展,人们早已不满足仅限于人与人的通信,物联网(internet of things,IoT)技术应运而生,并且其市场需求增长迅猛。IoT设备多是比较小巧、电池供电的系统,如智能抄表系统,需要对水、电煤气等使用情况进行周期性监测并上报,这些设备通常部署在地下室,墙壁中等无线信号覆盖很差的地方。因此在IoT通信系统设计时,覆盖增强作为一个基本的设计需求,在空口单跳要求达到20dB的覆盖增强。
IoT单跳20dB的覆盖增强,能满足大部分场景下的覆盖要求,但是在一些特殊的场景下,比如对于楼宇等多层分布的场景下,如果基站位于楼顶,则靠近基站近的楼层的IoT终端设备可以被服务到,但是离基站比较远的楼层的IoT终端设备,可能无法被服务到。此外,还有一些场景,比如一些煤气表等在比较深的地下,也可能一跳无法到达。而在这些场景下,有线的回程链路的部署也比较困难。因此为了进一步解决终端设备的深覆盖问题,可以引入中继机制来解决。
通常中继分为三种,包括层1中继(relay)、层2relay和层3relay。其中,层1relay又名转发器(repeater)、直放站或中继器等,主要功能是对衰减信号进行放大,重新发送或者转发,解决终端设备的深覆盖问题。图1给出了通常的中继系统的网格架构示意图。从图1中可以看出,repeater是中继节点,该repeater节点到施主演进的节点B(donor evolution node B,DeNB)之间是通过Un接口连接的,该repeater节点到远端(remote)终端设备之间是通过Uu接口连接的。
然而,repeater可能对DeNB和其他终端设备产生噪声干扰。
发明内容
本申请实施例提供信号处理方法、设备及系统,用于减少repeater产生噪声干扰。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种信号处理方法,该方法包括:第一设备确定传输第一信号的第一时域资源位置;第一设备在该第一时域资源位置的起始位置或该起始位置之前向第二设备发送第一控制信令,该第一控制信令用于开启该第二设备的信号放大功能。通常repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于该方案,由于第一设备可以在传输第一信号的第一时域资源位置的起始位置或者起始位置之前指示第二设备开启信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,第一设备确定传输第一信号的第一时域资源位置,包括:第一设备接收来自网络设备的第二信号,该第二信号包括用于指示该第一时域资源位置的信息;第一设备根据该第二信号,确定该第一时域资源位置。也就是说,本申请实施例中,第一设备可以基于第二信号中包括的用于指示该第一时域资源位置的信息确定第一时域资源位置。
在一种可能的设计中,第一设备根据该第二信号确定该第一时域资源位置,包括:第一设备使用第一无线网络临时标识解析该第二信号,以获得该第一时域资源位置,该第一无线网络临时标识为第一远端终端设备用来解析该第二信号的无线网络标识,该第一远端终端设备为接收该第二信号的终端设备。也就是说,本申请实施例中,第一设备可以使用第一远端终端设备解析第二信号的无线网络临时标识解析自己接收到的第二信号。
在一种可能的设计中,第二信号为承载在第一物理下行控制信道上的第一下行控制消息,第一信号为承载在第一物理下行共享信道上的第一下行数据;或者,第二信号为承载在第二物理下行控制信道上的第二下行控制消息,第一信号为承载在第一物理上行共享信道上的第一上行数据;或者,第二信号为RAR,第一信号为随机接入过程中的消息3;或者,第二信号为承载在第二物理下行共享信道上的第二下行数据,第一信号为承载在第三物理下行控制信道上的第三下行控制消息。
在一种可能的设计中,该方法还包括:第一设备确定传输该第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;第一设备根据该第一公共搜索空间或者该第一终端特定搜索空间,以及预先存储的该第一无线网络临时标识与该第一公共搜索空间或者该第一终端特定搜索空间的映射关系,确定该第一无线网络临时标识。基于该方案,第一设备可以确定第一无线网络临时标识。
在一种可能的设计中,该方法还包括:第一设备解析承载在物理随机接入信道上的前导码,获得该第一无线网络临时标识;或者,该第一设备解析承载在第三物理下行共享信道上的第三下行数据,获得该第一无线网络临时标识。基于该方案,第一设备可以确定第一无线网络临时标识。
在一种可能的设计中,第二信号为主信息块MIB,该第一信号为系统信息块SIB1;或者,该第二信号为SIB1,该第一信号为该SIB1之外的其它SIB;或者,该第二信号为第一系统信息块,该第一信号为承载在物理随机接入信道上的前导码;或者,该第二信号为第二系统信息块,该第一信号为承载在第四物理下行控制信道上的第四下行控制消息。
在一种可能的设计中,第一时域资源位置为设定时域资源位置。
在一种可能的设计中,该第一信号包括同步信号或者主信息块MIB或者SIB1。
在一种可能的设计中,该方法还包括:第一设备在该第一时域位置的结束位置或该结束位置之后向该第二设备发送第二控制信令,该第二控制信令用于关闭该信号放大功能。基于该方案,由于当没有信号需要中转时可以及时关闭信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,第一设备在开机接入到网络后处于长连接态。
在一种可能的设计中,该方法还包括:第一设备接收来自网络设备的无线资源控制RRC消息,该RRC消息用于通知第一设备系统消息发生变更。
第二方面,提供了一种信号处理方法,该方法包括:第二设备在传输第一信号的第一时域资源位置的起始位置或起始位置之前接收来自第一设备的第一控制命令;第二设备根据该第一控制命令开启该第二设备的信号放大功能,以使得第二设备在该第一时域资源位置放大该第一信号。通常repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于该方案,由于第一设备可以在传输第一信号的第一时域资源位置的起始位置或者起始位置之前指示第二设备开启信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,该第一时域资源位置是根据网络设备发送给第一远端终端设备的第二信号确定的,其中,第二信号包括用于指示该第一时域资源位置的信息。也就是说,本申请实施例中,第一设备可以基于第二信号中包括的用于指示该第一时域资源位置的信息确定第一时域资源位置。
在一种可能的设计中,该第一时域资源位置是根据网络设备发送给第一远端终端设备的第二信号确定的,包括:第一时域资源位置是第一设备使用第一无线网络临时标识解析第二信号得到的,该第一无线网络临时标识为第一远端终端设备用来解析该第二信号的无线网络标识。也就是说,本申请实施例中,第一设备可以使用第一远端终端设备解析第二信号的无线网络临时标识解析自己接收到的第二信号。
在一种可能的设计中,第二信号为承载在第一物理下行控制信道上的第一下行控制消息,第一信号为承载在第一物理下行共享信道上的第一下行数据;或者,第二信号为承载在第二物理下行控制信道上的第二下行控制消息,第一信号为承载在第一物理上行共享信道上的第一上行数据;或者,第二信号为RAR,第一信号为随机接入过程中的消息3;或者,第二信号为承载在第二物理下行共享信道上的第二下行数据,第一信号为承载在第三物理下行控制信道上的第三下行控制消息。
在一种可能的设计中,第二信号为主信息块MIB,第一信号为系统信息块SIB1;或者,第二信号为SIB1,第一信号为该SIB1之外的其它SIB;或者,第二信号为第一系统信息块,第一信号为承载在物理随机接入信道上的前导码;或者,第二信号为第二系统信息块,第一信号为承载在第四物理下行控制信道上的第四下行控制消息。
在一种可能的设计中,该第一时域资源位置为设定时域资源位置。
在一种可能的设计中,该第一信号包括同步信号或者主信息块MIB。
在一种可能的设计中,该方法还包括:第二设备在传输第一信号的第一时域资源位置的结束位置或结束位置之后接收来自该第一设备的第二控制命令;第二设备根据该第二控制命令关闭该第二设备的信号放大功能。基于该方案,由于当没有信号需要中转时可以及时关闭信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低 噪声干扰。
第三方面,提供了一种信号处理方法,该方法包括:第三设备确定传输第一信号的第一时域资源位置;第三设备在该第一时域资源位置的起始位置或该起始位置之前开启该第三设备的信号放大功能。通常repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于该方案,由于第三设备可以确定传输第一信号的第一时域资源位置,并在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,第三设备确定传输第一信号的第一时域资源位置,包括:第三设备接收来自网络设备的第二信号,该第二信号包括用于指示该第一时域资源位置的信息;第三设备根据该第二信号,确定该第一时域资源位置。也就是说,本申请实施例中,第三设备可以基于第二信号中包括的用于指示该第一时域资源位置的信息确定第一时域资源位置。
在一种可能的设计中,第三设备根据该第二信号,确定该第一时域资源位置,包括:第三设备使用第一无线网络临时标识解析该第二信号,以获得该第一时域资源位置,该第一无线网络临时标识为第一远端终端设备用来解析该第二信号的无线网络标识,该第一远端终端设备为接收该第二信号的终端设备。也就是说,本申请实施例中,第三设备可以使用第一远端终端设备解析第二信号的无线网络临时标识解析自己接收到的第二信号。
在一种可能的设计中,第二信号为承载在第一物理下行控制信道上的第一下行控制消息,第一信号为承载在第一物理下行共享信道上的第一下行数据;或者,第二信号为承载在第二物理下行控制信道上的第二下行控制消息,第一信号为承载在第一物理上行共享信道上的第一上行数据;或者,第二信号为RAR,第一信号为随机接入过程中的消息3;或者,第二信号为承载在第二物理下行共享信道上的第二下行数据,第一信号为承载在第三物理下行控制信道上的第三下行控制消息。
在一种可能的设计中,该方法还包括:第三设备确定传输该第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;第三设备根据该第一公共搜索空间或者该第一终端特定搜索空间,以及预先存储的该第一无线网络临时标识与该第一公共搜索空间或者该第一终端特定搜索空间的映射关系,确定该第一无线网络临时标识。基于该方案,第三设备可以确定第一无线网络临时标识。
在一种可能的设计中,该方法还包括:第三设备解析承载在物理随机接入信道上的前导码,获得该第一无线网络临时标识;或者,该第三设备解析承载在第三物理下行共享信道上的第三下行数据,获得该第一无线网络临时标识。基于该方案,第三设备可以确定第一无线网络临时标识。
在一种可能的设计中,第二信号为主信息块MIB,第一信号为系统信息块SIB1;或者,第二信号为SIB1,第一信号为该SIB1之外的其它SIB;或者,第二信号为第 一系统信息块,第一信号为承载在物理随机接入信道上的前导码;或者,第二信号为第二系统信息块,第一信号为承载在第四物理下行控制信道上的第四下行控制消息。
在一种可能的设计中,第一时域资源位置为设定时域资源位置。
在一种可能的设计中,该第一信号包括同步信号或者主信息块MIB或者SIB1。
在一种可能的设计中,该方法还包括:第三设备在该第一时域位置的结束位置或该结束位置之后关闭该信号放大功能。基于该方案,由于当没有信号需要中转时可以及时关闭信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,第三设备在开机接入到网络后处于长连接态。
在一种可能的设计中,该方法还包括:第三设备接收来自网络设备的无线资源控制RRC消息,该RRC消息用于通知第三设备系统消息发生变更。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的第一设备,或者包含上述第一设备的装置;或者,该通信装置可以为上述第二方面中的第二设备,或者包含上述第二设备的装置;或者,该通信装置可以为上述第三方面中的第三设备,或者包含上述第三设备的装置。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一设备,或者包含上述第一设备的装置;或者,该通信装置可以为上述第二方面中的第二设备,或者包含上述第二设备的装置;或者,该通信装置可以为上述第三方面中的第三设备,或者包含上述第三设备的装置。
第六方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一设备,或者包含上述第一设备的装置;或者,该通信装置可以为上述第二方面中的第二设备,或者包含上述第二设备的装置;或者,该通信装置可以为上述第三方面中的第三设备,或者包含上述第三设备的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第四方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面至第三方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供了一种通信系统,该通信系统包括第一设备和第二设备;其中, 第一设备,用于确定传输第一信号的第一时域资源位置,并在该第一时域资源位置的起始位置或起始位置之前向第二设备发送第一控制信令。第二设备,用于接收第一控制命令,并根据该第一控制命令开启该第二设备的信号放大功能。基于该方案,由于第一设备可以在传输第一信号的第一时域资源位置的起始位置或者起始位置之前指示第二设备开启信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,本申请实施例提供的通信系统还可以包括网络设备。其中,网络设备,用于接收或发送第一信号;第二设备,还用于在该第一时域资源位置放大该第一信号。可选的,网络设备还用于发送第二信号,该第二信号包括用于指示传输第一信号的第一时域资源位置的信息。
在一种可能的设计中,本申请实施例中的第一设备还用于执行第一方面中所述的信号处理方法,第二设备还用于执行上述第二方面中所述的信号处理方法。
第十一方面,提供了一种通信系统,该通信系统包括第三设备和网络设备。第三设备,用于确定传输第一信号的第一时域资源位置,并在该第一时域资源位置的起始位置或该起始位置之前开启该第三设备的信号放大功能。网络设备,用于接收或发送第一信号。第三设备,还用于在该第一时域资源位置放大该第一信号。通常repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于该方案,由于第三设备可以确定传输第一信号的第一时域资源位置,并在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
在一种可能的设计中,网络设备还用于向第三设备发送第二信号。
在一种可能的设计中,第三设备还用于执行第三方面中所述的信号处理方法。
附图说明
图1给出了通常的中继系统的网格架构示意图;
图2示例出了本申请实施例所涉及的一种NPDCCH候选的示意图;
图3给出了通常的repeater协议栈架构示意图;
图4为本申请实施例提供的一种通信系统的架构示意图;
图5为本申请实施例提供的另一种通信系统的架构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种可能的协议栈架构示意图;
图8为本申请实施例提供的另一种可能的协议栈架构示意图;
图9为本申请实施例提供的又一种可能的协议栈架构示意图;
图10为本申请实施例提供的一种信号处理方法的流程示意图;
图11为本申请实施例提供的另一种信号处理方法的流程示意图;
图12为本申请实施例提供的又一种信号处理方法的流程示意图;
图13为本申请实施例提供的又一种信号处理方法的流程示意图;
图14为本申请实施例示例性提供的不同信号的时域资源位置分布示意图;
图15为本申请实施例提供的又一种信号处理方法的流程示意图;
图16为本申请实施例提供的又一种信号处理方法的流程示意图;
图17为本申请实施例提供的又一种信号处理方法的流程示意图;
图18为本申请实施例提供的又一种信号处理方法的流程示意图;
图19为本申请实施例提供的第一设备的结构示意图;
图20为本申请实施例提供的第三设备的结构示意图。
具体实施方式
为了方便理解本申请实施例中的方案,首先给出相关技术的简要介绍或定义如下:
第一,搜索空间(search space,SS):
搜索空间定义了检测物理下行控制信道(physical downlink control channel,PDCCH)的时域上的可能性。以NB-IoT系统中的窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)为例,终端设备需要监听一个NPDCCH候选集合以获取下行控制信息(downlink control information,DCI),该NPDCCH候选集合称为NPDCCH搜索空间。其中,NPDCCH搜索空间的资源周期性分布。网络设备可以通过系统信息块(system information block,SIB)或者无线资源控制(radio resource control,RRC)信令向终端设备指示NPDCCH搜索空间的周期和NPDCCH搜索空间在每个周期内的起始位置,终端设备根据网络设备的指示在NPDCCH搜索空间内盲检测NPDCCH。
其中,系统信息块或者RRC信令中携带参数R max、G和α offset。R max表示NPDCCH搜索空间的最大重复次数。终端设备接收到系统信息块或者RRC信令后,将R max和G的乘积确定为NPDCCH搜索空间的周期;将R max确定为NPDCCH搜索空间在每个NPDCCH搜索空间的周期内的持续时长;将R max、G和α offset三者的乘积确定为NPDCCH搜索空间的周期的起始位置与NPDCCH搜索空间的起始位置在时域上的间隔,即G*R maxoffset表示在时域上从NPDCCH搜索空间的周期的起始位置向后偏移G*R maxoffset长度为NPDCCH搜索空间的起始位置。
一个NPDCCH搜索空间的周期内可以有多个NPDCCH候选。图2示例出了本申请实施例所涉及的一种NPDCCH候选的示意图。其中,NPDCCH搜索空间的周期为G*R max,NPDCCH搜索空间在G*R max内的持续时长为R max个有效子帧,NPDCCH搜索空间的周期的起始位置与NPDCCH搜索空间的起始位置在时域上的间隔为G*R maxoffset,一个NPDCCH搜索空间的周期内最多可以有15个NPDCCH候选,每个NPDCCH候选的重复等级(repetition level)为R,第0至第7个候选中的每个候选的重复等级R等于R max/8,第0至第7个候选中的每个候选在时域上的长度等于R max/8(也即是8分之R max)个有效子帧,第8至第11个候选中的每个候选的重复等级R等于R max/4,第8至第11个候选中的每个候选在时域上的长度等于R max/4(也即是4分之R max)个有效子帧,第12至第13个候选中的每个候选的重复等级R为R max/2,第12至第13个候选中的每个候选在时域上的长度等于R max/2(也即是2分之R max)个有效子帧,第14个候选的重复等级R等于R max,第14个候选在时域上的长度等于R max个有效子帧。
需要说明的是,本申请实施例中,有效子帧的定义和具体的通信系统有关。以NB-IoT系统为例,有效子帧可称为NB-IoT下行子帧。在以下情形中,NB-IoT系统中的终端设备应当假设一个子帧为NB-IoT下行子帧:
比如,终端设备确定不包括窄带主同步信号(narrowband primary synchronization signal,NPSS),或者窄带辅同步信号(narrowband secondary synchronization signal,NSSS),或者窄带物理广播信道(narrowband physical broadcast channel,NPBCH),或者NB系统信息块类型(system information block type1-NB)传输的子帧为NB-IoT下行子帧。或者,终端设备接收配置参数,该配置参数用于配置NB-IoT下行子帧。进而,终端设备根据该配置参数,可以确定NB-IoT下行子帧。其中,该配置参数可以通过系统信息块或者RRC信令配置,本申请实施例对此不作具体限定。
以eMTC系统为例,有效子帧可称为带宽减少低复杂度或者覆盖增强(bandwidth-reduced low-complexity or coverage enhanced,BL/CE)下行子帧。其中,BL/CE下行子帧可以通过配置参数进行配置,该配置参数通过系统信息块或者RRC信令配置。
第二,repeater协议栈架构:
图3给出了一种repeater协议栈架构示意图。其中,在面向远端终端设备的Uu口,repeater支持物理(physical,PHY)层的空口协议栈;在面向DeNB的回程链路,repeater支持PHY层的Un空口的传输。此外,由图3可以看出,远端终端设备协议栈从下至上依次包括:PHY层、媒体接入控制(media access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non-access stratum,NAS);DeNB面向repeater的Un口,DeNB协议栈从下至上依次包括PHY层、MAC层、RLC层、PDCP层和RRC层。DeNB面向移动管理实体(mobile managenment entity),MME协议栈从下至上依次包括:(level1,L1)层、L2层、网络协议(internet protocol,IP)层、流控制传输协议(stream control transmission protocol,SCTP)层和S1应用协议(S1 application protocol,S1-AP)层;MME面向DeNB的协议栈从下至上依次包括:L1层、L2层、IP层、SCTP层、S1-AP层和NAS层。其中,远端终端设备协议栈、DeNB协议栈和MME协议栈的相关描述可参考通信协议,在此不再详细赘述。
从图1所示的网络架构和图3所示的协议栈架构来看,repeater是一个DeNB和一个终端设备功能的结合。由于存在损耗,在线路上传输的信号功率会逐渐衰减,衰减到一定程度时将造成信号失真,从而会导致接收错误。repeater就是为解决这一问题而设计的,它是局域网环境下用来延长网络距离的最简单最廉价的互联设备,主要完成物理层的功能,负责在两个节点的物理层上按位传递信息,完成信号的复制、调整和放大功能,以此来延长网络的长度。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或 a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本发明实施例的技术方案可以应用于各种通信系统。例如,可以适用于长期演进(long term evolution,LTE)系统,如NB-IoT系统或者增强的机器间通信(enhanced machine type communications,eMTC)系统;也可以适用于其他无线通信系统,例如全球移动通信系统(global system for mobile communication,GSM),移动通信系统(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)系统或者第五代(5th generation,5G)系统,以及面向未来的通信系统等,本申请实施例对此不作具体限定。其中,本申请实施例中,术语“系统”可以和“网络”相互替换,在此统一说明,以下不再赘述。
如图4所示,为本申请实施例提供的一种通信系统40,该通信系统40包括第一设备401和第二设备402。第一设备401,用于确定传输第一信号的第一时域资源位置,并在第一时域资源位置的起始位置或者起始位置之前向第二设备402发送第一控制信令,第一控制信令用于开启第二设备402的信号放大功能。第二设备402,用于接收来自第一设备401的第一控制信令,并根据第一控制命令开启第二设备402的信号放大功能。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的第一设备可以是终端设备或者终端设备内的芯片。
可选的,本申请实施例中的第二设备可以是层1relay,例如还可以称之repeater、直放站或中继器等,主要功能是对衰减信号进行放大,重新发送或者转发。
可选的,如图4所示,本申请实施例提供的通信系统40还可以包括网络设备404以及一个或多个远端终端设备403。其中,远端终端设备403通过第二设备402与网络设备404建立通信连接,如远端终端设备403通过第二设备402向网络设备404发送第一信号,或者网络设备404通过第二设备402向远端终端设备403发送第一信号等,本申请实施例对此不作具体限定。
通常的repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于本申请实施例提供的通信系统,由于第一设备可以在传输第一信号的第一时域资源位置的起始位置或者起始位置之前指示第二设备开启信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
如图5所示,为本申请实施例提供的另一种通信系统50,该通信系统50包括第三设备501和网络设备502。第三设备501,用于确定传输第一信号的第一时域资源位 置,并在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能。网络设备502,用于接收或发送第一信号。
可选的,本申请实施例中的第三设备可以是上述第一设备和第二设备集成或合一的设备。
可选的,如图5所示,该通信系统50还可以包括一个或多个远端终端设备503。其中,远端终端设备503通过第三设备501与网络设备502建立通信连接,如远端终端设备503通过第三设备501向网络设备502发送第一信号,或者网络设备502通过第三设备501向远端终端设备503发送第一信号等,本申请实施例对此不作具体限定。
可选的,本申请实施例中,网络设备502和远端终端设备501之间可以包括一个或多个第三设备501,该一个或多个第三设备501,可以理解为在网络设备502与远端终端设备503之间增加的一个或多个中继节点设备,负责对无线信号进行一次或者多次的转发,即无线信号要经过多跳才能到达终端设备。以较简单的两跳中继为例,就是将一个“网络设备—远端终端设备”的链路分割为“网络设备—第三设备”和“第三设备—远端终端设备”两个链路,从而有机会将一个质量较差的链路替换为两个质量较好的链路,以获得更高的链路容量及更好的覆盖,从而使得远端终端设备的功耗也得到改善。
通常,repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于本申请实施例提供的通信系统,由于第三设备可以确定传输第一信号的第一时域资源位置,并在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
需要说明的是,本申请实施例中,上述第一设备或第三设备确定的传输第一信号的第一时域资源位置可能是传输第一信号的实际时域资源位置,也可能是包括传输第一信号的实际时域资源位置的一个可能的位置区域。比如,假设第一信号为承载在物理下行控制信道上的下行控制消息,则该第一时域资源位置其实是物理下行控制信道搜索空间,也就是说,需要在该物理下行控制信道搜索空间内一直开启信号放大功能。其中,物理下行控制信道搜索空间的相关描述可参考具体实施方式前序部分,在此不再赘述。或者,比如,假设第一信号为上行数据、下行数据、同步信号、系统信息块或者主信息块(master information,MIB)等,则该第一时域资源位置为传输第一信号的实际时域资源位置,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中的信号放大功能还可以称之为信号中转功能或者中继功能等,在此统一说明,以下不再赘述。
可选的,本申请实施例中的网络设备,是一种用于与终端设备通信的设备。该网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、施主基站(donor evolved nodeB,DeNB)、 基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等。还可以为5G,如新空口(new radio,NR)系统中的下一代NB(generation,gNB)或传输点(如TRP或TP),5G系统中基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如BBU或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现RRC层和PDCP层的功能,DU实现无RLC层、MAC层和PHY层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,可以将CU划分为接入网中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
可选的,本申请实施例中的终端设备或远端终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是LTE系统、NR系统或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备与远端终端设备也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,本申请实施例中的第一设备401、第二设备402或者第三设备501的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第一设备401、第二设备402或者第三设备501的相关功能可以通过图6中的通信装置600来实现。图6所示为本申请实施例提供的通信装 置600的结构示意图。该通信装置600包括一个或多个处理器601,通信线路602,以及至少一个通信接口(图6中仅是示例性的以包括通信接口604,以及一个处理器601为例进行说明),可选的还可以包括存储器603。
处理器601可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路602可包括一通路,用于连接不同组件之间。
通信接口604,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口604也可以是位于处理器601内的收发电路,用以实现处理器的信号输入和信号输出。
存储器603可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路602与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器603用于存储执行本申请方案的计算机执行指令,并由处理器601来控制执行。处理器601用于执行存储器603中存储的计算机执行指令,从而实现本申请实施例中提供的信号处理方法。
或者,本申请实施例中,也可以是处理器601执行本申请下述实施例提供的信号处理方法中的处理相关的功能,通信接口604负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置600可以包括多个处理器,例如图6中的处理器601和处理器608。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置600还可以包括输出设备605和输入设备606。输出设备605和处理器601通信,可以以多种方式来显示信息。
上述的通信装置600可以是一个通用装置或者是一个专用装置。例如通信装置600可以是台式机、便携式电脑、网络服务器、PDA、移动手机、平板电脑、无线终端设备、嵌入式设备或具有图4中类似结构的设备。本申请实施例不限定通信装置600的 类型。
下面将结合图1至图6,对本申请实施例提供的通信方法进行展开说明。
首先给出本申请实施例中需要进行信号放大的第一信号的简单介绍如下:
本申请实施例中的第一信号例如可以包括承载在物理下行共享信道上的上行数据或者承载在物理下行共享信道上的下行数据。此时,指示传输第一信号的第一时域资源位置的信息可以通过解码承载在物理下行控制信道上的下行控制信息获得。
或者,本申请实施例中的第一信号例如可以包括承载在物理下行控制信道上的下行控制信息,此时指示传输第一信号的第一时域资源位置的信息可以通过SIB获得。
或者,本申请实施例中的第一信号例如可以包括同步信号,该同步信号可以包括NPSS或者NSSS。其中,NPSS位于每个无线帧的子帧5,NSSS位于每两个无线帧(偶数无线帧)的子帧9。也可以理解为,传输NPSS和NSSS的第一时域资源位置均为设定时域资源位置。
或者,本申请实施例中的第一信号例如可以包括MIB。其中,在NB-IOT系统中,MIB通过NPBCH承载,位于每个无线帧的子帧0。也可以理解为,传输MIB的第一时域资源位置为设定时域资源位置。
或者,本申请实施例中的第一信号例如可以包括SIB。SIB包括SIB1和其它SIB。这里的其它SIB例如可以包括SIB2、SIB3、SIB4、SIB5、SIB14、SIB15、SIB16、SIB20、SIB22或SIB23。在NB-IOT系统中,SIB1位于无线帧的子帧4,但是传输SIB1的无线帧位置是需要根据MIB的SIB1调度信息确定的。也就是说,在NB-IOT系统中,指示传输SIB1的第一时域资源位置的信息承载在MIB中。而对于其它SIB的传输位置是通过SIB1调度的,也就是说,指示传输其它SIB的第一时域资源位置的信息承载在SIB1中。在LTE系统中,SIB1的时域资源位置是固定的,SIB1的周期为80ms,在每个周期的偶数帧的子帧5上重复发送SIB1。而对于其它SIB的传输位置和周期是通过SIB1调度的,SIB1会指示其他SIB的SI窗口的时域位置和长度,但不会直接指示SI窗口内的哪些子帧调度了其他SIB,SI窗口内哪个子帧上有其他SIB可以通过解码该子帧上的承载在物理下行控制信道上的下行控制信息确定,也就是说,指示传输其它SIB的第一时域资源位置的信息承载在SIB1和承载在物理下行控制信道上的下行控制信息中。
或者,本申请实施例中的第一信号例如可以包括参考信号,该参考信号包括小区特定参考信号(cell reference signal,CRS)、窄带参考信号(narrowband reference signal,NRS)或调制参考信号(demodulation reference signal,DMRS)。其中,参考信号的传输位置可以通过SIB获取,也就是说,指示传输参考信号的第一时域资源位置的信息承载在SIB中。
或者,本申请实施例中的第一信号例如可以包括寻呼消息。终端设备仅在一个不连续接收(discontinuous reception,DRX)周期上的一个寻呼机会(paging occasion,PO)所在的子帧(以下也可以称之为PO位置)为起始子帧的物理下行控制信道搜索空间内以盲检的形式检测物理下行控制信道。而对于网络设备来说,可以在一个DRX周期内配置多个PO,因此在进行信号放大时需要放大这多个PO处的物理下行控制信道。也就是说,这里的传输第一信号的时域资源位置是包括传输第一信号的实际时域 资源位置的一个可能的位置区域,即多个PO位置为起始子帧的物理下行控制信道搜索空间的位置。其中,寻呼的配置信息可以通过SIB获取,如通过SIB2或SIB22获取,也就是说,指示传输寻呼消息的第一时域资源位置的信息承载在SIB中。
或者,本申请实施例中的第一信号例如可以包括随机接入过程中的各个消息。比如,第一信号可以包括随机接入过程中的前导码、随机接入响应(random access response,RAR)、消息3和消息4。其中,随机接入过程的具体流程可参考通常的随机接入流程,在此不再赘述。其中,承载前导码的物理随机接入信道的时域资源位置可以配置在SIB中,如在SIB2/SIB22/SIB23中配置指示传输前导码的第一时域资源位置的信息;指示传输RAR或消息4的第一时域资源位置的信息承载在物理下行控制信道上的下行控制信息中;指示传输消息3的第一时域资源位置的信息承载在RAR中。
需要说明的是,上述包括用于指示传输第一信号的第一时域资源位置的信息的信号也可以称之为第二信号,如在第一信号为承载在物理下行共享信道上的上行数据或者承载在物理下行共享信道上的下行数据时,第二信号为承载在物理下行控制信道上的下行控制信息;或者,在第一信号为参考信号或寻呼消息或随机接入过程中的前导码或承载在物理下行控制信道上的下行控制信息时,第二信号为SIB;或者,在第一信号为SIB1时,第二信号为MIB;或者,在第一信号为其它SIB时,第二信号为SIB1;或者,在第一信号为随机接入过程中的RAR或者消息4时,第二信号为承载在物理下行控制信道上的下行控制信息;或者,在第一信号为随机接入过程中的消息3时,第二信号为RAR,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中,第一信号的第一时域资源位置可以是超帧粒度的、无线帧粒度的、子帧粒度的、时隙粒度的或者符号粒度的等。也就是说,第一信号的第一时域资源位置可以占至少一个超帧,或者,第一信号的第一时域资源位置可以占至少一个无线帧,或者,第一信号的第一时域资源位置可以占至少一个子帧,或者,第一信号的第一时域资源位置可以占至少一个时隙,或者,第一信号的第一时域资源位置可以占至少一个符号。在此统一说明,以下不再赘述。
其次,对于图4或图5所示的通信系统,给出几种可能的协议栈架构如下:
对于图5所示的通信系统,图7给出了一种可能的协议栈架构。其中,在面向远端终端设备的Uu口,第三设备支持PHY层的空口协议栈;在面向DeNB的回程链路,第三设备协议栈从下至上依次包括:PHY层、MAC层、RLC层和RRC层。可选的,第三设备的协议栈还可以包括PDCP层(未示出),本申请实施例对此不作具体限定。
对于图4所示的通信系统,图8给出了一种可能的协议栈架构。第一设备在面向远端终端设备的空口从下至上依次支持PHY层、MAC层、RLC层和PDCP层,其中,PDCP层和RLC层是可选的。第一设备在面向DeNB的空口从下至上依次支持PHY层、MAC层、RLC层、PDCP层和RRC层,其中,PDCP层是可选的。第二设备无论是面向远端终端设备的空口还是面向DeNB的空口都仅支持PHY层。
对于图4所示的通信系统,图9给出了另一种可能的协议栈架构。第一设备在面向远端终端设备的空口从下至上依次支持PHY层、MAC层、RLC层、PDCP层,和RRC层。第一设备在面向DeNB的空口从下至上依次支持PHY层、MAC层、RLC层、PDCP层和RRC层,其中,PDCP层是可选的。第二设备无论是面向远端终端设备的 空口还是面向DeNB的空口都仅支持PHY层。
需要说明的是,上述图7-图9所示的协议栈架构仅是示例性说明,当然,对于图4或图5所示的通信系统,还可能存在其他的协议栈架构,本申请实施例对此不作具体限定。
可选的,本申请实施例中,在进行信号处理之前,第一设备或第三设备需要先向网络设备发送连接建立请求。其中,该连接建立请求中携带第一设备或第三设备的指示信息,以使得网络设备根据第一设备的指示信息识别出第一设备或者根据第三设备的指示信息识别出第三设备。示例性的,第一设备的指示信息例如可以是第一设备的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),第三设备的指示信息例如可以是第三设备的C-RNTI。当然,第一设备或第三设备还可能向核心网进行鉴权和认证,以保证第一设备或第三设备是一个合法的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的网络设备例如可以是DeNB,第一设备和第三设备的相关描述可参考通信系统部分,在此不再赘述。
下面结合一些具体场景,给出本申请实施例提供的信号处理方法的流程示例如下。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
结合图4所示的通信系统架构,以NB-IOT系统为例,给出本申请实施例提供的一种信号处理方法。
如图10中的第一部分所示,给出NPSS处理流程,包括如下步骤:
S1001a、第一设备在每个无线帧的子帧5或者子帧5之前向第二设备发送控制信令1。相应的,第二设备在每个无线帧的子帧5或者子帧5之前接收来自第一设备的控制信令1,控制信令1用于开启第二设备的信号放大功能。
示例性的,本申请实施例中第二设备的相关描述可参考通信系统部分,在此不再赘述。
S1002a、第二设备根据控制信令1,在每个无线帧的子帧5或者子帧5之前开启信号放大功能。
S1003a、第二设备在每个无线帧的子帧5对NPSS进行信号放大,并将信号放大之后的NPSS发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的NPSS。
S1004a、第一设备在每个无线帧的子帧5或者子帧5之后向第二设备发送控制信令2。相应的,第二设备在每个无线帧的子帧5或者子帧5之后接收来自第一设备的控制信令2,控制信令2用于关闭第二设备的信号放大功能。
S1005a、第二设备根据控制信令2,在每个无线帧的子帧5或者子帧5之后关闭信号放大功能。
需要说明的是,本申请实施例中,控制信令2的发送时间晚于控制信令1的发送时间。比如,若第一设备在每个无线帧的子帧5向第二设备发送控制信令1,则第一设备在每个无线帧的子帧5之后向第二设备发送控制信令2;或者,若第一设备在每 个无线帧的子帧5之前向第二设备发送控制信令1,则第一设备在每个无线帧的子帧5或子帧5之后向第二设备发送控制信令2,在此统一说明,以下不再赘述。
如图10中的第二部分所示,给出NSSS处理流程,包括如下步骤:
S1001b、第一设备在每隔一个无线帧的子帧9或者子帧9之前向第二设备发送控制信令3。相应的,第二设备在每隔一个无线帧的子帧9或者子帧9之前接收来自第一设备的控制信令3,控制信令3用于开启第二设备的信号放大功能。
S1002b、第二设备根据控制信令3,在每隔一个无线帧的子帧9或者子帧9之前开启信号放大功能。
S1003b、第二设备在每隔一个无线帧的子帧9对NSSS进行信号放大,并将信号放大之后的NSSS发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的NSSS。
S1004b、第一设备在每隔一个无线帧的子帧9或者子帧9之后向第二设备发送控制信令4。相应的,第二设备在每隔一个无线帧的子帧9或者子帧9之后接收来自第一设备的控制信令4,控制信令4用于关闭第二设备的信号放大功能。
S1005b、第二设备根据控制信令4,在每隔一个无线帧的子帧9或者子帧9之后关闭信号放大功能。
需要说明的是,本申请实施例中,控制信令4的发送时间晚于控制信令3的发送时间。比如,若第一设备在每隔一个无线帧的子帧9向第二设备发送控制信令3,则第一设备在每隔一个无线帧的子帧9之后向第二设备发送控制信令4;或者,若第一设备在每隔一个无线帧的子帧9之前向第二设备发送控制信令3,则第一设备在每隔一个无线帧的子帧9或子帧9之后向第二设备发送控制信令4,在此统一说明,以下不再赘述。
如图10中的第三部分所示,给出MIB处理流程,包括如下步骤:
S1001c、第一设备在每个无线帧的子帧0或者子帧0之前向第二设备发送控制信令5。相应的,第二设备在每个无线帧的子帧0或者子帧0之前接收来自第一设备的控制信令5,控制信令5用于开启第二设备的信号放大功能。
S1002c、第二设备根据控制信令5,在每个无线帧的子帧0或者子帧0之前开启信号放大功能。
S1003c、第二设备在每个无线帧的子帧0对MIB进行信号放大,并将信号放大之后的MIB发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的MIB。
S1004c、第一设备在每个无线帧的子帧0或者子帧0之后向第二设备发送控制信令6。相应的,第二设备在每个无线帧的子帧0或者子帧0之后接收来自第一设备的控制信令6,控制信令6用于关闭第二设备的信号放大功能。
S1005c、第二设备根据控制信令6,在每个无线帧的子帧0或者子帧0之后关闭信号放大功能。
需要说明的是,本申请实施例中,控制信令6的发送时间晚于控制信令5的发送时间。比如,若第一设备在每个无线帧的子帧0向第二设备发送控制信令5,则第一设备在每个无线帧的子帧0之后向第二设备发送控制信令6;或者,若第一设备在每 个无线帧的子帧0之前向第二设备发送控制信令5,则第一设备在每个无线帧的子帧0或子帧0之后向第二设备发送控制信令6,在此统一说明,以下不再赘述。
需要说明的是,由于NPSS、NSSS和MIB都是循环发送的,因此本申请实施例中的第一部分、第二部分和第三部分之间没有必然的执行先后顺序,可以是先执行其中的任意一个部分,再依次或同时执行剩余的两个部分;也可以是同时执行其中的任意两个部分,再执行剩余的一个部分;还可以是同时执行这三个部分,本申请实施例对此不作具体限定。
如图10中的第四部分所示,给出SIB1处理流程,包括如下步骤:
S1006、第一设备在接收到MIB之后,根据MIB中包括的SIB1的调度信息,确定SIB1发送的无线帧位置,进而在该无线帧子帧4或者子帧4之前向第二设备发送控制信令7。相应的,第二设备在该无线帧的子帧4或者子帧4之前接收来自第一设备的控制信令7,控制信令7用于开启第二设备的信号放大功能。
其中,本申请实施例中,MIB中包括SIB1的调度信息,用于指示SIB1的传输块大小(transport block size,TBS)和重复次数,SIB1的调度周期固定为2560ms,通过SIB1的周期、TBS和重复次数,可以确定SIB1发送的无线帧位置。
S1007、第二设备根据控制信令7,在该无线帧的子帧4或者子帧4之前开启信号放大功能。
S1008、第二设备在该无线帧的子帧4对SIB1进行信号放大,并将信号放大之后的SIB1发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的SIB1。
S1009、第一设备在该无线帧的子帧4或者子帧4之后向第二设备发送控制信令8。相应的,第二设备在该无线帧的子帧4或者子帧4之后接收来自第一设备的控制信令8,控制信令8用于关闭第二设备的信号放大功能。
S1010、第二设备根据控制信令8,在该无线帧的子帧4或者子帧4之后关闭信号放大功能。
需要说明的是,本申请实施例中,控制信令8的发送时间晚于控制信令7的发送时间。比如,若第一设备在该无线帧的子帧4向第二设备发送控制信令7,则第一设备在该无线帧的子帧4之后向第二设备发送控制信令8;或者,若第一设备在该无线帧的子帧4之前向第二设备发送控制信令7,则第一设备在该无线帧的子帧4或子帧4之后向第二设备发送控制信令8,在此统一说明,以下不再赘述。
如图10中的第五部分所示,给出其它SIB处理流程,包括如下步骤:
S1011、第一设备在接收到SIB1之后,根据SIB1中包括的其它SIB的调度信息,确定传输其它SIB的时域资源的位置,进而在传输其它SIB的时域资源的起始位置或起始位置之前向第二设备发送控制信令9。相应的,第二设备在传输其它SIB的时域资源的起始位置或起始位置之前接收来自第一设备的控制信令9,控制信令9用于开启第二设备的信号放大功能。
S1012、第二设备根据控制信令9,在传输其它SIB的时域资源的起始位置或起始位置之前开启信号放大功能。
S1013、第二设备在传输其它SIB的时域资源位置对其它SIB进行信号放大,并 将信号放大之后的其它SIB发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的其它SIB。
S1014、第一设备在传输其它SIB的时域资源的结束位置或结束位置之后向第二设备发送控制信令10。相应的,第二设备在传输其它SIB的时域资源的结束位置或结束位置之后接收来自第一设备的控制信令10,控制信令10用于关闭第二设备的信号放大功能。
S1015、第二设备根据控制信令10,在传输其它SIB的时域资源的结束位置或结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中,若传输其它SIB的时域资源占用1个子帧,则可以认为传输其它SIB的时域资源的结束位置和传输其它SIB的时域资源的起始位置均是该子帧位置,此时控制信令10的发送时间晚于控制信令9的发送时间。比如,若第一设备在该子帧向第二设备发送控制信令9,则第一设备在该子帧之后向第二设备发送控制信令10;或者,若第一设备在该子帧之前向第二设备发送控制信令9,则第一设备在该子帧或该子帧之后向第二设备发送控制信令10,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中,SIB1中可能包括多个其它SIB的调度信息,此时针对每个其它SIB,均按照上述步骤S1011-S1015的方式执行,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中,第一设备在完成上述SIB1处理流程或其他SIB处理流程之后,还可以继续执行上述NPSS流程、NSSS流程或MIB流程,在此统一说明,以下不再赘述。
在上述信号处理流程结束之后,终端设备可能发起随机接入流程。下面给出随机接入流程中的信号处理方法,如图11所示,包括如下步骤:
S1101、第一设备在接收到第一SIB之后,根据第一SIB中包括的NPRACH资源的时域位置指示信息,在NPRACH资源的起始时域位置或起始时域位置之前向第二设备发送控制信令11。相应的,第二设备在NPRACH资源的起始时域位置或起始时域位置之前接收来自第一设备的控制信令11,控制信令11用于开启第二设备的信号放大功能。
可选的,这里的第一SIB例如可以是SIB2、SIB22或SIB23。
S1102、第二设备根据控制信令11,在NPRACH资源的起始时域位置或起始时域位置之前开启信号放大功能。
S1103、第一远端终端设备向第二设备发送承载在NPRACH资源上的前导码。相应的,第二设备接收来自第一远端终端设备的承载在NPRACH资源的前导码。
S1104、第二设备在NPRACH资源位置上对前导码进行放大,并将信号放大之后的前导码发送给网络设备。相应的,网络设备接收来自第二设备的放大后的前导码。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以检测到来自第一远端终端设备的前导码,并解析前导码得到第一随机接入(random access,RA)-RNTI,在此统一说明,以下不再赘述。
S1105、第一设备在NPRACH资源的结束时域位置或结束时域位置之后向第二设 备发送控制信令12。相应的,第二设备在NPRACH资源的结束时域位置或结束时域位置之后接收来自第一设备的控制信令12,控制信令12用于关闭第二设备的信号放大功能。
S1106、第二设备根据控制信令12,在NPRACH资源的结束时域位置或结束时域位置之后关闭信号放大功能。
S1107、第一设备在检测到承载在NPRACH资源上的前导码之后,根据第二SIB中包括的NPDCCH资源1的时域位置指示信息,在NPDCCH资源1的起始时域位置或起始时域位置之前向第二设备发送控制信令13。相应的,第二设备在NPDCCH资源1的起始时域位置或起始时域位置之前接收来自第一设备的控制信令13,控制信令13用于开启第二设备的信号放大功能。
其中,本申请实施例中,NPDCCH资源1的时域位置指示信息具体可以是一个特定时间窗的信息,该特定时间窗的大小与覆盖相关,由第二SIB指示,大小为{2,3,4,5,6,7,8,10}*NPDCCH搜索空间周期的倍数,但最大不能超过10.24s。
可选的,这里的第二SIB例如可以是SIB2、SIB22、SIB23。
S1108、第二设备根据控制信令13,在NPDCCH资源1的起始时域位置或起始时域位置之前开启信号放大功能。
S1109、网络设备在接收到前导码之后,在特定时间窗内向第二设备发送承载在NPDCCH资源1上的DCI1,该DCI1用于调度RAR(也可以称之为消息2(message,Msg2))。相应的,第二设备接收来自网络设备的承载在NPDCCH资源1上的DCI1。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以在特定时间窗内在调度RAR的NPDCCH资源1上用第一RA-RNTI解扰(也可以称之为解析)调度RAR的DCI1,获得RAR的调度信息,如RAR的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一RA-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析调度RAR的DCI1。其中,该第一无线网络临时标识为第一远端终端设备解析调度RAR的DCI1的无线网络标识,也就是说,第一远端终端设备会用第一RA-RNTI解扰调度RAR的DCI1,在此统一说明,以下不再赘述。
S1110、第二设备在NPDCCH资源1位置上对DCI1进行放大,并将信号放大之后的DCI1发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的DCI1。
S1111、第一设备在NPDCCH资源1的结束时域位置或结束时域位置之后向第二设备发送控制信令14。相应的,第二设备在NPDCCH资源1的结束时域位置或结束时域位置之后接收来自第一设备的控制信令14,控制信令14用于关闭第二设备的信号放大功能。
S1112、第二设备根据控制信令14,在NPDCCH资源1的结束时域位置或结束时域位置之后关闭信号放大功能。
S1113、第一设备根据获取到的RAR的调度信息,在传输RAR的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令15。相应的,第二设备在传输 RAR的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令15,控制信令15用于开启第二设备的信号放大功能。
S1114、第二设备根据控制信令15,在传输RAR的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1115、网络设备向第二设备发送RAR。相应的,第二设备接收来自网络设备的RAR。
S1116、第二设备在传输RAR的时域资源位置对RAR进行放大,并将信号放大之后的RAR发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的RAR。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以检测到来自网络设备的RAR,并解析RAR得到网络设备分配给第一远端终端设备的第一临时小区(temporal cell,TC)-RNTI和消息3(msg3)的调度信息,在此统一说明,以下不再赘述。
S1117、第一设备在传输RAR的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令16。相应的,第二设备在传输RAR的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令16,控制信令16用于关闭第二设备的信号放大功能。
S1118、第二设备根据控制信令16,在传输RAR的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
S1119、第一设备根据获取到的消息3的调度信息,在传输消息3的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令17。相应的,第二设备在传输消息3的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令17,控制信令17用于开启第二设备的信号放大功能。
S1120、第二设备根据控制信令17,在传输消息3的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1121、第一远端终端设备向第二设备发送消息3。相应的,第二设备接收来自第一远端终端设备的消息3。
其中,本申请实施例中,消息3中携带第一远端终端设备的终端标识和触发消息3发送的原因等信息。
S1122、第二设备在传输消息3的时域资源位置对消息3进行放大,并将信号放大之后的消息3发送给网络设备。相应的,网络设备接收来自第二设备的放大后的消息3。
S1123、第一设备在传输消息3的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令18。相应的,第二设备在传输消息3的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令18,控制信令18用于关闭第二设备的信号放大功能。
S1124、第二设备根据控制信令18,在传输消息3的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
S1125、第一设备根据第三SIB中包括的NPDCCH资源2的时域位置指示信息, 在NPDCCH资源2的起始时域位置或起始时域位置之前向第二设备发送控制信令19。相应的,第二设备在NPDCCH资源2的起始时域位置或起始时域位置之前接收来自第一设备的控制信令19,控制信令19用于开启第二设备的信号放大功能。
可选的,这里的第三SIB例如可以是SIB2、SIB20或SIB22。
需要说明的是,本申请实施例中,NPDCCH资源2的时域位置指示信息可以和上述NPDCCH资源1的时域位置指示信息相同,本申请实施例对此不作具体限定。
S1126、第二设备根据控制信令19,在NPDCCH资源2的起始时域位置或起始时域位置之前开启信号放大功能。
S1127、网络设备在接收到消息3之后,向第二设备发送承载在NPDCCH资源2上的DCI2,该DCI2用于调度消息4。相应的,第二设备接收来自网络设备的承载在NPDCCH资源2上的DCI4。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以在NPDCCH资源2上用第一TC-RNTI解扰调度消息4的DCI2,获得消息4的调度信息,如消息4的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一TC-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析调度消息4的DCI2。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息4的DCI2的无线网络标识,也就是说,第一远端终端设备会用第一TC-RNTI解扰调度消息4的DCI2,在此统一说明,以下不再赘述。
S1128、第二设备在NPDCCH资源2位置上对DCI2进行放大,并将信号放大之后的DCI2发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的DCI2。
S1129、第一设备在NPDCCH资源2的结束时域位置或结束时域位置之后向第二设备发送控制信令20。相应的,第二设备在NPDCCH资源2的结束时域位置或结束时域位置之后接收来自第一设备的控制信令20,控制信令20用于关闭第二设备的信号放大功能。
S1130、第二设备根据控制信令20,在NPDCCH资源2的结束时域位置或结束时域位置之后关闭信号放大功能。
S1131、第一设备根据获取到的消息4的调度信息,在传输消息4的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令21。相应的,第二设备在传输消息4的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令21,控制信令21用于开启第二设备的信号放大功能。
S1132、第二设备根据控制信令21,在传输消息4的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1133、网络设备向第二设备发送消息4。相应的,第二设备接收来自网络设备的消息4。
S1134、第二设备在传输消息4的时域资源位置对消息4进行放大,并将信号放大之后的消息4发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的消息4。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以用第一TC-RNTI解扰承载消息4的NPDSCH,并解析消息4获得第一远端终端设备的第一C-RNTI,从而后续可以将第一TC-RNTI升级为第一C-RNTI,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一TC-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析承载消息4的NPDSCH。其中,该第一无线网络临时标识为第一远端终端设备解析承载消息4的NPDSCH的无线网络标识,也就是说,第一远端终端设备会用第一TC-RNTI解扰承载消息4的NPDSCH,在此统一说明,以下不再赘述。
S1135、第一设备在传输消息4的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令22。相应的,第二设备在传输消息4的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令22,控制信令22用于关闭第二设备的信号放大功能。
S1136、第二设备根据控制信令22,在传输消息4的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的RAR或者消息4,都可以理解为承载在NPDSCH上的下行数据;本申请实施例中的消息3,可以理解为承载在NPUSCH上的上行数据,在此统一说明,以下不再赘述。
至此,本申请实施例提供的随机接入过程结束。
需要说明的是,图11所示的实施例中的步骤S1105-S1108、步骤S1111-S1114、步骤S1117-S1120、步骤S1123-S1126、步骤S1129-S1132可以为可选的步骤。即,信号放大功能在整个随机接入过程中均处于开启状态,直至随机接入过程结束才关闭信号方法功能,本申请实施例对该情况不做具体限定。
在上述随机接入流程结束之后,可以进行上行或下行数据的调度。下面给出上行或下行数据的调度流程中的信号处理方法,如图12中的(a)部分所示,上行数据的调度流程中的信号处理方法包括如下步骤:
S1201a、第一设备根据随机接入流程中的消息4中携带的第一终端特定搜索空间(UE specific search space,USS)的配置信息,获知承载调度消息5的DCI3的NPDCCH资源3的时域位置指示信息,进而在NPDCCH资源3的起始时域位置或起始时域位置之前向第二设备发送控制信令23。相应的,第二设备在NPDCCH资源3的起始时域位置或起始时域位置之前接收来自第一设备的控制信令23,控制信令23用于开启第二设备的信号放大功能。
S1202a、第二设备根据控制信令23,在NPDCCH资源3的起始时域位置或起始时域位置之前开启信号放大功能。
S1203a、网络设备向第二设备发送承载在NPDCCH资源3上的DCI3,该DCI3用于调度消息5。相应的,第二设备接收来自网络设备的承载在NPDCCH资源3上的DCI3。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以在NPDCCH资源3上用第一C-RNTI解扰调度消息5的DCI3,获得消息5的调度信息,如消息5的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一C-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析调度消息5的DCI3。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息5的DCI3的无线网络标识,也就是说,第一远端终端设备会用第一C-RNTI解扰调度消息5的DCI3,在此统一说明,以下不再赘述。
S1204a、第二设备在NPDCCH资源3位置上对DCI3进行放大,并将信号放大之后的DCI3发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的DCI3。
S1205a、第一设备在NPDCCH资源3的结束时域位置或结束时域位置之后向第二设备发送控制信令24。相应的,第二设备在NPDCCH资源3的结束时域位置或结束时域位置之后接收来自第一设备的控制信令24,控制信令24用于关闭第二设备的信号放大功能。
S1206a、第二设备根据控制信令24,在NPDCCH资源3的结束时域位置或结束时域位置之后关闭信号放大功能。
S1207a、第一设备根据获取到的消息5的调度信息,在传输消息5的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令25。相应的,第二设备在传输消息5的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令25,控制信令25用于开启第二设备的信号放大功能。
S1208a、第二设备根据控制信令25,在传输消息5的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1209a、第一远端终端设备向第二设备发送消息5。相应的,第二设备接收来自第一远端终端设备的消息5。
S1210a、第二设备在传输消息5的时域资源位置对消息5进行放大,并将信号放大之后的消息5发送给网络设备。相应的,网络设备接收来自第二设备的放大后的消息5。
S1211a、第一设备在传输消息5的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令26。相应的,第二设备在传输消息5的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令26,控制信令26用于关闭第二设备的信号放大功能。
S1212a、第二设备根据控制信令26,在传输消息5的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的消息5也可以理解为承载在NPUSCH上的上行数据,在此统一说明,以下不再赘述。
至此,上行数据的调度流程结束。
或者,如图12中的(b)部分所示,下行数据的调度流程中的信号处理方法包括如下步骤:
S1201b、第一设备根据消息4中携带的第一USS的配置信息,获知承载调度消息6的DCI4的NPDCCH资源4的时域位置指示信息,进而在NPDCCH资源4的起始时域位置或起始时域位置之前向第二设备发送控制信令27。相应的,第二设备在
NPDCCH资源4的起始时域位置或起始时域位置之前接收来自第一设备的控制信令27,控制信令27用于开启第二设备的信号放大功能。
S1202b、第二设备根据控制信令27,在NPDCCH资源4的起始时域位置或起始时域位置之前开启信号放大功能。
S1203b、网络设备向第二设备发送承载在NPDCCH资源4上的DCI4,该DCI4用于调度消息6。相应的,第二设备接收来自网络设备的承载在NPDCCH资源4上的DCI4。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以在NPDCCH资源4上用第一C-RNTI解扰调度消息6的DCI4,获得消息6的调度信息,如消息6的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一C-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析调度消息6的DCI4。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息6的DCI4的无线网络标识,也就是说,第一远端终端设备会用第一C-RNTI解扰调度消息6的DCI4,在此统一说明,以下不再赘述。
S1204b、第二设备在NPDCCH资源4位置上对DCI4进行放大,并将信号放大之后的DCI4发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的DCI4。
S1205b、第一设备在NPDCCH资源4的结束时域位置或结束时域位置之后向第二设备发送控制信令28。相应的,第二设备在NPDCCH资源4的结束时域位置或结束时域位置之后接收来自第一设备的控制信令28,控制信令28用于关闭第二设备的信号放大功能。
S1206b、第二设备根据控制信令28,在NPDCCH资源4的结束时域位置或结束时域位置之后关闭信号放大功能。
S1207b、第一设备根据获取到的消息6的调度信息,在传输消息6的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令29。相应的,第二设备在传输消息6的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令29,控制信令29用于开启第二设备的信号放大功能。
S1208b、第二设备根据控制信令29,在传输消息6的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1209b、网络设备向第二设备发送消息6。相应的,第二设备接收来自网络设备的消息6。
S1210b、第二设备在传输消息6的时域资源位置对消息6进行放大,并将信号放大之后的消息6发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的消息6。
S1211b、第一设备在传输消息6的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令30。相应的,第二设备在传输消息6的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令30,控制信令30用于关闭第二设备的信号放大功能。
S1212b、第二设备根据控制信令30,在传输消息6的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的消息6也可以理解为承载在NPDSCH上的下行数据,在此统一说明,以下不再赘述。
至此,下行数据的调度流程结束。
可选的,本申请实施例中,上述描述的随机接入过程、下行数据处理过程以及上行数据处理过程都是针对网络设备和一个远端终端设备进行描述的。实际上,网络设备可能与多个远端终端设备交互。该情况下,第一设备可以预先存储无线网络临时标识与USS或者CSS的映射关系,该映射关系中包括上述第一无线网络临时标识与第一USS或者第一CSS的映射关系。这里的第一无线网络临时标识可以为上述第一C-RNTI、第一RA-RNTI或者第一TC-RNTI。第一设备确定第一无线网络临时标识可以包括:第一设备确定传输第二信号的第二时域资源位置对应的第一USS或者第一CSS;第一设备根据第一USS或者第一CSS,以及预先存储的第一无线网络临时标识与第一USS或者第一CSS的映射关系,确定第一无线网络临时标识。以第二信号为承载在NPDCCH资源x上的DCIx为例,则第一设备确定第一C-RNTI,可以包括:第一设备确定传输承载DCIx的NPDCCH资源x对应的第一USS,进而根据第一USS、以及预先存储的第一C-RNTI与第一USS的映射关系,确定第一C-RNTI。第一设备确定第一RA-RNTI,可以包括:第一设备确定传输承载DCIx的NPDCCH资源x对应的第一CSS,进而根据第一CSS、以及预先存储的第一RA-RNTI与第一CSS的映射关系,确定第一RA-RNTI。第一设备确定第一TC-RNTI,可以包括:第一设备确定传输承载DCIx的NPDCCH资源x对应的第一CSS,进而根据第一CSS、以及预先存储的第一TC-RNTI和第一CSS的映射关系,确定第一TC-RNTI。
可选的,本申请实施例中,第一设备预先存储的第一无线网络临时标识与第一USS或者第一CSS的映射关系可以是通过如下方式获得的:第一USS可以根据随机接入过程中的消息4中携带的第一USS配置信息确定,第一CSS可以根据上述第二SIB中包括的NPDCCH资源1的时域位置指示信息确定。其中,在第一设备确定第一CSS之后,由于第一设备已经解析前导码得到第一RA-RNTI,因此可以建立第一RA-RNTI和第一CSS的映射关系;在第一设备解析RAR得到网络设备分配给第一远端终端设备的第一TC-RNTI之后,第一设备可以建立第一TC-RNTI和第一CSS的映射关系。在第一设备确定第一USS的同时,由于第一设备解析消息4还可以获得第一远端终端设备的第一C-RNTI,因此可以建立第一C-RNTI和第一USS的映射关系。其中,第一USS或者第一CSS在预先存储的维护列表中可以以NPDCCH搜索空间的参数表征:参数R max、G和α offset。可选的,第一设备预先存储的无线网络临时标识与USS或者CSS的映射关系可以是通过如下表一的方式维护:
表一
无线网络临时标示 USS或者CSS
第一无线网络临时标识 第一R max、第一G和第一α offset
第二无线网络临时标识 第二R max、第二G和第二α offset
可选的,本申请实施例中,当第一远端终端设备处于空闲态时,第一远端终端设备可以在PO位置为起始子帧的物理下行控制信道搜索空间内以盲检的形式检测物理下行控制信道,该过程称之为寻呼流程。在寻呼成功之后即可进入上述随机接入流程。下面给出该寻呼流程中的信号处理方法,如图13所示,包括如下步骤:
S1301、第一设备根据第四SIB中包括的NPDCCH资源5的时域位置指示信息,在NPDCCH资源5的起始时域位置或起始时域位置之前向第二设备发送控制信令31。相应的,第二设备在NPDCCH资源5的起始时域位置或起始时域位置之前接收来自第一设备的控制信令31,控制信令31用于开启第二设备的信号放大功能。
其中,本申请实施例中,NPDCCH资源5的时域位置指示信息具体可以是DRX周期的大小,寻呼密度(即一个DRX周期中包括的寻呼机会的个数),寻呼(paging,P)-RNTI加扰的NPDCCH的重复次数。通过寻呼密度和DRX周期的大小可以确定PO位置,PO位置为NPDCCH资源5的起始位置。
可选的,这里的第四SIB例如可以是SIB2。
S1302、第二设备根据控制信令31,在NPDCCH资源5的起始时域位置或起始时域位置之前开启信号放大功能。
S1303、网络设备向第二设备发送承载在NPDCCH资源5上的DCI5,该DCI5用于调度寻呼消息。相应的,第二设备接收来自网络设备的承载在NPDCCH资源5上的DCI5。
需要说明的是,虽然未示出,本申请实施例中,第一设备也可以在NPDCCH资源5上用P-RNTI解扰调度寻呼消息的DCI5,获得寻呼消息的调度信息,如寻呼消息的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一P-RNTI也可以称之为第一无线网络临时标识,即第一设备使用第一无线网络临时标识解析调度寻呼消息的DCI5。其中,该第一无线网络临时标识为第一远端终端设备解析调调度寻呼消息的DCI5的无线网络标识,也就是说,第一远端终端设备会用第一P-RNTI解扰调度寻呼消息的DCI5,在此统一说明,以下不再赘述。
S1304、第二设备在NPDCCH资源5位置上对DCI5进行放大,并将信号放大之后的DCI5发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的DCI5。
S1305、第一设备在NPDCCH资源5的结束时域位置或结束时域位置之后向第二设备发送控制信令32。相应的,第二设备在NPDCCH资源5的结束时域位置或结束时域位置之后接收来自第一设备的控制信令32,控制信令32用于关闭第二设备的信号放大功能。
S1306、第二设备根据控制信令32,在NPDCCH资源5的结束时域位置或结束时域位置之后关闭信号放大功能。
S1307、第一设备根据获取到的寻呼消息的调度信息,在传输寻呼消息的时域资源位置的起始位置或者起始位置之前向第二设备发送控制信令33。相应的,第二设备在传输寻呼消息的时域资源位置的起始位置或者起始位置之前接收来自第一设备的控制信令33,控制信令33用于开启第二设备的信号放大功能。
S1308、第二设备根据控制信令33,在传输寻呼消息的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1309、网络设备向第二设备发送寻呼消息。相应的,第二设备接收来自网络设备的寻呼消息。
S1310、第二设备在传输寻呼消息的时域资源位置对寻呼消息进行放大,并将信号放大之后的寻呼消息发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的放大后的寻呼消息。
S1311、第一设备在传输寻呼消息的时域资源位置的结束位置或者结束位置之后向第二设备发送控制信令34。相应的,第二设备在传输寻呼消息的时域资源位置的结束位置或者结束位置之后接收来自第一设备的控制信令34,控制信令34用于关闭第二设备的信号放大功能。
S1312、第二设备根据控制信令34,在传输寻呼消息的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,网络设备当不需要寻呼远端终端设备时,在NPDCCH资源5位置上不发送DCI5,此时,第一设备仍需放大NPDCCH资源5所在的资源。也就是说,上述S1301到S1312中的流程中仅包括S1301、S1302、S1305和S1306,在此统一说明,以下不再赘述。
可选的,本申请实施例中,若多个信号的时域资源位置存在重叠(包括部分重叠或全部重叠),则第二设备应该在接收到针对第一个信号的指示开启信号放大功能的控制信令之后开启信号放大功能,在接收到针对最后一个信号的指示关闭信号放大功能的控制信令之后关闭信号放大功能。其中,这里的第一个信号为时域资源位置的起始位置最靠前的某个信号,这里的最后一个信号为时域资源位置的结束位置最靠后的某个信号。示例性的,如图14所示,假设信号a对应的时域资源位置的起始时刻为时刻1、结束时刻为时刻4;信号b对应的时域资源位置的起始时刻为时刻2、结束时刻为时刻7;信号c对应的时域资源位置的起始时刻为时刻3、结束时刻为时刻5;信号d对应的时域资源位置的起始时刻为时刻6、结束时刻为时刻8;信号e对应的时域资源位置的起始时刻为时刻9、结束时刻为时刻10。其中,时刻排序为时刻1≤时刻2≤时刻3≤时刻4≤时刻5≤时刻6≤时刻7≤时刻8≤时刻9≤时刻10,则第二设备应该在接收到针对信号a的指示开启信号放大功能的控制信令之后开启信号放大功能(即在时刻1或时刻1之前开启信号放大功能),第二设备应该在接收到针对信号d的指示关闭信号放大功能的控制信令之后关闭信号放大功能(即在时刻8或时刻8之后关闭信号放大功能),在此统一说明,以下不再赘述。
要实现上述功能,一种可能的实现方式中,第二设备在接收到来自第一设备的控制信令之后,需要维护一个关系列表。示例性的,该关系列表可以如表二所示,包括指示开启信号放大功能的控制信令、开启时刻、指示关闭信号放大功能的控制信令以及关闭时刻的映射关系,从而第二设备根据该映射关系可以获知传输不同信号的时域位置之间是否存在重叠,以及在存在重叠的情况下,针对第一个信号的指示开启信号放大功能的控制信令以及针对最后一个信号的指示关闭信号放大功能的控制信令。
表二
Figure PCTCN2019099323-appb-000001
或者,可选的,本申请实施例中,也可以是第一设备在确定传输各个信号的时域资源位置之后,维护一个如表二所示的关系列表,进而第一设备针对第一个信号向第二设备发送指示开启信号放大功能的控制信令,针对最后一个信号向第二设备发送指示关闭信号放大功能的控制信令。其中,这里的第一个信号为时域资源位置的起始位置最靠前的某个信号,这里的最后一个信号为时域资源位置的结束位置最靠后的某个信号。比如,如图14所示,则第一设备在确定传输信号a的时域资源位置之后,在该时域资源位置的起始位置或起始位置之前(即在时刻1或时刻1之前)向第二设备发送指示开启信号放大功能的控制信令;第一设备在确定传输信号d的时域资源位置之后,在该时域资源位置的结束位置或结束位置之后(即在时刻8或时刻8之后)向第二设备发送指示关闭信号放大功能的控制信令,这样可以保证信号放大功能在时刻1至时刻8之间一直处于开启状态。
可选的,本申请实施例中的第一设备在开机接入到网络后处于长连接态,即一直处于连接态。当网络设备有系统消息变更时,网络设备直接指示一条RRC消息通知第一设备有系统消息变更,这条RRC消息可以是一条新的RRC消息,第一设备在接收到该RRC消息后,就知道系统消息变更了,进而可以重新确定寻呼、随机接入和参考信号等资源位置,在此统一说明,以下不再赘述。
可选的,本申请实施例中,第一设备可以通过RRC消息告诉网络设备自己的C-RNTI,该RRC消息中带有第一设备的C-RNTI,网络设备在知道第一设备的C-RNTI的情况下,可以与第一设备进行通信,如通过RRC消息指示第一设备系统消息变更,在此统一说明,以下不再赘述。
需要说明的是,本申请上述实施例以第一设备分别向第二设备发送指示开启信号放大功能的控制信令和关闭信号放大功能的控制信令为例进行说明。当然,本申请实施例中,也可以是第一设备在指示第二设备开启信号放大功能时同时指示信号放大功能开启的持续时间或者关闭信号放大功能的时间,以使得第二设备在开启信号放大功能之后,在需要关闭信号放大功能的时间关闭信号放大功能,本申请实施例对此不做具体限定。
需要说明的是,本申请上述实施例中的NPSS处理流程、NSS处理流程、MIB处理流程、SIB1处理流程、其他SIB处理流程、随机接入流程、上行或下行数据的调度流程以及寻呼流程相互解耦,互不依赖。比如,上述随机接入流程之前的寻呼流程也可以是其它寻呼流程,或者上述寻呼流程之后的随机接入流程也可以是其它随机接入 流程,等等,本申请实施例对此不作具体限定。
通常,repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于本申请实施例图10或图11或图12或图13所示的信号处理方法,由于第一设备可以在传输第一信号的第一时域资源位置的起始位置或者起始位置之前指示第二设备开启信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
上述图10至图13各步骤中的第一设备或者第二设备的动作可以由图6所示的通信设备600中的处理器601调用存储器603中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
下面结合图5所示的通信系统架构,以NB-IOT系统为例,给出本申请实施例提供的一种信号处理方法。
如图15中的第一部分所示,给出NPSS处理流程,包括如下步骤:
S1501a、第三设备在每个无线帧的子帧5或者子帧5之前开启信号放大功能。
S1502a、第三设备在每个无线帧的子帧5对NPSS进行信号放大,并将信号放大之后的NPSS发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的信号放大之后的NPSS。
S1503a、第三设备在每个无线帧的子帧5或者子帧5之后关闭信号放大功能。
如图15中的第二部分所示,给出NSSS处理流程,包括如下步骤:
S1501b、第三设备在每隔一个无线帧的子帧9或者子帧9之前开启信号放大功能。
S1502b、第三设备在每隔一个无线帧的子帧9对NSSS进行信号放大,并将信号放大之后的NSSS发送给的第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的信号放大之后的NSSS。
S1503b、第三设备在每隔一个无线帧的子帧9或者子帧9之后关闭信号放大功能。
如图15中的第三部分所示,给出MIB处理流程,包括如下步骤:
S1501c、第三设备在每个无线帧的子帧0或者子帧0之前开启信号放大功能。
S1502c、第三设备在每个无线帧的子帧0对MIB进行信号放大,并将信号放大之后的MIB发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的信号放大之后的MIB。
S1503c、第三设备在每个无线帧的子帧0或者子帧0之后关闭信号放大功能。
需要说明的是,由于NPSS、NSSS和MIB都是循环发送的,因此本申请实施例中的第一部分、第二部分和第三部分之间没有必然的执行先后顺序,可以是先执行其中的任意一个部分,再依次或同时执行剩余的两个部分;也可以是同时执行其中的任意两个部分,再执行剩余的一个部分;还可以是同时执行这三个部分,本申请实施例对此不作具体限定。
如图15中的第四部分所示,给出SIB1处理流程,包括如下步骤:
S1504、第三设备在接收到MIB之后,根据MIB中包括的SIB1的调度信息,确 定SIB1发送的无线帧位置,进而在该无线帧子帧4或者子帧4之前开启信号放大功能。
其中,本申请实施例中,MIB中包括SIB1的调度信息,用于指示SIB1的TBS和重复次数,SIB1的调度周期固定为2560ms,通过SIB1的周期、TBS和重复次数,可以确定SIB1发送的无线帧位置。
S1505、第三设备在该无线帧的子帧4对SIB1进行信号放大,并将信号放大之后的SIB1发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的SIB1。
S1506、第三设备在该无线帧的子帧4或者子帧4之后关闭信号放大功能。
如图15中的第五部分所示,给出其它SIB处理流程,包括如下步骤:
S1507、第三设备在接收到SIB1之后,根据SIB1中包括的其它SIB的调度信息,确定传输其它SIB的时域资源的位置,进而在传输其它SIB的时域资源的起始位置或起始位置之前开启信号放大功能。
S1508、第三设备在传输其它SIB的时域资源位置对其它SIB进行信号放大,并将信号放大之后的其它SIB发送给第一远端终端设备。相应的,第一远端终端设备接收来自第二设备的信号放大之后的其它SIB。
S1509、第三设备在传输其它SIB的时域资源的结束位置或结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中,SIB1中可能包括多个其它SIB的调度信息,此时针对每个其它SIB,均按照上述步骤S1507-S1509的方式执行,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中,第三设备在完成上述SIB1处理流程或其他SIB处理流程之后,还可以继续执行上述NPSS流程、NSSS流程或MIB流程,在此统一说明,以下不再赘述。
在上述信号处理流程结束之后,终端设备可能发起随机接入流程。下面给出随机接入流程中的信号处理方法,如图16所示,包括如下步骤:
S1601、第三设备在接收到第一SIB之后,根据第一SIB中包括的NPRACH资源的时域位置指示信息,在NPRACH资源的起始时域位置或起始时域位置之前开启信号放大功能。
可选的,这里的第一SIB例如可以是SIB2、SIB22或SIB23。
S1602、第一远端终端设备向第三设备发送承载在NPRACH资源上的前导码。相应的,第三设备接收来自第一远端终端设备的承载在NPRACH资源的前导码。
S1603、第三设备在NPRACH资源位置上对前导码进行放大,并将信号放大之后的前导码发送给网络设备。相应的,网络设备接收来自第三设备的放大后的前导码。
可选的,本申请实施例中,第三设备还可以解析前导码得到第一RA-RNTI,在此统一说明,以下不再赘述。
S1604、第三设备在NPRACH资源的结束时域位置或结束时域位置之后关闭信号放大功能。
S1605、第三设备在检测到承载在NPRACH资源上的前导码之后,根据第二SIB中包括的NPDCCH资源1的时域位置指示信息,在NPDCCH资源1的起始时域位置 或起始时域位置之前开启信号放大功能。
其中,本申请实施例中,NPDCCH资源1的时域位置指示信息具体可以是一个特定时间窗的信息,该特定时间窗的大小与覆盖相关,由第二SIB指示,大小为{2,3,4,5,6,7,8,10}*NPDCCH搜索空间周期的倍数,但最大不能超过10.24s。
可选的,这里的第二SIB例如可以是SIB2、SIB22、SIB23。
S1606、网络设备在接收到前导码之后,在特定时间窗内向第三设备发送承载在NPDCCH资源1上的DCI1,该DCI1用于调度RAR(也可以称之为消息2(message,Msg2))。相应的,第三设备接收来自网络设备的承载在NPDCCH资源1上的DCI1。
可选的,本申请实施例中,第三设备也可以在特定时间窗内在调度RAR的NPDCCH资源1上用第一RA-RNTI解扰(也可以称之为解析)调度RAR的DCI1,获得RAR的调度信息,如RAR的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一RA-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析调度RAR的DCI1。其中,该第一无线网络临时标识为第一远端终端设备解析调度RAR的DCI1的无线网络标识,也就是说,第一远端终端设备会用第一RA-RNTI解扰调度RAR的DCI1,在此统一说明,以下不再赘述。
S1607、第三设备在NPDCCH资源1位置上对DCI1进行放大,并将信号放大之后的DCI1发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的DCI1。
S1608、第三设备在NPDCCH资源1的结束时域位置或结束时域位置之后关闭信号放大功能。
S1609、第三设备根据获取到的RAR的调度信息,在传输RAR的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1610、网络设备向第三设备发送RAR。相应的,第三设备接收来自网络设备的RAR。
S1611、第三设备在传输RAR的时域资源位置对RAR进行放大,并将信号放大之后的RAR发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的RAR。
可选的,本申请实施例中,第三设备还可以解析RAR得到网络设备分配给第一远端终端设备的第一TC-RNTI和消息3(msg3)的调度信息,在此统一说明,以下不再赘述。
S1612、第三设备在传输RAR的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
S1613、第三设备根据获取到的消息3的调度信息,在传输消息3的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1614、第一远端终端设备向第三设备发送消息3。相应的,第三设备接收来自第一远端终端设备的消息3。
其中,本申请实施例中,消息3中携带第一远端终端设备的终端标识和触发消息3发送的原因等信息。
S1615、第三设备在传输消息3的时域资源位置对消息3进行放大,并将信号放大之后的消息3发送给网络设备。相应的,网络设备接收来自第三设备的放大后的消息3。
S1616、第三设备在传输消息3的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
S1617、第三设备根据第三SIB中包括的NPDCCH资源2的时域位置指示信息,在NPDCCH资源2的起始时域位置或起始时域位置之前开启信号放大功能。可选的,这里的第三SIB例如可以是SIB2、SIB20或SIB22。
需要说明的是,本申请实施例中,NPDCCH资源2的时域位置指示信息可以和上述NPDCCH资源1的时域位置指示信息相同,本申请实施例对此不作具体限定。
S1618、网络设备在接收到消息3之后,向第三设备发送承载在NPDCCH资源2上的DCI2,该DCI2用于调度消息4。相应的,第三设备接收来自网络设备的承载在NPDCCH资源2上的DCI4。
可选的,本申请实施例中,第三设备也可以在NPDCCH资源2上用第一TC-RNTI解扰调度消息4的DCI2,获得消息4的调度信息,如消息4的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一TC-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析调度消息4的DCI2。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息4的DCI2的无线网络标识,也就是说,第一远端终端设备会用第一TC-RNTI解扰调度消息4的DCI2,在此统一说明,以下不再赘述。
S1619、第三设备在NPDCCH资源2位置上对DCI2进行放大,并将信号放大之后的DCI2发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的DCI2。
S1620、第三设备在NPDCCH资源2的结束时域位置或结束时域位置之后关闭信号放大功能。
S1621、第三设备根据获取到的消息4的调度信息,在传输消息4的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1622、网络设备向第三设备发送消息4。相应的,第三设备接收来自网络设备的消息4。
S1623、第三设备在传输消息4的时域资源位置对消息4进行放大,并将信号放大之后的消息4发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的消息4。
可选的,本申请实施例中,第三设备也可以用第一TC-RNTI解扰承载消息4的NPDSCH,并解析消息4获得第一远端终端设备的第一C-RNTI,从而后续可以将第一TC-RNTI升级为第一C-RNTI,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一TC-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析承载消息4的NPDSCH。其中,该第一无线网络临时标识为第一远端终端设备解析承载消息4的NPDSCH的无线 网络标识,也就是说,第一远端终端设备会用第一TC-RNTI解扰承载消息4的NPDSCH,在此统一说明,以下不再赘述。
S1624、第三设备在传输消息4的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的RAR或者消息4,都可以理解为承载在NPDSCH上的下行数据;本申请实施例中的消息3,可以理解为承载在NPUSCH上的上行数据,在此统一说明,以下不再赘述。
至此,本申请实施例提供的随机接入过程结束。
在上述随机接入流程结束之后,可以进行上行或下行数据的调度。下面给出上行或下行数据的调度流程中的信号处理方法,如图17中的(a)部分所示,上行数据的调度流程中的信号处理方法包括如下步骤:
S1701a、第三设备根据随机接入流程中的消息4中携带的第一USS的配置信息,获知承载调度消息5的DCI3的NPDCCH资源3的时域位置指示信息,进而在NPDCCH资源3的起始时域位置或起始时域位置之前开启信号放大功能。
S1702a、网络设备向第三设备发送承载在NPDCCH资源3上的DCI3,该DCI3用于调度消息5。相应的,第三设备接收来自网络设备的承载在NPDCCH资源3上的DCI3。
可选的,本申请实施例中,第三设备也可以在NPDCCH资源3上用第一C-RNTI解扰调度消息5的DCI3,获得消息5的调度信息,如消息5的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一C-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析调度消息5的DCI3。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息5的DCI3的无线网络标识,也就是说,第一远端终端设备会用第一C-RNTI解扰调度消息5的DCI3,在此统一说明,以下不再赘述。
S1703a、第三设备在NPDCCH资源3位置上对DCI3进行放大,并将信号放大之后的DCI3发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的DCI3。
S1704a、第三设备在NPDCCH资源3的结束时域位置或结束时域位置之后关闭信号放大功能。
S1705a、第三设备根据获取到的消息5的调度信息,在传输消息5的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1706a、第一远端终端设备向第三设备发送消息5。相应的,第三设备接收来自第一远端终端设备的消息5。
S1707a、第三设备在传输消息5的时域资源位置对消息5进行放大,并将信号放大之后的消息5发送给网络设备。相应的,网络设备接收来自第三设备的放大后的消息5。
S1708a、第三设备在传输消息5的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的消息5也可以理解为承载在NPUSCH上的上行数据,在此统一说明,以下不再赘述。
至此,上行数据的调度流程结束。
或者,如图17中的(b)部分所示,下行数据的调度流程中的信号处理方法包括如下步骤:
S1701b、第三设备根据消息4中携带的第一USS的配置信息,获知承载调度消息6的DCI4的NPDCCH资源4的时域位置指示信息,进而在NPDCCH资源4的起始时域位置或起始时域位置之前开启信号放大功能。
S1702b、网络设备向第三设备发送承载在NPDCCH资源4上的DCI4,该DCI4用于调度消息6。相应的,第三设备接收来自网络设备的承载在NPDCCH资源4上的DCI4。
可选的,本申请实施例中,第三设备也可以在NPDCCH资源4上用第一C-RNTI解扰调度消息6的DCI4,获得消息6的调度信息,如消息6的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一C-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析调度消息6的DCI4。其中,该第一无线网络临时标识为第一远端终端设备解析调度消息6的DCI4的无线网络标识,也就是说,第一远端终端设备会用第一C-RNTI解扰调度消息6的DCI4,在此统一说明,以下不再赘述。
S1703b、第三设备在NPDCCH资源4位置上对DCI4进行放大,并将信号放大之后的DCI4发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的DCI4。
S1704b、第三设备在NPDCCH资源4的结束时域位置或结束时域位置之后关闭信号放大功能。
S1705b、第三设备根据获取到的消息6的调度信息,在传输消息6的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1706b、网络设备向第三设备发送消息6。相应的,第三设备接收来自网络设备的消息6。
S1707b、第三设备在传输消息6的时域资源位置对消息6进行放大,并将信号放大之后的消息6发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的消息6。
S1708b、第三设备在传输消息6的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,本申请实施例中的消息6也可以理解为承载在NPDSCH上的下行数据,在此统一说明,以下不再赘述。
至此,下行数据的调度流程结束。
可选的,本申请实施例中,上述描述的随机接入过程、下行数据处理过程以及上行数据处理过程都是针对网络设备和一个远端终端设备进行描述的。实际上,网络设备可能与多个远端终端设备交互。该情况下,第三设备可以预先存储无线网络临时标 识与USS或者CSS的映射关系,该映射关系中包括上述第一无线网络临时标识与第一USS或者第一CSS的映射关系。这里的第一无线网络临时标识可以为上述第一C-RNTI、第一RA-RNTI或者第一TC-RNTI。其中,第三设备确定第一无线网络临时标识的方式可参考上述实施例中第一设备确定第一无线网络临时标识的方式,在此不再赘述。
可选的,本申请实施例中,第三设备预先存储的第一无线网络临时标识与第一USS或者第一CSS的映射关系的获取方式可参考上述实施例中第一设备预先存储的第一无线网络临时标识与第一USS或者第一CSS的映射关系的获取方式,在此不再赘述。
可选的,本申请实施例中,当第一远端终端设备处于空闲态时,第一远端终端设备可以在PO位置为起始子帧的物理下行控制信道搜索空间内以盲检的形式检测物理下行控制信道,该过程称之为寻呼流程。在寻呼成功之后即可进入上述随机接入流程。下面给出该寻呼流程中的信号处理方法,如图18所示,包括如下步骤:
S1801、第三设备根据第四SIB中包括的NPDCCH资源5的时域位置指示信息,在NPDCCH资源5的起始时域位置或起始时域位置之前开启信号放大功能。
其中,本申请实施例中,NPDCCH资源5的时域位置指示信息具体可以是DRX周期的大小,寻呼密度(即一个DRX周期中包括的寻呼机会的个数),P-RNTI加扰的NPDCCH的重复次数。通过寻呼密度和DRX周期的大小可以确定PO位置,PO位置为NPDCCH资源5的起始位置。
可选的,这里的第四SIB例如可以是SIB2。
S1802、网络设备向第三设备发送承载在NPDCCH资源5上的DCI5,该DCI5用于调度寻呼消息。相应的,第三设备接收来自网络设备的承载在NPDCCH资源5上的DCI5。
可选的,本申请实施例中,第三设备也可以在NPDCCH资源5上用P-RNTI解扰调度寻呼消息的DCI5,获得寻呼消息的调度信息,如寻呼消息的重复次数,在此统一说明,以下不再赘述。
此外,需要说明的是,本申请实施例中的第一P-RNTI也可以称之为第一无线网络临时标识,即第三设备使用第一无线网络临时标识解析调度寻呼消息的DCI5。其中,该第一无线网络临时标识为第一远端终端设备解析调调度寻呼消息的DCI5的无线网络标识,也就是说,第一远端终端设备会用第一P-RNTI解扰调度寻呼消息的DCI5,在此统一说明,以下不再赘述。
S1803、第三设备在NPDCCH资源5位置上对DCI5进行放大,并将信号放大之后的DCI5发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的DCI5。
S1804、第三设备在NPDCCH资源5的结束时域位置或结束时域位置之后关闭信号放大功能。
S1805、第三设备根据获取到的寻呼消息的调度信息,在传输寻呼消息的时域资源位置的起始位置或者起始位置之前开启信号放大功能。
S1806、网络设备向第三设备发送寻呼消息。相应的,第三设备接收来自网络设备的寻呼消息。
S1807、第三设备在传输寻呼消息的时域资源位置对寻呼消息进行放大,并将信号 放大之后的寻呼消息发送给第一远端终端设备。相应的,第一远端终端设备接收来自第三设备的放大后的寻呼消息。
S1808、第三设备在传输寻呼消息的时域资源位置的结束位置或者结束位置之后关闭信号放大功能。
需要说明的是,网络设备当不需要寻呼远端终端设备时,在NPDCCH资源5位置上不发送DCI5,此时,第三设备仍需放大NPDCCH资源5所在的资源。也就是说,上述S1801到S1808中的流程中仅包括S1801和S1804,在此统一说明,以下不再赘述。
可选的,本申请实施例中,若多个信号的时域资源位置存在重叠(包括部分重叠或全部重叠),则第三设备应该在传输第一个信号的时频资源位置的起始位置或起始位置之前开启信号放大功能,在传输最后一个信号的时频资源位置的结束位置或结束位置之前关闭信号放大功能。其中,这里的第一个信号为时域资源位置的起始位置最靠前的某个信号,这里的最后一个信号为时域资源位置的结束位置最靠后的某个信号。示例性的,如图14所示,假设信号a对应的时域资源位置的起始时刻为时刻1、结束时刻为时刻4;信号b对应的时域资源位置的起始时刻为时刻2、结束时刻为时刻7;信号c对应的时域资源位置的起始时刻为时刻3、结束时刻为时刻5;信号d对应的时域资源位置的起始时刻为时刻6、结束时刻为时刻8;信号e对应的时域资源位置的起始时刻为时刻9、结束时刻为时刻10。其中,时刻排序为时刻1≤时刻2≤时刻3≤时刻4≤时刻5≤时刻6≤时刻7≤时刻8≤时刻9≤时刻10,则第三设备应该在传输信号a的时频资源位置的起始位置或起始位置之前开启信号放大功能(即在时刻1或时刻1之前开启信号放大功能),在传输信号d的时频资源位置的结束位置或结束位置之前关闭信号放大功能(即在时刻8或时刻8之后关闭信号放大功能),在此统一说明,以下不再赘述。
要实现上述功能,一种可能的实现方式中,第三设备在确定传输各个信号的时域资源位置之后,维护一个如表三所示的关系列表,包括:信号以及对应的信号放大功能的开启时刻和关闭时刻的映射关系,从而第三设备根据该映射关系,可以获知传输不同信号的时域位置之间是否存在重叠,以及在存在重叠的情况下,第一个信号对应的信号放大功能的开启时刻以及最后一个信号对应的信号放大功能的关闭时刻。
表三
Figure PCTCN2019099323-appb-000002
可选的,本申请实施例中的第三设备在开机接入到网络后处于长连接态,即一直处于连接态。当网络设备有系统消息变更时,网络设备直接指示一条RRC消息通知第 三设备有系统消息变更,这条RRC消息可以是一条新的RRC消息,第三设备在接收到该RRC消息后,就知道系统消息变更了,进而可以重新确定寻呼、随机接入和参考信号等资源位置,在此统一说明,以下不再赘述。
可选的,本申请实施例中,第三设备可以通过RRC消息告诉网络设备自己的C-RNTI,该RRC消息中带有第三设备的C-RNTI,网络设备在知道第三设备的C-RNTI的情况下,可以与第三设备进行通信,如通过RRC消息指示第三设备系统消息变更,在此统一说明,以下不再赘述。
需要说明的是,本申请上述实施例中的NPSS处理流程、NSS处理流程、MIB处理流程、SIB1处理流程、其他SIB处理流程、随机接入流程、上行或下行数据的调度流程以及寻呼流程相互解耦,互不依赖。比如,上述随机接入流程之前的寻呼流程也可以是其它寻呼流程,或者上述寻呼流程之后的随机接入流程也可以是其它随机接入流程,等等,本申请实施例对此不作具体限定。
通常repeater一直处于开启的状态,不论是有用信号还是噪声,repeater都会对其进行放大。当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰。基于本申请实施例图15或图16或图17或图18所示的信号处理方法,由于第三设备可以确定传输第一信号的第一时域资源位置,并在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能,也就是说当有信号需要中转时才进行信号放大,当没有信号需要中转时不需要开启信号放大功能,因此可以避免当DeNB没有发送数据给远端终端设备时,放大的噪声会对DeNB和其他终端设备产生噪声干扰的问题,从而可以降低噪声干扰。
上述图15至图18各步骤中的第三设备的动作可以由图6所示的通信设备600中的处理器601调用存储器603中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由第一设备实现的方法和/或步骤,也可以由实现上述第一设备功能的芯片系统实现,由第三设备实现的方法和/或步骤,也可以由实现上述第三设备功能的芯片系统实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一设备或者实现上述第一设备功能的芯片系统;或者,该通信装置可以为上述方法实施例中的第三设备或者实现上述第三设备功能的芯片系统。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的 形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一设备为例。图19示出了一种第一设备190的结构示意图。该终端设备190包括处理模块1901和收发模块1902。所述收发模块1902,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
处理模块1901,用于确定传输第一信号的第一时域资源位置;收发模块1902,用于在第一时域资源位置的起始位置或起始位置之前向第二设备发送第一控制信令,第一控制信令用于开启第二设备的信号放大功能。
可选的,处理模块1901具体用于:通过收发模块1902接收来自网络设备的第二信号,第二信号包括用于指示第一时域资源位置的信息;根据第二信号,确定第一时域资源位置。
可选的,处理模块1901,用于根据第二信号确定第一时域资源位置,包括:处理模块1901,用于使用第一无线网络临时标识解析第二信号,以获得第一时域资源位置,第一无线网络临时标识为第一远端终端设备用来解析第二信号的无线网络标识,第一远端终端设备为接收第二信号的终端设备。
可选的,处理模块1901,还用于确定传输第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;处理模块1901,还用于根据第一公共搜索空间或者第一终端特定搜索空间,以及预先存储的第一无线网络临时标识与第一公共搜索空间或者第一终端特定搜索空间的映射关系,确定第一无线网络临时标识。
可选的,处理模块1901,还用于解析承载在物理随机接入信道上的前导码,获得第一无线网络临时标识;或者,处理模块1901,还用于解析承载在第三物理下行共享信道上的第三下行数据,获得第一无线网络临时标识。
可选的,收发模块1902,还用于在第一时域位置的结束位置或结束位置之后向第二设备发送第二控制信令,第二控制信令用于关闭信号放大功能。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一设备190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一设备190可以采用图6所示的通信设备600的形式。
比如,图6所示的通信设备600中的处理器601可以通过调用存储器603中存储的计算机执行指令,使得通信设备600执行上述方法实施例中的信号处理方法。
具体的,图19中的收发模块1902和处理模块1901的功能/实现过程可以通过图6所示的通信设备600中的处理器601调用存储器603中存储的计算机执行指令来实现。或者,图19中的处理模块1901的功能/实现过程可以通过图6所示的通信设备600中的处理器601调用存储器603中存储的计算机执行指令来实现,图19中的收发模块1902的功能/实现过程可以通过图6中所示的通信设备600中的通信接口604来实现。
由于本实施例提供的第一设备190可执行上述的信号处理方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的第三设备为例。图20示出了一种第三设备200的结构示意图。该第三设备200包括处理模块2001,可选的包括收发模块2002。所述收发模块2002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块2001,用于确定传输第一信号的第一时域资源位置;处理模块2001,还用于在第一时域资源位置的起始位置或起始位置之前开启第三设备的信号放大功能。
可选的,处理模块2001具体用于:通过收发模块2002接收来自网络设备的第二信号,第二信号包括用于指示第一时域资源位置的信息;根据第二信号,确定第一时域资源位置。
可选的,处理模块2001,用于根据第二信号,确定第一时域资源位置,包括:处理模块2001,用于使用第一无线网络临时标识解析第二信号,以获得第一时域资源位置,第一无线网络临时标识为第一远端终端设备用来解析第二信号的无线网络标识,第一远端终端设备为接收第二信号的终端设备。
可选的,处理模块2001,还用于确定传输第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;处理模块2001,还用于根据第一公共搜索空间或者第一终端特定搜索空间,以及预先存储的第一无线网络临时标识与第一公共搜索空间或者第一终端特定搜索空间的映射关系,确定第一无线网络临时标识。
可选的,处理模块2001,还用于解析承载在物理随机接入信道上的前导码,获得第一无线网络临时标识;或者,处理模块2001,还用于解析承载在第三物理下行共享信道上的第三下行数据,获得第一无线网络临时标识。
可选的,处理模块2001,还用于在第一时域位置的结束位置或结束位置之后关闭信号放大功能。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第三设备200以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第三设备200可以采用图6所示的通信设备600的形式。
比如,图6所示的通信设备600中的处理器601可以通过调用存储器603中存储的计算机执行指令,使得通信设备600执行上述方法实施例中的信号处理方法。
具体的,图20中的收发模块2002和处理模块2001的功能/实现过程可以通过图6所示的通信设备600中的处理器601调用存储器603中存储的计算机执行指令来实现。或者,图20中的处理模块2001的功能/实现过程可以通过图6所示的通信设备600中的处理器601调用存储器603中存储的计算机执行指令来实现,图20中的收发模块2002的功能/实现过程可以通过图6中所示的通信设备600中的通信接口604来实现。
由于本实施例提供的第三设备200可执行上述的信号处理方法,因此其所能获得 的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    第一设备确定传输第一信号的第一时域资源位置;
    所述第一设备在所述第一时域资源位置的起始位置或所述起始位置之前向第二设备发送第一控制信令,所述第一控制信令用于开启所述第二设备的信号放大功能。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备确定传输第一信号的第一时域资源位置,包括:
    所述第一设备接收来自网络设备的第二信号,所述第二信号包括用于指示所述第一时域资源位置的信息;
    所述第一设备根据所述第二信号,确定所述第一时域资源位置。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备根据所述第二信号确定所述第一时域资源位置,包括:
    所述第一设备使用第一无线网络临时标识解析所述第二信号,以获得所述第一时域资源位置,所述第一无线网络临时标识为第一远端终端设备用来解析所述第二信号的无线网络标识,所述第一远端终端设备为接收所述第二信号的终端设备。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第二信号为承载在第一物理下行控制信道上的第一下行控制消息,所述第一信号为承载在第一物理下行共享信道上的第一下行数据;
    或者,所述第二信号为承载在第二物理下行控制信道上的第二下行控制消息,所述第一信号为承载在第一物理上行共享信道上的第一上行数据;
    或者,所述第二信号为RAR,所述第一信号为随机接入过程中的消息3;
    或者,所述第二信号为承载在第二物理下行共享信道上的第二下行数据,所述第一信号为承载在第三物理下行控制信道上的第三下行控制消息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定传输所述第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;
    所述第一设备根据所述第一公共搜索空间或者所述第一终端特定搜索空间,以及预先存储的所述第一无线网络临时标识与所述第一公共搜索空间或者所述第一终端特定搜索空间的映射关系,确定所述第一无线网络临时标识。
  6. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述第一设备解析承载在物理随机接入信道上的前导码,获得所述第一无线网络临时标识;
    或者,所述第一设备解析承载在第三物理下行共享信道上的第三下行数据,获得所述第一无线网络临时标识。
  7. 根据权利要求2所述的方法,其特征在于,
    所述第二信号为主信息块MIB,所述第一信号为系统信息块SIB1;
    或者,所述第二信号为SIB1,所述第一信号为所述SIB1之外的其它SIB;
    或者,所述第二信号为第一系统信息块,所述第一信号为承载在物理随机接入信道上的前导码;
    或者,所述第二信号为第二系统信息块,所述第一信号为承载在第四物理下行控制信道上的第四下行控制消息。
  8. 根据权利要求1所述的方法,其特征在于,所述第一时域资源位置为设定时域资源位置。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信号包括同步信号或者主信息块MIB或者SIB1。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第一时域位置的结束位置或所述结束位置之后向所述第二设备发送第二控制信令,所述第二控制信令用于关闭所述信号放大功能。
  11. 一种信号处理方法,其特征在于,所述方法包括:
    第三设备确定传输第一信号的第一时域资源位置;
    所述第三设备在所述第一时域资源位置的起始位置或所述起始位置之前开启所述第三设备的信号放大功能。
  12. 根据权利要求11所述的方法,其特征在于,所述第三设备确定传输第一信号的第一时域资源位置,包括:
    所述第三设备接收来自网络设备的第二信号,所述第二信号包括用于指示所述第一时域资源位置的信息;
    所述第三设备根据所述第二信号,确定所述第一时域资源位置。
  13. 根据权利要求12所述的方法,其特征在于,所述第三设备根据所述第二信号,确定所述第一时域资源位置,包括:
    所述第三设备使用第一无线网络临时标识解析所述第二信号,以获得所述第一时域资源位置,所述第一无线网络临时标识为第一远端终端设备用来解析所述第二信号的无线网络标识,所述第一远端终端设备为接收所述第二信号的终端设备。
  14. 根据权利要求13所述的方法,其特征在于,所述第二信号为承载在第一物理下行控制信道上的第一下行控制消息,所述第一信号为承载在第一物理下行共享信道上的第一下行数据;
    或者,所述第二信号为承载在第二物理下行控制信道上的第二下行控制消息,所述第一信号为承载在第一物理上行共享信道上的第一上行数据;
    或者,所述第二信号为RAR,所述第一信号为随机接入过程中的消息3;
    或者,所述第二信号为承载在第二物理下行共享信道上的第二下行数据,所述第一信号为承载在第三物理下行控制信道上的第三下行控制消息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第三设备确定传输所述第二信号的第二时域资源位置对应的第一公共搜索空间或者第一终端特定搜索空间;
    所述第三设备根据所述第一公共搜索空间或者所述第一终端特定搜索空间,以及预先存储的所述第一无线网络临时标识与所述第一公共搜索空间或者所述第一终端特定搜索空间的映射关系,确定所述第一无线网络临时标识。
  16. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第三设备解析承载在物理随机接入信道上的前导码,获得所述第一无线网络 临时标识;
    或者,所述第三设备解析承载在第三物理下行共享信道上的第三下行数据,获得所述第一无线网络临时标识。
  17. 根据权利要求12所述的方法,其特征在于,所述第二信号为主信息块MIB,所述第一信号为系统信息块SIB1;
    或者,所述第二信号为SIB1,所述第一信号为所述SIB1之外的其它SIB;
    或者,所述第二信号为第一系统信息块,所述第一信号为承载在物理随机接入信道上的前导码;
    或者,所述第二信号为第二系统信息块,所述第一信号为承载在第四物理下行控制信道上的第四下行控制消息。
  18. 根据权利要求11所述的方法,其特征在于,所述第一时域资源位置为设定时域资源位置。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信号包括同步信号或者主信息块MIB或者SIB1。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述方法还包括:
    所述第三设备在所述第一时域位置的结束位置或所述结束位置之后关闭所述信号放大功能。
  21. 一种第一设备,其特征在于,所述第一设备包括处理器;
    所述处理器,用于调度存储器中存储的计算机指令,以使得所述第一设备执行如权利要求1-10任一项所述的信号处理方法。
  22. 一种第三设备,其特征在于,所述第三设备包括处理器;
    所述处理器,用于调度存储器中存储的计算机指令,以使得所述第三设备执行如权利要求11-20任一项所述的信号处理方法。
  23. 一种通信系统,其特征在于,所述通信系统包括第一设备和第二设备;
    所述第一设备,用于确定传输第一信号的第一时域资源位置,并在所述第一时域资源位置的起始位置或所述起始位置之前向所述第二设备发送第一控制信令;
    所述第二设备,用于接收所述第一控制信令,并根据所述第一控制命令开启所述第二设备的信号放大功能。
  24. 根据权利要求23所述的通信系统,其特征在于,所述通信系统还包括网络设备;
    所述网络设备,用于接收或发送所述第一信号;
    所述第二设备,还用于在所述第一时域资源位置放大所述第一信号。
  25. 一种通信系统,其特征在于,所述通信系统包括第三设备和网络设备;
    所述第三设备,用于确定传输第一信号的第一时域资源位置;并在所述第一时域资源位置的起始位置或所述起始位置之前开启所述第三设备的信号放大功能;
    所述网络设备,用于接收或发送所述第一信号;
    所述第三设备,还用于在所述第一时域资源位置放大所述第一信号。
PCT/CN2019/099323 2019-08-05 2019-08-05 信号处理方法、设备及系统 WO2021022462A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19940647.1A EP4009737A4 (en) 2019-08-05 2019-08-05 SIGNAL PROCESSING METHOD, DEVICE AND SYSTEM
PCT/CN2019/099323 WO2021022462A1 (zh) 2019-08-05 2019-08-05 信号处理方法、设备及系统
US17/591,068 US20220159743A1 (en) 2019-08-05 2022-02-02 Signal processing method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099323 WO2021022462A1 (zh) 2019-08-05 2019-08-05 信号处理方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/591,068 Continuation US20220159743A1 (en) 2019-08-05 2022-02-02 Signal processing method, device, and system

Publications (1)

Publication Number Publication Date
WO2021022462A1 true WO2021022462A1 (zh) 2021-02-11

Family

ID=74502528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099323 WO2021022462A1 (zh) 2019-08-05 2019-08-05 信号处理方法、设备及系统

Country Status (3)

Country Link
US (1) US20220159743A1 (zh)
EP (1) EP4009737A4 (zh)
WO (1) WO2021022462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230254175A1 (en) * 2022-01-14 2023-08-10 Avago Technologies International Sales Pte. Limited North port interference mitigation in a full duplex (fdx) amplifier
WO2024031360A1 (en) * 2022-08-09 2024-02-15 Zte Corporation Systems and methods for on/off state control for network nodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834654A (zh) * 2009-03-11 2010-09-15 上海贝尔股份有限公司 中继tdd系统中避免不同步而产生的干扰的方法和装置
US20140334375A1 (en) * 2013-05-08 2014-11-13 Panasonic Corporation Wireless communication system and communication device therefor
CN110087340A (zh) * 2018-01-25 2019-08-02 北京三星通信技术研究有限公司 中继传输的方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8577283B2 (en) * 2005-07-15 2013-11-05 Qualcomm Incorporated TDD repeater
US20080151790A1 (en) * 2006-12-20 2008-06-26 Lee Ronald B Time division duplex amplifier for network signals
EP2241025B1 (en) * 2007-12-14 2016-05-04 Telefonaktiebolaget LM Ericsson (publ) Adaptive radio repeaters
JP2010226655A (ja) * 2009-03-25 2010-10-07 Fujitsu Ltd 中継方法及び中継装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834654A (zh) * 2009-03-11 2010-09-15 上海贝尔股份有限公司 中继tdd系统中避免不同步而产生的干扰的方法和装置
US20140334375A1 (en) * 2013-05-08 2014-11-13 Panasonic Corporation Wireless communication system and communication device therefor
CN110087340A (zh) * 2018-01-25 2019-08-02 北京三星通信技术研究有限公司 中继传输的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009737A4 *

Also Published As

Publication number Publication date
EP4009737A1 (en) 2022-06-08
EP4009737A4 (en) 2022-08-24
US20220159743A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US11950280B2 (en) Channelization and BWP
TWI729400B (zh) 波束成形無線通訊系統中之尋呼方法及其使用者設備
EP3506667B1 (en) Apparatus and method in wireless communication system
KR102202893B1 (ko) Nb-iot 디바이스의 페이징을 위한 공통 서치 공간(css)
CN104335639B (zh) 用于小区内设备到设备(d2d)通信的探测参考信号(srs)机制
EP3667986B1 (en) Method and device for information transmission and reception
US10205573B2 (en) System and method for OFDMA PS-poll transmission
WO2016107518A1 (zh) 寻呼消息的接收/发送方法及相关网络节点和用户设备
EP3636031B1 (en) Partitioning of random access preambles
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission
JP2022506678A (ja) ページング方法、端末デバイス、およびネットワークデバイス
WO2019001160A1 (zh) 无线通信系统中的电子设备以及无线通信方法
WO2020164258A1 (zh) 同步信号块信息处理方法、装置及通信装置
WO2019141123A1 (zh) 信号传输的方法和装置
CN105517154A (zh) 设备间通信的资源配置方法以及基站和用户设备
US20220159743A1 (en) Signal processing method, device, and system
WO2019062869A1 (zh) 一种数据传输方法、网络设备及终端设备
EP3836719A1 (en) User device and transmission method
JP2020526056A (ja) 無線通信方法及び無線通信装置
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
KR102074926B1 (ko) 무선랜에서 채널 할당 방법 및 장치
CN114731580A (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2022027988A1 (zh) 一种信息传输的方法、装置以及系统
WO2019041261A1 (zh) 一种通信方法及设备
WO2015120577A1 (zh) 数据传输处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019940647

Country of ref document: EP

Effective date: 20220303