JP2010288175A - Multiband antenna - Google Patents

Multiband antenna Download PDF

Info

Publication number
JP2010288175A
JP2010288175A JP2009141923A JP2009141923A JP2010288175A JP 2010288175 A JP2010288175 A JP 2010288175A JP 2009141923 A JP2009141923 A JP 2009141923A JP 2009141923 A JP2009141923 A JP 2009141923A JP 2010288175 A JP2010288175 A JP 2010288175A
Authority
JP
Japan
Prior art keywords
frequency
conductor
frequency band
radiating element
multiband antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141923A
Other languages
Japanese (ja)
Other versions
JP5435338B2 (en
Inventor
Tatsuro Ayaka
辰朗 綾香
Kaoru Yamane
薫 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009141923A priority Critical patent/JP5435338B2/en
Publication of JP2010288175A publication Critical patent/JP2010288175A/en
Application granted granted Critical
Publication of JP5435338B2 publication Critical patent/JP5435338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiband antenna in which VSWR characteristics cover wide frequency bands, an intra-band radiation gain is superior and impedance matching is facilitated, and further to provide a wireless apparatus using the multiband antenna. <P>SOLUTION: A multiband antenna includes: a first radiation element that operates under a parallel resonance mode, and a second radiation element which is comprised of a part of the first radiation element and operates under a serial resonance mode. The first radiation element is resonated from an upper limit frequency f1bmax in a frequency band f1b of a first transmitting and receiving system to a lower limit frequency f2bmin in a frequency band f2b of a second transmitting and receiving system. The second radiation element is resonated at a lower frequency than the lower limit frequency f2bmin in the frequency band of the second transmitting and receiving system and at a higher frequency than the upper limit frequency f1bmax in the frequency band of the first transmitting and receiving system. A peak frequency of VSWR between a resonant frequency f1r of the first radiation element and a resonant frequency f2r of the second radiation element is lower than the lower limit frequency f2min or higher than the upper limit frequency f1bmax in the frequency band of the first transmitting and receiving system. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無線装置に用いられるアンテナ回路に関し、特には複数の互いに異なる周波数帯において利用可能なマルチバンドアンテナに関するものである。   The present invention relates to an antenna circuit used in a radio apparatus, and more particularly to a multiband antenna that can be used in a plurality of different frequency bands.

近年、携帯電話等の無線装置が急速に普及し、通信に使用する帯域も多岐に亘っている。特に、最近の携帯電話では、デュアルバンド方式、トリプルバンド方式、クワッドバンド方式等と呼ばれるように、複数の送受信帯域を一つの通信機器に装備する例が多くなっている。
クワッドバンド方式の携帯電話で使用する通信システムの周波数帯域は、例えばGSM850/900帯(824〜960MHz)、DCS帯(1710〜1850MHz)、PCS帯(1850〜1990MHz)、UMTS帯(1920〜2170MHz)であって、連続する3つの周波数帯であるDCS帯、PCS帯、UMTS帯は、GSM帯の略2〜2.5倍の周波数である。
In recent years, wireless devices such as mobile phones have rapidly spread, and the bandwidth used for communication is also wide-ranging. In particular, in recent mobile phones, there are an increasing number of examples in which a plurality of transmission / reception bands are provided in one communication device as called a dual band system, a triple band system, a quad band system, or the like.
The frequency band of the communication system used in the quad-band mobile phone is, for example, GSM850 / 900 band (824 to 960 MHz), DCS band (1710 to 1850 MHz), PCS band (1850 to 1990 MHz), UMTS band (1920 to 2170 MHz). The DCS band, the PCS band, and the UMTS band, which are three consecutive frequency bands, are approximately 2 to 2.5 times the frequency of the GSM band.

かかる状況下、携帯電話等の無線装置に内蔵されるアンテナ回路を構成するアンテナとして、複数の送受信帯域に対応できるマルチバンドアンテナが要求されている。
通常アンテナを構成する放射素子(放射電極とも呼ばれる)は、基本となる周波数で共振するとともに、更に高次の周波数でも共振する。例えば1/4波長での共振を基本モードとすれば、高次モードでは3/4波長での共振となる。このような複数の共振を上手く利用することで、GSM帯とDCS帯、PCS帯、UMTS帯に対応したマルチバンドアンテナとすることが行われている。
ここで、最も低周波で共振する周波数(主共振点と呼ぶ場合がある)を含み、高周波回路と整合可能、即ち電圧定在波比VSWRが所定の数値以下となる周波数帯を基本周波数帯とし、それよりも高次の共振を生じる周波数(高次共振点と呼ぶ場合がある)を含む周波数帯を高次周波数帯とする。
Under such circumstances, a multiband antenna capable of supporting a plurality of transmission / reception bands is required as an antenna constituting an antenna circuit built in a wireless device such as a mobile phone.
A radiating element (also referred to as a radiating electrode) that normally constitutes an antenna resonates at a basic frequency and also resonates at a higher frequency. For example, if resonance at a quarter wavelength is set as a fundamental mode, resonance at a quarter wavelength occurs in a higher-order mode. By making good use of such a plurality of resonances, a multiband antenna corresponding to the GSM band, the DCS band, the PCS band, and the UMTS band has been achieved.
Here, a frequency band that includes the frequency that resonates at the lowest frequency (sometimes referred to as a main resonance point) and can be matched with a high-frequency circuit, that is, a frequency band in which the voltage standing wave ratio VSWR is equal to or less than a predetermined numerical value A frequency band including a frequency (sometimes referred to as a higher-order resonance point) that causes higher-order resonance than that is defined as a higher-order frequency band.

最近のマルチバンドアンテナは、先に例示した通信システムをカバーすることが求められるが、基本周波数帯でカバーする周波数帯域幅はGSM850/900帯で136MHz、比帯域幅は約15.3%〔136MHz/892MHz〕であり、高次周波数帯でカバーする周波数帯域幅はDCS帯、PCS帯、UMTS帯で460MHzであり、比帯域幅は約23.7%〔460MHz/1940MHz〕であって、帯域幅が広い。従って、一つの放射素子による共振だけでは十分な帯域幅が確保出来ず、使用が困難である場合があった。   Recent multiband antennas are required to cover the communication system exemplified above, but the frequency bandwidth covered in the fundamental frequency band is 136 MHz in the GSM850 / 900 band, and the specific bandwidth is about 15.3% [136 MHz. / 892 MHz], and the frequency bandwidth covered by the higher-order frequency band is 460 MHz in the DCS band, the PCS band, and the UMTS band, and the specific bandwidth is about 23.7% [460 MHz / 1940 MHz]. Is wide. Therefore, there is a case where a sufficient bandwidth cannot be ensured only by resonance by one radiating element and it is difficult to use.

このような帯域幅が得られない問題に対して、特許文献1には、共振周波数が僅かに異なる逆F型アンテナと逆L型アンテナで構成し、共通の給電回路203から直接給電することで、広周波数帯域で動作可能なアンテナとすること、更にアンテナを基本周波数帯用と高次周波数帯用との2層構造とし、計4つの放射素子により基本周波数帯と高次周波数帯において広帯域で動作可能なマルチバンドアンテナとすることが開示されている。   In order to deal with such a problem that the bandwidth cannot be obtained, Patent Document 1 discloses that an inverted F antenna and an inverted L antenna having slightly different resonance frequencies are used, and power is directly supplied from a common power supply circuit 203. The antenna can be operated in a wide frequency band, and the antenna has a two-layer structure for the basic frequency band and a high-order frequency band. Disclosed is an operable multiband antenna.

特許文献1に開示されたマルチバンドアンテナの基本的な構成を図3に示す。このようなマルチバンドアンテナでは、近接配置された2つの放射素子211,222を、それぞれ僅かに異なる共振周波数f1res,f2resで動作させる。そのVSWR特性は図5に示す様に、2つの共振を重ね合わせた双峰特性を示し、広周波数帯域で低VSWRとなるが、それぞれの放射素子が独立して共振するため、共振周波数f1res,f2res間でVSWR特性が劣化する領域が発現する(図5中のVSWR波形が重なるA点)。なお図中、f1max,f1minは、第1の送受信系の送受信周波数帯域での、上限周波数と下限周波数を示し、f2max,f2minは、第2の送受信系の送受信周波数帯域での、上限周波数と下限周波数を示す。ここで、第1の送受信系の送受信周波数帯域は第2の送受信系の送受信周波数帯域よりも、相対的に高周波としている。
VSWR波形が重なるA点の周波数fAではVSWR特性が劣化するものの、その程度は電力反射に著しく影響を与える程では無いので、一見、アンテナ特性に影響しないと思われるが、A点及びその前後の周波数において放射利得が低下する問題があった。
FIG. 3 shows a basic configuration of the multiband antenna disclosed in Patent Document 1. In such a multiband antenna, the two radiating elements 211 and 222 arranged in proximity are operated at slightly different resonance frequencies f1res and f2res, respectively. As shown in FIG. 5, the VSWR characteristic is a bimodal characteristic obtained by superimposing two resonances and has a low VSWR in a wide frequency band. However, since each radiating element resonates independently, the resonance frequency f1res, A region where the VSWR characteristics deteriorate between f2res appears (point A where the VSWR waveforms overlap in FIG. 5). In the figure, f1max and f1min indicate an upper limit frequency and a lower limit frequency in the transmission / reception frequency band of the first transmission / reception system, and f2max and f2min indicate an upper limit frequency and a lower limit in the transmission / reception frequency band of the second transmission / reception system. Indicates the frequency. Here, the transmission / reception frequency band of the first transmission / reception system is relatively higher than the transmission / reception frequency band of the second transmission / reception system.
Although the VSWR characteristic deteriorates at the frequency fA at the point A where the VSWR waveform overlaps, the degree does not significantly affect the power reflection, so it seems that it does not affect the antenna characteristic at first glance. There has been a problem that the radiation gain decreases at the frequency.

このような広帯域化における放射利得の低下に対して、特許文献2では、使用する周波数帯外にA点を移動させることを提案している。
特許文献2のアンテナの構成を図2に示す。二つの放射素子211,222は、一端が共通の給電回路203に接続され他端が開放端となり、回路基板202に形成されたグランド面GNDと平行に同方向に伸長された長さの異なる導体パターンで形成され、それぞれ直列共振モードで動作する2つの逆Lアンテナとして構成されている。
そして、一方の放射素子を所望の周波数帯内の周波数で共振させ、他方の放射素子を所望の周波数帯域外の低い周波数帯で、且つ各放射素子の共振周波数の間にある放射利得の劣化ピーク部分が、所望周波数帯外よりも低い周波数帯となるように設定する。この様な構成により、特許文献1のマルチバンドアンテナよりも低VSWRとなる周波数帯は狭まるが、所望周波数帯での放射利得は改善される。また一つの放射素子で構成する場合と比較すれば、低VSWR周波数帯、放射利得が向上する。
In response to such a decrease in the radiation gain in widening the band, Patent Document 2 proposes to move the point A outside the frequency band to be used.
The configuration of the antenna of Patent Document 2 is shown in FIG. The two radiating elements 211 and 222 are conductors having different lengths, one end being connected to the common power feeding circuit 203 and the other end being an open end, and extending in the same direction in parallel with the ground plane GND formed on the circuit board 202. It is formed as a pattern and is configured as two inverted L antennas each operating in a series resonance mode.
Then, one radiating element is resonated at a frequency within a desired frequency band, and the other radiating element is at a lower frequency band outside the desired frequency band, and the degradation peak of the radiating gain that is between the resonant frequencies of the radiating elements. The part is set to be in a frequency band lower than outside the desired frequency band. With such a configuration, the frequency band in which the VSWR is lower than that of the multiband antenna of Patent Document 1 is narrowed, but the radiation gain in the desired frequency band is improved. In addition, the low VSWR frequency band and the radiation gain are improved as compared with the case of a single radiating element.

