JP2004023369A - Antenna array and wireless apparatus - Google Patents

Antenna array and wireless apparatus Download PDF

Info

Publication number
JP2004023369A
JP2004023369A JP2002174293A JP2002174293A JP2004023369A JP 2004023369 A JP2004023369 A JP 2004023369A JP 2002174293 A JP2002174293 A JP 2002174293A JP 2002174293 A JP2002174293 A JP 2002174293A JP 2004023369 A JP2004023369 A JP 2004023369A
Authority
JP
Japan
Prior art keywords
conductor element
antenna
ground plane
conductor
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174293A
Other languages
Japanese (ja)
Other versions
JP3828050B2 (en
Inventor
Shuichi Sekine
関 根 秀 一
Yasushi Murakami
村 上   康
Kisho Odate
大 舘 紀 章
Teruhiro Tsujimura
辻 村 彰 宏
Takayoshi Ito
伊 藤 敬 義
Kazuhiro Inoue
井 上 和 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002174293A priority Critical patent/JP3828050B2/en
Publication of JP2004023369A publication Critical patent/JP2004023369A/en
Application granted granted Critical
Publication of JP3828050B2 publication Critical patent/JP3828050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna array capable of suppressing interference caused by transmission radio waves and to provide a wireless apparatus. <P>SOLUTION: The antenna array related to this invention is provided with first and second antennas 2, 3 placed on the same ground plate 1. The first antenna 2 has: a first feeding point 4 on the ground plate 1; a first conductor element 5 extended nearly perpendicularly from the first feeding point 4 to the ground plate 1; and a second conductor element 6 extended nearly in parallel from a tip of the first conductor element 5 to the ground plate 1. The sum of the lengths of the first and second conductor elements 5, 6 is selected to be nearly 1/4 wavelength with respect to the operating frequency of the first antenna 2. The second antenna 3 has: a second feeding point 7 on the ground plate 1; a third conductor element 8 extended nearly perpendicularly from the second feeding point 7 to the ground plate 1; and a fourth conductor element 9 extended nearly in parallel from a tip of the third conductor element 8 to the ground plate 1. The sum of the lengths of the third and fourth conductor elements 8, 9 is selected to be nearly 1/4 wavelength with respect to the operating frequency of the second antenna 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
複数のアンテナを有するアンテナアレーと、複数のアンテナのそれぞれに対応した複数の無線機を有する無線装置に関する。
【0002】
【従来の技術】
近年、2GHz近傍の周波数帯で動作する無線システムが数多く開発されている。例えば、2.4GHz帯で動作する無線システムには無線LANとBluetooth(登録商標)があるが、これらのシステムに対応した無線機が同じ端末内に実装される場合がある。
【0003】
【発明が解決しようとする課題】
2つの無線機が同一周波数帯域で動作している場合には、アンテナを介して互いの送信電波による干渉が発生する。
【0004】
上述した干渉を抑圧するには、アンテナを離して配置する必要があるが、端末の小型・薄型化に伴って、アンテナを離して配置するのがスペース的に困難になりつつある。
【0005】
端末が小型・薄型化すると、アンテナは低姿勢になるが、低姿勢化したアンテナでは、アンテナ自身の放射だけでなく、近接する導体を介してアンテナ間結合が発生し、上述した干渉が起こりやすくなる。この種のアンテナ間結合が発生すると、アンテナ自身の放射だけでなく、アンテナが接続される地板からの放射も大きくなる。特に、2つのアンテナが同じ地板上に配置される場合、2つのアンテナは、地板を介して接続されるのと同じ状態になり、干渉が大きくなる。この種の送信電波の干渉が起きると、通信品質が低下してしまう。
【0006】
本発明は、このような点に鑑みてなされたものであり、その目的は、送信電波の干渉を抑制可能なアンテナアレー及び無線装置を提供することにある。
【0007】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子とを有する第1アンテナと、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第3導体素子と、この第3導体素子の先端部から前記地板に略平行に延びる第4導体素子とを有する第2アンテナと、を備え、前記第1及び第2導体素子の長さの和は、前記第1アンテナの動作周波数の略1/4波長であり、前記第3導体素子及び前記第4導体素子の長さの和は、前記第2アンテナの動作周波数の略1/4波長であり、前記第2導体素子及び前記第4導体素子のうち一方の先端部は前記第1及び第2給電点の間に配置され、他方の先端部は、前記第1給電点を基準として前記第2給電点の反対側に配置されるか、または前記第2給電点を基準として前記第1給電点の反対側に配置される。
【0008】
本発明では、第1及び第2アンテナの向きを調整することにより、アンテナ間結合を減らす。
【0009】
また、本発明では、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延びる第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延びる第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長である。
【0010】
【発明の実施の形態】
以下、本発明に係るアンテナアレー及び無線装置について、図面を参照しながら具体的に説明する。
【0011】
(第1の実施形態)
図1は本発明に係るアンテナアレーの第1の実施形態の概略的な配置図である。図1のアンテナアレーは、同一の地板1上に配置される第1及び第2アンテナ2,3を備えている。図1では省略しているが、第1アンテナ2は給電点4を通して第1無線機に接続され、第2アンテナ3は給電点7を通して第2無線機に接続されている。
【0012】
第1アンテナ2は、地板1上の第1給電点4と、この第1給電点4から地板1に対して略垂直に延びる第1導体素子5と、この第1導体素子5の先端部から地板1に略平行に延びる第2導体素子6とを有する。第1導体素子5及び第2導体素子6の長さの和は、第1アンテナ2の動作周波数の略1/4波長に設定されている。
【0013】
第2アンテナ3は、地板1上の第2給電点7と、この第2給電点7から地板1に対して略垂直に延びる第3導体素子8と、この第3導体素子8の先端部から地板1に略平行に延びる第4導体素子9とを有する。第3導体素子8及び第4導体素子9の長さの和は、第2アンテナ3の動作周波数の略1/4波長に設定されている。
【0014】
第2導体素子6と第4導体素子9は同じ向きに配置されている。すなわち、第4導体素子9の先端部は第1及び第2給電点4,7の間に配置され、第2導体素子6の先端部は第1給電点4を基準として第2給電点7の反対側に配置されている。なお、図2(a)に示すように、第2アンテナ3を第1アンテナ2の延長線上から少しずらして配置してもよい。あるいは、図2(b)に示すように、第2導体素子6の先端部を第1及び第2給電点4,7の間に配置し、第4導体素子9の先端部を第2給電点7を基準として第1給電点4の反対側に配置してもよい。
【0015】
図1の第1及び第2アンテナ2,3において、インピーダンス整合が取れない場合には、第1及び第2給電点4,7の近傍に整合回路を設けるか、あるいは逆Fアンテナのように第1及び第3導体素子8を地板1に短絡させる配線を接続してもよい。これにより、インピーダンスが変化して整合を取ることができる。
【0016】
図3は第1及び第2アンテナ2,3の整合特性と結合特性を示す図である。図3では、第1及び第2アンテナ2,3の距離を一定にした状態で、これらアンテナの向きを変えたモデルA,B,Cの整合特性と結合特性のシミュレーションによる計算結果を示している。
【0017】
モデルAは図1のように配置した場合であり、モデルBは第1及び第2アンテナ2,3を逆向きに配置した場合、モデルCは第1及び第2アンテナ2,3を対向配置した場合である。
【0018】
図3からわかるように、第1及び第2アンテナ2,3の整合が取れている場所で、モデルAの結合量を他のモデルB,Cと比較すると、1〜2dB程度アンテナ間結合が減る。
【0019】
図4はモデルA,B,Cの第1及び第2アンテナ2,3上の電流分布を示す模式図である。第1及び第2アンテナ2,3は、1/4波長の長さを有するため、電流は給電点を最大とする正弦波状に分布する。
【0020】
一般に、アンテナ間結合は、アンテナ上の電流分布の大きい部分が近接することで強くなると考えられている。第1及び第2アンテナ2,3間の距離はモデルCが最も離れており、モデルBが最も近接しているため、直感的にはモデルCが最もアンテナ間結合が少ないように思える。ところが実際には、モデルCの結合量が一番大きくなり、モデルBはモデルCよりも結合量が小さくなる。このような現象が起きる理由は、地板1に流れる電流による結合が生じるためである。
【0021】
また、図5は地板1上の電流分布を示す模式図である。図5からわかるように、地板1上の電流には、地板1と平行に配置された第2及び第4導体素子6,9によって誘起される電流が加わる。このため、第2及び第4導体素子6,9と同じ向きに強い電流分布が生じ、その結果、アンテナ間結合が生じる。第2及び第4導体素子6,9上の電流分布は空間を介して結合するが、地板1上の電流は地板1を介して結合する。
【0022】
この種のアンテナ間結合は、アンテナが地板1と平行に配置された平板状の場合に顕著に発生する。また、地板1上の電流だけに着目すれば、モデルBのように第1及び第2アンテナ2,3を互いに逆方向に配置することでアンテナ間結合の削減が期待できる。ところが、この場合、第1及び第2アンテナ2,3上の電流が最大になる位置が近接するため、その影響を受けてアンテナ間結合が強くなってしまう。
【0023】
一方、本実施形態が推奨するモデルAでは、まずアンテナ上の電流の最大値がモデルBより離れている。また地板1上の電流に関しては、片側のみが他方のアンテナ素子の方向に向いており、モデルCのように両方が向き合うよりも良好な構成になる。以上のことから、本実施形態のアンテナアレーでは、他のアンテナアレーの構成よりもアンテナ間結合を小さくすることができる。
【0024】
このように、第1の実施形態では、第1アンテナ2の第2導体素子6と第2アンテナ3の第4導体素子9とを略同一方向に配置するため、アンテナ間結合を抑制できるとともに、地板1上の結合も抑制でき、電波の干渉が起きにくくなり、アンテナの結合特性がよくなる。
【0025】
(第2の実施形態)
第2の実施形態は、地板1の辺縁部に第1及び第2アンテナ2,3を配置するものである。
【0026】
図6は本発明に係るアンテナアレーの第2の実施形態の概略的な配置図である。図示のように、同一の有限地板1の辺縁部に第1アンテナ2の第1給電点4と第2アンテナ3の第2給電点7とが配置され、第1アンテナ2の第2導体素子6と第2アンテナ3の第4導体素子9は辺縁部に略平行に同じ向きに配置されている。
【0027】
一般に、導体板では、辺縁部の電流分布が大きいため、アンテナを辺縁部に配置すると、より大きな電流が辺縁部に分布することになる。したがって、図6のように配置した場合、アンテナ間結合がより大きくなる。その理由は、第1及び第2アンテナ2,3が辺縁部に配置されると、辺縁部への電流の漏洩が多くなるためである。したがって、図6に示すように、有限地板1の辺縁部に第1及び第2アンテナ2,3を略平行かつ同じ向きに配置すると、アンテナ間結合をよりいっそう抑制することができる。
【0028】
図7は図6の変形例であり、有限地板1の隣接する2辺の一方に第1アンテナ2を配置し、他方に第2アンテナ3を配置する例を示している。この場合は、各アンテナが地板1の辺縁部に平行になるように配置し、かつ第2導体素子6及び第4導体素子9のいずれか一方の先端部を第1及び第2給電点4,7の間に配置し、他方の先端部を、第1給電点4を基準として第2給電点7の反対側に配置するか、または第2給電点7を基準として第1給電点4の反対側に配置すればよい。
【0029】
このように、第2の実施形態では、地板1の辺縁部に第1及び第2アンテナ2,3を配置するため、アンテナ間結合の抑制効果を高めることができる。
【0030】
(第3の実施形態)
第3の実施形態は、地板1の辺縁部に補助地板を配置し、この補助地板上に第1及び第2アンテナ2,3を配置するものである。
【0031】
図8は本発明に係るアンテナアレーの第3の実施形態の概略的な配置図である。図示のように、地板1の辺縁部に配置された補助地板10と、この補助地板10上の辺縁部に配置された第1及び第2アンテナ2,3とを備えている。
【0032】
地板1と補助地板10は、容量性結合で結ばれるため、高周波的には図7に示した第2の実施形態と同様の構成になる。したがって、第1アンテナ2の第1導体素子5と第2アンテナ3の第2導体素子6を辺縁部に略平行かつ同じ方向に配置することで、第2の実施形態と同様に、アンテナ間結合をより効率的に抑制できる。図8の場合の容量結合は、第1及び第2アンテナ2,3を直接地板1に接続した場合よりも弱いため、アンテナ間結合が第2の実施形態よりも小さくなる。
【0033】
(第4の実施形態)
上述した第1〜第3の実施形態ではL字型のアンテナを用いる例を説明したが、以下に説明する第4〜第10の実施形態ではT字型のアンテナを用いる。
【0034】
図9は本発明に係るアンテナアレイの第4の実施形態の概略的な配置図である。図9のアンテナアレイは、地板1上に配置されたT字型の第1及び第2アンテナ21,22を備えている。第1及び第2アンテナ21,22は、略同一線上に配置されている。なお、図10に示すように、第1及び第2アンテナ21,22を少しずらして配置してもよい。この場合、第1及び第2アンテナ21,22が互いに重なり合わないように平行に配置するのが望ましい。
【0035】
第1アンテナ21は、地板1上の第1給電点23と、この第1給電点23から地板1に対して略垂直に延びる第1導体素子24と、この第1導体素子24の先端部から地板1に略平行に延びる第2導体素子25と、第1導体素子24の先端部から第2導体素子25の反対側に延びる第3導体素子26と、を有し、第1動作周波数で共振する。
【0036】
第2アンテナ22は、地板1上の第2給電点27と、この第2給電点27から地板1に対して略垂直に延びる第4導体素子28と、この第4導体素子28の先端部から地板1に略平行に延びる第5導体素子29と、第4導体素子28の先端部から第5導体素子29の反対側に延びる第6導体素子30と、を有し、第2動作周波数で共振する。
【0037】
第2及び第3導体素子25,26の長さの和は、第1動作周波数の略半波長であり、第5及び第6導体素子29,30の長さの和は、第2動作周波数の略半波長である。
【0038】
第1アンテナ21の第1及び第2導体素子25,26の長さの比を調整することで、第1アンテナ21を第1動作周波数で給電線のインピーダンスである50Ωに整合させることができる。同様に、第2アンテナ22の第5及び第6導体素子29,30の長さの比を調整することで、第2アンテナ22を第2動作周波数で給電線のインピーダンスである50Ωに整合させることができる。
【0039】
図11及び図12は第1及び第2アンテナ21,22の構成例を示す図であり、図11は1.9GHzで50Ωになるように構成した例、図12は2.1GHzで50Ωになるように構成した例を示している。
【0040】
図11の場合、第1導体素子24の長さは6.5mm、第2導体素子25の長さは31.5mm、第3導体素子26の長さは35.6mmで、これら導体素子の径φは0.8mmである。また、図12の場合、第1導体素子24の長さは7mm、第2導体素子25の長さは34mm、第3導体素子26の長さは38.5mmで、これら導体素子の径φは0.8mmである。
【0041】
図10のようなT字型アンテナは、図1のようなL字型アンテナと比べて、地板1に多くの電流が流れないという特徴を有する。
【0042】
図13はT字型アンテナの放射パターンを示す図である。この図からわかるように、T字型アンテナの長手方向には、放射パターンのヌルが向けられることになる。したがって、図10のように略同一線上に第1及び第2アンテナ21,22を配置すると、一方のアンテナには他方のアンテナのヌルが向けられるので、アンテナ間結合を十分に抑制できる。
【0043】
このように、第4の実施形態では、T字型アンテナを略同一線上に配置するため、アンテナ間結合が起きにくくなり、電波の干渉が起きにくくなる。
【0044】
(第5の実施形態)
第5の実施形態は、地板1の辺縁部に2つのT字型アンテナを配置するものである。
【0045】
図14は本発明に係るアンテナアレーの第5の実施形態の概略的な配置図である。図10と同じ形状の第1及び第2アンテナ21,22が有限地板1の辺縁部に配置されている。より具体的には、第1及び第2アンテナ21,22の第2、第3、第5及び第6導体素子25,26,29,30は辺縁部に略平行に配置されている。
【0046】
第1及び第2アンテナ21,22を有限地板1の辺縁部に配置すると、有限地板1上に流れるイメージ電流が不完全になり、有限地板1からの放射が減少する。このイメージ電流は、アンテナ上の電流と逆相になるため、アンテナからの放射電波を打ち消しているが、上記のように不完全となることで、アンテナからの放射の打ち消しが抑圧され、よりアンテナからの放射が大きくなる。
【0047】
また、図14の第1及び第2アンテナ21,22の各導体素子方向には、図13と同様にヌルが向けられるので、第1及び第2アンテナ21,22を有限地板1の辺縁部に配置しても、アンテナ間結合の劣化はあまり大きくならない。
【0048】
このように、第5の実施形態では、第1及び第2アンテナ21,22を有限地板1の辺縁部に配置するため、有限地板1からの放射を減少でき、アンテナの放射特性を向上できる。
【0049】
(第6の実施形態)
第6の実施形態は、有限地板1の辺縁部に補助地板10を配置し、この補助地板10の辺縁部に2つのT字型アンテナを配置するものである。
【0050】
図15は本発明に係るアンテナアレーの第6の実施形態の概略的な配置図である。図15のアンテナアレーは、有限地板1の辺縁部に配置された補助地板10と、これら補助地板10の辺縁部に配置された図10と同じ形状の第1及び第2アンテナ21,22とを備えている。第1及び第2アンテナ21,22の第2、第3、第5及び第6導体素子25,26,29,30は補助地板10の辺縁部に略平行に配置されている。
【0051】
有限地板1と補助地板10は容量性結合で結びつくため、高周波的には図14と同じ構成になる。また、補助地板10を設けたことにより、有限地板1を介した結合が図14よりも弱まるため、図14よりもアンテナ間結合を弱めることができる。
【0052】
このように、第6の実施形態では、有限地板1の周縁部に補助地板10を設け、この補助地板10の周縁部に第1及び第2アンテナ21,22を配置するため、アンテナ間結合を弱めることができ、電波の干渉が起きにくくなる。
【0053】
(第7の実施形態)
第5、6の実施形態では省略したが、本アンテナにおいても、導体素子に生じた電流によって結合が生じる。図16は図10に示したT字型アンテナの電流分布を周波数ごとに模式的に示した図である。第1アンテナ21は、第2導体素子25を第3導体素子26よりも長くしており、共振周波数はf1である。この場合、第1アンテナ21の電流分布は、共振周波数f1より低い周波数と高い周波数で大きく変化する。
【0054】
図16に示すように、共振周波数f1より低い周波数では、第2導体素子25に大きな電流分布が発生し、共振周波数f1より高い周波数では、第3導体素子26に大きな電流分布が発生する。共振周波数f1より低い周波数でも、高い周波数でも、第1の実施形態で説明したL字型アンテナと同様に動作する。すなわち、T字型アンテナは、等価的に、周波数が変化するに従って向きが異なるL字型アンテナとして機能する。このため、L字の向きが固定の第1の実施形態とは別個の対策が必要になる。
【0055】
また、T字型アンテナは、給電点が第2及び第3導体素子25,26の略中央に位置しているため、第2及び第3導体素子25,26の向きを変えても、給電点の位置は変化しない。したがって、L字型アンテナでは、L字の向きを変えることで給電点が移動するため電流の最大位置が大きく変化し、それに応じてアンテナ間結合の強さも変化するが、T字型ではほとんど変化しない。このため、T字型アンテナでは、第2及び第3導体素子25,26のうち電流分布の大きい導体素子が他方のアンテナの方向を向かないように配置するだけでよい。
【0056】
図17は本発明に係るアンテナアレーの第7の実施形態の概略的な配置図である。図17では、第1アンテナ21の動作周波数(第1動作周波数)を第2アンテナ22の動作周波数(第2動作周波数)よりも低くしている。したがって、第1アンテナ21の第2及び第3導体素子25,26の長さの和よりも、第2アンテナ22の第5及び第6導体素子29,30の長さの和を短くしている。また、第5導体素子29を第4導体素子28よりも長くし、第3導体素子26を第2導体素子25よりも長くしている。このように構成することで、上記の周波数条件において、他のアンテナ構成よりもアンテナ間結合を小さくできる。
【0057】
図18は、第1動作周波数f#1が第2動作周波数f#2よりも低い場合に、第1及び第2アンテナ21,22(図は、地板1の法線方向からアンテナを眺めている。またアンテナ21,22は図中#1、#2で表示)が取り得る地板1への実装方法のすべてを示したものである。第1動作周波数と第2動作周波数は周波数が異なるため、第1及び第2アンテナ21,22の大きさは異なったものになる。すなわち、第2導体素子25は第3導体素子26と異なった長さになり、第4導体素子28は第5導体素子29と異なった長さになる。
【0058】
第1及び第2アンテナ21,22の配置法の組み合わせとして、図18のモデルA〜Dの4種類がある。モデルAは、図17と同様に、第2導体素子25の長さ<第3導体素子26の長さで、かつ第5導体素子29の長さ<第6導体素子30の長さである。モデルBは、第2導体素子25の長さ<第3導体素子26の長さで、かつ第5導体素子29の長さ>第6導体素子30の長さである。モデルCは、第2導体素子25の長さ>第3導体素子26の長さで、かつ第5導体素子29の長さ<第6導体素子30の長さである。モデルDは、第2導体素子25の長さ>第3導体素子26の長さで、かつ第5導体素子29の長さ>第6導体素子30の長さである。
【0059】
図18において、「大」と記載された導体素子は、その周波数帯での電流分布が大きいことを示している。図18では、モデルA〜Dのそれぞれについて、第1動作周波数(共振周波数)f#1と第2動作周波数(共振周波数)f#2の前後における電流分布を把握できる。
【0060】
図18からわかるように、第1アンテナ21の電流分布の大きい場所と第2アンテナ22の電流分布の大きい場所とが最も離れているのは、モデルAである。したがって、モデルAのように第1及び第2アンテナ21,22を配置すれば、電流分布が大きな部分が向き合い最近接状態となるおそれがなくなる。
【0061】
図19は、モデルA〜Dのアンテナアレーを用いて、給電点間の距離を100mmとしたときのアンテナ間の最大結合量を示している。この図からわかるように、周波数f#1〜f#2の帯域で、モデルAが他のモデルに比べてアンテナ間結合が弱くなる。
【0062】
このように、第7の実施形態では、電流分布の大きな部分が向き合い近接しないように第1及び第2アンテナ21,22を配置するため、電波の干渉が起きにくくなる。
【0063】
(第8の実施形態)
第8の実施形態は、第1アンテナ21が送信アンテナで、第2アンテナ22が受信アンテナであり、第1アンテナ21の動作周波数(第1動作周波数)f#1が第2アンテナ22の動作周波数(第2動作周波数)f#2より低い場合のアンテナ構成である。
【0064】
このような場合、送信アンテナから受信アンテナへの回り込みが最大の問題になる。したがって、送信周波数でのアンテナ間結合が小さくなるようにアンテナアレーを構成する必要がある。
【0065】
そこで、第8の実施形態では、第2アンテナ22の第5導体素子29を第6導体素子30よりも短くする。
【0066】
図18において、モデルAまたはCを選択することで、第1動作周波数f#1近傍でのアンテナ間結合を小さくできることがわかる。モデルAまたはCでは、第5導体素子29が第6導体素子30より短いため、第1アンテナ21の動作周波数f#1にてアンテナ間結合を抑制することができる。
【0067】
このように、第8の実施形態では、送信周波数が受信周波数よりも低い場合に、第2アンテナ22の第5導体素子29を第6導体素子30より短くするため、送信周波数f#1でのアンテナ間結合を抑制でき、送信アンテナから受信アンテナへの回り込みを回避できる。
【0068】
(第9の実施形態)
第9の実施形態では、送信周波数が受信周波数よりも高い場合に、送信アンテナから受信アンテナへの回り込みを回避するものである。
【0069】
図18において、周波数fが、f#2<f<f#1か、f#2<fの場合、モデルA,Bのいずれでも、第1アンテナ21の第2導体素子25を第3導体素子26よりも短くしている。このような構成にすることで、送信周波数であるf#2近傍にて、アンテナ間結合を抑制できる。
【0070】
このように、送信周波数が受信周波数よりも高い場合に、第1アンテナ21の第2導体素子25を第3導体素子26よりも短くすることで、送信周波数f#2でのアンテナ間結合を抑制でき、送信アンテナから受信アンテナへの回り込みを回避できる。
【0071】
(第10の実施形態)
第10の実施形態では、第1アンテナ21の動作周波数(第1動作周波数)f#1と第2アンテナ22の動作周波数(第2動作周波数)f#2を略同一の場合、図18のモデルAまたはモデルDではいずれも、第1及び第2アンテナ21,22の導体素子の向きが同じである。より具体的には、第2導体素子25と第5導体素子29が同じ長さで、かつ第3導体素子26と第6導体素子30が同じ長さにする。
【0072】
このように、送信周波数と受信周波数がほぼ同一の場合には、第1及び第2アンテナ21,22をほぼ同じ向きにし、第2導体素子25と第5導体素子29を同じ長さにし、かつ第3導体素子26と第6導体素子30を同じ長さにすることで、アンテナ間結合を低減できる。
【0073】
なお、本特許の説明において、導体素子はすべて直線状の素子として説明したが、図20に示すように素子が変形していても効果は同じである。図20に示すアンテナでは、地板に略平行な導体素子がヘリカル型とメアンダ型に変形されている。ヘリカル型では、ヘリカル31の中心軸が地板に略平行となっておりこの方向が直線状素子の向きと等価である。またメアンダ型では、メアンダ素子32が、地板に垂直な素子と接続されているあたりの部分の向きが直線状素子の向きと等価となる。
【0074】
【発明の効果】
以上詳細に説明したように、本発明によれば、第1及び第2アンテナ21,22の向きを調整することにより、アンテナ間結合を減らして電波の干渉を防止できる。したがって、同一の無線装置内に複数の無線機用のアンテナを配置しても、互いに干渉し合うことなく、無線通信を行うことができる。
【図面の簡単な説明】
【図1】本発明に係るアンテナアレーの第1の実施形態の概略的な配置図。
【図2】図1の変形例を示す配置図。
【図3】第1及び第2アンテナ2,3の整合特性と結合特性を示す図。
【図4】モデルA,B,Cの第1及び第2アンテナ2,3上の電流分布を示す模式図。
【図5】地板1上の電流分布を示す模式図。
【図6】本発明に係るアンテナアレーの第2の実施形態の概略的な配置図。
【図7】図6の変形例であり、有限地板1の隣接する2辺の一方に第1アンテナ2を配置し、他方に第2アンテナ3を配置する例を示す図。
【図8】本発明に係るアンテナアレーの第3の実施形態の概略的な配置図。
【図9】本発明に係るアンテナアレイの第4の実施形態の概略的な配置図。
【図10】図9の変形例を示す配置図。
【図11】第1及び第2アンテナ21,22の構成例を示す図。
【図12】第1及び第2アンテナ21,22の構成例を示す図。
【図13】T字型アンテナの放射パターンを示す図。
【図14】本発明に係るアンテナアレーの第5の実施形態の概略的な配置図。
【図15】本発明に係るアンテナアレーの第6の実施形態の概略的な配置図。
【図16】図10に示したT字型アンテナの電流分布を周波数ごとに模式的に示した図。
【図17】本発明に係るアンテナアレーの第7の実施形態の概略的な配置図。
【図18】第1動作周波数f#1が第2動作周波数f#2よりも低い場合に、第1及び第2アンテナ21,22が取り得る地板1への実装方法のすべてを示した図。
【図19】モデルA〜Dのアンテナアレーを用いて、給電点間の距離を100mmとしたときのアンテナ間の最大結合量を示す図。
【図20】導体素子がヘリカル型とメアンダ型に変形されている場合のアンテナアレーの形状を示す図。
【符号の説明】
1 地板
2 第1アンテナ
3 第2アンテナ
4 第1給電点
5 第1導体素子
6 第2導体素子
7 第2給電点
8 第3導体素子
9 第4導体素子
10 補助地板
21 第1アンテナ
22 第2アンテナ
23 第1給電点
24 第1導体素子
25 第2導体素子
26 第3導体素子
27 第2給電点
28 第4導体素子
29 第5導体素子
30 第6導体素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antenna array having a plurality of antennas and a wireless device having a plurality of wireless devices corresponding to each of the plurality of antennas.
[0002]
[Prior art]
In recent years, many wireless systems operating in a frequency band near 2 GHz have been developed. For example, wireless systems operating in the 2.4 GHz band include a wireless LAN and Bluetooth (registered trademark), but wireless devices corresponding to these systems may be mounted in the same terminal.
[0003]
[Problems to be solved by the invention]
When the two radios operate in the same frequency band, interference occurs between the radio waves transmitted from each other via the antenna.
[0004]
In order to suppress the above-described interference, it is necessary to dispose the antennas apart from each other. However, with the miniaturization and thinning of the terminal, it is becoming difficult to arrange the antennas apart from the viewpoint of space.
[0005]
When the terminal becomes smaller and thinner, the antenna becomes low-profile.However, in the low-profile antenna, not only the radiation of the antenna itself, but also coupling between antennas occurs through a nearby conductor, and the above-described interference is likely to occur. Become. When this kind of coupling between antennas occurs, not only the radiation of the antenna itself, but also the radiation from the ground plane to which the antenna is connected increases. In particular, when two antennas are arranged on the same ground plane, the two antennas are in the same state as connected via the ground plane, and interference increases. If this type of transmission radio wave interference occurs, the communication quality deteriorates.
[0006]
The present invention has been made in view of such a point, and an object of the present invention is to provide an antenna array and a radio device capable of suppressing interference of a transmission radio wave.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a first power supply point on a ground plane, a first conductor element extending substantially perpendicular to the ground plane from the first power supply point, and a tip of the first conductor element. A first antenna having a second conductive element extending substantially parallel to the ground plane from a portion, a second feed point on the ground plane, and a third conductive element extending substantially perpendicularly to the ground plane from the second feed point And a second antenna having a fourth conductor element extending substantially in parallel with the ground plane from the tip of the third conductor element. The sum of the lengths of the first and second conductor elements is The operating frequency of one antenna is approximately 4 wavelength, and the sum of the lengths of the third conductor element and the fourth conductor element is approximately 波長 wavelength of the operating frequency of the second antenna. One end of the two-conductor element and the fourth conductor element is connected to the first and second supply elements. And the other tip is disposed on the opposite side of the second feeding point with respect to the first feeding point, or the other end of the first feeding point with reference to the second feeding point. Located on the opposite side.
[0008]
In the present invention, the coupling between antennas is reduced by adjusting the directions of the first and second antennas.
[0009]
Further, in the present invention, a first feeding point on the ground plane, a first conductor element extending substantially perpendicular to the ground plane from the first feeding point, and substantially parallel to the ground plane from a tip end of the first conductor element. A first antenna resonating at a first operating frequency, the second antenna having a second conductor element extending from the tip end of the first conductor element, and a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element. An upper second power supply point, a fourth conductor element extending substantially perpendicularly to the ground plane from the second power supply point, and a fifth conductor element extending substantially parallel to the ground plane from a tip end of the fourth conductor element. A second antenna resonating at a second operating frequency, the second antenna having a sixth antenna extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element. The sum of the lengths of the conductor elements is substantially a half wavelength of the first operating frequency, The sum of the lengths of the sixth conductive element is substantially half the wavelength of the second operating frequency.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an antenna array and a wireless device according to the present invention will be specifically described with reference to the drawings.
[0011]
(1st Embodiment)
FIG. 1 is a schematic layout diagram of a first embodiment of an antenna array according to the present invention. The antenna array of FIG. 1 includes first and second antennas 2 and 3 arranged on the same ground plane 1. Although not shown in FIG. 1, the first antenna 2 is connected to a first wireless device through a feeding point 4, and the second antenna 3 is connected to a second wireless device through a feeding point 7.
[0012]
The first antenna 2 includes a first feed point 4 on the ground plane 1, a first conductor element 5 extending substantially perpendicularly to the ground plane 1 from the first feed point 4, and a tip end of the first conductor element 5. A second conductive element extending substantially parallel to the base plate. The sum of the lengths of the first conductor element 5 and the second conductor element 6 is set to approximately 波長 wavelength of the operating frequency of the first antenna 2.
[0013]
The second antenna 3 includes a second feed point 7 on the ground plane 1, a third conductor element 8 extending substantially perpendicularly to the ground plane 1 from the second feed point 7, and a tip end of the third conductor element 8. A fourth conductive element extending substantially parallel to the base plate; The sum of the lengths of the third conductor element 8 and the fourth conductor element 9 is set to approximately 4 wavelength of the operating frequency of the second antenna 3.
[0014]
The second conductor element 6 and the fourth conductor element 9 are arranged in the same direction. That is, the tip of the fourth conductor element 9 is disposed between the first and second feeding points 4 and 7, and the tip of the second conductor element 6 is located between the first feeding point 4 and the second feeding point 7. It is located on the opposite side. In addition, as shown in FIG. 2A, the second antenna 3 may be arranged slightly shifted from an extension of the first antenna 2. Alternatively, as shown in FIG. 2B, the tip of the second conductor element 6 is disposed between the first and second feeding points 4 and 7, and the tip of the fourth conductor element 9 is located at the second feeding point. 7 may be arranged on the opposite side of the first feeding point 4.
[0015]
When impedance matching cannot be achieved in the first and second antennas 2 and 3 of FIG. 1, a matching circuit is provided near the first and second feeding points 4 and 7, or a matching circuit such as an inverted F antenna is provided. Wiring for short-circuiting the first and third conductor elements 8 to the ground plane 1 may be connected. Thereby, the impedance can be changed to achieve matching.
[0016]
FIG. 3 is a diagram illustrating matching characteristics and coupling characteristics of the first and second antennas 2 and 3. FIG. 3 shows a calculation result by simulation of the matching characteristics and the coupling characteristics of the models A, B, and C in which the directions of the first and second antennas 2 and 3 are kept constant and the antennas are changed. .
[0017]
The model A is a case where the antennas are arranged as shown in FIG. 1, the model B is a case where the first and second antennas 2 and 3 are arranged in opposite directions, and the model C is a case where the first and second antennas 2 and 3 are arranged to face each other. Is the case.
[0018]
As can be seen from FIG. 3, when the coupling amount of the model A is compared with that of the other models B and C in a place where the first and second antennas 2 and 3 are matched, the coupling between the antennas is reduced by about 1 to 2 dB. .
[0019]
FIG. 4 is a schematic diagram showing the current distribution on the first and second antennas 2 and 3 of the models A, B and C. Since the first and second antennas 2 and 3 have a length of 1/4 wavelength, the current is distributed in a sine wave shape having the maximum feeding point.
[0020]
Generally, it is considered that the coupling between antennas is strengthened when a portion having a large current distribution on the antenna approaches. Since the distance between the first and second antennas 2 and 3 is the largest in the model C and the closest in the model B, it seems intuitively that the coupling between the antennas in the model C is the least. However, actually, the coupling amount of the model C is the largest, and the coupling amount of the model B is smaller than that of the model C. The reason why such a phenomenon occurs is that coupling occurs due to the current flowing through the ground plane 1.
[0021]
FIG. 5 is a schematic diagram showing a current distribution on the main plate 1. As can be seen from FIG. 5, the current on the ground plane 1 is accompanied by the current induced by the second and fourth conductor elements 6, 9 arranged in parallel with the ground plane 1. For this reason, a strong current distribution occurs in the same direction as the second and fourth conductor elements 6 and 9, and as a result, coupling between antennas occurs. The current distributions on the second and fourth conductor elements 6 and 9 are coupled via a space, but the current on the ground plane 1 is coupled through the ground plane 1.
[0022]
This kind of coupling between antennas occurs remarkably when the antenna is a flat plate arranged in parallel with the ground plane 1. If attention is paid only to the current on the ground plane 1, by arranging the first and second antennas 2 and 3 in directions opposite to each other as in the model B, reduction in coupling between antennas can be expected. However, in this case, since the positions where the currents on the first and second antennas 2 and 3 are maximized are close to each other, the coupling between the antennas is increased due to the influence.
[0023]
On the other hand, in the model A recommended by the present embodiment, first, the maximum value of the current on the antenna is farther from the model B. Further, with respect to the current on the ground plane 1, only one side faces the direction of the other antenna element, which is a better configuration than that in which both face each other as in the model C. From the above, in the antenna array of the present embodiment, the coupling between antennas can be made smaller than in the configuration of other antenna arrays.
[0024]
As described above, in the first embodiment, since the second conductor element 6 of the first antenna 2 and the fourth conductor element 9 of the second antenna 3 are arranged in substantially the same direction, coupling between antennas can be suppressed, and Coupling on the ground plane 1 can also be suppressed, radio wave interference is less likely to occur, and the coupling characteristics of the antenna are improved.
[0025]
(Second embodiment)
In the second embodiment, the first and second antennas 2 and 3 are arranged on the edge of the main plate 1.
[0026]
FIG. 6 is a schematic layout diagram of a second embodiment of the antenna array according to the present invention. As shown in the figure, the first feed point 4 of the first antenna 2 and the second feed point 7 of the second antenna 3 are arranged on the edge of the same finite ground plane 1, and the second conductor element of the first antenna 2 6 and the fourth conductor element 9 of the second antenna 3 are arranged in the same direction substantially parallel to the peripheral portion.
[0027]
In general, in a conductive plate, the current distribution at the edge is large. Therefore, when the antenna is arranged at the edge, a larger current is distributed at the edge. Therefore, when the antennas are arranged as shown in FIG. 6, the coupling between the antennas becomes larger. The reason is that when the first and second antennas 2 and 3 are arranged at the peripheral portion, the leakage of current to the peripheral portion increases. Therefore, as shown in FIG. 6, when the first and second antennas 2 and 3 are arranged substantially parallel and in the same direction on the edge of the finite ground plane 1, the coupling between the antennas can be further suppressed.
[0028]
FIG. 7 is a modified example of FIG. 6 and shows an example in which the first antenna 2 is arranged on one of two adjacent sides of the finite ground plane 1 and the second antenna 3 is arranged on the other. In this case, the antennas are arranged so as to be parallel to the edge of the ground plane 1 and one of the end portions of the second conductor element 6 and the fourth conductor element 9 is connected to the first and second feed points 4. , 7 and the other end is disposed on the opposite side of the second power supply point 7 with respect to the first power supply point 4 or the first power supply point 4 is positioned with respect to the second power supply point 7. What is necessary is just to arrange on the other side.
[0029]
As described above, in the second embodiment, since the first and second antennas 2 and 3 are arranged on the peripheral portion of the base plate 1, the effect of suppressing the coupling between antennas can be enhanced.
[0030]
(Third embodiment)
In the third embodiment, an auxiliary base plate is arranged at the edge of the base plate 1, and the first and second antennas 2 and 3 are arranged on the auxiliary base plate.
[0031]
FIG. 8 is a schematic layout diagram of a third embodiment of the antenna array according to the present invention. As shown in the figure, an auxiliary base plate 10 is provided at an edge of the base plate 1, and first and second antennas 2 and 3 are provided at the periphery of the auxiliary base plate 10.
[0032]
Since the ground plane 1 and the auxiliary ground plane 10 are connected by capacitive coupling, the high frequency has the same configuration as that of the second embodiment shown in FIG. Therefore, by arranging the first conductor element 5 of the first antenna 2 and the second conductor element 6 of the second antenna 3 in substantially the same direction and in the same direction as the peripheral portion, the distance between the antennas can be reduced as in the second embodiment. Bonding can be suppressed more efficiently. Since the capacitive coupling in the case of FIG. 8 is weaker than the case where the first and second antennas 2 and 3 are directly connected to the ground plane 1, the coupling between the antennas is smaller than in the second embodiment.
[0033]
(Fourth embodiment)
In the above-described first to third embodiments, an example in which an L-shaped antenna is used has been described. However, in the fourth to tenth embodiments described below, a T-shaped antenna is used.
[0034]
FIG. 9 is a schematic layout diagram of a fourth embodiment of the antenna array according to the present invention. The antenna array of FIG. 9 includes T-shaped first and second antennas 21 and 22 arranged on the ground plane 1. The first and second antennas 21 and 22 are arranged substantially on the same line. In addition, as shown in FIG. 10, the first and second antennas 21 and 22 may be arranged slightly shifted. In this case, it is desirable to arrange the first and second antennas 21 and 22 in parallel so as not to overlap each other.
[0035]
The first antenna 21 includes a first feeding point 23 on the ground plane 1, a first conductor element 24 extending substantially perpendicular to the ground plane 1 from the first feeding point 23, and a tip end of the first conductor element 24. It has a second conductor element 25 extending substantially parallel to the ground plane 1 and a third conductor element 26 extending from the tip of the first conductor element 24 to the opposite side of the second conductor element 25, and resonates at a first operating frequency. I do.
[0036]
The second antenna 22 includes a second feed point 27 on the ground plane 1, a fourth conductor element 28 extending substantially perpendicular to the ground plane 1 from the second feed point 27, and a tip end of the fourth conductor element 28. It has a fifth conductor element 29 extending substantially parallel to the base plate 1 and a sixth conductor element 30 extending from the tip end of the fourth conductor element 28 to the opposite side of the fifth conductor element 29, and resonates at the second operating frequency. I do.
[0037]
The sum of the lengths of the second and third conductor elements 25 and 26 is substantially a half wavelength of the first operating frequency, and the sum of the lengths of the fifth and sixth conductor elements 29 and 30 is the second operating frequency. It is about a half wavelength.
[0038]
By adjusting the ratio of the lengths of the first and second conductor elements 25 and 26 of the first antenna 21, the first antenna 21 can be matched to 50Ω which is the impedance of the feeder line at the first operating frequency. Similarly, by adjusting the ratio of the lengths of the fifth and sixth conductor elements 29 and 30 of the second antenna 22, the second antenna 22 is matched to 50Ω which is the impedance of the feed line at the second operating frequency. Can be.
[0039]
FIGS. 11 and 12 are diagrams showing a configuration example of the first and second antennas 21 and 22. FIG. 11 shows an example in which the first and second antennas 21 and 22 have a configuration of 50Ω at 1.9 GHz. FIG. 12 shows a configuration of 50Ω at 2.1 GHz. An example configured as such is shown.
[0040]
In the case of FIG. 11, the length of the first conductor element 24 is 6.5 mm, the length of the second conductor element 25 is 31.5 mm, and the length of the third conductor element 26 is 35.6 mm. φ is 0.8 mm. In the case of FIG. 12, the length of the first conductive element 24 is 7 mm, the length of the second conductive element 25 is 34 mm, and the length of the third conductive element 26 is 38.5 mm. 0.8 mm.
[0041]
The T-shaped antenna as shown in FIG. 10 has a feature that a large amount of current does not flow through the ground plane 1 as compared with the L-shaped antenna as shown in FIG.
[0042]
FIG. 13 is a diagram showing a radiation pattern of the T-shaped antenna. As can be seen from the figure, nulls of the radiation pattern are directed in the longitudinal direction of the T-shaped antenna. Therefore, when the first and second antennas 21 and 22 are arranged substantially on the same line as in FIG. 10, the null of the other antenna is directed to one antenna, so that the coupling between the antennas can be sufficiently suppressed.
[0043]
As described above, in the fourth embodiment, since the T-shaped antennas are arranged substantially on the same line, coupling between antennas is less likely to occur, and interference of radio waves is less likely to occur.
[0044]
(Fifth embodiment)
In the fifth embodiment, two T-shaped antennas are arranged on the edge of the main plate 1.
[0045]
FIG. 14 is a schematic layout diagram of a fifth embodiment of the antenna array according to the present invention. First and second antennas 21 and 22 having the same shape as in FIG. 10 are arranged on the edge of the finite ground plane 1. More specifically, the second, third, fifth, and sixth conductor elements 25, 26, 29, 30 of the first and second antennas 21, 22 are arranged substantially parallel to the periphery.
[0046]
When the first and second antennas 21 and 22 are arranged at the periphery of the finite ground plane 1, the image current flowing on the finite ground plane 1 becomes incomplete, and radiation from the finite ground plane 1 is reduced. Since this image current has a phase opposite to that of the current on the antenna, it cancels out the radio wave radiated from the antenna.However, the imperfectness as described above suppresses the cancellation of the radiation from the antenna. The radiation from
[0047]
In addition, since nulls are directed to the conductor elements of the first and second antennas 21 and 22 in FIG. 14 in the same manner as in FIG. 13, the first and second antennas 21 and 22 are connected to the edge of the finite ground plane 1. , The deterioration of the coupling between the antennas does not become so large.
[0048]
As described above, in the fifth embodiment, since the first and second antennas 21 and 22 are arranged on the peripheral portion of the finite ground plane 1, radiation from the finite ground plane 1 can be reduced, and the radiation characteristics of the antenna can be improved. .
[0049]
(Sixth embodiment)
In the sixth embodiment, an auxiliary ground plane 10 is arranged at the edge of the finite ground plane 1, and two T-shaped antennas are arranged at the edge of the auxiliary ground plane 10.
[0050]
FIG. 15 is a schematic layout diagram of a sixth embodiment of the antenna array according to the present invention. The antenna array shown in FIG. 15 includes auxiliary base plates 10 arranged on the edges of the finite ground plane 1 and first and second antennas 21 and 22 of the same shape as those shown in FIG. And The second, third, fifth and sixth conductor elements 25, 26, 29, 30 of the first and second antennas 21, 22 are arranged substantially parallel to the edge of the auxiliary base plate 10.
[0051]
Since the finite ground plane 1 and the auxiliary ground plane 10 are connected by capacitive coupling, they have the same configuration as that of FIG. 14 in terms of high frequency. Further, since the auxiliary ground plane 10 is provided, the coupling via the finite ground plane 1 is weaker than in FIG. 14, so that the coupling between antennas can be weaker than in FIG.
[0052]
As described above, in the sixth embodiment, the auxiliary ground plane 10 is provided on the peripheral edge of the finite ground plane 1, and the first and second antennas 21 and 22 are arranged on the peripheral edge of the auxiliary ground plane 10. It can be weakened and radio wave interference is less likely to occur.
[0053]
(Seventh embodiment)
Although omitted in the fifth and sixth embodiments, also in the present antenna, coupling occurs due to current generated in the conductor element. FIG. 16 is a diagram schematically showing the current distribution of the T-shaped antenna shown in FIG. 10 for each frequency. In the first antenna 21, the second conductor element 25 is longer than the third conductor element 26, and the resonance frequency is f1. In this case, the current distribution of the first antenna 21 greatly changes between a frequency lower than the resonance frequency f1 and a frequency higher than the resonance frequency f1.
[0054]
As shown in FIG. 16, at a frequency lower than the resonance frequency f1, a large current distribution occurs in the second conductor element 25, and at a frequency higher than the resonance frequency f1, a large current distribution occurs in the third conductor element. The antenna operates similarly to the L-shaped antenna described in the first embodiment at a frequency lower than or higher than the resonance frequency f1. That is, the T-shaped antenna functions equivalently as an L-shaped antenna having a different direction as the frequency changes. For this reason, a countermeasure different from the first embodiment in which the direction of the L-shape is fixed is required.
[0055]
Further, in the T-shaped antenna, the feeding point is located substantially at the center of the second and third conductor elements 25 and 26, so that even if the directions of the second and third conductor elements 25 and 26 are changed, the feeding point is changed. Does not change. Therefore, in the L-shaped antenna, the feeding point moves by changing the direction of the L-shape, so that the maximum position of the current greatly changes, and the strength of the coupling between the antennas changes accordingly. do not do. Therefore, in the T-shaped antenna, it is only necessary to arrange the conductor element having the large current distribution out of the second and third conductor elements 25 and 26 so as not to face the direction of the other antenna.
[0056]
FIG. 17 is a schematic layout diagram of a seventh embodiment of the antenna array according to the present invention. In FIG. 17, the operating frequency of the first antenna 21 (first operating frequency) is lower than the operating frequency of the second antenna 22 (second operating frequency). Therefore, the sum of the lengths of the fifth and sixth conductor elements 29, 30 of the second antenna 22 is shorter than the sum of the lengths of the second and third conductor elements 25, 26 of the first antenna 21. . The fifth conductor element 29 is longer than the fourth conductor element 28, and the third conductor element 26 is longer than the second conductor element 25. With this configuration, under the above-mentioned frequency conditions, coupling between antennas can be reduced as compared with other antenna configurations.
[0057]
FIG. 18 shows the first and second antennas 21 and 22 when the first operating frequency f # 1 is lower than the second operating frequency f # 2 (the antenna is viewed from the normal direction of the ground plane 1). The antennas 21 and 22 are indicated by # 1 and # 2 in the figure) and all possible mounting methods for the base plate 1 are shown. Since the first operating frequency and the second operating frequency have different frequencies, the first and second antennas 21 and 22 have different sizes. That is, the second conductor element 25 has a different length from the third conductor element 26, and the fourth conductor element 28 has a different length from the fifth conductor element 29.
[0058]
As a combination of the arrangement methods of the first and second antennas 21 and 22, there are four types of models A to D in FIG. In the model A, the length of the second conductive element 25 <the length of the third conductive element 26 and the length of the fifth conductive element 29 <the length of the sixth conductive element 30, as in FIG. In the model B, the length of the second conductive element 25 <the length of the third conductive element 26 and the length of the fifth conductive element 29> the length of the sixth conductive element 30. In the model C, the length of the second conductive element 25> the length of the third conductive element 26, and the length of the fifth conductive element 29 <the length of the sixth conductive element 30. In the model D, the length of the second conductive element 25> the length of the third conductive element 26, and the length of the fifth conductive element 29> the length of the sixth conductive element 30.
[0059]
In FIG. 18, a conductor element described as “large” has a large current distribution in the frequency band. In FIG. 18, for each of the models A to D, the current distribution before and after the first operating frequency (resonant frequency) f # 1 and the second operating frequency (resonant frequency) f # 2 can be grasped.
[0060]
As can be seen from FIG. 18, the location of the first antenna 21 where the current distribution is large and the location where the second antenna 22 has a large current distribution are the models A. Therefore, if the first and second antennas 21 and 22 are arranged as in the model A, there is no possibility that the portions where the current distribution is large face each other and become the closest state.
[0061]
FIG. 19 shows the maximum coupling amount between antennas when the distance between feed points is set to 100 mm using the antenna arrays of the models A to D. As can be seen from this figure, in the band of the frequencies f # 1 to f # 2, the coupling between the antennas of the model A is weaker than the other models.
[0062]
As described above, in the seventh embodiment, since the first and second antennas 21 and 22 are arranged so that the large portions of the current distribution do not face and approach each other, radio wave interference hardly occurs.
[0063]
(Eighth embodiment)
In the eighth embodiment, the first antenna 21 is a transmitting antenna, the second antenna 22 is a receiving antenna, and the operating frequency (first operating frequency) f # 1 of the first antenna 21 is the operating frequency of the second antenna 22. (2nd operating frequency) This is an antenna configuration in the case where it is lower than f # 2.
[0064]
In such a case, the sneak path from the transmitting antenna to the receiving antenna is the biggest problem. Therefore, it is necessary to configure the antenna array so that the coupling between the antennas at the transmission frequency is reduced.
[0065]
Thus, in the eighth embodiment, the fifth conductor element 29 of the second antenna 22 is shorter than the sixth conductor element 30.
[0066]
In FIG. 18, it can be seen that by selecting the model A or C, the coupling between antennas in the vicinity of the first operating frequency f # 1 can be reduced. In the model A or C, since the fifth conductor element 29 is shorter than the sixth conductor element 30, coupling between antennas can be suppressed at the operating frequency f # 1 of the first antenna 21.
[0067]
As described above, in the eighth embodiment, when the transmission frequency is lower than the reception frequency, the fifth conductor element 29 of the second antenna 22 is made shorter than the sixth conductor element 30. It is possible to suppress the coupling between antennas, and it is possible to avoid the wraparound from the transmission antenna to the reception antenna.
[0068]
(Ninth embodiment)
In the ninth embodiment, when the transmission frequency is higher than the reception frequency, the roundabout from the transmission antenna to the reception antenna is avoided.
[0069]
In FIG. 18, when the frequency f is f # 2 <f <f # 1 or f # 2 <f, the second conductor element 25 of the first antenna 21 is replaced by the third conductor element in both models A and B. It is shorter than 26. With such a configuration, the coupling between antennas can be suppressed in the vicinity of the transmission frequency f # 2.
[0070]
As described above, when the transmission frequency is higher than the reception frequency, the coupling between the antennas at the transmission frequency f # 2 is suppressed by making the second conductor element 25 of the first antenna 21 shorter than the third conductor element 26. It is possible to avoid sneaking from the transmitting antenna to the receiving antenna.
[0071]
(Tenth embodiment)
In the tenth embodiment, when the operating frequency (first operating frequency) f # 1 of the first antenna 21 and the operating frequency (second operating frequency) f # 2 of the second antenna 22 are substantially the same, the model shown in FIG. In both A and the model D, the directions of the conductor elements of the first and second antennas 21 and 22 are the same. More specifically, the second conductor element 25 and the fifth conductor element 29 have the same length, and the third conductor element 26 and the sixth conductor element 30 have the same length.
[0072]
As described above, when the transmission frequency and the reception frequency are substantially the same, the first and second antennas 21 and 22 are oriented substantially in the same direction, the second conductor element 25 and the fifth conductor element 29 are set to the same length, and By making the third conductor element 26 and the sixth conductor element 30 the same length, coupling between antennas can be reduced.
[0073]
In the description of this patent, all the conductor elements are described as linear elements, but the effect is the same even if the elements are deformed as shown in FIG. In the antenna shown in FIG. 20, a conductor element substantially parallel to the ground plane is deformed into a helical type and a meander type. In the helical type, the center axis of the helical 31 is substantially parallel to the ground plane, and this direction is equivalent to the direction of the linear element. In the meander type, the direction of the portion where the meander element 32 is connected to the element perpendicular to the ground plane is equivalent to the direction of the linear element.
[0074]
【The invention's effect】
As described above in detail, according to the present invention, by adjusting the directions of the first and second antennas 21 and 22, it is possible to reduce the coupling between antennas and prevent interference of radio waves. Therefore, even if antennas for a plurality of wireless devices are arranged in the same wireless device, wireless communication can be performed without interfering with each other.
[Brief description of the drawings]
FIG. 1 is a schematic layout diagram of a first embodiment of an antenna array according to the present invention.
FIG. 2 is a layout diagram showing a modified example of FIG. 1;
FIG. 3 is a diagram showing matching characteristics and coupling characteristics of first and second antennas 2 and 3;
FIG. 4 is a schematic diagram showing a current distribution on first and second antennas 2 and 3 of models A, B and C.
FIG. 5 is a schematic diagram showing a current distribution on a main plate 1.
FIG. 6 is a schematic layout diagram of a second embodiment of the antenna array according to the present invention.
FIG. 7 is a modification of FIG. 6, showing an example in which a first antenna 2 is arranged on one of two adjacent sides of a finite ground plane 1 and a second antenna 3 is arranged on the other.
FIG. 8 is a schematic layout diagram of a third embodiment of the antenna array according to the present invention.
FIG. 9 is a schematic layout diagram of a fourth embodiment of the antenna array according to the present invention.
FIG. 10 is a layout diagram showing a modification of FIG. 9;
FIG. 11 is a diagram showing a configuration example of first and second antennas 21 and 22;
FIG. 12 is a diagram showing a configuration example of first and second antennas 21 and 22;
FIG. 13 is a view showing a radiation pattern of a T-shaped antenna.
FIG. 14 is a schematic layout diagram of a fifth embodiment of the antenna array according to the present invention.
FIG. 15 is a schematic layout diagram of a sixth embodiment of the antenna array according to the present invention.
FIG. 16 is a diagram schematically showing a current distribution of the T-shaped antenna shown in FIG. 10 for each frequency.
FIG. 17 is a schematic layout diagram of a seventh embodiment of the antenna array according to the present invention.
FIG. 18 is a diagram showing all possible mounting methods of the first and second antennas 21 and 22 on the base plate 1 when the first operating frequency f # 1 is lower than the second operating frequency f # 2.
FIG. 19 is a diagram showing the maximum coupling amount between antennas when the distance between feed points is set to 100 mm using the antenna arrays of models A to D.
FIG. 20 is a diagram showing the shape of an antenna array when a conductor element is deformed into a helical type and a meander type.
[Explanation of symbols]
1 Ground plate
2 First antenna
3 Second antenna
4 First feeding point
5 First conductor element
6 Second conductive element
7 Second feeding point
8 Third conductor element
9 Fourth conductor element
10 Auxiliary base plate
21 First antenna
22 Second antenna
23 1st feeding point
24 1st conductor element
25 Second conductor element
26 Third conductor element
27 2nd feeding point
28 4th conductor element
29 5th conductor element
30 sixth conductive element

Claims (11)

地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子とを有する第1アンテナと、
前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第3導体素子と、この第3導体素子の先端部から前記地板に略平行に延びる第4導体素子とを有する第2アンテナと、を備え、
前記第1及び第2導体素子の長さの和は、前記第1アンテナの動作周波数の略1/4波長であり、
前記第3導体素子及び前記第4導体素子の長さの和は、前記第2アンテナの動作周波数の略1/4波長であり、
前記第2導体素子及び前記第4導体素子のうち一方の先端部は前記第1及び第2給電点の間に配置され、他方の先端部は、前記第1給電点を基準として前記第2給電点の反対側に配置されるか、または前記第2給電点を基準として前記第1給電点の反対側に配置されることを特徴とするアンテナアレー。
A first power supply point on the ground plane, a first conductor element extending substantially perpendicular to the ground plane from the first power supply point, and a second conductor element extending substantially parallel to the ground plane from the tip of the first conductor element A first antenna having:
A second power supply point on the ground plane, a third conductor element extending substantially perpendicular to the ground plane from the second power supply point, and a fourth conductor extending substantially parallel to the ground plane from a tip end of the third conductor element And a second antenna having an element,
The sum of the lengths of the first and second conductor elements is approximately 波長 wavelength of the operating frequency of the first antenna,
The sum of the lengths of the third conductor element and the fourth conductor element is approximately 波長 wavelength of the operating frequency of the second antenna,
One end of the second conductor element and the fourth conductor element is disposed between the first and second feed points, and the other end of the second feed element is connected to the second feed point with reference to the first feed point. An antenna array, wherein the antenna array is arranged on a side opposite to a point or on an opposite side of the first feeding point with respect to the second feeding point.
地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延びる第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、
前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延びる第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であることを特徴とするアンテナアレー。
A first power supply point on the ground plane, a first conductor element extending substantially perpendicular to the ground plane from the first power supply point, and a second conductor element extending substantially parallel to the ground plane from the tip of the first conductor element A first antenna resonating at a first operating frequency, comprising: a third conductor element extending from a tip end of the first conductor element to a side opposite to the second conductor element;
A second feeding point on the ground plane, a fourth conductor element extending substantially perpendicular to the ground plane from the second feeding point, and a fifth conductor extending substantially parallel to the ground plane from a tip end of the fourth conductor element And a second antenna that resonates at a second operating frequency, comprising: an element; a sixth conductor element extending from a tip end of the fourth conductor element to an opposite side of the fifth conductor element;
The sum of the lengths of the second and third conductor elements is substantially a half wavelength of the first operating frequency,
An antenna array according to claim 1, wherein the sum of the lengths of said fifth and sixth conductor elements is substantially a half wavelength of said second operating frequency.
前記第3導体素子は、前記第5導体素子に略平行かつ前記給電点1ならびに前記給電点2の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短いことを特徴とする請求項2に記載のアンテナアレー。The third conductor element is disposed substantially parallel to the fifth conductor element and between the feeding point 1 and the feeding point 2; the first operating frequency is lower than the second operating frequency; The antenna array according to claim 2, wherein a conductor element is shorter than the third conductor element, and the fifth conductor element is shorter than the sixth conductor element. 前記第3導体素子は、前記第5導体素子に略平行かつ前記給電点1ならびに前記給電点2の間に配置され、かつ
前記第1アンテナは送信用アンテナであり、
前記第2アンテナは受信用アンテナであり、
前記第1動作周波数は前記第2動作周波数より低く、
前記第5導体素子は前記第6導体素子より短いことを特徴とする請求項2に記載のアンテナアレー。
The third conductor element is disposed substantially parallel to the fifth conductor element and between the feeding point 1 and the feeding point 2, and the first antenna is a transmitting antenna,
The second antenna is a receiving antenna;
The first operating frequency is lower than the second operating frequency;
The antenna array according to claim 2, wherein the fifth conductor element is shorter than the sixth conductor element.
前記第3導体素子は、前記第5導体素子に略平行かつ前記給電点1ならびに前記給電点2の間に配置され、かつ
前記第1アンテナは送信用アンテナであり、
前記第2アンテナは受信用アンテナであり、
前記第1動作周波数は前記第2動作周波数より高く、
前記第2導体素子は前記第3導体素子より短いことを特徴とする請求項2に記載のアンテナアレー。
The third conductor element is disposed substantially parallel to the fifth conductor element and between the feeding point 1 and the feeding point 2, and the first antenna is a transmitting antenna,
The second antenna is a receiving antenna;
The first operating frequency is higher than the second operating frequency;
The antenna array according to claim 2, wherein the second conductor element is shorter than the third conductor element.
前記第3導体素子は、前記第5導体素子に略平行かつ前記給電点1ならびに前記給電点2の間に配置され、かつ
前記第1及び第2動作周波数は略同一であり、
前記第2及び第5導体素子の長さは略同一であり、
前記第3及び第6導体素子の長さは略同一であることを特徴とする請求項2に記載のアンテナアレー。
The third conductor element is disposed substantially parallel to the fifth conductor element and between the feeding point 1 and the feeding point 2, and the first and second operating frequencies are substantially the same;
The lengths of the second and fifth conductor elements are substantially the same,
The antenna array according to claim 2, wherein the third and sixth conductor elements have substantially the same length.
前記第1及び第2給電点は、有限地板の辺縁部に、近接する辺に略平行に配置されることを特徴とする請求項1及至6のいずれかに記載のアンテナアレー。The antenna array according to any one of claims 1 to 6, wherein the first and second feeding points are arranged on an edge of the finite ground plane substantially in parallel with an adjacent side. 前記第1及び第2給電点は、前記有限地板の隣接する辺縁部に近接する辺に略平行にそれぞれ配置されることを特徴とする請求項7に記載のアンテナアレー。The antenna array according to claim 7, wherein the first and second feeding points are respectively arranged substantially in parallel with a side near an adjacent edge of the finite ground plane. 前記地板の辺縁部に設けられる補助地板を備え、
前記第1及び第2給電点は、前記補助地板上に設けられることを特徴とする請求項7または8に記載のアンテナアレー。
An auxiliary base plate provided at an edge of the base plate,
The antenna array according to claim 7, wherein the first and second feeding points are provided on the auxiliary ground plane.
第1アンテナを利用して無線通信を行う第1無線機と、
第2アンテナを利用して無線通信を行う第2無線機と、を備えた無線装置において、
前記第1アンテナは、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子とを有し、
前記第2アンテナは、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第3導体素子と、この第3導体素子の先端部から前記地板に略平行に延びる第4導体素子とを有し、
前記第1及び第2導体素子の長さの和は、前記第1アンテナの動作周波数の略1/4波長であり、
前記第3導体素子及び前記第4導体素子の長さの和は、前記第2アンテナの動作周波数の略1/4波長であり、
前記第2導体素子及び前記第4導体素子のうち一方の先端部は前記第1及び第2給電点の間に配置され、他方の先端部は、前記第1給電点を基準として前記第2給電点の反対側に配置されるか、または前記第2給電点を基準として前記第1給電点の反対側に配置されることを特徴とする無線装置。
A first wireless device that performs wireless communication using the first antenna;
And a second wireless device that performs wireless communication using the second antenna.
The first antenna includes a first feed point on the ground plane, a first conductor element extending substantially perpendicularly to the ground plane from the first feed point, and substantially parallel to the ground plane from a tip end of the first conductor element. A second conductor element extending to
The second antenna includes a second feeding point on the ground plane, a third conductor element extending substantially perpendicularly to the ground plane from the second feeding point, and substantially extending from the tip end of the third conductor element to the ground plane. A fourth conductor element extending in parallel,
The sum of the lengths of the first and second conductor elements is approximately 波長 wavelength of the operating frequency of the first antenna,
The sum of the lengths of the third conductor element and the fourth conductor element is approximately 波長 wavelength of the operating frequency of the second antenna,
One end of the second conductor element and the fourth conductor element is disposed between the first and second feed points, and the other end of the second feed element is connected to the second feed point with reference to the first feed point. A wireless device, which is disposed on a side opposite to a point or is disposed on a side opposite to the first power supply point with reference to the second power supply point.
第1アンテナを利用して第1動作周波数で無線通信を行う第1無線機と、
第2アンテナを利用して第2動作周波数で無線通信を行う第2無線機と、を備えた無線装置において、
前記第1アンテナは、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延びる第3導体素子と、を有し
前記第2アンテナは、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延びる第6導体素子と、を有し、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であることを特徴とする無線装置。
A first wireless device that performs wireless communication at a first operating frequency using a first antenna;
A second wireless device that performs wireless communication at a second operating frequency using a second antenna.
The first antenna includes a first feed point on the ground plane, a first conductor element extending substantially perpendicularly to the ground plane from the first feed point, and substantially parallel to the ground plane from a tip end of the first conductor element. And a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element, wherein the second antenna has a second feed point on the ground plane. A fourth conductor element extending substantially perpendicularly to the ground plane from the second power supply point; a fifth conductor element extending substantially parallel to the ground plane from the tip of the fourth conductor element; and the fourth conductor element A sixth conductor element extending from the tip end of the second conductor element to the opposite side of the fifth conductor element,
The sum of the lengths of the second and third conductor elements is substantially a half wavelength of the first operating frequency,
The wireless device according to claim 1, wherein the sum of the lengths of the fifth and sixth conductor elements is substantially a half wavelength of the second operating frequency.
JP2002174293A 2002-06-14 2002-06-14 Antenna array and wireless device Expired - Fee Related JP3828050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174293A JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174293A JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Publications (2)

Publication Number Publication Date
JP2004023369A true JP2004023369A (en) 2004-01-22
JP3828050B2 JP3828050B2 (en) 2006-09-27

Family

ID=31173298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174293A Expired - Fee Related JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Country Status (1)

Country Link
JP (1) JP3828050B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217489A (en) * 2004-01-27 2005-08-11 Kyocera Corp Wireless communication terminal
WO2006011659A1 (en) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. Composite antenna device
JP2007020093A (en) * 2005-07-11 2007-01-25 Toshiba Corp Antenna device and mobile wireless device
JP2007116232A (en) * 2005-10-18 2007-05-10 Yokohama National Univ Monopole antenna of printed circuit board type
JP2009044697A (en) * 2007-08-13 2009-02-26 Nippon Antenna Co Ltd Planner antenna
JP2009077440A (en) * 2007-07-04 2009-04-09 Toshiba Corp Radio apparatus
JP2009089212A (en) * 2007-10-02 2009-04-23 Furukawa Electric Co Ltd:The Antenna for radar device
EP2081250A1 (en) * 2006-12-04 2009-07-22 Panasonic Corporation Antenna device and electronic apparatus using the same
CN101604791A (en) * 2008-06-09 2009-12-16 韩燕� A kind of multi-antenna radio equipment and communication means and antenna
JP2010109515A (en) * 2008-10-29 2010-05-13 Nec Saitama Ltd Antenna device and radio communication apparatus
JP2010288175A (en) * 2009-06-15 2010-12-24 Hitachi Metals Ltd Multiband antenna
JP2013093744A (en) * 2011-10-26 2013-05-16 Kojima Press Industry Co Ltd On-vehicle antenna system
JP2013098763A (en) * 2011-11-01 2013-05-20 Nippon Soken Inc Antenna device
US8531341B2 (en) 2008-01-04 2013-09-10 Apple Inc. Antenna isolation for portable electronic devices
US8836588B2 (en) 2011-08-31 2014-09-16 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
US8941548B2 (en) 2011-08-30 2015-01-27 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
US8988292B2 (en) 2011-03-30 2015-03-24 Kabushiki Kaisha Toshiba Antenna device and electronic device including antenna device
JP2016015623A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Antenna device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217489A (en) * 2004-01-27 2005-08-11 Kyocera Corp Wireless communication terminal
WO2006011659A1 (en) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. Composite antenna device
US7561112B2 (en) 2004-07-29 2009-07-14 Panasonic Corporation Composite antenna device
JP2007020093A (en) * 2005-07-11 2007-01-25 Toshiba Corp Antenna device and mobile wireless device
US7649497B2 (en) 2005-07-11 2010-01-19 Kabushiki Kaisha Toshiba Antenna device, mobile terminal and RFID tag
JP2007116232A (en) * 2005-10-18 2007-05-10 Yokohama National Univ Monopole antenna of printed circuit board type
EP2081250A1 (en) * 2006-12-04 2009-07-22 Panasonic Corporation Antenna device and electronic apparatus using the same
EP2081250A4 (en) * 2006-12-04 2013-01-02 Panasonic Corp Antenna device and electronic apparatus using the same
JP2009077440A (en) * 2007-07-04 2009-04-09 Toshiba Corp Radio apparatus
JP2009044697A (en) * 2007-08-13 2009-02-26 Nippon Antenna Co Ltd Planner antenna
JP2009089212A (en) * 2007-10-02 2009-04-23 Furukawa Electric Co Ltd:The Antenna for radar device
EP2083472B1 (en) * 2008-01-04 2017-07-26 Apple Inc. Antenna isolation for portable electronic devices
US8531341B2 (en) 2008-01-04 2013-09-10 Apple Inc. Antenna isolation for portable electronic devices
CN101604791A (en) * 2008-06-09 2009-12-16 韩燕� A kind of multi-antenna radio equipment and communication means and antenna
JP2010109515A (en) * 2008-10-29 2010-05-13 Nec Saitama Ltd Antenna device and radio communication apparatus
JP2010288175A (en) * 2009-06-15 2010-12-24 Hitachi Metals Ltd Multiband antenna
US8988292B2 (en) 2011-03-30 2015-03-24 Kabushiki Kaisha Toshiba Antenna device and electronic device including antenna device
US8941548B2 (en) 2011-08-30 2015-01-27 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
US8836588B2 (en) 2011-08-31 2014-09-16 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
JP2013093744A (en) * 2011-10-26 2013-05-16 Kojima Press Industry Co Ltd On-vehicle antenna system
JP2013098763A (en) * 2011-11-01 2013-05-20 Nippon Soken Inc Antenna device
JP2016015623A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Antenna device

Also Published As

Publication number Publication date
JP3828050B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP2004023369A (en) Antenna array and wireless apparatus
JP4384102B2 (en) Portable radio device and antenna device
KR101378847B1 (en) Internal antenna with wideband characteristic
RU2517310C2 (en) Radio communication device having loop antenna
JP4906765B2 (en) Antenna apparatus and related methodology for multi-band wireless devices
KR20030042023A (en) Antenna system with channeled RF currents
JP2013051644A (en) Antenna device and electronic apparatus comprising the same
KR20090016481A (en) A multi-band antenna arrangement
JPH05327527A (en) Portable radio equipment
US9692119B2 (en) Radio-frequency device and wireless communication device for enhancing antenna isolation
JP2018107783A (en) Multiantenna communication device
WO2011044333A2 (en) Antenna system providing high isolation between antennas on electronics device
US11641059B2 (en) Wireless communication structure, display panel and wireless communication device
CN110970709B (en) Antenna structure and wireless communication device with same
JP2014533474A (en) Multi-mode broadband antenna module and wireless terminal
WO2020216241A1 (en) Compact antenna and mobile terminal
JP2006270401A (en) Portable wireless device
EP2628208B1 (en) Antenna pair for mimo/diversity operation in the lte/gsm bands
US11631930B2 (en) Wireless communication structure, display panel and wireless communication apparatus
CN111786091A (en) Antenna module and terminal
US20070126640A1 (en) Planar antenna structure
KR20090050566A (en) Mimo system installed in vehicle
JP2005347958A (en) Antenna device
EP2375488B1 (en) Planar antenna and handheld device
JP3838971B2 (en) Wireless device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees