WO2015099504A1 - Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same - Google Patents

Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same Download PDF

Info

Publication number
WO2015099504A1
WO2015099504A1 PCT/KR2014/012930 KR2014012930W WO2015099504A1 WO 2015099504 A1 WO2015099504 A1 WO 2015099504A1 KR 2014012930 W KR2014012930 W KR 2014012930W WO 2015099504 A1 WO2015099504 A1 WO 2015099504A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber felt
manufacturing
pitch
producing
Prior art date
Application number
PCT/KR2014/012930
Other languages
French (fr)
Korean (ko)
Inventor
박재흥
윤광의
장준현
김학천
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2015099504A1 publication Critical patent/WO2015099504A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/04Carbonising or oxidising

Definitions

  • the present invention is a method of manufacturing a carbon fiber felt and a method of manufacturing a heat insulating material using the same, specifically, by using a carbon fiber mat orthogonal apparatus, the surface density is uniform and the orientation of the carbon fiber is improved to improve the carbon fiber without any separate opening or carding process
  • the present invention relates to a method for producing a carbon fiber felt and a method for producing a heat insulating material using the same, which is superior to the conventional process yield and heat insulating performance by producing a felt.
  • Carbon materials are materials having high thermal conductivity, electrical conductivity, and excellent mechanical strength, and have been widely used in industrial fields since ancient times.
  • the carbon fiber processed in the form of fibrous carbon material refers to a fibrous material having a carbon content of 90% or more, and possesses excellent thermal conductivity, electrical conductivity, and mechanical properties.
  • Carbon fiber has a fibrous shape and is excellent in processability and has a wide range of applications. Carbon fiber has excellent properties especially at high temperatures. Unlike high-temperature metal materials, the mechanical strength of carbon fiber increases with high temperature. The carbon fiber has a low coefficient of thermal expansion and can be used up to 3000 °C in a non-oxidizing atmosphere. It is considered the only material.
  • Carbon fibers are largely classified according to raw materials, and are divided into PAN-based carbon fibers, rayon-based carbon fibers, and pitch-based carbon fibers.
  • PAN-based carbon fiber is lighter than other materials and has excellent mechanical properties, so it is widely used in high-end sports and leisure goods such as golf clubs and fishing rods, and is currently used to replace metals in fields that have used conventional metal materials such as automobiles and ships. It is recognized as the material which can be.
  • Rayon-based carbon fiber can be used as a general-purpose carbon fiber because of its relatively simple manufacturing method and easy mass production based on cheap raw materials.
  • Pitch-based carbon fiber is based on coal coal tar and petroleum residue oil, and is classified into isotropic carbon fiber and anisotropic carbon fiber according to crystallinity, and is widely used as a general purpose material and a special functional material according to the use and manufacturing method.
  • pitch-based carbon fiber is manufactured from coal coal tar and petroleum residue, which are very inexpensive, and have a high modulus value and no thermal deformation at high temperatures.
  • the manufacturing method can be manufactured with the desired physical properties, as well as general-purpose carbon fiber, it is characterized by a very wide range of applications as special fields and functional materials.
  • Pitch-based carbon fiber is a situation in which the demand is rapidly growing in the industrial field based on these characteristics, especially the high temperature insulation field.
  • High-temperature insulation is a special industrial material used in furnaces of about 2000 ° C or higher.
  • carbon fiber is the only material that can be used above 2000 ° C.
  • the high temperature insulation material is an essential material for the production of polysilicon, which is a material of semiconductor and photovoltaic power generation, requires excellent insulation performance and high purity physical properties, and isotropic carbon fiber is suitable as a material raw material.
  • Insulating material manufacturing method is a method for producing a carbon fiber insulating material by dispersing the carbon fiber of about 1 ⁇ 5mm length in a dispersion solvent such as water or alcohol, it is not easy to disperse and requires a large amount of solvent dispersion. Since carbon fibers exist in the form of entangled with each other, it is very difficult to disperse using a dispersion solvent, and even if dispersed, it is not easy to obtain a high temperature insulating material having excellent heat insulation performance.
  • Carbon fiber felts are manufactured by collectively depositing spun carbon fibers through processes such as carding, carding, and needle punching, and impregnating them in a binder to laminate and pressurize to manufacture a heat insulating material. Unlike the above-mentioned method, it does not require a separate dispersion process, and is an efficient method for manufacturing insulation, but the trimming of edges is necessary due to uneven side density of the felt during the process of manufacturing carbon fiber felt. Since the opening and the carding process, the yield is reduced and the carbon fiber orientation is not good, there is a disadvantage that the production of a heat insulating material having excellent heat insulating performance is not easy.
  • the present invention solves the above problems, and by using a carbon fiber mat orthogonal apparatus, the surface density is uniform and the orientation of the carbon fiber is improved to produce a carbon fiber felt without a separate opening, carding process process yield and thermal insulation performance It is an object of the present invention to provide a method for producing a carbon fiber felt and a method for manufacturing a heat insulating material using the same compared to the prior art.
  • the orientation of the carbon fibers in the felt is made constant, there is an excellent heat insulating performance of the heat insulating material prepared using the same.
  • FIG. 2 is a detailed schematic view of a carbon fiber mat orthogonal apparatus in the apparatus for producing carbon fiber felt for implementing the method of the present invention.
  • Example 3 is a cross-sectional view of the carbon fiber felt prepared in Example 1.
  • Carbon fiber felt manufacturing method comprises the steps of (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; And (e) infusifying and carbonizing the precursor web while moving along the second transfer conveyor.
  • the pitch for producing carbon fiber may be a single or a mixture selected from the group consisting of coal coal tar pitch, petroleum residue oil pitch, but is not necessarily limited thereto.
  • the average length of the carbon fiber is 1 ⁇ 100mm, more preferably 50mm, the carbon fiber diameter may be 1 ⁇ 20 ⁇ m, more preferably 5 ⁇ 20 ⁇ m.
  • the length of the carbon fiber is short, it is impossible to manufacture the felt. If the length of the carbon fiber is long, the carbon fiber is aggregated in a bent form, so that it is difficult to control the uniform apparent density during the manufacture of the felt, and the carbon fiber orientation is not good.
  • the softening point of the pitch for producing carbon fibers is preferably 250 to 350 ° C. If the softening point is low, it is difficult to maintain the fiber shape due to the low viscosity during fiber spinning. If the softening point is high, the spinning temperature is high.
  • the spinning method of the pitch for producing carbon fibers is preferably a melt spinning method or a melt blown spinning method. Centrifugal spinning is difficult to collect and deposit carbon fibers in a certain direction. Winding spinning is easy to produce carbon fiber fabrics because of its long carbon fiber length, but is not suitable for producing carbon fiber felt.
  • the carbon fiber mat orthogonal apparatus includes a first conveying conveyor 201, a tray 202, and a second conveying conveyor 203.
  • step (b) the spun carbon fiber is pitched along the first transport conveyor 201 moving in the first direction.
  • the first conveying conveyor 201 serves to convey the pitch fibers radiated from the spinning nozzle in any first direction.
  • the first direction is preferably a direction orthogonal to the direction in which the radiation nozzles are arranged.
  • step (c) the conveyed pitch fibers are collected in a tray 202 reciprocating in the same direction as the first direction while lowering in the gravity direction.
  • the tray 202 reciprocates in the same direction as the first direction of the set first conveying conveyor.
  • step (d) the pitch fibers are lowered to the second conveyor 203 moving in the second direction from the tray 202 to form a precursor web composed of a plurality of desired layers.
  • the number of layers of the precursor web gathered in the 2nd conveyor 203 is 4-10. If the number of layers is less than 4, there is no great effect in eliminating the nonuniformity of surface density, and if the number of layers exceeds 10, the thickness becomes so thick that there is a problem that a long time is required for the subsequent process (incompatibility and carbonization process).
  • the second direction which is the direction in which the second transport conveyor 203 moves, is preferably perpendicular to the first direction, which is the direction in which the first transport conveyor 201 moves. That is, at this time, the transfer direction of the precursor web is changed, thereby causing an effect that the non-uniformity of the left and right surface density of the precursor web is canceled.
  • the arrangement direction of the spinning nozzle radiating the pitch for producing carbon fibers may coincide with the moving direction of the second transfer conveyor.
  • the moving speed of the first transfer conveyor 201 is V1
  • the moving speed of the second transfer conveyor is V2
  • V1 the moving speed of the first transfer conveyor 201
  • V2 the moving speed of the second transfer conveyor
  • V2 V1 / N
  • V1 and V3 satisfy the following expression (2).
  • V1 V3
  • step (e) while moving the precursor web along the second conveying conveyor through the infusion furnace 300, the carbonization through the infusible, carbonization furnace 400 to produce a carbon fiber felt.
  • the incompatibility process proceeds under an oxygen atmosphere.
  • Incompatibility is a process of increasing the molecular weight by crosslinking molecules with oxygen on the surface of the carbon fiber. If the incompatibility is not properly, there is a problem in that the carbon fiber carbonization process is thermally fused to the carbon fiber and entangled.
  • Incompatibility temperature is carried out between 150 ⁇ 400 °C, the temperature rising rate is very important.
  • the temperature increase rate is preferably 0.5 ⁇ 5 °C / min, there is a problem that the productivity is reduced when the temperature rising rate is low, when the temperature rising rate is high, the carbon fiber is thermally fused during the carbonization process. At this time, the oxygen content of the carbon fiber is increased, the oxygen content is appropriate 5 ⁇ 10%.
  • the infusible carbon fiber is subjected to a carbonization process. If the carbonization process is carried out in a non-oxidizing atmosphere, it is carried out at about 800 ⁇ 1000 °C. Carbonized carbon fiber has a carbon content of 90% or more.
  • the carbon fiber felt produced by the manufacturing method of the present invention has a uniform surface density, and the difference between the surface density of the center and the surface density of the left and right is preferably 0.01% to 10%, but is not limited thereto, and is 0.02% to 5%. More preferably, it is not limited thereto.
  • a needle punching 500 process is performed to produce the carbonized carbon fiber mat into carbon fiber felt.
  • By performing a needle punching process in the thickness direction of the carbon fiber mat it is possible to obtain a three-dimensional stable carbon fiber felt.
  • the carbon fiber felt is generally wound in roll form through the winder 600 for ease of storage and transportation. Therefore, when the apparent density of the carbon fiber felt is low, the felt may be broken during winding. On the contrary, when the apparent density is high, the winding becomes difficult in the form of a roll.
  • the apparent density of the carbon fiber felt is preferably 0.03 to 0.15 g / cm 3 .
  • Method for producing a carbon fiber felt of the present invention comprises the steps of (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; (e) dissolving and carbonizing the precursor web while moving along the second transfer conveyor to produce carbon fiber felt; (f) impregnating a binder while transferring the carbon fiber felt; (g) laminating and curing the carbon fiber felt impregnated with the binder; And (h) carbonizing and graphitizing the cured carbon fiber felt.
  • Steps (a) to (e) have already been described in the carbon fiber felt manufacturing process, and a detailed description thereof will be omitted herein.
  • the binder include at least one selected from phenol resins, furan resins, pitch for impregnation, epoxy resins, vinyl ester resins, polyimide resins, and sucrose.
  • step (g) the binder impregnated carbon fiber felt is cut to a predetermined size and laminated, and cured using a press. While maintaining the temperature at which the binder can be cured, pressure is applied such that the thickness of the carbon fiber felt can be compressed in half.
  • the carbon fiber heat insulating material cured in step (h) is carbonized and graphitized at about 1000 ° C. and 2000 ° C., respectively, in a non-oxidizing atmosphere.
  • Degreasing gas is generated as the binder is pyrolyzed during the carbonization process, and then pyrolysis gas is not generated through graphitization.
  • the carbon fiber insulation is completed, and the apparent density is preferably 0.1 to 0.3 g / cm 3 . If the apparent density is high, the thermal conductivity is increased to lower the thermal insulation performance. If the apparent density is low, the thermal insulation performance is deteriorated because the radiant heat is not blocked at a high temperature.
  • the coal-based high softening point isotropic pitch (SP: 280 ° C.) was spun through the spinning nozzle at a rate of 4 kg / hr, and carbon fibers were spun by melt blow spinning.
  • the width of the carbon fiber mat was 1.2m, the feed rate was 3m / min.
  • the carbon fiber mat was transferred to an infusible furnace and a carbonization furnace at a rate of 0.5 m / min.
  • the carbon fiber mat infusified at 150 to 350 ° C. was carbonized at about 800 ° C. and needle punched to prepare a carbon fiber felt having an apparent density of 0.05 g / cm 3 .
  • the coal-based high softening point pitch (SP: 280 ° C.) was spun through the spinning nozzle at a rate of 4 kg / hr, and carbon fibers were spun by melt blow spinning.
  • the spun pitch-based carbon fibers were transferred directly to an infusible furnace and a carbonization furnace without changing the process direction without using the carbon fiber mat orthogonal apparatus of the present invention.
  • the width of the carbon fiber mat was 1.2 m.
  • the carbon fiber mat was transferred to an infusible furnace and a carbonization furnace through a conveyor belt, where the speed of the conveyor belt was 0.5 m / min.
  • the carbon fiber mat infusified at 150 to 350 ° C was carbonized at about 800 ° C.
  • the carbonized carbon fiber mat was made of carbon fiber felt having an apparent density of 0.05 g / cm 3 by opening, carding and needle punching through a garnet cylinder.
  • the carbon fiber felt manufactured without a separate opening and carding process showed excellent characteristics with high process yield and low thermal conductivity.
  • Example 3 is a cross-sectional view of the carbon fiber felt prepared in Example 1, it was confirmed that the arrangement of the carbon fibers in the plane direction through the process through the carbon fiber mat orthogonal apparatus of the present invention.
  • Figure 4 is a cross section of the carbon fiber felt prepared in Comparative Example 1, there was no process of passing through the carbon fiber mat orthogonal apparatus of the present invention was confirmed that the arrangement of the carbon fibers irregular without direction.
  • Example 1 The surface density of each carbon fiber felt prepared by Example 1 and Comparative Example 1 was measured and shown in Table 2 below. Samples were taken at 10 ⁇ 10 cm by location.
  • Comparative Example 1 the difference between the median surface density (A), the left (B) and the right (C) surface densities was about 8% and about 7%, respectively, based on the median surface density. In contrast, the difference between the median surface density and the left and right surface densities of Example 1 was about 1% and about 0.4%, respectively.
  • Example 1 The carbon fiber felts prepared in Example 1 and Comparative Example 1 were impregnated in a resol-type phenolic resin, respectively, cured at 150 ° C. and carbonized, and then graphitized at 2000 ° C. to obtain a carbon fiber heat insulating material having an apparent density of 0.16 g / cm 3 . Prepared.
  • Example 1 Comparative Example 1 Carbon Fiber Insulation Apparent Density (g / cm 3 ) 0.16 0.16 Carbon Fiber Insulation Thermal Conductivity at 20 °C (W / mK) 0.068 0.127
  • the heat insulating material produced by the manufacturing method of the present invention is a constant orientation of the carbon fiber, it was confirmed that the excellent heat insulating performance of the heat insulating material prepared using this.

Abstract

The present invention relates to a carbon fiber felt manufacturing method and a method for manufacturing a heat insulation material using the same and, particularly, to a carbon fiber felt manufacturing method, which uses a carbon fiber mat orthogonal device for manufacturing, thereby making the surface density uniform and improving the orientation property of the carbon fiber, such that a carbon fiber felt is manufactured without separate fiber opening and carding processes, thereby providing more excellent process throughput and heat insulation performance than the prior art, and a method for manufacturing a heat insulation material using the same.

Description

탄소섬유 펠트 제조방법 및 이를 이용한 단열재의 제조방법Carbon fiber felt manufacturing method and insulation material manufacturing method using the same
본 발명은 탄소섬유 펠트 제조방법 및 이를 이용한 단열재의 제조방법으로, 구체적으로는 탄소섬유 매트 직교 장치를 이용하여 제조함으로써 면밀도가 균일하고 탄소섬유의 배향성이 향상되어 별도의 개섬, 소면 공정 없이 탄소섬유 펠트를 제조하여 공정 수율 및 단열 성능이 종래에 비해 우수한 탄소섬유 펠트를 제조하는 방법 및 이를 이용한 단열재의 제조방법에 관한 것이다.The present invention is a method of manufacturing a carbon fiber felt and a method of manufacturing a heat insulating material using the same, specifically, by using a carbon fiber mat orthogonal apparatus, the surface density is uniform and the orientation of the carbon fiber is improved to improve the carbon fiber without any separate opening or carding process The present invention relates to a method for producing a carbon fiber felt and a method for producing a heat insulating material using the same, which is superior to the conventional process yield and heat insulating performance by producing a felt.
탄소소재는 높은 열전도성, 전기 전도성, 우수한 기계 강도를 가진 소재로서, 예전부터 산업분야에 널리 사용되어 왔다. 이러한 탄소소재를 섬유상의 형태로 가공한 탄소섬유는 탄소함량이 90% 이상인 섬유상의 모양을 가진 소재를 지칭하며, 우수한 열전도성, 전기전도성, 기계적 물성을 보유한다. Carbon materials are materials having high thermal conductivity, electrical conductivity, and excellent mechanical strength, and have been widely used in industrial fields since ancient times. The carbon fiber processed in the form of fibrous carbon material refers to a fibrous material having a carbon content of 90% or more, and possesses excellent thermal conductivity, electrical conductivity, and mechanical properties.
탄소섬유는 섬유상의 모양을 가져 가공성이 뛰어나고 활용범위가 넓어 탄소소재 중에서도 특히 주목받고 있는 소재이다. 탄소섬유는 특히 고온에서 우수한 특성을 보이는데, 고온일수록 기계적 강도가 낮아지는 금속소재와 달리 온도가 높아질수록 기계적 강도가 증가하는 특성을 가지고 있으며, 열팽창계수가 낮고 비산화 분위기에서 3000℃까지 사용할 수 있는 유일한 소재로 손꼽힌다. Carbon fiber has a fibrous shape and is excellent in processability and has a wide range of applications. Carbon fiber has excellent properties especially at high temperatures. Unlike high-temperature metal materials, the mechanical strength of carbon fiber increases with high temperature. The carbon fiber has a low coefficient of thermal expansion and can be used up to 3000 ℃ in a non-oxidizing atmosphere. It is considered the only material.
탄소섬유는 크게 원료에 따라 구분되는데, PAN계 탄소섬유, 레이온계 탄소섬유, 피치계 탄소섬유로 구분되어 진다. PAN계 탄소섬유는 비교적 다른 소재에 비해 가볍고, 기계적 물성이 우수하여 골프채, 낚시대 등과 같은 고급 스포츠 레져용품에 많이 사용되며, 현재는 자동차, 선박 등 기존의 금속소재를 사용해 왔던 분야에서 금속을 대체할 수 있는 소재로 인정받고 있다. 레이온계 탄소섬유는 값싼 원료를 바탕으로 비교적 제조방법이 간단하고 대량생산이 용이하여 범용 탄소섬유로 사용이 가능하다. 피치계 탄소섬유는 석탄 콜타르 및 석유 잔사유를 원료로 하며 결정성에 따라 등방성 탄소섬유와 이방성 탄소섬유로 구분되고, 용도 및 제조방법에 따라 범용 소재와 특수 기능성 소재로서 널리 사용되고 있다.Carbon fibers are largely classified according to raw materials, and are divided into PAN-based carbon fibers, rayon-based carbon fibers, and pitch-based carbon fibers. PAN-based carbon fiber is lighter than other materials and has excellent mechanical properties, so it is widely used in high-end sports and leisure goods such as golf clubs and fishing rods, and is currently used to replace metals in fields that have used conventional metal materials such as automobiles and ships. It is recognized as the material which can be. Rayon-based carbon fiber can be used as a general-purpose carbon fiber because of its relatively simple manufacturing method and easy mass production based on cheap raw materials. Pitch-based carbon fiber is based on coal coal tar and petroleum residue oil, and is classified into isotropic carbon fiber and anisotropic carbon fiber according to crystallinity, and is widely used as a general purpose material and a special functional material according to the use and manufacturing method.
특히 피치계 탄소섬유는 값이 매우 저렴한 석탄 콜타르 및 석유 잔사유를 통해 제조되며, 모듈러스값이 높고 고온에서 열변형이 없어 산업소재로서 활용분야가 다양하다. 또한 제조방법에 따라 원하는 물성으로 제조가 가능하여, 범용 탄소섬유뿐만 아니라, 특수분야 및 기능성 소재로서 활용범위가 매우 넓은 것이 특징이다. 피치계 탄소섬유는 이러한 특성을 바탕으로 산업분야에서 수요가 급속도로 성장하고 있는 상황이며, 특히 고온 단열재 분야가 대표적이다.In particular, pitch-based carbon fiber is manufactured from coal coal tar and petroleum residue, which are very inexpensive, and have a high modulus value and no thermal deformation at high temperatures. In addition, according to the manufacturing method can be manufactured with the desired physical properties, as well as general-purpose carbon fiber, it is characterized by a very wide range of applications as special fields and functional materials. Pitch-based carbon fiber is a situation in which the demand is rapidly growing in the industrial field based on these characteristics, especially the high temperature insulation field.
고온 단열재는 약 2000℃ 이상의 로(furnace)에서 사용되는 특수 산업소재인데, 현재로서는 2000℃ 이상에서 사용이 가능한 소재로는 탄소섬유가 유일하다. 고온 단열재는 반도체 및 태양광 발전의 소재인 폴리실리콘 생산에 필수적인 소재이고, 우수한 단열성능과 고순도의 물성을 요구하며, 재료 원료로는 등방성 탄소섬유가 적합하다.High-temperature insulation is a special industrial material used in furnaces of about 2000 ° C or higher. Currently, carbon fiber is the only material that can be used above 2000 ° C. The high temperature insulation material is an essential material for the production of polysilicon, which is a material of semiconductor and photovoltaic power generation, requires excellent insulation performance and high purity physical properties, and isotropic carbon fiber is suitable as a material raw material.
고온 단열재를 제조하는 방법으로는 짧은 길이의 탄소섬유를 분산용매에 분산하여 바인더를 함침시켜 몰드를 이용해 성형하는 방법이 있다. 단열재 제조방법은 약 1~5mm 길이의 탄소섬유를 물, 혹은 알코올류와 같은 분산용매에 분산시켜 탄소섬유 단열재를 제조하는 방법인데, 분산이 쉽지 않고 분산용매가 대량으로 필요로 한다. 탄소섬유는 서로 엉켜있는 형태로 존재하기 때문에, 분산용매를 이용하여 분산시키는 것이 매우 어렵고 분산이 되더라도 효과가 좋지 않아 단열성능이 우수한 고온 단열재를 얻기가 쉽지 않다. As a method of manufacturing a high temperature insulation material, there is a method in which carbon fibers of short length are dispersed in a dispersion solvent, impregnated with a binder, and molded using a mold. Insulating material manufacturing method is a method for producing a carbon fiber insulating material by dispersing the carbon fiber of about 1 ~ 5mm length in a dispersion solvent such as water or alcohol, it is not easy to disperse and requires a large amount of solvent dispersion. Since carbon fibers exist in the form of entangled with each other, it is very difficult to disperse using a dispersion solvent, and even if dispersed, it is not easy to obtain a high temperature insulating material having excellent heat insulation performance.
고온 단열재를 제조하는 또 다른 방법으로는 탄소섬유 펠트를 이용하여 제조하는 것이다. 방사된 탄소섬유를 집합 퇴적하여 개섬, 소면, 니들 펀칭과 같은 공정을 거쳐 탄소섬유 펠트를 제조하고, 이를 바인더에 함침시켜 적층, 가압경화하여 단열재를 제조하는 방법이다. 앞서 언급된 방법과는 달리 별도의 분산공정이 필요없어, 단열재를 제조하는데 있어 효율적인 방법이지만, 탄소섬유 펠트를 제조하는 공정 중에 펠트의 좌우 면밀도가 불균일하여 엣지 손질(trimming)이 필요하며, 별도의 개섬, 소면공정을 거치므로, 수율이 감소하고 탄소섬유 배향이 좋지 않아 우수한 단열성능을 가진 단열재의 제조가 용이하지 않은 단점이 있다.Another method of manufacturing high temperature insulation is to use carbon fiber felt. Carbon fiber felts are manufactured by collectively depositing spun carbon fibers through processes such as carding, carding, and needle punching, and impregnating them in a binder to laminate and pressurize to manufacture a heat insulating material. Unlike the above-mentioned method, it does not require a separate dispersion process, and is an efficient method for manufacturing insulation, but the trimming of edges is necessary due to uneven side density of the felt during the process of manufacturing carbon fiber felt. Since the opening and the carding process, the yield is reduced and the carbon fiber orientation is not good, there is a disadvantage that the production of a heat insulating material having excellent heat insulating performance is not easy.
본 발명은 상기와 같은 문제점을 해결하고, 탄소섬유 매트 직교 장치를 이용하여 제조함으로써 면밀도가 균일하고 탄소섬유의 배향성이 향상되어 별도의 개섬, 소면 공정 없이 탄소섬유 펠트를 제조하여 공정 수율 및 단열 성능이 종래에 비해 우수한 탄소섬유 펠트를 제조하는 방법 및 이를 이용한 단열재의 제조방법을 제공하고자 하는데 그 목적이 있다.The present invention solves the above problems, and by using a carbon fiber mat orthogonal apparatus, the surface density is uniform and the orientation of the carbon fiber is improved to produce a carbon fiber felt without a separate opening, carding process process yield and thermal insulation performance It is an object of the present invention to provide a method for producing a carbon fiber felt and a method for manufacturing a heat insulating material using the same compared to the prior art.
상기의 목적을 달성하기 위한 본 발명의 일실시예에 의한 탄소섬유 펠트의 제조방법은 (a) 탄소섬유 제조용 피치를 방사하는 단계; (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계; (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계; (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계; 및 (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하는 단계를 포함하는 것을 특징으로 한다.Carbon fiber felt manufacturing method according to an embodiment of the present invention for achieving the above object comprises the steps of (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; And (e) infusifying and carbonizing the precursor web while moving along the second transfer conveyor.
또한, 상기의 목적을 달성하기 위한 본 발명의 또 다른 일실시예에 의한 탄소섬유 펠트의 제조방법은 (a) 탄소섬유 제조용 피치를 방사하는 단계; (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계; (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계; (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계; 및 (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하는 단계; (f) 상기 탄소섬유 펠트를 이송하면서 바인더를 함침시키는 단계; (g) 상기 바인더가 함침된 탄소섬유 펠트를 적층, 경화하는 단계; 및 (h) 상기 경화된 탄소섬유 펠트를 탄화 및 흑연화하는 단계를 포함하는 것을 특징으로 한다.In addition, the method for producing a carbon fiber felt according to another embodiment of the present invention for achieving the above object (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; And (e) infusing and carbonizing the precursor web while moving along the second transfer conveyor; (f) impregnating a binder while transferring the carbon fiber felt; (g) laminating and curing the carbon fiber felt impregnated with the binder; And (h) carbonizing and graphitizing the cured carbon fiber felt.
본 발명의 제조방법에 의하는 경우, 별도의 개섬, 소면 공정이 없어 공정이 단순화되고, 탄소섬유 펠트의 수율이 향상된다는 효과가 있다.According to the manufacturing method of the present invention, there is no separate opening and carding process, thereby simplifying the process and improving the yield of carbon fiber felt.
본 발명의 제조방법에 의하는 경우, 제조된 펠트 내 탄소섬유의 배향이 일정하게 되는바, 이를 이용하여 제조한 단열재의 단열성능이 우수한 효과가 있다.According to the production method of the present invention, the orientation of the carbon fibers in the felt is made constant, there is an excellent heat insulating performance of the heat insulating material prepared using the same.
도 1은 본 발명의 제조방법을 이행하기 위한 탄소섬유 펠트의 제조장치의 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the manufacturing apparatus of the carbon fiber felt for implementing the manufacturing method of this invention.
도 2는 본 발명의 제조방법을 이행하기 위한 탄소섬유 펠트의 제조장치 중 탄소섬유 매트 직교 장치의 상세 모식도이다.2 is a detailed schematic view of a carbon fiber mat orthogonal apparatus in the apparatus for producing carbon fiber felt for implementing the method of the present invention.
도 3은 실시예 1에 의해 제조된 탄소섬유 펠트의 단면이다.3 is a cross-sectional view of the carbon fiber felt prepared in Example 1.
도 4는 비교예 1에 의해 제조된 탄소섬유 펠트의 단면이다.4 is a cross-sectional view of the carbon fiber felt prepared by Comparative Example 1.
본 발명의 이점 및 특징, 및 이를 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods for achieving the same will be apparent with reference to the embodiments described below in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.
이하 본 발명의 바람직한 실시예에 따른 탄소섬유 펠트 제조방법 및 이를 이용한 단열재의 제조방법에 관하여 상세히 설명하면 다음과 같다. Hereinafter, a carbon fiber felt manufacturing method and a method of manufacturing a heat insulating material using the same according to a preferred embodiment of the present invention will be described in detail.
먼저 도 1, 2를 참조하여 탄소섬유 펠트 제조방법에 대하여 설명한다.First, the carbon fiber felt manufacturing method will be described with reference to FIGS. 1 and 2.
본 발명의 일실시예에 의한 탄소섬유 펠트의 제조방법은 (a) 탄소섬유 제조용 피치를 방사하는 단계; (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계; (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계; (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계; 및 (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하는 단계를 포함하는 것을 특징으로 한다.Carbon fiber felt manufacturing method according to an embodiment of the present invention comprises the steps of (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; And (e) infusifying and carbonizing the precursor web while moving along the second transfer conveyor.
상기 (a) 단계에서 방사노즐(100)을 통해 탄소섬유 제조용 피치를 방사한다. 여기에서, 상기 탄소섬유 제조용 피치는 석탄 콜타르 피치, 석유 잔사유 피치로 이루어진 군에서 선택한 단독 또는 혼합물일 수 있으며, 반드시 이에 한정하는 것은 아니다. Spinning the pitch for producing carbon fiber through the spinning nozzle 100 in the step (a). Here, the pitch for producing carbon fiber may be a single or a mixture selected from the group consisting of coal coal tar pitch, petroleum residue oil pitch, but is not necessarily limited thereto.
본 발명의 바람직한 구현예에 따르면, 상기 탄소섬유 평균길이가 1~100mm , 더욱 바람직하게는 50mm, 상기 탄소섬유 직경은 1~20㎛, 더욱 바람직하게는 5~20㎛일 수 있다.According to a preferred embodiment of the present invention, the average length of the carbon fiber is 1 ~ 100mm, more preferably 50mm, the carbon fiber diameter may be 1 ~ 20㎛, more preferably 5 ~ 20㎛.
탄소섬유 길이가 짧으면, 펠트제조가 불가능하며, 탄소섬유 길이가 길면 탄소섬유가 구부러진 형태로 집합퇴적되므로 펠트 제조시 균일한 겉보기 밀도로 조절이 어렵고, 탄소섬유 배향이 좋지 않다.If the length of the carbon fiber is short, it is impossible to manufacture the felt. If the length of the carbon fiber is long, the carbon fiber is aggregated in a bent form, so that it is difficult to control the uniform apparent density during the manufacture of the felt, and the carbon fiber orientation is not good.
탄소섬유 직경이 얇으면, 펠트 제조 공정시 탄소섬유가 부서지기 쉬워 수율이 낮아지는 문제점이 있으며, 너무 두꺼우면 탄소섬유 불융화가 제대로 이루어지지 않아, 탄소섬유 탄화공정시 열융착 현상이 발생한다.When the carbon fiber diameter is thin, there is a problem that the yield is low because the carbon fiber is easily broken during the felt manufacturing process, if too thick carbon fiber incompatibility is not properly made, heat fusion phenomenon occurs during the carbon fiber carbonization process.
상기 탄소섬유 제조용 피치의 연화점(softening point)은 250~350℃ 인 것이 바람직하다. 연화점이 낮으면 섬유 방사시 점도가 낮아 섬유형상을 유지하기 어려우며, 연화점이 높으면 방사온도가 높아지므로, 섬유가 산화되기 쉬워 원하는 물성의 탄소섬유를 얻기 어렵다.The softening point of the pitch for producing carbon fibers is preferably 250 to 350 ° C. If the softening point is low, it is difficult to maintain the fiber shape due to the low viscosity during fiber spinning. If the softening point is high, the spinning temperature is high.
탄소섬유 제조용 피치의 방사방법은 멜트-방사법 혹은 멜트-블로우 방사법이 바람직하다. 원심방사는 탄소섬유를 일정한 방향으로 집합 퇴적시키기 어려우며, 권취방사는 탄소섬유 길이가 길어 탄소섬유 직물을 제조하는 데는 용이하나, 탄소섬유 펠트를 제조하는데 적합하지 않다.The spinning method of the pitch for producing carbon fibers is preferably a melt spinning method or a melt blown spinning method. Centrifugal spinning is difficult to collect and deposit carbon fibers in a certain direction. Winding spinning is easy to produce carbon fiber fabrics because of its long carbon fiber length, but is not suitable for producing carbon fiber felt.
다음으로, 탄소섬유 매트 직교 장치(200)를 이용하여 상기 (b) 단계, (c) 단계, (d) 단계를 수행한다. 탄소섬유 매트 직교 장치는 제1이송컨베이어(201), 트레이(202), 제2이송컨베이어(203)를 포함한다.Next, the steps (b), (c) and (d) are performed using the carbon fiber mat orthogonal apparatus 200. The carbon fiber mat orthogonal apparatus includes a first conveying conveyor 201, a tray 202, and a second conveying conveyor 203.
먼저 (b) 단계에서 상기 방사된 탄소섬유 제조용 피치를 제1방향으로 이동하는 제1이송컨베이어(201)를 따라 이송한다.First, in step (b), the spun carbon fiber is pitched along the first transport conveyor 201 moving in the first direction.
상기 제1이송컨베이어(201)는 방사노즐로부터 방사되는 피치섬유를 임의의 제1방향으로 이송하는 역할을 한다. 이 때 상기 제1방향은 방사노즐이 배열된 방향과 직교하는 방향인 것이 바람직하다.The first conveying conveyor 201 serves to convey the pitch fibers radiated from the spinning nozzle in any first direction. In this case, the first direction is preferably a direction orthogonal to the direction in which the radiation nozzles are arranged.
다음으로, (c) 단계에서 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이(202)에 집합시킨다. Next, in step (c), the conveyed pitch fibers are collected in a tray 202 reciprocating in the same direction as the first direction while lowering in the gravity direction.
상기 트레이(202)는 상기 설정된 제1이송컨베이어의 제1방향과 동일한 방향으로 왕복운동한다. The tray 202 reciprocates in the same direction as the first direction of the set first conveying conveyor.
다음으로, (d) 단계에서 상기 집합된 피치섬유를 상기 트레이(202)로부터 제2방향으로 이동하는 제2컨베이어(203)로 피치섬유를 하강시켜 원하는 복수의 층으로 이루어진 전구체 웹을 형성시킨다. 제2컨베이어(203)에 집합되는 전구체 웹의 층 수는 4~10인 것이 바람직하다. 층 수가 4 미만이면 면밀도의 불균일을 해소하는데 큰 효과가 없으며, 층 수가 10을 초과하면 두께가 너무 두꺼워져서 후속 공정(불융화 및 탄화공정)에 많은 시간이 소요되는 문제가 있다.Next, in step (d), the pitch fibers are lowered to the second conveyor 203 moving in the second direction from the tray 202 to form a precursor web composed of a plurality of desired layers. It is preferable that the number of layers of the precursor web gathered in the 2nd conveyor 203 is 4-10. If the number of layers is less than 4, there is no great effect in eliminating the nonuniformity of surface density, and if the number of layers exceeds 10, the thickness becomes so thick that there is a problem that a long time is required for the subsequent process (incompatibility and carbonization process).
상기 제2이송컨베이어(203)가 이동하는 방향인 상기 제2방향은 상기 제1이송컨베이어(201)가 이동하는 방향인 상기 제1방향과 직교하는 것이 바람직하다. 즉, 이 때 전구체 웹의 이송방향이 변화하게 되면서, 이에 따라 전구체 웹의 좌우 면밀도의 불균일이 상쇄되는 효과가 발생된다. The second direction, which is the direction in which the second transport conveyor 203 moves, is preferably perpendicular to the first direction, which is the direction in which the first transport conveyor 201 moves. That is, at this time, the transfer direction of the precursor web is changed, thereby causing an effect that the non-uniformity of the left and right surface density of the precursor web is canceled.
이 점 고려할 때, 상기 탄소섬유 제조용 피치를 방사하는 방사노즐의 배열방향은 상기 제2이송컨베이어의 이동방향과 일치할 수 있다.In view of this point, the arrangement direction of the spinning nozzle radiating the pitch for producing carbon fibers may coincide with the moving direction of the second transfer conveyor.
본 발명의 제조방법에 있어서, 상기 (b) 단계, (c) 단계, (d) 단계에서, 상기 제1이송컨베이어(201)의 이동속도를 V1, 상기 제2이송컨베이어의 이동속도를 V2, 상기 전구체 웹의 층 수를 N이라 하는 경우, V1, V2, N이 하기 식 1을 만족하는 것이 바람직하다.In the manufacturing method of the present invention, in the steps (b), (c), (d), the moving speed of the first transfer conveyor 201 is V1, the moving speed of the second transfer conveyor is V2, When the number of layers of the precursor web is N, it is preferable that V1, V2, and N satisfy the following formula (1).
[식 1][Equation 1]
V2 = V1/NV2 = V1 / N
또한, 본 발명의 제조방법에 있어서 상기 제1이송컨베이어의 이동속도를 V1, 상기 트레이의 이동속도를 V3라 하는 경우, V1, V3가 하기 식 2를 만족하는 것이 바람직하다.In the manufacturing method of the present invention, when the moving speed of the first transfer conveyor is V1 and the moving speed of the tray is V3, it is preferable that V1 and V3 satisfy the following expression (2).
[식 2][Equation 2]
V1 = V3V1 = V3
다음으로, (e) 단계에서 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화로(300)를 거쳐 불융화, 탄화로(400)를 거쳐 탄화하여 탄소섬유 펠트를 제조한다. Next, in step (e) while moving the precursor web along the second conveying conveyor through the infusion furnace 300, the carbonization through the infusible, carbonization furnace 400 to produce a carbon fiber felt.
불융화 공정은 산소 분위기 하에서 진행한다. 불융화 공정은 탄소섬유 표면에 산소를 이용하여 분자끼리 가교시킴으로써 분자량을 높여주는 공정이다. 불융화가 제대로 되지 않을 경우 탄소섬유 탄화공정에서 탄소섬유까지 열융착되어 엉켜붙는 문제점이 발생한다. The incompatibility process proceeds under an oxygen atmosphere. Incompatibility is a process of increasing the molecular weight by crosslinking molecules with oxygen on the surface of the carbon fiber. If the incompatibility is not properly, there is a problem in that the carbon fiber carbonization process is thermally fused to the carbon fiber and entangled.
불융화 온도는 150~400℃ 사이에서 진행되며, 이때 승온속도가 매우 중요하다. 승온속도는 0.5~5℃/min이 바람직하며, 승온속도가 낮을 경우 생산성이 감소되는 문제점이 있으며, 승온속도가 높을 경우, 탄소섬유가 탄화공정시 열융착되는 현상이 발생한다. 이때, 탄소섬유의 산소함량이 증가되는데, 산소함량은 5~10%가 적당하다.Incompatibility temperature is carried out between 150 ~ 400 ℃, the temperature rising rate is very important. The temperature increase rate is preferably 0.5 ~ 5 ℃ / min, there is a problem that the productivity is reduced when the temperature rising rate is low, when the temperature rising rate is high, the carbon fiber is thermally fused during the carbonization process. At this time, the oxygen content of the carbon fiber is increased, the oxygen content is appropriate 5 ~ 10%.
상기 불융화된 탄소섬유는 탄화공정을 거치게 된다. 탄화공정은 비산화 분위기에서 진행되면, 약 800~1000℃에서 실시한다. 탄화된 탄소섬유는 탄소함량이 90% 이상이 된다.The infusible carbon fiber is subjected to a carbonization process. If the carbonization process is carried out in a non-oxidizing atmosphere, it is carried out at about 800 ~ 1000 ℃. Carbonized carbon fiber has a carbon content of 90% or more.
본 발명의 제조방법에 의해 제조된 탄소섬유 펠트는 면밀도가 고르며, 중앙의 면밀도와 좌 및 우의 면밀도 사이 차이가 0.01% ~ 10%인 것이 바람직하나 이에 한정되는 것은 아니며, 0.02% ~ 5%인 것이 더욱 바람직하나 이에 한정되는 것은 아니다.The carbon fiber felt produced by the manufacturing method of the present invention has a uniform surface density, and the difference between the surface density of the center and the surface density of the left and right is preferably 0.01% to 10%, but is not limited thereto, and is 0.02% to 5%. More preferably, it is not limited thereto.
탄화된 탄소섬유 매트를 탄소섬유 펠트로 제조하기 위해 니들 펀칭(500) 공정을 실시한다. 탄소섬유 매트의 두께방향으로 니들 펀칭 공정을 함으로써, 3차원적으로 안정된 탄소섬유 펠트를 얻을 수 있게 된다.A needle punching 500 process is performed to produce the carbonized carbon fiber mat into carbon fiber felt. By performing a needle punching process in the thickness direction of the carbon fiber mat, it is possible to obtain a three-dimensional stable carbon fiber felt.
탄소섬유 펠트는 일반적으로 보관 및 수송의 용이성을 위해 권취기(600)를 통해 롤 형태로 권취하게 된다. 따라서 탄소섬유 펠트의 겉보기 밀도가 낮을 경우, 권취시 펠트가 끊어질 수 있고, 반대로 겉보기 밀도가 높을 경우 롤 형태로 권취가 어렵게 된다. 탄소섬유 펠트의 겉보기 밀도는 0.03~0.15g/cm3가 바람직하다.The carbon fiber felt is generally wound in roll form through the winder 600 for ease of storage and transportation. Therefore, when the apparent density of the carbon fiber felt is low, the felt may be broken during winding. On the contrary, when the apparent density is high, the winding becomes difficult in the form of a roll. The apparent density of the carbon fiber felt is preferably 0.03 to 0.15 g / cm 3 .
다음으로, 먼저 탄소섬유 펠트를 이용한 단열재의 제조방법에 대하여 설명한다.Next, the manufacturing method of the heat insulating material using a carbon fiber felt is demonstrated first.
본 발명의 탄소섬유 펠트의 제조방법은 (a) 탄소섬유 제조용 피치를 방사하는 단계; (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계; (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계; (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계; (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하여 탄소섬유 펠트를 제조하는 단계; (f) 상기 탄소섬유 펠트를 이송하면서 바인더를 함침시키는 단계; (g) 상기 바인더가 함침된 탄소섬유 펠트를 적층, 경화하는 단계; 및 (h) 상기 경화된 탄소섬유 펠트를 탄화 및 흑연화하는 단계를 포함하는 것을 특징으로 한다.Method for producing a carbon fiber felt of the present invention comprises the steps of (a) spinning a pitch for producing carbon fiber; (b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction; (c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction; (d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray; (e) dissolving and carbonizing the precursor web while moving along the second transfer conveyor to produce carbon fiber felt; (f) impregnating a binder while transferring the carbon fiber felt; (g) laminating and curing the carbon fiber felt impregnated with the binder; And (h) carbonizing and graphitizing the cured carbon fiber felt.
상기 (a)~(e) 공정은 상기 탄소섬유 펠트 제조공정에서 이미 설명한 바, 여기에서는 구체적인 설명을 생략하기로 한다.Steps (a) to (e) have already been described in the carbon fiber felt manufacturing process, and a detailed description thereof will be omitted herein.
상기 (f) 단계에서 롤러를 통해 제조된 탄소섬유 펠트를 이송하면서 바인더를 함침시킨다. 사용가능한 바인더로는 페놀수지, 퓨란수지, 함침용 피치, 에폭시 수지, 비닐에스테르 수지, 폴리이미드 수지 및 슈크로스 중에서 선택한 1종 이상을 들 수 있다. Impregnating the binder while transferring the carbon fiber felt produced through the roller in the step (f). Examples of the binder that can be used include at least one selected from phenol resins, furan resins, pitch for impregnation, epoxy resins, vinyl ester resins, polyimide resins, and sucrose.
다음으로, 상기 (g) 단계에서 상기 바인더가 함침된 탄소섬유 펠트를 일정한 크기로 잘라 적층시키고, 가압프레스를 이용하여 경화시킨다. 바인더가 경화될 수 있는 온도를 유지하면서, 탄소섬유 펠트의 두께가 반으로 압축될 수 있을 정도의 압력을 가한다.Next, in step (g), the binder impregnated carbon fiber felt is cut to a predetermined size and laminated, and cured using a press. While maintaining the temperature at which the binder can be cured, pressure is applied such that the thickness of the carbon fiber felt can be compressed in half.
다음으로 상기 (h)단계에서 경화된 탄소섬유 단열재를 비산화 분위기에서 약 1000℃, 2000℃에서 각각 탄화, 흑연화한다. 탄화공정 중에 바인더가 열분해 되면서 탈지가스가 발생하며, 이후 흑연화를 통해 열분해 가스가 발생하지 않도록 한다. 흑연화 이후에 탄소섬유 단열재 제조가 완료되며 겉보기 밀도가 0.1~0.3g/cm3이 되도록 하는 것이 바람직하다. 겉보기 밀도가 높으면 열전도도가 높아져 단열성능이 낮아지며, 겉보기 밀도가 낮을 경우, 고온에서의 복사열을 차단하지 못해 단열성능이 저하되는 문제점이 발생한다.Next, the carbon fiber heat insulating material cured in step (h) is carbonized and graphitized at about 1000 ° C. and 2000 ° C., respectively, in a non-oxidizing atmosphere. Degreasing gas is generated as the binder is pyrolyzed during the carbonization process, and then pyrolysis gas is not generated through graphitization. After graphitization, the carbon fiber insulation is completed, and the apparent density is preferably 0.1 to 0.3 g / cm 3 . If the apparent density is high, the thermal conductivity is increased to lower the thermal insulation performance. If the apparent density is low, the thermal insulation performance is deteriorated because the radiant heat is not blocked at a high temperature.
이하, 본 발명의 바람직한 실시예 및 이에 대비되는 비교예를 통해 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred examples of the present invention and comparative examples.
실시예 1 Example 1
석탄계 고연화점 등방성 피치(SP: 280℃)를 4kg/hr 속도로 방사노즐을 통해 밀어내며 멜트블로우 방사법에 의해 탄소섬유를 방사하였다. The coal-based high softening point isotropic pitch (SP: 280 ° C.) was spun through the spinning nozzle at a rate of 4 kg / hr, and carbon fibers were spun by melt blow spinning.
방사된 피치계 탄소섬유를 퇴적시켜 이송하면서 본 발명의 탄소섬유 매트 직교장치를 통해 m2당 6층을 다시 집합 퇴적시켰다. Six layers per m 2 were collectively deposited again through the carbon fiber mat orthogonal apparatus of the present invention while depositing and transporting the spun pitch carbon fibers.
이때, 탄소섬유 매트의 폭은 1.2m 이고, 이송속도는 3m/min 이었다. 상기 탄소섬유 매트는 불융화로, 탄화로로 0.5m/min의 속도로 이송하였다. At this time, the width of the carbon fiber mat was 1.2m, the feed rate was 3m / min. The carbon fiber mat was transferred to an infusible furnace and a carbonization furnace at a rate of 0.5 m / min.
150~350℃에서 불융화시킨 탄소섬유 매트를 약 800℃에서 탄화하고 니들 펀칭하여 겉보기 밀도 0.05g/cm3의 탄소섬유 펠트로 제조하였다.The carbon fiber mat infusified at 150 to 350 ° C. was carbonized at about 800 ° C. and needle punched to prepare a carbon fiber felt having an apparent density of 0.05 g / cm 3 .
비교예 1 Comparative Example 1
석탄계 고연화점 피치(SP: 280℃)를 4kg/hr 속도로 방사노즐을 통해 밀어내며 멜트블로우 방사법에 의해 탄소섬유를 방사하였다. The coal-based high softening point pitch (SP: 280 ° C.) was spun through the spinning nozzle at a rate of 4 kg / hr, and carbon fibers were spun by melt blow spinning.
방사된 피치계 탄소섬유를 본 발명의 탄소섬유 매트 직교장치를 이용하지 않고 공정방향의 변경없이 곧바로 불융화로, 탄화로로 이송하였다. The spun pitch-based carbon fibers were transferred directly to an infusible furnace and a carbonization furnace without changing the process direction without using the carbon fiber mat orthogonal apparatus of the present invention.
이 때 탄소섬유 매트의 폭은 1.2m 이었다. 상기 탄소섬유 매트는 컨베이어 벨트를 통해 불융화로, 탄화로로 이송하였고, 이때 컨베이어 벨트의 속도는 0.5m/min 이었다. At this time, the width of the carbon fiber mat was 1.2 m. The carbon fiber mat was transferred to an infusible furnace and a carbonization furnace through a conveyor belt, where the speed of the conveyor belt was 0.5 m / min.
150~350℃에서 불융화시킨 탄소섬유 매트를 약 800℃에서 탄화하였다. 탄화된 탄소섬유 매트는 가넷실린더를 통해 개섬, 소면하고 니들 펀칭하여 겉보기 밀도 0.05g/cm3의 탄소섬유 펠트로 제조하였다.The carbon fiber mat infusified at 150 to 350 ° C was carbonized at about 800 ° C. The carbonized carbon fiber mat was made of carbon fiber felt having an apparent density of 0.05 g / cm 3 by opening, carding and needle punching through a garnet cylinder.
평가evaluation
1. 탄소섬유 펠트의 수율 및 열전도도 평가1. Evaluation of yield and thermal conductivity of carbon fiber felt
상기 제조된 실시예 1 및 비교예 1의 탄소섬유 펠트의 수율 및 열전도도를 측정하고 하기 표 1에 나타내었다.The yield and thermal conductivity of the carbon fiber felt of Example 1 and Comparative Example 1 prepared above were measured and shown in Table 1 below.
표 1
구분 실시예1 비교예1
고연화점 피치로부터 얻어진 탄소섬유 펠트 수율 (%) 75 65
탄소섬유 펠트 열전도도(at 20℃ (W/mK)) 0.035 0.050
Table 1
division Example 1 Comparative Example 1
Carbon fiber felt yield (%) obtained from high softening point pitch 75 65
Carbon Fiber Felt Thermal Conductivity (at 20 ℃ (W / mK)) 0.035 0.050
상기 표 1에서 확인할 수 있는 바와 같이, 본 발명의 제조방법에 의할 경우, 탄소섬유 매트의 좌우 면밀도의 불균일이 상쇄되어, 면밀도의 불균일에 의해 별도의 탄소섬유 매트의 엣지를 절단하는 양이 줄어들어 공정 수율이 높아지는 효과가 있음을 알 수 있었다. As can be seen in Table 1, according to the manufacturing method of the present invention, the non-uniformity of the left and right surface density of the carbon fiber mat is canceled, the amount of cutting the edge of the separate carbon fiber mat by the non-uniformity of the surface density is reduced It was found that there is an effect of increasing the process yield.
또한 탄소섬유 피치를 배열하고 재퇴적시킴으로써 탄소섬유 피치의 배향성이 우수하여, 별도의 개섬, 소명 공정이 불필요하게 되어 탄소섬유 펠트의 수율이 현저히 향상되는 효과가 있음을 확인할 수 있었다.In addition, by arranging and re-depositing the carbon fiber pitch, it was excellent in the orientation of the carbon fiber pitch, it was confirmed that there is an effect that the yield of the carbon fiber felt remarkably improved because a separate opening and extruding process is unnecessary.
또한, 본 발명의 공정을 이용하고, 별도의 개섬, 소면공정 없이 제조한 탄소섬유 펠트가 공정수율이 높고, 열전도도가 낮은 우수한 특성을 나타내었다. In addition, using the process of the present invention, the carbon fiber felt manufactured without a separate opening and carding process showed excellent characteristics with high process yield and low thermal conductivity.
섬유의 배향이 우수할수록 낮은 열전도도값을 보이는데, 상기 열전도도값을 통해 본 발명의 제조방법에 의하는 경우, 탄소섬유 펠트 내 탄소섬유의 배향이 우수하다는 것을 확인할 수 있었다.The better the orientation of the fibers, the lower the thermal conductivity, but according to the method of the present invention through the thermal conductivity, it was confirmed that the orientation of the carbon fibers in the carbon fiber felt was excellent.
2. 탄소섬유 펠트의 단면 평가2. Evaluation of cross section of carbon fiber felt
상기 제조된 실시예 1 및 비교예 1의 탄소섬유 펠트의 단면을 대비, 평가하였다. 결과는 각각 도 3, 4에 나타내었다.The cross sections of the carbon fiber felts of Example 1 and Comparative Example 1 prepared above were compared and evaluated. The results are shown in FIGS. 3 and 4, respectively.
도 3은 실시예 1에 의해 제조된 탄소섬유 펠트의 단면으로, 본 발명의 탄소섬유 매트 직교장치를 통과하는 과정을 통해 탄소섬유의 배열이 면 방향으로 일정하게 배열된 것을 확인할 수 있었다. 3 is a cross-sectional view of the carbon fiber felt prepared in Example 1, it was confirmed that the arrangement of the carbon fibers in the plane direction through the process through the carbon fiber mat orthogonal apparatus of the present invention.
도 4는 비교예 1에 의해 제조된 탄소섬유 펠트의 단면으로, 본 발명의 탄소섬유 매트 직교장치를 통과하는 과정이 없어 탄소섬유의 배열이 방향성 없이 불규칙하게 되어 있는 것을 확인할 수 있었다.Figure 4 is a cross section of the carbon fiber felt prepared in Comparative Example 1, there was no process of passing through the carbon fiber mat orthogonal apparatus of the present invention was confirmed that the arrangement of the carbon fibers irregular without direction.
3. 면밀도 평가3. Surface density evaluation
상기 실시예 1 및 비교예 1에 의해 제조된 탄소섬유 펠트의 위치별 면밀도를 측정하여 하기 표 2에 나타내었다. 샘플은 위치별로 10×10cm로 채취하였다.The surface density of each carbon fiber felt prepared by Example 1 and Comparative Example 1 was measured and shown in Table 2 below. Samples were taken at 10 × 10 cm by location.
표 2
구분 면밀도(좌) 면밀도(중앙) 면밀도(우)
실시예1 490 g/m2 495 g/m2 493 g/m2
비교예1 447 g/m2 491 g/m2 453 g/m2
TABLE 2
division Surface density (left) Surface density (center) Surface density (right)
Example 1 490 g / m 2 495 g / m 2 493 g / m 2
Comparative Example 1 447 g / m 2 491 g / m 2 453 g / m 2
비교예 1에서 볼 때 중앙 면밀도(A)와 좌(B) 및 우(C) 면밀도의 차이는 중앙 면밀도를 기준으로 각각 약 8% 및 약 7% 였다. 그와는 다르게 실시예 1의 중앙 면밀도와 좌 및 우 면밀도의 차이는 각각 약 1% 및 약 0.4% 였다. 이를 통해 본 발명의 탄소섬유 펠트의 제조방법을 이용하면 중앙, 좌 및 우에서 고른 면밀도를 가진 탄소섬유 펠트를 제조할 수 있다. In Comparative Example 1, the difference between the median surface density (A), the left (B) and the right (C) surface densities was about 8% and about 7%, respectively, based on the median surface density. In contrast, the difference between the median surface density and the left and right surface densities of Example 1 was about 1% and about 0.4%, respectively. By using this method of manufacturing the carbon fiber felt of the present invention it is possible to produce a carbon fiber felt having an even surface density in the center, left and right.
4. 단열재 성능 평가4. Insulation performance evaluation
실시예 1 및 비교예 1에 의해 제조된 탄소섬유 펠트를 각각 레졸형 페놀수지에 함침시키고, 150℃에서 경화하고 탄화한 뒤에 2000℃에서 흑연화하여 겉보기 밀도 0.16g/cm3의 탄소섬유 단열재를 제조하였다.The carbon fiber felts prepared in Example 1 and Comparative Example 1 were impregnated in a resol-type phenolic resin, respectively, cured at 150 ° C. and carbonized, and then graphitized at 2000 ° C. to obtain a carbon fiber heat insulating material having an apparent density of 0.16 g / cm 3 . Prepared.
상기 제조된 단열재의 열전도도 측정 결과를 하기 표 3에 나타내었다.The thermal conductivity measurement results of the prepared insulation is shown in Table 3 below.
표 3
실시예 1 비교예 1
탄소섬유 단열재 겉보기 밀도(g/cm3) 0.16 0.16
탄소섬유 단열재 열전도도at 20℃ (W/mK) 0.068 0.127
TABLE 3
Example 1 Comparative Example 1
Carbon Fiber Insulation Apparent Density (g / cm 3 ) 0.16 0.16
Carbon Fiber Insulation Thermal Conductivity at 20 ℃ (W / mK) 0.068 0.127
상기 확인할 수 있는 바와 같이, 본 발명의 제조방법에 의해 제조된 단열재는 탄소섬유의 배향이 일정하게 되는바, 이를 이용하여 제조한 단열재의 단열성능이 우수한 효과가 있음을 확인할 수 있었다.As can be seen from the above, the heat insulating material produced by the manufacturing method of the present invention is a constant orientation of the carbon fiber, it was confirmed that the excellent heat insulating performance of the heat insulating material prepared using this.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. In the above description, the embodiment of the present invention has been described, but various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications may belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (10)

  1. (a) 탄소섬유 제조용 피치를 방사하는 단계;(a) spinning a pitch for producing carbon fiber;
    (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계;(b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction;
    (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계;(c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction;
    (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계;(d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray;
    (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하는 단계;(e) infusing and carbonizing the precursor web while moving along the second transfer conveyor;
    를 포함하는 탄소섬유 펠트의 제조방법.Method of producing a carbon fiber felt comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제2이송컨베이어가 이동하는 방향인 상기 제2방향은 상기 제1이송컨베이어가 이동하는 방향인 상기 제1방향과 직교하는 것을 특징으로 하는 탄소섬유 펠트의 제조방법. The second direction, which is the direction in which the second conveying conveyor moves, is perpendicular to the first direction, which is the direction in which the first conveying conveyor moves.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제1이송컨베이어의 이동속도를 V1, 상기 제2이송컨베이어의 이동속도를 V2, 상기 전구체 웹의 층 수를 N이라 하는 경우, V1, V2, N이 하기 식 1을 만족하는 것을 특징으로 하는 탄소섬유 펠트의 제조방법.When the moving speed of the first transfer conveyor is V1, the moving speed of the second transfer conveyor is V2, and the number of layers of the precursor web is N, V1, V2, and N satisfy Equation 1 below. Method for producing carbon fiber felt.
    [식 1][Equation 1]
    V2 = V1/NV2 = V1 / N
  4. 제 1항에 있어서,The method of claim 1,
    상기 제1이송컨베이어의 이동속도를 V1, 상기 트레이의 이동속도를 V3라 하는 경우, V1, V3가 하기 식 2를 만족하는 것을 특징으로 하는 탄소섬유 펠트의 제조방법.When the moving speed of the first conveying conveyor is V1 and the moving speed of the tray is V3, V1 and V3 satisfy the following formula (2).
    [식 2][Equation 2]
    V1 = V3V1 = V3
  5. 제 1항에 있어서,The method of claim 1,
    상기 탄소섬유 제조용 피치를 방사하는 방사노즐의 배열방향은 상기 제2이송컨베이어의 이동방향과 일치하는 것을 특징으로 하는 탄소섬유 펠트의 제조방법.The arrangement direction of the spinning nozzle for spinning the pitch for producing the carbon fiber is the manufacturing method of the carbon fiber felt, characterized in that the same as the moving direction of the second conveying conveyor.
  6. 제 1항에 있어서,The method of claim 1,
    상기 탄소섬유 제조용 피치는 연화점이 250~350℃인 것을 특징으로 하는 탄소섬유 펠트의 제조방법.Pitch for the carbon fiber manufacturing method of producing a carbon fiber felt, characterized in that the softening point is 250 ~ 350 ℃.
  7. 제 1항에 있어서,The method of claim 1,
    상기 불융화 온도는 150~400℃, 승온속도는 0.5~5℃/min인 것을 특징으로 하는 탄소섬유 펠트의 제조방법.The infusible temperature is 150 ~ 400 ℃, the temperature increase rate is 0.5 ~ 5 ℃ / min method for producing a carbon fiber felt.
  8. 제 1항에 있어서,The method of claim 1,
    상기 탄화 온도는 800~1000℃인 것을 특징으로 하는 탄소섬유 펠트의 제조방법.The carbonization temperature is a method for producing a carbon fiber felt, characterized in that 800 ~ 1000 ℃.
  9. 제 1항에 있어서, The method of claim 1,
    상기 제조방법에 의해 제조된 탄소섬유 펠트는, 펠트의 중심을 기준으로 좌와 우의 면밀도가 0.01~5% 미만인 것을 특징으로 하는 탄소섬유 펠트의 제조방법.The carbon fiber felt produced by the manufacturing method, the carbon fiber felt, characterized in that the left and right surface density of less than 0.01 ~ 5% based on the center of the felt.
  10. (a) 탄소섬유 제조용 피치를 방사하는 단계;(a) spinning a pitch for producing carbon fiber;
    (b) 상기 방사된 피치섬유를 제1방향으로 이동하는 제1이송컨베이어를 따라 이송시키는 단계;(b) transferring the spun pitch fibers along a first conveying conveyor moving in a first direction;
    (c) 상기 이송된 피치섬유를 중력방향으로 하강시키면서 상기 제1방향과 동일한 방향으로 왕복운동하는 트레이에 집합시키는 단계;(c) collecting the conveyed pitch fibers in a tray reciprocating in the same direction as the first direction while lowering in the gravity direction;
    (d) 상기 트레이에서 피치섬유를 중력방향으로 하강시키면서 복수의 층으로 이루어진 전구체 웹을 형성하는 단계;(d) forming a precursor web composed of a plurality of layers while lowering pitch fibers in a gravity direction in the tray;
    (e) 상기 전구체 웹을 상기 제2이송컨베이어를 따라 이동시키면서 불융화, 탄화하여 탄소섬유 펠트를 제조하는 단계;(e) dissolving and carbonizing the precursor web while moving along the second transfer conveyor to produce carbon fiber felt;
    (f) 상기 탄소섬유 펠트를 이송하면서 바인더를 함침시키는 단계;(f) impregnating a binder while transferring the carbon fiber felt;
    (g) 상기 바인더가 함침된 탄소섬유 펠트를 적층, 경화하는 단계;(g) laminating and curing the carbon fiber felt impregnated with the binder;
    (h) 상기 경화된 탄소섬유 펠트를 탄화 및 흑연화하는 단계;(h) carbonizing and graphitizing the cured carbon fiber felt;
    를 포함하는 탄소섬유 단열재의 제조방법.Method for producing a carbon fiber insulation comprising a.
PCT/KR2014/012930 2013-12-27 2014-12-26 Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same WO2015099504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0165001 2013-12-27
KR1020130165001A KR101523443B1 (en) 2013-12-27 2013-12-27 Preparing method of carbon fiber felt and heat insulator using thereof

Publications (1)

Publication Number Publication Date
WO2015099504A1 true WO2015099504A1 (en) 2015-07-02

Family

ID=53395628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012930 WO2015099504A1 (en) 2013-12-27 2014-12-26 Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same

Country Status (2)

Country Link
KR (1) KR101523443B1 (en)
WO (1) WO2015099504A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4049744A1 (en) 2021-02-26 2022-08-31 Camfil AB Regenerable air filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952271B2 (en) * 1990-08-23 1999-09-20 株式会社ペトカ Carbon fiber felt excellent in high-temperature insulation properties and method for producing the same
JP2003286643A (en) * 2002-03-25 2003-10-10 Osaka Gas Co Ltd Method for producing carbon fiber felt
KR20110036531A (en) * 2008-06-12 2011-04-07 데이진 가부시키가이샤 Nonwoven fabric, felt and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117094A (en) * 2009-12-02 2011-06-16 Teijin Ltd Web, felt comprising the same, and methods for producing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952271B2 (en) * 1990-08-23 1999-09-20 株式会社ペトカ Carbon fiber felt excellent in high-temperature insulation properties and method for producing the same
JP2003286643A (en) * 2002-03-25 2003-10-10 Osaka Gas Co Ltd Method for producing carbon fiber felt
KR20110036531A (en) * 2008-06-12 2011-04-07 데이진 가부시키가이샤 Nonwoven fabric, felt and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4049744A1 (en) 2021-02-26 2022-08-31 Camfil AB Regenerable air filter

Also Published As

Publication number Publication date
KR101523443B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
KR950001655B1 (en) Preformed yarn useful in forming composite articles and process of producing same
KR101628461B1 (en) Carbon fiber insulator and preparing method for thereof
WO2021020922A1 (en) Method for manufacturing graphite sheet
WO2014204282A1 (en) Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor
KR20110036531A (en) Nonwoven fabric, felt and manufacturing method thereof
CN113584940A (en) Preparation method of carbon fiber paper
WO2019212284A1 (en) Multilayer graphite sheet with excellent electromagnetic shielding capability and thermal conductivity and manufacturing method therefor
WO2018131896A1 (en) Liquid crystal composite carbon fiber and method for preparing same
CN114164557B (en) Carbon fiber hard felt and preparation method thereof
CN102912476A (en) Preparation method of carbonized silicon (SiC) sub-micron fibers
WO2015099504A1 (en) Carbon fiber felt manufacturing method and method for manufacturing heat insulation material using same
US20150376816A1 (en) Apparatus for producing pitch-based chopped carbon fiber and producing method of the chopped fiber
US10336620B2 (en) Method of making a graphite film
JP2011117094A (en) Web, felt comprising the same, and methods for producing them
JPH03121398A (en) Heat insulating material
CN108251919A (en) A kind of interval adds continuous Pitch-Based Graphite Fibers filament preparation process
WO2019112287A1 (en) Method for preparing heat-radiating paste composition using waste carbon fibers, method for manufacturing heat-radiating thin film using same, and heat-radiating thin film comprising same
WO2016052912A1 (en) Thermoplastic prepreg intermediate material for fuel cell separation plate and method for manufacturing thermoplastic prepreg for fuel cell separation plate by using same
CN115029816A (en) Ultrahigh-thermal-conductivity mesophase pitch-based carbon fiber, composite material and preparation method thereof
KR101053101B1 (en) Hot press sintering mold and its manufacturing method
CN115353403A (en) High-purity light carbon fiber/carbon composite thermal field material and preparation method thereof
CN111441139B (en) Preparation method of liquid crystal polymer film
KR20190001045A (en) Method of manufacturing carbon paper using cabon nano tube containing polyacrylonitrile short fiber
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
KR20170040529A (en) Carbon fiber felt and method for preparing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873769

Country of ref document: EP

Kind code of ref document: A1