特開2003−124742号JP 2003-124742 A 特開2009−4847号JP 2009-4847

特許文献1や引用文献2のような、複数の放射素子を有するマルチバンドアンテナを単純化したモデルを図1に示す。このマルチバンドアンテナは、グランド面GNDに立設された共通導体E1と、前記共通導体E1の一端側と接続された水平導体E2,E3を含んで構成され、丁度、開放端側が逆方向に伸長する2つの逆Lアンテナを組み合わせたT型モノポール構造と等価である。
共通導体E1の他端側は給電端となり給電回路203と接続される。そして水平導体E2,E3は異なる長さで構成されており、共通導体E1と接続してそれぞれ1/4波長の長さの放射素子となり、周波数f1res,f2resで共振して直列共振モードで動作する。
FIG. 1 shows a simplified model of a multiband antenna having a plurality of radiating elements, such as Patent Document 1 and Cited Document 2. This multiband antenna is configured to include a common conductor E1 standing on the ground plane GND and horizontal conductors E2 and E3 connected to one end side of the common conductor E1, and the open end side just extends in the opposite direction. This is equivalent to a T-type monopole structure in which two inverted L antennas are combined.
The other end side of the common conductor E <b> 1 serves as a power feeding end and is connected to the power feeding circuit 203. The horizontal conductors E2 and E3 have different lengths and are connected to the common conductor E1 to form radiating elements each having a quarter wavelength, and resonate at frequencies f1res and f2res to operate in a series resonance mode. .

図1〜図3で示した構成のマルチバンドアンテナ201は共に、共通の給電回路203からの給電により励振される。給電回路203に複数の長さの異なる放射素子を接続する場合、2つの直列共振の間に原理的に並列共振が発生する。この為、マルチバンドアンテナには、高周波信号の異なる周波数帯において、直列共振モードの他に並列共振モードの共振電流が発生する。この並列共振モードについて特許文献1には記載ないが、特許文献2には、二つのアンテナにおける電流の向きが揃わなくなった場合にアンテナ特性が劣化するとして、並列共振モードについて示唆されている。   Each of the multiband antennas 201 configured as shown in FIGS. 1 to 3 is excited by feeding from a common feeding circuit 203. When a plurality of radiating elements having different lengths are connected to the power feeding circuit 203, a parallel resonance occurs in principle between two series resonances. For this reason, in the multiband antenna, a resonance current in the parallel resonance mode is generated in addition to the series resonance mode in different frequency bands of the high-frequency signal. Although this parallel resonance mode is not described in Patent Document 1, Patent Document 2 suggests the parallel resonance mode, assuming that antenna characteristics deteriorate when current directions in the two antennas are not aligned.

これ等のマルチバンドアンテナにおいて、放射素子に分布する共振電流は、異なる周波数において、単純には各図のI1、I2、I3として示した矢印で示すように、3通りの経路で分布することとなる。
第1経路I1は、給電回路203に接続された共通導体E1と、これに繋がる水平導体E2で構成される第1放射素子による経路であって、所定の波長(周波数f1res)で共振する長さに形成されており、開放端側で電流が最小となるような直列共振モードの電流分布となる。
第2経路I2は、給電回路203に接続された共通導体E1と、これに繋がる水平導体E3で構成される第2放射素子による経路であって、所定の波長(周波数f2res)で共振する長さに形成されており、開放端側で電流が最小となるような直列共振モードの電流分布となる。
第3経路I3は水平導体E2,E3による経路であって、第1及び第2放射素子とは異なる波長(周波数f1res、f2resとの間のf3res)で共振し、両開放端側で電流が最小となるような並列共振モードの電流分布となる。
In these multiband antennas, the resonance current distributed in the radiating elements is distributed at three different paths at different frequencies, as indicated by arrows indicated as I1, I2, and I3 in each figure. Become.
The first path I1 is a path formed by a first radiating element including a common conductor E1 connected to the power feeding circuit 203 and a horizontal conductor E2 connected to the common conductor E1, and has a length that resonates at a predetermined wavelength (frequency f1res). The current distribution of the series resonance mode is such that the current is minimized on the open end side.
The second path I2 is a path formed by the second radiating element including the common conductor E1 connected to the power feeding circuit 203 and the horizontal conductor E3 connected to the common conductor E1, and has a length that resonates at a predetermined wavelength (frequency f2res). The current distribution of the series resonance mode is such that the current is minimized on the open end side.
The third path I3 is a path formed by the horizontal conductors E2 and E3, and resonates at a wavelength (f3res between the frequencies f1res and f2res) different from that of the first and second radiating elements, and the current is minimum at both open ends. The current distribution of the parallel resonance mode is as follows.

一般に直列共振モードでの動作するアンテナでは、放射素子からだけではなくグランド面からも放射する様に設計される。例えば携帯電話では、筐体の金属部分からの放射を利用して、見かけ上のアンテナ体積を増して放射効率を向上している。
一方並列共振モードでは、第1放射素子211(E1,E2)の一端と第2放射素子222(E1,E3)の一端間の導体パターンを第3放射素子233(E2,E3)として利用する。この動作モードでは、給電点やグランド面にはほとんど電流が流れない為、十分な大きさの放射素子を確保出来ない場合に、放射効率・利得が低下してしまう問題がある。従って小型のアンテナでは専ら放射効率に優れる直列共振モードが用いられ、放射素子のみで共振する並列共振モードはあまり用いられていなかった。
In general, an antenna operating in a series resonance mode is designed to radiate not only from a radiating element but also from a ground plane. For example, in a mobile phone, radiation efficiency is improved by increasing the apparent antenna volume by using radiation from a metal part of a casing.
On the other hand, in the parallel resonance mode, a conductor pattern between one end of the first radiating element 211 (E1, E2) and one end of the second radiating element 222 (E1, E3) is used as the third radiating element 233 (E2, E3). In this operation mode, since almost no current flows through the feeding point and the ground plane, there is a problem that radiation efficiency and gain are reduced when a sufficiently large radiation element cannot be secured. Therefore, a series resonance mode with excellent radiation efficiency is used exclusively for a small antenna, and a parallel resonance mode that resonates only with a radiating element has not been used much.

また、一方の直列共振から他方の直列共振への遷移周波数に生じる並列共振の周波数fres3を、スミスチャートのリアクタンスの変化により特定し、VSWR特性と比較すると、2つの直列共振fres1,fres2によるVSWR波形が重なるA点の周波数fAとよく一致する。
従ってVSWR波形が重なるA点での放射利得の劣化は、反共振(並列共振モード)に強く影響されていると推察される。
Further, the frequency fres3 of the parallel resonance generated at the transition frequency from one series resonance to the other series resonance is specified by the change in reactance of the Smith chart and compared with the VSWR characteristic, the VSWR waveform by the two series resonances fres1 and fres2 is compared. Agrees well with the frequency fA at the point A where the two overlap.
Therefore, it is assumed that the deterioration of the radiation gain at the point A where the VSWR waveforms overlap is strongly influenced by the antiresonance (parallel resonance mode).

上記の様に従来のマルチバンドアンテナでは、直列共振モードから並列共振モードへ遷移する周波数帯では放射効率が低下する場合がある。従ってVSWR波形の重なり部(並列共振)を移動し、所望周波数帯外よりも低い周波数帯となる周波数で共振するように設定し、放射効率の良い直列共振モードだけを利用するようにして、目的の周波数帯域での放射利得の低下を改善するのは有効な方法であると言えるが、それでもなお幾つかの課題が残される。   As described above, in the conventional multiband antenna, the radiation efficiency may decrease in the frequency band where the series resonance mode is changed to the parallel resonance mode. Therefore, the overlapping part (parallel resonance) of the VSWR waveform is moved and set to resonate at a frequency that is lower than the desired frequency band, and only the series resonance mode with good radiation efficiency is used. Although it can be said that it is an effective method to improve the reduction of the radiation gain in the frequency band, there are still some problems.

第1の問題は、共振の主モードを直列共振とするため、回路基板に配置された状態と筐体内に配置された状態ではアンテナの放射特性が変化する点である。
逆Lアンテナや逆Fアンテナは、1/4波長のアンテナとして構成される。このアンテナは周知のように、給電により励振される放射素子に流れる電流と、グランド面に写像される放射素子イメージによる鏡像電流とによって所定のアンテナ特性を持つようにしたものであって、等価的に2倍の実効長(1/2波長)によるアンテナ特性を得ることができるものである。従ってグランド面の影響を受け易いとも言える。
放射特性の変動を抑えるには、アンテナが配置される筐体構造を考慮した設計が必要であるが、通常、アンテナ設計と筐体設計とは別々に行われるため最適設計は困難である。また筐体設計は特に意匠性を重視し、アンテナへの影響等は考慮され難いため、回路基板に配置された状態で優れた放射特性が得られても、筐体内に配置された状態の無線装置では、所望の特性が得られない問題があった。
The first problem is that the radiation characteristic of the antenna changes between the state of being arranged on the circuit board and the state of being arranged in the housing in order to set the main mode of resonance to series resonance.
The inverted L antenna and inverted F antenna are configured as quarter wavelength antennas. As is well known, this antenna has a predetermined antenna characteristic based on a current flowing through a radiating element excited by power feeding and a mirror image current based on a radiating element image mapped onto the ground plane. In addition, it is possible to obtain antenna characteristics with an effective length (1/2 wavelength) that is twice as long. Therefore, it can be said that it is easily affected by the ground plane.
In order to suppress fluctuations in the radiation characteristics, it is necessary to design in consideration of the housing structure in which the antenna is disposed. However, since the antenna design and the housing design are usually performed separately, it is difficult to perform the optimum design. In addition, since the design of the housing places particular emphasis on design, it is difficult to consider the effects on the antenna, so even if excellent radiation characteristics are obtained when placed on the circuit board, the wireless device in the state placed inside the housing The apparatus has a problem that desired characteristics cannot be obtained.

グランド面の影響を受け易いことから、筐体構造を考慮してアンテナ設計を行い、筐体の金属部分からの放射を利用して見かけ上のアンテナ体積を増して放射効率を向上しても、近接する人体の影響を強く受けて、アンテナの実行的な放射効率等が大きく損なわれる場合もあった。   Because it is easy to be affected by the ground plane, even if the antenna design is performed in consideration of the housing structure, and the radiation efficiency is improved by increasing the apparent antenna volume using the radiation from the metal part of the housing, In some cases, the effective radiation efficiency of the antenna is greatly impaired by the influence of a nearby human body.

また図1で示した様に、第1放射素子211と第2放射素子222とが逆方向に伸長する構造では、第1放射素子211、第2放射素子222の水平導体E2,E3には逆相の電流が流れる。このため水平導体部での放射が減じられて、実効的な放射はグランド面GNDに立設され給電回路と接続された共通導体E1で得られる放射が主となる。
従って優れた放射効率・利得を得ようとすれば、グランド面に立設される共通導体E1の長さを長くしなければ成らない。しかしながら、特に携帯電話等の小型移動体通信機器においては、アンテナを配置する空間は筐体によって制約されている為、前記導体部の長さを十分に得ることは実際困難であり、結果、放射効率・利得が得られないといった問題があった。これが第2の問題である。
Further, as shown in FIG. 1, in the structure in which the first radiating element 211 and the second radiating element 222 extend in opposite directions, the horizontal conductors E2 and E3 of the first radiating element 211 and the second radiating element 222 are reversed. Phase current flows. For this reason, the radiation at the horizontal conductor portion is reduced, and the effective radiation is mainly the radiation obtained by the common conductor E1 standing on the ground plane GND and connected to the feeder circuit.
Therefore, in order to obtain excellent radiation efficiency and gain, the length of the common conductor E1 standing on the ground surface must be increased. However, particularly in a small mobile communication device such as a mobile phone, the space in which the antenna is arranged is restricted by the housing, so that it is actually difficult to obtain a sufficient length of the conductor portion. There was a problem that efficiency and gain could not be obtained. This is the second problem.

また従来技術のように、同じモードで共振する2つの放射素子を同じ方向に伸長させると、放射素子間でのアイソレーションが得られ難いという第3の問題がある。この構成ではグランド面に流れる鏡像電流が同相となる為に、一方の放射素子について長さ他の設計変更を行うと、他方の放射素子のインピーダンスに影響して整合を乱し、この点でもアンテナ設計を困難とする要因となっていた。   Further, as in the prior art, when two radiating elements that resonate in the same mode are extended in the same direction, there is a third problem that it is difficult to obtain isolation between the radiating elements. In this configuration, the mirror image current flowing on the ground plane is in phase, so if one of the radiating elements is changed in length or other design changes, the impedance of the other radiating element is affected and the matching is disturbed. It was a factor that made design difficult.

そしてどちらの構成の場合も、グランド面近くに第1放射素子211、第2放射素子222の水平導体部を配置すると、十分な放射特性が得られないばかりか、VSWR特性が狭帯域化する第4の問題もあった。   In either case, if the horizontal conductor portions of the first radiating element 211 and the second radiating element 222 are arranged near the ground plane, sufficient radiation characteristics cannot be obtained, and the VSWR characteristic is narrowed. There were also four problems.

またマルチバンド化の為に、基本周波数帯、高次周波数帯のそれぞれに放射素子が必要であり、マルチバンドアンテナの小型化を阻害する第5の問題もあった。   In addition, for the purpose of multibanding, a radiating element is required for each of the fundamental frequency band and the higher-order frequency band, and there has been a fifth problem that hinders downsizing of the multiband antenna.

そこで本発明では、複数の放射素子を備えた小型のマルチバンドアンテナにおいて、VSWR特性が広周波数帯域で、かつ帯域内での放射利得に優れ、更にインピーダンス整合が容易で、放射特性が筐体や人体の影響を受け難いものとし、更にそれを用いた無線装置を提供することを目的とする。   Therefore, in the present invention, in a small multiband antenna having a plurality of radiating elements, the VSWR characteristics are wide in the frequency band, the radiation gain within the band is excellent, the impedance matching is easy, and the radiation characteristics are An object of the present invention is to provide a radio apparatus using the same that is hardly affected by the human body.

第1の発明は、周波数帯域が近接し、第1送受信系の周波数帯域f1bの中心周波数が、第2送受信系の周波数帯域f2bの中心周波数よりも相対的に高周波である少なくとも2つの送受信系に対応するマルチバンドアンテナであって、
並列共振モードで動作する第1放射素子と、前記第1放射素子の一部で構成され直列共振モードで動作する第2放射素子を備え、前記第1放射素子は第1送受信系の周波数帯域f1bにおける上限周波数f1bmaxから第2送受信系の周波数帯域f2bにおける下限周波数f2bminの間で共振し、
前記第2放射素子は、第2送受信系の周波数帯域における下限周波数f2bminよりも低周波数、又は第1送受信系の周波数帯域における上限周波数f1bmaxよりも高周波で共振するとともに、
第1放射素子の共振周波数f1rと、第2放射素子の共振周波数f2rとの間にあるVSWRのピーク周波数が前記下限周波数f2minよりも低周波、あるいは第1送受信系の周波数帯域における上限周波数f1bmaxよりも高周波としたことを特徴とするマルチバンドアンテナである。
The first invention includes at least two transmission / reception systems in which the frequency bands are close to each other and the center frequency of the frequency band f1b of the first transmission / reception system is relatively higher than the center frequency of the frequency band f2b of the second transmission / reception system. A corresponding multi-band antenna,
A first radiating element that operates in a parallel resonant mode; and a second radiating element that is configured by a part of the first radiating element and operates in a series resonant mode, wherein the first radiating element is a frequency band f1b of the first transmission / reception system. Resonates between the upper limit frequency f1bmax at the lower limit frequency f2bmin in the frequency band f2b of the second transmission / reception system,
The second radiating element resonates at a frequency lower than the lower limit frequency f2bmin in the frequency band of the second transmission / reception system or higher than the upper limit frequency f1bmax in the frequency band of the first transmission / reception system,
The peak frequency of VSWR between the resonance frequency f1r of the first radiating element and the resonance frequency f2r of the second radiating element is lower than the lower limit frequency f2min or the upper limit frequency f1bmax in the frequency band of the first transmission / reception system. Is a multiband antenna characterized by high frequency.

本発明では、並列共振モードで動作する第1放射素子を両端開放のT型アンテナ構造とし、直列共振モードで動作する第2放射素子を前記第1放射素子の一部で構成された逆Lアンテナ構造とするのが好ましい。
第1放射素子は、グランド面GNDに立設された共通導体E1に接続された水平導体E2,E3で構成される。水平導体E2,E3は異なる長さに形成され、その合計長は、前記第1放射素子では、第1送受信系の周波数帯域f1bにおける上限周波数f1bmaxから第2送受信系の周波数帯域f2bにおける下限周波数f2bminの間(基本周波数帯域)で共振する長さである。好ましくは、第1放射素子によるVSWRが最も小さくなる周波数を周波数f1bmaxから周波数f2bminの略中間周波数とする長さとする。
In the present invention, the first radiating element operating in the parallel resonant mode has a T-shaped antenna structure with both ends open, and the second radiating element operating in the series resonant mode is an inverted L antenna configured by a part of the first radiating element. A structure is preferable.
The first radiating element is composed of horizontal conductors E2 and E3 connected to a common conductor E1 erected on the ground plane GND. The horizontal conductors E2 and E3 are formed to have different lengths, and the total length of the horizontal conductors E2 and E3 is the lower limit frequency f2bmin in the frequency band f2b of the second transmission / reception system from the upper limit frequency f1bmax in the frequency band f1b of the first transmission / reception system. It is the length which resonates in between (basic frequency band). Preferably, the frequency at which the VSWR caused by the first radiating element is minimized is set to a length that is a substantially intermediate frequency from the frequency f1bmax to the frequency f2bmin.

第2放射素子は共通導体E1と接続された水平導体E2、又は共通導体E1と接続された水平導体E3によって逆Lアンテナ構造に構成される。共通導体E1と水平導体E2との合計長や、共通導体E1と水平導体E3との合計長は、基本周波数帯域よりも低周波数、又は高周波で共振するとともに、第1放射素子の共振周波数f1rと、第2放射素子の共振周波数f2rとの間にあるVSWRのピーク周波数が基本周波数帯域外にある長さに設定される。   The second radiating element is configured in an inverted L antenna structure by a horizontal conductor E2 connected to the common conductor E1 or a horizontal conductor E3 connected to the common conductor E1. The total length of the common conductor E1 and the horizontal conductor E2 and the total length of the common conductor E1 and the horizontal conductor E3 resonate at a frequency lower or higher than the fundamental frequency band, and the resonance frequency f1r of the first radiating element The peak frequency of VSWR between the resonance frequency f2r of the second radiating element is set to a length outside the fundamental frequency band.

なお引用文献2のように、二つの水平導体をグランド面と平行で同方向に伸長し、かつ近接して配置される場合には、放射素子の相互干渉によって、第2放射素子の直列共振モードによる共振が一つしか見えなくなる場合がある。
この場合には、第2放射素子を基本周波数帯域よりも低周波数で共振させ、VSWRが劣化するピーク周波数を基本周波数帯域外で下限周波数f2minよりも低周波側とするのが好ましい。
When the two horizontal conductors extend in the same direction in parallel with the ground plane and are arranged close to each other as in the cited document 2, the series resonance mode of the second radiating element is caused by mutual interference of the radiating elements. In some cases, only one resonance is visible.
In this case, it is preferable that the second radiating element is resonated at a frequency lower than the fundamental frequency band, and the peak frequency at which the VSWR deteriorates is outside the fundamental frequency band and lower than the lower limit frequency f2min.

また図2に示したマルチバンドアンテナの様に、第1放射素子の水平導体に接地導体GEを接続して構成しても良い。この様な構成は、丁度、直列共振モードで動作する逆Fアンテナと直列共振モードで動作する逆Lアンテナを組み合わせた構造と等価であり、インピーダンスの調整が容易となる。
この場合も、水平導体E2,E3による第1放射素子を並列モードで動作させ、共通導体E1と接続された水平導体E2、又は共通導体E1と接続された水平導体E3によって構成された第2放射素子を、基本周波数帯域よりも低周波数、又は高周波で共振させるとともに、第1放射素子の共振周波数f1rと、第2放射素子の共振周波数f2rとの間にあるVSWRのピーク周波数を基本周波数帯域外にあるように構成する。従って、一見構成が同じ引用文献1のアンテナとは動作や特性が異なるものとなる。
Further, like the multiband antenna shown in FIG. 2, the ground conductor GE may be connected to the horizontal conductor of the first radiating element. Such a configuration is equivalent to a structure in which an inverted F antenna that operates in the series resonance mode and an inverted L antenna that operates in the series resonance mode are equivalent, and impedance adjustment is easy.
Also in this case, the first radiation element by the horizontal conductors E2 and E3 is operated in the parallel mode, and the second radiation constituted by the horizontal conductor E2 connected to the common conductor E1 or the horizontal conductor E3 connected to the common conductor E1. The element is resonated at a frequency lower than or higher than the fundamental frequency band, and the peak frequency of VSWR between the resonance frequency f1r of the first radiating element and the resonance frequency f2r of the second radiating element is outside the fundamental frequency band. The configuration is as follows. Therefore, the operation and characteristics are different from the antenna of the cited document 1 having the same configuration at first glance.

2つの水平導体E2,E3の構成は、開放端側を図1で示したマルチバンドアンテナの様に異なる方向へ伸長させても良いし、図2で示したマルチバンドアンテナの様に途中で折り返して同方向に伸長させても良い。グランド面と略平行に、水平導体を同じ方向に伸長すれば、放射素子の伸長方向の長さを減じることが出来る。   In the configuration of the two horizontal conductors E2 and E3, the open end side may be extended in different directions like the multiband antenna shown in FIG. 1, or folded back halfway like the multiband antenna shown in FIG. May be extended in the same direction. If the horizontal conductor is extended in the same direction substantially parallel to the ground plane, the length of the radiating element in the extension direction can be reduced.

各導体は樹脂基板の面上に形成された電極パターンや前記樹脂基板に立設された帯状電極で構成される。   Each conductor is composed of an electrode pattern formed on the surface of the resin substrate or a strip electrode erected on the resin substrate.

また水平導体E2,E3の少なくとも一方の導体に折り返し部を形成すれば、高次共振の周波数を低減することが出来るので、基本周波数帯域(第1送受信系の周波数帯域f1b及び第2送受信系の周波数帯域f2b)よりも相対的に高周波である高次周波数帯域(第3の周波数帯域f3b)において動作させることが出来、これにより少なくとも3つの送受信系に対応したマルチバンドアンテナとすることが出来る。高次共振の周波数は折り返しにより対向する導体間やグランド面との間に生じる静電容量により調整することも出来る。
水平導体E2,E3のそれぞれに折り返し部を形成すれば、第3の周波数帯域f3b、第4の周波数帯域f4bにおいて動作させることが出来、これにより少なくとも4つの送受信系に対応したマルチバンドアンテナとすることが出来る。従って基本周波数帯域、高次周波数帯に対応した放射素子をそれぞれに準備する必要が無く、マルチバンドアンテナを小型に構成することが出来る。
Further, if the folded portion is formed in at least one of the horizontal conductors E2 and E3, the frequency of the higher-order resonance can be reduced. Therefore, the fundamental frequency band (the frequency band f1b of the first transmission / reception system and the second transmission / reception system) can be reduced. It is possible to operate in a higher-order frequency band (third frequency band f3b) that is a relatively higher frequency than the frequency band f2b), and thus a multiband antenna corresponding to at least three transmission / reception systems. The frequency of the higher-order resonance can be adjusted by the capacitance generated between the opposing conductors and the ground plane by folding.
If a folded portion is formed in each of the horizontal conductors E2 and E3, it is possible to operate in the third frequency band f3b and the fourth frequency band f4b, thereby providing a multiband antenna corresponding to at least four transmission / reception systems. I can do it. Therefore, there is no need to prepare radiating elements corresponding to the fundamental frequency band and the higher-order frequency band, and the multiband antenna can be made compact.

そして前記マルチバンドアンテナを用いて無線通信装置とすれば、無線通信装置の小型化・高性能化に寄与することが出来る。無線通信装置にはマルチバンドアンテナと接続される給電回路や、給電回路を制御する制御回路を含む。   If a multi-band antenna is used as a radio communication device, it can contribute to miniaturization and high performance of the radio communication device. The wireless communication device includes a power feeding circuit connected to the multiband antenna and a control circuit for controlling the power feeding circuit.

本発明によれば、小型のマルチバンドアンテナにおいて、VSWR特性が広周波数帯域で、かつ帯域内での放射効率・利得に優れ、更にインピーダンス整合が容易で、放射特性が筐体や人体の影響を受け難いものとし、更にそれを用いた無線装置を提供することができる。
また、本発明のマルチバンドアンテナは広帯域で、かつ帯域内での効率・利得に優れるので、これを用いた無線装置は、バッテリーの消費が低減されて、通信時間を長く、また通信エリアの拡大等の通話品質を向上することが出来る。
According to the present invention, in a small multi-band antenna, the VSWR characteristic is wide frequency band, excellent in radiation efficiency and gain within the band, impedance matching is easy, and the radiation characteristic is less influenced by the housing and the human body. In addition, it is possible to provide a wireless device using the same.
In addition, since the multiband antenna of the present invention has a wide band and is excellent in efficiency and gain within the band, a wireless device using the antenna can reduce battery consumption, extend communication time, and expand a communication area. The call quality such as can be improved.

マルチバンドアンテナの一構成例を説明する為の図である。It is a figure for demonstrating the example of 1 structure of a multiband antenna. マルチバンドアンテナの他の構成例を説明する為の図である。It is a figure for demonstrating the other structural example of a multiband antenna. マルチバンドアンテナの他の構成例を説明する為の図である。It is a figure for demonstrating the other structural example of a multiband antenna. マルチバンドアンテナの他の構成例を説明する為の図である。It is a figure for demonstrating the other structural example of a multiband antenna. 従来のマルチバンドアンテナのVSWR特性図である。It is a VSWR characteristic figure of the conventional multiband antenna. 本発明の一実施例に係るマルチバンドアンテナのVSWR特性を示す図である。It is a figure which shows the VSWR characteristic of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの構成を説明する為の斜視図である。It is a perspective view for demonstrating the structure of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの構成を説明する為の正面図である。It is a front view for demonstrating the structure of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの構成を説明する為の裏面図である。It is a back view for demonstrating the structure of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの構成を説明する為の展開図である。It is an expanded view for demonstrating the structure of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの基本周波数帯での構成を説明する為の展開図である。It is an expanded view for demonstrating the structure in the fundamental frequency band of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの高次周波数帯での構成を説明する為の展開図である。It is an expanded view for demonstrating the structure in the high frequency band of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナのVSWR特性を示す図である。It is a figure which shows the VSWR characteristic of the multiband antenna which concerns on one Example of this invention. 本発明の一実施例に係るマルチバンドアンテナの他のVSWR特性を示す図である。It is a figure which shows the other VSWR characteristic of the multiband antenna which concerns on one Example of this invention. 比較例に係るマルチバンドアンテナのVSWR特性を示す図である。It is a figure which shows the VSWR characteristic of the multiband antenna which concerns on a comparative example. 本発明の実施例と比較例に係るマルチバンドアンテナの平均アンテナ利得特性を示す図である。It is a figure which shows the average antenna gain characteristic of the multiband antenna which concerns on the Example and comparative example of this invention.

本発明のマルチバンドアンテナの基本構造は従来と同じであるが、ここでは図4に示すT型構造のアンテナに接地導体を設けた構造を基本構成とするマルチバンドアンテナを例に採り説明する。
このマルチバンドアンテナは、共通導体E1と、これに一端が接続し他端が開放端となりグランド面GNDと略平行に配置された平行導体E2,E3と、平行導体E3とグランド面との間に接続される接地導体GEを備える。
平行導体E2,E3はそれぞれグランド面GNDと略平行に、かつ逆方向に延び、それらの長さの和は実質的に基本周波数帯域内で並列共振する共振周波数f1rの波長λ1の略1/2となっており、並列共振モードで動作する第1放射素子233を構成している。第1放射素子233が並列共振する時の電流分布は、その両端で0(零)となり、中央部で最大となる。従って第1放射素子233の中央部では、実質的に電圧が0(零)となり、インピーダンスはショート状態となる。従って接地される接地導体GEは、給電時に電圧が0(零)となる部位の近傍に接続するのが好ましい。また、接地導体GEと平行導体E2との接続点の位置を調整することで、第1放射素子233のインピーダンスを調整することが出来る。
Although the basic structure of the multiband antenna of the present invention is the same as the conventional structure, here, a multiband antenna having a structure in which a ground conductor is provided on the T-shaped antenna shown in FIG. 4 will be described as an example.
This multiband antenna includes a common conductor E1, parallel conductors E2 and E3 that are connected to one end of the common conductor E1 and open at the other end and are substantially parallel to the ground plane GND, and between the parallel conductor E3 and the ground plane. A ground conductor GE to be connected is provided.
The parallel conductors E2 and E3 extend substantially parallel to the ground plane GND and in the opposite directions, respectively, and the sum of their lengths is substantially ½ of the wavelength λ1 of the resonance frequency f1r that resonates in parallel within the fundamental frequency band. Thus, the first radiating element 233 operating in the parallel resonance mode is configured. The current distribution when the first radiating element 233 resonates in parallel is 0 (zero) at both ends, and is maximum at the center. Therefore, in the central portion of the first radiating element 233, the voltage is substantially 0 (zero), and the impedance is in a short state. Accordingly, the ground conductor GE to be grounded is preferably connected in the vicinity of a portion where the voltage becomes 0 (zero) during power feeding. Further, the impedance of the first radiating element 233 can be adjusted by adjusting the position of the connection point between the ground conductor GE and the parallel conductor E2.

共通導体E1と平行導体E2、共通導体E1と平行導体E3は、直列共振モードで動作する第2放射素子211、第3放射素子222として機能する。共通導体E1と平行導体E2との長さの和は、基本周波数帯域外で直列共振する共振周波数f2rの波長λ2の略1/4となっている。また共通導体E1と平行導体E3との長さの和は、基本周波数帯域外で直列共振する共振周波数f3rの波長λ3の略1/4となっている。
図6は本発明のマルチバンドアンテナのVSWR特性を示す図である。共振周波数f2rと共振周波数f3rとは相対的にどちらが高周波側であっても良いが、その周波数は基本周波数帯域f1bの帯域外であって、必ず一方が基本周波数帯域f2bにおける下限周波数f2minよりも低周波であり、他方が上限周波数f1maxよりも高周波であるように設定する。なお直列共振モードの共振周波数が一つしか現われない場合には、基本周波数帯域f2bにおける下限周波数f2minよりも低周波となるようにする。
図6においては共振周波数f2rを、第2の送受信系の周波数帯域f2bにおける下限周波数f2minよりも低周波とし、そして、直列共振周波数と並列共振周波数との間の周波数帯に現れるVSWRが劣化する点Aもまた、下限周波数f2minよりも低周波としている。共振周波数f3rは、第1の送受信系の周波数帯域f1bにおける上限周波数f1maxよりも高周波としているが、図示は省略している。
The common conductor E1 and the parallel conductor E2, and the common conductor E1 and the parallel conductor E3 function as the second radiating element 211 and the third radiating element 222 that operate in the series resonance mode. The sum of the lengths of the common conductor E1 and the parallel conductor E2 is approximately ¼ of the wavelength λ2 of the resonance frequency f2r in series resonance outside the fundamental frequency band. Further, the sum of the lengths of the common conductor E1 and the parallel conductor E3 is approximately ¼ of the wavelength λ3 of the resonance frequency f3r in series resonance outside the fundamental frequency band.
FIG. 6 is a diagram showing the VSWR characteristics of the multiband antenna of the present invention. The resonance frequency f2r and the resonance frequency f3r may be relatively higher, but the frequency is outside the fundamental frequency band f1b, and one of them is always lower than the lower limit frequency f2min in the fundamental frequency band f2b. It is set so that the other is higher than the upper limit frequency f1max. When only one resonance frequency in the series resonance mode appears, the resonance frequency is set to be lower than the lower limit frequency f2min in the fundamental frequency band f2b.
In FIG. 6, the resonance frequency f2r is set to be lower than the lower limit frequency f2min in the frequency band f2b of the second transmission / reception system, and the VSWR appearing in the frequency band between the series resonance frequency and the parallel resonance frequency is deteriorated. A is also set to a frequency lower than the lower limit frequency f2min. The resonance frequency f3r is higher than the upper limit frequency f1max in the frequency band f1b of the first transmission / reception system, but is not shown.

