WO2021020922A1 - Method for manufacturing graphite sheet - Google Patents

Method for manufacturing graphite sheet Download PDF

Info

Publication number
WO2021020922A1
WO2021020922A1 PCT/KR2020/010096 KR2020010096W WO2021020922A1 WO 2021020922 A1 WO2021020922 A1 WO 2021020922A1 KR 2020010096 W KR2020010096 W KR 2020010096W WO 2021020922 A1 WO2021020922 A1 WO 2021020922A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite sheet
substrate
thermal conductivity
rolling
manufacturing
Prior art date
Application number
PCT/KR2020/010096
Other languages
French (fr)
Korean (ko)
Inventor
김완진
윤준영
백병운
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2021020922A1 publication Critical patent/WO2021020922A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/23Lignins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/35Polyalkenes, e.g. polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/48Condensation polymers of aldehydes or ketones with phenols
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/1272Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of fibres which can be physically or chemically modified during or after web formation
    • D21H5/129Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of fibres which can be physically or chemically modified during or after web formation by thermal treatment

Definitions

  • the present invention relates to a method of manufacturing a graphite sheet.
  • the heat dissipation sheet is manufactured in the form of a graphite sheet, a polymer-ceramic composite sheet, and a multilayer coated metal thin film sheet.
  • a graphite sheet it is light weight and slim, yet excellent heat resistance and resistance.
  • it has a very high thermal conductivity than copper and is widely used in various electronic devices.
  • an example of a method for producing a graphite sheet there is a method called “expanded (expanded) graphite method".
  • artificial graphite is prepared by immersing natural graphite in a mixture of concentrated sulfuric acid and concentrated nitric acid and then rapidly heating. Thereafter, the expanded graphite is cleaned to remove acid, and processed into a film shape by a high pressure press or a roll.
  • the graphite sheet manufactured through the above method has problems such as weak strength, not excellent other physical properties, and concern about the influence of residual acids.
  • a polymer graphitization method in which a polymer film is directly heat-treated to graphitize it.
  • the polymer film used at this time include polyoxadiazole, polyimide, polyphenylene vinylene, polybenzoimidazole, polybenzoxazole, polythiazole, and polyamide films.
  • This polymer graphitization method is a much simpler method compared to the conventional expanded graphite method, and is a method that essentially does not cause the incorporation of impurities such as acids, and has the characteristics of obtaining excellent thermal or electrical conductivity close to single crystal graphite. .
  • the graphite sheet manufactured by such a polymeric graphitization method has high thermal conductivity (thermal diffusivity) in the horizontal direction, but low thermal conductivity in the vertical direction, and the manufacturing cost is high due to the use of an expensive polyimide film as a polymer film. There are drawbacks.
  • the low vertical thermal conductivity of the graphite sheet cannot secure sufficient performance when applied as a heat dissipating material, and various techniques have been proposed to improve this.
  • Korean Patent Application Publication No. 2017-0081874 can improve the thermal conductivity of the graphite sheet in the vertical direction by using a polyimide film containing a thermally conductive material such as carbon nanotubes and boron nitride as a precursor of the graphite sheet. Is being disclosed.
  • Korean Patent Registration No. 1885281 is a method of manufacturing a heat-dissipating sheet with excellent thermal conductivity in the horizontal and vertical directions. After perforating a graphite sheet manufactured by heat-treating a substrate coated with a coating liquid containing a polymer, carbonized polymer, or graphite, , Disclosed is a method comprising the step of coating one or both sides thereof with a metal.
  • the present inventors conducted various studies to solve the above problem, and as a result of using a fiber substrate as a precursor when producing a graphite sheet, impregnating the fiber substrate with a thermally conductive interface material, and rolling it before and after carbonization and graphitization.
  • the present invention was completed by confirming that the thermal conductivity in the vertical direction of the finally produced graphite sheet was improved and the flexibility was improved.
  • an object of the present invention is to provide a method of manufacturing a graphite sheet capable of simply and economically manufacturing a graphite sheet having improved thermal conductivity, particularly, thermal conductivity in the vertical direction.
  • the present invention comprises the steps of (S1) preparing a fibrous substrate using short fibers; (S2) preparing a composite substrate by impregnating the fiber substrate obtained in step (S1) with a thermally conductive interface material; (S3) heat-treating the composite substrate obtained in step (S2) to carbonize and graphitize to produce a graphite sheet; And (S4) rolling to improve the thermal conductivity of the graphite sheet obtained in step (S3).
  • a graphite sheet having excellent vertical and horizontal thermal conductivity can be manufactured by using a high-density fiber substrate as a precursor and performing a rolling process after carbonization and graphitization.
  • a high-density fiber substrate as a precursor
  • a rolling process after carbonization and graphitization since an expensive polyimide polymer film is not used as a precursor, manufacturing cost is reduced, and thus economic efficiency and productivity of the manufacturing process can be improved.
  • Example 1 is a scanning electron microscope (SEM) image of the surface of a fiber substrate according to Example 1 of the present invention.
  • Example 2 is a scanning electron microscope (SEM) image of a cross section of a fiber substrate according to Example 1 of the present invention.
  • SEM 3 is a scanning electron microscope (SEM) image of a cross section of a fiber substrate according to Experimental Example 2 of the present invention before and after rolling.
  • SEM 4 is a scanning electron microscope (SEM) image of a cross section of a composite substrate according to Experimental Example 3 of the present invention.
  • SEM scanning electron microscope
  • SEM 6 is a scanning electron microscope (SEM) image on the surface of a graphite sheet according to carbonization and graphitization in Experimental Example 5 of the present invention.
  • thermo conductivity (thermal diffusivity) in the horizontal direction refers to both the thermal conductivity of the graphite sheet in the longitudinal direction and the width direction in the plane.
  • thermal conductivity (thermal diffusivity) of the graphite sheet used in the present invention refers to the thermal conduction in the thickness direction (height direction) of the graphite sheet in a plane perpendicular to the longitudinal direction and/or the width direction of the graphite sheet. It refers to both the thermal conductivity of the graphite sheet in the thickness direction (height direction) of the graphite sheet forming a longitudinal direction and an inclination angle in the plane of the graphite sheet.
  • a graphite sheet prepared by heat treatment of a polymer film such as polyimide at high temperature is used.
  • the film-based graphite sheet manufactured by the polymer graphitization method has a thermal conductivity of 1,000 W/m ⁇ K or more in the horizontal direction due to the structure of the graphene layer arranged in the 2D direction, but up to 20 W in the vertical direction. It has been reported up to /m ⁇ K, but generally has a lower thermal conductivity than the horizontal direction of 5 W/m ⁇ K or less.
  • This heat conduction property has no problem in dissipating heat generated in a hot spot area where a specific part of the electronic device locally rises to a high temperature.
  • the low vertical thermal conductivity of the conventional graphite sheet has a limitation in effectively dissipating the heat generated any more.
  • the present invention provides a method of manufacturing a graphite sheet using a fiber type as a precursor of the graphite sheet in order to improve the thermal conductivity in the vertical direction of the graphite sheet, which has been pointed out as a limitation of the existing heat dissipating material.
  • the method of manufacturing a graphite sheet according to the present invention comprises the steps of (S1) preparing a fibrous substrate using short fibers; (S2) preparing a composite substrate by impregnating the fiber substrate obtained in step (S1) with a thermally conductive interface material; (S3) heat-treating the composite substrate obtained in step (S2) to carbonize and graphitize to produce a graphite sheet; And (S4) rolling the graphite sheet obtained in step (S3).
  • step (S1) a fiber substrate is prepared using short fibers.
  • the fibrous substrate includes short fibers oriented in a three-dimensional form as a precursor of a graphite sheet.
  • a fiber substrate containing short fibers since a fiber substrate containing short fibers is used as a precursor of the graphite sheet, it has a three-dimensional crystal structure, compared to the conventional graphite sheet using a polymer film having only a crystal structure in the horizontal direction as a precursor.
  • a graphite sheet having improved thermal conductivity in the vertical direction can be manufactured.
  • a fiber substrate containing relatively inexpensive short fibers in place of the polymer film used in the polymer graphitization method, which is a conventional graphite sheet manufacturing method, specifically an expensive polyimide film, the manufacturing cost is lowered to improve economy and productivity. Has an advantage.
  • the short fiber means that the long fiber is cut to a predetermined length, and the length is not particularly limited, but may be, for example, in the range of 3 mm to 56 mm.
  • the short fibers include aramids such as meta aramid (m-aramid) and para aramid (p-aramid); Polyimide (PI) such as poly(amideimide), PAI), and polyetherimide (PEI); Polyamide (PA); Polystyrene, PS), polyethylene (PE), polyethylene terephthalate (PET), poly(vinyl chloride), PVC, poly(vinylidene chloride), PVDC ), polypropylene (PP), polysulfone, poly(etheretherketone), poly(phenylene sulfide), polycarbonate (PC), polyaryl ether ketone (poly(aryletherketone)), an acrylonitrile butadiene styrene (ABS) and an acrylate-styrene-acrylonitrile polymer (acrylonitrile styrene acrylate, ASA); (epoxy), phenol (phenol), unsaturated polyester (polyester), polyurethane (polyurethane
  • the fibrous substrate is that the aforementioned short fibers are oriented in a three-dimensional form, and when a short fiber is used, the short fiber itself typically takes 1.5 to 20 times of the initial discharge rate, but the draw ratio is less than 1.5 times. It is formed in a higher orientation structure than that of a polyimide polymer film manufactured by non-stretching, so that high thermal conductivity can be realized through a graphitization process.
  • the fibrous substrate when used as a raw material for forming a graphite sheet, it has a three-dimensional isotropic structure, and the difference in thermal conductivity in the horizontal direction and the vertical direction is relatively low compared to the polymer film having a two-dimensional structure. It is effective in improving the thermal conductivity in the vertical direction.
  • the fibrous substrate is a three-dimensional porous structure including voids therein, and may be in the form of a sheet, a fabric, or a web.
  • the fibrous substrate may be paper, nonwoven, woven, knitted, felt, mat, prepreg, or nano web. have.
  • the manufacturing method of the fiber substrate is not particularly limited, and a known method or various methods of modifying it may be used by a person skilled in the art. For example, methods such as dry laid, wet-laid, spinning, air-laid, melt-blown, and stacked stretching methods can be used. have.
  • the fibrous substrate may further include a material commonly used in addition to the short fibers.
  • a material commonly used in addition to the short fibers may further include a binder fiber, a surfactant, a dispersant, a thickener, etc. for bonding the short fibers constituting the fibrous substrate and making the fibrous substrate solid.
  • the three-dimensional porous structure includes voids inside, that is, between short fibers, and bulk density
  • the air contained in the voids present inside the fibrous substrate acts as a resistance in heat conduction, so rolling is performed.
  • the rolling may be performed according to a conventional method known in the art.
  • the temperature and pressure of rolling may vary depending on the fibrous substrate or the short fibers included therein.
  • the rolling can be performed at a temperature of 80 °C to 200 °C and a pressure of 30 to 200 kgf/cm in the case of a continuous production method. I can.
  • the thickness of the fibrous substrate after rolling is preferably 40% to 80% of the thickness of the fibrous substrate before rolling is performed to improve the thermal conductivity and other physical properties of the final product, the graphite sheet.
  • the air permeability of the fibrous substrate after the rolling is preferably 0.1% to 45% of the air permeability of the fibrous substrate before the rolling is performed to improve the thermal conductivity and other physical properties of the final product, the graphite sheet.
  • a composite substrate is prepared by impregnating the fiber substrate obtained in step (S1) with a thermal interface material (TIM).
  • the composite substrate is a graphite that is finally produced by completely removing air by impregnating the pores of the fibrous substrate prepared in step (S1) through impregnation, and increasing the interfacial contact between short fibers. It is possible to improve the thermal conductivity of the sheet in the horizontal and vertical directions.
  • the thermally conductive interface material is not limited to the type as long as it is a polymer having a carbon component fraction of 50% or more in molecular structural formula.
  • the thermally conductive interface material is a chemical such as polyimide (PI), lignin, aramid, poly(amideimide), PAI), and polypropylne (PP). It may be one or more selected from the group consisting of cured thermoplastic resins and phenol resins, and preferably, the thermally conductive interface material is a group consisting of resins having a relatively high carbon component fraction and easy control of viscosity It may include one or more selected from.
  • the composite substrate can be obtained by impregnating the fibrous substrate obtained in step (S1) into a varnish composition containing the thermally conductive interface material.
  • Examples of the impregnation method include a method of immersing the fiber substrate in a varnish composition containing the thermally conductive interface material, and applying a varnish composition containing the thermally conductive interface material to the fiber substrate by various coating machines. And a method of penetrating the varnish composition containing the thermally conductive interface material into the fiber substrate by spraying, but are not limited thereto. Among them, the method of immersing the fibrous substrate in the varnish composition containing the thermally conductive interface material is preferable because it can improve the impregnation property of the varnish composition with the fibrous substrate.
  • the content of the thermally conductive interface material in the varnish composition may be 10% to 80% by weight, preferably 30% to 60% by weight, based on 100% by weight of the total varnish composition. If the content of the thermally conductive interfacial material is less than the above range, there is a limit to increase the density due to insufficient filling of the voids in the substrate, which may cause a problem of increasing the resistance.On the contrary, if the content exceeds the above range, the viscosity is too high and impregnation is uniform. Since the property may be deteriorated, it is preferable to determine an appropriate content within the above-described range.
  • a composite substrate is prepared by curing and drying the fibrous substrate impregnated with the varnish composition to form a composite.
  • the curing and drying conditions may vary depending on the type of material used.
  • the content of the thermally conductive interface material in the composite substrate may be 40% to 80% by weight based on 100% by weight of the composite substrate.
  • the composite substrate may further include a filler to improve thermal conductivity.
  • the filler may be a ceramic material or a polymer material, and in the case of a polymer material, the filler may be the same material as the short fibers constituting the fiber substrate.
  • the filler is not in the form of chop or fiber, but in the form of particles or powder in that it is intended to fill the voids inside the fibrous substrate.
  • the filler is carbon nanotube (CNT), graphene, such as single-well carbon nanotube (SWCNT) and multi-well carbon nanotube (MWCNT), It may include at least one selected from the group consisting of graphite powder, conductive carbon black, and boron nitride nanotube (BNNT).
  • CNT carbon nanotube
  • SWCNT single-well carbon nanotube
  • MWCNT multi-well carbon nanotube
  • BNNT boron nitride nanotube
  • the carbon nanotubes may have a diameter of 4 nm to 50 nm and a length of 1 nm to 500 ⁇ m.
  • the boron nitride nanotubes may have a diameter of 0.01 ⁇ m to 3 ⁇ m, preferably 0.1 ⁇ m to 1.0 ⁇ m.
  • the effect of improving the vertical thermal conductivity of the finally manufactured graphite sheet may be weak or a problem may occur in the process.
  • the filler may be included in the varnish composition as described above and may be impregnated into the fibrous substrate.
  • the content of the filler in the composite substrate is preferably 10% by weight or less based on 100% by weight of the composite substrate.
  • the composite substrate prepared from the step (S2) has a three-dimensional porous structure and includes voids between short fibers, and has a bulk density of 10% to 60% of the inherent density.
  • the carbonization graphitization process since many components other than carbon are thermally volatilized to reduce the weight, the strength of the composite substrate should be increased to facilitate processing, and voids existing inside the fiber substrate should be minimized.
  • the air contained in the voids present inside the composite substrate acts as a resistance in heat conduction, it is removed through rolling to increase the bulk density of the composite substrate, thereby increasing the thermal conductivity properties of the finally produced graphite sheet, especially in the vertical direction. It is possible to secure an effect of improving thermal conductivity.
  • the temperature and pressure of the rolling may vary depending on the fiber substrate or the varnish composition.
  • the rolling can be carried out at a temperature of 100°C to 350°C and a pressure of 30 kgf/cm to 250 kgf/cm in the case of a continuous production method, and the linear pressure effect of the continuous production method in the case of a sheet rolling method and You can fit it to a similar level.
  • the thickness of the composite substrate subjected to the rolling is preferably 95% or less of the thickness of the fiber substrate before the rolling is performed to improve the thermal conductivity and other physical properties of the graphite sheet as the final product.
  • the increase rate of the bulk density by rolling is 40% to 95% of the average density of the fiber substrate and the thermally conductive interface material. If the increase rate of the bulk density is less than the above range, too many pores are formed after the subsequent carbonization and graphitization process, thereby reducing the heat dissipation effect. On the contrary, if it exceeds the above range, the flexibility of the final product, the graphite sheet, decreases and is easily broken. do.
  • the composite substrate obtained in the step (S2) is heat-treated to carbonize and graphite to prepare a graphite sheet.
  • the heat treatment is for increasing the thermal properties of the composite substrate, and is not particularly limited as long as it is a method for carbonizing and graphitizing polymers and/or fibers, and may be performed according to a conventional method known in the art.
  • the carbonization temperature may be 800 °C to 1,500 °C, preferably 900 °C to 1,400 °C.
  • the graphitization may be performed at a temperature of 2,600 °C to 3,000 °C, preferably 2,700 °C to 2,900 °C.
  • the carbonization and graphitization are preferably performed in an inert atmosphere so that the composite substrate is not oxidized by reacting with air.
  • an inert atmosphere nitrogen or argon may be used as long as it is not particularly limited.
  • the carbonization and graphitization time may be adjusted according to the material constituting the composite substrate.
  • the graphite sheet obtained in the step (S3) is rolled.
  • the rolling is to increase the bulk density and flexibility of the expanded graphite sheet due to the gas generated during the heat treatment in the step (S3), and to further improve the thermal conductivity in the horizontal and vertical directions.
  • the rolling may be performed according to a conventional method known in the art.
  • the rolling pressure may vary depending on the physical properties of the manufactured graphite sheet.
  • the rolling may be performed at a pressure of 10 kgf/cm to 300 kgf/cm.
  • a fiber substrate is used as a precursor of the graphite sheet, a thermally conductive interface material is impregnated with the fiber substrate, and a rolling process is performed before and after carbonization and graphitization, thereby conducting heat conduction in the horizontal direction.
  • a thermally conductive interface material is impregnated with the fiber substrate, and a rolling process is performed before and after carbonization and graphitization, thereby conducting heat conduction in the horizontal direction.
  • the method of manufacturing the graphite sheet can economically manufacture a graphite sheet having excellent horizontal and vertical thermal conductivity in a simple process without using an expensive polymer film as a precursor.
  • the graphite sheet manufactured by the above-described manufacturing method has a thermal conductivity of 1,000 W/m ⁇ K to 2,000 W/m ⁇ K in a horizontal direction, and a thermal conductivity of 10 W/m ⁇ K to 40 in the vertical direction. W/m ⁇ K, and may have an average thickness of 10 ⁇ m to 200 ⁇ m.
  • the graphite sheet according to the present invention exhibits thermal conductivity in a vertical direction above the limit of the vertical thermal conductivity of a conventional graphite sheet, and is useful as a heat dissipation sheet for various electronic devices due to improved flexibility.
  • a fiber substrate was prepared by using a wet method by mixing short aramid fibers having a length of 6 mm, aramid pulp, and polyvinyl alcohol having a length of 3 mm as a binder fiber at a weight ratio of 25:72:3.
  • the fibrous substrate was rolled at a temperature of 120° C. and a pressure of 148 kgf/cm.
  • the rolled fibrous substrate in a padder mangle was impregnated in a varnish composition containing 10% by weight of polyimide, dried at 130° C., and cured at 350° C. to prepare a composite substrate.
  • the composite substrate was rolled at a temperature of 200° C. and a pressure of 200 kgf/cm.
  • the rolled composite substrate was carbonized in a nitrogen atmosphere at 1,200°C.
  • the carbonized composite substrate was graphitized in an argon atmosphere at 2,800° C. and then rolled at a pressure of 30 kgf/cm to prepare a graphite sheet.
  • a graphite sheet was prepared in the same manner as in Example 1, except that a varnish composition containing 20% by weight of polyimide was used when preparing the composite substrate.
  • a graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 50:47:3 when preparing the fiber substrate.
  • Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 50:47:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
  • a graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 60:37:3 when preparing the fiber substrate.
  • Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 60:37:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
  • a graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 70:27:3 when preparing the fiber substrate.
  • Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 70:27:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
  • a graphite sheet was prepared by carbonizing and graphitizing a polyimide film having a thickness of 75 ⁇ m. At this time, carbonization was performed at 900°C and graphitization was performed at 2,800°C.
  • the weight, thickness, and air permeability per unit area of the fiber substrates prepared in Examples 1, 3, 5, and 7 were measured. At this time, the air permeability was measured through an air permeability tester (FX3300, manufactured by Textest Instruments).
  • Example 1 the surface and cross section of the fiber substrate prepared in Example 1 were observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Hitachi's S-4800 was used as a scanning electron microscope.
  • Example 1 Weight per unit area (g/m 2 ) Thickness( ⁇ m) Air permeability
  • Example 1 30.0 126 5.53
  • Example 3 34.5 140 22.7
  • Example 5 32.0 123 17.0
  • Example 7 42.1 210 63.2
  • FIG. 1 it can be seen that a fibrous substrate of a three-dimensional porous structure composed of short aramid fibers and having voids formed therein was manufactured.
  • the weight per unit area, thickness, and air permeability were measured.
  • the air permeability was measured through an air permeability tester (FX3300, manufactured by Textest Instruments).
  • Example 1 Weight per unit area (g/m 2 ) Thickness( ⁇ m) Air permeability
  • Example 1 30.0 52 0.927
  • Example 3 34.5 79 5.95
  • Example 5 32.0 69 3.89
  • Example 7 42.1 84 14.0
  • the cross section of the composite substrate prepared in Example 1 was observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Hitachi's S-4800 was used as a scanning electron microscope.
  • the varnish composition is uniformly impregnated into the fiber substrate.
  • Example 1 Concentration of thermally conductive interface material (% by weight) Weight(g) Before rolling After rolling Thickness( ⁇ m)
  • Example 2 20 0.471 64 54
  • Example 3 10 0.629 122 83
  • Example 4 20 0.778 128 89
  • Example 5 10 0.392 72
  • Example 6 20 0.460 78 55
  • Example 7 10 0.586 130 85
  • Example 8 20 0.799 139 99
  • Example 1 0.183 46.0 0.122 66.7 30.7
  • Example 2 0.241 51.2 0.183 75.9 38.9
  • Example 3 0.286 45.5 0.229 80.1 36.4
  • Example 4 0.385 49.5 0.315 81.8 40.5
  • Example 5 0.191 48.7 0.139 72.8 35.5
  • Example 6 0.218 47.4 0.172 78.9 37.4
  • Example 7 0.283 48.3 0.217 76.7 37.0
  • Example 8 0.405 50.7 0.320 79.0 40.1
  • the thermal conductivity of the graphite sheets prepared in Example 1 and Comparative Example 1 in the horizontal and vertical directions was measured. At this time, the thermal conductivity in the horizontal direction and the vertical direction was determined by using the graphite sheet prepared in Example 1 and Comparative Example 1 using a thermal diffusivity measuring device ("LFA447 Nanoflash” manufactured by Netsch) at 25°C It was measured five or more times and expressed as an average value. The results obtained at this time are shown in Table 5.
  • the graphite sheet according to the present invention exhibits thermal conductivity in the vertical direction above the limit of the thermal conductivity in the vertical direction of the conventional graphite sheet, and has improved flexibility, and thus is useful as a heat dissipation sheet for various electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a graphite sheet and, more specifically, can manufacture a graphite sheet with improved thermal conductivity, particularly, improved vertical thermal conductivity by using, as a precursor, a three-dimensional fiber substrate such as paper that comprises a fiber having a carbon fraction of 50% or more, and performing carbonization, graphitization and rolling.

Description

흑연 시트의 제조방법Method for producing graphite sheet
본 발명은 흑연 시트의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a graphite sheet.
최근 전자기기 고기능화, 고집적화, 경박단소화 되는 추세에 비추어 볼 때, 전자기기 구동시 발생하는 열을 효과적으로 방출하는 것은 필수적이다. 이를 위해 다양한 방열 소재들이 개발되고 있으며, 방열 패드, 방열 시트, 방열 도료 등의 형태로 적용되고 있다. 그 중 방열 시트는 흑연 시트(graphite sheet), 고분자-세라믹 복합시트, 다층코팅 금속박막 시트 등의 형태로 제작되고 있는데, 흑연 시트의 경우 경량(light weight)이고 박형(slim)이면서도 우수한 내열성, 내약품성, 고열 전도성을 가질 뿐만 아니라 특히, 열전도도가 구리 이상으로 매우 높아 여러 전자기기에 폭넓게 사용되고 있다.In view of the recent trend of high-functionality, high-integration, light-thin and short-sized electronic devices, it is essential to effectively dissipate heat generated when electronic devices are driven. To this end, various heat dissipation materials are being developed, and are applied in the form of heat dissipation pads, heat dissipation sheets, and heat dissipation paints. Among them, the heat dissipation sheet is manufactured in the form of a graphite sheet, a polymer-ceramic composite sheet, and a multilayer coated metal thin film sheet. In the case of a graphite sheet, it is light weight and slim, yet excellent heat resistance and resistance. In addition to having chemical properties and high thermal conductivity, in particular, it has a very high thermal conductivity than copper and is widely used in various electronic devices.
흑연 시트의 제조 방법의 예로서, 「익스팬드(팽창) 그라파이트법」이라고 불리는 방법이 있다. 이 방법에서는, 천연 그라파이트를 진한 황산과 진한 질산의 혼합액 등에 침지시킨 후 급격히 가열함으로써 인공적 그라파이트를 제조한다. 이후 팽창된 그라파이트는 세정에 의하여 산을 제거하고, 고압 프레스 혹은 롤(roll) 등에 의하여 필름 형상으로 가공된다. 그러나, 상기 방법을 통해 제조된 흑연 시트는 강도가 약하고, 다른 물리적 특성치도 우수하지 않으며, 또한 잔류 산의 영향이 우려되는 등의 문제점을 갖는다.As an example of a method for producing a graphite sheet, there is a method called "expanded (expanded) graphite method". In this method, artificial graphite is prepared by immersing natural graphite in a mixture of concentrated sulfuric acid and concentrated nitric acid and then rapidly heating. Thereafter, the expanded graphite is cleaned to remove acid, and processed into a film shape by a high pressure press or a roll. However, the graphite sheet manufactured through the above method has problems such as weak strength, not excellent other physical properties, and concern about the influence of residual acids.
이와 같은 문제를 해결하기 위하여, 고분자 필름을 직접 열처리하여 흑연화하는 고분자 흑연화법이 개발되었다. 구체적으로, 고분자 흑연화법은 흑연 시트용 전구체인 고분자 필름을 통상적으로 1,200 ℃ ~ 1,400 ℃의 온도에서 탄화시키는 공정과 최대 2,800 ℃의 온도에서 탄화처리된 흑연 시트용 전구체를 흑연화 시키는 공정을 차례로 실시하여 흑연 시트를 제조하는 방법이다. 이때 사용되는 고분자 필름으로는, 예를 들어 폴리옥사디아졸, 폴리이미드, 폴리페닐렌비닐렌, 폴리벤조이미다졸, 폴리벤조옥사졸, 폴리티아졸, 및 폴리아미드 필름 등을 들 수 있다. In order to solve this problem, a polymer graphitization method has been developed in which a polymer film is directly heat-treated to graphitize it. Specifically, in the polymer graphitization method, a process of carbonizing a polymer film, a precursor for a graphite sheet, at a temperature of 1,200 ℃ to 1,400 ℃, followed by a process of graphitizing a precursor for a graphite sheet carbonized at a temperature of up to 2,800 ℃. This is a method of manufacturing a graphite sheet. Examples of the polymer film used at this time include polyoxadiazole, polyimide, polyphenylene vinylene, polybenzoimidazole, polybenzoxazole, polythiazole, and polyamide films.
이러한 고분자 흑연화법은, 종래의 익스팬드 그라파이트법과 비교하여 훨씬 간략한 방법으로, 본질적으로 산 등의 불순물의 혼입을 일으키지 않는 방법이고, 또한 단결정 흑연에 가까운 우수한 열전도성이나 전기전도성이 얻어진다는 특징이 있다.This polymer graphitization method is a much simpler method compared to the conventional expanded graphite method, and is a method that essentially does not cause the incorporation of impurities such as acids, and has the characteristics of obtaining excellent thermal or electrical conductivity close to single crystal graphite. .
그러나, 이와 같은 고분자 흑연화법으로 제조된 흑연 시트는 수평방향의 열전도도(열확산율)은 높으나, 수직방향의 열전도도가 낮고, 고분자 필름으로 고가의 폴리이미드 필름을 사용함에 따라 제조비용이 비싸다는 단점이 있다.However, the graphite sheet manufactured by such a polymeric graphitization method has high thermal conductivity (thermal diffusivity) in the horizontal direction, but low thermal conductivity in the vertical direction, and the manufacturing cost is high due to the use of an expensive polyimide film as a polymer film. There are drawbacks.
이러한 흑연 시트의 낮은 수직방향의 열전도성은 방열 소재로 적용시 충분한 성능을 확보할 수 없는 바, 이를 개선하기 위한 다양한 기술이 제안되었다.The low vertical thermal conductivity of the graphite sheet cannot secure sufficient performance when applied as a heat dissipating material, and various techniques have been proposed to improve this.
일례로, 대한민국 공개특허 제2017-0081874호는 흑연 시트의 전구체로 탄소나노튜브, 질화붕소 등의 열전도성 물질을 포함하는 폴리이미드 필름을 사용함으로써 흑연 시트의 수직방향의 열전도성을 향상시킬 수 있음을 개시하고 있다.For example, Korean Patent Application Publication No. 2017-0081874 can improve the thermal conductivity of the graphite sheet in the vertical direction by using a polyimide film containing a thermally conductive material such as carbon nanotubes and boron nitride as a precursor of the graphite sheet. Is being disclosed.
또한, 대한민국 등록특허 제1855281호는 수평 및 수직방향의 열전도성이 우수한 방열 시트의 제조방법으로 고분자, 탄화된 고분자 또는 흑연을 포함하는 코팅액으로 코팅된 기재를 열처리하여 제조된 흑연 시트를 타공한 후, 이의 일면 또는 양면을 금속으로 코팅하는 단계를 포함하는 방법을 개시하고 있다.In addition, Korean Patent Registration No. 1885281 is a method of manufacturing a heat-dissipating sheet with excellent thermal conductivity in the horizontal and vertical directions. After perforating a graphite sheet manufactured by heat-treating a substrate coated with a coating liquid containing a polymer, carbonized polymer, or graphite, , Disclosed is a method comprising the step of coating one or both sides thereof with a metal.
이들 특허들은 열전도 특성이 우수한 물질을 첨가하거나 이를 이용하여 코팅층을 형성함으로써 흑연 시트의 수직방향의 열전도성을 어느 정도 개선하였으나 그 효과가 충분치 않다. 또한, 이들 특허에서 제시하는 방법은 고가의 폴리이미드 필름을 사용하거나 공정이 복잡하여 제조비용이 높다는 문제점이 있다. 따라서, 수평 및 수직방향의 열전도성이 모두 우수한 흑연 시트를 경제적으로 제조할 수 있는 흑연 시트의 제조방법의 개발이 더욱 필요한 실정이다.These patents have improved the thermal conductivity of the graphite sheet in the vertical direction to some extent by adding or using a material having excellent thermal conductivity properties to form a coating layer, but the effect is not sufficient. In addition, the method proposed in these patents has a problem that the manufacturing cost is high due to the use of an expensive polyimide film or a complicated process. Accordingly, there is a need for further development of a method for manufacturing a graphite sheet capable of economically manufacturing a graphite sheet having excellent thermal conductivity in both horizontal and vertical directions.
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 흑연 시트의 제조시 전구체로 섬유 기재를 사용하고, 상기 섬유 기재에 열전도성 계면 물질을 함침시키고, 탄화 및 흑연화 전ㆍ후에 압연 공정을 수행하는 경우 최종 제조되는 흑연 시트의 수직방향의 열전도도가 향상되고, 유연성이 개선됨을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors conducted various studies to solve the above problem, and as a result of using a fiber substrate as a precursor when producing a graphite sheet, impregnating the fiber substrate with a thermally conductive interface material, and rolling it before and after carbonization and graphitization. When performing the process, the present invention was completed by confirming that the thermal conductivity in the vertical direction of the finally produced graphite sheet was improved and the flexibility was improved.
따라서, 본 발명의 목적은 열전도도, 특히 수직방향의 열전도도가 향상된 흑연 시트를 간편하면서도 경제적으로 제조할 수 있는 흑연 시트의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a graphite sheet capable of simply and economically manufacturing a graphite sheet having improved thermal conductivity, particularly, thermal conductivity in the vertical direction.
상기 목적을 달성하기 위해, 본 발명은 (S1) 단섬유를 이용하여 섬유 기재를 제조하는 단계; (S2) 상기 (S1) 단계에서 얻은 섬유 기재에 열전도성 계면 물질을 함침시켜 복합 기재를 제조하는 단계; (S3) 상기 (S2) 단계에서 얻은 복합 기재를 열처리하여 탄화 및 흑연화시켜 흑연 시트를 제조하는 단계; 및 (S4) 상기 (S3) 단계에서 얻은 흑연 시트의 열전도도를 향상시키기 위해 압연하는 단계를 포함하는 흑연 시트의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (S1) preparing a fibrous substrate using short fibers; (S2) preparing a composite substrate by impregnating the fiber substrate obtained in step (S1) with a thermally conductive interface material; (S3) heat-treating the composite substrate obtained in step (S2) to carbonize and graphitize to produce a graphite sheet; And (S4) rolling to improve the thermal conductivity of the graphite sheet obtained in step (S3).
본 발명에 따른 흑연 시트의 제조방법은 전구체로 고밀도 섬유 기재를 사용하고, 탄화 및 흑연화 후에 압연 공정을 진행함으로써 우수한 수직 및 수평방향의 열전도도를 갖는 흑연 시트를 제조할 수 있다. 또한, 전구체로 고가의 폴리이미드 고분자 필름을 사용하지 않기 때문에 제조비용이 절감되며, 이에 따라 제조공정의 경제성 및 생산성을 향상시킬 수 있다.In the method of manufacturing a graphite sheet according to the present invention, a graphite sheet having excellent vertical and horizontal thermal conductivity can be manufactured by using a high-density fiber substrate as a precursor and performing a rolling process after carbonization and graphitization. In addition, since an expensive polyimide polymer film is not used as a precursor, manufacturing cost is reduced, and thus economic efficiency and productivity of the manufacturing process can be improved.
도 1은 본 발명의 실시예 1에 따른 섬유 기재 표면의 주사 전자 현미경(SEM) 이미지이다.1 is a scanning electron microscope (SEM) image of the surface of a fiber substrate according to Example 1 of the present invention.
도 2는 본 발명의 실시예 1에 따른 섬유 기재 단면의 주사 전자 현미경(SEM) 이미지이다.2 is a scanning electron microscope (SEM) image of a cross section of a fiber substrate according to Example 1 of the present invention.
도 3은 본 발명의 실험예 2에 따른 섬유 기재 단면에 대한 압연 전과 후의 주사 전자 현미경(SEM) 이미지이다.3 is a scanning electron microscope (SEM) image of a cross section of a fiber substrate according to Experimental Example 2 of the present invention before and after rolling.
도 4는 본 발명의 실험예 3에 따른 복합 기재의 단면의 주사 전자 현미경(SEM) 이미지이다.4 is a scanning electron microscope (SEM) image of a cross section of a composite substrate according to Experimental Example 3 of the present invention.
도 5는 본 발명의 실험예 4에 따른 복합 기재 단면에 대한 압연 후의 주사 전자 현미경(SEM) 이미지이다.5 is a scanning electron microscope (SEM) image of a cross section of a composite substrate according to Experimental Example 4 of the present invention after rolling.
도 6은 본 발명의 실험예 5에서 탄화 및 흑연화에 따른 흑연 시트의 표면에 주사 전자 현미경(SEM) 이미지이다.6 is a scanning electron microscope (SEM) image on the surface of a graphite sheet according to carbonization and graphitization in Experimental Example 5 of the present invention.
이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as'include' or'have' are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
본 발명에서 사용되고 있는 용어 흑연 시트의 "수평방향의 열전도도(열확산율)"이라는 용어는 흑연 시트의 평면상 길이방향과 폭방향의 열전도도 모두를 의미한다.The term "thermal conductivity (thermal diffusivity) in the horizontal direction" of the graphite sheet used in the present invention refers to both the thermal conductivity of the graphite sheet in the longitudinal direction and the width direction in the plane.
본 발명에서 사용되고 있는 용어 흑연 시트의 "수직방향의 열전도도(열확산율)"이라는 용어는 흑연 시트의 평면상 길이방향 및/또는 폭방향과 직각을 이루는 흑연 시트의 두께방향(높이방향)의 열전도도는 물론 흑연 시트의 평면상 길이방향과 경사각을 이루는 흑연 시트의 두께방향(높이방향) 열전도도를 모두 의미한다.The term "thermal conductivity (thermal diffusivity)" of the graphite sheet used in the present invention refers to the thermal conduction in the thickness direction (height direction) of the graphite sheet in a plane perpendicular to the longitudinal direction and/or the width direction of the graphite sheet. It refers to both the thermal conductivity of the graphite sheet in the thickness direction (height direction) of the graphite sheet forming a longitudinal direction and an inclination angle in the plane of the graphite sheet.
최근 전자기기는 경박단소화, 고기능화, 고집적화로 인한 열밀도의 증가로 열의 방출이 요구되고 있으며, 이러한 방열 특성은 전자기기의 성능뿐만 아니라 신뢰성과 수명과 밀접한 관련이 있어 매우 중요하다.Recently, electronic devices are required to dissipate heat due to an increase in heat density due to lightness, thinness, high functionality, and high integration, and this heat dissipation characteristic is very important because it is closely related to reliability and lifespan as well as the performance of the electronic device.
최근 전기자동차 및 재생에너지 자동차의 보급에 따라 전자부품 사용이 많아지고, 발열이 심한 배터리를 주 동력원으로 사용하기 때문에 발열에 대한 대책은 꼭 필요하다. 특히, 자율주행자동차는 이동통신 기술, 조명, 카메라, 디스플레이, 배터리 등 모든 전기전자 산업의 집약체로, 발열 문제를 해결하지 않으면 개발 및 보급에 한계가 있다. Recently, with the spread of electric vehicles and renewable energy vehicles, the use of electronic parts has increased, and since batteries with high heat generation are used as the main power source, measures against heat generation are essential. In particular, self-driving cars are an aggregate of all electric and electronic industries such as mobile communication technology, lighting, cameras, displays, batteries, etc., and there are limitations in development and distribution unless the heat problem is solved.
또한, 휴대용 전자기기 및 통신기기를 비롯한 여러 전자기기의 경량화, 슬림화가 진행됨에 따라, 전자 소자들의 고집적화로 인한 열밀도의 증가로 발열 제어가 지속적인 문제로 제기되고 있다. 전기전자 산업에서는 초전도체(저항 = 0)를 사용하지 않는 이상 발열 문제가 발생할 수 밖에 없으며, 이러한 발열 문제를 전자기기의 성능뿐만 아니라 신뢰성과 수명과 밀접한 관련이 있는 바, 전자기기에서 발생하는 열을 효율적으로 배출하여 줄 수 있는 차세대 방열 소재에 대한 요구가 급증하고 있다.In addition, as various electronic devices, including portable electronic devices and communication devices, become lighter and slimmer, heat control has been raised as a continuous problem due to an increase in heat density due to high integration of electronic devices. In the electrical and electronic industry, heat generation problems inevitably occur unless superconductors (resistance = 0) are used, and these heating problems are closely related to reliability and lifespan as well as the performance of electronic devices. The demand for next-generation heat dissipating materials that can be efficiently discharged is increasing rapidly.
이를 위해 종래 기술에서는 폴리이미드 등의 고분자 필름을 고온에서 열처리를 통해 제조된 흑연 시트가 사용되고 있다. 이러한 고분자 흑연화법에 의해 제조된 필름 기반 흑연 시트는 구조상 그래핀 층(graphene layer)이 2D 방향으로 배열되어 수평방향으로는 1,000 W/mㆍK 이상의 열전도도를 갖지만, 수직방향으로는 최고 20 W/mㆍK까지 보고되었으나, 통상적으로는 5 W/mㆍK 이하의 수평방향 대비 낮은 열전도도를 갖는다. 이러한 열전도 특성은 전자기기의 특정 부분이 국소적으로 높은 온도까지 상승하는 핫 스폿(hot spot)영역에서 발생하는 열을 방출함에는 문제가 없었다. 그러나, 앞서 설명한 바와 같이, 최근 전자기기에 집적화된 고성능 및 소형 부품의 사용이 많아지면서 종래 흑연 시트의 낮은 수직방향의 열전도도는 더 이상 발생하는 열을 효과적으로 방출하는데 한계가 있다.To this end, in the prior art, a graphite sheet prepared by heat treatment of a polymer film such as polyimide at high temperature is used. The film-based graphite sheet manufactured by the polymer graphitization method has a thermal conductivity of 1,000 W/m·K or more in the horizontal direction due to the structure of the graphene layer arranged in the 2D direction, but up to 20 W in the vertical direction. It has been reported up to /m·K, but generally has a lower thermal conductivity than the horizontal direction of 5 W/m·K or less. This heat conduction property has no problem in dissipating heat generated in a hot spot area where a specific part of the electronic device locally rises to a high temperature. However, as described above, as the use of high-performance and small-sized components integrated in electronic devices in recent years has increased, the low vertical thermal conductivity of the conventional graphite sheet has a limitation in effectively dissipating the heat generated any more.
이에 본 발명에서는 기존 방열 소재의 한계로 지적되었던 흑연 시트의 수직방향의 열전도도를 개선하기 위해 섬유 소재(fiber type)를 흑연 시트의 전구체(precursor)로 사용하는 흑연 시트의 제조방법을 제공한다.Accordingly, the present invention provides a method of manufacturing a graphite sheet using a fiber type as a precursor of the graphite sheet in order to improve the thermal conductivity in the vertical direction of the graphite sheet, which has been pointed out as a limitation of the existing heat dissipating material.
구체적으로, 본 발명에 따른 흑연 시트의 제조방법은 (S1) 단섬유를 이용하여 섬유 기재를 제조하는 단계; (S2) 상기 (S1) 단계에서 얻은 섬유 기재에 열전도성 계면 물질을 함침시켜 복합 기재를 제조하는 단계; (S3) 상기 (S2) 단계에서 얻은 복합 기재를 열처리하여 탄화 및 흑연화시켜 흑연 시트를 제조하는 단계; 및 (S4) 상기 (S3) 단계에서 얻은 흑연 시트를 압연하는 단계를 포함한다.Specifically, the method of manufacturing a graphite sheet according to the present invention comprises the steps of (S1) preparing a fibrous substrate using short fibers; (S2) preparing a composite substrate by impregnating the fiber substrate obtained in step (S1) with a thermally conductive interface material; (S3) heat-treating the composite substrate obtained in step (S2) to carbonize and graphitize to produce a graphite sheet; And (S4) rolling the graphite sheet obtained in step (S3).
(S1) 단계Step (S1)
(S1) 단계에서는 단섬유를 이용하여 섬유 기재를 제조한다.In step (S1), a fiber substrate is prepared using short fibers.
본 발명에 있어서, 상기 섬유 기재는 흑연 시트의 전구체로 3차원 형태로 배향된 단섬유(chopped fiber)를 포함한다. 특히, 본 발명의 경우 흑연 시트의 전구체로 단섬유를 포함하는 섬유 기재를 사용함으로써 3차원 형태의 결정구조를 갖기 때문에 수평방향의 결정구조만을 갖는 고분자 필름을 전구체로 사용하는 종래의 흑연 시트에 비해 수직방향의 열전도도가 향상된 흑연 시트를 제조할 수 있다. 또한, 종래 흑연 시트의 제조방법인 고분자 흑연화법에서 사용하는 고분자 필름, 구체적으로 고가의 폴리이미드 필름을 대신하여 비교적 저렴한 단섬유를 포함하는 섬유 기재를 사용함으로써 제조비용을 낮춰 경제성과 생산성이 개선되는 이점을 갖는다.In the present invention, the fibrous substrate includes short fibers oriented in a three-dimensional form as a precursor of a graphite sheet. In particular, in the case of the present invention, since a fiber substrate containing short fibers is used as a precursor of the graphite sheet, it has a three-dimensional crystal structure, compared to the conventional graphite sheet using a polymer film having only a crystal structure in the horizontal direction as a precursor. A graphite sheet having improved thermal conductivity in the vertical direction can be manufactured. In addition, by using a fiber substrate containing relatively inexpensive short fibers in place of the polymer film used in the polymer graphitization method, which is a conventional graphite sheet manufacturing method, specifically an expensive polyimide film, the manufacturing cost is lowered to improve economy and productivity. Has an advantage.
상기 단섬유는 장섬유를 소정 길이로 절단한 것을 의미하며, 그 길이는 특별히 한정하지 않지만, 예를 들어 3 mm 내지 56 ㎜ 범위일 수 있다. The short fiber means that the long fiber is cut to a predetermined length, and the length is not particularly limited, but may be, for example, in the range of 3 mm to 56 mm.
상기 단섬유는 메타 아라미드(m-aramid), 파라 아라미드(p-aramid) 등의 아라미드(aramid); 폴리아미드이미드(poly(amideimide), PAI), 폴리에테르이미드(poly(etherimide), PEI) 등의 폴리이미드(polyimide, PI); 폴리아미드(polyamide, PA); 폴리스티렌polystyrene, PS), 폴리에틸렌(polyethylene, PE), 폴리에틸렌테레프탈레이트(poly(ethyleneterephthalate), PET), 폴리염화비닐(poly(vinyl chloride), PVC), 폴리염화비닐리덴(poly(vinylidene chloride), PVDC), 폴리프로필렌(polypropylene, PP), 폴리설폰(polysulfone), 폴리에테르에테르케톤(poly(etheretherketone)), 폴리페닐렌설파이드(poly(phenylene sulfide), 폴리카보네이트(polycarbonate, PC), 폴리아릴에테르케톤(poly(aryletherketone)), 아크릴로니트릴-부타디엔-스티렌 중합체(acrylonitrile butadiene styrene, ABS) 및 아크릴레이트-스티렌-아크릴로니트릴 중합체(acrylonitrile styrene acrylate, ASA) 등의 열가소성 고분자(thermoplastic polymer); 및 에폭시(epoxy), 페놀(phenol), 불포화 폴리에스테르(polyester), 폴리우레탄(polyurethane, PU), 멜라민(melamine), 요소(urea) 등의 열경화성 고분자(thermoset polymer); 및 폴리아크릴로니트릴(polyacrylonitrile, PAN), 피치(pitch), 셀룰로오스(cellulose)에서 유래된 탄소섬유로 이루어진 군에서 선택되는 1종 이상일 수 있다. 바람직하게, 상기 단섬유는 아라미드, 폴리이미드 및 열경화성 고분자로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.The short fibers include aramids such as meta aramid (m-aramid) and para aramid (p-aramid); Polyimide (PI) such as poly(amideimide), PAI), and polyetherimide (PEI); Polyamide (PA); Polystyrene, PS), polyethylene (PE), polyethylene terephthalate (PET), poly(vinyl chloride), PVC, poly(vinylidene chloride), PVDC ), polypropylene (PP), polysulfone, poly(etheretherketone), poly(phenylene sulfide), polycarbonate (PC), polyaryl ether ketone (poly(aryletherketone)), an acrylonitrile butadiene styrene (ABS) and an acrylate-styrene-acrylonitrile polymer (acrylonitrile styrene acrylate, ASA); (epoxy), phenol (phenol), unsaturated polyester (polyester), polyurethane (polyurethane, PU), melamine (melamine), urea (thermoset polymer), such as; PAN), pitch (pitch), may be one or more selected from the group consisting of carbon fibers derived from cellulose (cellulose) Preferably, the short fiber is 1 selected from the group consisting of aramid, polyimide, and thermosetting polymer It may contain more than one species.
상기 섬유 기재는 전술한 단섬유가 3차원 형태로 배향된 것으로, 단섬유를 사용하는 경우 단섬유 자체가 통상적으로 초기 토출속도 대비 1.5배 ~ 20배 수준의 연신이 들어가는데, 연신비율 1.5배 미만의 무연신으로 제조되는 폴리이미드 고분자 필름 대비 고배향 구조로 형성되어 흑연화 공정을 통해 높은 열전도도를 구현할 수 있다. 또한, 상기 섬유 기재를 흑연 시트를 형성하기 위한 원료로 사용시 3차원적인 등방성 구조를 가지고 있어, 수평방향과 수직방향에 대한 열전도도 차이가 2차원 구조인 고분자 필름에 비해 상대적으로 낮기 때문에 흑연 시트의 수직방향 열전도도 개선에 효과적이다.The fibrous substrate is that the aforementioned short fibers are oriented in a three-dimensional form, and when a short fiber is used, the short fiber itself typically takes 1.5 to 20 times of the initial discharge rate, but the draw ratio is less than 1.5 times. It is formed in a higher orientation structure than that of a polyimide polymer film manufactured by non-stretching, so that high thermal conductivity can be realized through a graphitization process. In addition, when the fibrous substrate is used as a raw material for forming a graphite sheet, it has a three-dimensional isotropic structure, and the difference in thermal conductivity in the horizontal direction and the vertical direction is relatively low compared to the polymer film having a two-dimensional structure. It is effective in improving the thermal conductivity in the vertical direction.
상기 섬유 기재는 내부에 공극을 포함하는 3차원 다공성 구조체로 시트상, 직물상 또는 웹상의 형태일 수 있다.The fibrous substrate is a three-dimensional porous structure including voids therein, and may be in the form of a sheet, a fabric, or a web.
따라서, 상기 섬유 기재는 페이퍼(paper), 부직포(nonwoven), 직물(woven), 편물(knit), 펠트(felt), 매트(mat), 프리프레그(prepreg) 또는 나노 웹(nano web) 등일 수 있다.Therefore, the fibrous substrate may be paper, nonwoven, woven, knitted, felt, mat, prepreg, or nano web. have.
상기 섬유 기재의 제조방법은 특별히 한정되지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다. 예를 들어, 건식법(dry laid), 습식법(wet-laid), 방사법(spinning), 에어레이드법(air-laid), 멜트블로운법(melt-blown), 적층연신법 등의 방법을 이용할 수 있다.The manufacturing method of the fiber substrate is not particularly limited, and a known method or various methods of modifying it may be used by a person skilled in the art. For example, methods such as dry laid, wet-laid, spinning, air-laid, melt-blown, and stacked stretching methods can be used. have.
상기 섬유 기재는 상기 단섬유 이외에 통상적으로 사용되는 물질을 더 포함할 수 있다. 일례로, 섬유 기재를 구성하고 있는 단섬유들을 접착시키고 섬유 기재를 견고하게 만들기 위한 바인더 섬유, 계면 활성제, 분산제, 증점제 등을 더 포함할 수 있다.The fibrous substrate may further include a material commonly used in addition to the short fibers. For example, it may further include a binder fiber, a surfactant, a dispersant, a thickener, etc. for bonding the short fibers constituting the fibrous substrate and making the fibrous substrate solid.
여기서 후속 단계에서의 가공을 용이하게 하기 위해 섬유 기재의 강도를 증가시키고, 섬유 기재 내부에 존재하는 공극을 최소화하기 위해, 3차원 다공성 구조로 내부 즉, 단섬유 사이에 공극을 포함하며, 부피밀도(bulk density)가 고유밀도(inherent density)의 10 % 내지 60 % 수준인 초기 섬유 기재에 있어, 최종적으로 상기 섬유 기재 내부에 존재하는 공극에 포함된 공기는 열 전도에 있어 저항으로 작용하므로 압연을 통해 이를 제거하여 섬유 기재의 부피밀도를 증가시킴으로써 최종 제조되는 흑연 시트의 열전도 특성, 특히 수직방향의 열전도도 개선 효과를 확보할 수 있다.Here, in order to increase the strength of the fibrous substrate to facilitate processing in the subsequent step, and to minimize the voids present inside the fibrous substrate, the three-dimensional porous structure includes voids inside, that is, between short fibers, and bulk density In the initial fibrous substrate with a (bulk density) of 10% to 60% of the inherent density, finally, the air contained in the voids present inside the fibrous substrate acts as a resistance in heat conduction, so rolling is performed. By removing this and increasing the bulk density of the fibrous substrate, it is possible to secure an effect of improving the thermal conductivity of the finally produced graphite sheet, especially the thermal conductivity in the vertical direction.
상기 압연은 당업계에 알려진 통상적인 방법에 따라 수행할 수 있다. 압연의 온도 및 압력은 상기 섬유 기재 또는 이에 포함된 단섬유에 따라 달라질 수 있다. 예를 들어, 상기 압연은 80 ℃ 내지 200 ℃의 온도와 연속생산 방식인 경우 30 내지 200 ㎏f/㎝의 압력에서 수행할 수 있으며 시트 압연방식인 경우 연속생산 방식의 선압 효과와 유사한 수준으로 맞출 수 있다. The rolling may be performed according to a conventional method known in the art. The temperature and pressure of rolling may vary depending on the fibrous substrate or the short fibers included therein. For example, the rolling can be performed at a temperature of 80 ℃ to 200 ℃ and a pressure of 30 to 200 kgf/cm in the case of a continuous production method. I can.
상기 압연 후 섬유 기재의 두께는 압연을 수행하기 전의 섬유 기재의 두께의 40 % 내지 80 %인 것이 최종제품인 흑연 시트의 열전도도와 기타 물성을 개선하는데 바람직하다. 상기 압연 후 섬유 기재의 공기 투과도는 상기 압연을 수행하기 전의 섬유 기재의 공기 투과도의 0.1 % 내지 45 %인 것이 최종제품인 흑연 시트의 열전도도와 기타 물성을 개선하는데 바람직하다.The thickness of the fibrous substrate after rolling is preferably 40% to 80% of the thickness of the fibrous substrate before rolling is performed to improve the thermal conductivity and other physical properties of the final product, the graphite sheet. The air permeability of the fibrous substrate after the rolling is preferably 0.1% to 45% of the air permeability of the fibrous substrate before the rolling is performed to improve the thermal conductivity and other physical properties of the final product, the graphite sheet.
(S2) 단계Step (S2)
상기 (S2) 단계에서는 상기 (S1) 단계에서 얻은 섬유 기재에 열전도성 계면 물질(thermal interface material, TIM) 을 함침시켜 복합 기재를 제조한다.In the step (S2), a composite substrate is prepared by impregnating the fiber substrate obtained in step (S1) with a thermal interface material (TIM).
본 발명에 있어서, 상기 복합 기재는 상기 (S1) 단계로부터 제조된 섬유 기재의 공극에 열전도성 계면 물질이 함침을 통해 채워짐으로써 공기를 완전히 제거하고, 단섬유 간의 계면 접촉을 증가시켜 최종 제조되는 흑연 시트의 수평 및 수직방향의 열전도도를 향상시킬 수 있다.In the present invention, the composite substrate is a graphite that is finally produced by completely removing air by impregnating the pores of the fibrous substrate prepared in step (S1) through impregnation, and increasing the interfacial contact between short fibers. It is possible to improve the thermal conductivity of the sheet in the horizontal and vertical directions.
상기 열전도성 계면 물질은 분자 구조식상 탄소 성분의 분율이 50 % 이상인 고분자라면 종류에 한정되지 않는다. 예를 들어, 상기 열전도성 계면 물질은 폴리이미드(polyimide, PI), 리그닌(lignin), 아라미드(aramid), 폴리아미드이미드(poly(amideimide), PAI), 폴리프로필렌 (polypropylne, PP)과 같은 화학경화된 열가소성 수지와 페놀(phenol) 수지 등으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 바람직하게, 상기 열전도성 계면 물질은 상대적으로 탄소 성분의 분율이 높고 점도의 제어가 용이한 수지로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.The thermally conductive interface material is not limited to the type as long as it is a polymer having a carbon component fraction of 50% or more in molecular structural formula. For example, the thermally conductive interface material is a chemical such as polyimide (PI), lignin, aramid, poly(amideimide), PAI), and polypropylne (PP). It may be one or more selected from the group consisting of cured thermoplastic resins and phenol resins, and preferably, the thermally conductive interface material is a group consisting of resins having a relatively high carbon component fraction and easy control of viscosity It may include one or more selected from.
상기 복합 기재는 상기 열전도성 계면 물질을 포함하는 바니쉬(varnish) 조성물에 상기 (S1) 단계에서 얻은 섬유 기재를 함침 함으로써 얻을 수 있다.The composite substrate can be obtained by impregnating the fibrous substrate obtained in step (S1) into a varnish composition containing the thermally conductive interface material.
상기 함침 방법의 예로는, 상기 열전도성 계면 물질을 함유하는 바니쉬 조성물에 상기 섬유 기재를 침지하는 방법, 각종 코팅기(coating machine)에 의해 상기 열전도성 계면 물질을 함유하는 바니쉬 조성물을 상기 섬유 기재에 도포하는 방법, 스프레이에 의해 상기 열전도성 계면 물질을 함유하는 바니쉬 조성물을 상기 섬유 기재에 침투시키는 방법 등이 있는데, 이에 한정되지 않는다. 이 중에서 상기 열전도성 계면 물질을 함유하는 바니쉬 조성물에 상기 섬유 기재를 침지하는 방법이 섬유 기재에 대한 바니쉬 조성물의 함침성을 향상시킬 수 있어 바람직하다.Examples of the impregnation method include a method of immersing the fiber substrate in a varnish composition containing the thermally conductive interface material, and applying a varnish composition containing the thermally conductive interface material to the fiber substrate by various coating machines. And a method of penetrating the varnish composition containing the thermally conductive interface material into the fiber substrate by spraying, but are not limited thereto. Among them, the method of immersing the fibrous substrate in the varnish composition containing the thermally conductive interface material is preferable because it can improve the impregnation property of the varnish composition with the fibrous substrate.
상기 바니쉬 조성물 내 상기 열전도성 계면 물질의 함량은 바니쉬 조성물 전체 100 중량%를 기준으로 10 중량% 내지 80 중량%, 바람직하게 30 중량% 내지 60 중량%일 수 있다. 상기 열전도성 계면 물질의 함량이 상기 범위 미만이면 기재 내의 공극을 충분히 채우지 못해 밀도를 증가시키는데 한계가 있어 저항을 증가시키는 문제가 발생할 수 있고, 이와 반대로 상기 범위를 초과하는 경우 점도가 너무 높아 함침 균일성이 저하될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The content of the thermally conductive interface material in the varnish composition may be 10% to 80% by weight, preferably 30% to 60% by weight, based on 100% by weight of the total varnish composition. If the content of the thermally conductive interfacial material is less than the above range, there is a limit to increase the density due to insufficient filling of the voids in the substrate, which may cause a problem of increasing the resistance.On the contrary, if the content exceeds the above range, the viscosity is too high and impregnation is uniform. Since the property may be deteriorated, it is preferable to determine an appropriate content within the above-described range.
상기 바니쉬 조성물이 함침된 상기 섬유 기재를 경화 및 건조하여 복합화함으로써 복합 기재를 제조한다. 이때 상기 경화 및 건조 조건은 사용된 물질의 종류에 따라 달라질 수 있다.A composite substrate is prepared by curing and drying the fibrous substrate impregnated with the varnish composition to form a composite. At this time, the curing and drying conditions may vary depending on the type of material used.
이에 따라, 상기 복합 기재 내 상기 열전도성 계면 물질의 함량은 복합 기재 100 중량%를 기준으로 40 중량% 내지 80 중량%일 수 있다.Accordingly, the content of the thermally conductive interface material in the composite substrate may be 40% to 80% by weight based on 100% by weight of the composite substrate.
상기 복합 기재는 열전도도 개선 효과를 도모하기 위해 충진제(filler)를 더 포함할 수 있다. The composite substrate may further include a filler to improve thermal conductivity.
상기 충진제는 세라믹계 또는 고분자계 재질일 수 있고, 고분자계일 경우 상기 섬유 기재를 구성하는 단섬유와 동일한 재질일 수 있다. 또한, 상기 섬유 기재 내부의 공극을 메우기 위한 것이라는 점에서 상기 충진제의 형태는 찹(chop) 또는 섬유(fiber) 형태가 아닌 입자 또는 분말 형태인 것이 바람직하다. The filler may be a ceramic material or a polymer material, and in the case of a polymer material, the filler may be the same material as the short fibers constituting the fiber substrate. In addition, it is preferable that the filler is not in the form of chop or fiber, but in the form of particles or powder in that it is intended to fill the voids inside the fibrous substrate.
상기 충진제는 단일벽 탄소나노튜브(single-well carbon nanotube, SWCNT), 다중벽 탄소나노튜브(multi-well carbon nanotube, MWCNT) 등의 탄소나노튜브(carbon nanotube, CNT), 그래핀(graphene), 흑연분말(graphite powder), 전도성 카본블랙(carbon black) 및 질화붕소 나노튜브(boron nitride nanotube, BNNT)로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.The filler is carbon nanotube (CNT), graphene, such as single-well carbon nanotube (SWCNT) and multi-well carbon nanotube (MWCNT), It may include at least one selected from the group consisting of graphite powder, conductive carbon black, and boron nitride nanotube (BNNT).
상기 탄소나노튜브는 직경이 4 ㎚ 내지 50 ㎚이고, 길이가 1 ㎚ 내지 500 ㎛인 것일 수 있다.The carbon nanotubes may have a diameter of 4 nm to 50 nm and a length of 1 nm to 500 μm.
상기 질화붕소 나노튜브는 직경이 0.01 ㎛ 내지 3 ㎛, 바람직하기로는 0.1 ㎛ 내지 1.0 ㎛일 수 있다.The boron nitride nanotubes may have a diameter of 0.01 µm to 3 µm, preferably 0.1 µm to 1.0 µm.
상기 탄소나노튜브의 직경 및 길이와 질화붕소 나노튜브의 직경이 상기 범위를 벗어나는 경우, 최종 제조된 흑연 시트의 수직방향 열전도도 개선 효과가 미약하게 되거나 공정상 문제가 발생될 수 있다.When the diameter and length of the carbon nanotubes and the diameter of the boron nitride nanotubes are out of the above ranges, the effect of improving the vertical thermal conductivity of the finally manufactured graphite sheet may be weak or a problem may occur in the process.
상기 충진제는 전술한 바의 바니쉬 조성물에 함께 포함되어 상기 섬유 기재에 함침될 수 있다.The filler may be included in the varnish composition as described above and may be impregnated into the fibrous substrate.
또한, 상기 복합 기재 내 상기 충진제의 함량은 복합 기재 100 중량%를 기준으로 10 중량% 이하가 바람직하다.In addition, the content of the filler in the composite substrate is preferably 10% by weight or less based on 100% by weight of the composite substrate.
상기 (S2) 단계로부터 제조된 복합 기재는 3차원 다공성 구조로 내부 즉, 단섬유 사이에 공극을 포함하며, 부피밀도(bulk density)가 고유밀도(inherent density)의 10 % 내지 60 %수준이다. 후속 단계인 탄화 흑연화 공정에서 탄소를 제외한 많은 성분들이 열휘발되어 중량이 감소하게 되므로 가공을 용이하게 하기 위해 복합 기재의 강도를 증가시키고, 섬유 기재 내부에 존재하는 공극을 최소화하여야 한다. The composite substrate prepared from the step (S2) has a three-dimensional porous structure and includes voids between short fibers, and has a bulk density of 10% to 60% of the inherent density. In the subsequent step, the carbonization graphitization process, since many components other than carbon are thermally volatilized to reduce the weight, the strength of the composite substrate should be increased to facilitate processing, and voids existing inside the fiber substrate should be minimized.
또한, 상기 복합 기재 내부에 존재하는 공극에 포함된 공기는 열 전도에 있어 저항으로 작용하므로 압연을 통해 이를 제거하여 복합 기재의 부피밀도를 증가시킴으로써 최종 제조되는 흑연 시트의 열전도 특성, 특히 수직방향의 열전도도 개선 효과를 확보할 수 있다.In addition, since the air contained in the voids present inside the composite substrate acts as a resistance in heat conduction, it is removed through rolling to increase the bulk density of the composite substrate, thereby increasing the thermal conductivity properties of the finally produced graphite sheet, especially in the vertical direction. It is possible to secure an effect of improving thermal conductivity.
상기 압연의 온도 및 압력은 상기 섬유 기재 또는 상기 바니쉬 조성물에 따라 달라질 수 있다. 예를 들어, 상기 압연은 100 ℃ 내지 350 ℃의 온도와 연속생산 방식인 경우 30 ㎏f/㎝ 내지 250 ㎏f/㎝의 압력에서 수행할 수 있으며 시트 압연방식인 경우 연속생산 방식의 선압 효과와 유사한 수준으로 맞출 수 있다.The temperature and pressure of the rolling may vary depending on the fiber substrate or the varnish composition. For example, the rolling can be carried out at a temperature of 100°C to 350°C and a pressure of 30 kgf/cm to 250 kgf/cm in the case of a continuous production method, and the linear pressure effect of the continuous production method in the case of a sheet rolling method and You can fit it to a similar level.
상기 압연을 수행한 복합 기재의 두께는 압연을 수행하기 전의 섬유 기재의 두께의 95 % 이하인 것이 최종제품인 흑연 시트의 열전도도와 기타 물성을 개선하는데 바람직하다.The thickness of the composite substrate subjected to the rolling is preferably 95% or less of the thickness of the fiber substrate before the rolling is performed to improve the thermal conductivity and other physical properties of the graphite sheet as the final product.
상기 압연에 의한 부피밀도의 증가율은 섬유 기재와 열전도성 계면 물질의 평균 밀도의 40 % 내지 95 %인 것이 바람직하다. 상기 부피밀도의 증가율이 상기 범위 미만인 경우 후속의 탄화 및 흑연화 공정 이후 너무 많은 기공이 형성되어 방열 효과가 감소하고, 이와 반대로 상기 범위를 초과하는 경우 최종제품인 흑연 시트의 유연성이 저하되어 쉽게 부스러지게 된다.It is preferable that the increase rate of the bulk density by rolling is 40% to 95% of the average density of the fiber substrate and the thermally conductive interface material. If the increase rate of the bulk density is less than the above range, too many pores are formed after the subsequent carbonization and graphitization process, thereby reducing the heat dissipation effect. On the contrary, if it exceeds the above range, the flexibility of the final product, the graphite sheet, decreases and is easily broken. do.
(S3) 단계Step (S3)
상기 (S3) 단계에서는 상기 (S2) 단계에서 얻은 복합 기재를 열처리하여 탄화 및 흑연화시켜 흑연 시트를 제조한다.In the step (S3), the composite substrate obtained in the step (S2) is heat-treated to carbonize and graphite to prepare a graphite sheet.
상기 열처리는 복합 기재의 열적 특성을 증가시키기 위한 것으로, 통상적으로 고분자 및/또는 섬유를 탄화 및 흑연화하기 위한 방법이라면 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 수행할 수 있다. The heat treatment is for increasing the thermal properties of the composite substrate, and is not particularly limited as long as it is a method for carbonizing and graphitizing polymers and/or fibers, and may be performed according to a conventional method known in the art.
예를 들어, 상기 탄화 온도는 800 ℃ 내지 1,500 ℃, 바람직하게는 900 ℃ 내지 1,400 ℃일 수 있다. 또한 상기 흑연화는 2,600 ℃ 내지 3,000 ℃, 바람직하게는 2,700 ℃ 내지 2,900 ℃의 온도에서 수행할 수 있다.For example, the carbonization temperature may be 800 °C to 1,500 °C, preferably 900 °C to 1,400 °C. In addition, the graphitization may be performed at a temperature of 2,600 °C to 3,000 °C, preferably 2,700 °C to 2,900 °C.
상기 탄화 및 흑연화는 상기 복합 기재가 공기와 반응하여 산화되지 않도록 불활성 분위기에서 수행하는 것이 바람직하다. 상기 불활성 분위기 유지에 이용되는 매체는 특별히 제한되는 것은 아니면, 질소 또는 아르곤 등을 이용할 수 있다.The carbonization and graphitization are preferably performed in an inert atmosphere so that the composite substrate is not oxidized by reacting with air. As the medium used for maintaining the inert atmosphere, nitrogen or argon may be used as long as it is not particularly limited.
또한, 상기 탄화 및 흑연화 시간은 상기 복합 기재를 구성하는 물질에 따라 조절될 수 있다.In addition, the carbonization and graphitization time may be adjusted according to the material constituting the composite substrate.
(S4) 단계Step (S4)
상기 (S4) 단계에서는 상기 (S3) 단계에서 얻은 흑연 시트를 압연한다.In the step (S4), the graphite sheet obtained in the step (S3) is rolled.
본 발명에 있어서, 상기 압연은 상기 (S3) 단계에서 열처리시 발생하는 가스로 인해 팽창된 흑연 시트의 부피밀도와 유연성을 증가시키고, 수평 및 수직 방향의 열전도도를 보다 개선시키기 위한 것이다.In the present invention, the rolling is to increase the bulk density and flexibility of the expanded graphite sheet due to the gas generated during the heat treatment in the step (S3), and to further improve the thermal conductivity in the horizontal and vertical directions.
상기 압연은 당업계에 알려진 통상적인 방법에 따라 수행할 수 있다.The rolling may be performed according to a conventional method known in the art.
상기 압연의 압력은 제조된 흑연 시트의 물성에 따라 달라질 수 있다. 예를 들어, 상기 압연은 10 ㎏f/㎝ 내지 300 ㎏f/㎝의 압력에서 수행할 수 있다.The rolling pressure may vary depending on the physical properties of the manufactured graphite sheet. For example, the rolling may be performed at a pressure of 10 kgf/cm to 300 kgf/cm.
본 발명의 흑연 시트의 제조방법에 따르면, 흑연 시트의 전구체로 섬유 기재를 사용하고, 상기 섬유 기재에 열전도성 계면 물질을 함침시키고, 탄화 및 흑연화 전ㆍ후에 압연 공정을 수행함으로써 수평방향의 열전도도 뿐만 아니라 수직방향의 열전도도가 우수한 흑연 시트를 제조할 수 있다. 또한, 상기 흑연 시트의 제조방법은 전구체로 고가의 고분자 필름을 사용하지 않고도 우수한 수평 및 수직방향의 열전도도를 갖는 흑연 시트를 단순한 공정으로 경제적으로 제조할 수 있다.According to the method of manufacturing a graphite sheet of the present invention, a fiber substrate is used as a precursor of the graphite sheet, a thermally conductive interface material is impregnated with the fiber substrate, and a rolling process is performed before and after carbonization and graphitization, thereby conducting heat conduction in the horizontal direction. As well as degrees, it is possible to manufacture a graphite sheet having excellent thermal conductivity in the vertical direction. In addition, the method of manufacturing the graphite sheet can economically manufacture a graphite sheet having excellent horizontal and vertical thermal conductivity in a simple process without using an expensive polymer film as a precursor.
상술한 바의 제조방법으로 제조된 흑연 시트는 수평방향의 열전도도가 1,000 W/mㆍK 내지 2,000 W/mㆍK이고, 수직방향의 열전도도가 열전도도가 10 W/mㆍK 내지 40 W/mㆍK이며, 평균 두께가 10 ㎛ 내지 200 ㎛일 수 있다.The graphite sheet manufactured by the above-described manufacturing method has a thermal conductivity of 1,000 W/m·K to 2,000 W/m·K in a horizontal direction, and a thermal conductivity of 10 W/m·K to 40 in the vertical direction. W/m·K, and may have an average thickness of 10 μm to 200 μm.
특히, 본 발명에 따른 흑연 시트는 종래 흑연 시트의 수직방향 열전도도의 한계값 이상의 수직방향의 열전도도를 나타내며, 유연성이 향상되어 다양한 전자기기의 방열 시트 등으로 유용하다.In particular, the graphite sheet according to the present invention exhibits thermal conductivity in a vertical direction above the limit of the vertical thermal conductivity of a conventional graphite sheet, and is useful as a heat dissipation sheet for various electronic devices due to improved flexibility.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, a preferred embodiment is presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It is natural that such modifications and modifications fall within the appended claims.
실시예 및 비교예Examples and Comparative Examples
[실시예 1] [Example 1]
길이 6 ㎜인 아라미드 단섬유, 아라미드 펄프, 바인더 섬유로 길이 3 ㎜인 폴리비닐알코올을 25:72:3의 중량 비율로 혼합하여 습식법을 이용하여 섬유 기재를 제조하였다.A fiber substrate was prepared by using a wet method by mixing short aramid fibers having a length of 6 mm, aramid pulp, and polyvinyl alcohol having a length of 3 mm as a binder fiber at a weight ratio of 25:72:3.
상기 섬유 기재를 120 ℃ 온도 및 148 ㎏f/㎝의 압력으로 압연하였다.The fibrous substrate was rolled at a temperature of 120° C. and a pressure of 148 kgf/cm.
이어서, 패더 맹글(padder mangle)에서 상기 압연한 섬유 기재를 폴리이미드를 10 중량%로 포함하는 바니쉬 조성물에 함침시킨 후 130 ℃에서 건조하고, 350 ℃에서 경화시켜 복합 기재를 제조하였다.Subsequently, the rolled fibrous substrate in a padder mangle was impregnated in a varnish composition containing 10% by weight of polyimide, dried at 130° C., and cured at 350° C. to prepare a composite substrate.
상기 복합 기재를 200 ℃ 온도 및 200 ㎏f/㎝의 압력으로 압연하였다.The composite substrate was rolled at a temperature of 200° C. and a pressure of 200 kgf/cm.
상기 압연한 복합 기재를 1,200 ℃의 질소 분위기에서 탄화하였다.The rolled composite substrate was carbonized in a nitrogen atmosphere at 1,200°C.
이어서, 상기 탄화된 복합 기재를 2,800 ℃의 아르곤 분위기에서 흑연화한 후, 30 ㎏f/㎝의 압력으로 압연하여 흑연 시트를 제조하였다.Subsequently, the carbonized composite substrate was graphitized in an argon atmosphere at 2,800° C. and then rolled at a pressure of 30 kgf/cm to prepare a graphite sheet.
[실시예 2] [Example 2]
복합 기재 제조시 폴리이미드를 20 중량%로 포함하는 바니쉬 조성물을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.A graphite sheet was prepared in the same manner as in Example 1, except that a varnish composition containing 20% by weight of polyimide was used when preparing the composite substrate.
[실시예 3] [Example 3]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 50:47:3의 중량 비율로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.A graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 50:47:3 when preparing the fiber substrate.
[실시예 4] [Example 4]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 50:47:3의 중량 비율로 사용하고, 복합 기재 제조시 폴리이미드를 20 중량%로 포함하는 바니쉬 조성물을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 50:47:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
[실시예 5] [Example 5]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 60:37:3의 중량 비율로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.A graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 60:37:3 when preparing the fiber substrate.
[실시예 6] [Example 6]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 60:37:3의 중량 비율로 사용하고, 복합 기재 제조시 폴리이미드를 20 중량%로 포함하는 바니쉬 조성물을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 60:37:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
[실시예 7] [Example 7]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 70:27:3의 중량 비율로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.A graphite sheet was prepared in the same manner as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 70:27:3 when preparing the fiber substrate.
[실시예 8][Example 8]
섬유 기재 제조시 단섬유, 펄프, 바인더 섬유를 70:27:3의 중량 비율로 사용하고, 복합 기재 제조시 폴리이미드를 20 중량%로 포함하는 바니쉬 조성물을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 흑연 시트를 제조하였다.Example 1 and the same as in Example 1, except that short fibers, pulp, and binder fibers were used in a weight ratio of 70:27:3 when manufacturing a fiber substrate, and a varnish composition containing 20% by weight of polyimide was used when manufacturing a composite substrate. In the same manner, a graphite sheet was prepared.
[비교예 1][Comparative Example 1]
두께가 75 ㎛인 폴리이미드 필름을 탄화 및 흑연화시켜 흑연 시트를 제조하였다. 이때, 탄화는 900 ℃에서 실시하였고 흑연화는 2,800 ℃에서 수행하였다.A graphite sheet was prepared by carbonizing and graphitizing a polyimide film having a thickness of 75 μm. At this time, carbonization was performed at 900°C and graphitization was performed at 2,800°C.
실험예 1. 섬유 기재의 물성 평가 및 주사 전자 현미경 분석Experimental Example 1. Evaluation of physical properties of fiber substrates and analysis of scanning electron microscopy
실시예 1, 3, 5, 및 7에서 제조된 섬유 기재의 단위면적당 중량, 두께 및 공기 투과도를 측정하였다. 이때 공기 투과도는 공기 투과도 시험기(Air Permeability Tester)(FX3300, Textest Instruments사 제조)를 통해 측정하였다.The weight, thickness, and air permeability per unit area of the fiber substrates prepared in Examples 1, 3, 5, and 7 were measured. At this time, the air permeability was measured through an air permeability tester (FX3300, manufactured by Textest Instruments).
또한, 실시예 1에서 제조된 섬유 기재의 표면 및 단면을 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다. In addition, the surface and cross section of the fiber substrate prepared in Example 1 were observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used.
이때 얻어진 결과는 표 1, 도 1 및 도 2에 나타내었다.The results obtained at this time are shown in Table 1, FIGS. 1 and 2.
단위면적당 중량(g/m2)Weight per unit area (g/m 2 ) 두께(㎛)Thickness(㎛) 공기 투과도Air permeability
실시예 1Example 1 30.030.0 126126 5.535.53
실시예 3Example 3 34.534.5 140140 22.722.7
실시예 5Example 5 32.032.0 123123 17.017.0
실시예 7Example 7 42.142.1 210210 63.263.2
도 1을 참조하면, 아라미드 단섬유로 구성되며, 내부에 공극이 형성된 3차원 다공성 구조체의 섬유 기재가 제조되었음을 확인할 수 있다.Referring to FIG. 1, it can be seen that a fibrous substrate of a three-dimensional porous structure composed of short aramid fibers and having voids formed therein was manufactured.
실험예 2. 압연에 따른 섬유 기재의 물성 평가 및 주사 전자 현미경 분석Experimental Example 2. Evaluation of physical properties of fiber substrates according to rolling and analysis of scanning electron microscopy
실시예 1, 3, 5, 및 7에서 제조된 섬유 기재를 압연한 후의 단위면적당 중량, 두께 및 공기 투과도를 측정하였다. 이때 공기 투과도는 공기 투과도 시험기 (FX3300, Textest Instruments사 제조)을 통해 측정하였다.After rolling the fiber substrates prepared in Examples 1, 3, 5, and 7, the weight per unit area, thickness, and air permeability were measured. At this time, the air permeability was measured through an air permeability tester (FX3300, manufactured by Textest Instruments).
또한, 실시예 1에서 제조된 섬유 기재에 대하여 압연 전과 후의 단면을 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다.In addition, cross-sections of the fiber substrate prepared in Example 1 before and after rolling were observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used.
이때 얻어진 결과는 표 2 및 도 3에 나타내었다.The results obtained at this time are shown in Table 2 and FIG. 3.
단위면적당 중량(g/m2)Weight per unit area (g/m 2 ) 두께(㎛)Thickness(㎛) 공기 투과도Air permeability
실시예 1Example 1 30.030.0 5252 0.9270.927
실시예 3Example 3 34.534.5 7979 5.955.95
실시예 5Example 5 32.032.0 6969 3.893.89
실시예 7Example 7 42.142.1 8484 14.014.0
도 3 및 상기 표 2를 참조하면, 압연에 의해 섬유 기재의 두께와 공기 투과도가 감소함을 알 수 있다.Referring to FIG. 3 and Table 2, it can be seen that the thickness and air permeability of the fiber substrate are reduced by rolling.
실험예 3. 복합 기재의 물성 평가 및 주사 전자 현미경 분석Experimental Example 3. Evaluation of physical properties of composite substrate and analysis of scanning electron microscopy
실시예 1에서 제조된 복합 기재의 단면을 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다.The cross section of the composite substrate prepared in Example 1 was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used.
이때 얻어진 결과는 도 4에 나타내었다.The results obtained at this time are shown in FIG. 4.
도 4를 참조하면, 바니쉬 조성물이 섬유 기재에 균일하게 함침되어 있는 것을 알 수 있다.Referring to FIG. 4, it can be seen that the varnish composition is uniformly impregnated into the fiber substrate.
실험예 4. 압연에 따른 복합 기재의 물성 평가 및 주사 전자 현미경 분석Experimental Example 4. Evaluation of physical properties of composite substrate according to rolling and analysis of scanning electron microscopy
실시예 1 내지 8에서 제조된 복합 기재에 대하여 압연한 후의 중량 및 압연한 전과 후의 두께를 측정하였다.For the composite substrates prepared in Examples 1 to 8, the weight after rolling and the thickness before and after rolling were measured.
또한, 실시예 1에서 제조된 복합 기재에 대하여 압연 후의 단면을 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다.Further, the cross section of the composite substrate prepared in Example 1 after rolling was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used.
이때 얻어진 결과는 표 3 및 도 5에 나타내었다.The results obtained at this time are shown in Table 3 and FIG. 5.
열전도성 계면 물질의 농도(중량%)Concentration of thermally conductive interface material (% by weight) 중량(g)Weight(g) 압연 전Before rolling 압연 후After rolling
두께(㎛)Thickness(㎛)
실시예 1Example 1 1010 0.3980.398 5858 4646
실시예 2Example 2 2020 0.4710.471 6464 5454
실시예 3Example 3 1010 0.6290.629 122122 8383
실시예 4Example 4 2020 0.7780.778 128128 8989
실시예 5Example 5 1010 0.3920.392 7272 5252
실시예 6Example 6 2020 0.4600.460 7878 5555
실시예 7Example 7 1010 0.5860.586 130130 8585
실시예 8Example 8 2020 0.7990.799 139139 9999
도 5 및 상기 표 3을 참조하면, 압연에 의해 복합 기재의 두께가 감소함을 알 수 있다.Referring to Figure 5 and Table 3, it can be seen that the thickness of the composite substrate is reduced by rolling.
실험예 5. 흑연 시트의 물성 평가 및 주사 전자 현미경 분석Experimental Example 5. Evaluation of physical properties of graphite sheet and analysis of scanning electron microscopy
실시예 1 내지 8에서 제조된 흑연 시트에 대하여 탄화 및 흑연화에 따른 중량 및 수율을 측정하였다. For the graphite sheets prepared in Examples 1 to 8, the weight and yield according to carbonization and graphitization were measured.
또한, 실시예 1에서 제조된 복합 기재에 대하여 탄화 및 흑연화에 따른 흑연 시트의 표면을 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다.In addition, the surface of the graphite sheet according to carbonization and graphitization of the composite substrate prepared in Example 1 was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used.
이때 얻어진 결과는 표 4 및 도 6에 나타내었다.The results obtained at this time are shown in Table 4 and FIG. 6.
탄화carbonization 흑연화Graphitization 총 수율(%)Total yield (%)
중량(g)Weight(g) 수율(%)yield(%) 중량(g)Weight(g) 수율(%)yield(%)
실시예 1Example 1 0.1830.183 46.0 46.0 0.122 0.122 66.7 66.7 30.7 30.7
실시예 2Example 2 0.2410.241 51.2 51.2 0.183 0.183 75.9 75.9 38.9 38.9
실시예 3Example 3 0.2860.286 45.5 45.5 0.229 0.229 80.1 80.1 36.4 36.4
실시예 4Example 4 0.3850.385 49.5 49.5 0.315 0.315 81.8 81.8 40.5 40.5
실시예 5Example 5 0.1910.191 48.7 48.7 0.139 0.139 72.8 72.8 35.5 35.5
실시예 6Example 6 0.2180.218 47.4 47.4 0.172 0.172 78.9 78.9 37.4 37.4
실시예 7Example 7 0.2830.283 48.3 48.3 0.217 0.217 76.7 76.7 37.0 37.0
실시예 8Example 8 0.4050.405 50.7 50.7 0.320 0.320 79.0 79.0 40.1 40.1
도 6을 통해 복합 기재의 색깔이 탄화 후에 검은색, 흑연화 후에 은색으로 변화함을 확인할 수 있다.It can be seen from FIG. 6 that the color of the composite substrate changes to black after carbonization and silver after graphitization.
또한, 상기 표 4를 통해 복합 기재의 탄화 수율은 45 내지 51 %, 흑연화 수율은 66 내지 81 %이고, 총 수율은 30 내지 40 % 임을 알 수 있다.In addition, it can be seen from Table 4 that the carbonization yield of the composite substrate is 45 to 51%, the graphitization yield is 66 to 81%, and the total yield is 30 to 40%.
실험예 6. 흑연 시트의 열전도도 측정Experimental Example 6. Measurement of thermal conductivity of graphite sheet
실시예 1 및 비교예 1에서 제조된 흑연 시트에 대해 수평방향 및 수직방향의 열전도도를 측정하였다. 이때 수평방향 및 수직방향의 열전도도는 실시예 1 및 비교예 1에서 제조된 흑연 시트를 광교류법에 의한 열확산율 측정 장치(Netsch사 제품「LFA447 Nanoflash」)를 사용하여 25 ℃의 온도에서 각각 5번 이상씩 측정하여 평균값으로 나타내었다. 이때 얻어진 결과는 표 5에 나타내었다.The thermal conductivity of the graphite sheets prepared in Example 1 and Comparative Example 1 in the horizontal and vertical directions was measured. At this time, the thermal conductivity in the horizontal direction and the vertical direction was determined by using the graphite sheet prepared in Example 1 and Comparative Example 1 using a thermal diffusivity measuring device ("LFA447 Nanoflash" manufactured by Netsch) at 25°C It was measured five or more times and expressed as an average value. The results obtained at this time are shown in Table 5.
수평방향 열전도도(W/mㆍK)Thermal conductivity in horizontal direction (W/mㆍK) 수직방향 열전도도(W/mㆍK)Vertical thermal conductivity (W/mㆍK)
실시예 1Example 1 800800 2323
비교예 1Comparative Example 1 1,2001,200 55
상기 표 5를 참조하면, 실시예 1에 따른 흑연 시트의 열전도도가 비교예 1에 비하여 높은 것을 알 수 있으며, 특히 수직방향의 열전도도에 있어 비교예 1에 비해 현저히 향상됨을 확인할 수 있다.Referring to Table 5, it can be seen that the thermal conductivity of the graphite sheet according to Example 1 is higher than that of Comparative Example 1, and in particular, it can be seen that the thermal conductivity in the vertical direction is significantly improved compared to Comparative Example 1.
본 발명에 따른 흑연 시트는 종래 흑연 시트의 수직방향 열전도도의 한계값 이상의 수직방향의 열전도도를 나타내며, 유연성이 향상되어 다양한 전자기기의 방열 시트 등으로 유용하다.The graphite sheet according to the present invention exhibits thermal conductivity in the vertical direction above the limit of the thermal conductivity in the vertical direction of the conventional graphite sheet, and has improved flexibility, and thus is useful as a heat dissipation sheet for various electronic devices.

Claims (10)

  1. (S1) 단섬유를 이용하여 섬유 기재를 제조하는 단계;(S1) preparing a fibrous substrate using short fibers;
    (S2) 상기 (S1) 단계에서 얻은 섬유 기재에 열전도성 계면 물질을 함침시켜 복합 기재를 제조하는 단계;(S2) preparing a composite substrate by impregnating the fiber substrate obtained in step (S1) with a thermally conductive interface material;
    (S3) 상기 (S2) 단계에서 얻은 복합 기재를 열처리하여 탄화 및 흑연화시켜 흑연 시트를 제조하는 단계; 및 (S3) heat-treating the composite substrate obtained in step (S2) to carbonize and graphitize to produce a graphite sheet; And
    (S4) 상기 (S3) 단계에서 얻은 흑연 시트를 압연하는 단계를 포함하는 흑연 시트의 제조방법.(S4) A method of manufacturing a graphite sheet comprising the step of rolling the graphite sheet obtained in step (S3).
  2. 제1항에 있어서,The method of claim 1,
    상기 단섬유는 아라미드, 폴리이미드, 열가소성 고분자, 열경화성 고분자 및 탄소섬유로 이루어진 군에서 선택되는 1종 이상을 포함하는, 흑연 시트의 제조방법.The short fibers include at least one selected from the group consisting of aramid, polyimide, thermoplastic polymer, thermosetting polymer, and carbon fiber.
  3. 제1항에 있어서,The method of claim 1,
    상기 섬유 기재는 3차원 다공성 구조체인, 흑연 시트의 제조방법.The fibrous substrate is a three-dimensional porous structure, a method of manufacturing a graphite sheet.
  4. 제1항에 있어서,The method of claim 1,
    상기 섬유 기재는 시트상, 직물상 또는 웹상인, 흑연 시트의 제조방법.The fibrous substrate is in the form of a sheet, a fabric or a web, a method for producing a graphite sheet.
  5. 제1항에 있어서,The method of claim 1,
    상기 열전도성 계면 물질은 폴리이미드, 리그닌, 아라미드, 폴리아미드이미드, 폴리프로필렌 및 페놀로 이루어진 군에서 선택되는 1종 이상을 포함하는, 흑연 시트의 제조방법.The thermally conductive interface material includes at least one selected from the group consisting of polyimide, lignin, aramid, polyamideimide, polypropylene, and phenol.
  6. 제1항에 있어서,The method of claim 1,
    상기 복합 기재는 충진제를 더 포함하는, 흑연 시트의 제조방법.The composite substrate further comprises a filler, a method of manufacturing a graphite sheet.
  7. 제6항에 있어서,The method of claim 6,
    상기 충진제는 탄소나노튜브, 그래핀, 흑연분말, 전도성 카본블랙 및 질화붕소 나노튜브로 이루어진 군에서 선택되는 1종 이상을 포함하는, 흑연 시트의 제조방법.The filler comprises at least one selected from the group consisting of carbon nanotubes, graphene, graphite powder, conductive carbon black, and boron nitride nanotubes.
  8. 제1항에 있어서,The method of claim 1,
    상기 탄화는 800 ℃ 내지 1,500 ℃의 온도에서 수행하는, 흑연 시트의 제조방법.The carbonization is carried out at a temperature of 800 ℃ to 1,500 ℃, a method for producing a graphite sheet.
  9. 제1항에 있어서,The method of claim 1,
    상기 흑연화는 2,600 ℃ 내지 3,000 ℃의 온도에서 수행하는, 흑연 시트의 제조방법.The graphitization is carried out at a temperature of 2,600 ℃ to 3,000 ℃, a method for producing a graphite sheet.
  10. 제1항에 있어서,The method of claim 1,
    상기 탄화 및 흑연화는 불활성 분위기에서 수행하는, 흑연 시트의 제조방법.The carbonization and graphitization are performed in an inert atmosphere.
PCT/KR2020/010096 2019-08-01 2020-07-30 Method for manufacturing graphite sheet WO2021020922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190093796A KR102342310B1 (en) 2019-08-01 2019-08-01 Method for preparing graphite sheet
KR10-2019-0093796 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021020922A1 true WO2021020922A1 (en) 2021-02-04

Family

ID=74229437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010096 WO2021020922A1 (en) 2019-08-01 2020-07-30 Method for manufacturing graphite sheet

Country Status (3)

Country Link
KR (1) KR102342310B1 (en)
TW (1) TW202120775A (en)
WO (1) WO2021020922A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999657A (en) * 2021-11-23 2022-02-01 安徽碳华新材料科技有限公司 Processing technology of alkene-carbon composite material
CN114736019A (en) * 2022-06-10 2022-07-12 宁波长阳科技股份有限公司 Artificial graphite sheet with high vertical heat conduction and radiating fin comprising artificial graphite sheet
CN114853002A (en) * 2022-05-13 2022-08-05 武汉理工大学 Preparation method and application of high-order-degree graphite film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012440A (en) * 2005-06-30 2007-01-18 Nippon Oil Corp Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
KR20070080546A (en) * 2006-02-07 2007-08-10 (주) 아모센스 Preparation method of thermal conductive sheet
JP2008069474A (en) * 2006-09-13 2008-03-27 Teijin Ltd Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2010064949A (en) * 2008-08-12 2010-03-25 Kaneka Corp Method for production of graphite film
KR101851752B1 (en) * 2016-10-21 2018-04-24 에스케이씨 주식회사 Method for preparing graphite sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725028B1 (en) 2006-10-24 2007-06-07 (주) 아모센스 Preparation method of thermal conductive sheet using nanocomposite carbon fiber
KR101855281B1 (en) 2015-12-17 2018-05-08 에스케이씨 주식회사 Heat-dissipation sheet and preparation method thereof
KR102259397B1 (en) 2016-01-05 2021-05-31 코오롱인더스트리 주식회사 Graphite sheet with excellent heat conductive property along thickness direction and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012440A (en) * 2005-06-30 2007-01-18 Nippon Oil Corp Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
KR20070080546A (en) * 2006-02-07 2007-08-10 (주) 아모센스 Preparation method of thermal conductive sheet
JP2008069474A (en) * 2006-09-13 2008-03-27 Teijin Ltd Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2010064949A (en) * 2008-08-12 2010-03-25 Kaneka Corp Method for production of graphite film
KR101851752B1 (en) * 2016-10-21 2018-04-24 에스케이씨 주식회사 Method for preparing graphite sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999657A (en) * 2021-11-23 2022-02-01 安徽碳华新材料科技有限公司 Processing technology of alkene-carbon composite material
CN114853002A (en) * 2022-05-13 2022-08-05 武汉理工大学 Preparation method and application of high-order-degree graphite film
CN114736019A (en) * 2022-06-10 2022-07-12 宁波长阳科技股份有限公司 Artificial graphite sheet with high vertical heat conduction and radiating fin comprising artificial graphite sheet
CN114736019B (en) * 2022-06-10 2022-09-13 宁波长阳科技股份有限公司 Artificial graphite sheet with high vertical heat conduction and radiating fin comprising artificial graphite sheet

Also Published As

Publication number Publication date
KR20210015240A (en) 2021-02-10
TW202120775A (en) 2021-06-01
KR102342310B1 (en) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2021020922A1 (en) Method for manufacturing graphite sheet
KR102470752B1 (en) Highly conductive graphite film and production process
WO2014189270A1 (en) Electromagnetic wave shielding sheet comprising carbon composite fiber manufactured by electrospinning and method for manufacturing same
WO2014030782A1 (en) Carbon fibre composite coated with silicon carbide, and production method for same
WO2019212284A1 (en) Multilayer graphite sheet with excellent electromagnetic shielding capability and thermal conductivity and manufacturing method therefor
WO2020130420A1 (en) Graphitized carbon substrate and gas diffusion layer employing same
WO2016175453A1 (en) Graphite sheet and method for manufacturing same
JP2008208316A5 (en)
JP2008049607A (en) Heat-conductive laminate with bonded thin film of electrical insulation
KR101628461B1 (en) Carbon fiber insulator and preparing method for thereof
WO2015069382A2 (en) Flexible composites containing graphite and fillers
KR102078974B1 (en) Manufacturing method of carbon papers having excellent thermal conductivity and carbon papers manufactured therefrom
DE102007012495B4 (en) METHOD FOR PRODUCING A DIFFUSION MEDIUM
KR101855270B1 (en) Multi-layered heat-dissipation complex sheet having improved heat conductivity and insulating property
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
JPH03121398A (en) Heat insulating material
TW200303064A (en) Transfer member with electric conductivity and its manufacturing method
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
KR101471397B1 (en) Method for fabricating graphite
CN114853002A (en) Preparation method and application of high-order-degree graphite film
JPH06100367A (en) Anisotropic carbon-carbon composite material and its production
JPH03248838A (en) Heat insulation material
An et al. Enhancing thermal conductivity, electrical insulation, and mechanical strength of polydimethylsiloxane composites with Sandwich structure
WO2015099504A1 (en) Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same
US20180310442A1 (en) Black-color polymer composite films and production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848221

Country of ref document: EP

Kind code of ref document: A1