WO2021020397A1 - Antenna module, electronic device, and contactless communication method - Google Patents

Antenna module, electronic device, and contactless communication method Download PDF

Info

Publication number
WO2021020397A1
WO2021020397A1 PCT/JP2020/028912 JP2020028912W WO2021020397A1 WO 2021020397 A1 WO2021020397 A1 WO 2021020397A1 JP 2020028912 W JP2020028912 W JP 2020028912W WO 2021020397 A1 WO2021020397 A1 WO 2021020397A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
communication
communication antenna
module
pair
Prior art date
Application number
PCT/JP2020/028912
Other languages
French (fr)
Japanese (ja)
Inventor
長田 孝之
悠太 川上
快人 近藤
忠広 黒田
Original Assignee
ホシデン株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホシデン株式会社, 学校法人慶應義塾 filed Critical ホシデン株式会社
Priority to JP2021535361A priority Critical patent/JPWO2021020397A1/ja
Publication of WO2021020397A1 publication Critical patent/WO2021020397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H04B5/48

Definitions

  • the present invention relates to an antenna module, an electronic device, and a non-contact communication method.
  • the conventional antenna module is described in Patent Document 1 below.
  • This module includes a substrate, a first loop antenna, and a second loop antenna.
  • the first loop antenna and the second loop antenna are concentrically provided on the same surface of the substrate.
  • Each of the first loop antenna and the second loop antenna has a pair of terminals.
  • a signal is input to each of the first loop antenna and the second loop antenna, and non-contact communication is performed by each of the first loop antenna and the second loop antenna.
  • the first loop antenna and the second loop antenna are arranged concentrically as described above, so that the first loop antenna is generated.
  • the noise interferes with the non-contact communication of the second loop antenna, and the noise generated from the second loop antenna interferes with the non-contact communication of the first loop antenna.
  • the present invention is to provide an antenna module, an electronic device, and a non-contact communication method capable of preferably simultaneously performing non-contact communication using a plurality of communication antennas.
  • the antenna module of one aspect of the present invention includes a plurality of communication antennas arranged substantially concentrically.
  • the plurality of communication antennas have an antenna body and a pair of terminal portions.
  • a digital signal is input to at least one terminal portion of the pair of terminal portions, and is output from the other terminal portion through the antenna body.
  • the pair of terminals have inner ends that are spaced apart from each other and adjacent to each other.
  • the plurality of communication antennas include at least a first communication antenna and a second communication antenna.
  • the second communication antenna is arranged outside the first communication antenna at intervals from the first communication antenna.
  • the area between the center of the first communication antenna and the pair of virtual first half straight lines passing through at least a part of the inner ends of the pair of terminals of the first communication antenna is defined as the first virtual area, and the center of the first communication antenna.
  • the first virtual area is used.
  • a pair of terminal portions of the first communication antenna and a pair of terminal portions of the second communication antenna are arranged so that the region and the second virtual region do not overlap each other in a plan view.
  • the terminal portion of the first communication antenna is arranged apart from the terminal portion of the second communication antenna so that the first virtual area and the second virtual area do not overlap each other in the plan view. Therefore, when non-contact communication is performed simultaneously using the first communication antenna and the second communication antenna, the noise generated from the terminal part of the first communication antenna is generated from the terminal part of the second communication antenna and the second side of the other party.
  • non-contact communication can be preferably performed at the same time by using at least the first communication antenna and the second communication antenna.
  • the pair of terminal portions can be configured to further have an outer end on the opposite side of the inner end.
  • the region between the center of the first communication antenna and the pair of virtual third half lines extending radially through at least a part of the outer ends of the pair of terminals of the first communication antenna is defined as the third virtual region, and the first The area between the center of the communication antenna or the center of the second communication antenna and the virtual pair of fourth half lines extending through at least a part of the outer ends of the pair of terminals of the second communication antenna is referred to as the fourth virtual area.
  • a pair of terminal portions of the first communication antenna and a pair of terminal portions of the second communication antenna shall be arranged so that the third virtual area and the fourth virtual area do not overlap each other in a plan view. Is possible.
  • the pair of terminal portions of the first communication antenna is connected to the pair of terminal portions of the second communication antenna so that the third virtual area and the fourth virtual area do not overlap each other in the plan view. Since they are arranged further apart, noise generated from the terminal portion of the first communication antenna is generated from the terminal portion of the second communication antenna when the first communication antenna and the second communication antenna are used for simultaneous non-contact communication. Non-contact communication with the other party's second communication antenna or noise generated from the terminal of the second communication antenna causes non-contact communication between the terminal of the first communication antenna and the other party's first communication antenna. The possibility of affecting the antenna is further reduced.
  • the electric field strength of the pair of terminals of the first communication antenna is the first communication.
  • the electric field strength of the pair of terminals of the second communication antenna may be stronger than the electric field strength of the antenna body of the antenna, and may be stronger than the electric field strength of the antenna body of the second communication antenna.
  • the electric field strength of one terminal of the first communication antenna is the first communication.
  • the electric field strength of one terminal portion of the second communication antenna may be stronger than the electric field strength of the other terminal portion of the antenna, and may be stronger than the electric field strength of the other terminal portion of the second communication antenna.
  • the transmission speed of the digital signal input to the second communication antenna can be slower than the transmission speed of the digital signal input to the first communication antenna.
  • the electric length of the communication antenna is increased, so that it becomes difficult for the communication antenna to transmit a digital signal having a high transmission speed. Therefore, by transmitting a digital signal having a slow transmission speed to the second communication antenna having a long electric length and transmitting a digital signal having a high transmission speed to a first communication antenna having a short electric length, different communication speeds are simultaneously generated. Contact communication can be preferably performed.
  • the width dimension of the first communication antenna is larger than the width dimension of the second communication antenna.
  • the electric length of the first communication antenna can be increased.
  • the electric length of the first communication antenna can be substantially the same as or close to the electric length of the second communication antenna.
  • the antenna module of any of the above aspects can be configured to further include a ground conductor arranged between the first communication antenna and the second communication antenna.
  • the ground conductor reduces the possibility of crosstalk between the digital signal transmitted to the first communication antenna and the digital signal transmitted to the second communication antenna.
  • Non-contact communication can be more preferably performed simultaneously with the first communication antenna and the second communication antenna.
  • the antenna module of any of the above embodiments can be configured to further include an insulating substrate. It is possible to have a configuration in which a plurality of communication antennas of any of the above embodiments are provided substantially concentrically on the substrate.
  • the antenna body of the first communication antenna can be formed into a substantially annular shape with a part broken.
  • the pair of terminal portions of the first communication antenna can be both ends of the antenna body of the first communication antenna.
  • the antenna body of the second communication antenna can have a substantially annular shape with a part broken.
  • the pair of terminal portions of the second communication antenna can be both ends of the antenna body of the second communication antenna.
  • the antenna module of any of the above aspects can be configured to further include a first transmitter and a second transmitter.
  • the first transmission unit can be configured to be capable of transmitting a digital signal to at least one of the pair of terminal units of the first communication antenna.
  • the second transmission unit can be configured to be capable of transmitting a digital signal to at least one of the pair of terminal units of the second communication antenna.
  • the non-contact communication device of one aspect of the present invention includes a first antenna module and a second antenna module rotatably supported by the first antenna module.
  • the first antenna module and the second antenna module can be the antenna module of any of the above aspects.
  • the first communication antenna of the first antenna module and the first communication antenna of the second antenna module are arranged so as to be aligned in the axial direction of the rotation axis of the second antenna module, and the first antenna module is the first.
  • the two communication antennas and the second communication antenna of the second antenna module are arranged so as to be aligned in the axial direction.
  • the second antenna module does not need to be rotatably supported by the first antenna module, and may be configured to face each other during non-contact communication.
  • FIG. 1 of the 1st antenna module of the electronic device It is a schematic sectional view of the 1st antenna module and the 2nd antenna module of the electronic device which concerns on Example 1 of this invention, and the schematic enlarged view of the ⁇ part. It is a 2-2 sectional view in FIG. 1 of the 1st antenna module of the electronic device. It is 3-3 sectional view in FIG. 1 of the 1st antenna module and the 2nd antenna module of the electronic device. It is a block diagram of the 1st antenna module and the 2nd antenna module of the electronic device. It is explanatory drawing for demonstrating 1st example of the positional relationship of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device.
  • FIG. 5 is a schematic plan view of a substrate, a communication antenna, a ground conductor, and a charging antenna of the first antenna module and the second antenna module of the electronic device according to the second embodiment of the present invention.
  • FIG. 5 is a schematic plan view of a substrate, a communication antenna, a ground conductor, and a charging antenna of the first antenna module and the second antenna module of the electronic device according to the third embodiment of the present invention.
  • the first antenna module M1 (hereinafter, also simply referred to as module M1) and the second antenna module M2 (hereinafter, simply referred to as module M2) of the electronic device D according to a plurality of examples including the first embodiment of the present invention. ) Will be described with reference to FIGS. 1 to 6C.
  • the module M2 will be described.
  • FIG. 1 shows the module M1 and the module M2 of the first embodiment
  • FIG. 2 shows the module M1 of the first embodiment
  • FIG. 3 shows the module M2 of the first embodiment.
  • FIG. 4 is a block diagram of the module M1 and the module M2 of the first embodiment.
  • 5A and 5B are explanatory views for explaining the first and second examples of the positional relationship of the first and second communication antennas 200a described later in the module M1 and the module M2 of the first embodiment.
  • 6A, 6B, and 6C are for explaining the positional relationship of the first, second, and third design modification examples of the first and second communication antennas 200a described later in the module M1 and the module M2 of the first embodiment. It is explanatory drawing.
  • the electronic device D includes a module M1 and a module M2.
  • the module M1 supports the module M2 on a virtual rotation axis P or a real rotation axis so as to be rotatable within a predetermined angle range or 360 °.
  • FIG. 1 shows a virtual rotation axis P of the module M2.
  • the ZZ'direction shown in FIG. 1 corresponds to the axial direction of the rotation axis P.
  • Module M1 includes a substrate 100a (for example, a substrate or an insulator) having an insulating property.
  • the outer shape of the substrate 100a can be arbitrarily set, and for example, it can be circular or polygonal when viewed from the ZZ'direction.
  • the substrate 100a has a first surface 101a, a second surface 102a on the opposite side thereof, and a plurality of conductive lines 110a.
  • the conductive line 110a is provided inside the first surface 101a of the substrate 100a, the second surface 102a of the substrate 100a, and / or the substrate 100a.
  • Module M1 further includes a plurality of communication antennas 200a.
  • Each of the plurality of communication antennas 200a of the module M1 is arranged so as to be arranged at intervals in the ZZ'direction with respect to each of the plurality of communication antennas 200b of the module M2.
  • Each of the plurality of communication antennas 200a of the module M1 can be electromagnetically coupled to each of the plurality of communication antennas 200b of the module M2.
  • Each of the communication antennas 200a and one of the communication antennas 200b are electromagnetically coupled to each other to form a coupler.
  • the distance (communication distance) in the ZZ'direction from the communication antenna 200a to the communication antenna 200b at the time of electromagnetic field coupling is preferably a short distance of about 0 mm to several mm, but is limited to this. is not it.
  • the plurality of communication antennas 200a are conductors (see FIG. 2), metal plates, coils, or the like provided substantially concentrically on the first surface 101a of the substrate 100a.
  • the conductor may be formed on the first surface 101a of the substrate 100a by (a) a well-known printing method, photolithography, or the like, or (b) the first surface of the substrate 100a by sputtering, electroless plating, or vapor deposition. After forming the conductor film on 101a, the conductor may be formed by removing unnecessary parts of the conductor film by etching with a laser or a chemical, or (c) a metal complex dispersed in the substrate 100a.
  • a plating film may be formed on the plating catalyst by electroless plating or the like.
  • the surface of the communication antenna 200a on the Z direction side may be flat, but the surface is not limited to this.
  • the substantially concentric shape in the present invention means not only that a plurality of communication antennas 200a are arranged concentrically with their centers C aligned, but also sequentially inside (substantially concentric) without matching the centers C. It shall include those that are arranged.
  • the substantially concentric shape in the present invention does not matter whether or not the centers C of the plurality of communication antennas 200a coincide with each other.
  • the center C may be arranged so as to coincide with the rotation axis P (see FIGS. 1 to 3), and the center C is the rotation axis P. It may be arranged in the vicinity of, but is not limited to this.
  • the center C of at least one communication antenna 200a may be arranged so as to coincide with the rotation axis P, or the center C of at least one communication antenna 200a may be arranged. It may be arranged in the vicinity of the rotation axis P, but is not limited to this. It should be noted that, in FIG. 4, although the plurality of communication antennas 200a are arranged in parallel for convenience of illustration, they do not show the actual arrangement relationship of the plurality of communication antennas 200a.
  • the plurality of communication antennas 200a have an antenna main body 210a and a pair of terminal portions 221a and 222a.
  • the antenna main bodies 210a of the plurality of communication antennas 200a are provided on the first surface 101a of the substrate 100a at intervals substantially concentrically.
  • the plurality of antenna bodies 210a includes at least one set of adjacent antenna bodies 210a. In one set or adjacent antenna bodies 210a of each set, the inner dimension of the outer antenna body 210a is larger than the outer dimension of the inner antenna body 210a. There is a gap between the adjacent antenna bodies 210a, and they are not in contact with each other.
  • the antenna body 210a located on the innermost side of the plurality of antenna bodies 210a will be referred to as the innermost antenna body 210a
  • the antenna body 210a located on the outermost side will be referred to as the outermost antenna body 210a.
  • the shape of the innermost antenna body 210a is arbitrary, but for example, when viewed from the Z direction side (in a plan view), the antenna body 210a is partially broken (for example, a partially broken annular shape (FIG. 2). , 5A, 5B and 6B) or partially broken polygonal ring (not shown), substantially annular (eg, annular (see FIGS. 6A and 6C) or polygonal ring (not shown)), abbreviated. It can be U-shaped, circular or polygonal.
  • the antenna main body 210a other than the innermost antenna main body 210a of the plurality of antenna main bodies 210a is a substantially annular shape (for example, a partially broken annular shape) when viewed from the Z direction side (in a plan view). 2.
  • Fig. 5A, Fig. 5B and Fig. 6B or partially broken polygonal ring (not shown), substantially ring (for example, annular (see FIGS. 6A and 6C) or polygonal ring (not shown)) or It is almost U-shaped.
  • the terminal portions 221a and 222a are a portion where a digital signal is input and / or a portion where a digital signal is output.
  • the terminal portions 221a and 222a are provided on the first surface 101a of the substrate 100a, are located away from the center C of the antenna main body 210a, and are arranged at intervals from each other.
  • the terminal portions 221a and 222a may be a) an arbitrary part of the antenna main body 210a, or b) may extend from the antenna main body 210a.
  • the terminal portions 221a and 222a when the terminal portions 221a and 222a have the configuration of a), the terminal portions 221a and 222a can be in any of the following modes a-1 and a-2. a-1)
  • the terminal portion 221a In each communication antenna 200a, when the antenna body 210a is substantially annular with a part broken, the terminal portion 221a is one end of the antenna body 210a (one of both ends of the antenna body within the claims).
  • the terminal portion 222a can be configured as the other end of the antenna body 210a (corresponding to the other end of both ends of the antenna body in the claims) (see FIGS. 2, 5A and 5B). ).
  • each communication antenna 200a when the antenna body 210a is substantially annular, the terminal portions 221a and 222a can be configured as a part of the antenna body 210a (see FIG. 6A).
  • a portion to which one of the pair of through-hole electrodes of the antenna body 210a is connected is designated as a terminal portion 221a, and the other is designated as a terminal portion 222a. It is possible to do.
  • the terminal portions 221a and 222a can be in any of the following modes b-1 and b-2.
  • each communication antenna 200a when the antenna body 210a is a substantially annular shape in which a part is broken, the terminal portion 221a extends from one end of the antenna body 210a, and the terminal portion 222a is the other end of the antenna body 210a. It is possible to have a configuration in which the terminal portions 221a and 222a extend from the portions and are arranged so as to be adjacent to each other (see FIG. 6B).
  • each communication antenna 200a when the antenna main body 210a is substantially annular, the terminal portions 221a and 222a may be arranged so as to extend from a part of the antenna main body 210a and to be adjacent to each other. It is possible (see FIG. 6C).
  • the terminal portions 221a and 222a have any of the configurations a) and b), in each communication antenna 200a, the terminal portions 221a and 222a are located outside the corresponding antenna main body 210a when viewed from the Z direction side. It is arranged inside another antenna body 210a and has an inner end adjacent to each other and an outer end on the opposite side thereof. The inner end and the outer end may have a first corner portion located inside (center C side of the antenna body 210a) and a second corner portion located outside, but the present invention is not limited thereto. ..
  • the plurality of communication antennas 200a include at least the first communication antenna 200a and the second communication antenna 200a.
  • the first communication antenna 200a is the inner communication antenna 200a of the adjacent communication antennas 200a among the plurality of communication antennas 200a
  • the second communication antenna 200a is the outer communication antenna of the adjacent communication antennas 200a. It is 200a.
  • the antenna body 210a of the first communication antenna 200a is referred to as the first antenna body 210a
  • the terminal portions 221a and 222a of the first communication antenna 200a are referred to as the first terminal portions 221a and 222a
  • the second The antenna body 210a of the communication antenna 200a is referred to as the second antenna body 210a
  • the terminal portions 221a and 222a of the second communication antenna 200a are referred to as the second terminal portions 221a and 222a.
  • the first antenna body 210a can be the innermost antenna body 210a of any of the above embodiments (see FIGS. 2 and 5A to 6C), and the innermost antenna body of any of the above embodiments. It is also possible to use an antenna body 210a other than the 210a and the outermost antenna body 210a.
  • the first terminal portions 221a and 222a can be terminal portions 221a and 222a in any of the above embodiments.
  • the second antenna main body 210a is an antenna main body 210a of any of the above aspects other than the innermost antenna main body 210a among the plurality of antenna main bodies 210a, and is attached to the first antenna main body 210a outside the first antenna main body 210a. On the other hand, they are arranged at intervals.
  • the second terminal portions 221a and 222a can be the terminal portions 221a and 222a of any of the above aspects.
  • a pair of virtual half straight lines extending radially from the center C of the first antenna main body 210a of the first communication antenna 200a through at least a part of the inner ends of the first terminal portions 221a and 222a of the first communication antenna 200a.
  • a half straight line L1 first half straight line L1
  • a pair of virtual antennas extending radially from the center C of the first antenna body 210a and / or the center C of the second antenna body 210a through at least a part of the inner ends of the second terminal portions 221a and 222a of the second communication antenna 200a.
  • the half line be the half line L2 (second half line L2).
  • the half straight lines L1 and L2 may pass through the first corner portion of the inner end of the first and second terminal portions 221a and 222a, or may pass through the first corner portion of the inner end of the first and second terminal portions 221a and 222a. It may pass through the two corners, or may pass through all the inner ends of the first and second terminal portions 221a and 222a.
  • the virtual area between the half straight lines L1 is defined as the first virtual area
  • the virtual area between the half straight lines L2 is defined as the second virtual area.
  • a pair of virtual half lines extending radially from the center C of the first antenna main body 210a of the first communication antenna 200a through at least a part of the outer ends of the first terminal portions 221a and 222a of the first communication antenna 200a. Let it be a half straight line L3 (third half straight line L3).
  • a pair of virtual antennas extending radially from the center C of the first antenna body 210a and / or the center C of the second antenna body 210a through at least a part of the outer ends of the second terminal portions 221a and 222a of the second communication antenna 200a.
  • the half line be the half line L4 (fourth half line L4).
  • the half straight lines L3 and L4 may pass through the first corner portion of the outer end of the first and second terminal portions 221a and 222a, or may pass through the first corner portion of the outer end of the first and second terminal portions 221a and 222a. It may pass through the two corners, or may pass through all the outer ends of the first and second terminal portions 221a and 222a.
  • the virtual area between the half straight lines L3 is defined as the third virtual area.
  • the third virtual area includes the first virtual area.
  • the virtual area between the half straight lines L4 is defined as the fourth virtual area.
  • the fourth virtual area includes the second virtual area.
  • the first terminal portions 221a and 222a and the second terminal portions 221a and 222a are arranged so that at least the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view). (See FIG. 5A).
  • the second terminal portion 221a should not be located in the region between the half straight lines L1 and L3 extending through at least a part of the inner end and the outer end of the first terminal portion 221a and / or the first.
  • the first terminal portions 221a and 222a are arranged so that the two terminal portions 222a are not located in the region between the half straight lines L1 and L3 extending through at least a part of the inner end and the outer end of the first terminal portion 222a. It is arranged away from the second terminal portions 221a and 222a.
  • the first terminal portions 221a and 222a and the second terminal portions 221a and 222a are arranged so that the third virtual area and the fourth virtual area do not overlap each other when viewed from the Z direction side (in a plan view). Also good (see FIG. 5B). In this case, the first terminal portions 221a and 222a are arranged farther from the second terminal portions 221a and 222a than in the former case.
  • a virtual straight line extending from the center C of the first antenna main body 210a so as to divide the first virtual area in half is defined as the first dividing line
  • the second virtual area is divided in half from the center C of the first antenna main body 210a.
  • the first dividing line and the second dividing line of the first terminal portions 221a and 222a and the second terminal portions 221a and 222a are the first antenna main body 210a. It is possible to arrange the antenna so as to be located around the center C at an angular interval of about 90 ° to about 180 °.
  • the first dividing line and the second dividing line are approximately 180 ° around the center C of the first antenna main body 210a (FIGS. 2 and 5A). (See FIG. 6C), it is possible to arrange the configurations so that they are located at an angular interval of approximately 120 ° or approximately 90 °. Regardless of which of the above angles the angle between the first dividing line and the second dividing line is, the third virtual area and the fourth virtual area are viewed from the Z direction side (in a plan view). Do not overlap with each other.
  • the first dividing line may extend so as to divide the third virtual area in half, and the second dividing line may extend so as to divide the fourth virtual area in half.
  • the electrical length of the first communication antenna 200a is such that a digital signal is input from the first terminal portion 221a during transmission, passes through the first antenna main body 210a to reach the second terminal portion 222a, and the digital signal is transmitted to the second terminal.
  • the distance is input from the unit 222a, passes through the first antenna main body 210a, and reaches the first terminal unit 221a, or each of these distances.
  • the electrical length of the second communication antenna 200a is the distance from the first terminal portion 221a to the second terminal portion 222a through the second antenna main body 210a during transmission, and the second digital signal during transmission. It is the distance input from the terminal portion 222a, passing through the second antenna main body 210a to reach the first terminal portion 221a, or the distances of each of them.
  • the electrical length of the second communication antenna 200a is because the second antenna main body 210a is arranged outside the first antenna main body 210a, and the area of the second antenna main body 210a is larger than the area of the first antenna main body 210a. , It becomes longer than the electric length of the first communication antenna 200a.
  • the width dimension W of the first antenna main body 210a can be made larger than the width dimension W of the second antenna main body 210a.
  • the width dimension W of the first antenna main body 210a can be set to 0.5 to 1.0 mm
  • the width dimension W of the second antenna main body 210a can be set to 1.0 to 1.5 mm. If the width dimension W of the first antenna main body 210a is made larger than the width dimension W of the second antenna main body 210a, the area of the first antenna main body 210a increases, and as a result, the electric length of the first communication antenna 200a increases. To do.
  • the width dimension W of the first antenna main body 210a is set to be substantially the same as or close to the electric length of the second communication antenna 200a of the second antenna main body 210a. It may be larger than the width dimension W.
  • the area of the antenna body 210a may be increased.
  • the width dimension W of the first antenna main body 210a may be larger than the width dimension W of the second antenna main body 210a, and the electric length of the first communication antenna 200a may be shorter than the electric length of the second communication antenna 200a. Further, the width dimension W of the first antenna main body 210a may be smaller than the width dimension W of the second antenna main body 210a, or the width dimension W of both may be the same.
  • Module M1 may further include at least one ground conductor 300a.
  • the at least one ground conductor 300a is a substantially annular shape (for example, an annular shape (see FIG. 2) or a polygonal ring shape) provided on the first surface 101a of the substrate 100a, a substantially annular shape (for example, an annular shape) or a partially broken ring shape. It is a polygonal ring) or a substantially U-shaped conductor or a metal plate, and is arranged between adjacent communication antennas 200a among a plurality of communication antennas 200a.
  • the conductor can be formed in the same manner as the conductor of the communication antenna 200a.
  • At least one ground conductor 300a is connected to the ground.
  • the outer line of at least one ground conductor 300a may extend along the inner line of the antenna body 210a of the communication antenna 200a outside the adjacent communication antenna 200a, or may extend along the inner line of the at least one ground conductor 300a. May extend along the outline of the antenna body 210a of the communication antenna 200a inside the adjacent communication antennas 200a, but is not limited thereto. At least one ground conductor 300a can be omitted.
  • Module M1 may further include a communication circuit unit 400a.
  • the communication circuit unit 400a is mounted on the second surface 102a of the substrate 100a.
  • the communication circuit unit 400a has a number of transmission units 410a and / or a restoration unit 420a corresponding to the number of the plurality of communication antennas 200a.
  • Each transmission unit 410a is electrically connected to the terminal units 221a and 222a of the corresponding communication antenna 200a via the conductive line 110a of the substrate 100a.
  • Each transmission unit 410a is composed of a logic circuit such as an IC capable of transmitting a digital signal to at least one of the terminal units 221a and 222a of the corresponding communication antenna 200a, or software processed by a processor or the like.
  • the digital signal that can be transmitted by each transmission unit 410a can be a square wave differential signal having a wide band frequency component or a square wave single-ended signal having a wide band frequency component.
  • This digital signal contains a high frequency component of several hundred MHz or more, and more preferably contains a high frequency component of 1 GHz to 5 GHz, but the digital signal is not limited thereto.
  • the transmission speed of the differential signal can be 500 kbps to 1.5 Gbps, but is not limited to this.
  • the transmission speed of the single-ended signal can be set to 500 kbps to 1.5 Gbps, but the transmission speed is not limited to this.
  • the digital signal of the present invention is not limited to the above-mentioned differential signal or single-ended signal.
  • each transmission unit 410a transmits a positive signal of the differential signal to one of the terminal units 221a and 222a of the corresponding communication antenna 200a, and the other terminal unit. It is configured to transmit the negative side signal of the differential signal to.
  • a positive side signal is input from one terminal part, is output from the other terminal part through the antenna main body 210a, and a negative side signal is input from the other terminal part, and the antenna It will be output from one of the terminals through the main body 210a.
  • the electric field strength of the other terminal (input / output terminal) of the communication antenna 200a is used for communication. It becomes stronger than the electric field strength of the antenna body 210a of the antenna 200a.
  • the electrical length of the first communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission, passes through the first antenna main body 210a, and reaches the other terminal portion.
  • the distance and the negative side signal are input from the other terminal portion at the time of transmission, and become the respective distances of the distance to reach one terminal portion through the first antenna main body 210a.
  • the electrical length of the second communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission and reaches the other terminal portion through the second antenna main body 210a.
  • each transmitting unit 410a is configured to transmit the single-ended signal to any one of the terminal units 221a and 222a of the corresponding communication antenna 200a.
  • a single-ended signal is input from one terminal portion, passes through the antenna main body 210a, and is output from the other terminal portion.
  • the electric field strength of one of the communication antennas 200a (terminals for input and output) is the antenna of the communication antenna 200a.
  • the electrical length of the first communication antenna 200a is such that the single-ended signal is input from one terminal portion at the time of transmission and reaches the other terminal portion through the first antenna main body 210a. Will be the distance.
  • the electrical length of the second communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission, passes through the second antenna main body 210a, and reaches the other terminal portion. It becomes the distance of.
  • the plurality of transmission units 410a include at least the first transmission unit 410a and the second transmission unit 410a.
  • the first transmission unit 410a is a transmission unit 410a of any of the above aspects electrically connected to the first terminal units 221a and 222a of the first communication antenna 200a via the conductive line 110a of the substrate 100a.
  • the second transmission unit 410a is a transmission unit 410a of any of the above embodiments electrically connected to the second terminal portions 221a and 222a of the second communication antenna 200a via the conductive line 110a of the substrate 100a.
  • the first transmission unit 410a and the second transmission unit 410a can be configured to transmit digital signals having the same transmission speed.
  • the second transmission unit 410a may be configured to be capable of transmitting a digital signal having a transmission speed slower than the transmission speed of the digital signal transmitted by the first transmission unit 410a.
  • Each restoration unit 420a is electrically connected to the terminal units 221a and 222a of the corresponding communication antenna 200a via the conductive line 110a of the substrate 100a.
  • Each restoration unit 420a receives a received signal induced in the communication antenna 200a by electromagnetically coupling the corresponding communication antenna 200a with the corresponding communication antenna 200b of the module M2 as described above, and uses the received signal as the source. It is composed of a logic circuit such as an IC that can be restored to a digital signal of the above and output, or software processed by a processor or the like.
  • Each restoration unit 420a can be, for example, a comparator circuit having a hysteresis characteristic.
  • the plurality of communication antennas 200a can be used for transmission and reception. If at least one of the plurality of communication antennas 200a is dedicated to transmission, the restoration unit 420a for that amount may be omitted, and if at least one of the plurality of communication antennas 200a is dedicated to reception, the transmission unit 410a for that amount may be omitted. good.
  • the communication circuit unit 400a can be omitted. In this case, it is preferable that the plurality of communication antennas 200a can be electrically connected to the transmission unit and / or the restoration unit of the communication circuit unit outside the module M1 through the substrate 100a.
  • Module M1 may further include at least one charging antenna 500a.
  • At least one charging antenna 500a is arranged so as to be arranged at intervals in the ZZ'direction with respect to at least one charging antenna 500b of the module M2.
  • the at least one charging antenna 500a has a configuration capable of performing at least one of non-contact power transmission and non-contact power reception with at least one charging antenna 500b of the module M2.
  • the at least one charging antenna 500a is a conductor, a metal plate or a coil (see FIG. 2A) provided on the first surface 101a of the substrate 100a, similarly to the communication antenna 200a.
  • At least one charging antenna 500a may be arranged outside the outermost communication antenna 200a, or may be arranged inside the innermost communication antenna 200a.
  • At least one charging antenna 500a can be substantially annular, partially broken substantially annular, arcuate or U-shaped, and the internal dimension of at least one charging antenna 500a is It is larger than the external dimensions of the outermost communication antenna 200a.
  • the at least one charging antenna 500a has an arbitrary shape, but is substantially annular (for example, annular or polygonal ring), partially broken substantially annular (for example, annular or polygonal ring) or omitted. It may be U-shaped, or it may be circular or polygonal.
  • the innermost communication antenna 200a has a substantially annular shape, a substantially annular shape in which a part is broken, or a U-shape, and is arranged on the outside of at least one charging antenna 500a at intervals.
  • the external dimension of at least one charging antenna 500a is smaller than the internal dimension of the innermost communication antenna 200a.
  • the module M1 may further include a charging circuit unit 600a.
  • the charging circuit unit 600a is mounted on the second surface 102a of the substrate 100a.
  • the charging circuit unit 600a is electrically connected to at least one charging antenna 500a through the substrate 100a.
  • the charging circuit unit 600a is at least one of a power transmission circuit unit and a power receiving circuit unit.
  • the power transmission circuit unit converts the power supplied from an external power source (not shown) into power suitable for transmission by an electromagnetic induction method, an electromagnetic field resonance method, an electric field coupling method, or a radio wave method (for example, high frequency power). It may be composed of a logic circuit such as an IC for transmitting power to at least one charging antenna 500a, or software processed by a processor or the like.
  • the power receiving circuit unit may be composed of a logic circuit such as an IC that converts energy (electromagnetic waves or the like) received by at least one charging antenna 500a into electric power, or software processed by a processor or the like.
  • At least one charging antenna 500a and the charging circuit unit 600a only the charging circuit unit 600a can be omitted, and both can be omitted. In the former case, it is preferable that at least one charging antenna 500a can be electrically connected to the charging circuit portion outside the module M1.
  • Module M1 may further include at least one magnetic sheet S.
  • At least one magnetic sheet S is arranged between the first surface 101a of the substrate 100a and at least one charging antenna 500a, and is located between the first surface 101a of the substrate 100a and the plurality of communication antennas 200a. Absent.
  • at least one magnetic sheet S may be arranged only between the first surface 101a of the substrate 100a and at least one charging antenna 500a. In the enlarged view of the ⁇ portion of FIG. 1, the magnetic sheet S has a ring shape like the charging antenna 500a.
  • the presence of at least one magnetic sheet S improves the power supply or power receiving efficiency of at least one charging antenna 500a, while the at least one magnetic sheet S includes the first surface 101a of the substrate 100a and the plurality of communication antennas 200a. Since it is not located between the two, it is unlikely to affect the non-contact communication of the plurality of communication antennas 200a. At least one magnetic sheet S can be omitted.
  • Module M1 further includes a housing 700a.
  • the housing 700a may hold the substrate 100a in a state where the first surface 101a of the substrate 100a faces the Z direction.
  • the housing 700a further has a support recess 710a, and a through hole extending in the ZZ direction is provided at the bottom of the support recess 710a.
  • the outer peripheral portion of the second surface 102a of the substrate 100a is fixed to the peripheral edge portion of the through hole, and the communication circuit portion 400a, or the communication circuit portion 400a and the charging circuit portion 600a are housed in the through hole.
  • the support recess 710a has walls at both ends extending in a direction orthogonal to the ZZ'direction, and a part of the wall surface of the wall (hereinafter, referred to as a recess 711a).
  • a recess 711a a part of the wall surface of the wall
  • the module M2 is supported by the support recesses 710a so as to be rotatable within a predetermined angle range or 360 °.
  • the support recess 710a is a columnar recess corresponding to the outer diameter of the module M2.
  • the module M2 is supported by the support recess 710a so as to be rotatable within a predetermined angle range or 360 °.
  • the housing 700b can rotate within a predetermined angle range or 360 ° with respect to the housing 700a about the virtual rotation axis P.
  • Module M2 includes a housing 700b.
  • the housing 700b is a cylinder or a bottomed cylinder, and is rotatably supported by a support recess 710a of the housing 700a as described above.
  • the housing 700b may be configured to be rotatable within a predetermined angle range or 360 ° with respect to the housing 700a by the actual rotation axis instead of the virtual rotation axis P.
  • the actual axis of rotation may be fixed to the base 100b while penetrating the base 100a and rotatably held by the housing 700a of the module M1, while being fixed to the base 100a. It may penetrate the substrate 100b and be rotatably held by the housing 700b of the module M2.
  • the actual rotating shaft may be made of metal or resin.
  • Module M2 further includes a substrate 100b.
  • the base 100b is fixed to the housing 700b so as to be located on the Z direction side with respect to the base 100a of the module M1.
  • the substrate 100b is in the opposite direction to the substrate 100a in the ZZ'direction. That is, the first surface 101b of the substrate 100b faces the Z'direction side, and the second surface 102b of the substrate 100b faces the Z direction side. Other than this, the substrate 100b has the same configuration as the substrate 100a.
  • 110b in FIG. 4 is a conductive line of the substrate 100b.
  • Module M2 further includes a plurality of communication antennas 200b.
  • the plurality of communication antennas 200b can have the same configuration as the plurality of communication antennas 200a in any of the above embodiments.
  • Each of the antenna bodies 210b of the plurality of communication antennas 200b faces the antenna bodies 210a of the plurality of communication antennas 200a of the module M1 in the ZZ'direction, and the antenna bodies 210b of the plurality of communication antennas 200a and the plurality of communication antennas 200b Each one is arranged to form the coupler.
  • the plurality of antenna bodies 210b and the plurality of antenna bodies 210a can be configured not to face each other in the ZZ'direction.
  • the housing 700b has a cover (not shown) that covers the plurality of communication antennas 200b and / or the housing 700a has a cover (not shown) that covers the plurality of communication antennas 200a.
  • the antenna main body 210b of the plurality of communication antennas 200b and the antenna main body 210a of the plurality of communication antennas 200a are used when or always at a predetermined angle with respect to the module M1.
  • the plurality of communication antennas 200a and the plurality of communication antennas 200b are arranged at intervals in the ZZ'direction so as to form the coupler.
  • the plurality of communication antennas 200b include a first communication antenna 200b and a second communication antenna 200b.
  • the first communication antenna 200b has the same configuration as the first communication antenna 200a of any of the above aspects
  • the second communication antenna 200b has the same configuration as the second communication antenna 200a of any of the above aspects.
  • the antenna body 210b of the first communication antenna 200b is referred to as a first antenna body 210b
  • the pair of terminal portions 221b and 222b of the first communication antenna 200b are referred to as a pair of first terminal portions 221b and 222b.
  • the antenna body 210b of the second communication antenna 200b is referred to as a second antenna body 210b, and the pair of terminal portions 221b and 222b of the second communication antenna 200b are referred to as a pair of second terminal portions 221b and 222b.
  • the first terminal portions 221b and 222b and the second terminal portions 221b and 222b at least the first virtual region and the second virtual region do not overlap each other when viewed from the Z'direction side (in a plan view). (See FIG. 5A).
  • the first terminal portions 221b and 222b and the second terminal portions 221b and 222b are arranged so that the third virtual region and the fourth virtual region do not overlap each other when viewed from the Z'direction side (in a plan view). It may be (see FIG. 5B).
  • the module M2 may further include a communication circuit unit 400b.
  • the communication circuit unit 400b may have at least one of a number of transmission units 410b and a restoration unit 420b corresponding to the number of the plurality of communication antennas 200b.
  • Each transmission unit 410b has the same configuration as each transmission unit 410a of any of the above aspects
  • each restoration unit 420b has the same configuration as each restoration unit 420a of any of the above aspects.
  • the plurality of communication antennas 200b can be used for transmission and reception.
  • the restoration unit 420b for that amount may be omitted, and if at least one of the plurality of communication antennas 200b is dedicated to reception, the transmission unit 410b for that amount may be omitted. good.
  • the communication circuit unit 400b can be omitted in the same manner as the communication circuit unit 400a.
  • the module M2 can be further provided with at least one charging antenna 500b and a charging circuit unit 600b.
  • the at least one charging antenna 500b can have the same configuration as the at least one charging antenna 500a of any of the above aspects, and the charging circuit unit 600b is the same as the charging circuit unit 600a of any of the above aspects. It is possible to have the configuration of. Of the at least one charging antenna 500b and the charging circuit unit 600b, it is possible to omit only the charging circuit unit 600b, or both can be omitted.
  • Module M2 may further include at least one magnetic sheet S. At least one magnetic sheet S of the module M2 has the same configuration as at least one magnetic sheet S of the module M1. It is also possible to omit at least one magnetic sheet S.
  • the positive and negative signals of the differential signal transmitted from the first transmission unit 410a of the module M1 are input to the first terminal units 221a and 222a of the first communication antenna 200a, and pass through the first antenna main body 210a. It is output from 1 terminal part 222a and 221a.
  • the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 perform electromagnetic field coupling, and the coupler (hereinafter, also referred to as the first coupler) is formed between the two antennas. Non-contact communication is performed by the coupler.
  • the positive and negative signals of the differential signal transmitted from the second transmission unit 410a of the module M1 are input to the second terminal units 221a and 222a of the second communication antenna 200a, and the second antenna main body It is output from the second terminal portions 222a and 221a through 210a.
  • the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 perform electromagnetic field coupling, and the coupler (hereinafter, also referred to as a second coupler) is formed between the two antennas, and the second coupler is formed. Non-contact communication is performed by the coupler.
  • the electric field strength of the first terminal portions 221a and 222a to which the positive side signal and the negative side signal of the first communication antenna 200a of the module M1 are input is the first antenna main body of the first communication antenna 200a of the module M1. Stronger than the electric field strength of 210a, the electromagnetic field coupling between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the first communication antenna 200a of the module M1. It is stronger than the electric field coupling between the antenna main body 210a and the first communication antenna 200b of the module M2.
  • the non-contact communication amount of the electromagnetic field coupling portion between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the module M1. It is larger than the non-contact communication amount of the electromagnetic field coupling portion between the first antenna main body 210a of the 1 communication antenna 200a and the first communication antenna 200b of the module M2.
  • the electric field strength of the second terminal portions 221a and 222a to which the positive side signal and the negative side signal of the second communication antenna 200a of the module M1 are input is the second antenna main body of the second communication antenna 200a of the module M1. Stronger than the electric field strength of 210a, the electromagnetic field coupling between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the second communication antenna 200a of the module M1. It is stronger than the electric field coupling between the 2 antenna main body 210a and the second communication antenna 200b of the module M2.
  • the non-contact communication amount of the electromagnetic field coupling portion between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the first of the module M1.
  • the amount of non-contact communication between the second antenna main body 210a of the two-communication antenna 200a and the second communication antenna 200b of the module M2 is larger than the amount of non-contact communication of the electromagnetic field coupling portion.
  • first and second couplers perform non-contact communication at the same time, and the input of the positive signal and the negative signal to the first terminal portions 221a and 222a of the first communication antenna 200a and the second communication antenna It is not necessary that the positive side signal and the negative side signal are input to the second terminal portions 221a and 222a of the 200a at the same time.
  • the single-ended signal transmitted from the first transmission unit 410a of the module M1 is input to the first terminal unit 221a of the first communication antenna 200a, passes through the first antenna main body 210a, and is output from the first terminal unit 222a.
  • the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 perform electromagnetic field coupling, a first coupler is formed between the two antennas, and non-contact communication is performed by the first coupler. ..
  • the single-ended signal transmitted from the second transmission unit 410a of the module M1 is input to the second terminal unit 221a of the second communication antenna 200a, passes through the second antenna main body 210a, and is passed through the second terminal unit 222a.
  • the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 perform electromagnetic field coupling by being output from the two antennas, a second coupler is formed between the two antennas, and the second coupler communicates non-contactly. Is done.
  • the electric field strength of each part of the first communication antenna 200a of the module M1 has the strongest electric field strength of the first terminal part 221a to which the single-ended signal is input (that is, the first terminal part 221a> the first.
  • the strength of the electromagnetic field coupling between each portion of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the first communication antenna 200a.
  • the electric field strength of each part of the second communication antenna 200a of the module M1 has the strongest electric field strength of the first terminal part 221a to which the single-ended signal is input (that is, the second terminal part 221a> the second.
  • the strength of the electromagnetic field coupling between each portion of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the strength of the second communication antenna 200a.
  • first and second couplers perform non-contact communication at the same time, and the input of the single-ended signal to the first terminal portion 221a of the first communication antenna 200a and the second terminal portion of the second communication antenna 200a It is not necessary that the input of the single-ended signal for 221a is performed at the same time.
  • the module M2 rotates with respect to the module M1 within a predetermined angle range or 360 ° around the virtual rotation axis P or the actual rotation axis. It may be performed, or the module M2 may be performed with the rotation stopped with respect to the module M1.
  • Experimental Example 1 has a first module M'(see module M'on the left side of FIG. 7A) and a second module M'(see module M'on the right side of FIG. 7A).
  • the first module M' includes a substrate 100, inner and outer communication antennas 200', which are annular conductors, a transmission unit 410', a restoration unit 420', and first and second coaxial connectors (not shown). ing.
  • the substrate 100 of the first module M' has the same configuration as the substrate 100a except that it is a ring-shaped substrate.
  • the inner and outer communication antennas 200'of the first module M' are conductors formed on the first surface 101 of the substrate 100a, and the centers C of both are aligned to form a concentric and virtual first dividing line. And the virtual second dividing line are arranged around the center C at an angle interval of 0 °.
  • the inner communication antenna 200' has a radius of 10 mm and a width dimension of 2 mm.
  • the outer communication antenna 200' has a radius of 18 mm and a width dimension of 2 mm.
  • the first dividing line is a third virtual line between a pair of virtual virtual half lines L3 extending radially from the center C through the first corner of the outer end of the terminal portions 221' and 222'of the inner communication antenna 200'.
  • the second dividing line halves the fourth virtual area between the virtual half straight lines L4 extending radially from the center C through the first corners of the outer ends of the terminal portions 221'and 222'of the outer communication antenna 200'. It is a virtual line that extends in half.
  • the restoration portion 420'of the first module M' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221' and 222'of the inner communication antenna 200'. It has the same configuration as the restoration unit 420a.
  • the first coaxial connector of the first module M' is mounted on the second surface of the substrate 100 and is electrically connected to the restoration unit 420'.
  • the first coaxial connector is connected to the high-speed signal oscilloscope 21. In this way, the restoration unit 420'is electrically connected to the oscilloscope 21 via the substrate 100 and the first coaxial connector.
  • the transmitter 410'of the first module M' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221' and 222'of the outer communication antenna 200'. It has the same configuration as the transmitter 410a.
  • the second coaxial connector of the first module M' is mounted on the second surface of the substrate 100 and is electrically connected to the transmitter 410'. In this way, the transmitter 410'is electrically connected to the signal transmitter 11 via the substrate 100 and the second coaxial connector.
  • the second module M'of Experimental Example 1 has the same configuration as the first module M', except that it differs in the following points.
  • the transmission unit 410'of the second module M' is electrically connected to a pair of terminal units 221' and 222'of the inner communication antenna 200'of the second module M'.
  • the first coaxial connector of the second module M' is electrically connected to the transmitter 410' of the second module M'.
  • the first coaxial connector of the second module M' is connected to the signal transmitter 12. In this way, the transmitter 410'of the second module M'is electrically connected to the signal transmitter 12 via the substrate 100 and the first coaxial connector.
  • the restoration unit 420'of the second module M' is electrically connected to a pair of terminal units 221' and 222'of the outer communication antenna 200'of the second module M'.
  • the second coaxial connector of the second module M' is electrically connected to the restoration unit 420'of the second module M'.
  • the second coaxial connector of the second module M' is connected to the high-speed signal oscilloscope 22. In this way, the restoration unit 420'of the second module M'is electrically connected to the oscilloscope 22 via the substrate 100 and the second coaxial connector.
  • the distance from the inner communication antenna 200'of the first module M'to the inner communication antenna 200' of the second module M'in the ZZ direction is 3.5 mm, and the outer communication antenna 200'of the first module M'.
  • the distance from the second module M'to the outer communication antenna 200'in the ZZ'direction is 3.5 mm.
  • this configuration is also referred to as a prerequisite configuration of Experimental Example 1.
  • Experimental Example 2 has a first module M'' (see the module M'' on the left side of FIG. 7C) and a second module M'' (see the module M'' on the right side of FIG. 7C). ..
  • the first module M'' includes a substrate 100, inner and outer communication antennas 200'', a transmitting unit 410'', a restoring unit 420'', and first and second coaxial connectors (not shown). ..
  • the base 100 of the first module M ′′ has the same configuration as the base 100 of the first module M ′′.
  • the inner and outer communication antennas 200 ′′ of the first module M ′′ have an angular interval of 180 ° around the center C between the virtual first dividing line and the virtual second dividing line. It has the same configuration as the inner and outer communication antennas 200'of the first module M', except that they are arranged in such a manner.
  • the restoration portion 420'' of the first module M'' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221'' and 222'' of the inner communication antenna 200''. It has the same configuration as the restoration unit 420a except that it is.
  • the first coaxial connector of the first module M ′′ is mounted on the second surface of the substrate 100 and is electrically connected to the restoration unit 420 ′′.
  • the first coaxial connector is connected to the high-speed signal oscilloscope 23. In this way, the restoration unit 420 ′′ of the first module M ′′ is electrically connected to the oscilloscope 23 via the substrate 100 and the first coaxial connector.
  • the transmission section 410'' of the first module M'' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal sections 221'' and 222'' of the outer communication antenna 200''.
  • the configuration is the same as that of the transmission unit 410a except that the transmission unit 410a is used.
  • the second coaxial connector of the first module M ′′ is mounted on the second surface of the substrate 100 and is electrically connected to the transmission unit 410 ′′. In this way, the transmission unit 410 ′′ of the first module M ′′ is electrically connected to the signal transmitter 13 via the substrate 100 and the second coaxial connector.
  • the second module M ′′ of Experimental Example 2 has the same configuration as the first module M ′′ except that it differs in the following points.
  • the transmission unit 410 ′′ of the second module M ′′ is electrically connected to a pair of terminal units 221 ′′ and 222 ′′ of the inner communication antenna 200 ′′ of the second module M ′′.
  • the first coaxial connector of the second module M ′′ is electrically connected to the transmission unit 410 ′′ of the second module M ′′.
  • the first coaxial connector of the second module M ′′ is connected to the signal transmitter 14. In this way, the transmission unit 410 ′′ of the second module M ′′ is electrically connected to the signal transmitter 14 via the substrate 100 and the first coaxial connector.
  • the restoration unit 420 ′′ of the second module M ′′ is electrically connected to a pair of terminal units 221 ′′ and 222 ′′ of the outer communication antenna 200 ′′ of the second module M ′′.
  • the second coaxial connector of the second module M ′′ is electrically connected to the restoration unit 420 ′′ of the second module M ′′.
  • the second coaxial connector of the second module M ′′ is connected to the high-speed signal oscilloscope 24. In this way, the restoration unit 420 ′′ of the second module M ′′ is electrically connected to the oscilloscope 24 via the substrate 100 and the second coaxial connector.
  • the inner communication antenna 200'' of the first module M'' and the inner communication antenna 200'' of the second module M'' face each other in the ZZ'direction, and the outer communication of the first module M''
  • the first and second modules M'' are fixed in a state where the antenna 200'' and the outer communication antenna 200'' of the second module M'' face each other in the ZZ'direction. Since the position is fixed, the first module M ′′ does not rotate with respect to the second module M ′′.
  • a pair of terminal portions 221 “" and 222 "of the inner communication antenna 200" of the first module M and a pair of terminal portions 221" "222" of the inner communication antenna 200 "of the second module M".
  • the distance from the inner communication antenna 200'' of the first module M'' to the inner communication antenna 200'' of the second module M'' in the ZZ'direction is 3.5 mm, and the distance of the first module M'' The distance from the outer communication antenna 200'' to the outer communication antenna 200'' of the second module M'' in the ZZ'direction is 3.5 mm.
  • this configuration is also referred to as a prerequisite configuration of Experimental Example 2.
  • a differential signal is input from the signal transmitter 12 to the transmitter 410'of the second module M'via the first coaxial connector of the second module M'.
  • the signal is converted into a digital signal for non-contact communication by the transmission unit 410'of the second module M'.
  • This digital signal is a differential signal having a transmission speed of 1.0 Gbps.
  • This digital signal is input to the terminal portions 221' and 222'of the inner communication antenna 200'of the second module M', and thereby the inside of the inner communication antenna 200'and the first module M'of the second module M'.
  • the communication antenna 200' consists with the first coupler.
  • the differential signal is input from the signal transmitter 11 to the transmission unit 410'of the first module M'via the second coaxial connector of the first module M'.
  • the signal is converted into a digital signal for non-contact communication by the transmission unit 410'of the first module M'.
  • This digital signal is a differential signal having a transmission speed of 0.8 Gbps.
  • This digital signal is input to the terminal portions 221' and 222'of the outer communication antenna 200'of the first module M', whereby the outer communication antenna 200'of the first module M'and the outside of the second module M'are input.
  • the communication antenna 200' consists with the second coupler.
  • the signal induced in the inner communication antenna 200'of the first module M'by the first coupler is the restoration part from the terminal portion 222', 221'of the inner communication antenna 200'of the first module M'to the first module M'. Entered in 420'.
  • the induced signal is restored to the original digital signal by the restoration unit 420'of the first module M'.
  • This restored digital signal is input to the oscilloscope 21.
  • the signal induced in the outer communication antenna 200'of the second module M'by the second coupler is transmitted from the terminal portions 222', 221'to the second module M'of the outer communication antenna 200'of the second module M'. It is input to the restoration unit 420'of.
  • the induced signal is restored to the original digital signal by the restoration unit 420'of the second module M'. This restored digital signal is input to the oscilloscope 22.
  • a differential signal is input from the signal transmitter 14 to the transmitter 410 ′′ of the second module M ′′ via the first coaxial connector of the second module M ′′.
  • the signal is converted into a digital signal for non-contact communication by the transmission unit 410 ′′ of the second module M ′′.
  • This digital signal is a differential signal having a transmission speed of 1.0 Gbps.
  • This digital signal is input to the terminal portions 221'' and 222'' of the inner communication antenna 200'' of the second module M'', whereby the inner communication antenna 200'' and the second module of the second module M''
  • the inner communication antenna 200'' of the 1 module M'' constitutes the first coupler.
  • the differential signal is input from the signal transmitter 13 to the transmission unit 410 ′′ of the first module M ′′ via the second coaxial connector of the first module M ′′.
  • the signal is converted into a digital signal for non-contact communication by the transmission unit 410 ′′ of the first module M ′′.
  • This digital signal is a differential signal having a transmission speed of 0.8 Gbps.
  • This digital signal is input to the terminal portions 221'' and 222'' of the outer communication antenna 200'' of the first module M'', whereby the outer communication antenna 200'' of the first module M'' and the first The outer communication antenna 200'' of the 2 module M'' constitutes the second coupler.
  • the signal induced in the inner communication antenna 200'' of the first module M'' by the first coupler is the first from the terminal portion 222'', 221'' of the inner communication antenna 200'' of the first module M''. It is input to the restoration unit 420'' of the module M''. The induced signal is restored to the original digital signal by the restoration unit 420 ′′ of the first module M ′′. This restored digital signal is input to the oscilloscope 23.
  • the signal induced in the outer communication antenna 200'' of the second module M'' by the second coupler is the terminal portion 222'', 221'' of the outer communication antenna 200'' of the second module M''. Is input to the restoration unit 420'' of the second module M''. The induced signal is restored to the original digital signal by the restoration unit 420 ′′ of the second module M ′′. This restored digital signal is input to the oscilloscope 24.
  • first simulation and the second simulation were performed using the circuit simulator.
  • the first simulation was performed as follows using the premise configuration of Experimental Example 1 described above.
  • a differential digital signal is input from the transmitter 410'of the second module M'to the inner communication antenna 200' of the second module M', and inside the inner communication antenna 200'and the first module M'of the second module M'.
  • a digital signal is input from the transmission unit 410' of the first module M'to the outer communication antenna 200' of the first module M', and the first module M'
  • a second coupler is formed by the outer communication antenna 200'and the outer communication antenna 200'of the second module M'.
  • the signal induced in the inner communication antenna 200'of the first module M'by the first coupler is restored to the original digital signal by the restoration unit 420'of the first module M', and the restored digital signal is from 100 MHz to 100 MHz.
  • the signal induced in the outer communication antenna 200'of the second module M'by the second coupler is restored to the original digital signal by the restoration unit 420'of the second module M'.
  • the frequency characteristics of the restored digital signal from 100 MHz to 10 GHz were obtained.
  • the second simulation was performed by setting various conditions as follows using the premise configuration of Experimental Example 2 described above.
  • a differential digital signal is input from the transmitter 410'' of the second module M'' to the inner communication antenna 200'' of the second module M'', and the inner communication antenna 200'' and the second module M'' of the second module M''.
  • the first coupler is configured with the inner communication antenna 200'' of the 1 module M'', and at the same time, from the transmitter 410'' of the first module M'' to the outer communication antenna 200'' of the second module M''.
  • a digital signal is input, and the outer communication antenna 200 ′′ of the first module M ′′ and the outer communication antenna 200 ′′ of the second module M ′′ form a second coupler.
  • the signal induced in the inner communication antenna 200'' of the first module M'' by the first coupler is restored to the original digital signal by the restoration unit 420'' of the first module M'', and this restored digital While obtaining the frequency characteristics of the signal from 100 MHz to 10 GHz, the signal induced in the outer communication antenna 200 ′′ of the second module M ′′ by the second coupler is generated by the restoration unit 420 ′′ of the second module M ′′. It was restored to the digital signal of the above, and the frequency characteristics of 100 MHz to 10 GHz of this restored digital signal were obtained.
  • S paradata regarding the inner communication antenna 200'' of the first module M'' is obtained from the frequency characteristics of the former digital signal described above, and the second module is obtained from the frequency characteristics of the latter digital signal described above.
  • S paradata regarding the outer communication antenna 200'' of M'' was obtained.
  • the S-parameters for the inner communication antenna 200 ′′ of the first module M ′′ are shown in FIG. 11A, and the S-parameters for the outer communication antenna 200 ′′ of the second module M ′′ are shown in FIG. 11B.
  • the upper limit of the X-axis is set to 5 GHz in order to make the graph easier to see.
  • the S paradata relating to the inner communication antenna 200'of the first module M'shown in FIG. 9A passes between the inner communication antenna 200'of the first module M'and the inner communication antenna 200' of the second module M'. It includes characteristics and a first noise from the outer communication antenna 200'on the substrate 100 of the first module M'to the inner communication antenna 200' on the substrate 100 of the first module M'.
  • the communication characteristics are shown by solid lines, and the first noise is shown by broken lines. It can be seen that the first noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, and remains flat from around 2GHz to 5GHz.
  • the S paradata regarding the inner communication antenna 200'' of the first module M'' shown in FIG. 11A is that of the inner communication antenna 200'' and the second module M'' of the first module M''. Passing characteristics between the inner communication antenna 200'' and the outer communication antenna 200'' on the base 100 of the first module M'' to the inner communication antenna 200'' on the base 100 of the first module M'' Contains the first noise of.
  • the communication characteristics are shown by solid lines, and the first noise is shown by broken lines.
  • the first noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, but gradually decreases from around 2GHz to around 4GHz, and falls below -50db around 4GHz. Be taken care of.
  • the second simulation the result that the first noise is reduced as compared with the first simulation was obtained.
  • the S paradata relating to the outer communication antenna 200'of the second module M'shown in FIG. 9B passes between the outer communication antenna 200'of the second module M'and the outer communication antenna 200' of the first module M'. It includes characteristics and a second noise from the inner communication antenna 200'on the substrate 100 of the second module M'to the outer communication antenna 200' on the substrate 100 of the second module M'.
  • the communication characteristics are shown by the solid line, and the second noise is shown by the alternate long and short dash line.
  • the second noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, and it can be seen that the noise is leveling off from around 2GHz to 5GHz.
  • the S paradata regarding the outer communication antenna 200 ′′ of the second module M'' shown in FIG. 11B is the outer communication antenna 200 ′′ of the second module M ′′ and the first module M ′′. Passing characteristics between the outer communication antenna 200'' and the inner communication antenna 200'' on the base 100 of the second module M'' to the outer communication antenna 200'' on the base 100 of the second module M'' It contains the second noise of.
  • the communication characteristics are shown by the solid line, and the second noise is shown by the alternate long and short dash line.
  • the second noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, but gradually decreases from around 2GHz to around 4GHz, and falls below -50db around 4GHz. Be taken care of. As described above, in the second simulation, the result that the second noise is reduced as compared with the first simulation was obtained.
  • Non-contact communication is preferably performed simultaneously between the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 and between the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2. be able to. The reason is as follows.
  • the first terminal portion 221a of the first communication antenna 200a by not overlapping or by preventing the third virtual area and the fourth virtual area from overlapping each other when viewed from the Z direction side (in a plan view),
  • the 222a can be arranged away from the second terminal portions 221a and 222a of the second communication antenna 200a. Therefore, when the positive side signal and the negative side signal of the differential signal are input to the first terminal portions 221a and 222a of the first communication antenna 200a, the noise generated from the first terminal portion 221a and / or 222a is generated by the module.
  • the electromagnetic field coupling is strong between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 as described above, this portion is not present.
  • the non-contact communication can be suitably performed, and the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 can be performed.
  • the electromagnetic field coupling is strong, the non-contact communication can be preferably performed by reducing the interference of noise with respect to the non-contact communication of the portion.
  • the noise generated from the first terminal portion 221a of the first communication antenna 200a is generated by the second communication antenna 200a of the module M1.
  • the second communication antenna 200a of the module M1 By interfering with non-contact communication between the second terminal portion 221a and 222a of the module M2 and the second communication antenna 200b of the module M2, or by inputting a single-ended signal to the first terminal portion 221a of the second communication antenna 200a.
  • Noise generated from the second terminal portion 221a may interfere with non-contact communication between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2. The property is reduced.
  • the electromagnetic field coupling is strong between the second terminal portion 221a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 as described above, non-contact communication of the portion is performed.
  • the non-contact communication can be suitably performed, and also between the first terminal portion 221a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2.
  • the portion since the portion has a strong electromagnetic field coupling, the non-contact communication can be preferably performed by reducing the interference of noise with respect to the non-contact communication of the portion.
  • the second communication antenna 200a when the second communication antenna 200a is arranged outside the first communication antenna 200a and the area of the second communication antenna 200a is larger than the area of the first communication antenna 200a, the second communication antenna 200a
  • the electric length of the first communication antenna 200a is longer than the electric length of the first communication antenna 200a.
  • the first communication antenna 200a and the second communication antenna The 200a can preferably be used for non-contact communication at different communication speeds at the same time.
  • the width dimension W of the first communication antenna 200a is larger than the width dimension W of the second communication antenna 200a, the area of the first communication antenna 200a increases, so that the electric length of the first communication antenna 200a is changed to the second communication. It can be substantially the same as or close to the electrical length of the antenna 200a.
  • the first communication antenna 200a and the second communication antenna 200a may be used for non-contact communication at different communication speeds at the same time, or non-contact communication may be performed at the same communication speed.
  • module M2 has the same technical features and effects as the module M1.
  • the first antenna module M1' (hereinafter, also simply referred to as a module M1') and the second antenna module M2'(hereinafter, simply a module) of the electronic device D'according to a plurality of examples including the second embodiment of the present invention. (Also referred to as M2') will be described with reference to FIG. FIG. 12 shows the module M1'and the module M2'of the second embodiment.
  • Module M1' has the same configuration as module M1 in any of the above modes, except for the following differences. Therefore, only the difference will be described in detail, and the description overlapping with the module M1 will be omitted.
  • the plurality of communication antennas 200a of the module M1 of the first embodiment include the innermost communication antenna 200a, the outermost communication antenna 200a, and the intermediate communication antenna 200a in the plurality of communication antennas 200a of the module M1'. Is different from.
  • the innermost communication antenna 200a is located on the innermost side of the plurality of communication antennas 200a, and the outermost communication antenna 200a is located on the outermost side of the plurality of communication antennas 200a.
  • the intermediate communication antenna 200a is located between the innermost communication antenna 200a and the outermost communication antenna 200a, and is adjacent to the innermost communication antenna 200a and the outermost communication antenna 200a, respectively.
  • the plurality of communication antennas 200a have at least one of the following configurations (1) and (2).
  • the innermost communication antenna 200a corresponds to the first communication antenna 200a of any of the above aspects
  • the intermediate communication antenna 200a corresponds to the second communication antenna 200a of any of the above aspects.
  • the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side.
  • the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the intermediate communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG.
  • the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the intermediate communication antenna 200a form a first virtual region from the center C of the antenna body 210a of the innermost communication antenna 200a.
  • the virtual first dividing line extending in half and the virtual second dividing line extending from the center C in half so as to divide the second virtual area in half have an angular interval of approximately 120 ° around the center C. It is arranged so that it is located at.
  • the intermediate communication antenna 200a corresponds to the first communication antenna 200a of any of the above aspects
  • the outermost communication antenna 200a corresponds to the second communication antenna 200a of any of the above aspects.
  • the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side.
  • the terminal portions 221a and 222a of the intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG.
  • the terminal portions 221a and 222a of the intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are virtual first virtual areas extending from the center C so as to divide the first virtual area in half.
  • the first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 120 °. ..
  • the plurality of communication antennas 200a may include at least one third communication antenna 200a.
  • the at least one third communication antenna is an antenna that does not correspond to the first and second communication antennas 200a of the plurality of communication antennas 200a, and includes one of the plurality of communication antennas 200b of the module M2'and the coupler. Any configuration can be configured and non-contact communication is possible.
  • the module M2' has the same configuration as the module M2 in any of the above modes except for the following differences.
  • the plurality of communication antennas 200b of the module M2 of the first embodiment include the innermost communication antenna 200b, the outermost communication antenna 200b, and the intermediate communication antenna 200b in the plurality of communication antennas 200b of the module M2'. Is different from.
  • the innermost communication antenna 200b, the outermost communication antenna 200b, and the intermediate communication antenna 200b have the same configurations as the innermost communication antenna 200a, the outermost communication antenna 200b, and the intermediate communication antenna 200b in any of the above embodiments. It is good to say.
  • the module M1'and the module M2' as described above exhibit the same technical features and effects as the module M1 and the module M2.
  • the first antenna module M1 ′′ (hereinafter, also simply referred to as module M1 ′′) and the second antenna module M2 ′′ (hereinafter, also simply referred to as module M1 ′′) of the electronic device D ′′ according to a plurality of examples including the third embodiment of the present invention.
  • the module M2 ′′ will be described with reference to FIG.
  • FIG. 13 shows the module M1 ′′ and the module M2 ′′ of the third embodiment.
  • the module M1 ′′ has the same configuration as the module M1 in any of the above modes except for the following differences. Therefore, only the difference will be described in detail, and the description overlapping with the module M1 will be omitted.
  • a plurality of the module M1 of the first embodiment in that the plurality of communication antennas 200a of the module M1'' include the innermost communication antenna 200a, the outermost communication antenna 200a, and the plurality of intermediate communication antennas 200a. It is different from the communication antenna 200a.
  • the plurality of communication antennas 200a have at least one of the following configurations (1) to (3).
  • the innermost communication antenna 200a is the first communication antenna 200a of any of the above embodiments, and the innermost communication antenna 200a among the plurality of intermediate communication antennas 200a (the innermost middle communication antenna 200a). ) Corresponds to the second communication antenna 200a of any of the above aspects.
  • the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side.
  • the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the innermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG.
  • the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the innermost communication antenna 200a are first from the center C of the antenna body 210a of the innermost communication antenna 200a.
  • the virtual first dividing line extending so as to divide the virtual area in half and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are approximately 90 ° around the center C. They are arranged so that they are located at the angular intervals of.
  • the inner communication antenna 200a (inner intermediate communication antenna) of the adjacent intermediate communication antenna 200a is outside the first communication antenna 200a of any of the above embodiments.
  • the communication antenna 200a (the outer intermediate communication antenna) corresponds to the second communication antenna 200a of any of the above aspects.
  • the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side.
  • the terminal portions 221a and 222a of the inner intermediate communication antenna 200a and the terminal portions 221a and 222a of the outer intermediate communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG.
  • the terminal portions 221a and 222a of the inner intermediate communication antenna 200a and the terminal portions 221a and 222a of the outer intermediate communication antenna 200a extend from the center C so as to divide the first virtual area in half.
  • the virtual first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 90 °. Has been done.
  • the outermost communication antenna 200a (outermost intermediate communication antenna) of the plurality of intermediate communication antennas 200a is attached to the first communication antenna 200a of any of the above embodiments, and the outermost communication antenna 200a is used.
  • the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side.
  • the terminal portions 221a and 222a of the outermost intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG.
  • the terminal portions 221a and 222a of the outermost intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a extend from the center C so as to divide the first virtual area in half.
  • the virtual first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 90 °. Has been done.
  • the plurality of communication antennas 200a may include at least one third communication antenna 200a. ..
  • the module M2 ′′ has the same configuration as the module M2 in any of the above modes except for the following differences.
  • a plurality of the module M2 of the first embodiment in that the plurality of communication antennas 200b of the module M2'' include the innermost communication antenna 200b, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b. It is different from the communication antenna 200b.
  • the innermost communication antenna 200b, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b are the innermost communication antenna 200a, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b in any of the above embodiments. It is good to have the same configuration as.
  • the module M1 ′′ and the module M2 ′′ as described above exhibit the same technical features and effects as the module M1 and the module M2.
  • the second antenna module of any of the above aspects may be non-rotatably supported by the first antenna module of any of the above aspects.
  • the electronic device of the present invention can be configured to include only one of the first and second antenna modules of any of the above aspects.
  • the other party communication device may form a coupler with a plurality of communication antennas of one module and include a plurality of communication antennas capable of non-contact communication.
  • the first and second communication antennas of the present invention are concentrically provided on the first surface of the substrate, but the present invention is not limited to this.
  • the first and second communication antennas of the present invention are made of a metal plate or a coil
  • the first and second terminal portions thereof are supported by a substrate
  • the first and second antenna bodies are arranged in a hollow manner.
  • a part of the first and second antennas may be supported by the substrate, and a part other than the part of the first and second communication antennas may be arranged hollowly.
  • the first and second communication antennas of the present invention may be arranged at different height positions in the ZZ'direction.
  • the first and second communication antennas of the present invention are configured to be electromagnetically coupled to the other party's first and second communication antennas, but the present invention is not limited to this.
  • the first and second communication antennas of the present invention may be configured so as to be magnetically coupled to each other's first and second communication antennas.
  • the distance from the first communication antenna to the second communication antenna (communication distance for non-contact communication) at the time of magnetic field coupling may be a short distance of about 0 mm to several mm, but is not limited to this. ..
  • the housing of the module M1 and / or the module M2 of the present invention can be omitted.
  • the materials, shapes, dimensions, numbers, arrangements, etc. that constitute each component of the electronic device and the module in each aspect of the above embodiment and the design modification are described as examples, and the same functions are realized. It is possible to change the design as much as possible.
  • Each aspect of the above-described embodiment and the design modification example can be combined with each other as long as they do not contradict each other.
  • the ZZ'direction of the present invention can be arbitrarily changed as long as it passes through at least one center of the plurality of communication antennas and is orthogonal to the arrangement direction of the plurality of communication antennas.
  • D, D', D'' Electronic equipment M1, M2, M1', M2'M1'', M2'': 1st and 2nd antenna modules (modules) 100a, 100b: Substrate 101a, 101b: First surface 102a, 102b: Second surface 200a, 200b: Communication antenna (including first and second communication antennas) 210a, 210b: Antenna body 221a, 221b, 222a, 222b: Terminal part C: Center 300a, 300b: Ground conductor 400a, 400b: Communication circuit part 410a, 410b: Transmission part (including the first and second transmission parts) 420a, 420b: Restoration part 500a, 500b: Charging antenna 600a, 600b: Charging circuit part 700a, 700b: Housing S: Magnetic sheet P: Rotating shaft

Abstract

[Problem] The present invention enables suitable and simultaneous contactless communication using a plurality of communication antennas. [Configuration] A module M1 is provided with first, second communication antennas 200a that are arranged substantially concentrically. A digital signal can be inputted to at least one of terminal parts 221a, 222a of each of the first, second communication antennas 200a. The terminal parts 221a, 222a of the first communication antenna 200a and the terminal parts 221a, 222a of the second communication antenna 200a are arranged such that a first virtual region between a pair of virtual first half-lines which radially extend, from a center C of the first communication antenna 200a by passing at least one portion of the inner ends of the terminal parts 221a, 222a of the first communication antenna 200a, and a second virtual region between a pair of virtual second half-lines which extend, from the center C of the first or second communication antenna 200a by passing at least one portion of the inner ends of the terminal parts 221a, 222a of the second communication antenna 200a, do not overlap with each other in a plan view.

Description

アンテナモジュール、電子機器及び非接触通信方法Antenna module, electronic equipment and non-contact communication method
 本発明は、アンテナモジュール、電子機器及び非接触通信方法に関する。 The present invention relates to an antenna module, an electronic device, and a non-contact communication method.
 従来のアンテナモジュールが下記特許文献1に記載されている。このモジュールは、基板と、第1ループアンテナと、第2ループアンテナとを備えている。第1ループアンテナ及び第2ループアンテナは、基板の同一面上に同心円状に設けられている。第1ループアンテナ及び第2ループアンテナの各々が、一対の端子部を有している。第1ループアンテナ及び第2ループアンテナの各々に信号が入力され、第1ループアンテナ及び第2ループアンテナの各々によって非接触通信がなされている。 The conventional antenna module is described in Patent Document 1 below. This module includes a substrate, a first loop antenna, and a second loop antenna. The first loop antenna and the second loop antenna are concentrically provided on the same surface of the substrate. Each of the first loop antenna and the second loop antenna has a pair of terminals. A signal is input to each of the first loop antenna and the second loop antenna, and non-contact communication is performed by each of the first loop antenna and the second loop antenna.
特開2016-100872号公報Japanese Unexamined Patent Publication No. 2016-100872
 第1ループアンテナ及び第2ループアンテナを用いて同時に非接触通信を行う場合、上記の通り、第1ループアンテナ及び第2ループアンテナは同心円状に配置されているため、第1ループアンテナから生じたノイズが第2ループアンテナの非接触通信に干渉したり、第2ループアンテナから生じたノイズが第1ループアンテナの非接触通信に干渉したりする。 When non-contact communication is performed simultaneously using the first loop antenna and the second loop antenna, the first loop antenna and the second loop antenna are arranged concentrically as described above, so that the first loop antenna is generated. The noise interferes with the non-contact communication of the second loop antenna, and the noise generated from the second loop antenna interferes with the non-contact communication of the first loop antenna.
 本発明は、複数の通信アンテナを用いて同時に好適に非接触通信を行うことができるアンテナモジュール、電子機器及び非接触通信方法を提供することにある。 The present invention is to provide an antenna module, an electronic device, and a non-contact communication method capable of preferably simultaneously performing non-contact communication using a plurality of communication antennas.
 上記課題を解決するために、本発明の一態様のアンテナモジュールは、略同心状に配置された複数の通信アンテナを備えている。複数の通信アンテナは、アンテナ本体と、一対の端子部を有している。複数の通信アンテナの各々において、一対の端子部の少なくとも一方の端子部にデジタル信号が入力され、アンテナ本体を通って他方の端子部から出力されるようになっている。一対の端子部は、互いに間隔をあけて隣り合う内側端を有している。複数の通信アンテナは、少なくとも第1通信アンテナ及び第2通信アンテナを含む。第2通信アンテナが、第1通信アンテナの外側に当該第1通信アンテナに対して間隔をあけて配置されている。第1通信アンテナの中心から第1通信アンテナの一対の端子部の内側端の少なくとも一部を通る仮想の一対の第1半直線の間の領域を第1仮想領域とし、第1通信アンテナの中心又は第2通信アンテナの中心から第2通信アンテナの一対の端子部の内側端の少なくとも一部を通る仮想の一対の第2半直線の間の領域を第2仮想領域とした場合、第1仮想領域と第2仮想領域とが平面視において互いに重ならないように第1通信アンテナの一対の端子部及び第2通信アンテナの一対の端子部が配置されている。 In order to solve the above problems, the antenna module of one aspect of the present invention includes a plurality of communication antennas arranged substantially concentrically. The plurality of communication antennas have an antenna body and a pair of terminal portions. In each of the plurality of communication antennas, a digital signal is input to at least one terminal portion of the pair of terminal portions, and is output from the other terminal portion through the antenna body. The pair of terminals have inner ends that are spaced apart from each other and adjacent to each other. The plurality of communication antennas include at least a first communication antenna and a second communication antenna. The second communication antenna is arranged outside the first communication antenna at intervals from the first communication antenna. The area between the center of the first communication antenna and the pair of virtual first half straight lines passing through at least a part of the inner ends of the pair of terminals of the first communication antenna is defined as the first virtual area, and the center of the first communication antenna. Alternatively, when the area between the center of the second communication antenna and the pair of virtual second half lines passing through at least a part of the inner ends of the pair of terminals of the second communication antenna is defined as the second virtual area, the first virtual area is used. A pair of terminal portions of the first communication antenna and a pair of terminal portions of the second communication antenna are arranged so that the region and the second virtual region do not overlap each other in a plan view.
 一般的に、通信アンテナの端子部は、デジタル信号が入力されるため、当該端子部から反射によるノイズが発生し易い。しかし、上記態様のアンテナモジュールによる場合、第1仮想領域と第2仮想領域とが平面視において互いに重ならないように、第1通信アンテナの端子部が第2通信アンテナの端子部から離れて配置されているので、第1通信アンテナ及び第2通信アンテナを用いて同時に非接触通信を行う際に、第1通信アンテナの端子部から発生したノイズが第2通信アンテナの端子部と相手の第2方通信アンテナとの非接触通信に影響を与えたり、第2通信アンテナの端子部から発生したノイズが、第1通信アンテナの端子部と相手方の第1通信アンテナとの非接触通信に影響を与えたりする可能性が低減される。そのため、少なくとも第1通信アンテナと第2通信アンテナを用いて同時に非接触通信を好適に行うことができる。 In general, since a digital signal is input to the terminal portion of the communication antenna, noise due to reflection is likely to be generated from the terminal portion. However, in the case of the antenna module of the above aspect, the terminal portion of the first communication antenna is arranged apart from the terminal portion of the second communication antenna so that the first virtual area and the second virtual area do not overlap each other in the plan view. Therefore, when non-contact communication is performed simultaneously using the first communication antenna and the second communication antenna, the noise generated from the terminal part of the first communication antenna is generated from the terminal part of the second communication antenna and the second side of the other party. It affects the non-contact communication with the communication antenna, and the noise generated from the terminal part of the second communication antenna affects the non-contact communication between the terminal part of the first communication antenna and the first communication antenna of the other party. The possibility of doing so is reduced. Therefore, non-contact communication can be preferably performed at the same time by using at least the first communication antenna and the second communication antenna.
 一対の端子部は、内側端の反対側の外側端を更に有する構成とすることが可能である。第1通信アンテナの中心から第1通信アンテナの一対の端子部の外側端の少なくとも一部を通って放射状に延びる仮想の一対の第3半直線の間の領域を第3仮想領域とし、第1通信アンテナの中心又は第2通信アンテナの中心から第2通信アンテナの一対の端子部の外側端の少なくとも一部を通って延びる仮想の一対の第4半直線の間の領域を第4仮想領域とした場合、第3仮想領域と第4仮想領域とが平面視において互いに重ならないように、第1通信アンテナの一対の端子部及び第2通信アンテナの一対の端子部が配置された構成とすることが可能である。 The pair of terminal portions can be configured to further have an outer end on the opposite side of the inner end. The region between the center of the first communication antenna and the pair of virtual third half lines extending radially through at least a part of the outer ends of the pair of terminals of the first communication antenna is defined as the third virtual region, and the first The area between the center of the communication antenna or the center of the second communication antenna and the virtual pair of fourth half lines extending through at least a part of the outer ends of the pair of terminals of the second communication antenna is referred to as the fourth virtual area. In this case, a pair of terminal portions of the first communication antenna and a pair of terminal portions of the second communication antenna shall be arranged so that the third virtual area and the fourth virtual area do not overlap each other in a plan view. Is possible.
 このような態様のアンテナモジュールによる場合、第3仮想領域と第4仮想領域とが平面視において互いに重ならないように、第1通信アンテナの一対の端子部が第2通信アンテナの一対の端子部から更に離れて配置されているので、第1通信アンテナ及び第2通信アンテナを用いて同時に非接触通信を行う際に、第1通信アンテナの端子部から発生したノイズが第2通信アンテナの端子部と相手の第2方通信アンテナとの非接触通信に影響を与えたり、第2通信アンテナの端子部から発生したノイズが、第1通信アンテナの端子部と相手方の第1通信アンテナとの非接触通信に影響を与えたりする可能性が更に低減される。 In the case of the antenna module of such an embodiment, the pair of terminal portions of the first communication antenna is connected to the pair of terminal portions of the second communication antenna so that the third virtual area and the fourth virtual area do not overlap each other in the plan view. Since they are arranged further apart, noise generated from the terminal portion of the first communication antenna is generated from the terminal portion of the second communication antenna when the first communication antenna and the second communication antenna are used for simultaneous non-contact communication. Non-contact communication with the other party's second communication antenna or noise generated from the terminal of the second communication antenna causes non-contact communication between the terminal of the first communication antenna and the other party's first communication antenna. The possibility of affecting the antenna is further reduced.
 第1通信アンテナ及び第2通信アンテナの一対の端子部のうちの少なくとも一方の端子部にデジタル信号が入力されているときにおいて、第1通信アンテナの一対の端子部の電界強度が、第1通信アンテナのアンテナ本体の電界強度よりも強く、且つ、第2通信アンテナの一対の端子部の電界強度が、第2通信アンテナのアンテナ本体の電界強度よりも強くなっていても良い。 When a digital signal is input to at least one of the pair of terminals of the first communication antenna and the second communication antenna, the electric field strength of the pair of terminals of the first communication antenna is the first communication. The electric field strength of the pair of terminals of the second communication antenna may be stronger than the electric field strength of the antenna body of the antenna, and may be stronger than the electric field strength of the antenna body of the second communication antenna.
 第1通信アンテナ及び第2通信アンテナの一対の端子部のうちの少なくとも一方の端子部にデジタル信号が入力されているときにおいて、第1通信アンテナの一方の端子部の電界強度が、第1通信アンテナの他方の端子部の電界強度よりも強く、且つ、第2通信アンテナの一方の端子部の電界強度が、第2通信アンテナの他方の端子部の電界強度よりも強くなっていても良い。 When a digital signal is input to at least one of the pair of terminals of the first communication antenna and the second communication antenna, the electric field strength of one terminal of the first communication antenna is the first communication. The electric field strength of one terminal portion of the second communication antenna may be stronger than the electric field strength of the other terminal portion of the antenna, and may be stronger than the electric field strength of the other terminal portion of the second communication antenna.
 第2通信アンテナの電気長を第1通信アンテナの電気長よりも長くすることが可能である。この場合、第2通信アンテナに入力されるデジタル信号の伝送速度は、第1通信アンテナに入力されるデジタル信号の伝送速度よりも遅くすることが可能である。通信アンテナの全長が長くなり、その面積が増大すると、当該通信アンテナの電気長が長くなるため、当該通信アンテナで伝送速度の速いデジタル信号を伝送することが困難になる。そのため、電気長の長い第2通信アンテナに伝送速度の遅いデジタル信号を伝送させる一方で、電気長の短い第1通信アンテナに伝送速度の速いデジタル信号を伝送させることによって、同時に異なる通信速度の非接触通信を好適に行うことができる。 It is possible to make the electric length of the second communication antenna longer than the electric length of the first communication antenna. In this case, the transmission speed of the digital signal input to the second communication antenna can be slower than the transmission speed of the digital signal input to the first communication antenna. When the total length of the communication antenna is increased and the area is increased, the electric length of the communication antenna is increased, so that it becomes difficult for the communication antenna to transmit a digital signal having a high transmission speed. Therefore, by transmitting a digital signal having a slow transmission speed to the second communication antenna having a long electric length and transmitting a digital signal having a high transmission speed to a first communication antenna having a short electric length, different communication speeds are simultaneously generated. Contact communication can be preferably performed.
 第1通信アンテナの幅寸法を、第2通信アンテナの幅寸法よりも大きくすることが可能である。第1通信アンテナの幅寸法が大きくなり、第1通信アンテナの面積が増大すると、第1通信アンテナの電気長を長くすることができる。これにより、第1通信アンテナの電気長を、第2通信アンテナの電気長と略同じ又は近づけることができる。 It is possible to make the width dimension of the first communication antenna larger than the width dimension of the second communication antenna. When the width dimension of the first communication antenna is increased and the area of the first communication antenna is increased, the electric length of the first communication antenna can be increased. As a result, the electric length of the first communication antenna can be substantially the same as or close to the electric length of the second communication antenna.
 上記何れかの態様のアンテナモジュールは、第1通信アンテナと第2通信アンテナとの間に配置されたグランド導体を更に備えた構成とすることが可能である。このような態様のアンテナモジュールによる場合、グランド導体によって、第1通信アンテナに伝送されるデジタル信号と、第2通信アンテナに伝送されるデジタル信号とがクロストークする可能性が低減されるので、第1通信アンテナと第2通信アンテナとで同時に非接触通信をより好適に行うことができる。 The antenna module of any of the above aspects can be configured to further include a ground conductor arranged between the first communication antenna and the second communication antenna. In the case of the antenna module of such a mode, the ground conductor reduces the possibility of crosstalk between the digital signal transmitted to the first communication antenna and the digital signal transmitted to the second communication antenna. Non-contact communication can be more preferably performed simultaneously with the first communication antenna and the second communication antenna.
 上記何れかの態様のアンテナモジュールは、絶縁性を有する基体を更に備えた構成とすることが可能である。基体上には、上記何れかの態様の複数の通信アンテナが略同心状に設けられた構成とすることが可能である。 The antenna module of any of the above embodiments can be configured to further include an insulating substrate. It is possible to have a configuration in which a plurality of communication antennas of any of the above embodiments are provided substantially concentrically on the substrate.
 第1通信アンテナのアンテナ本体は、一部が破断した略環状とすることが可能である。この場合、第1通信アンテナの一対の端子部は、第1通信アンテナのアンテナ本体の両端部とすることが可能である。第2通信アンテナのアンテナ本体は、一部が破断した略環状とすることが可能である。この場合、第2通信アンテナの一対の端子部は、第2通信アンテナのアンテナ本体の両端部とすることが可能である。 The antenna body of the first communication antenna can be formed into a substantially annular shape with a part broken. In this case, the pair of terminal portions of the first communication antenna can be both ends of the antenna body of the first communication antenna. The antenna body of the second communication antenna can have a substantially annular shape with a part broken. In this case, the pair of terminal portions of the second communication antenna can be both ends of the antenna body of the second communication antenna.
 上記何れかの態様のアンテナモジュールは、第1送信部及び第2送信部を更に備えた構成とすることが可能である。第1送信部は、第1通信アンテナの一対の端子部の少なくとも一方に対してデジタル信号を送信可能な構成とすることが可能である。第2送信部は、第2通信アンテナの一対の端子部の少なくとも一方に対してデジタル信号を送信可能な構成とすることが可能である。 The antenna module of any of the above aspects can be configured to further include a first transmitter and a second transmitter. The first transmission unit can be configured to be capable of transmitting a digital signal to at least one of the pair of terminal units of the first communication antenna. The second transmission unit can be configured to be capable of transmitting a digital signal to at least one of the pair of terminal units of the second communication antenna.
 本発明の一態様の非接触通信装置は、第1アンテナモジュールと、第1アンテナモジュールに回転自在に支持された第2アンテナモジュールとを備えている。第1アンテナモジュール及び第2アンテナモジュールが上記何れかの態様のアンテナモジュールとすることが可能である。第1アンテナモジュールの第1通信アンテナと、第2アンテナモジュールの第1通信アンテナとが、第2アンテナモジュールの回転軸の軸方向において並ぶように配置されており、且つ、第1アンテナモジュールの第2通信アンテナと、第2アンテナモジュールの第2通信アンテナとが、軸方向において並ぶように配置されている。なお、第2アンテナモジュールは、第1アンテナモジュールに対して回転自在に支持されている必要はなく、非接触通信時に互いに対向する構成であれば良い。 The non-contact communication device of one aspect of the present invention includes a first antenna module and a second antenna module rotatably supported by the first antenna module. The first antenna module and the second antenna module can be the antenna module of any of the above aspects. The first communication antenna of the first antenna module and the first communication antenna of the second antenna module are arranged so as to be aligned in the axial direction of the rotation axis of the second antenna module, and the first antenna module is the first. The two communication antennas and the second communication antenna of the second antenna module are arranged so as to be aligned in the axial direction. The second antenna module does not need to be rotatably supported by the first antenna module, and may be configured to face each other during non-contact communication.
 本発明の一態様の非接触通信方法は、上記何れかの態様のアンテナモジュールの第1通信アンテナの一対の端子部に対してデジタル信号を入力すると共に、上記何れかの態様のアンテナモジュールの第2通信アンテナの一対の端子部に対してデジタル信号を入力することを含む。 In the non-contact communication method of one aspect of the present invention, a digital signal is input to a pair of terminals of the first communication antenna of the antenna module of any of the above aspects, and the antenna module of any of the above aspects is described. 2 Includes inputting a digital signal to a pair of terminals of a communication antenna.
本発明の実施例1に係る電子機器の第1アンテナモジュール及び第2アンテナモジュールの概略的断面図及びα部分の概略的拡大図である。It is a schematic sectional view of the 1st antenna module and the 2nd antenna module of the electronic device which concerns on Example 1 of this invention, and the schematic enlarged view of the α part. 前記電子機器の第1アンテナモジュールの図1中の2-2断面図である。It is a 2-2 sectional view in FIG. 1 of the 1st antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの図1中の3-3断面図である。It is 3-3 sectional view in FIG. 1 of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールのブロック図である。It is a block diagram of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの第1、第2通信アンテナの位置関係の第1例を説明するための説明図である。It is explanatory drawing for demonstrating 1st example of the positional relationship of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの第1、第2通信アンテナの位置関係の第2例を説明するための説明図である。It is explanatory drawing for demonstrating the 2nd example of the positional relationship of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの第1、第2通信アンテナの第1設計変更例の位置関係を説明するための説明図である。It is explanatory drawing for demonstrating the positional relationship of the 1st design modification example of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの第1、第2通信アンテナの第2設計変更例の位置関係を説明するための説明図である。It is explanatory drawing for demonstrating the positional relationship of the 2nd design change example of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device. 前記電子機器の第1アンテナモジュール及び第2アンテナモジュールの第1、第2通信アンテナの第3設計変更例の位置関係を説明するための説明図である。It is explanatory drawing for demonstrating the positional relationship of the 3rd design change example of the 1st and 2nd communication antennas of the 1st antenna module and the 2nd antenna module of the electronic device. 実験例1の第1、第2アンテナモジュール、信号発信器及び高速信号用オシロスコープを示すブロック図である。It is a block diagram which shows the 1st and 2nd antenna modules of Experimental Example 1, a signal transmitter and an oscilloscope for a high-speed signal. 実験例1の第1、第2アンテナモジュールの概略的平面図である。It is a schematic plan view of the 1st and 2nd antenna modules of Experimental Example 1. 実験例2の第1、第2アンテナモジュール、信号発信器及び高速信号用オシロスコープを示すブロック図である。It is a block diagram which shows the 1st and 2nd antenna modules of Experimental Example 2, a signal transmitter and an oscilloscope for a high-speed signal. 実験例2の第1、第2アンテナモジュールの概略的平面図である。It is a schematic plan view of the 1st and 2nd antenna modules of Experimental Example 2. 実験例1のアンテナモジュールの内側通信アンテナに伝送されたディファレンシャル信号の波形図である。It is a waveform diagram of the differential signal transmitted to the inner communication antenna of the antenna module of Experimental Example 1. 実験例1のアンテナモジュールの外側通信アンテナに伝送されたディファレンシャル信号の波形図である。It is a waveform diagram of the differential signal transmitted to the outer communication antenna of the antenna module of Experimental Example 1. 実験例1のアンテナモジュールの内側通信アンテナに関するSパラデータのグラフである。It is a graph of S-parameters about the inner communication antenna of the antenna module of Experimental Example 1. 実験例1のアンテナモジュールの外側通信アンテナに関するSパラデータのグラフである。It is a graph of S-parameters about the outer communication antenna of the antenna module of Experimental Example 1. 実験例2のアンテナモジュールの内側通信アンテナに伝送されたディファレンシャル信号の波形図である。It is a waveform diagram of the differential signal transmitted to the inner communication antenna of the antenna module of Experimental Example 2. 実験例2のアンテナモジュールの外側通信アンテナに伝送されたディファレンシャル信号の波形図である。It is a waveform diagram of the differential signal transmitted to the outer communication antenna of the antenna module of Experimental Example 2. 実験例2のアンテナモジュールの内側通信アンテナに関するSパラデータのグラフである。It is a graph of S-parameters about the inner communication antenna of the antenna module of Experimental Example 2. 実験例2のアンテナモジュールの外側通信アンテナに関するSパラデータのグラフである。It is a graph of S-parameters about the outer communication antenna of the antenna module of Experimental Example 2. 本発明の実施例2に係る電子機器の第1アンテナモジュール及び第2アンテナモジュールの基体、通信アンテナ、グランド導体及び充電アンテナの概略的平面図である。FIG. 5 is a schematic plan view of a substrate, a communication antenna, a ground conductor, and a charging antenna of the first antenna module and the second antenna module of the electronic device according to the second embodiment of the present invention. 本発明の実施例3に係る電子機器の第1アンテナモジュール及び第2アンテナモジュールの基体、通信アンテナ、グランド導体及び充電アンテナの概略的平面図である。FIG. 5 is a schematic plan view of a substrate, a communication antenna, a ground conductor, and a charging antenna of the first antenna module and the second antenna module of the electronic device according to the third embodiment of the present invention.
 以下、本発明の複数の実施例について説明する。 Hereinafter, a plurality of examples of the present invention will be described.
 以下、本発明の実施例1を含む複数の実施例に係る電子機器Dの第1アンテナモジュールM1(以下、単にモジュールM1とも称する。)及び第2アンテナモジュールM2(以下、単にモジュールM2とも称する。)について、図1~図6Cを参照しつつ説明する。モジュールM1について説明した後、モジュールM2について説明する。図1には、実施例1のモジュールM1及びモジュールM2が示されており、図2には、実施例1のモジュールM1が示されており、図3には、実施例1のモジュールM2が示されている。図4は、実施例1のモジュールM1及びモジュールM2のブロック図である。図5A、図5Bは、実施例1のモジュールM1及びモジュールM2の後述する第1、第2通信アンテナ200aの位置関係の第1、2例を説明するための説明図である。図6A、図6B、図6Cは、実施例1のモジュールM1及びモジュールM2の後述する第1、第2通信アンテナ200aの第1、第2、第3設計変更例の位置関係を説明するための説明図である。 Hereinafter, the first antenna module M1 (hereinafter, also simply referred to as module M1) and the second antenna module M2 (hereinafter, simply referred to as module M2) of the electronic device D according to a plurality of examples including the first embodiment of the present invention. ) Will be described with reference to FIGS. 1 to 6C. After the module M1 will be described, the module M2 will be described. FIG. 1 shows the module M1 and the module M2 of the first embodiment, FIG. 2 shows the module M1 of the first embodiment, and FIG. 3 shows the module M2 of the first embodiment. Has been done. FIG. 4 is a block diagram of the module M1 and the module M2 of the first embodiment. 5A and 5B are explanatory views for explaining the first and second examples of the positional relationship of the first and second communication antennas 200a described later in the module M1 and the module M2 of the first embodiment. 6A, 6B, and 6C are for explaining the positional relationship of the first, second, and third design modification examples of the first and second communication antennas 200a described later in the module M1 and the module M2 of the first embodiment. It is explanatory drawing.
 電子機器Dは、モジュールM1と及びモジュールM2を備えている。モジュールM1は、モジュールM2を仮想の回転軸P又は現実の回転軸で所定角度の範囲又は360°回転可能に支持している。なお、図1には、モジュールM2の仮想の回転軸Pが示されている。図1に示されるZ-Z’方向は、回転軸Pの軸方向に相当する。 The electronic device D includes a module M1 and a module M2. The module M1 supports the module M2 on a virtual rotation axis P or a real rotation axis so as to be rotatable within a predetermined angle range or 360 °. Note that FIG. 1 shows a virtual rotation axis P of the module M2. The ZZ'direction shown in FIG. 1 corresponds to the axial direction of the rotation axis P.
 モジュールM1は、絶縁性を有する基体100a(例えば、基板又は絶縁体)を備えている。基体100aの外形は任意に設定可能であり、例えば、Z-Z’方向から見て円形状又は多角形状とすることが可能である。基体100aは、第1面101a、その反対側の第2面102a及び複数の導電ライン110aを有している。導電ライン110aは、基体100aの第1面101a、基体100aの第2面102a及び/又は基体100a内部に設けられている。 Module M1 includes a substrate 100a (for example, a substrate or an insulator) having an insulating property. The outer shape of the substrate 100a can be arbitrarily set, and for example, it can be circular or polygonal when viewed from the ZZ'direction. The substrate 100a has a first surface 101a, a second surface 102a on the opposite side thereof, and a plurality of conductive lines 110a. The conductive line 110a is provided inside the first surface 101a of the substrate 100a, the second surface 102a of the substrate 100a, and / or the substrate 100a.
 モジュールM1は、複数の通信アンテナ200aを更に備えている。モジュールM1の複数の通信アンテナ200aの一つずつが、モジュールM2の複数の通信アンテナ200bの一つずつに対してZ-Z’方向に間隔をあけて並ぶように配置される。モジュールM1の複数の通信アンテナ200aの一つずつが、モジュールM2の複数の通信アンテナ200bの一つずつと電磁界結合可能な構成である。通信アンテナ200aの一つずつと通信アンテナ200bの一つずつとが、互いに電磁界結合することにより、結合器(カプラ)を構成する。各カプラにおいて、電磁界結合時の通信アンテナ200aから通信アンテナ200bまでのZ-Z’方向の距離(通信距離)は、0mm~数mm程度の近距離とすると良いが、これに限定されるものではない。 Module M1 further includes a plurality of communication antennas 200a. Each of the plurality of communication antennas 200a of the module M1 is arranged so as to be arranged at intervals in the ZZ'direction with respect to each of the plurality of communication antennas 200b of the module M2. Each of the plurality of communication antennas 200a of the module M1 can be electromagnetically coupled to each of the plurality of communication antennas 200b of the module M2. Each of the communication antennas 200a and one of the communication antennas 200b are electromagnetically coupled to each other to form a coupler. In each coupler, the distance (communication distance) in the ZZ'direction from the communication antenna 200a to the communication antenna 200b at the time of electromagnetic field coupling is preferably a short distance of about 0 mm to several mm, but is limited to this. is not it.
 複数の通信アンテナ200aは、基体100aの第1面101a上に略同心状に設けられた導体(図2参照)、金属板又はコイル等である。前記導体は、(a)周知の印刷法やフォトリソグラフィーなどによって基体100aの第1面101a上に形成されていても良いし、(b)スパッタ、無電解めっき又は蒸着により基体100aの第1面101a上に導体膜を形成した後、レーザー又は薬剤のエッチングにより、導体膜の不必要な部分を除去して導体が形成されていても良いし、(c)基体100a内に分散された金属錯体をレーザーによって活性化して基体100aの第1面101a上にめっき触媒を形成し、めっき触媒上に無電解めっきなどでめっき膜(導体)を形成しても良い。なお、通信アンテナ200aのZ方向側の面は、フラットであると良いが、これに限定されるものではない。 The plurality of communication antennas 200a are conductors (see FIG. 2), metal plates, coils, or the like provided substantially concentrically on the first surface 101a of the substrate 100a. The conductor may be formed on the first surface 101a of the substrate 100a by (a) a well-known printing method, photolithography, or the like, or (b) the first surface of the substrate 100a by sputtering, electroless plating, or vapor deposition. After forming the conductor film on 101a, the conductor may be formed by removing unnecessary parts of the conductor film by etching with a laser or a chemical, or (c) a metal complex dispersed in the substrate 100a. May be activated by a laser to form a plating catalyst on the first surface 101a of the substrate 100a, and a plating film (conductor) may be formed on the plating catalyst by electroless plating or the like. The surface of the communication antenna 200a on the Z direction side may be flat, but the surface is not limited to this.
 本発明における略同心状とは、複数の通信アンテナ200aが、その中心Cを一致させて同心状に配置されているものだけでなく、中心Cを一致させずに順次内側(略同心状)に配置されているものも含むものとする。要するに、本発明における略同心状とは、複数の通信アンテナ200aの中心Cが一致しているか否かを問わない。全ての通信アンテナ200aの中心Cが一致している場合、当該中心Cが回転軸Pと一致するように配置されていても良い(図1~図3参照)し、当該中心Cが回転軸Pの近傍に配置されていても良いが、これに限定されるものではない。全ての通信アンテナ200aの中心Cが一致していない場合、少なくとも一つの通信アンテナ200aの中心Cが回転軸Pと一致するように配置させても良いし、少なくとも一つの通信アンテナ200aの中心Cが回転軸Pの近傍に配置されていても良いが、これに限定されるものではない。なお、図4では、図示に便宜上、複数の通信アンテナ200aが並列に配置されているが、複数の通信アンテナ200aの現実の配置関係を示すものでないことに留意されたい。 The substantially concentric shape in the present invention means not only that a plurality of communication antennas 200a are arranged concentrically with their centers C aligned, but also sequentially inside (substantially concentric) without matching the centers C. It shall include those that are arranged. In short, the substantially concentric shape in the present invention does not matter whether or not the centers C of the plurality of communication antennas 200a coincide with each other. When the centers C of all the communication antennas 200a are aligned, the center C may be arranged so as to coincide with the rotation axis P (see FIGS. 1 to 3), and the center C is the rotation axis P. It may be arranged in the vicinity of, but is not limited to this. When the centers C of all the communication antennas 200a do not match, the center C of at least one communication antenna 200a may be arranged so as to coincide with the rotation axis P, or the center C of at least one communication antenna 200a may be arranged. It may be arranged in the vicinity of the rotation axis P, but is not limited to this. It should be noted that, in FIG. 4, although the plurality of communication antennas 200a are arranged in parallel for convenience of illustration, they do not show the actual arrangement relationship of the plurality of communication antennas 200a.
 複数の通信アンテナ200aは、アンテナ本体210a及び一対の端子部221a、222aを有している。複数の通信アンテナ200aのアンテナ本体210aは、基体100aの第1面101a上に略同心状に間隔をあけて設けられている。複数のアンテナ本体210aは、少なくとも一組の隣り合うアンテナ本体210aを含む。一組又は各組の隣り合うアンテナ本体210aにおいて、外側のアンテナ本体210aの内形寸法は、内側のアンテナ本体210aの外形寸法よりも大きい。隣り合うアンテナ本体210aの間は、間隔をあいており、非接触である。以下、説明の便宜上、複数のアンテナ本体210aのうちの最も内側に位置するアンテナ本体210aを最内のアンテナ本体210aと称し、最も外側に位置するアンテナ本体210aを最外のアンテナ本体210aと称する。 The plurality of communication antennas 200a have an antenna main body 210a and a pair of terminal portions 221a and 222a. The antenna main bodies 210a of the plurality of communication antennas 200a are provided on the first surface 101a of the substrate 100a at intervals substantially concentrically. The plurality of antenna bodies 210a includes at least one set of adjacent antenna bodies 210a. In one set or adjacent antenna bodies 210a of each set, the inner dimension of the outer antenna body 210a is larger than the outer dimension of the inner antenna body 210a. There is a gap between the adjacent antenna bodies 210a, and they are not in contact with each other. Hereinafter, for convenience of description, the antenna body 210a located on the innermost side of the plurality of antenna bodies 210a will be referred to as the innermost antenna body 210a, and the antenna body 210a located on the outermost side will be referred to as the outermost antenna body 210a.
 最内のアンテナ本体210aは、その形状は任意であるが、例えば、Z方向側から見て(平面視において)、一部が破断した略環状(例えば、一部が破断した円環状(図2、図5A、図5B及び図6B参照)又は一部が破断した多角環状(図示なし))、略環状(例えば、円環状(図6A及び図6C参照)又は多角環状(図示なし))、略U字状、円形又は多角形状とすることが可能である。複数のアンテナ本体210aの最内のアンテナ本体210a以外のアンテナ本体210aは、Z方向側から見て(平面視において)、一部が破断した略環状(例えば、一部が破断した円環状(図2、図5A、図5B及び図6B参照)又は一部が破断した多角環状(図示なし))、略環状(例えば、円環状(図6A及び図6C参照)又は多角環状(図示なし))又は略U字状である。 The shape of the innermost antenna body 210a is arbitrary, but for example, when viewed from the Z direction side (in a plan view), the antenna body 210a is partially broken (for example, a partially broken annular shape (FIG. 2). , 5A, 5B and 6B) or partially broken polygonal ring (not shown), substantially annular (eg, annular (see FIGS. 6A and 6C) or polygonal ring (not shown)), abbreviated. It can be U-shaped, circular or polygonal. The antenna main body 210a other than the innermost antenna main body 210a of the plurality of antenna main bodies 210a is a substantially annular shape (for example, a partially broken annular shape) when viewed from the Z direction side (in a plan view). 2. Fig. 5A, Fig. 5B and Fig. 6B) or partially broken polygonal ring (not shown), substantially ring (for example, annular (see FIGS. 6A and 6C) or polygonal ring (not shown)) or It is almost U-shaped.
 端子部221a、222aは、デジタル信号が入力される部分及び/又はデジタル信号を出力する部分である。各通信アンテナ200aにおいて、端子部221a、222aは、基体100aの第1面101a上に設けられ、アンテナ本体210aの中心Cから離れて位置し且つ互いに間隔をあけて配置されている。この端子部221a、222aは、a)アンテナ本体210aの任意の一部であっても良いし、b)アンテナ本体210aから延びていても良い。 The terminal portions 221a and 222a are a portion where a digital signal is input and / or a portion where a digital signal is output. In each communication antenna 200a, the terminal portions 221a and 222a are provided on the first surface 101a of the substrate 100a, are located away from the center C of the antenna main body 210a, and are arranged at intervals from each other. The terminal portions 221a and 222a may be a) an arbitrary part of the antenna main body 210a, or b) may extend from the antenna main body 210a.
 例えば、端子部221a、222aがa)の構成を有する場合、端子部221a、222aは、下記a-1及びa-2の何れかの態様とすることが可能である。
 a-1)各通信アンテナ200aにおいて、アンテナ本体210aが、一部が破断した略環状である場合、端子部221aが当該アンテナ本体210aの一端部(特許請求の範囲のアンテナ本体の両端部の一方に相当する。)、端子部222aがアンテナ本体210aの他端部(特許請求の範囲のアンテナ本体の両端部の他方に相当する。)として構成可能である(図2、図5A及び図5B参照)。
For example, when the terminal portions 221a and 222a have the configuration of a), the terminal portions 221a and 222a can be in any of the following modes a-1 and a-2.
a-1) In each communication antenna 200a, when the antenna body 210a is substantially annular with a part broken, the terminal portion 221a is one end of the antenna body 210a (one of both ends of the antenna body within the claims). The terminal portion 222a can be configured as the other end of the antenna body 210a (corresponding to the other end of both ends of the antenna body in the claims) (see FIGS. 2, 5A and 5B). ).
 a-2)各通信アンテナ200aにおいて、アンテナ本体210aが略環状である場合、端子部221a、222aは、当該アンテナ本体210aの一部分として構成可能である(図6A参照)。例えば、略円環状のアンテナ本体210aに一対のスルーホール電極が接続されている場合、アンテナ本体210aの一対のスルーホール電極の一方が接続された箇所を端子部221aとし、他方を端子部222aとすることが可能である。 A-2) In each communication antenna 200a, when the antenna body 210a is substantially annular, the terminal portions 221a and 222a can be configured as a part of the antenna body 210a (see FIG. 6A). For example, when a pair of through-hole electrodes are connected to a substantially annular antenna body 210a, a portion to which one of the pair of through-hole electrodes of the antenna body 210a is connected is designated as a terminal portion 221a, and the other is designated as a terminal portion 222a. It is possible to do.
 端子部221a、222aがb)の構成を有する場合、端子部221a、222aは、下記b-1及びb-2の何れかの態様とすることが可能である。 When the terminal portions 221a and 222a have the configuration of b), the terminal portions 221a and 222a can be in any of the following modes b-1 and b-2.
 b-1)各通信アンテナ200aにおいて、アンテナ本体210aが、一部が破断した略環状である場合、端子部221aが当該アンテナ本体210aの一端部から延び、端子部222aがアンテナ本体210aの他端部から延び、且つ端子部221a、222aが互いに隣り合うように配置された構成とすることが可能である(図6B参照)。 b-1) In each communication antenna 200a, when the antenna body 210a is a substantially annular shape in which a part is broken, the terminal portion 221a extends from one end of the antenna body 210a, and the terminal portion 222a is the other end of the antenna body 210a. It is possible to have a configuration in which the terminal portions 221a and 222a extend from the portions and are arranged so as to be adjacent to each other (see FIG. 6B).
 b-2)各通信アンテナ200aにおいて、アンテナ本体210aが略環状である場合、端子部221a、222aは、当該アンテナ本体210aの一部分から各々延び且つ互いに隣り合うように配置された構成とすることが可能である(図6C参照)。 b-2) In each communication antenna 200a, when the antenna main body 210a is substantially annular, the terminal portions 221a and 222a may be arranged so as to extend from a part of the antenna main body 210a and to be adjacent to each other. It is possible (see FIG. 6C).
 端子部221a、222aがa)及びb)の何れの構成を有する場合も、各通信アンテナ200aにおいて、その端子部221a、222aは、Z方向側から見て対応するアンテナ本体210aの外側に位置する別のアンテナ本体210aの内側に配置されおり且つ互いに隣り合う内側端及びその反対側の外側端を有している。内側端及び外側端は、内側(アンテナ本体210aの中心C側)に位置する第1角部及び外側に位置する第2角部を有していても良いが、これに限定されるものではない。 When the terminal portions 221a and 222a have any of the configurations a) and b), in each communication antenna 200a, the terminal portions 221a and 222a are located outside the corresponding antenna main body 210a when viewed from the Z direction side. It is arranged inside another antenna body 210a and has an inner end adjacent to each other and an outer end on the opposite side thereof. The inner end and the outer end may have a first corner portion located inside (center C side of the antenna body 210a) and a second corner portion located outside, but the present invention is not limited thereto. ..
 複数の通信アンテナ200aは、少なくとも第1通信アンテナ200a及び第2通信アンテナ200aを含む。第1通信アンテナ200aは、複数の通信アンテナ200aのうちの隣り合う通信アンテナ200aのうちの内側の通信アンテナ200aであり、第2通信アンテナ200aは、隣り合う通信アンテナ200aのうちの外側の通信アンテナ200aである。なお、以下、説明の便宜上、第1通信アンテナ200aのアンテナ本体210aを第1アンテナ本体210aと称し、第1通信アンテナ200aの端子部221a、222aを第1端子部221a、222aと称し、第2通信アンテナ200aのアンテナ本体210aを第2アンテナ本体210aと称し、第2通信アンテナ200aの端子部221a、222aを第2端子部221a、222aと称する。 The plurality of communication antennas 200a include at least the first communication antenna 200a and the second communication antenna 200a. The first communication antenna 200a is the inner communication antenna 200a of the adjacent communication antennas 200a among the plurality of communication antennas 200a, and the second communication antenna 200a is the outer communication antenna of the adjacent communication antennas 200a. It is 200a. Hereinafter, for convenience of description, the antenna body 210a of the first communication antenna 200a is referred to as the first antenna body 210a, the terminal portions 221a and 222a of the first communication antenna 200a are referred to as the first terminal portions 221a and 222a, and the second The antenna body 210a of the communication antenna 200a is referred to as the second antenna body 210a, and the terminal portions 221a and 222a of the second communication antenna 200a are referred to as the second terminal portions 221a and 222a.
 第1アンテナ本体210aは、上記何れかの態様の最内のアンテナ本体210aとすることが可能である(図2及び図5A~図6C参照)し、上記何れかの態様の最内のアンテナ本体210a及び最外のアンテナ本体210a以外のアンテナ本体210aとすることも可能である。第1端子部221a、222aは上記何れかの態様の端子部221a、222aとすることが可能である。第2アンテナ本体210aは、複数のアンテナ本体210aのうちの最内のアンテナ本体210a以外の上記何れかの態様のアンテナ本体210aであって、第1アンテナ本体210aの外側に第1アンテナ本体210aに対して間隔をあけて配置されている。第2端子部221a、222aは上記何れかの態様の端子部221a、222aとすることが可能である。 The first antenna body 210a can be the innermost antenna body 210a of any of the above embodiments (see FIGS. 2 and 5A to 6C), and the innermost antenna body of any of the above embodiments. It is also possible to use an antenna body 210a other than the 210a and the outermost antenna body 210a. The first terminal portions 221a and 222a can be terminal portions 221a and 222a in any of the above embodiments. The second antenna main body 210a is an antenna main body 210a of any of the above aspects other than the innermost antenna main body 210a among the plurality of antenna main bodies 210a, and is attached to the first antenna main body 210a outside the first antenna main body 210a. On the other hand, they are arranged at intervals. The second terminal portions 221a and 222a can be the terminal portions 221a and 222a of any of the above aspects.
 ここで、第1通信アンテナ200aの第1アンテナ本体210aの中心Cから第1通信アンテナ200aの第1端子部221a、222aの内側端の少なくとも一部を通って放射状に延びる仮想の一対の半直線を半直線L1(第1半直線L1)とする。第1アンテナ本体210aの中心C及び/又は第2アンテナ本体210aの中心Cから第2通信アンテナ200aの第2端子部221a、222aの内側端の少なくとも一部を通って放射状に延びる仮想の一対の半直線を半直線L2(第2半直線L2)とする。半直線L1、L2は、例えば、第1、第2端子部221a、222aの内側端の第1角部を通っていても良いし、第1、第2端子部221a、222aの内側端の第2角部を通っていても良いし、第1、第2端子部221a、222aの内側端の全てを通っていても良い。半直線L1間の仮想領域を第1仮想領域とし、半直線L2間の仮想領域を第2仮想領域とする。 Here, a pair of virtual half straight lines extending radially from the center C of the first antenna main body 210a of the first communication antenna 200a through at least a part of the inner ends of the first terminal portions 221a and 222a of the first communication antenna 200a. Is a half straight line L1 (first half straight line L1). A pair of virtual antennas extending radially from the center C of the first antenna body 210a and / or the center C of the second antenna body 210a through at least a part of the inner ends of the second terminal portions 221a and 222a of the second communication antenna 200a. Let the half line be the half line L2 (second half line L2). The half straight lines L1 and L2 may pass through the first corner portion of the inner end of the first and second terminal portions 221a and 222a, or may pass through the first corner portion of the inner end of the first and second terminal portions 221a and 222a. It may pass through the two corners, or may pass through all the inner ends of the first and second terminal portions 221a and 222a. The virtual area between the half straight lines L1 is defined as the first virtual area, and the virtual area between the half straight lines L2 is defined as the second virtual area.
 また、第1通信アンテナ200aの第1アンテナ本体210aの中心Cから第1通信アンテナ200aの第1端子部221a、222aの外側端の少なくとも一部を通って放射状に延びる仮想の一対の半直線を半直線L3(第3半直線L3)とする。第1アンテナ本体210aの中心C及び/又は第2アンテナ本体210aの中心Cから第2通信アンテナ200aの第2端子部221a、222aの外側端の少なくとも一部を通って放射状に延びる仮想の一対の半直線を半直線L4(第4半直線L4)とする。半直線L3、L4は、例えば、第1、第2端子部221a、222aの外側端の第1角部を通っていても良いし、第1、第2端子部221a、222aの外側端の第2角部を通っていても良いし、第1、第2端子部221a、222aの外側端の全てを通っていても良い。半直線L3間の仮想領域を第3仮想領域とする。第3仮想領域は、第1仮想領域を含む。半直線L4間の仮想領域を第4仮想領域とする。第4仮想領域は、第2仮想領域を含む。 Further, a pair of virtual half lines extending radially from the center C of the first antenna main body 210a of the first communication antenna 200a through at least a part of the outer ends of the first terminal portions 221a and 222a of the first communication antenna 200a. Let it be a half straight line L3 (third half straight line L3). A pair of virtual antennas extending radially from the center C of the first antenna body 210a and / or the center C of the second antenna body 210a through at least a part of the outer ends of the second terminal portions 221a and 222a of the second communication antenna 200a. Let the half line be the half line L4 (fourth half line L4). The half straight lines L3 and L4 may pass through the first corner portion of the outer end of the first and second terminal portions 221a and 222a, or may pass through the first corner portion of the outer end of the first and second terminal portions 221a and 222a. It may pass through the two corners, or may pass through all the outer ends of the first and second terminal portions 221a and 222a. The virtual area between the half straight lines L3 is defined as the third virtual area. The third virtual area includes the first virtual area. The virtual area between the half straight lines L4 is defined as the fourth virtual area. The fourth virtual area includes the second virtual area.
 少なくとも第1仮想領域と第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、第1端子部221a、222a及び第2端子部221a、222aが配置されている(図5A参照)。この場合、第2端子部221aは、第1端子部221aの内側端、外側端の少なくとも一部を通って延びる半直線L1、L3の間の領域内に位置しないように、及び/又は、第2端子部222aは、第1端子部222aの内側端、外側端の少なくとも一部を通って延びる半直線L1、L3の間の領域内に位置しないように、第1端子部221a、222aが、第2端子部221a、222aから離れて配置されている。 The first terminal portions 221a and 222a and the second terminal portions 221a and 222a are arranged so that at least the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view). (See FIG. 5A). In this case, the second terminal portion 221a should not be located in the region between the half straight lines L1 and L3 extending through at least a part of the inner end and the outer end of the first terminal portion 221a and / or the first. The first terminal portions 221a and 222a are arranged so that the two terminal portions 222a are not located in the region between the half straight lines L1 and L3 extending through at least a part of the inner end and the outer end of the first terminal portion 222a. It is arranged away from the second terminal portions 221a and 222a.
 又は、第3仮想領域と第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、第1端子部221a、222a及び第2端子部221a、222aが配置されていても良い(図5B参照)。この場合、前者の場合よりも、第1端子部221a、222aが、第2端子部221a、222aから遠くに離れて配置されている。 Alternatively, the first terminal portions 221a and 222a and the second terminal portions 221a and 222a are arranged so that the third virtual area and the fourth virtual area do not overlap each other when viewed from the Z direction side (in a plan view). Also good (see FIG. 5B). In this case, the first terminal portions 221a and 222a are arranged farther from the second terminal portions 221a and 222a than in the former case.
 例えば、第1アンテナ本体210aの中心Cから第1仮想領域を半分に二分するように延びる仮想の直線を第1分割線とし、第1アンテナ本体210aの中心Cから第2仮想領域を半分に二分するように延びる仮想の直線を第2分割線とした場合、第1端子部221a、222a及び第2端子部221a、222aは、第1分割線と第2分割線とが、第1アンテナ本体210aの中心C周りに略90°~略180°の角度間隔で位置するように、配置された構成とすることが可能である。例えば、第1端子部221a、222a及び第2端子部221a、222aは、第1分割線と第2分割線とが、第1アンテナ本体210aの中心C周りに略180°(図2及び図5A~図6C参照)、略120°又は略90°の角度間隔で位置するように、配置された構成とすることが可能である。第1分割線と第2分割線との間の角度が前述の何れの角度である場合であっても、第3仮想領域と第4仮想領域とがZ方向側から見て(平面視において)互いに重ならない。なお、第1分割線は、第3仮想領域を半分に二分するように延びていても良く、第2分割線は、第4仮想領域を半分に二分するように延びていても良い。 For example, a virtual straight line extending from the center C of the first antenna main body 210a so as to divide the first virtual area in half is defined as the first dividing line, and the second virtual area is divided in half from the center C of the first antenna main body 210a. When the virtual straight line extending so as to be the second dividing line is used as the second dividing line, the first dividing line and the second dividing line of the first terminal portions 221a and 222a and the second terminal portions 221a and 222a are the first antenna main body 210a. It is possible to arrange the antenna so as to be located around the center C at an angular interval of about 90 ° to about 180 °. For example, in the first terminal portions 221a and 222a and the second terminal portions 221a and 222a, the first dividing line and the second dividing line are approximately 180 ° around the center C of the first antenna main body 210a (FIGS. 2 and 5A). (See FIG. 6C), it is possible to arrange the configurations so that they are located at an angular interval of approximately 120 ° or approximately 90 °. Regardless of which of the above angles the angle between the first dividing line and the second dividing line is, the third virtual area and the fourth virtual area are viewed from the Z direction side (in a plan view). Do not overlap with each other. The first dividing line may extend so as to divide the third virtual area in half, and the second dividing line may extend so as to divide the fourth virtual area in half.
 第1通信アンテナ200aの電気長は、伝送時にデジタル信号が第1端子部221aから入力され、第1アンテナ本体210aを通って第2端子部222aに至るまで距離、伝送時にデジタル信号が第2端子部222aから入力され、第1アンテナ本体210aを通って第1端子部221aに至るまで距離、又はこれらの各々の距離である。第2通信アンテナ200aの電気長は、伝送時にデジタル信号が第1端子部221aから入力され、第2アンテナ本体210aを通って第2端子部222aに至るまでの距離、伝送時にデジタル信号が第2端子部222aから入力され、第2アンテナ本体210aを通って第1端子部221aに至るまでの距離、又はこれらの各々の距離である。第2通信アンテナ200aの電気長は、第2アンテナ本体210aが第1アンテナ本体210aの外側に配置されており、第2アンテナ本体210aの面積が第1アンテナ本体210aの面積よりも大きくなることから、第1通信アンテナ200aの電気長よりも長くなる。 The electrical length of the first communication antenna 200a is such that a digital signal is input from the first terminal portion 221a during transmission, passes through the first antenna main body 210a to reach the second terminal portion 222a, and the digital signal is transmitted to the second terminal. The distance is input from the unit 222a, passes through the first antenna main body 210a, and reaches the first terminal unit 221a, or each of these distances. The electrical length of the second communication antenna 200a is the distance from the first terminal portion 221a to the second terminal portion 222a through the second antenna main body 210a during transmission, and the second digital signal during transmission. It is the distance input from the terminal portion 222a, passing through the second antenna main body 210a to reach the first terminal portion 221a, or the distances of each of them. The electrical length of the second communication antenna 200a is because the second antenna main body 210a is arranged outside the first antenna main body 210a, and the area of the second antenna main body 210a is larger than the area of the first antenna main body 210a. , It becomes longer than the electric length of the first communication antenna 200a.
 第1アンテナ本体210aの幅寸法Wは、第2アンテナ本体210aの幅寸法Wよりも大きくすることが可能である。例えば、第1アンテナ本体210aの幅寸法Wを0.5~1.0mmとし、第2アンテナ本体210aの幅寸法Wを1.0~1.5mmとすることが可能である。第1アンテナ本体210aの幅寸法Wを第2アンテナ本体210aの幅寸法Wよりも大きくすれば、第1アンテナ本体210aの面積が増大し、その結果として、第1通信アンテナ200aの電気長が増大する。これを利用して、第1通信アンテナ200aの電気長が第2通信アンテナ200aの電気長と略同じになる又は近くなるように、第1アンテナ本体210aの幅寸法Wを第2アンテナ本体210aの幅寸法Wよりも大きくしても良い。なお、第1通信アンテナ200aの電気長が第2通信アンテナ200aの電気長と略同じになる又は近くなるように、第1アンテナ本体210aの幅寸法Wを増大させる手段以外の手段で、第1アンテナ本体210aの面積を増大させても構わない。 The width dimension W of the first antenna main body 210a can be made larger than the width dimension W of the second antenna main body 210a. For example, the width dimension W of the first antenna main body 210a can be set to 0.5 to 1.0 mm, and the width dimension W of the second antenna main body 210a can be set to 1.0 to 1.5 mm. If the width dimension W of the first antenna main body 210a is made larger than the width dimension W of the second antenna main body 210a, the area of the first antenna main body 210a increases, and as a result, the electric length of the first communication antenna 200a increases. To do. Utilizing this, the width dimension W of the first antenna main body 210a is set to be substantially the same as or close to the electric length of the second communication antenna 200a of the second antenna main body 210a. It may be larger than the width dimension W. The first means other than the means for increasing the width dimension W of the first antenna main body 210a so that the electric length of the first communication antenna 200a becomes substantially the same as or close to the electric length of the second communication antenna 200a. The area of the antenna body 210a may be increased.
 なお、第1アンテナ本体210aの幅寸法Wは、第2アンテナ本体210aの幅寸法Wよりも大きく且つ第1通信アンテナ200aの電気長が第2通信アンテナ200aの電気長よりも短くても良い。また、第1アンテナ本体210aの幅寸法Wが、第2アンテナ本体210aの幅寸法Wよりも小さくても良いし、両者の幅寸法Wが同じであっても良い。 The width dimension W of the first antenna main body 210a may be larger than the width dimension W of the second antenna main body 210a, and the electric length of the first communication antenna 200a may be shorter than the electric length of the second communication antenna 200a. Further, the width dimension W of the first antenna main body 210a may be smaller than the width dimension W of the second antenna main body 210a, or the width dimension W of both may be the same.
 モジュールM1は、少なくとも一つのグランド導体300aを更に備えていても良い。少なくとも一つのグランド導体300aは、基体100aの第1面101a上に設けられた略環状(例えば、円環状(図2参照)又は多角環状)、一部が破断した略環状(例えば、円環状又は多角環状)又は略U字状の導体又は金属板であって、複数の通信アンテナ200aのうちの隣り合う通信アンテナ200a間に配置されている。前記導体は、通信アンテナ200aの導体と同様の方法で形成可能である。少なくとも一つのグランド導体300aは、グランド接続されている。少なくとも一つのグランド導体300aの外形線は、隣り合う通信アンテナ200aの外側の通信アンテナ200aのアンテナ本体210aの内形線に沿って延びていても良いし、少なくとも一つのグランド導体300aの内形線は、隣り合う通信アンテナ200aの内側の通信アンテナ200aのアンテナ本体210aの外形線に沿って延びていても良いが、これに限定されるものではない。なお、少なくとも一つのグランド導体300aは省略可能である。 Module M1 may further include at least one ground conductor 300a. The at least one ground conductor 300a is a substantially annular shape (for example, an annular shape (see FIG. 2) or a polygonal ring shape) provided on the first surface 101a of the substrate 100a, a substantially annular shape (for example, an annular shape) or a partially broken ring shape. It is a polygonal ring) or a substantially U-shaped conductor or a metal plate, and is arranged between adjacent communication antennas 200a among a plurality of communication antennas 200a. The conductor can be formed in the same manner as the conductor of the communication antenna 200a. At least one ground conductor 300a is connected to the ground. The outer line of at least one ground conductor 300a may extend along the inner line of the antenna body 210a of the communication antenna 200a outside the adjacent communication antenna 200a, or may extend along the inner line of the at least one ground conductor 300a. May extend along the outline of the antenna body 210a of the communication antenna 200a inside the adjacent communication antennas 200a, but is not limited thereto. At least one ground conductor 300a can be omitted.
 モジュールM1は、通信回路部400aを更に備えていても良い。通信回路部400aは、基体100aの第2面102a上に実装されている。通信回路部400aは、複数の通信アンテナ200aの数に応じた数の送信部410a及び/又は復元部420aを有している。 Module M1 may further include a communication circuit unit 400a. The communication circuit unit 400a is mounted on the second surface 102a of the substrate 100a. The communication circuit unit 400a has a number of transmission units 410a and / or a restoration unit 420a corresponding to the number of the plurality of communication antennas 200a.
 各送信部410aは、基体100aの導電ライン110aを介して対応する通信アンテナ200aの端子部221a、222aに電気的に接続されている。各送信部410aは、対応する通信アンテナ200aの端子部221a、222aの少なくとも一方に対してデジタル信号を送信可能なICなどの論理回路、又はプロセッサなどによって処理されるソフトウェアで構成されている。各送信部410aが送信可能なデジタル信号は、広帯域の周波数成分を有する矩形波のディファレンシャル信号又は広帯域の周波数成分を有する矩形波のシングルエンド信号とすることが可能である。このデジタル信号は、数百MHz以上の高周波成分を含んでおり、より好ましくは1GHz~5GHzの高周波成分を含んでいると良いが、これに限定されるものではない。ディファレンシャル信号の伝送速度は、500kbps~1.5Gbpsとすることが可能であるが、これに限定されるものではない。シングルエンド信号の伝送速度を500kbps~1.5Gbpsとすることが可能であるが、これに限定されるものではない。なお、本発明のデジタル信号は、前述のディファレンシャル信号又はシングルエンド信号に限定されるものではない。 Each transmission unit 410a is electrically connected to the terminal units 221a and 222a of the corresponding communication antenna 200a via the conductive line 110a of the substrate 100a. Each transmission unit 410a is composed of a logic circuit such as an IC capable of transmitting a digital signal to at least one of the terminal units 221a and 222a of the corresponding communication antenna 200a, or software processed by a processor or the like. The digital signal that can be transmitted by each transmission unit 410a can be a square wave differential signal having a wide band frequency component or a square wave single-ended signal having a wide band frequency component. This digital signal contains a high frequency component of several hundred MHz or more, and more preferably contains a high frequency component of 1 GHz to 5 GHz, but the digital signal is not limited thereto. The transmission speed of the differential signal can be 500 kbps to 1.5 Gbps, but is not limited to this. The transmission speed of the single-ended signal can be set to 500 kbps to 1.5 Gbps, but the transmission speed is not limited to this. The digital signal of the present invention is not limited to the above-mentioned differential signal or single-ended signal.
 デジタル信号がディファレンシャル信号である場合、各送信部410aは、対応する通信アンテナ200aの端子部221a、222aの何れか一方の端子部に対してディファレンシャル信号の正側信号を送信し、他方の端子部に対してディファレンシャル信号の負側信号を送信する構成となっている。この場合、各通信アンテナ200aにおいて、一方の端子部から正側信号が入力され、アンテナ本体210aを通って他方の端子部から出力されると共に、他方の端子部から負側信号が入力され、アンテナ本体210aを通って一方の端子部から出力されることになる。正側信号、負側信号が通信アンテナ200aの一方、他方の端子部に入力されているときにおいて、通信アンテナ200aの一方、他方の端子部(入出力用の端子部)の電界強度が、通信アンテナ200aのアンテナ本体210aの電界強度よりも強くなる。 When the digital signal is a differential signal, each transmission unit 410a transmits a positive signal of the differential signal to one of the terminal units 221a and 222a of the corresponding communication antenna 200a, and the other terminal unit. It is configured to transmit the negative side signal of the differential signal to. In this case, in each communication antenna 200a, a positive side signal is input from one terminal part, is output from the other terminal part through the antenna main body 210a, and a negative side signal is input from the other terminal part, and the antenna It will be output from one of the terminals through the main body 210a. When a positive signal and a negative signal are input to one of the communication antennas 200a and the other terminal, the electric field strength of the other terminal (input / output terminal) of the communication antenna 200a is used for communication. It becomes stronger than the electric field strength of the antenna body 210a of the antenna 200a.
 なお、デジタル信号がディファレンシャル信号である場合の第1通信アンテナ200aの電気長は、伝送時に正側信号が一方の端子部から入力され、第1アンテナ本体210aを通って他方の端子部に至るまで距離、及び伝送時に負側信号がその他方の端子部から入力され、第1アンテナ本体210aを通って一方の端子部に至るまで距離の各々の距離となる。デジタル信号がディファレンシャル信号である場合の第2通信アンテナ200aの電気長は、伝送時に正側信号がその一方の端子部から入力され、第2アンテナ本体210aを通って他方の端子部に至るまでの距離、及び伝送時に負側信号がその他方の端子部から入力され、第2アンテナ本体210aを通って一方の端子部に至るまでの距離の各々の距離となる。 When the digital signal is a differential signal, the electrical length of the first communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission, passes through the first antenna main body 210a, and reaches the other terminal portion. The distance and the negative side signal are input from the other terminal portion at the time of transmission, and become the respective distances of the distance to reach one terminal portion through the first antenna main body 210a. When the digital signal is a differential signal, the electrical length of the second communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission and reaches the other terminal portion through the second antenna main body 210a. These are the distances and the distances from which the negative signal is input from the other terminal portion during transmission and reaches one terminal portion through the second antenna main body 210a.
 デジタル信号がシングルエンド信号である場合、各送信部410aは、対応する通信アンテナ200aの端子部221a、222aの何れか一方の端子部に対してシングルエンド信号を送信する構成となっている。この場合、各通信アンテナ200aにおいて、一方の端子部からシングルエンド信号が入力され、アンテナ本体210aを通って他方の端子部から出力されることになる。シングルエンド信号が通信アンテナ200aの一方の端子部に入力されているときにおいて、通信アンテナ200aの一方、他方の端子部(入力用、出力用の端子部)の電界強度が、通信アンテナ200aのアンテナ本体210aの電界強度よりも強くなり、且つ通信アンテナ200aの一方の端子部(入力用の端子部)の電界強度が、通信アンテナ200aの他方の端子部(出力用の端子部)の電界強度よりも強くなる。 When the digital signal is a single-ended signal, each transmitting unit 410a is configured to transmit the single-ended signal to any one of the terminal units 221a and 222a of the corresponding communication antenna 200a. In this case, in each communication antenna 200a, a single-ended signal is input from one terminal portion, passes through the antenna main body 210a, and is output from the other terminal portion. When a single-ended signal is input to one terminal of the communication antenna 200a, the electric field strength of one of the communication antennas 200a (terminals for input and output) is the antenna of the communication antenna 200a. It is stronger than the electric field strength of the main body 210a, and the electric field strength of one terminal part (terminal part for input) of the communication antenna 200a is higher than the electric field strength of the other terminal part (terminal part for output) of the communication antenna 200a. Will also be stronger.
 なお、デジタル信号がシングルエンド信号である場合の第1通信アンテナ200aの電気長は、伝送時にシングルエンド信号が一方の端子部から入力され、第1アンテナ本体210aを通って他方の端子部に至るまで距離となる。デジタル信号がシングルエンド信号である場合の第2通信アンテナ200aの電気長は、伝送時に正側信号がその一方の端子部から入力され、第2アンテナ本体210aを通って他方の端子部に至るまでの距離となる。 When the digital signal is a single-ended signal, the electrical length of the first communication antenna 200a is such that the single-ended signal is input from one terminal portion at the time of transmission and reaches the other terminal portion through the first antenna main body 210a. Will be the distance. When the digital signal is a single-ended signal, the electrical length of the second communication antenna 200a is such that the positive signal is input from one terminal portion at the time of transmission, passes through the second antenna main body 210a, and reaches the other terminal portion. It becomes the distance of.
 複数の送信部410aは、少なくとも第1送信部410a及び第2送信部410aを含む。第1送信部410aは、基体100aの導電ライン110aを介して第1通信アンテナ200aの第1端子部221a、222aに電気的に接続された上記何れかの態様の送信部410aである。第2送信部410aは、基体100aの導電ライン110aを介して第2通信アンテナ200aの第2端子部221a、222aに電気的に接続された上記何れかの態様の送信部410aである。 The plurality of transmission units 410a include at least the first transmission unit 410a and the second transmission unit 410a. The first transmission unit 410a is a transmission unit 410a of any of the above aspects electrically connected to the first terminal units 221a and 222a of the first communication antenna 200a via the conductive line 110a of the substrate 100a. The second transmission unit 410a is a transmission unit 410a of any of the above embodiments electrically connected to the second terminal portions 221a and 222a of the second communication antenna 200a via the conductive line 110a of the substrate 100a.
 第1送信部410a及び第2送信部410aは、同じ伝送速度のデジタル信号を送信する構成とすることが可能である。又は、第2送信部410aが、第1送信部410aにより送信されるデジタル信号の伝送速度よりも遅い伝送速度のデジタル信号を送信可能な構成とすることも可能である。 The first transmission unit 410a and the second transmission unit 410a can be configured to transmit digital signals having the same transmission speed. Alternatively, the second transmission unit 410a may be configured to be capable of transmitting a digital signal having a transmission speed slower than the transmission speed of the digital signal transmitted by the first transmission unit 410a.
 各復元部420aは、基体100aの導電ライン110aを介して対応する通信アンテナ200aの端子部221a、222aに電気的に接続されている。各復元部420aは、対応する通信アンテナ200aが上記の通りモジュールM2の対応する通信アンテナ200bと電磁界結合することにより、当該通信アンテナ200aに誘起された受信信号が入力され、当該受信信号を元のデジタル信号に復元して出力可能なICなどの論理回路、又はプロセッサなどによって処理されるソフトウェアで構成されている。各復元部420aは、例えば、ヒステリシス特性を有するコンパレータ回路などとすることが可能である。 Each restoration unit 420a is electrically connected to the terminal units 221a and 222a of the corresponding communication antenna 200a via the conductive line 110a of the substrate 100a. Each restoration unit 420a receives a received signal induced in the communication antenna 200a by electromagnetically coupling the corresponding communication antenna 200a with the corresponding communication antenna 200b of the module M2 as described above, and uses the received signal as the source. It is composed of a logic circuit such as an IC that can be restored to a digital signal of the above and output, or software processed by a processor or the like. Each restoration unit 420a can be, for example, a comparator circuit having a hysteresis characteristic.
 なお、通信回路部400aが送信部410a及び復元部420aの双方を各々有する場合、複数の通信アンテナ200aは送受信用とすることが可能である。複数の通信アンテナ200aの少なくとも一つが送信専用である場合、その分の復元部420aを省略すると良く、複数の通信アンテナ200aの少なくとも一つが受信専用である場合、その分の送信部410aを省略すると良い。なお、通信回路部400aは省略可能である。この場合、複数の通信アンテナ200aは、基体100aを通じてモジュールM1外の通信回路部の送信部及び/又は復元部に電気的に接続可能になっていると良い。 When the communication circuit unit 400a has both the transmission unit 410a and the restoration unit 420a, the plurality of communication antennas 200a can be used for transmission and reception. If at least one of the plurality of communication antennas 200a is dedicated to transmission, the restoration unit 420a for that amount may be omitted, and if at least one of the plurality of communication antennas 200a is dedicated to reception, the transmission unit 410a for that amount may be omitted. good. The communication circuit unit 400a can be omitted. In this case, it is preferable that the plurality of communication antennas 200a can be electrically connected to the transmission unit and / or the restoration unit of the communication circuit unit outside the module M1 through the substrate 100a.
 モジュールM1は、少なくとも一つの充電アンテナ500aを更に備えていても良い。少なくとも一つの充電アンテナ500aは、モジュールM2の少なくとも一つの充電アンテナ500bに対してZ-Z’方向に間隔をあけて並ぶように配置される。少なくとも一つの充電アンテナ500aは、モジュールM2の少なくとも一つの充電アンテナ500bとの間で、非接触送電及び非接触受電の少なくとも一方を行うことが可能な構成である。少なくとも一つの充電アンテナ500aは、上記通信アンテナ200aと同様に、基体100aの第1面101a上に設けられた導体、金属板又はコイル(図2A参照)である。少なくとも一つの充電アンテナ500aは、最外の通信アンテナ200aの外側に配置されていても良いし、最内の通信アンテナ200aの内側に配置されていても良い。前者の場合、少なくとも一つの充電アンテナ500aは、略環状、一部が破断した略環状、円弧状又はU字状とすることが可能であり、且つ少なくとも一つの充電アンテナ500aの内形寸法は、最外の通信アンテナ200aの外形寸法よりも大きい。後者の場合、少なくとも一つの充電アンテナ500aは、その形状は任意であるが、略環状(例えば、円環状又は多角環状)、一部が破断した略環状(例えば、円環状又は多角環状)又は略U字状としても良いし、円形や多角形状とすることが可能である。この場合、最内の通信アンテナ200aは、略環状、一部が破断した略環状又はU字状であって、少なくとも一つの充電アンテナ500aの外側に間隔をあけて配置されている。少なくとも一つの充電アンテナ500aの外形寸法は、最内の通信アンテナ200aの内形寸法よりも小さい。 Module M1 may further include at least one charging antenna 500a. At least one charging antenna 500a is arranged so as to be arranged at intervals in the ZZ'direction with respect to at least one charging antenna 500b of the module M2. The at least one charging antenna 500a has a configuration capable of performing at least one of non-contact power transmission and non-contact power reception with at least one charging antenna 500b of the module M2. The at least one charging antenna 500a is a conductor, a metal plate or a coil (see FIG. 2A) provided on the first surface 101a of the substrate 100a, similarly to the communication antenna 200a. At least one charging antenna 500a may be arranged outside the outermost communication antenna 200a, or may be arranged inside the innermost communication antenna 200a. In the former case, at least one charging antenna 500a can be substantially annular, partially broken substantially annular, arcuate or U-shaped, and the internal dimension of at least one charging antenna 500a is It is larger than the external dimensions of the outermost communication antenna 200a. In the latter case, the at least one charging antenna 500a has an arbitrary shape, but is substantially annular (for example, annular or polygonal ring), partially broken substantially annular (for example, annular or polygonal ring) or omitted. It may be U-shaped, or it may be circular or polygonal. In this case, the innermost communication antenna 200a has a substantially annular shape, a substantially annular shape in which a part is broken, or a U-shape, and is arranged on the outside of at least one charging antenna 500a at intervals. The external dimension of at least one charging antenna 500a is smaller than the internal dimension of the innermost communication antenna 200a.
 モジュールM1は、充電回路部600aを更に備えていても良い。充電回路部600aは、基体100aの第2面102a上に実装されている。充電回路部600aは、基体100aを通じて少なくとも一つの充電アンテナ500aに電気的に接続されている。充電回路部600aは、送電回路部及び受電回路部の少なくとも一方である。送電回路部は、図外の外部電源から供給される電力を、電磁誘導方式、電磁界共鳴方式、電界結合方式又は電波方式で送電するのに適した電力(例えば、高周波電力)に変換して少なくとも一つの充電アンテナ500aに送電させるためのIC等の論理回路、又はプロセッサなどによって処理されるソフトウェアで構成されていると良い。受電回路部は、少なくとも一つの充電アンテナ500aで受けたエネルギー(電磁波等)を電力に変換するIC等の論理回路、又はプロセッサなどによって処理されるソフトウェアで構成されていると良い。 The module M1 may further include a charging circuit unit 600a. The charging circuit unit 600a is mounted on the second surface 102a of the substrate 100a. The charging circuit unit 600a is electrically connected to at least one charging antenna 500a through the substrate 100a. The charging circuit unit 600a is at least one of a power transmission circuit unit and a power receiving circuit unit. The power transmission circuit unit converts the power supplied from an external power source (not shown) into power suitable for transmission by an electromagnetic induction method, an electromagnetic field resonance method, an electric field coupling method, or a radio wave method (for example, high frequency power). It may be composed of a logic circuit such as an IC for transmitting power to at least one charging antenna 500a, or software processed by a processor or the like. The power receiving circuit unit may be composed of a logic circuit such as an IC that converts energy (electromagnetic waves or the like) received by at least one charging antenna 500a into electric power, or software processed by a processor or the like.
 なお、少なくとも一つの充電アンテナ500aと、充電回路部600aとのうち、充電回路部600aのみを省略することも可能であり、両者を省略することも可能である。前者の場合、少なくとも一つの充電アンテナ500aは、モジュールM1外の充電回路部に電気的に接続可能になっていると良い。 Of the at least one charging antenna 500a and the charging circuit unit 600a, only the charging circuit unit 600a can be omitted, and both can be omitted. In the former case, it is preferable that at least one charging antenna 500a can be electrically connected to the charging circuit portion outside the module M1.
 モジュールM1は、少なくとも一つの磁性シートSを更に備えていても良い。少なくとも一つの磁性シートSは、基体100aの第1面101aと少なくとも一つの充電アンテナ500aとの間に配置され、且つ基体100aの第1面101aと複数の通信アンテナ200aとの間に位置していない。例えば、少なくとも一つの磁性シートSは、基体100aの第1面101aと少なくとも一つの充電アンテナ500aとの間にのみ配置されていても良い。図1のα部分の拡大図では、磁性シートSは、充電アンテナ500aと同様にリング状である。このような少なくとも一つの磁性シートSの存在によって、少なくとも一つの充電アンテナ500aの給電又は受電効率が向上する一方、少なくとも一つの磁性シートSは基体100aの第1面101aと複数の通信アンテナ200aとの間に位置していないため、複数の通信アンテナ200aの非接触通信に影響を与えにくい。なお、少なくとも一つの磁性シートSは省略可能である。 Module M1 may further include at least one magnetic sheet S. At least one magnetic sheet S is arranged between the first surface 101a of the substrate 100a and at least one charging antenna 500a, and is located between the first surface 101a of the substrate 100a and the plurality of communication antennas 200a. Absent. For example, at least one magnetic sheet S may be arranged only between the first surface 101a of the substrate 100a and at least one charging antenna 500a. In the enlarged view of the α portion of FIG. 1, the magnetic sheet S has a ring shape like the charging antenna 500a. The presence of at least one magnetic sheet S improves the power supply or power receiving efficiency of at least one charging antenna 500a, while the at least one magnetic sheet S includes the first surface 101a of the substrate 100a and the plurality of communication antennas 200a. Since it is not located between the two, it is unlikely to affect the non-contact communication of the plurality of communication antennas 200a. At least one magnetic sheet S can be omitted.
 モジュールM1は、筐体700aを更に備えている。筐体700aは、基体100aの第1面101aがZ方向に向いた状態で、当該基体100aを保持していれば良い。図1では、筐体700aは、支持凹部710aを更に有しており、この支持凹部710aの底には、Z-Z’方向にZ-Z’方向に延びた貫通孔が設けられている。この場合、基体100aの第2面102aの外周部が貫通孔の周縁部に固定され、通信回路部400a、又は通信回路部400a及び充電回路部600aが貫通孔内に収容されている。 Module M1 further includes a housing 700a. The housing 700a may hold the substrate 100a in a state where the first surface 101a of the substrate 100a faces the Z direction. In FIG. 1, the housing 700a further has a support recess 710a, and a through hole extending in the ZZ direction is provided at the bottom of the support recess 710a. In this case, the outer peripheral portion of the second surface 102a of the substrate 100a is fixed to the peripheral edge portion of the through hole, and the communication circuit portion 400a, or the communication circuit portion 400a and the charging circuit portion 600a are housed in the through hole.
 支持凹部710aは、図1~図3に示されるように、その両端の壁がZ-Z’方向に直交する方向に延びており、その壁の壁面の一部(以下、凹み711aと称する)がモジュールM2の筐体700bの外径に応じて凹んだ構成とすることも可能である。この支持凹部710aの一対の凹み711aに沿って、モジュールM2が所定角度の範囲又は360°回転可能に支持凹部710aに支持されている。 As shown in FIGS. 1 to 3, the support recess 710a has walls at both ends extending in a direction orthogonal to the ZZ'direction, and a part of the wall surface of the wall (hereinafter, referred to as a recess 711a). However, it is also possible to have a concave configuration according to the outer diameter of the housing 700b of the module M2. Along the pair of recesses 711a of the support recesses 710a, the module M2 is supported by the support recesses 710a so as to be rotatable within a predetermined angle range or 360 °.
 別の態様では、支持凹部710aは、モジュールM2の外径に応じた円柱状の凹部である。この支持凹部710aの円筒状の壁面に沿って、モジュールM2が所定角度の範囲又は360°回転可能に支持凹部710aに支持されている。 In another aspect, the support recess 710a is a columnar recess corresponding to the outer diameter of the module M2. Along the cylindrical wall surface of the support recess 710a, the module M2 is supported by the support recess 710a so as to be rotatable within a predetermined angle range or 360 °.
 何れの場合も、筐体700bが筐体700aに対して仮想の回転軸Pを軸として所定角度の範囲又は360°回転可能となっている。 In either case, the housing 700b can rotate within a predetermined angle range or 360 ° with respect to the housing 700a about the virtual rotation axis P.
 モジュールM2は、筐体700bを備えている。筐体700bは、円筒又は有底の円筒であって、上記の通り、筐体700aの支持凹部710aに回転自在に支持されている。 Module M2 includes a housing 700b. The housing 700b is a cylinder or a bottomed cylinder, and is rotatably supported by a support recess 710a of the housing 700a as described above.
 別の態様では、仮想の回転軸Pではなく、現実の回転軸によって、筐体700bが筐体700aに対して所定角度の範囲又は360°回転可能な構成としても良い。例えば、現実の回転軸が、基体100bに固定される一方で、基体100aを貫通し、モジュールM1の筐体700aによって回転自在に保持されていても良いし、基体100aに固定される一方で、基体100bを貫通し、モジュールM2の筐体700bによって回転自在に保持されていても良い。現実の回転軸は、金属で構成されていても良いし、樹脂で構成されていても良い。 In another aspect, the housing 700b may be configured to be rotatable within a predetermined angle range or 360 ° with respect to the housing 700a by the actual rotation axis instead of the virtual rotation axis P. For example, the actual axis of rotation may be fixed to the base 100b while penetrating the base 100a and rotatably held by the housing 700a of the module M1, while being fixed to the base 100a. It may penetrate the substrate 100b and be rotatably held by the housing 700b of the module M2. The actual rotating shaft may be made of metal or resin.
 モジュールM2は、基体100bを更に備えている。基体100bは、モジュールM1の基体100aに対してZ方向側に位置するように筐体700bに固定されている。基体100bは、Z-Z’方向において、基体100aに対して逆向きである。すなわち、基体100bの第1面101bはZ’方向側に向いており、基体100bの第2面102bはZ方向側に向いている。これ以外は、基体100bは、基体100aと同様の構成である。なお、図4における110bは、基体100bの導電ラインである。 Module M2 further includes a substrate 100b. The base 100b is fixed to the housing 700b so as to be located on the Z direction side with respect to the base 100a of the module M1. The substrate 100b is in the opposite direction to the substrate 100a in the ZZ'direction. That is, the first surface 101b of the substrate 100b faces the Z'direction side, and the second surface 102b of the substrate 100b faces the Z direction side. Other than this, the substrate 100b has the same configuration as the substrate 100a. Note that 110b in FIG. 4 is a conductive line of the substrate 100b.
 モジュールM2は、複数の通信アンテナ200bを更に備えている。複数の通信アンテナ200bは、上記何れかの態様の複数の通信アンテナ200aと同様の構成とすることが可能である。複数の通信アンテナ200bのアンテナ本体210bは、その一つずつがモジュールM1の複数の通信アンテナ200aのアンテナ本体210aにZ-Z’方向において対向し、複数の通信アンテナ200a及び複数の通信アンテナ200bの一つずつが上記カプラを構成するように配置されている。 Module M2 further includes a plurality of communication antennas 200b. The plurality of communication antennas 200b can have the same configuration as the plurality of communication antennas 200a in any of the above embodiments. Each of the antenna bodies 210b of the plurality of communication antennas 200b faces the antenna bodies 210a of the plurality of communication antennas 200a of the module M1 in the ZZ'direction, and the antenna bodies 210b of the plurality of communication antennas 200a and the plurality of communication antennas 200b Each one is arranged to form the coupler.
 別の態様では、複数のアンテナ本体210bと複数のアンテナ本体210aとは、Z-Z’方向において対向しない構成とすることが可能である。この場合、筐体700bが複数の通信アンテナ200bを覆う図示しないカバーを有する構成及び/又は筐体700aが複数の通信アンテナ200aを覆う図示しないカバーを有する構成とすると良い。この場合、複数の通信アンテナ200bのアンテナ本体210bと複数の通信アンテナ200aのアンテナ本体210aとは、その一つずつが、モジュールM2がモジュールM1に対して所定角に位置しているときに又は常に、Z-Z’方向において間隔をあけて並び、複数の通信アンテナ200a及び複数の通信アンテナ200bの一つずつが上記カプラを構成するように配置されていると良い。 In another aspect, the plurality of antenna bodies 210b and the plurality of antenna bodies 210a can be configured not to face each other in the ZZ'direction. In this case, it is preferable that the housing 700b has a cover (not shown) that covers the plurality of communication antennas 200b and / or the housing 700a has a cover (not shown) that covers the plurality of communication antennas 200a. In this case, the antenna main body 210b of the plurality of communication antennas 200b and the antenna main body 210a of the plurality of communication antennas 200a are used when or always at a predetermined angle with respect to the module M1. , It is preferable that the plurality of communication antennas 200a and the plurality of communication antennas 200b are arranged at intervals in the ZZ'direction so as to form the coupler.
 複数の通信アンテナ200bは、第1通信アンテナ200b及び第2通信アンテナ200bを含む。第1通信アンテナ200bは、上記何れかの態様の第1通信アンテナ200aと同様の構成であり、第2通信アンテナ200bは、上記何れかの態様の第2通信アンテナ200aと同様の構成である。以下、第1通信アンテナ200bのアンテナ本体210bを第1アンテナ本体210bと称し、第1通信アンテナ200bの一対の端子部221b、222bを一対の第1端子部221b、222bと称する。第2通信アンテナ200bのアンテナ本体210bを第2アンテナ本体210bと称し、第2通信アンテナ200bの一対の端子部221b、222bを一対の第2端子部221b、222bと称する。ここでも、第1端子部221b、222b及び第2端子部221b、222bは、少なくとも上記第1仮想領域と上記第2仮想領域とがZ’方向側から見て(平面視において)互いに重ならないように、配置されている(図5A参照)。第1端子部221b、222b及び第2端子部221b、222bは、上記第3仮想領域と上記第4仮想領域とがZ’方向側から見て(平面視において)互いに重ならないように、配置されていても良い(図5B参照)。 The plurality of communication antennas 200b include a first communication antenna 200b and a second communication antenna 200b. The first communication antenna 200b has the same configuration as the first communication antenna 200a of any of the above aspects, and the second communication antenna 200b has the same configuration as the second communication antenna 200a of any of the above aspects. Hereinafter, the antenna body 210b of the first communication antenna 200b is referred to as a first antenna body 210b, and the pair of terminal portions 221b and 222b of the first communication antenna 200b are referred to as a pair of first terminal portions 221b and 222b. The antenna body 210b of the second communication antenna 200b is referred to as a second antenna body 210b, and the pair of terminal portions 221b and 222b of the second communication antenna 200b are referred to as a pair of second terminal portions 221b and 222b. Again, in the first terminal portions 221b and 222b and the second terminal portions 221b and 222b, at least the first virtual region and the second virtual region do not overlap each other when viewed from the Z'direction side (in a plan view). (See FIG. 5A). The first terminal portions 221b and 222b and the second terminal portions 221b and 222b are arranged so that the third virtual region and the fourth virtual region do not overlap each other when viewed from the Z'direction side (in a plan view). It may be (see FIG. 5B).
 モジュールM2は、通信回路部400bを更に備えていても良い。通信回路部400bは、複数の通信アンテナ200bの数に応じた数の送信部410b及び復元部420bの少なくとも一方を有していると良い。各送信部410bは、上記何れかの態様の各送信部410aと同様の構成であり、各復元部420bは、上記何れかの態様の各復元部420aと同様の構成である。なお、複数の通信回路部400bが送信部410b及び復元部420bの双方を各々有する場合、複数の通信アンテナ200bは送受信用とすることが可能である。複数の通信アンテナ200bの少なくとも一つが送信専用である場合、その分の復元部420bを省略すると良く、複数の通信アンテナ200bの少なくとも一つが受信専用である場合、その分の送信部410bを省略すると良い。なお、通信回路部400bは、通信回路部400aと同様に省略可能である。 The module M2 may further include a communication circuit unit 400b. The communication circuit unit 400b may have at least one of a number of transmission units 410b and a restoration unit 420b corresponding to the number of the plurality of communication antennas 200b. Each transmission unit 410b has the same configuration as each transmission unit 410a of any of the above aspects, and each restoration unit 420b has the same configuration as each restoration unit 420a of any of the above aspects. When the plurality of communication circuit units 400b have both the transmission unit 410b and the restoration unit 420b, the plurality of communication antennas 200b can be used for transmission and reception. If at least one of the plurality of communication antennas 200b is dedicated to transmission, the restoration unit 420b for that amount may be omitted, and if at least one of the plurality of communication antennas 200b is dedicated to reception, the transmission unit 410b for that amount may be omitted. good. The communication circuit unit 400b can be omitted in the same manner as the communication circuit unit 400a.
 モジュールM2は、少なくとも一つの充電アンテナ500bと、充電回路部600bとを更に備えた構成とすることが可能である。少なくとも一つの充電アンテナ500bは、上記何れかの態様の少なくとも一つの充電アンテナ500aと同様の構成とすることが可能であり、充電回路部600bは、上記何れかの態様の充電回路部600aと同様の構成とすることが可能である。少なくとも一つの充電アンテナ500bと、充電回路部600bとのうち、充電回路部600bのみを省略することも可能であり、両者を省略することも可能である。 The module M2 can be further provided with at least one charging antenna 500b and a charging circuit unit 600b. The at least one charging antenna 500b can have the same configuration as the at least one charging antenna 500a of any of the above aspects, and the charging circuit unit 600b is the same as the charging circuit unit 600a of any of the above aspects. It is possible to have the configuration of. Of the at least one charging antenna 500b and the charging circuit unit 600b, it is possible to omit only the charging circuit unit 600b, or both can be omitted.
 モジュールM2は、少なくとも一つの磁性シートSを更に備えていても良い。モジュールM2の少なくとも一つの磁性シートSは、モジュールM1の少なくとも一つの磁性シートSと同様の構成である。なお、少なくとも一つの磁性シートSを省略することも可能である。 Module M2 may further include at least one magnetic sheet S. At least one magnetic sheet S of the module M2 has the same configuration as at least one magnetic sheet S of the module M1. It is also possible to omit at least one magnetic sheet S.
 以下、モジュールM1を送信モジュール、モジュールM2を受信モジュールとして両モジュール間で非接触通信を行う方法について説明する。なお、モジュールM2を送信モジュール、モジュールM1を受信モジュールとした場合であっても、下記と同様に非接触通信を行うことができることに留意されたい。 Hereinafter, a method of performing non-contact communication between both modules using the module M1 as the transmitting module and the module M2 as the receiving module will be described. It should be noted that even when the module M2 is the transmitting module and the module M1 is the receiving module, non-contact communication can be performed in the same manner as described below.
 モジュールM1の第1送信部410aから送信されたディファレンシャル信号の正側信号、負側信号が、第1通信アンテナ200aの第1端子部221a、222aに入力され、第1アンテナ本体210aを通って第1端子部222a、221aから出力される。これにより、モジュールM1の第1通信アンテナ200aとモジュールM2の第1通信アンテナ200bとが電磁界結合を行い、両アンテナ間で上記カプラ(以下、第1カプラとも称する。)が構成され、第1カプラで非接触通信が行われる。これと略同時に、モジュールM1の第2送信部410aから送信されたディファレンシャル信号の正側信号、負側信号が、第2通信アンテナ200aの第2端子部221a、222aに入力され、第2アンテナ本体210aを通って第2端子部222a、221aから出力される。これにより、モジュールM1の第2通信アンテナ200aとモジュールM2の第2通信アンテナ200bとが電磁界結合を行い、両アンテナ間で上記カプラ(以下、第2カプラとも称する。)が構成され、第2カプラで非接触通信が行われる。 The positive and negative signals of the differential signal transmitted from the first transmission unit 410a of the module M1 are input to the first terminal units 221a and 222a of the first communication antenna 200a, and pass through the first antenna main body 210a. It is output from 1 terminal part 222a and 221a. As a result, the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 perform electromagnetic field coupling, and the coupler (hereinafter, also referred to as the first coupler) is formed between the two antennas. Non-contact communication is performed by the coupler. At substantially the same time, the positive and negative signals of the differential signal transmitted from the second transmission unit 410a of the module M1 are input to the second terminal units 221a and 222a of the second communication antenna 200a, and the second antenna main body It is output from the second terminal portions 222a and 221a through 210a. As a result, the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 perform electromagnetic field coupling, and the coupler (hereinafter, also referred to as a second coupler) is formed between the two antennas, and the second coupler is formed. Non-contact communication is performed by the coupler.
 第1カプラにおいて、モジュールM1の第1通信アンテナ200aの正側信号、負側信号が入力される第1端子部221a、222aの電界強度が、モジュールM1の第1通信アンテナ200aの第1アンテナ本体210aの電界強度よりも強く、モジュールM1の第1通信アンテナ200aの第1端子部221a、222aとモジュールM2の第1通信アンテナ200bとの電磁界結合が、モジュールM1の第1通信アンテナ200aの第1アンテナ本体210aとモジュールM2の第1通信アンテナ200bとの電磁界結合よりも強くなる。このため、第1カプラにおいて、モジュールM1の第1通信アンテナ200aの第1端子部221a、222aとモジュールM2の第1通信アンテナ200bとの電磁界結合部分の非接触通信量が、モジュールM1の第1通信アンテナ200aの第1アンテナ本体210aとモジュールM2の第1通信アンテナ200bとの電磁界結合部分の非接触通信量よりも多くなる。 In the first coupler, the electric field strength of the first terminal portions 221a and 222a to which the positive side signal and the negative side signal of the first communication antenna 200a of the module M1 are input is the first antenna main body of the first communication antenna 200a of the module M1. Stronger than the electric field strength of 210a, the electromagnetic field coupling between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the first communication antenna 200a of the module M1. It is stronger than the electric field coupling between the antenna main body 210a and the first communication antenna 200b of the module M2. Therefore, in the first coupler, the non-contact communication amount of the electromagnetic field coupling portion between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the module M1. It is larger than the non-contact communication amount of the electromagnetic field coupling portion between the first antenna main body 210a of the 1 communication antenna 200a and the first communication antenna 200b of the module M2.
 第2カプラにおいて、モジュールM1の第2通信アンテナ200aの正側信号、負側信号が入力される第2端子部221a、222aの電界強度が、モジュールM1の第2通信アンテナ200aの第2アンテナ本体210aの電界強度よりも強く、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aとモジュールM2の第2通信アンテナ200bとの電磁界結合が、モジュールM1の第2通信アンテナ200aの第2アンテナ本体210aとモジュールM2の第2通信アンテナ200bとの電磁界結合よりも強くなる。このため、第2カプラにおいて、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aとモジュールM2の第2通信アンテナ200bとの電磁界結合部分の非接触通信量が、モジュールM1の第2通信アンテナ200aの第2アンテナ本体210aとモジュールM2の第2通信アンテナ200bとの電磁界結合部分の非接触通信量よりも多くなる。 In the second coupler, the electric field strength of the second terminal portions 221a and 222a to which the positive side signal and the negative side signal of the second communication antenna 200a of the module M1 are input is the second antenna main body of the second communication antenna 200a of the module M1. Stronger than the electric field strength of 210a, the electromagnetic field coupling between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the second communication antenna 200a of the module M1. It is stronger than the electric field coupling between the 2 antenna main body 210a and the second communication antenna 200b of the module M2. Therefore, in the second coupler, the non-contact communication amount of the electromagnetic field coupling portion between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the first of the module M1. The amount of non-contact communication between the second antenna main body 210a of the two-communication antenna 200a and the second communication antenna 200b of the module M2 is larger than the amount of non-contact communication of the electromagnetic field coupling portion.
 なお、第1、第2カプラにおける非接触通信が同時に行われていれば良く、第1通信アンテナ200aの第1端子部221a、222aに対する正側信号、負側信号の入力と、第2通信アンテナ200aの第2端子部221a、222aに対する正側信号、負側信号の入力とが同時に行われる必要はない。 It suffices that the first and second couplers perform non-contact communication at the same time, and the input of the positive signal and the negative signal to the first terminal portions 221a and 222a of the first communication antenna 200a and the second communication antenna It is not necessary that the positive side signal and the negative side signal are input to the second terminal portions 221a and 222a of the 200a at the same time.
 又は、モジュールM1の第1送信部410aから送信されたシングルエンド信号が、第1通信アンテナ200aの第1端子部221aに入力され、第1アンテナ本体210aを通って第1端子部222aから出力されることによって、モジュールM1の第1通信アンテナ200aとモジュールM2の第1通信アンテナ200bとが電磁界結合を行い、両アンテナ間で第1カプラが構成され、第1カプラで非接触通信が行われる。これと略同時に、モジュールM1の第2送信部410aから送信されたシングルエンド信号が、第2通信アンテナ200aの第2端子部221aに入力され、第2アンテナ本体210aを通って第2端子部222aから出力されることによって、モジュールM1の第2通信アンテナ200aとモジュールM2の第2通信アンテナ200bとが電磁界結合を行い、両アンテナ間で第2カプラが構成され、第2カプラで非接触通信が行われる。 Alternatively, the single-ended signal transmitted from the first transmission unit 410a of the module M1 is input to the first terminal unit 221a of the first communication antenna 200a, passes through the first antenna main body 210a, and is output from the first terminal unit 222a. As a result, the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 perform electromagnetic field coupling, a first coupler is formed between the two antennas, and non-contact communication is performed by the first coupler. .. At substantially the same time, the single-ended signal transmitted from the second transmission unit 410a of the module M1 is input to the second terminal unit 221a of the second communication antenna 200a, passes through the second antenna main body 210a, and is passed through the second terminal unit 222a. The second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 perform electromagnetic field coupling by being output from the two antennas, a second coupler is formed between the two antennas, and the second coupler communicates non-contactly. Is done.
 第1カプラにおいて、モジュールM1の第1通信アンテナ200aの各部の電界強度は、シングルエンド信号が入力される第1端子部221aの電界強度が最も強くなり(すなわち、第1端子部221a>第1端子部222a>第1アンテナ本体210aであり)、モジュールM1の第1通信アンテナ200aの各部とモジュールM2の第1通信アンテナ200bと間の電磁界結合の強さが、第1通信アンテナ200aの第1端子部221aと第1通信アンテナ200bとの間の電磁界結合部分>第1通信アンテナ200aの第1端子部222aと第1通信アンテナ200b間の電磁界結合部分>第1通信アンテナ200aの第1アンテナ本体210aと第1通信アンテナ200b間の電磁界結合部分となる。このため、第1カプラにおいて、モジュールM1の第1通信アンテナ200aの各部とモジュールM2の第1通信アンテナ200bと間の非接触通信量は、第1通信アンテナ200aの第1端子部221aと第1通信アンテナ200bとの間の電磁界結合部分>第1通信アンテナ200aの第1端子部222aと第1通信アンテナ200bとの間の電磁界結合部分>第1通信アンテナ200aの第1アンテナ本体210aと第1通信アンテナ200bとの間の電磁界結合部分となる。 In the first coupler, the electric field strength of each part of the first communication antenna 200a of the module M1 has the strongest electric field strength of the first terminal part 221a to which the single-ended signal is input (that is, the first terminal part 221a> the first. The terminal portion 222a> the first antenna main body 210a), the strength of the electromagnetic field coupling between each portion of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first of the first communication antenna 200a. Electromagnetic field coupling portion between 1 terminal portion 221a and 1st communication antenna 200b> Electromagnetic magnetic field coupling portion between 1st terminal portion 222a and 1st communication antenna 200b of 1st communication antenna 200a> 1st communication antenna 200a It is an electromagnetic field coupling portion between the antenna main body 210a and the first communication antenna 200b. Therefore, in the first coupler, the amount of non-contact communication between each part of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 is the first terminal parts 221a and the first of the first communication antenna 200a. Electromagnetic field coupling portion between the communication antenna 200b> Electromagnetic field coupling portion between the first terminal portion 222a of the first communication antenna 200a and the first communication antenna 200b> With the first antenna main body 210a of the first communication antenna 200a It is an electromagnetic field coupling portion with the first communication antenna 200b.
 第2カプラにおいて、モジュールM1の第2通信アンテナ200aの各部の電界強度は、シングルエンド信号が入力される第1端子部221aの電界強度が最も強くなり(すなわち、第2端子部221a>第2端子部222a>第2アンテナ本体210aであり)、モジュールM1の第2通信アンテナ200aの各部とモジュールM2の第2通信アンテナ200bとの間の電磁界結合の強さが、第2通信アンテナ200aの第2端子部221aと第2通信アンテナ200bとの間の電磁界結合部分>第2通信アンテナ200aの第2端子部222aと第2通信アンテナ200bとの間の電磁界結合部分>第2通信アンテナ200aの第2アンテナ本体210aと第2通信アンテナ200bとの間の電磁界結合部分となる。このため、第2カプラにおいて、モジュールM1の第2通信アンテナ200aの各部とモジュールM2の第2通信アンテナ200bと間の非接触通信量は、第2通信アンテナ200aの第2端子部221aと第2通信アンテナ200bとの間の電磁界結合部分>第2通信アンテナ200aの第2端子部222aと第2通信アンテナ200bとの間の電磁界結合部分>第2通信アンテナ200aの第2アンテナ本体210aと第2通信アンテナ200bとの間の電磁界結合部分となる。 In the second coupler, the electric field strength of each part of the second communication antenna 200a of the module M1 has the strongest electric field strength of the first terminal part 221a to which the single-ended signal is input (that is, the second terminal part 221a> the second. (Terminal portion 222a> second antenna main body 210a), the strength of the electromagnetic field coupling between each portion of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the strength of the second communication antenna 200a. Electromagnetic field coupling portion between the second terminal portion 221a and the second communication antenna 200b> Electromagnetic field coupling portion between the second terminal portion 222a of the second communication antenna 200a and the second communication antenna 200b> Second communication antenna It is an electromagnetic field coupling portion between the second antenna main body 210a of 200a and the second communication antenna 200b. Therefore, in the second coupler, the amount of non-contact communication between each part of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 is the second terminal parts 221a and the second of the second communication antenna 200a. Electromagnetic field coupling portion between the communication antenna 200b> Electromagnetic field coupling portion between the second terminal portion 222a of the second communication antenna 200a and the second communication antenna 200b> With the second antenna main body 210a of the second communication antenna 200a It is an electromagnetic field coupling portion with the second communication antenna 200b.
 なお、第1、第2カプラにおける非接触通信が同時に行われていれば良く、第1通信アンテナ200aの第1端子部221aに対するシングルエンド信号の入力と、第2通信アンテナ200aの第2端子部221aに対するシングルエンド信号の入力とが同時に行われる必要はない。 It is sufficient that the first and second couplers perform non-contact communication at the same time, and the input of the single-ended signal to the first terminal portion 221a of the first communication antenna 200a and the second terminal portion of the second communication antenna 200a It is not necessary that the input of the single-ended signal for 221a is performed at the same time.
 また、上記何れかの第1、第2カプラにおける非接触通信は、モジュールM2がモジュールM1に対して仮想の回転軸P又は現実の回転軸を中心に所定角度の範囲又は360°で回転しつつ行っても良いし、モジュールM2がモジュールM1に対して前記回転が停止した状態で行っても良い。 Further, in the non-contact communication in any of the first and second couplers, the module M2 rotates with respect to the module M1 within a predetermined angle range or 360 ° around the virtual rotation axis P or the actual rotation axis. It may be performed, or the module M2 may be performed with the rotation stopped with respect to the module M1.
 ここで、実験例1及び実験例2の実験を行ったので、以下、実験例1及び実験例2について詳しく説明する。 Since the experiments of Experimental Example 1 and Experimental Example 2 were carried out here, Experimental Example 1 and Experimental Example 2 will be described in detail below.
 実験例1は、第1モジュールM’(図7Aの左側のモジュールM’を参照)と、第2モジュールM’(図7Aの右側のモジュールM’を参照)とを有する。 Experimental Example 1 has a first module M'(see module M'on the left side of FIG. 7A) and a second module M'(see module M'on the right side of FIG. 7A).
 第1モジュールM’は、基体100と、円環状の導体である内側、外側通信アンテナ200’と、送信部410’と、復元部420’と、図示しない第1、第2同軸コネクタとを備えている。第1モジュールM’の基体100は、図7Bに示すように、リング状の基板である以外、基体100aと同様の構成である。第1モジュールM’の内側、外側通信アンテナ200’は、基体100aの第1面101上に形成された導体であって、両者の中心Cを一致させて同心円状に且つ仮想の第1分割線と仮想の第2分割線とが中心C周りに0°の角度間隔となるように配置されている。内側通信アンテナ200’は、その半径が10mmであり、その幅寸法が2mmである。外側通信アンテナ200’は、その半径が18mmであり、その幅寸法が2mmである。第1分割線は、中心Cから内側通信アンテナ200’の端子部221’、222’の外側端の第1角部を通って放射状に延びる仮想の一対の仮想の半直線L3間の第3仮想領域を半分に二分するように延びる仮想線である。第2分割線は、中心Cから外側通信アンテナ200’の端子部221’、222’の外側端の第1角部を通って放射状に延びる仮想の半直線L4間の第4仮想領域を半分に二分するように延びる仮想線である。第1モジュールM’の復元部420’は、基体100の第2面上に実装されており且つ内側通信アンテナ200’の一対の端子部221’、222’に電気的に接続されている以外、復元部420aと同様の構成である。第1モジュールM’の第1同軸コネクタは基体100の第2面上に実装されており且つ復元部420’に電気的に接続されている。第1同軸コネクタが高速信号用オシロスコープ21に接続されている。このようにして復元部420’が、基体100及び第1同軸コネクタを介してオシロスコープ21に電気的に接続されている。第1モジュールM’の送信部410’は、基体100の第2面上に実装されており且つ外側通信アンテナ200’の一対の端子部221’、222’に電気的に接続されている以外、送信部410aと同様の構成である。第1モジュールM’の第2同軸コネクタは基体100の第2面上に実装されており且つ送信部410’に電気的に接続されている。このようにして送信部410’が基体100及び第2同軸コネクタを介して信号発信器11に電気的に接続されている。 The first module M'includes a substrate 100, inner and outer communication antennas 200', which are annular conductors, a transmission unit 410', a restoration unit 420', and first and second coaxial connectors (not shown). ing. As shown in FIG. 7B, the substrate 100 of the first module M'has the same configuration as the substrate 100a except that it is a ring-shaped substrate. The inner and outer communication antennas 200'of the first module M'are conductors formed on the first surface 101 of the substrate 100a, and the centers C of both are aligned to form a concentric and virtual first dividing line. And the virtual second dividing line are arranged around the center C at an angle interval of 0 °. The inner communication antenna 200'has a radius of 10 mm and a width dimension of 2 mm. The outer communication antenna 200'has a radius of 18 mm and a width dimension of 2 mm. The first dividing line is a third virtual line between a pair of virtual virtual half lines L3 extending radially from the center C through the first corner of the outer end of the terminal portions 221' and 222'of the inner communication antenna 200'. A virtual line that extends to divide the area in half. The second dividing line halves the fourth virtual area between the virtual half straight lines L4 extending radially from the center C through the first corners of the outer ends of the terminal portions 221'and 222'of the outer communication antenna 200'. It is a virtual line that extends in half. The restoration portion 420'of the first module M'is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221' and 222'of the inner communication antenna 200'. It has the same configuration as the restoration unit 420a. The first coaxial connector of the first module M'is mounted on the second surface of the substrate 100 and is electrically connected to the restoration unit 420'. The first coaxial connector is connected to the high-speed signal oscilloscope 21. In this way, the restoration unit 420'is electrically connected to the oscilloscope 21 via the substrate 100 and the first coaxial connector. The transmitter 410'of the first module M'is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221' and 222'of the outer communication antenna 200'. It has the same configuration as the transmitter 410a. The second coaxial connector of the first module M'is mounted on the second surface of the substrate 100 and is electrically connected to the transmitter 410'. In this way, the transmitter 410'is electrically connected to the signal transmitter 11 via the substrate 100 and the second coaxial connector.
 実験例1の第2モジュールM’は、以下の点で相違する以外、第1モジュールM’と同様の構成である。第2モジュールM’の送信部410’は、第2モジュールM’の内側通信アンテナ200’の一対の端子部221’、222’に電気的に接続されている。第2モジュールM’の第1同軸コネクタは、第2モジュールM’の送信部410’に電気的に接続されている。第2モジュールM’の第1同軸コネクタが信号発信器12に接続されている。このようにして第2モジュールM’の送信部410’が基体100及び第1同軸コネクタを介して信号発信器12に電気的に接続されている。第2モジュールM’の復元部420’は、第2モジュールM’の外側通信アンテナ200’の一対の端子部221’、222’に電気的に接続されている。第2モジュールM’の第2同軸コネクタは、第2モジュールM’の復元部420’に電気的に接続されている。第2モジュールM’の第2同軸コネクタが高速信号用オシロスコープ22に接続されている。このようにして第2モジュールM’の復元部420’が、基体100及び第2同軸コネクタを介してオシロスコープ22に電気的に接続されている。 The second module M'of Experimental Example 1 has the same configuration as the first module M', except that it differs in the following points. The transmission unit 410'of the second module M'is electrically connected to a pair of terminal units 221' and 222'of the inner communication antenna 200'of the second module M'. The first coaxial connector of the second module M'is electrically connected to the transmitter 410' of the second module M'. The first coaxial connector of the second module M'is connected to the signal transmitter 12. In this way, the transmitter 410'of the second module M'is electrically connected to the signal transmitter 12 via the substrate 100 and the first coaxial connector. The restoration unit 420'of the second module M'is electrically connected to a pair of terminal units 221' and 222'of the outer communication antenna 200'of the second module M'. The second coaxial connector of the second module M'is electrically connected to the restoration unit 420'of the second module M'. The second coaxial connector of the second module M'is connected to the high-speed signal oscilloscope 22. In this way, the restoration unit 420'of the second module M'is electrically connected to the oscilloscope 22 via the substrate 100 and the second coaxial connector.
 第1モジュールM’の内側通信アンテナ200’と、第2モジュールM’の内側通信アンテナ200’とがZ-Z’方向において互いに対向し、且つ第1モジュールM’の外側通信アンテナ200’と、第2モジュールM’の外側通信アンテナ200’とがZ-Z’方向において互いに対向した状態で、第1、第2モジュールM’が固定されている。位置固定されているので、第1モジュールM’は、第2モジュールM’に対して回転しない。第1モジュールM’の内側通信アンテナ200’の一対の端子部221’、222’と、第2モジュールM’の内側通信アンテナ200’の一対の端子部221’、222’とが、Z-Z’方向において、互いに対向しており、且つ、第1モジュールM’の外側通信アンテナ200’の一対の端子部221’、222’と、第2モジュールM’の外側通信アンテナ200’の一対の端子部221’、222’とが、Z-Z’方向において、互いに対向している。第1モジュールM’の中心Cと第2モジュールM’の中心CとがZ-Z’方向において一致している。第1モジュールM’の内側通信アンテナ200’から第2モジュールM’の内側通信アンテナ200’までのZ-Z’方向の距離が3.5mmであり、第1モジュールM’の外側通信アンテナ200’から第2モジュールM’の外側通信アンテナ200’までのZ-Z’方向の距離が3.5mmである。このように実験例1の第1、第2モジュールM’が構成されている。以下、この構成を実験例1の前提構成ともいう。 The inner communication antenna 200'of the first module M'and the inner communication antenna 200' of the second module M'oppose each other in the ZZ direction, and the outer communication antenna 200'of the first module M'and The first and second modules M'are fixed in a state where the outer communication antenna 200'of the second module M'is opposed to each other in the ZZ direction. Since the position is fixed, the first module M'does not rotate with respect to the second module M'. The pair of terminal portions 221', 222'of the inner communication antenna 200'of the first module M'and the pair of terminal portions 221', 222' of the inner communication antenna 200'of the second module M'are ZZ. A pair of terminals 221', 222'of the outer communication antenna 200'of the first module M'and a pair of terminals of the outer communication antenna 200' of the second module M'that are opposed to each other in the'direction'. The portions 221' and 222'oppose each other in the ZZ'direction. The center C of the first module M'and the center C of the second module M'coincide with each other in the ZZ'direction. The distance from the inner communication antenna 200'of the first module M'to the inner communication antenna 200' of the second module M'in the ZZ direction is 3.5 mm, and the outer communication antenna 200'of the first module M'. The distance from the second module M'to the outer communication antenna 200'in the ZZ'direction is 3.5 mm. In this way, the first and second modules M'of Experimental Example 1 are configured. Hereinafter, this configuration is also referred to as a prerequisite configuration of Experimental Example 1.
 一方、実験例2は、第1モジュールM’’(図7Cの左側のモジュールM’’を参照)と、第2モジュールM’’(図7Cの右側のモジュールM’’を参照)とを有する。 On the other hand, Experimental Example 2 has a first module M'' (see the module M'' on the left side of FIG. 7C) and a second module M'' (see the module M'' on the right side of FIG. 7C). ..
 第1モジュールM’’は、基体100と、内側、外側通信アンテナ200’’と、送信部410’’と、復元部420’’と、図示しない第1、第2同軸コネクタとを備えている。第1モジュールM’’の基体100は、第1モジュールM’の基体100と同じ構成である。第1モジュールM’’の内側、外側通信アンテナ200’’は、図7Dに示すように、仮想の第1分割線と仮想の第2分割線とが中心C周りに180°の角度間隔となるように配置されている以外、第1モジュールM’の内側、外側通信アンテナ200’と同じ構成である。第1モジュールM’’の復元部420’’は、基体100の第2面上に実装されており且つ内側通信アンテナ200’’の一対の端子部221’’、222’’に電気的に接続されている以外、復元部420aと同様の構成である。第1モジュールM’’の第1同軸コネクタは基体100の第2面上に実装されており且つ復元部420’’に電気的に接続されている。第1同軸コネクタが高速信号用オシロスコープ23に接続されている。このようにして第1モジュールM’’の復元部420’’が、基体100及び第1同軸コネクタを介してオシロスコープ23に電気的に接続されている。第1モジュールM’’の送信部410’’は、基体100の第2面上に実装されており且つ外側通信アンテナ200’’の一対の端子部221’’、222’’に電気的に接続されている以外、送信部410aと同様の構成である。第1モジュールM’’の第2同軸コネクタは基体100の第2面上に実装されており且つ送信部410’’に電気的に接続されている。このようにして第1モジュールM’’の送信部410’’が基体100及び第2同軸コネクタを介して信号発信器13に電気的に接続されている。 The first module M'' includes a substrate 100, inner and outer communication antennas 200'', a transmitting unit 410'', a restoring unit 420'', and first and second coaxial connectors (not shown). .. The base 100 of the first module M ″ has the same configuration as the base 100 of the first module M ″. As shown in FIG. 7D, the inner and outer communication antennas 200 ″ of the first module M ″ have an angular interval of 180 ° around the center C between the virtual first dividing line and the virtual second dividing line. It has the same configuration as the inner and outer communication antennas 200'of the first module M', except that they are arranged in such a manner. The restoration portion 420'' of the first module M'' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal portions 221'' and 222'' of the inner communication antenna 200''. It has the same configuration as the restoration unit 420a except that it is. The first coaxial connector of the first module M ″ is mounted on the second surface of the substrate 100 and is electrically connected to the restoration unit 420 ″. The first coaxial connector is connected to the high-speed signal oscilloscope 23. In this way, the restoration unit 420 ″ of the first module M ″ is electrically connected to the oscilloscope 23 via the substrate 100 and the first coaxial connector. The transmission section 410'' of the first module M'' is mounted on the second surface of the substrate 100 and is electrically connected to the pair of terminal sections 221'' and 222'' of the outer communication antenna 200''. The configuration is the same as that of the transmission unit 410a except that the transmission unit 410a is used. The second coaxial connector of the first module M ″ is mounted on the second surface of the substrate 100 and is electrically connected to the transmission unit 410 ″. In this way, the transmission unit 410 ″ of the first module M ″ is electrically connected to the signal transmitter 13 via the substrate 100 and the second coaxial connector.
 実験例2の第2モジュールM’’は、以下の点で相違する以外、第1モジュールM’’と同様の構成である。第2モジュールM’’の送信部410’’は、第2モジュールM’’の内側通信アンテナ200’’の一対の端子部221’’、222’’に電気的に接続されている。第2モジュールM’’の第1同軸コネクタは、第2モジュールM’’の送信部410’’に電気的に接続されている。第2モジュールM’’の第1同軸コネクタが信号発信器14に接続されている。このようにして第2モジュールM’’の送信部410’’が基体100及び第1同軸コネクタを介して信号発信器14に電気的に接続されている。第2モジュールM’’の復元部420’’は、第2モジュールM’’の外側通信アンテナ200’’の一対の端子部221’’、222’’に電気的に接続されている。第2モジュールM’’の第2同軸コネクタは、第2モジュールM’’の復元部420’’に電気的に接続されている。第2モジュールM’’の第2同軸コネクタが高速信号用オシロスコープ24に接続されている。このようにして第2モジュールM’’の復元部420’’が、基体100及び第2同軸コネクタを介してオシロスコープ24に電気的に接続されている。 The second module M ″ of Experimental Example 2 has the same configuration as the first module M ″ except that it differs in the following points. The transmission unit 410 ″ of the second module M ″ is electrically connected to a pair of terminal units 221 ″ and 222 ″ of the inner communication antenna 200 ″ of the second module M ″. The first coaxial connector of the second module M ″ is electrically connected to the transmission unit 410 ″ of the second module M ″. The first coaxial connector of the second module M ″ is connected to the signal transmitter 14. In this way, the transmission unit 410 ″ of the second module M ″ is electrically connected to the signal transmitter 14 via the substrate 100 and the first coaxial connector. The restoration unit 420 ″ of the second module M ″ is electrically connected to a pair of terminal units 221 ″ and 222 ″ of the outer communication antenna 200 ″ of the second module M ″. The second coaxial connector of the second module M ″ is electrically connected to the restoration unit 420 ″ of the second module M ″. The second coaxial connector of the second module M ″ is connected to the high-speed signal oscilloscope 24. In this way, the restoration unit 420 ″ of the second module M ″ is electrically connected to the oscilloscope 24 via the substrate 100 and the second coaxial connector.
 第1モジュールM’’の内側通信アンテナ200’’と、第2モジュールM’’の内側通信アンテナ200’’とがZ-Z’方向において互いに対向し、且つ第1モジュールM’’の外側通信アンテナ200’’と、第2モジュールM’’の外側通信アンテナ200’’とがZ-Z’方向において互いに対向した状態で、第1、第2モジュールM’’が固定されている。位置固定されているので、第1モジュールM’’は、第2モジュールM’’に対して回転しない。第1モジュールM’’の内側通信アンテナ200’’の一対の端子部221’’、222’’と、第2モジュールM’’の内側通信アンテナ200’’の一対の端子部221’’、222’’とが、Z-Z’方向において、互いに対向しており、第1モジュールM’’の外側通信アンテナ200’’の一対の端子部221’’、222’’と、第2モジュールM’’の外側通信アンテナ200’’の一対の端子部221’’、222’’とが、Z-Z’方向において、互いに対向している。第1モジュールM’’の中心Cと第2モジュールM’’の中心CとがZ-Z’方向において一致している。第1モジュールM’’の内側通信アンテナ200’’から第2モジュールM’’の内側通信アンテナ200’’までのZ-Z’方向の距離が3.5mmであり、第1モジュールM’’の外側通信アンテナ200’’から第2モジュールM’’の外側通信アンテナ200’’までのZ-Z’方向の距離が3.5mmである。このように実験例2の第1、第2モジュールM’’が構成されている。以下、この構成を実験例2の前提構成ともいう。 The inner communication antenna 200'' of the first module M'' and the inner communication antenna 200'' of the second module M'' face each other in the ZZ'direction, and the outer communication of the first module M'' The first and second modules M'' are fixed in a state where the antenna 200'' and the outer communication antenna 200'' of the second module M'' face each other in the ZZ'direction. Since the position is fixed, the first module M ″ does not rotate with respect to the second module M ″. A pair of terminal portions 221 "" and 222 "of the inner communication antenna 200" of the first module M "and a pair of terminal portions 221" "222" of the inner communication antenna 200 "of the second module M". '' Are opposed to each other in the ZZ direction, and a pair of terminal portions 221'', 222'' of the outer communication antenna 200'' of the first module M'' and the second module M' The pair of terminal portions 221'' and 222'' of the outer communication antenna 200'' face each other in the ZZ'direction. The center C of the first module M ″ and the center C of the second module M ″ coincide with each other in the ZZ direction. The distance from the inner communication antenna 200'' of the first module M'' to the inner communication antenna 200'' of the second module M'' in the ZZ'direction is 3.5 mm, and the distance of the first module M'' The distance from the outer communication antenna 200'' to the outer communication antenna 200'' of the second module M'' in the ZZ'direction is 3.5 mm. In this way, the first and second modules M ″ of Experimental Example 2 are configured. Hereinafter, this configuration is also referred to as a prerequisite configuration of Experimental Example 2.
 実験例1において、信号発信器12から第2モジュールM’の第1同軸コネクタを介してディファレンシャル信号が第2モジュールM’の送信部410’に入力される。第2モジュールM’の送信部410’によって、前記信号が、非接触通信を行うためのデジタル信号に変換される。このデジタル信号は、伝送速度が1.0Gbpsのディファレンシャル信号である。このデジタル信号が、第2モジュールM’の内側通信アンテナ200’の端子部221’、222’に入力され、これにより、第2モジュールM’の内側通信アンテナ200’と第1モジュールM’の内側通信アンテナ200’とが第1カプラを構成する。これと同時に、信号発信器11から第1モジュールM’の第2同軸コネクタを介してディファレンシャル信号が第1モジュールM’の送信部410’に入力される。第1モジュールM’の送信部410’によって、前記信号が、非接触通信を行うためのデジタル信号に変換される。このデジタル信号は、伝送速度が0.8Gbpsのディファレンシャル信号である。このデジタル信号が、第1モジュールM’の外側通信アンテナ200’の端子部221’、222’に入力され、これにより、第1モジュールM’の外側通信アンテナ200’と第2モジュールM’の外側通信アンテナ200’とが第2カプラを構成する。 In Experimental Example 1, a differential signal is input from the signal transmitter 12 to the transmitter 410'of the second module M'via the first coaxial connector of the second module M'. The signal is converted into a digital signal for non-contact communication by the transmission unit 410'of the second module M'. This digital signal is a differential signal having a transmission speed of 1.0 Gbps. This digital signal is input to the terminal portions 221' and 222'of the inner communication antenna 200'of the second module M', and thereby the inside of the inner communication antenna 200'and the first module M'of the second module M'. The communication antenna 200'consists with the first coupler. At the same time, the differential signal is input from the signal transmitter 11 to the transmission unit 410'of the first module M'via the second coaxial connector of the first module M'. The signal is converted into a digital signal for non-contact communication by the transmission unit 410'of the first module M'. This digital signal is a differential signal having a transmission speed of 0.8 Gbps. This digital signal is input to the terminal portions 221' and 222'of the outer communication antenna 200'of the first module M', whereby the outer communication antenna 200'of the first module M'and the outside of the second module M'are input. The communication antenna 200'consists with the second coupler.
 第1カプラによって第1モジュールM’の内側通信アンテナ200’に誘起される信号が、第1モジュールM’の内側通信アンテナ200’の端子部222’、221’から第1モジュールM’の復元部420’に入力される。第1モジュールM’の復元部420’によって、誘起された信号が元のデジタル信号に復元される。この復元されたデジタル信号がオシロスコープ21に入力される。これと共に、第2カプラによって第2モジュールM’の外側通信アンテナ200’に誘起される信号が、第2モジュールM’の外側通信アンテナ200’の端子部222’、221’から第2モジュールM’の復元部420’に入力される。第2モジュールM’の復元部420’によって、誘起された信号が元のデジタル信号に復元される。この復元されたデジタル信号がオシロスコープ22に入力される。 The signal induced in the inner communication antenna 200'of the first module M'by the first coupler is the restoration part from the terminal portion 222', 221'of the inner communication antenna 200'of the first module M'to the first module M'. Entered in 420'. The induced signal is restored to the original digital signal by the restoration unit 420'of the first module M'. This restored digital signal is input to the oscilloscope 21. At the same time, the signal induced in the outer communication antenna 200'of the second module M'by the second coupler is transmitted from the terminal portions 222', 221'to the second module M'of the outer communication antenna 200'of the second module M'. It is input to the restoration unit 420'of. The induced signal is restored to the original digital signal by the restoration unit 420'of the second module M'. This restored digital signal is input to the oscilloscope 22.
 実験例2において、信号発信器14から第2モジュールM’’の第1同軸コネクタを介してディファレンシャル信号が第2モジュールM’’の送信部410’’に入力される。第2モジュールM’’の送信部410’’によって、前記信号が、非接触通信を行うためのデジタル信号に変換される。このデジタル信号は、伝送速度が1.0Gbpsのディファレンシャル信号である。このデジタル信号が、第2モジュールM’’の内側通信アンテナ200’’の端子部221’’、222’’に入力され、これにより、第2モジュールM’’の内側通信アンテナ200’’と第1モジュールM’’の内側通信アンテナ200’’とが第1カプラを構成する。これと同時に、信号発信器13から第1モジュールM’’の第2同軸コネクタを介してディファレンシャル信号が第1モジュールM’’の送信部410’に入力される。第1モジュールM’’の送信部410’’によって、前記信号が、非接触通信を行うためのデジタル信号に変換される。このデジタル信号は、伝送速度が0.8Gbpsのディファレンシャル信号である。このデジタル信号が、第1モジュールM’’の外側通信アンテナ200’’の端子部221’’、222’’に入力され、これにより、第1モジュールM’’の外側通信アンテナ200’’と第2モジュールM’’の外側通信アンテナ200’’とが第2カプラを構成する。 In Experimental Example 2, a differential signal is input from the signal transmitter 14 to the transmitter 410 ″ of the second module M ″ via the first coaxial connector of the second module M ″. The signal is converted into a digital signal for non-contact communication by the transmission unit 410 ″ of the second module M ″. This digital signal is a differential signal having a transmission speed of 1.0 Gbps. This digital signal is input to the terminal portions 221'' and 222'' of the inner communication antenna 200'' of the second module M'', whereby the inner communication antenna 200'' and the second module of the second module M'' The inner communication antenna 200'' of the 1 module M'' constitutes the first coupler. At the same time, the differential signal is input from the signal transmitter 13 to the transmission unit 410 ″ of the first module M ″ via the second coaxial connector of the first module M ″. The signal is converted into a digital signal for non-contact communication by the transmission unit 410 ″ of the first module M ″. This digital signal is a differential signal having a transmission speed of 0.8 Gbps. This digital signal is input to the terminal portions 221'' and 222'' of the outer communication antenna 200'' of the first module M'', whereby the outer communication antenna 200'' of the first module M'' and the first The outer communication antenna 200'' of the 2 module M'' constitutes the second coupler.
 第1カプラによって第1モジュールM’’の内側通信アンテナ200’’に誘起される信号が、第1モジュールM’’の内側通信アンテナ200’’の端子部222’’、221’’から第1モジュールM’’の復元部420’’に入力される。第1モジュールM’’の復元部420’’によって、誘起された信号が元のデジタル信号に復元される。この復元されたデジタル信号がオシロスコープ23に入力される。これと共に、第2カプラによって第2モジュールM’’の外側通信アンテナ200’’に誘起される信号が、第2モジュールM’’の外側通信アンテナ200’’の端子部222’’、221’’から第2モジュールM’’の復元部420’’に入力される。第2モジュールM’’の復元部420’’によって、誘起された信号が元のデジタル信号に復元される。この復元されたデジタル信号がオシロスコープ24に入力される。 The signal induced in the inner communication antenna 200'' of the first module M'' by the first coupler is the first from the terminal portion 222'', 221'' of the inner communication antenna 200'' of the first module M''. It is input to the restoration unit 420'' of the module M''. The induced signal is restored to the original digital signal by the restoration unit 420 ″ of the first module M ″. This restored digital signal is input to the oscilloscope 23. At the same time, the signal induced in the outer communication antenna 200'' of the second module M'' by the second coupler is the terminal portion 222'', 221'' of the outer communication antenna 200'' of the second module M''. Is input to the restoration unit 420'' of the second module M''. The induced signal is restored to the original digital signal by the restoration unit 420 ″ of the second module M ″. This restored digital signal is input to the oscilloscope 24.
 実験例1において、第2モジュールM’の内側通信アンテナ200’、第1カプラ及び第1モジュールM’の内側通信アンテナ200’によってオシロスコープ21に伝送され、オシロスコープ21によって観測されたデジタル信号の微分波形が、図8Aに示されている。この信号の微分波形は、破線で示す丸で囲った後段部が大きく、ノイズが増加している様が看取された。これに対して、実験例2において、第2モジュールM’’の内側通信アンテナ200’’、第1カプラ及び第1モジュールM’’の内側通信アンテナ200’’によってオシロスコープ23に伝送され、オシロスコープ23によって観測されたデジタル信号の微分波形が、図10Aに示されている。この信号の微分波形は、破線で示す丸で囲った後段部が小さく、ノイズが低減されている様が看取された。 In Experimental Example 1, the differential waveform of the digital signal transmitted to the oscilloscope 21 by the inner communication antenna 200'of the second module M'and the inner communication antenna 200' of the first coupler and the first module M'and observed by the oscilloscope 21. Is shown in FIG. 8A. In the differential waveform of this signal, it was found that the rear part circled by the broken line was large and the noise was increasing. On the other hand, in Experimental Example 2, the signal is transmitted to the oscilloscope 23 by the inner communication antenna 200'' of the second module M'', the first coupler and the inner communication antenna 200'' of the first module M'', and is transmitted to the oscilloscope 23. The differential waveform of the digital signal observed by is shown in FIG. 10A. In the differential waveform of this signal, it was found that the rear part circled by the broken line was small and the noise was reduced.
 実験例1において、第1モジュールM’の外側通信アンテナ200’、第2カプラ及び第2モジュールM’の外側通信アンテナ200’によってオシロスコープ22に伝送され、オシロスコープ22によって観測された信号の微分波形が、図8Bに示されている。この信号の微分波形は、破線で示す丸で囲った部分で波形が乱れ、ノイズが増加している様が看取された。これに対して、実験例2において、第1モジュールM’’の外側通信アンテナ200’’、第2カプラ及び第2モジュールM’’の外側通信アンテナ200’’によってオシロスコープ24に伝送され、オシロスコープ24によって観測された信号の微分波形が、図10Bに示されている。この信号の微分波形は、破線で示す丸で囲った部分に波形の乱れが殆どなく、ノイズが低減している様が看取された。 In Experimental Example 1, the differential waveform of the signal transmitted to the oscilloscope 22 by the outer communication antenna 200'of the first module M', the second coupler and the outer communication antenna 200' of the second module M', and observed by the oscilloscope 22 is obtained. , Shown in FIG. 8B. As for the differential waveform of this signal, it was observed that the waveform was disturbed in the circled part indicated by the broken line and the noise was increased. On the other hand, in Experimental Example 2, the signal is transmitted to the oscilloscope 24 by the outer communication antenna 200'' of the first module M'', the second coupler and the outer communication antenna 200'' of the second module M'', and is transmitted to the oscilloscope 24. The differential waveform of the signal observed by is shown in FIG. 10B. In the differential waveform of this signal, it was found that there was almost no disturbance in the waveform in the circled part indicated by the broken line, and the noise was reduced.
 更に、回路シミュレータを用いて第1シミュレーション及び第2シミュレーションを行った。 Furthermore, the first simulation and the second simulation were performed using the circuit simulator.
 第1シミュレーションは、上記した実験例1の前提構成を用いて以下の通り行った。
 第2モジュールM’の送信部410’から第2モジュールM’の内側通信アンテナ200’にディファレンシャルのデジタル信号が入力され、第2モジュールM’の内側通信アンテナ200’と第1モジュールM’の内側通信アンテナ200’とで第1カプラを構成させると同時に、第1モジュールM’の送信部410’から第1モジュールM’の外側通信アンテナ200’にデジタル信号が入力され、第1モジュールM’の外側通信アンテナ200’と第2モジュールM’の外側通信アンテナ200’とで第2カプラを構成させる。第1カプラによって第1モジュールM’の内側通信アンテナ200’に誘起される信号が、第1モジュールM’の復元部420’によって元のデジタル信号に復元され、この復元されたデジタル信号の100MHz~10GHzの周波数特性を得ると共に、第2カプラによって第2モジュールM’の外側通信アンテナ200’に誘起される信号が、第2モジュールM’の復元部420’によって元のデジタル信号に復元され、この復元されたデジタル信号の100MHz~10GHzの周波数特性を得た。
The first simulation was performed as follows using the premise configuration of Experimental Example 1 described above.
A differential digital signal is input from the transmitter 410'of the second module M'to the inner communication antenna 200' of the second module M', and inside the inner communication antenna 200'and the first module M'of the second module M'. At the same time as forming the first coupler with the communication antenna 200', a digital signal is input from the transmission unit 410' of the first module M'to the outer communication antenna 200' of the first module M', and the first module M' A second coupler is formed by the outer communication antenna 200'and the outer communication antenna 200'of the second module M'. The signal induced in the inner communication antenna 200'of the first module M'by the first coupler is restored to the original digital signal by the restoration unit 420'of the first module M', and the restored digital signal is from 100 MHz to 100 MHz. Along with obtaining a frequency characteristic of 10 GHz, the signal induced in the outer communication antenna 200'of the second module M'by the second coupler is restored to the original digital signal by the restoration unit 420'of the second module M'. The frequency characteristics of the restored digital signal from 100 MHz to 10 GHz were obtained.
 この第1シミュレーションによって、前述の前者のデジタル信号の周波数特性から第1モジュールM’の内側通信アンテナ200’に関するSパラデータが得られ、前述の後者のデジタル信号の周波数特性から第2モジュールM’の外側通信アンテナ200’に関するSパラデータが得られた。第1モジュールM’の内側通信アンテナ200’に関するSパラデータが図9Aに示され、第2モジュールM’の外側通信アンテナ200’に関するSパラデータが図9Bに示されている。なお、図9A及び図9Bでは、グラフを見やすくするために、X軸の上限値を5GHzとした。 By this first simulation, S paradata regarding the inner communication antenna 200'of the first module M'is obtained from the frequency characteristics of the former digital signal described above, and the second module M'from the frequency characteristics of the latter digital signal described above. The S paradata about the outer communication antenna 200'of the above was obtained. The S-parameters for the inner communication antenna 200'of the first module M'are shown in FIG. 9A, and the S-parameters for the outer communication antenna 200' of the second module M'are shown in FIG. 9B. In FIGS. 9A and 9B, the upper limit of the X-axis is set to 5 GHz in order to make the graph easier to see.
 第2シミュレーションは、上記した実験例2の前提構成を用いて以下の通り諸条件を設定して行った。
 第2モジュールM’’の送信部410’’から第2モジュールM’’の内側通信アンテナ200’’にディファレンシャルのデジタル信号が入力され、第2モジュールM’’の内側通信アンテナ200’’と第1モジュールM’’の内側通信アンテナ200’’とで第1カプラを構成させると同時に、第1モジュールM’’の送信部410’’から第2モジュールM’’の外側通信アンテナ200’’にデジタル信号が入力され、第1モジュールM’’の外側通信アンテナ200’’と第2モジュールM’’の外側通信アンテナ200’’とで第2カプラを構成させる。第1カプラによって第1モジュールM’’の内側通信アンテナ200’’に誘起される信号が、第1モジュールM’’の復元部420’’によって元のデジタル信号に復元され、この復元されたデジタル信号の100MHz~10GHzの周波数特性を得ると共に、第2カプラによって第2モジュールM’’の外側通信アンテナ200’’に誘起される信号が、第2モジュールM’’の復元部420’’によって元のデジタル信号に復元され、この復元されたデジタル信号の100MHz~10GHzの周波数特性を得た。
The second simulation was performed by setting various conditions as follows using the premise configuration of Experimental Example 2 described above.
A differential digital signal is input from the transmitter 410'' of the second module M'' to the inner communication antenna 200'' of the second module M'', and the inner communication antenna 200'' and the second module M'' of the second module M'' The first coupler is configured with the inner communication antenna 200'' of the 1 module M'', and at the same time, from the transmitter 410'' of the first module M'' to the outer communication antenna 200'' of the second module M''. A digital signal is input, and the outer communication antenna 200 ″ of the first module M ″ and the outer communication antenna 200 ″ of the second module M ″ form a second coupler. The signal induced in the inner communication antenna 200'' of the first module M'' by the first coupler is restored to the original digital signal by the restoration unit 420'' of the first module M'', and this restored digital While obtaining the frequency characteristics of the signal from 100 MHz to 10 GHz, the signal induced in the outer communication antenna 200 ″ of the second module M ″ by the second coupler is generated by the restoration unit 420 ″ of the second module M ″. It was restored to the digital signal of the above, and the frequency characteristics of 100 MHz to 10 GHz of this restored digital signal were obtained.
 この第2シミュレーションによって、前述の前者のデジタル信号の周波数特性から第1モジュールM’’の内側通信アンテナ200’’に関するSパラデータが得られ、前述の後者のデジタル信号の周波数特性から第2モジュールM’’の外側通信アンテナ200’’に関するSパラデータが得られた。第1モジュールM’’の内側通信アンテナ200’’に関するSパラデータが図11Aに示され、第2モジュールM’’の外側通信アンテナ200’’に関するSパラデータが図11Bに示されている。なお、図11A及び図11Bでは、グラフを見やすくするために、X軸の上限値を5GHzとした。 By this second simulation, S paradata regarding the inner communication antenna 200'' of the first module M'' is obtained from the frequency characteristics of the former digital signal described above, and the second module is obtained from the frequency characteristics of the latter digital signal described above. S paradata regarding the outer communication antenna 200'' of M'' was obtained. The S-parameters for the inner communication antenna 200 ″ of the first module M ″ are shown in FIG. 11A, and the S-parameters for the outer communication antenna 200 ″ of the second module M ″ are shown in FIG. 11B. In FIGS. 11A and 11B, the upper limit of the X-axis is set to 5 GHz in order to make the graph easier to see.
 図9Aに示される第1モジュールM’の内側通信アンテナ200’に関するSパラデータは、第1モジュールM’の内側通信アンテナ200’と第2モジュールM’の内側通信アンテナ200’との間の通過特性、及び第1モジュールM’の基体100上の外側通信アンテナ200’から第1モジュールM’の基体100上の内側通信アンテナ200’への第1ノイズを含んでいる。通信特性は実線で、第1ノイズは破線で示されている。第1ノイズは、0.6GHz辺りで-50dbを超え、その後徐々に増加して2GHz辺りで-42dbとなり、2GHz辺りから5GHzまで横ばいに推移している様が看取される。 The S paradata relating to the inner communication antenna 200'of the first module M'shown in FIG. 9A passes between the inner communication antenna 200'of the first module M'and the inner communication antenna 200' of the second module M'. It includes characteristics and a first noise from the outer communication antenna 200'on the substrate 100 of the first module M'to the inner communication antenna 200' on the substrate 100 of the first module M'. The communication characteristics are shown by solid lines, and the first noise is shown by broken lines. It can be seen that the first noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, and remains flat from around 2GHz to 5GHz.
 これに対して、図11Aに示される第1モジュールM’’の内側通信アンテナ200’’に関するSパラデータは、第1モジュールM’’の内側通信アンテナ200’’と第2モジュールM’’の内側通信アンテナ200’’との間の通過特性、及び第1モジュールM’’の基体100上の外側通信アンテナ200’’から第1モジュールM’’の基体100上の内側通信アンテナ200’’への第1ノイズを含んでいる。通信特性は実線で、第1ノイズは破線で示されている。第1ノイズは、0.6GHz辺りで-50dbを超え、その後徐々に増加して2GHz辺りで-42dbとなるものの、2GHz辺りから4GHz辺りにかけて徐々に減少し、4GHz辺りで-50dbを下回る様が看取される。このように第2シミュレーションでは、第1シミュレーションよりも、第1ノイズが低減される結果が得られた。 On the other hand, the S paradata regarding the inner communication antenna 200'' of the first module M'' shown in FIG. 11A is that of the inner communication antenna 200'' and the second module M'' of the first module M''. Passing characteristics between the inner communication antenna 200'' and the outer communication antenna 200'' on the base 100 of the first module M'' to the inner communication antenna 200'' on the base 100 of the first module M'' Contains the first noise of. The communication characteristics are shown by solid lines, and the first noise is shown by broken lines. The first noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, but gradually decreases from around 2GHz to around 4GHz, and falls below -50db around 4GHz. Be taken care of. As described above, in the second simulation, the result that the first noise is reduced as compared with the first simulation was obtained.
 図9Bに示される第2モジュールM’の外側通信アンテナ200’に関するSパラデータは、第2モジュールM’の外側通信アンテナ200’と第1モジュールM’の外側通信アンテナ200’との間の通過特性、及び第2モジュールM’の基体100上の内側通信アンテナ200’から第2モジュールM’の基体100上の外側通信アンテナ200’への第2ノイズを含んでいる。通信特性は実線で、第2ノイズは一点鎖線で示されている。第2ノイズは、0.6GHz辺りで-50dbを超え、その後徐々に増加して2GHz辺りで-42dbとなり、2GHz辺りから5GHzまで横ばいに推移している様が看取される。 The S paradata relating to the outer communication antenna 200'of the second module M'shown in FIG. 9B passes between the outer communication antenna 200'of the second module M'and the outer communication antenna 200' of the first module M'. It includes characteristics and a second noise from the inner communication antenna 200'on the substrate 100 of the second module M'to the outer communication antenna 200' on the substrate 100 of the second module M'. The communication characteristics are shown by the solid line, and the second noise is shown by the alternate long and short dash line. The second noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, and it can be seen that the noise is leveling off from around 2GHz to 5GHz.
 これに対して、図11Bに示される第2モジュールM’’の外側通信アンテナ200’’に関するSパラデータは、第2モジュールM’’の外側通信アンテナ200’’と第1モジュールM’’の外側通信アンテナ200’’との間の通過特性、及び第2モジュールM’’の基体100上の内側通信アンテナ200’’から第2モジュールM’’の基体100上の外側通信アンテナ200’’への第2ノイズを含んでいる。通信特性は実線で、第2ノイズは一点鎖線で示されている。第2ノイズは、0.6GHz辺りで-50dbを超え、その後徐々に増加して2GHz辺りで-42dbとなるものの、2GHz辺りから4GHz辺りにかけて徐々に減少し、4GHz辺りで-50dbを下回る様が看取される。このように第2シミュレーションでは、第1シミュレーションよりも、第2ノイズが低減される結果が得られた。 On the other hand, the S paradata regarding the outer communication antenna 200 ″ of the second module M'' shown in FIG. 11B is the outer communication antenna 200 ″ of the second module M ″ and the first module M ″. Passing characteristics between the outer communication antenna 200'' and the inner communication antenna 200'' on the base 100 of the second module M'' to the outer communication antenna 200'' on the base 100 of the second module M'' It contains the second noise of. The communication characteristics are shown by the solid line, and the second noise is shown by the alternate long and short dash line. The second noise exceeds -50db around 0.6GHz, then gradually increases to -42db around 2GHz, but gradually decreases from around 2GHz to around 4GHz, and falls below -50db around 4GHz. Be taken care of. As described above, in the second simulation, the result that the second noise is reduced as compared with the first simulation was obtained.
 以上のようなモジュールM1は、以下の技術的特徴及び効果を奏する。
 技術的特徴及び効果1)
 モジュールM1の第1通信アンテナ200aとモジュールM2の第1通信アンテナ200bとの間及びモジュールM1の第2通信アンテナ200aとモジュールM2の第2通信アンテナ200bとの間で同時に非接触通信を好適に行うことができる。その理由は以下の通りである。
The module M1 as described above exhibits the following technical features and effects.
Technical features and effects 1)
Non-contact communication is preferably performed simultaneously between the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 and between the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2. be able to. The reason is as follows.
 (ア)一般的に、通信アンテナの一対の端子部にディファレンシャル信号の正側信号、負側信号が入力される場合、通信アンテナの一対の端子部において、正側信号、負側信号の差動バランスが崩れる等して反射が生じ易く、反射によるノイズが発生し易い。
 しかし、モジュールM1において、第1、第2通信アンテナ200aが略同心円状に配置されているものの、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないようにすることによって、第1通信アンテナ200aの第1端子部221a、222aが第2通信アンテナ200aの第2端子部221a、222aから離れて配置することができる。このため、第1通信アンテナ200aの第1端子部221a、222aにディファレンシャル信号の正側信号、負側信号が入力されることによって、第1端子部221a及び/又は222aから生じたノイズが、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aとモジュールM2の第2通信アンテナ200bとの間の非接触通信に干渉したり、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aにディファレンシャル信号の正側信号、負側信号が入力されることによって、第2端子部221a及び/又は222aから生じたノイズが、モジュールM1の第1通信アンテナ200aの第1端子部221a、222aとモジュールM2の第1通信アンテナ200bとの間の非接触通信に干渉したりする可能性が低減される。しかも、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aとモジュールM2の第2通信アンテナ200bとの間は、上記の通り、電磁界結合が強い部分であるため、当該部分の非接触通信に対するノイズの干渉が低減されることによって、当該非接触通信を好適に行うことができ、モジュールM1の第1通信アンテナ200aの第1端子部221a、222aとモジュールM2の第1通信アンテナ200bとの間も、上記の通り、電磁界結合が強い部分であるため、当該部分の非接触通信に対するノイズの干渉が低減されることによって、当該非接触通信を好適に行うことができる。
(A) Generally, when the positive side signal and the negative side signal of the differential signal are input to the pair of terminal parts of the communication antenna, the differential between the positive side signal and the negative side signal is made in the pair of terminal parts of the communication antenna. Reflections are likely to occur due to imbalance, etc., and noise due to reflections is likely to occur.
However, in the module M1, although the first and second communication antennas 200a are arranged substantially concentrically, the first virtual area and the second virtual area are viewed from the Z direction side (in a plan view). The first terminal portion 221a of the first communication antenna 200a, by not overlapping or by preventing the third virtual area and the fourth virtual area from overlapping each other when viewed from the Z direction side (in a plan view), The 222a can be arranged away from the second terminal portions 221a and 222a of the second communication antenna 200a. Therefore, when the positive side signal and the negative side signal of the differential signal are input to the first terminal portions 221a and 222a of the first communication antenna 200a, the noise generated from the first terminal portion 221a and / or 222a is generated by the module. It interferes with non-contact communication between the second terminal portion 221a and 222a of the second communication antenna 200a of the M1 and the second communication antenna 200b of the module M2, or the second terminal portion 221a of the second communication antenna 200a of the module M1. When the positive side signal and the negative side signal of the differential signal are input to 222a, the noise generated from the second terminal part 221a and / or 222a is generated by the first terminal part 221a of the first communication antenna 200a of the module M1. The possibility of interfering with non-contact communication between the 222a and the first communication antenna 200b of the module M2 is reduced. Moreover, since the electromagnetic field coupling is strong between the second terminal portions 221a and 222a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 as described above, this portion is not present. By reducing the interference of noise with respect to the contact communication, the non-contact communication can be suitably performed, and the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2 can be performed. As described above, since the electromagnetic field coupling is strong, the non-contact communication can be preferably performed by reducing the interference of noise with respect to the non-contact communication of the portion.
 (イ)一般的に、通信アンテナの端子部にシングルエンド信号が入力される場合、端子部においてシングルエンド信号の反射が生じ易く、反射によるノイズが発生し易い。
 しかし、モジュールM1において、第1、第2通信アンテナ200aが略同心円状に配置されているものの、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないようにすることによって、第1通信アンテナ200aの第1端子部221a、222aが第2通信アンテナ200aの第2端子部221a、222aから離れて配置することができる。このため、第1通信アンテナ200aの第1端子部221aにシングルエンド信号が入力されることによって、第1通信アンテナ200aの第1端子部221aから生じたノイズが、モジュールM1の第2通信アンテナ200aの第2端子部221a、222aとモジュールM2の第2通信アンテナ200bとの間の非接触通信に干渉したり、第2通信アンテナ200aの第1端子部221aにシングルエンド信号が入力されることによって、第2端子部221aから生じたノイズが、モジュールM1の第1通信アンテナ200aの第1端子部221a、222aとモジュールM2の第1通信アンテナ200bとの間の非接触通信に干渉したりする可能性が低減される。しかも、モジュールM1の第2通信アンテナ200aの第2端子部221aとモジュールM2の第2通信アンテナ200bとの間は、上記の通り、電磁界結合が強い部分であるため、当該部分の非接触通信に対するノイズの干渉が低減されることによって、当該非接触通信を好適に行うことができ、モジュールM1の第1通信アンテナ200aの第1端子部221aとモジュールM2の第1通信アンテナ200bとの間も、上記の通り、電磁界結合が強い部分であるため、当該部分の非接触通信に対するノイズの干渉が低減されることによって、当該非接触通信を好適に行うことができる。
(B) Generally, when a single-ended signal is input to the terminal portion of a communication antenna, the single-ended signal is likely to be reflected at the terminal portion, and noise due to the reflection is likely to occur.
However, in the module M1, although the first and second communication antennas 200a are arranged substantially concentrically, the first virtual area and the second virtual area are viewed from the Z direction side (in a plan view). The first terminal portion 221a of the first communication antenna 200a, by not overlapping or by preventing the third virtual area and the fourth virtual area from overlapping each other when viewed from the Z direction side (in a plan view), The 222a can be arranged away from the second terminal portions 221a and 222a of the second communication antenna 200a. Therefore, when the single-ended signal is input to the first terminal portion 221a of the first communication antenna 200a, the noise generated from the first terminal portion 221a of the first communication antenna 200a is generated by the second communication antenna 200a of the module M1. By interfering with non-contact communication between the second terminal portion 221a and 222a of the module M2 and the second communication antenna 200b of the module M2, or by inputting a single-ended signal to the first terminal portion 221a of the second communication antenna 200a. , Noise generated from the second terminal portion 221a may interfere with non-contact communication between the first terminal portions 221a and 222a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2. The property is reduced. Moreover, since the electromagnetic field coupling is strong between the second terminal portion 221a of the second communication antenna 200a of the module M1 and the second communication antenna 200b of the module M2 as described above, non-contact communication of the portion is performed. By reducing the interference of noise with respect to the above, the non-contact communication can be suitably performed, and also between the first terminal portion 221a of the first communication antenna 200a of the module M1 and the first communication antenna 200b of the module M2. As described above, since the portion has a strong electromagnetic field coupling, the non-contact communication can be preferably performed by reducing the interference of noise with respect to the non-contact communication of the portion.
 (ウ)入力されるデジタル信号がディファレンシャル信号及びシングルエンド信号の何れの場合であっても、第3仮想領域と第4仮想領域とが互いに重ならない場合、第1仮想領域と第2仮想領域とのみが互いに重ならない場合に比べて、第1端子部221a、222aが第2端子部221a、222aからより遠くに離れるため、上記(ア)又は(イ)の技術的特徴が顕著になる。 (C) Regardless of whether the input digital signal is a differential signal or a single-ended signal, if the third virtual area and the fourth virtual area do not overlap each other, the first virtual area and the second virtual area Since the first terminal portions 221a and 222a are farther away from the second terminal portions 221a and 222a as compared with the case where only the terminals do not overlap each other, the technical features of (a) or (b) above become remarkable.
 (エ)第1通信アンテナ200aと第2通信アンテナ200aとの間にグランド導体300aが配置されている場合、第1通信アンテナ200aに伝送されるデジタル信号と、第2通信アンテナ200aに伝送されるデジタル信号とがクロストークする可能性が低減されるので、第1通信アンテナ200aと第2通信アンテナ200aとで同時に非接触通信を更により好適に行うことができる。 (D) When the ground conductor 300a is arranged between the first communication antenna 200a and the second communication antenna 200a, the digital signal transmitted to the first communication antenna 200a and the digital signal transmitted to the second communication antenna 200a are transmitted. Since the possibility of cross-talking with the digital signal is reduced, non-contact communication can be more preferably performed simultaneously between the first communication antenna 200a and the second communication antenna 200a.
 技術的特徴及び効果2)
 モジュールM1においては、第2通信アンテナ200aが第1通信アンテナ200aの外側に配置されており、第2通信アンテナ200aの面積が、第1通信アンテナ200aの面積よりも大きい場合、第2通信アンテナ200aの電気長が第1通信アンテナ200aの電気長よりも長くなる。この場合、第2送信部410aにより送信されるデジタル信号の伝送速度を、第1送信部410bにより送信されるデジタル信号の伝送速度よりも遅くすることによって、第1通信アンテナ200a及び第2通信アンテナ200aを用いて同時に異なる通信速度の非接触通信を好適に行うことができる。
Technical features and effects 2)
In the module M1, when the second communication antenna 200a is arranged outside the first communication antenna 200a and the area of the second communication antenna 200a is larger than the area of the first communication antenna 200a, the second communication antenna 200a The electric length of the first communication antenna 200a is longer than the electric length of the first communication antenna 200a. In this case, by making the transmission speed of the digital signal transmitted by the second transmission unit 410a slower than the transmission speed of the digital signal transmitted by the first transmission unit 410b, the first communication antenna 200a and the second communication antenna The 200a can preferably be used for non-contact communication at different communication speeds at the same time.
 技術的特徴及び効果3)
 第1通信アンテナ200aの幅寸法Wが、第2通信アンテナ200aの幅寸法Wよりも大きい場合、第1通信アンテナ200aの面積が増大することにより、第1通信アンテナ200aの電気長を第2通信アンテナ200aの電気長と略同じ又は近くすることができる。この場合、第1通信アンテナ200a及び第2通信アンテナ200aを用いて同時に異なる通信速度の非接触通信を行っても良いし、同じ通信速度で非接触通信を行っても良い。
Technical features and effects 3)
When the width dimension W of the first communication antenna 200a is larger than the width dimension W of the second communication antenna 200a, the area of the first communication antenna 200a increases, so that the electric length of the first communication antenna 200a is changed to the second communication. It can be substantially the same as or close to the electrical length of the antenna 200a. In this case, the first communication antenna 200a and the second communication antenna 200a may be used for non-contact communication at different communication speeds at the same time, or non-contact communication may be performed at the same communication speed.
 なお、モジュールM2は、モジュールM1と同様の技術的特徴及び効果を奏する。 Note that the module M2 has the same technical features and effects as the module M1.
 以下、本発明の実施例2を含む複数の実施例に係る電子機器D’の第1アンテナモジュールM1’(以下、単にモジュールM1’とも称する。)及び第2アンテナモジュールM2’(以下、単にモジュールM2’とも称する。)について、図12を参照しつつ説明する。図12には、実施例2のモジュールM1’及びモジュールM2’が示されている。 Hereinafter, the first antenna module M1'(hereinafter, also simply referred to as a module M1') and the second antenna module M2'(hereinafter, simply a module) of the electronic device D'according to a plurality of examples including the second embodiment of the present invention. (Also referred to as M2') will be described with reference to FIG. FIG. 12 shows the module M1'and the module M2'of the second embodiment.
 モジュールM1’は、下記相違点を除き、上記何れかの態様のモジュールM1と同様の構成である。よって、その相違点についてのみ詳しく説明し、モジュールM1と重複する説明については省略する。 Module M1'has the same configuration as module M1 in any of the above modes, except for the following differences. Therefore, only the difference will be described in detail, and the description overlapping with the module M1 will be omitted.
 モジュールM1’の複数の通信アンテナ200aが、最内の通信アンテナ200aと、最外の通信アンテナ200aと、中間の通信アンテナ200aとを含む点で、実施例1のモジュールM1の複数の通信アンテナ200aと相違している。 The plurality of communication antennas 200a of the module M1 of the first embodiment include the innermost communication antenna 200a, the outermost communication antenna 200a, and the intermediate communication antenna 200a in the plurality of communication antennas 200a of the module M1'. Is different from.
 最内の通信アンテナ200aは、複数の通信アンテナ200aのうちの最も内側に位置し、最外の通信アンテナ200aは、複数の通信アンテナ200aのうちの最も外側に位置している。中間の通信アンテナ200aは、最内の通信アンテナ200aと最外の通信アンテナ200aとの間に位置し、最内の通信アンテナ200a及び最外の通信アンテナ200aとそれぞれ隣り合っている。 The innermost communication antenna 200a is located on the innermost side of the plurality of communication antennas 200a, and the outermost communication antenna 200a is located on the outermost side of the plurality of communication antennas 200a. The intermediate communication antenna 200a is located between the innermost communication antenna 200a and the outermost communication antenna 200a, and is adjacent to the innermost communication antenna 200a and the outermost communication antenna 200a, respectively.
 複数の通信アンテナ200aは、下記(1)及び(2)の少なくとも一方の構成を有している。 The plurality of communication antennas 200a have at least one of the following configurations (1) and (2).
 (1)最内の通信アンテナ200aが上記何れかの態様の第1通信アンテナ200aに、中間の通信アンテナ200aが上記何れかの態様の第2通信アンテナ200aに相当する。この場合、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、最内の通信アンテナ200aの端子部221a、222aと中間の通信アンテナ200aの端子部221a、222aとが配置されている。図12では、最内の通信アンテナ200aの端子部221a、222aと中間の通信アンテナ200aの端子部221a、222aとは、最内の通信アンテナ200aのアンテナ本体210aの中心Cから第1仮想領域を半分に二分するように延びる仮想の第1分割線と前記中心Cから第2仮想領域を半分に二分するように延びる仮想の第2分割線とが、前記中心C周りに略120°の角度間隔で位置するように、配置されている。 (1) The innermost communication antenna 200a corresponds to the first communication antenna 200a of any of the above aspects, and the intermediate communication antenna 200a corresponds to the second communication antenna 200a of any of the above aspects. In this case, the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side. The terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the intermediate communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG. 12, the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the intermediate communication antenna 200a form a first virtual region from the center C of the antenna body 210a of the innermost communication antenna 200a. The virtual first dividing line extending in half and the virtual second dividing line extending from the center C in half so as to divide the second virtual area in half have an angular interval of approximately 120 ° around the center C. It is arranged so that it is located at.
 (2)中間の通信アンテナ200aが上記何れかの態様の第1通信アンテナ200aに、最外の通信アンテナ200aが上記何れかの態様の第2通信アンテナ200aに相当する。この場合、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、中間の通信アンテナ200aの端子部221a、222aと最外の通信アンテナ200aの端子部221a、222aとが配置されている。図12では、中間の通信アンテナ200aの端子部221a、222aと最外の通信アンテナ200aの端子部221a、222aとは、前記中心Cから第1仮想領域を半分に二分するように延びる仮想の第1分割線と前記中心Cから第2仮想領域を半分に二分するように延びる仮想の第2分割線とが、前記中心C周りに略120°の角度間隔で位置するように、配置されている。 (2) The intermediate communication antenna 200a corresponds to the first communication antenna 200a of any of the above aspects, and the outermost communication antenna 200a corresponds to the second communication antenna 200a of any of the above aspects. In this case, the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side. The terminal portions 221a and 222a of the intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG. 12, the terminal portions 221a and 222a of the intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are virtual first virtual areas extending from the center C so as to divide the first virtual area in half. The first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 120 °. ..
 なお、複数の通信アンテナ200aが上記(1)又は(2)の構成を有する場合、複数の通信アンテナ200aは少なくとも一つの第3通信アンテナ200aを含んでいても良い。少なくとも一つの第3通信アンテナは、複数の通信アンテナ200aのうちの第1、第2通信アンテナ200aに相当しないアンテナであって、モジュールM2’の複数の通信アンテナ200bのうちの一つと上記カプラを構成でき、非接触通信可能な構成であれば良い。 When the plurality of communication antennas 200a have the configuration of (1) or (2) above, the plurality of communication antennas 200a may include at least one third communication antenna 200a. The at least one third communication antenna is an antenna that does not correspond to the first and second communication antennas 200a of the plurality of communication antennas 200a, and includes one of the plurality of communication antennas 200b of the module M2'and the coupler. Any configuration can be configured and non-contact communication is possible.
 モジュールM2’も、下記相違点を除き、上記した何れかの態様のモジュールM2と同様の構成である。モジュールM2’の複数の通信アンテナ200bが、最内の通信アンテナ200bと、最外の通信アンテナ200bと、中間の通信アンテナ200bとを含む点で、実施例1のモジュールM2の複数の通信アンテナ200bと相違している。最内の通信アンテナ200b、最外の通信アンテナ200b、中間の通信アンテナ200bは、上記何れかの態様の最内の通信アンテナ200a、最外の通信アンテナ200b、中間の通信アンテナ200bと同様の構成とすると良い。 The module M2'has the same configuration as the module M2 in any of the above modes except for the following differences. The plurality of communication antennas 200b of the module M2 of the first embodiment include the innermost communication antenna 200b, the outermost communication antenna 200b, and the intermediate communication antenna 200b in the plurality of communication antennas 200b of the module M2'. Is different from. The innermost communication antenna 200b, the outermost communication antenna 200b, and the intermediate communication antenna 200b have the same configurations as the innermost communication antenna 200a, the outermost communication antenna 200b, and the intermediate communication antenna 200b in any of the above embodiments. It is good to say.
 以上のようなモジュールM1’及びモジュールM2’は、モジュールM1及びモジュールM2と同様の技術的特徴及び効果を奏する。 The module M1'and the module M2' as described above exhibit the same technical features and effects as the module M1 and the module M2.
 以下、本発明の実施例3を含む複数の実施例に係る電子機器D’’の第1アンテナモジュールM1’’(以下、単にモジュールM1’’とも称する。)及び第2アンテナモジュールM2’’(以下、単にモジュールM2’’とも称する。)について、図13を参照しつつ説明する。図13には、実施例3のモジュールM1’’及びモジュールM2’’が示されている。 Hereinafter, the first antenna module M1 ″ (hereinafter, also simply referred to as module M1 ″) and the second antenna module M2 ″ (hereinafter, also simply referred to as module M1 ″) of the electronic device D ″ according to a plurality of examples including the third embodiment of the present invention. Hereinafter, the module M2 ″) will be described with reference to FIG. FIG. 13 shows the module M1 ″ and the module M2 ″ of the third embodiment.
 モジュールM1’’は、下記相違点を除き、上記した何れかの態様のモジュールM1と同様の構成である。よって、その相違点についてのみ詳しく説明し、モジュールM1と重複する説明については省略する。 The module M1 ″ has the same configuration as the module M1 in any of the above modes except for the following differences. Therefore, only the difference will be described in detail, and the description overlapping with the module M1 will be omitted.
 モジュールM1’’の複数の通信アンテナ200aが、最内の通信アンテナ200aと、最外の通信アンテナ200aと、複数の中間の通信アンテナ200aとを含む点で、実施例1のモジュールM1の複数の通信アンテナ200aと相違している。 A plurality of the module M1 of the first embodiment in that the plurality of communication antennas 200a of the module M1'' include the innermost communication antenna 200a, the outermost communication antenna 200a, and the plurality of intermediate communication antennas 200a. It is different from the communication antenna 200a.
 複数の通信アンテナ200aは、下記(1)~(3)の少なくとも一つの構成を有する。 The plurality of communication antennas 200a have at least one of the following configurations (1) to (3).
 (1)最内の通信アンテナ200aが上記何れかの態様の第1通信アンテナ200aに、複数の中間の通信アンテナ200aのうちの最も内側に位置する通信アンテナ200a(最内の中間の通信アンテナ200a)が上記何れかの態様の第2通信アンテナ200aに相当する。この場合、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、最内の通信アンテナ200aの端子部221a、222aと最内の中間の通信アンテナ200aの端子部221a、222aとが配置されている。図13では、最内の通信アンテナ200aの端子部221a、222aと最内の中間の通信アンテナ200aの端子部221a、222aとは、最内の通信アンテナ200aのアンテナ本体210aの中心Cから第1仮想領域を半分に二分するように延びる仮想の第1分割線と前記中心Cから第2仮想領域を半分に二分するように延びる仮想の第2分割線とが、前記中心C周りに略90°の角度間隔で位置するように、配置されている。 (1) The innermost communication antenna 200a is the first communication antenna 200a of any of the above embodiments, and the innermost communication antenna 200a among the plurality of intermediate communication antennas 200a (the innermost middle communication antenna 200a). ) Corresponds to the second communication antenna 200a of any of the above aspects. In this case, the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side. The terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the innermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG. 13, the terminal portions 221a and 222a of the innermost communication antenna 200a and the terminal portions 221a and 222a of the innermost communication antenna 200a are first from the center C of the antenna body 210a of the innermost communication antenna 200a. The virtual first dividing line extending so as to divide the virtual area in half and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are approximately 90 ° around the center C. They are arranged so that they are located at the angular intervals of.
 (2)複数の中間の通信アンテナ200aのうちの隣り合う中間の通信アンテナ200aの内側の通信アンテナ200a(内側の中間の通信アンテナ)が上記何れかの態様の第1通信アンテナ200aに、外側の通信アンテナ200a(外側の中間の通信アンテナ)が上記何れかの態様の第2通信アンテナ200aに相当する。この場合、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、内側の中間の通信アンテナ200aの端子部221a、222aと外側の中間の通信アンテナ200aの端子部221a、222aとが配置されている。図13では、内側の中間の通信アンテナ200aの端子部221a、222aと外側の中間の通信アンテナ200aの端子部221a、222aとは、前記中心Cから第1仮想領域を半分に二分するように延びる仮想の第1分割線と前記中心Cから第2仮想領域を半分に二分するように延びる仮想の第2分割線とが、前記中心C周りに略90°の角度間隔で位置するように、配置されている。 (2) Of the plurality of intermediate communication antennas 200a, the inner communication antenna 200a (inner intermediate communication antenna) of the adjacent intermediate communication antenna 200a is outside the first communication antenna 200a of any of the above embodiments. The communication antenna 200a (the outer intermediate communication antenna) corresponds to the second communication antenna 200a of any of the above aspects. In this case, the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side. The terminal portions 221a and 222a of the inner intermediate communication antenna 200a and the terminal portions 221a and 222a of the outer intermediate communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG. 13, the terminal portions 221a and 222a of the inner intermediate communication antenna 200a and the terminal portions 221a and 222a of the outer intermediate communication antenna 200a extend from the center C so as to divide the first virtual area in half. The virtual first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 90 °. Has been done.
 (3)複数の中間の通信アンテナ200aのうちの最も外側に位置する通信アンテナ200a(最外の中間の通信アンテナ)が上記何れかの態様の第1通信アンテナ200aに、最外の通信アンテナ200aが上記何れかの態様の第2通信アンテナ200aに相当する。この場合、上記第1仮想領域と上記第2仮想領域とがZ方向側から見て(平面視において)互いに重ならないように又は上記第3仮想領域と上記第4仮想領域とがZ方向側から見て(平面視において)互いに重ならないように、最外の中間の通信アンテナ200aの端子部221a、222aと最外の通信アンテナ200aの端子部221a、222aとが配置されている。図13では、最外の中間の通信アンテナ200aの端子部221a、222aと最外の通信アンテナ200aの端子部221a、222aとは、前記中心Cから第1仮想領域を半分に二分するように延びる仮想の第1分割線と前記中心Cから第2仮想領域を半分に二分するように延びる仮想の第2分割線とが、前記中心C周りに略90°の角度間隔で位置するように、配置されている。 (3) The outermost communication antenna 200a (outermost intermediate communication antenna) of the plurality of intermediate communication antennas 200a is attached to the first communication antenna 200a of any of the above embodiments, and the outermost communication antenna 200a is used. Corresponds to the second communication antenna 200a of any of the above aspects. In this case, the first virtual area and the second virtual area do not overlap each other when viewed from the Z direction side (in a plan view), or the third virtual area and the fourth virtual area are viewed from the Z direction side. The terminal portions 221a and 222a of the outermost intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a are arranged so as not to overlap each other when viewed (in a plan view). In FIG. 13, the terminal portions 221a and 222a of the outermost intermediate communication antenna 200a and the terminal portions 221a and 222a of the outermost communication antenna 200a extend from the center C so as to divide the first virtual area in half. The virtual first dividing line and the virtual second dividing line extending from the center C so as to divide the second virtual area in half are arranged so as to be located around the center C at an angular interval of approximately 90 °. Has been done.
 なお、複数の通信アンテナ200aが上記(1)~(3)の何れか一つ又は二つの構成を有する場合、複数の通信アンテナ200aは上記少なくとも一つの第3通信アンテナ200aを含んでいても良い。 When the plurality of communication antennas 200a have any one or two configurations of the above (1) to (3), the plurality of communication antennas 200a may include at least one third communication antenna 200a. ..
 モジュールM2’’も、下記相違点を除き、上記した何れかの態様のモジュールM2と同様の構成である。モジュールM2’’の複数の通信アンテナ200bが、最内の通信アンテナ200bと、最外の通信アンテナ200bと、複数の中間の通信アンテナ200bとを含む点で、実施例1のモジュールM2の複数の通信アンテナ200bと相違している。最内の通信アンテナ200b、最外の通信アンテナ200b、複数の中間の通信アンテナ200bは、上記何れかの態様の最内の通信アンテナ200a、最外の通信アンテナ200b、複数の中間の通信アンテナ200bと同様の構成とすると良い。 The module M2 ″ has the same configuration as the module M2 in any of the above modes except for the following differences. A plurality of the module M2 of the first embodiment in that the plurality of communication antennas 200b of the module M2'' include the innermost communication antenna 200b, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b. It is different from the communication antenna 200b. The innermost communication antenna 200b, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b are the innermost communication antenna 200a, the outermost communication antenna 200b, and the plurality of intermediate communication antennas 200b in any of the above embodiments. It is good to have the same configuration as.
 以上のようなモジュールM1’’及びモジュールM2’’は、モジュールM1及びモジュールM2と同様の技術的特徴及び効果を奏する。 The module M1 ″ and the module M2 ″ as described above exhibit the same technical features and effects as the module M1 and the module M2.
 なお、本発明の電子機器及びモジュールは、上記実施例に限定されるものではなく、特許請求の範囲の記載範囲において任意に設計変更することが可能である。以下、詳しく述べる。 The electronic device and module of the present invention are not limited to the above embodiment, and the design can be arbitrarily changed within the scope of the claims. The details will be described below.
 本発明の電子機器は、上記何れかの態様の第2アンテナモジュールが、上記何れかの態様の第1アンテナモジュールに回転不能に支持されていても良い。本発明の電子機器は、上記した何れかの態様の第1、第2アンテナモジュールの何れか一方のモジュールのみを備えた構成とすることが可能である。この場合、相手方通信装置は、一方のモジュールの複数の通信アンテナと各々カプラを構成し、非接触通信可能な複数の通信アンテナを備えていれば良い。 In the electronic device of the present invention, the second antenna module of any of the above aspects may be non-rotatably supported by the first antenna module of any of the above aspects. The electronic device of the present invention can be configured to include only one of the first and second antenna modules of any of the above aspects. In this case, the other party communication device may form a coupler with a plurality of communication antennas of one module and include a plurality of communication antennas capable of non-contact communication.
 本発明の第1、第2通信アンテナは、基体の第1面上に同心状に設けられているとしたが、これに限定されるものではない。本発明の第1、第2通信アンテナが金属板又はコイルで構成されている場合、その第1、第2端子部が基体に支持され、第1、第2アンテナ本体が中空に配置されていても良いし、その第1、第2アンテナの一部が基体に支持され、第1、第2通信アンテナの前記一部以外の部分が中空に配置されていても良い。なお、本発明の第1、第2通信アンテナは、Z-Z’方向において異なる高さ位置に配置されていても良い。 The first and second communication antennas of the present invention are concentrically provided on the first surface of the substrate, but the present invention is not limited to this. When the first and second communication antennas of the present invention are made of a metal plate or a coil, the first and second terminal portions thereof are supported by a substrate, and the first and second antenna bodies are arranged in a hollow manner. Alternatively, a part of the first and second antennas may be supported by the substrate, and a part other than the part of the first and second communication antennas may be arranged hollowly. The first and second communication antennas of the present invention may be arranged at different height positions in the ZZ'direction.
 本発明の第1、第2通信アンテナは、相手方の第1、第2通信アンテナと各々電磁界結合可能な構成であるとしたが、これに限定されるものではない。例えば、本発明の第1、第2通信アンテナは、相手方の第1、第2通信アンテナと各々磁界結合可能な構成とすることも可能である。この場合の磁界結合時の第1通信アンテナから第2通信アンテナまでの距離(非接触通信の通信距離)も、0mm~数mm程度の近距離とすると良いが、これに限定されるものではない。 The first and second communication antennas of the present invention are configured to be electromagnetically coupled to the other party's first and second communication antennas, but the present invention is not limited to this. For example, the first and second communication antennas of the present invention may be configured so as to be magnetically coupled to each other's first and second communication antennas. In this case, the distance from the first communication antenna to the second communication antenna (communication distance for non-contact communication) at the time of magnetic field coupling may be a short distance of about 0 mm to several mm, but is not limited to this. ..
 本発明のモジュールM1及び/又はモジュールM2の筐体は、省略可能である。 The housing of the module M1 and / or the module M2 of the present invention can be omitted.
 なお、上記実施例の各態様及び設計変形例における電子機器及びモジュールの各構成要素を構成する素材、形状、寸法、数及び配置等はその一例を説明したものであって、同様の機能を実現し得る限り任意に設計変更することが可能である。上記した実施例の各態様及び設計変更例は、互いに矛盾しない限り、相互に組み合わせることが可能である。本発明のZ-Z’方向は、複数の通信アンテナのうちの少なくとも一つの中心を通り且つ複数の通信アンテナの配列方向に対して直交する限り任意に変更することが可能である。 The materials, shapes, dimensions, numbers, arrangements, etc. that constitute each component of the electronic device and the module in each aspect of the above embodiment and the design modification are described as examples, and the same functions are realized. It is possible to change the design as much as possible. Each aspect of the above-described embodiment and the design modification example can be combined with each other as long as they do not contradict each other. The ZZ'direction of the present invention can be arbitrarily changed as long as it passes through at least one center of the plurality of communication antennas and is orthogonal to the arrangement direction of the plurality of communication antennas.
 D、D’、D’’:電子機器
 M1、M2、M1’、M2’ M1’’、M2’’:第1、第2アンテナモジュール(モジュール)
  100a、100b:基体
   101a、101b:第1面
   102a、102b:第2面
  200a、200b:通信アンテナ(第1及び第2通信アンテナを含む。)
   210a、210b:アンテナ本体
   221a、221b、222a、222b:端子部
   C:中心
  300a、300b:グランド導体
  400a、400b:通信回路部
   410a、410b:送信部(第1及び第2送信部を含む。)
   420a、420b:復元部
  500a、500b:充電アンテナ
  600a、600b:充電回路部
  700a、700b:筐体
  S:磁性シート
  P:回転軸
D, D', D'': Electronic equipment M1, M2, M1', M2'M1'', M2'': 1st and 2nd antenna modules (modules)
100a, 100b: Substrate 101a, 101b: First surface 102a, 102b: Second surface 200a, 200b: Communication antenna (including first and second communication antennas)
210a, 210b: Antenna body 221a, 221b, 222a, 222b: Terminal part C: Center 300a, 300b: Ground conductor 400a, 400b: Communication circuit part 410a, 410b: Transmission part (including the first and second transmission parts)
420a, 420b: Restoration part 500a, 500b: Charging antenna 600a, 600b: Charging circuit part 700a, 700b: Housing S: Magnetic sheet P: Rotating shaft

Claims (12)

  1.  略同心状に配置された複数の通信アンテナを備えており、
     前記複数の通信アンテナは、アンテナ本体と、一対の端子部を有しており、前記複数の通信アンテナの各々において、前記一対の端子部の少なくとも一方の端子部にデジタル信号が入力され、前記アンテナ本体を通って他方の端子部から出力されるようになっており、前記一対の端子部は、互いに間隔をあけて隣り合う内側端を有し、
     前記複数の通信アンテナは、少なくとも第1通信アンテナ及び第2通信アンテナを含み、前記第2通信アンテナが、前記第1通信アンテナの外側に当該第1通信アンテナに対して間隔をあけて配置されており、
     前記第1通信アンテナの中心から前記第1通信アンテナの前記一対の端子部の前記内側端の少なくとも一部を通って放射状に延びる仮想の一対の第1半直線の間の領域を第1仮想領域とし、前記第1通信アンテナの前記中心又は前記第2通信アンテナの中心から前記第2通信アンテナの前記一対の端子部の前記内側端の少なくとも一部を通って延びる仮想の一対の第2半直線の間の領域を第2仮想領域とした場合、
     前記第1仮想領域と前記第2仮想領域とが平面視において互いに重ならないように、前記第1通信アンテナの前記一対の端子部及び前記第2通信アンテナの前記一対の端子部が配置されているアンテナモジュール。
    Equipped with multiple communication antennas arranged approximately concentrically,
    The plurality of communication antennas have an antenna main body and a pair of terminal portions, and in each of the plurality of communication antennas, a digital signal is input to at least one terminal portion of the pair of terminal portions, and the antenna It is designed to be output from the other terminal portion through the main body, and the pair of terminal portions have inner ends adjacent to each other at intervals.
    The plurality of communication antennas include at least a first communication antenna and a second communication antenna, and the second communication antenna is arranged outside the first communication antenna at intervals with respect to the first communication antenna. Antenna
    The first virtual region is a region between a pair of virtual first half lines extending radially from the center of the first communication antenna through at least a part of the inner ends of the pair of terminals of the first communication antenna. A pair of virtual second half straight lines extending from the center of the first communication antenna or the center of the second communication antenna through at least a part of the inner ends of the pair of terminals of the second communication antenna. When the area between is the second virtual area,
    The pair of terminal portions of the first communication antenna and the pair of terminal portions of the second communication antenna are arranged so that the first virtual area and the second virtual area do not overlap each other in a plan view. Antenna module.
  2.  請求項1記載のアンテナモジュールにおいて、
     前記一対の端子部は、前記内側端の反対側の外側端を更に有し、
     前記第1通信アンテナの中心から前記第1通信アンテナの前記一対の端子部の前記外側端の少なくとも一部を通って放射状に延びる仮想の一対の第3半直線の間の領域を第3仮想領域とし、前記第1通信アンテナの前記中心又は前記第2通信アンテナの前記中心から前記第2通信アンテナの前記一対の端子部の前記外側端の少なくとも一部を通って延びる仮想の一対の第4半直線の間の領域を第4仮想領域とした場合、
     前記第3仮想領域と前記第4仮想領域とが平面視において互いに重ならないように、前記第1通信アンテナの前記一対の端子部及び前記第2通信アンテナの前記一対の端子部が配置されているアンテナモジュール。
    In the antenna module according to claim 1,
    The pair of terminals further has an outer end opposite to the inner end.
    The third virtual area is the area between the pair of virtual third half lines extending radially from the center of the first communication antenna through at least a part of the outer ends of the pair of terminals of the first communication antenna. A virtual pair of fourth halves extending from the center of the first communication antenna or the center of the second communication antenna through at least a part of the outer ends of the pair of terminals of the second communication antenna. When the area between the straight lines is the fourth virtual area,
    The pair of terminal portions of the first communication antenna and the pair of terminal portions of the second communication antenna are arranged so that the third virtual area and the fourth virtual area do not overlap each other in a plan view. Antenna module.
  3.  請求項1又は2記載のアンテナモジュールにおいて、
     前記第1通信アンテナ及び前記第2通信アンテナの前記一対の端子部のうちの少なくとも一方の端子部にデジタル信号が入力されているときにおいて、前記第1通信アンテナの前記一対の端子部の電界強度が、前記第1通信アンテナの前記アンテナ本体の電界強度よりも強く、且つ、前記第2通信アンテナの前記一対の端子部の電界強度が、前記第2通信アンテナの前記アンテナ本体の電界強度よりも強いアンテナモジュール。
    In the antenna module according to claim 1 or 2.
    When a digital signal is input to at least one of the pair of terminals of the first communication antenna and the second communication antenna, the electric field strength of the pair of terminals of the first communication antenna. However, the electric field strength of the antenna body of the first communication antenna is stronger than that of the antenna body of the second communication antenna, and the electric field strength of the pair of terminals of the second communication antenna is higher than the electric field strength of the antenna body of the second communication antenna. Strong antenna module.
  4.  請求項3記載のアンテナモジュールにおいて、
     前記第1通信アンテナ及び前記第2通信アンテナの前記一対の端子部のうちの少なくとも一方の端子部にデジタル信号が入力されているときにおいて、前記第1通信アンテナの前記一方の端子部の電界強度が、前記第1通信アンテナの前記他方の端子部の電界強度よりも強く、且つ、前記第2通信アンテナの前記一方の端子部の電界強度が、前記第2通信アンテナの前記他方の端子部の電界強度よりも強いアンテナモジュール。
    In the antenna module according to claim 3,
    When a digital signal is input to at least one of the pair of terminals of the first communication antenna and the second communication antenna, the electric field strength of the one terminal of the first communication antenna. However, the electric field strength of the other terminal portion of the first communication antenna is stronger than that of the other terminal portion of the second communication antenna, and the electric field strength of the one terminal portion of the second communication antenna is the electric field strength of the other terminal portion of the second communication antenna. Antenna module stronger than electric field strength.
  5.  請求項1~4の何れかに記載のアンテナモジュールにおいて、
     前記第2通信アンテナの電気長が前記第1通信アンテナの電気長よりも長く、
     前記第2通信アンテナに入力されるデジタル信号の伝送速度が、前記第1通信アンテナに入力されるデジタル信号の伝送速度よりも遅いアンテナモジュール。
    In the antenna module according to any one of claims 1 to 4.
    The electrical length of the second communication antenna is longer than the electrical length of the first communication antenna.
    An antenna module in which the transmission speed of a digital signal input to the second communication antenna is slower than the transmission speed of a digital signal input to the first communication antenna.
  6.  請求項1~4の何れかに記載のアンテナモジュールにおいて、
     前記第1通信アンテナの幅寸法が、前記第2通信アンテナの幅寸法よりも大きいアンテナモジュール。
    In the antenna module according to any one of claims 1 to 4.
    An antenna module in which the width dimension of the first communication antenna is larger than the width dimension of the second communication antenna.
  7.  請求項1~6の何れかに記載のアンテナモジュールにおいて、
     前記第1通信アンテナと前記第2通信アンテナとの間に配置されたグランド導体を更に備えているアンテナモジュール。
    In the antenna module according to any one of claims 1 to 6.
    An antenna module further comprising a ground conductor arranged between the first communication antenna and the second communication antenna.
  8.  請求項1~7の何れかに記載のアンテナモジュールにおいて、
     前記複数の通信アンテナが略同心状に設けられた絶縁性を有する基体を更に備えているアンテナモジュール。
    In the antenna module according to any one of claims 1 to 7.
    An antenna module further comprising an insulating substrate in which the plurality of communication antennas are provided substantially concentrically.
  9.  請求項1~8の何れかに記載のアンテナモジュールにおいて、
     前記第1通信アンテナの前記アンテナ本体は、一部が破断した略環状であり、
     前記第1通信アンテナの前記一対の端子部は、前記第1通信アンテナの前記アンテナ本体の両端部であり、
     前記第2通信アンテナの前記アンテナ本体は、一部が破断した略環状であり、
     前記第2通信アンテナの前記一対の端子部は、前記第2通信アンテナの前記アンテナ本体の両端部であるアンテナモジュール。
    In the antenna module according to any one of claims 1 to 8.
    The antenna body of the first communication antenna is a substantially annular shape in which a part is broken.
    The pair of terminal portions of the first communication antenna are both ends of the antenna body of the first communication antenna.
    The antenna body of the second communication antenna is a substantially annular shape in which a part is broken.
    The pair of terminal portions of the second communication antenna are antenna modules which are both ends of the antenna body of the second communication antenna.
  10.  請求項1~9の何れかに記載のアンテナモジュールにおいて、
     前記第1通信アンテナの前記一対の端子部の少なくとも一方に対して前記デジタル信号を送信可能な構成である第1送信部と、
     前記第2通信アンテナの前記一対の端子部の少なくとも一方に対して前記デジタル信号を送信可能な構成である第2送信部とを更に備えているアンテナモジュール。
    In the antenna module according to any one of claims 1 to 9.
    A first transmission unit having a configuration capable of transmitting the digital signal to at least one of the pair of terminal units of the first communication antenna.
    An antenna module further comprising a second transmitting unit having a configuration capable of transmitting the digital signal to at least one of the pair of terminal units of the second communication antenna.
  11.  第1アンテナモジュールと、前記第1アンテナモジュールに回転自在に支持された第2アンテナモジュールとを備えており、
     前記第1アンテナモジュール及び前記第2アンテナモジュールが、請求項1~10の何れかに記載のアンテナモジュールであり、
     前記第1アンテナモジュールの前記第1通信アンテナと、前記第2アンテナモジュールの前記第1通信アンテナとが、前記第2アンテナモジュールの回転軸の軸方向において並ぶように配置されており、且つ、前記第1アンテナモジュールの前記第2通信アンテナと、前記第2アンテナモジュールの前記第2通信アンテナとが、前記軸方向において並ぶように配置されている電子機器。
    It includes a first antenna module and a second antenna module rotatably supported by the first antenna module.
    The first antenna module and the second antenna module are the antenna modules according to any one of claims 1 to 10.
    The first communication antenna of the first antenna module and the first communication antenna of the second antenna module are arranged so as to be aligned in the axial direction of the rotation axis of the second antenna module, and the above-mentioned An electronic device in which the second communication antenna of the first antenna module and the second communication antenna of the second antenna module are arranged so as to be arranged in the axial direction.
  12.  請求項1~10の何れかに記載のアンテナモジュールを用いた非接触通信方法であって、
     前記第1通信アンテナの前記一対の端子部の少なくとも一方に対してデジタル信号を入力すると共に、
     前記第2通信アンテナの前記一対の端子部の少なくとも一方に対してデジタル信号を入力することを含む非接触通信方法。
    A non-contact communication method using the antenna module according to any one of claims 1 to 10.
    While inputting a digital signal to at least one of the pair of terminals of the first communication antenna,
    A non-contact communication method including inputting a digital signal to at least one of the pair of terminals of the second communication antenna.
PCT/JP2020/028912 2019-07-29 2020-07-28 Antenna module, electronic device, and contactless communication method WO2021020397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535361A JPWO2021020397A1 (en) 2019-07-29 2020-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138519 2019-07-29
JP2019138519 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020397A1 true WO2021020397A1 (en) 2021-02-04

Family

ID=74229958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028912 WO2021020397A1 (en) 2019-07-29 2020-07-28 Antenna module, electronic device, and contactless communication method

Country Status (2)

Country Link
JP (1) JPWO2021020397A1 (en)
WO (1) WO2021020397A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171541A (en) * 1995-12-19 1997-06-30 Tokimec Inc Communication equipment
JP2004364199A (en) * 2003-06-06 2004-12-24 Sony Corp Antenna module and portable communication terminal equipped therewith
JP2012019302A (en) * 2010-07-07 2012-01-26 Nec Tokin Corp Antenna module and non-contact power transmission device
JP2013084915A (en) * 2011-10-12 2013-05-09 Tdk Taiwan Corp Induction module commonly used for short-range wireless communication and wireless charging
JP2013157917A (en) * 2012-01-31 2013-08-15 Panasonic Corp Coil device and portable wireless terminal
WO2015129598A1 (en) * 2014-02-27 2015-09-03 株式会社村田製作所 Laminated coil element and wireless communication module
JP2016100872A (en) * 2014-11-26 2016-05-30 パナソニックIpマネジメント株式会社 Signal coupler
WO2017188172A1 (en) * 2016-04-25 2017-11-02 国立大学法人電気通信大学 Wireless communication device and antenna device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171541A (en) * 1995-12-19 1997-06-30 Tokimec Inc Communication equipment
JP2004364199A (en) * 2003-06-06 2004-12-24 Sony Corp Antenna module and portable communication terminal equipped therewith
JP2012019302A (en) * 2010-07-07 2012-01-26 Nec Tokin Corp Antenna module and non-contact power transmission device
JP2013084915A (en) * 2011-10-12 2013-05-09 Tdk Taiwan Corp Induction module commonly used for short-range wireless communication and wireless charging
JP2013157917A (en) * 2012-01-31 2013-08-15 Panasonic Corp Coil device and portable wireless terminal
WO2015129598A1 (en) * 2014-02-27 2015-09-03 株式会社村田製作所 Laminated coil element and wireless communication module
JP2016100872A (en) * 2014-11-26 2016-05-30 パナソニックIpマネジメント株式会社 Signal coupler
WO2017188172A1 (en) * 2016-04-25 2017-11-02 国立大学法人電気通信大学 Wireless communication device and antenna device

Also Published As

Publication number Publication date
JPWO2021020397A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
KR101413276B1 (en) Communication system, communication apparatus, and electric-field-coupling antenna
JP4915358B2 (en) Power transmission device, power reception device, and power transmission system
JP5003625B2 (en) High frequency coupler
CN102738564B (en) Ultra-wideband miniaturized omnidirectional antennas via multi-mode three-dimensional (3-d) traveling-wave (tw)
WO2010071027A1 (en) High-frequency coupler and communication device
CN112635988B (en) Antenna element unit
CN102195114B (en) High-frequency coupler and communication device
JP2004531153A (en) antenna
CN102195115A (en) High-frequency coupler and communication apparatus
JP2004023369A (en) Antenna array and wireless apparatus
RU2480870C1 (en) Multirange antenna of circular polarisation with metamaterial
WO2021020397A1 (en) Antenna module, electronic device, and contactless communication method
JP5594599B2 (en) Electromagnetic coupler and information communication device equipped with the same
WO2024060865A1 (en) Probe antenna and probe thereof
JP5018666B2 (en) Antenna device
JP2824384B2 (en) Dual frequency microstrip antenna
JPH0918393A (en) Noncontact type high frequency signal transmitter
JP2011101235A (en) Electromagnetic coupler and information communication apparatus using the same
JPH098539A (en) Dielectric resonator antenna
JP2777332B2 (en) Microstrip antenna
JP4689503B2 (en) Antenna device
KR20130140084A (en) Antenna device and communication device
JP2693045B2 (en) Slot-fed microstrip antenna
CN110828988A (en) Antenna unit and electronic equipment
WO2019175031A1 (en) Wireless power supply equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846101

Country of ref document: EP

Kind code of ref document: A1