なお本実施態様では平行導体E2,E3が逆方向に延びる構成であるが、例えば、平行導体E2を平行導体E3と同じ方向に伸長する様に折り返しても良いし、平行導体E3を平行導体E2と同じ方向に伸長する様に折り返しても良い。更に逆方向に折り返して平行導体E2,E3とが互いに異なる方向に伸長する様に、多重に折り返すように構成しても良い。このような構成によれば、マルチバンドアンテナを小型に構成することが出来るとともに、高次共振の周波数を調整して、少なくとも3つの送受信系に対応したマルチバンドアンテナとすることが出来る。
また平行導体E2,E3を近接させて配置し、相互干渉を生じさせることにより、高周波電流を第2放射素子211、第3放射電極222のいずれか一方に集中させ、直列共振モードによる共振を一つしか見えなくしても良い。この場合の直列共振は、第2アンテナを基本周波数帯域よりも低周波数で共振させ、VSWRが劣化するピーク周波数を基本周波数帯域外の低周波側とするのが好ましい。
In the present embodiment, the parallel conductors E2 and E3 extend in the opposite direction. For example, the parallel conductor E2 may be folded back so as to extend in the same direction as the parallel conductor E3, or the parallel conductor E3 may be turned into the parallel conductor E2. It may be folded back to extend in the same direction. Further, it may be configured to be folded back in multiple directions so that the parallel conductors E2 and E3 extend in different directions by folding in the opposite direction. According to such a configuration, the multiband antenna can be configured in a small size, and a multiband antenna corresponding to at least three transmission / reception systems can be obtained by adjusting the frequency of higher-order resonance.
Further, the parallel conductors E2 and E3 are arranged close to each other to cause mutual interference, so that the high-frequency current is concentrated on one of the second radiating element 211 and the third radiating electrode 222, and resonance in the series resonance mode is reduced. You may only see one. In the series resonance in this case, it is preferable that the second antenna is resonated at a frequency lower than the fundamental frequency band, and the peak frequency at which the VSWR deteriorates is on the low frequency side outside the fundamental frequency band.

従来技術ではマルチバンドアンテナに生じる並列共振を不要モードとしているが、本発明では並列共振モードをアンテナの主動作モードとし、直列共振モードの共振周波数を基本周波数帯域外となる様にするとともに、直列共振モードの共振と並列共振モードの共振との間に遷移的に生じるVSWR劣化ピークの周波数fAを基本周波数帯域外となる様にしている。
直列共振モードで動作する放射素子で生じる共振は、並列共振モードで動作する第1放射素子233で生じる共振よりも鋭い共振特性を示すため、基本周波数帯の下限周波数f2bmin、あるいは上限周波数f1bmaxの近傍となるように共振周波数を設定しても、VSWR劣化ピークの周波数fAを基本周波数帯域f1b外とすることが出来る。
In the prior art, parallel resonance that occurs in a multiband antenna is set as an unnecessary mode. However, in the present invention, the parallel resonance mode is set as the main operation mode of the antenna, and the resonance frequency of the series resonance mode is outside the fundamental frequency band. The frequency fA of the VSWR degradation peak that occurs transitively between the resonance in the resonance mode and the resonance in the parallel resonance mode is set to be outside the fundamental frequency band.
The resonance generated in the radiating element operating in the series resonance mode exhibits sharper resonance characteristics than the resonance generated in the first radiating element 233 operating in the parallel resonance mode, and therefore, is near the lower limit frequency f2bmin or the upper limit frequency f1bmax of the fundamental frequency band. Even if the resonance frequency is set so as to be, the frequency fA of the VSWR degradation peak can be outside the fundamental frequency band f1b.

並列共振モードを動作の主モードとするので、各放射素子の水平導体を地板に近接させても、電気的特性が減じられる程度は直列共振モードよりも軽微である。このため給電回路に接続された共通導体E1を短く形成して、低背のマルチバンドアンテナとすることが出来る。   Since the parallel resonance mode is the main mode of operation, even if the horizontal conductor of each radiating element is placed close to the ground plane, the degree to which the electrical characteristics are reduced is less than that of the series resonance mode. For this reason, the common conductor E1 connected to the power feeding circuit can be formed short and a low-profile multiband antenna can be obtained.

またグランド面GNDが近接すると、基本周波数帯域外に設定される直列共振モードでの放射は、主動作モードである並列共振モードと比べて減じられるとともに、VSWRも大きくなるので、第2放射素子211、第3放射素子222による基本周波数帯域外における無用な高周波信号の入放射を防ぐことが出来る。またグランド面GNDと近接させて直列共振モードでの動作周波数帯を狭帯域とすることで、並列共振モードでの動作周波数帯はいっそう広帯域化することが出来る。   Further, when the ground plane GND is close, the radiation in the series resonance mode set outside the fundamental frequency band is reduced as compared with the parallel resonance mode that is the main operation mode, and the VSWR is also increased. Further, it is possible to prevent the unnecessary radiation of the high frequency signal outside the fundamental frequency band by the third radiating element 222. Further, the operating frequency band in the parallel resonance mode can be further broadened by making the operating frequency band in the series resonance mode narrower by being close to the ground plane GND.

更に平行導体E2,E3を折り返して構成することで、少なくとも3つの送受信系に対応したマルチバンドアンテナとすることが出来る。   Furthermore, by configuring the parallel conductors E2 and E3 by folding, a multiband antenna corresponding to at least three transmission / reception systems can be obtained.

共通導体E1、平行導体E2,E3、接地導体GEは、FR4(ガラスエポキシ樹脂基板)などのプリント基板に、エッチングなどの公知の手法によって、低抵抗のCu薄板で形成したり、アルミナや他の誘電体セラミクス材料から成るセラミック基板に、印刷やエッチングなどの公知の手法によって低抵抗のAu,Ag,Cu等の良導体で形成しても良いし、Cuやリン青銅からなる導体薄板で構成しても良い。加工は容易だが外力に対して容易に変形し難いリン青銅などの合金で放射電極を形成すれば、支持体に依らず自由な形状に放射電極を形成することが可能となり好ましい。
またプリント基板やセラミック素体に形成した放射電極を、グランド面を有する他のプリント基板に実装して構成しても良いし、導体薄板と組み合わせて構成しても良い。
The common conductor E1, the parallel conductors E2 and E3, and the ground conductor GE are formed on a printed board such as FR4 (glass epoxy resin board) with a low resistance Cu thin plate by a known method such as etching, alumina, or other A ceramic substrate made of a dielectric ceramic material may be formed of a good conductor such as low resistance Au, Ag, or Cu by a known method such as printing or etching, or may be formed of a conductor thin plate made of Cu or phosphor bronze. Also good. If the radiation electrode is formed of an alloy such as phosphor bronze which is easy to process but is not easily deformed by an external force, it is possible to form the radiation electrode in a free shape regardless of the support.
Further, the radiation electrode formed on the printed circuit board or the ceramic body may be configured to be mounted on another printed circuit board having a ground surface, or may be configured in combination with a conductive thin plate.

以下本発明に係るマルチバンドアンテナについて詳細に説明する。図7はマルチバンドアンテナの斜視図であり、図8はマルチバンドアンテナをDA方向から見た平面図であり、図9はマルチバンドアンテナをDB方向から見た平面図である。なお図9においては、プリント回路基板100aを省略している。
本発明の実施形態のマルチバンドアンテナは、給電回路203と給電線路klを介して接続しグランド面GNDから立設された共通導体E1(導体素子e4a,e4b)と、前記グランド面GNDと略並行に形成された第1平行導体E2(導体素子e2,e3a,e3b,e3c,e3d,e3e)と、第2平行導体E3(導体素子e1a,e1b,e1c,e1d,e1e,e1f,e1g,e1h,e1i,e1j)と、第3平行導体E4(導体素子e6a,e6b)と、接地導体GE(導体素子e5a,e5b)を有している。
Hereinafter, the multiband antenna according to the present invention will be described in detail. 7 is a perspective view of the multiband antenna, FIG. 8 is a plan view of the multiband antenna viewed from the DA direction, and FIG. 9 is a plan view of the multiband antenna viewed from the DB direction. In FIG. 9, the printed circuit board 100a is omitted.
The multiband antenna according to the embodiment of the present invention includes a common conductor E1 (conductor elements e4a and e4b) that is connected to the feeder circuit 203 via the feeder line kl and is erected from the ground plane GND, and substantially parallel to the ground plane GND. The first parallel conductor E2 (conductor elements e2, e3a, e3b, e3c, e3d, e3e) and the second parallel conductor E3 (conductor elements e1a, e1b, e1c, e1d, e1e, e1f, e1g, e1h, e1i, e1j), a third parallel conductor E4 (conductor elements e6a, e6b), and a ground conductor GE (conductor elements e5a, e5b).

マルチバンドアンテナは、プリント回路基板100aの一面側に配置された、他のプリント回路基板100bに設けられた導体素子により構成されている。プリント回路基板100aにはグランド面GNDとなるグランドパターンと給電線路klが設けられている。なおプリント回路基板100aは銅張両面導体基板(ガラスエポキシ基板)であるが、プリント回路基板100bと重なる部位には、その両面にグランドパターンは形成されていない。   The multiband antenna is composed of conductor elements provided on another printed circuit board 100b, which are arranged on one side of the printed circuit board 100a. The printed circuit board 100a is provided with a ground pattern serving as a ground plane GND and a feed line kl. The printed circuit board 100a is a copper-clad double-sided conductor board (glass epoxy board), but a ground pattern is not formed on both sides of the printed circuit board 100a.

プリント回路基板100aと所定の距離を持って略平行に配置されるプリント回路基板100bには、共通導体E1と、第1平行導体E2(導体素子e2,e3a,e3b,e3c,e3d,e3e)と、第2平行導体E3(導体素子e1a,e1b,e1c,e1d,e1e,e1f,e1g,e1h,e1i,e1j)と、第3平行導体E4(導体素子e6a,e6b)と、第1平行導体E3に接続された接地導体GE(導体素子e5a,e5b)が形成されている。   The printed circuit board 100b disposed substantially parallel to the printed circuit board 100a at a predetermined distance includes a common conductor E1 and first parallel conductors E2 (conductor elements e2, e3a, e3b, e3c, e3d, e3e) The second parallel conductor E3 (conductor elements e1a, e1b, e1c, e1d, e1e, e1f, e1g, e1h, e1i, e1j), the third parallel conductor E4 (conductor elements e6a, e6b), and the first parallel conductor E3 A grounding conductor GE (conductor elements e5a, e5b) connected to is formed.

共通導体E1となる導体素子e4aの一端部に接続し、その延長する方向と直交し、図7で左方向に導体素子e1aが、右方向に導体素子e2が右方向に延長する。導体素子e2の端部は、同方向に伸長する導体素子e3aと接続し、導体素子e2,e3aの間には、導体素子e4aと平行に延長する接地導体GEを構成する接地導体e5aが接続されている。導体素子e4a,e5aはそれぞれ導体素子e4b,e5bを介して、プリント回路基板100aに形成された給電線路klとグランド面GNDとに接続されている。   Connected to one end of a conductor element e4a to be the common conductor E1, orthogonal to the extending direction, the conductor element e1a extends in the left direction and the conductor element e2 extends in the right direction in FIG. The end of the conductor element e2 is connected to a conductor element e3a extending in the same direction, and a ground conductor e5a constituting a ground conductor GE extending in parallel with the conductor element e4a is connected between the conductor elements e2 and e3a. ing. The conductor elements e4a and e5a are connected to the feed line kl and the ground plane GND formed on the printed circuit board 100a through the conductor elements e4b and e5b, respectively.

導体素子e1aの端部には、その延長する方向と直交して、図7で右方向に導体素子e1bが、左方向に導体素子e6aが延長するように接続する。導体素子e6aの端部は、一端が自由端となり、導体素子e1aと略平行に伸びる導体素子e6bと接続する。導体素子e1bの端部は、プリント回路基板100bの辺部まで及び、側面に形成された導体素子e1cを介して、裏面に形成された導体素子e1dと接続する。
プリント回路基板100bの裏面側には、コの字状の導体薄板からなる一体の帯状導体(図8、図9でハッチングした部分)が立設されている。本実施例では、帯状導体に厚さ0.2mm、幅1mmの薄板状のCu板金を用いた。帯状導体は、導体素子e1dとはんだ等のろう材で接続され、プリント基板100a側に伸びる導体素子e1eと、導体素子e1eの端部と接続し、二つのプリント回路基板100a,100b間に延びる導体素子e1fと、導体素子e1fの端部と接続し、プリント回路基板100bの裏面に形成された導体素子e1hとろう材で接続される導体素子e1gとで構成される。導体素子e1fは導体素子e1a,e2,e3aの合計長さよりも、長く形成されている。
導体素子e1hは、側面に形成された導体素子e1iを介して、表面に形成され一端が自由端の導体素子e1jと接続する。
The end of the conductor element e1a is connected so that the conductor element e1b extends in the right direction and the conductor element e6a extends in the left direction in FIG. 7 orthogonal to the extending direction. One end of the end portion of the conductor element e6a is a free end and is connected to the conductor element e6b extending substantially parallel to the conductor element e1a. The end portion of the conductor element e1b is connected to the conductor element e1d formed on the back surface through the conductor element e1c formed on the side surface to the side of the printed circuit board 100b.
On the back side of the printed circuit board 100b, an integral belt-like conductor (a hatched portion in FIGS. 8 and 9) made of a U-shaped conductor thin plate is erected. In this example, a thin plate-like Cu sheet metal having a thickness of 0.2 mm and a width of 1 mm was used for the strip-shaped conductor. The strip-shaped conductor is connected to the conductor element e1d with a brazing material such as solder, connected to the conductor element e1e extending to the printed circuit board 100a side, and the end of the conductor element e1e, and the conductor extending between the two printed circuit boards 100a and 100b. The element e1f is connected to the end of the conductor element e1f, and is composed of a conductor element e1h formed on the back surface of the printed circuit board 100b and a conductor element e1g connected by a brazing material. The conductor element e1f is formed longer than the total length of the conductor elements e1a, e2, e3a.
The conductor element e1h is formed on the surface via the conductor element e1i formed on the side surface, and one end of the conductor element e1h is connected to the conductor element e1j having a free end.

導体素子e3aの端部に接続し、その延長する方向と直交し、図7で右方向に導体素子e3bが延長する。導体素子e3bはプリント回路基板100bの辺部まで及び、側面に形成された導体素子e3cを介して、裏面に形成された導体素子e3dと接続する。導体素子e3dは、導体素子e1c,e1iよりも長く形成されており、帯状導体を潜って延伸し、その端部は図9で左方向に伸長し、端部が自由端の導体素子e3eと接続する。帯状導体を除く各導体素子は、エッチング等によって形成されたCu薄板で構成されている。本実施例ではプリント回路基板100a,100bにおける各部のCu薄板の厚みを0.1mm、幅1mmとした。プリント回路基板100a,100b間の間隔は5mmである。   The conductor element e3b is connected to the end of the conductor element e3a, orthogonal to the extending direction, and the conductor element e3b extends rightward in FIG. The conductor element e3b extends to the side of the printed circuit board 100b and is connected to the conductor element e3d formed on the back surface through the conductor element e3c formed on the side surface. The conductor element e3d is formed longer than the conductor elements e1c and e1i, extends under the strip-shaped conductor, its end extends in the left direction in FIG. 9, and the end is connected to the conductor element e3e having a free end. To do. Each conductor element excluding the belt-like conductor is composed of a Cu thin plate formed by etching or the like. In this embodiment, the thickness of the Cu thin plate in each part of the printed circuit boards 100a and 100b is 0.1 mm and the width is 1 mm. The interval between the printed circuit boards 100a and 100b is 5 mm.

図10はマルチバンドアンテナを平面に展開した図である。また、図11は図10のマルチバンドアンテナの基本周波数帯での動作を説明する為の図であり、図12は図10のマルチバンドアンテナの高次周波数帯での動作を説明する為の図である。
基本周波数帯での動作は、主として第1放射素子233による並列共振モードである。図11に示す様に、本実施例において第1放射素子233は、導体素子e4a,e4b及び給電線路klを含む共通導体E1と、導体素子e1a〜e1jで構成される水平導体E2と、導体素子e2,e3a〜e3eで構成される水平導体E3を備えている。水平導体E2,E3は幾重にも折り返された構造であるが、基本的な構成はT型アンテナと等価である。水平導体E2と水平導体E3の合計長は、基本周波数帯域(824MHz〜960MHz)内の周波数で並列共振する長さとなっている。
FIG. 10 is a diagram in which a multiband antenna is developed on a plane. 11 is a diagram for explaining the operation of the multiband antenna of FIG. 10 in the fundamental frequency band, and FIG. 12 is a diagram for explaining the operation of the multiband antenna of FIG. 10 in the higher frequency band. It is.
The operation in the fundamental frequency band is mainly a parallel resonance mode by the first radiating element 233. As shown in FIG. 11, in this embodiment, the first radiating element 233 includes a common conductor E1 including conductor elements e4a and e4b and a feed line kl, a horizontal conductor E2 including conductor elements e1a to e1j, and a conductor element. The horizontal conductor E3 comprised by e2, e3a-e3e is provided. Although the horizontal conductors E2 and E3 are folded back several times, the basic configuration is equivalent to a T-type antenna. The total length of the horizontal conductor E2 and the horizontal conductor E3 is a length that causes parallel resonance at a frequency within the fundamental frequency band (824 MHz to 960 MHz).

また第2放射素子211は、導体素子e4a,e4b及び給電線路klを含む共通導体E1と、導体素子e1a〜e1jで構成される水平導体E2と、導体素子e5a,e5bからなる接地導体GEと、水平導体E2と接地導体GEを繋ぐ導体素子e2を備えている。水平導体E2は幾重にも折り返された構造であるが、基本的な構成は逆F型アンテナと等価である。水平導体E2と接地導体GEの合計長は、基本周波数帯域(824MHz〜960MHz)外の周波数で直列共振する長さとなっており、本実施例では共振周波数が824MHzよりも低周波数となる様にしている。   The second radiating element 211 includes a common conductor E1 including the conductor elements e4a and e4b and the feed line kl, a horizontal conductor E2 including the conductor elements e1a to e1j, a ground conductor GE including the conductor elements e5a and e5b, A conductor element e2 that connects the horizontal conductor E2 and the ground conductor GE is provided. The horizontal conductor E2 has a structure that is folded back several times, but the basic configuration is equivalent to an inverted F-type antenna. The total length of the horizontal conductor E2 and the ground conductor GE is such that the series resonance occurs at a frequency outside the fundamental frequency band (824 MHz to 960 MHz). In this embodiment, the resonance frequency is lower than 824 MHz. Yes.

水平導体E2と水平導体E3とは近接して配置されており、後述する図13〜15のVSWR特性図では水平導体E3による共振は確認されず、相互干渉によって直列共振モードによる共振は一つしか見えなかった。   The horizontal conductor E2 and the horizontal conductor E3 are arranged close to each other, and in the VSWR characteristic diagrams of FIGS. 13 to 15 described later, resonance by the horizontal conductor E3 is not confirmed, and only one resonance in the series resonance mode is caused by mutual interference. I couldn't see it.

高次周波数帯では、第3放射素子244による並列共振モードと、第4放射素子255による直列共振モードで動作させる。図12に示す様に、本実施例において第3放射素子244は、導体素子e4a,e4b及び給電線路klを含む共通導体E1と、導体素子e1aと、導体素子e6a,e6bで構成される水平導体E4と、導体素子e2,e3a〜e3dで構成される水平導体E3を備えている。なお水平導体E3を構成する導体素子e3eは高次周波数では見えない。水平導体E3,E4は幾重にも折り返された構造であるが、基本的な構成は第1放射素子と同様にT型アンテナと等価である。水平導体E2と水平導体E3の合計長は、高次周波数帯域(1710MHz〜2170MHz)内の周波数で並列共振する長さとなっている。
なお実施例では、プリント回路基板100bにおいて、水平導体E2の一部(導体素子e1h〜e1j)と水平導体E3の一部(導体素子e3b〜e3d)を近接して配置することで容量的な結合をより強めている。この様な構成により、第3放射素子244の共振周波数を下げることが出来、水平導体E3,E4の長さを変える事無く、共振周波数を調整することが出来る。
In the high-order frequency band, the operation is performed in the parallel resonance mode by the third radiating element 244 and the series resonance mode by the fourth radiating element 255. As shown in FIG. 12, in this embodiment, the third radiating element 244 includes a common conductor E1 including conductor elements e4a and e4b and a feed line kl, a conductor element e1a, and a horizontal conductor composed of the conductor elements e6a and e6b. E4 and a horizontal conductor E3 including conductor elements e2 and e3a to e3d are provided. Note that the conductor element e3e constituting the horizontal conductor E3 is not visible at a high-order frequency. The horizontal conductors E3 and E4 have a structure that is folded back several times, but the basic configuration is equivalent to a T-type antenna like the first radiating element. The total length of the horizontal conductor E2 and the horizontal conductor E3 is a length that causes parallel resonance at a frequency within a high-order frequency band (1710 MHz to 2170 MHz).
In the embodiment, in the printed circuit board 100b, capacitive coupling is achieved by arranging a part of the horizontal conductor E2 (conductor elements e1h to e1j) and a part of the horizontal conductor E3 (conductor elements e3b to e3d) close to each other. Is strengthened. With such a configuration, the resonance frequency of the third radiating element 244 can be lowered, and the resonance frequency can be adjusted without changing the length of the horizontal conductors E3 and E4.

また第4放射素子255は、導体素子e4a,e4b及び給電線路klを含む共通導体E1と、導体素子e1aと、導体素子e6a,e6bで構成される水平導体E4と、導体素子e5a,e5bからなる接地導体GEと、水平導体E2と接地導体GEを繋ぐ導体素子e2を備えている。水平導体E4は幾重にも折り返された構造であるが、第2放射素子222と同様に基本的な構成は逆F型アンテナと等価である。水平導体E4と接地導体GEの合計長もまた、基本周波数帯域(1710MHz〜2170MHz)内の周波数で直列共振する長さとなっている。   The fourth radiating element 255 includes a common conductor E1 including the conductor elements e4a and e4b and the feed line kl, a conductor element e1a, a horizontal conductor E4 including the conductor elements e6a and e6b, and conductor elements e5a and e5b. A grounding conductor GE and a conductor element e2 that connects the horizontal conductor E2 and the grounding conductor GE are provided. Although the horizontal conductor E4 has a structure that is folded back several times, the basic configuration is equivalent to an inverted F-type antenna, like the second radiating element 222. The total length of the horizontal conductor E4 and the ground conductor GE is also a length that causes series resonance at a frequency within the fundamental frequency band (1710 MHz to 2170 MHz).

同様の構成で、第2放射素子211が基本周波数帯域(824MHz〜960MHz)内の周波数で直列共振する比較例のマルチバンドアンテナを作製した。
各導体部の寸法を表1に纏めて示す。なお、導体素子は幅を持って形成される為、長さは導体素子の幅を2等分する線分を基準としている。端部が他の導体素子と連なる場合はそれぞれの2等分線の交点を基準とし、端部が自由端である場合は2等分線の自由端部を長さの基準とする。
A multiband antenna of a comparative example in which the second radiating element 211 has series resonance at a frequency within the fundamental frequency band (824 MHz to 960 MHz) was manufactured with the same configuration.
Table 1 summarizes the dimensions of each conductor. Since the conductor element is formed with a width, the length is based on a line segment that bisects the width of the conductor element. When the end portion is connected to another conductor element, the intersection of each bisector is used as a reference, and when the end portion is a free end, the free end portion of the bisector is used as a reference for the length.

Figure 2010288175
Figure 2010288175

得られた実施例及び比較例のマルチバンドアンテナのVSWR特性と平均アンテナ利得特性を評価した。マルチバンドアンテナの性能評価について説明する。電波暗室内にマルチバンドアンテナから3m離れた位置に測定用アンテナを設け、測定用アンテナを50Ωの同軸ケーブルを介してネットワークアナライザに接続し、アンテナ特性を測定した。具体的にはマルチバンドアンテナが構成されたプリント回路基板において、共通導体が伸長する方向をX、それに直角な方向で水平導体が延びる方向をY、それらに垂直な方向、すなわちプリント回路基板の面に垂直な方向をZとし、XY、ZX、ZY面での平均利得と、VSWRを測定した。
図13及び図14は本発明の実施例に係るVSWR特性図であり、図15は比較例によるVSWR特性図である。また図16はVSWR特性図を示した各実施例と比較例の平均アンテナ利得特性を示す。なおここで平均アンテナ利得特性とは、マルチバンドアンテナの全方位平均アンテナ利得であって、X,Y,Zの全方位で測定して平均したアンテナ利得を言い、単位はdBiで表される。
The VSWR characteristics and average antenna gain characteristics of the obtained multiband antennas of Examples and Comparative Examples were evaluated. The performance evaluation of the multiband antenna will be described. A measurement antenna was provided at a position 3 m away from the multiband antenna in the anechoic chamber, the measurement antenna was connected to a network analyzer via a 50Ω coaxial cable, and the antenna characteristics were measured. Specifically, in a printed circuit board configured with a multiband antenna, X is a direction in which the common conductor extends, Y is a direction in which the horizontal conductor extends in a direction perpendicular to the common conductor, and a direction perpendicular thereto, that is, the surface of the printed circuit board. A direction perpendicular to Z was defined as Z, and an average gain and VSWR in the XY, ZX, and ZY planes were measured.
13 and 14 are VSWR characteristic diagrams according to the embodiment of the present invention, and FIG. 15 is a VSWR characteristic diagram according to a comparative example. FIG. 16 shows average antenna gain characteristics of the examples and comparative examples showing the VSWR characteristics. Here, the average antenna gain characteristic is an omnidirectional average antenna gain of a multi-band antenna, and means an antenna gain measured and averaged in all directions of X, Y, and Z, and the unit is expressed in dBi.

図13〜図15の各VSWR特性図中において、点線はVSWR値が3であることを示している。基本周波数帯を含む低周波数側でVSWR値が3以下である周波数帯域は、マーカ1,2で示す基本周波数帯域内に、第1放射素子の共振周波数(図示せず)と、第2放射素子の共振周波数f2rと、VSWR波形の重なり部Aが位置するように、第1、第2放射素子の共振周波数を調整した比較例のマルチバンドアンテナが、実施例よりも広くなっている。しかしながら図16に示した平均アンテナ利得特性では、前記重なり部Aを含む周波数で、平均アンテナ利得が著しく低下した。また、実施例1,2のVSWR特性を見ると、第2放射素子の共振周波数f2rがマーカ1で示す基本周波数帯域の下限周波数に近いほど、基本周波数帯域内でのVSWR値を小さくすることが出来、また平均アンテナ利得は増加した。   In each of the VSWR characteristic diagrams of FIGS. 13 to 15, the dotted line indicates that the VSWR value is 3. The frequency band having a VSWR value of 3 or less on the low frequency side including the fundamental frequency band is within the fundamental frequency band indicated by the markers 1 and 2 and the resonance frequency (not shown) of the first radiating element and the second radiating element. The multiband antenna of the comparative example in which the resonance frequency of the first and second radiating elements is adjusted so that the overlapping portion A of the resonance frequency f2r and the VSWR waveform is located is wider than the embodiment. However, in the average antenna gain characteristic shown in FIG. 16, the average antenna gain is remarkably lowered at the frequency including the overlapping portion A. Further, when looking at the VSWR characteristics of the first and second embodiments, the VSWR value in the fundamental frequency band can be reduced as the resonance frequency f2r of the second radiating element is closer to the lower limit frequency of the fundamental frequency band indicated by the marker 1. And the average antenna gain has increased.

E1 共通導体
E2,E3 水平導体
GE 接地導体
E1 Common conductor E2, E3 Horizontal conductor GE Ground conductor

Claims (6)

周波数帯域が近接し、第1送受信系の周波数帯域f1bの中心周波数が、第2送受信系の周波数帯域f2bの中心周波数よりも相対的に高周波である少なくとも2つの送受信系に対応するマルチバンドアンテナであって、
並列共振モードで動作する第1放射素子と、前記第1放射素子の一部で構成され直列共振モードで動作する第2放射素子を備え、前記第1放射素子は第1送受信系の周波数帯域f1bにおける上限周波数f1bmaxから第2送受信系の周波数帯域f2bにおける下限周波数f2bminの間で共振し、
前記第2放射素子は、第2送受信系の周波数帯域における下限周波数f2bminよりも低周波数、又は第1送受信系の周波数帯域における上限周波数f1bmaxよりも高周波で共振するとともに、
第1放射素子の共振周波数f1rと、第2放射素子の共振周波数f2rとの間にあるVSWRのピーク周波数が前記下限周波数f2minよりも低周波、あるいは第1送受信系の周波数帯域における上限周波数f1bmaxよりも高周波としたことを特徴とするマルチバンドアンテナ。
A multiband antenna corresponding to at least two transmission / reception systems in which the frequency bands are close to each other and the center frequency of the frequency band f1b of the first transmission / reception system is higher than the center frequency of the frequency band f2b of the second transmission / reception system. There,
A first radiating element that operates in a parallel resonant mode; and a second radiating element that is configured by a part of the first radiating element and operates in a series resonant mode, wherein the first radiating element is a frequency band f1b of the first transmission / reception system. Resonates between the upper limit frequency f1bmax at the lower limit frequency f2bmin in the frequency band f2b of the second transmission / reception system,
The second radiating element resonates at a frequency lower than the lower limit frequency f2bmin in the frequency band of the second transmission / reception system or higher than the upper limit frequency f1bmax in the frequency band of the first transmission / reception system,
The peak frequency of VSWR between the resonance frequency f1r of the first radiating element and the resonance frequency f2r of the second radiating element is lower than the lower limit frequency f2min or the upper limit frequency f1bmax in the frequency band of the first transmission / reception system. Multiband antenna characterized by high frequency.
並列共振モードで動作する前記第1放射素子を両端開放のT型アンテナ構造とし、直列共振モードで動作する前記第2放射素子を前記第1放射素子の一部で構成された逆Lアンテナ構造とすることを特徴とする請求項1に記載のマルチバンドアンテナ。   The first radiating element that operates in the parallel resonance mode has a T-shaped antenna structure with both ends open, and the second radiating element that operates in the series resonance mode has an inverted L antenna structure configured by a part of the first radiating element; The multiband antenna according to claim 1, wherein: 第1放射素子は、グランド面に立設された共通導体と、前記共通導体に接続された2つの水平導体で構成され、第1水平導体と第2水平導体とは異なる長さに形成され、その合計長は、前記第1放射素子では、第1送受信系の周波数帯域f1bにおける上限周波数f1bmaxから第2送受信系の周波数帯域f2bにおける下限周波数f2bminの間で共振する長さであることを特徴とする請求項1又は2に記載のマルチバンドアンテナ。   The first radiating element is composed of a common conductor erected on the ground surface and two horizontal conductors connected to the common conductor, and the first horizontal conductor and the second horizontal conductor are formed to have different lengths, The total length of the first radiating element is a length that resonates between an upper limit frequency f1bmax in the frequency band f1b of the first transmission / reception system and a lower limit frequency f2bmin in the frequency band f2b of the second transmission / reception system. The multiband antenna according to claim 1 or 2. 第2放射素子は共通導体と接続された第1水平導体又は第2水平導体によって構成され、共通導体と第1水平導体との合計長や、共通導体と第2水平導体との合計長は、下限周波数f2bminの低周波数、又は上限周波数f1bmaxよりも高周波で共振する長さであることを特徴とする請求項3に記載のマルチバンドアンテナ。   The second radiating element is configured by the first horizontal conductor or the second horizontal conductor connected to the common conductor, and the total length of the common conductor and the first horizontal conductor and the total length of the common conductor and the second horizontal conductor are: The multiband antenna according to claim 3, wherein the multiband antenna has a length that resonates at a low frequency of a lower limit frequency f2bmin or a frequency higher than an upper limit frequency f1bmax. 第1水平導体と第2水平導体の少なく一方を途中で折り返し、同方向に伸長させたことを特徴とする請求項3又は4に記載のマルチバンドアンテナ。   The multiband antenna according to claim 3 or 4, wherein at least one of the first horizontal conductor and the second horizontal conductor is folded in the middle and extended in the same direction. 第2放射素子を折り返し、第1送受信系の周波数帯域f1b及び第2送受信系の周波数帯域f2bよりも相対的に高周波である第3の周波数帯域f3bの間で共振する第3放射素子を構成したことを特徴とする請求項1乃至5のいずれかに記載のマルチバンドアンテナ。
The second radiating element is folded to configure a third radiating element that resonates between the frequency band f1b of the first transmission / reception system and the third frequency band f3b that is relatively higher in frequency than the frequency band f2b of the second transmission / reception system. The multiband antenna according to claim 1, wherein the multiband antenna is provided.
JP2009141923A 2009-06-15 2009-06-15 Multiband antenna Expired - Fee Related JP5435338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141923A JP5435338B2 (en) 2009-06-15 2009-06-15 Multiband antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141923A JP5435338B2 (en) 2009-06-15 2009-06-15 Multiband antenna

Publications (2)

Publication Number Publication Date
JP2010288175A true JP2010288175A (en) 2010-12-24
JP5435338B2 JP5435338B2 (en) 2014-03-05

Family

ID=43543534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141923A Expired - Fee Related JP5435338B2 (en) 2009-06-15 2009-06-15 Multiband antenna

Country Status (1)

Country Link
JP (1) JP5435338B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230708A (en) * 2012-07-23 2012-11-22 Toshiba Corp Card device provided with coupler and electronic apparatus
WO2013038462A1 (en) * 2011-09-16 2013-03-21 Fujitsu Limited Antenna apparatus
JP2014075774A (en) * 2012-09-13 2014-04-24 Panasonic Corp Antenna device, radio communication apparatus and electronic apparatus
JP2014078853A (en) * 2012-10-10 2014-05-01 Fujitsu Ltd Antenna device
JP2014120954A (en) * 2012-12-17 2014-06-30 Nec Access Technica Ltd Antenna device
US8797115B2 (en) 2011-04-26 2014-08-05 Kabushiki Kaisha Toshiba Coupler and electronic apparatus
KR20150088403A (en) * 2014-01-24 2015-08-03 삼성전자주식회사 Antenna device and electronic device comprising the same
JP2016134773A (en) * 2015-01-20 2016-07-25 三菱マテリアル株式会社 Antenna device
JP2016192684A (en) * 2015-03-31 2016-11-10 三菱マテリアル株式会社 Antenna device
US9620848B2 (en) 2011-02-08 2017-04-11 Lenovo (Singapore) Pte. Ltd. Dual band antenna
JP2017514403A (en) * 2014-04-28 2017-06-01 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. Antenna device and terminal
WO2017130348A1 (en) * 2016-01-28 2017-08-03 富士通株式会社 Antenna device
JP2019075613A (en) * 2017-10-12 2019-05-16 富士通コネクテッドテクノロジーズ株式会社 Radio communication device
JP2020092403A (en) * 2018-12-04 2020-06-11 大同股▲ふん▼有限公司 Finger type antenna
CN111869001A (en) * 2017-12-22 2020-10-30 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band antenna device with multi-element structure and method of designing the same
US11101561B2 (en) 2017-09-08 2021-08-24 Murata Manufacturing Co., Ltd. Dual band compatible antenna device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156543A (en) * 1999-11-22 2001-06-08 Toshiba Corp Antenna system
WO2002089249A1 (en) * 2001-04-23 2002-11-07 Yokowo Co., Ltd. Broad-band antenna for mobile communication
JP2003087043A (en) * 2001-07-05 2003-03-20 Toshiba Corp Antenna device
JP2004023369A (en) * 2002-06-14 2004-01-22 Toshiba Corp Antenna array and wireless apparatus
WO2005048404A1 (en) * 2003-11-13 2005-05-26 Hitachi Cable, Ltd. Antenna, method for manufacturing the same and portable radio terminal employing it
JP2005318018A (en) * 2004-04-26 2005-11-10 Fujitsu Ltd Antenna
JP2007020093A (en) * 2005-07-11 2007-01-25 Toshiba Corp Antenna device and mobile wireless device
JP2007036338A (en) * 2005-07-22 2007-02-08 Anten Corp Antenna
JP2007049325A (en) * 2005-08-09 2007-02-22 Toshiba Corp Antenna device
JP2007142895A (en) * 2005-11-18 2007-06-07 Toshiba Corp Wireless apparatus and electronic apparatus
JP2007166615A (en) * 2005-12-14 2007-06-28 Sanyo Electric Co Ltd Multiband antenna and multiband antenna system
JP2007266669A (en) * 2006-03-27 2007-10-11 Fujitsu Ltd Antenna and radio device
JP2009055300A (en) * 2007-08-27 2009-03-12 Fujikura Ltd Multiple frequency antenna

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156543A (en) * 1999-11-22 2001-06-08 Toshiba Corp Antenna system
WO2002089249A1 (en) * 2001-04-23 2002-11-07 Yokowo Co., Ltd. Broad-band antenna for mobile communication
JP2003087043A (en) * 2001-07-05 2003-03-20 Toshiba Corp Antenna device
JP2004023369A (en) * 2002-06-14 2004-01-22 Toshiba Corp Antenna array and wireless apparatus
WO2005048404A1 (en) * 2003-11-13 2005-05-26 Hitachi Cable, Ltd. Antenna, method for manufacturing the same and portable radio terminal employing it
JP2005318018A (en) * 2004-04-26 2005-11-10 Fujitsu Ltd Antenna
JP2007020093A (en) * 2005-07-11 2007-01-25 Toshiba Corp Antenna device and mobile wireless device
JP2007036338A (en) * 2005-07-22 2007-02-08 Anten Corp Antenna
JP2007049325A (en) * 2005-08-09 2007-02-22 Toshiba Corp Antenna device
JP2007142895A (en) * 2005-11-18 2007-06-07 Toshiba Corp Wireless apparatus and electronic apparatus
JP2007166615A (en) * 2005-12-14 2007-06-28 Sanyo Electric Co Ltd Multiband antenna and multiband antenna system
JP2007266669A (en) * 2006-03-27 2007-10-11 Fujitsu Ltd Antenna and radio device
JP2009055300A (en) * 2007-08-27 2009-03-12 Fujikura Ltd Multiple frequency antenna

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620848B2 (en) 2011-02-08 2017-04-11 Lenovo (Singapore) Pte. Ltd. Dual band antenna
US8797115B2 (en) 2011-04-26 2014-08-05 Kabushiki Kaisha Toshiba Coupler and electronic apparatus
US9178259B2 (en) 2011-04-26 2015-11-03 Kabushiki Kaisha Toshiba Coupler and electronic apparatus
WO2013038462A1 (en) * 2011-09-16 2013-03-21 Fujitsu Limited Antenna apparatus
JP2014510423A (en) * 2011-09-16 2014-04-24 富士通株式会社 Antenna device
JP2012230708A (en) * 2012-07-23 2012-11-22 Toshiba Corp Card device provided with coupler and electronic apparatus
JP2014075774A (en) * 2012-09-13 2014-04-24 Panasonic Corp Antenna device, radio communication apparatus and electronic apparatus
US9698480B2 (en) 2012-09-13 2017-07-04 Panasonic Intellectual Property Management Co., Ltd. Small antenna apparatus operable in multiple frequency bands
JP2014078853A (en) * 2012-10-10 2014-05-01 Fujitsu Ltd Antenna device
JP2014120954A (en) * 2012-12-17 2014-06-30 Nec Access Technica Ltd Antenna device
KR20150088403A (en) * 2014-01-24 2015-08-03 삼성전자주식회사 Antenna device and electronic device comprising the same
KR102126263B1 (en) 2014-01-24 2020-06-24 삼성전자주식회사 Antenna device and electronic device comprising the same
US10680349B2 (en) 2014-01-24 2020-06-09 Samsung Electronics Co., Ltd. Antenna device and electronic device including the same
JP2017514403A (en) * 2014-04-28 2017-06-01 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. Antenna device and terminal
US9991585B2 (en) 2014-04-28 2018-06-05 Huawei Device (Dongguan) Co., Ltd. Antenna apparatus and terminal
JP2016134773A (en) * 2015-01-20 2016-07-25 三菱マテリアル株式会社 Antenna device
JP2016192684A (en) * 2015-03-31 2016-11-10 三菱マテリアル株式会社 Antenna device
WO2017130348A1 (en) * 2016-01-28 2017-08-03 富士通株式会社 Antenna device
TWI624991B (en) * 2016-01-28 2018-05-21 Fujitsu Ltd Antenna device
US10587045B2 (en) 2016-01-28 2020-03-10 Fujitsu Limited Antenna device
US11101561B2 (en) 2017-09-08 2021-08-24 Murata Manufacturing Co., Ltd. Dual band compatible antenna device
JP2019075613A (en) * 2017-10-12 2019-05-16 富士通コネクテッドテクノロジーズ株式会社 Radio communication device
CN111869001A (en) * 2017-12-22 2020-10-30 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band antenna device with multi-element structure and method of designing the same
CN111869001B (en) * 2017-12-22 2024-02-09 Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 Configurable multi-band antenna device with multi-element structure and method of designing the same
JP2020092403A (en) * 2018-12-04 2020-06-11 大同股▲ふん▼有限公司 Finger type antenna
CN111276798A (en) * 2018-12-04 2020-06-12 大同股份有限公司 Finger-shaped antenna

Also Published As

Publication number Publication date
JP5435338B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5435338B2 (en) Multiband antenna
US7777677B2 (en) Antenna device and communication apparatus
JP4414437B2 (en) Planar inverted F-shaped antenna including a portion having a current value of zero between a power supply coupling portion and a ground plane coupling portion and a related communication device
EP1845582B1 (en) Wide-band antenna device comprising a U-shaped conductor antenna
US7170456B2 (en) Dielectric chip antenna structure
US20090273530A1 (en) Couple-fed multi-band loop antenna
WO2005109569A1 (en) Multi-band antenna, circuit substrate, and communication device
JP2006115448A (en) Wide-band built-in antenna
JP4858860B2 (en) Multiband antenna
JP2007502562A (en) ANTENNA DEVICE, MODULE HAVING THE ANTENNA DEVICE, AND RADIO COMMUNICATION DEVICE
JP2001085929A (en) Asymmetrical dipole antenna assembly
JP2002043826A (en) Antenna arrangement
JPWO2005069439A1 (en) Multiband antenna and portable communication device
KR100616545B1 (en) Multi-band laminated chip antenna using double coupling feeding
JP5061124B2 (en) Antenna device and communication device
JP2014053885A (en) Multi-band antenna
JP2005020266A (en) Multiple frequency antenna system
JP2010087752A (en) Multiband antenna
WO2004025781A1 (en) Loop antenna
EP2658031B1 (en) Antenna
JP2009111959A (en) Parallel 2-wire antenna and wireless communication device
JP2012169896A (en) Multiband antenna
JP2004147327A (en) Multiband antenna
EP2028717B1 (en) Multi-band antenna apparatus disposed on a three-dimensional substrate
KR100643543B1 (en) Multi-band monopole antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Ref document number: 5435338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees