JPH098539A - Dielectric resonator antenna - Google Patents

Dielectric resonator antenna

Info

Publication number
JPH098539A
JPH098539A JP15287995A JP15287995A JPH098539A JP H098539 A JPH098539 A JP H098539A JP 15287995 A JP15287995 A JP 15287995A JP 15287995 A JP15287995 A JP 15287995A JP H098539 A JPH098539 A JP H098539A
Authority
JP
Japan
Prior art keywords
dielectric
resonator antenna
conductor plate
dielectric resonator
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15287995A
Other languages
Japanese (ja)
Inventor
Takashi Fukagawa
隆 深川
Takasue Adachi
尚季 安達
Makoto Hasegawa
誠 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15287995A priority Critical patent/JPH098539A/en
Publication of JPH098539A publication Critical patent/JPH098539A/en
Priority to US09/584,789 priority patent/US6198450B1/en
Priority to US09/793,044 priority patent/US6531991B2/en
Priority to US09/794,339 priority patent/US6407718B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE: To allow the dielectric resonator antenna configured small to send/ receive a circularly polarized wave. CONSTITUTION: A conductor plate 2 is adhered to a bottom side of a semispherical dielectric body 1 in which a change in a dielectric constant is a maximum and a minimum respectively in directions AB and CD orthogonal to each other, power is fed in phase through a 1st coaxial feeder and a 2nd coaxial feeder of the same length. Since the resonance frequency of the electric field differs in the directions AB, CD in the inside of the dielectric body 1, the electric field emitted from the antenna in the direction AB differs in phase from that in the direction CD by 90 deg. and the combined electric field of both the electric fields causes a circularly polarized wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は衛星放送、衛星通信ある
いは移動体通信等の送信受信を目的とした円偏波の誘電
体共振器アンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circularly polarized dielectric resonator antenna for transmitting / receiving satellite broadcasting, satellite communication or mobile communication.

【0002】[0002]

【従来の技術】近年、衛星放送、衛星通信あるいは移動
体通信等の発達に伴い、これらの放送を受信する機器や
通信の送信受信機器が一般の家庭や自動車等に設置、搭
載される例が増大している。これらの機器の中で特にア
ンテナは、家屋や移動体の外部に設置されるため、設置
場所の制約条件、外観の問題等から特に小型化が必要に
なる。
2. Description of the Related Art In recent years, with the development of satellite broadcasting, satellite communication, mobile communication, etc., there have been cases in which devices for receiving these broadcasts and devices for transmitting and receiving communication are installed and mounted in general homes, automobiles, etc. It is increasing. Among these devices, the antenna is particularly installed outside the house or the moving body, so that the antenna needs to be particularly downsized due to the restrictions on the installation place, the appearance problem, and the like.

【0003】従来、こうしたアンテナの小型化を行った
例として誘電体を用いた共振アンテナがある。誘電体を
用いた共振アンテナは、比誘電率が1より大きい誘電体
材料を用いて、アンテナの物理的共振長を小さくしアン
テナ全体の寸法を小さくしたアンテナであるが、こうし
た誘電を用いた共振アンテナの例として、マイクロスト
リップアンテナや半球型誘電体共振器アンテナが挙げら
れる。
Conventionally, there is a resonant antenna using a dielectric as an example of miniaturizing such an antenna. A resonant antenna using a dielectric is an antenna in which the physical resonance length of the antenna is reduced by using a dielectric material having a relative permittivity larger than 1, and the size of the entire antenna is reduced. Examples of antennas include microstrip antennas and hemispherical dielectric resonator antennas.

【0004】マイクロストリップアンテナについては例
えば、羽石操監修「最新平面アンテナ技術」(株)総合
技術センター発行に記載されており、半球型誘電体共振
器アンテナについては例えば、アイ・イー・イー・トラ
ンザクション・アンテナ・アンド・プロパゲーション1
0(1993年)第1390頁から第1398頁(IEEE
Trans. Antennas Propagation 10(1993)P.1390-1398)
に発表されている。
The microstrip antenna is described, for example, in "Latest Planar Antenna Technology" supervised by Misao Haishi, published by General Technology Center Co., Ltd., and the hemispherical dielectric resonator antenna is described in, for example, iE transaction・ Antenna and Propagation 1
0 (1993) pp. 1390 to 1398 (IEEE
Trans. Antennas Propagation 10 (1993) P.1390-1398)
Has been announced.

【0005】特に、半球型誘電体共振器アンテナは金型
等による加工で作成され、エッチングの工程数が少なく
てよいため、民生用途におけるアンテナの量産をする際
に好適であり、従来用いられてきた半球型の誘電体共振
器アンテナは、直線偏波を用いるものであった。
In particular, the hemispherical type dielectric resonator antenna is produced by processing using a mold or the like and requires a small number of etching steps. Therefore, the hemispherical type dielectric resonator antenna is suitable for mass production of the antenna for consumer use, and has been conventionally used. The hemispherical dielectric resonator antenna uses linearly polarized waves.

【0006】[0006]

【発明が解決しようとする課題】衛星放送、衛星通信の
場合、偏波によるエリア限定を行い周波数有効利用を図
る理由から円偏波が用いらる場合があり、また移動体通
信の場合に直線偏波を用いると、移動物体と基地局の位
置関係により互いのアンテナの角度が変化するため交差
偏波成分が増大し、受信感度が劣化するため円偏波を使
用する必要がある場合がある。これらの場合、従来の直
線偏波の半球型誘電体共振器アンテナを使用することが
できないという問題があった。
In the case of satellite broadcasting and satellite communication, circular polarization may be used for the purpose of effective frequency utilization by limiting the area by polarization, and in the case of mobile communication, linear polarization is used. When polarized waves are used, it is necessary to use circular polarized waves because cross-polarization components increase due to changes in the antenna angles of each other due to the positional relationship between the moving object and the base station, and reception sensitivity deteriorates. . In these cases, there is a problem that the conventional linearly polarized hemispherical dielectric resonator antenna cannot be used.

【0007】本発明は、上記従来の課題を解決するもの
であり、円偏波を用いた衛星放送、衛星通信、移動体通
信等の送信受信用の誘電体共振器アンテナを提供するこ
とを目的とするものである。
The present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a dielectric resonator antenna for transmitting and receiving satellite broadcasting, satellite communication, mobile communication, etc. using circularly polarized waves. It is what

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、中心を通り互いに直交する断面内で単位長
さあたりの誘電率の変化が最大および最小となる誘電体
の球、または、誘電率が一定の誘電体の回転楕円体、お
よび前記誘電体の球への給電手段を備えたものである。
In order to achieve the above object, the present invention provides a sphere of a dielectric material having a maximum and minimum change in dielectric constant per unit length in a cross section passing through the center and orthogonal to each other, or , A dielectric spheroid having a constant dielectric constant, and a means for feeding the sphere of the dielectric.

【0009】本発明はまた、誘電体共振器アンテナの誘
電体の球に代えて、底面の中心を通り互いに直交する断
面内で単位長さあたりの誘電率の変化が最大および最小
となる半球の誘電体、または、底面の長径と短径が異な
る半回転楕円体の一定の誘電率の誘電体、および前記誘
電体の底面に接着した導電体板を備えたものである。
In the present invention, instead of the dielectric sphere of the dielectric resonator antenna, a hemisphere in which the change in the dielectric constant per unit length is the maximum and the minimum in the cross sections which pass through the center of the bottom surface and are orthogonal to each other. A dielectric or a dielectric having a constant dielectric constant of a semi-spheroid having different major and minor axes of the bottom surface, and a conductor plate adhered to the bottom surface of the dielectric material.

【0010】本発明はまた、給電手段として、1つまた
は複数の同軸型給電線路を有し、前記同軸型給電線路の
外導体を前記導電体板に接続し内導体を前記半球の誘電
体と接続したものである。
The present invention also has, as power feeding means, one or a plurality of coaxial feed lines, the outer conductor of the coaxial feed line is connected to the conductor plate, and the inner conductor is the hemispherical dielectric. It is connected.

【0011】本発明はまた、給電手段として、前記導電
体板に、前記半球の誘電体の単位長さあたりの誘電率の
変化が最大となる方向と45度の角度を成す方向に長方
形の長手方向が一致するスロットを有し、前記スロット
と直交し前記導電体板と平行に配置された給電線路を備
えたものである。
The present invention also provides, as a power feeding means, a rectangular shape on the conductor plate in a direction forming an angle of 45 degrees with the direction in which the change in the dielectric constant per unit length of the hemispherical dielectric is maximum. The power supply line is provided with slots having the same direction and arranged orthogonal to the slots and parallel to the conductor plate.

【0012】本発明はまた、給電手段として、前記導電
体板に、前記半球の誘電体の単位長さあたりの誘電率の
変化が最大および最小となる方向とスロットの長手方向
が一致する十字型スロットを有し、前記十字型スロット
と直交し前記導電体板と平行に配置された2本の等しい
長さの給電線路を備えたものである。
The present invention also provides, as a power feeding means, a cross shape in which the direction in which the change in the dielectric constant per unit length of the hemispherical dielectric is the maximum and the minimum is the same as the longitudinal direction of the slot on the conductive plate. The present invention is provided with two feed lines of equal length, each having a slot and arranged orthogonal to the cross-shaped slot and parallel to the conductor plate.

【0013】本発明はまた、給電手段として、前記導電
体板に、前記半回転楕円体の長径方向と45度の角度を
成す方向に長方形の長手方向が一致するスロットを有
し、前記スロットと直交し前記導電体板と平行に配置さ
れた給電線路を備えたものである。
According to the present invention, as a power feeding means, the conductor plate has a slot whose rectangular longitudinal direction coincides with a direction forming an angle of 45 degrees with the major axis direction of the semi-spheroid, The power supply line is provided so as to be orthogonal to and parallel to the conductor plate.

【0014】本発明はまた、給電手段として、前記導電
体板に、前記半回転楕円体の長径および短径方向とスロ
ットの長手方向が一致する十字型スロットを有し、前記
十字型スロットと直交し前記導電体板と平行に配置され
た2本の等しい長さの給電線路を備えたものである。
The present invention also has, as power feeding means, a cross-shaped slot in which the major axis and minor axis directions of the semi-spheroid and the longitudinal direction of the slot coincide with each other in the conductor plate, and the cross-shaped slot is orthogonal to the cross-shaped slot. However, it is provided with two feed lines of equal length arranged in parallel with the conductor plate.

【0015】[0015]

【作用】従って、本発明によれば、球または半球の誘電
体で中心を通り互いに直交する断面内で単位長さあたり
の誘電率の変化が最大および最小となるため、共振波長
が互いに直交する方向で異なり、同軸型給電線やスロッ
トなどの給電手段でアンテナの中心周波数で給電を行っ
た場合、誘電体共振器アンテナが発生する互いに直交し
た電界は90度の位相差を持たせることができ、両者の
電界の和である円偏波を発生できるという作用を有す
る。
Therefore, according to the present invention, since the change of the dielectric constant per unit length is the maximum and the minimum in the cross section passing through the center and orthogonal to each other in the spherical or hemispherical dielectric, the resonance wavelengths are orthogonal to each other. When the electric power is fed at the center frequency of the antenna by the feeding means such as the coaxial type feeding line or the slot, the electric fields generated by the dielectric resonator antenna and having mutually orthogonal directions can have a phase difference of 90 degrees. , Which has the effect of generating a circularly polarized wave, which is the sum of the electric fields of both.

【0016】また、本発明によれば、底面の長径と短径
が異なる回転楕円体または半回転楕円体の一定の誘電率
の誘電体により、共振波長が互いに直交する方向で異な
り、給電手段でアンテナの中心周波数で給電を行った場
合、誘電体共振器アンテナが発生する互いに直交した電
界は90度の位相差を持たせることができ、両者の電界
の和である円偏波を発生できるという作用を有する。
Further, according to the present invention, the resonance wavelengths are different in the directions orthogonal to each other by the spheroid or semi-spheroidal dielectric material having a constant permittivity whose major axis and minor axis of the bottom surface are different from each other. When power is fed at the center frequency of the antenna, the mutually orthogonal electric fields generated by the dielectric resonator antenna can have a phase difference of 90 degrees, and circular polarization, which is the sum of the electric fields of the two, can be generated. Have an effect.

【0017】[0017]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について説明
する。図1は本発明の第1の実施例における誘電体共振
器アンテナの斜視図を示すものである。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a perspective view of a dielectric resonator antenna according to the first embodiment of the present invention.

【0018】図1において、1は誘電材料が半球に充填
されてなる誘電体、2は誘電体1に接着されている導電
体板、3は第1の同軸型給電線路、4は第2の同軸型給
電線路である。
In FIG. 1, reference numeral 1 is a dielectric material in which a hemisphere is filled with a dielectric material, 2 is a conductor plate adhered to the dielectric material, 3 is a first coaxial feed line, and 4 is a second. It is a coaxial feed line.

【0019】以上のように構成された誘電体共振器アン
テナについて、以下その動作を説明する。
The operation of the dielectric resonator antenna configured as described above will be described below.

【0020】図1において、半球の誘電体1は、図中一
点鎖線で表すAB方向、CD方向それぞれで単位長さあ
たりの誘電率の変化が最大、最小となるように配置され
る。また、半球の平坦な底面には導電体板2が接着され
る。
In FIG. 1, the hemispherical dielectric 1 is arranged so that the change in the dielectric constant per unit length is maximum and minimum in the AB direction and the CD direction, which are indicated by the alternate long and short dash lines in the figure. The conductor plate 2 is adhered to the flat bottom surface of the hemisphere.

【0021】第1の同軸型給電線路3および第2の同軸
型給電線路4の内導体は、半球の誘電体1に接続され、
外導体は導電体2に接続され、この2つの同軸型給電線
路は等しい長さで外部の機器へ接続され入出力用線路と
して使われる。
The inner conductors of the first coaxial feed line 3 and the second coaxial feed line 4 are connected to the hemispherical dielectric 1,
The outer conductor is connected to the conductor 2, and the two coaxial feed lines are connected to an external device with the same length and used as input / output lines.

【0022】第1の同軸型給電線路3の内導体は、図1
中のAB方向の底面と垂直な面内で半球の誘電体1と接
続され、AB方向での位置は誘電率分布により決定され
るインピーダンスにより決まる。また、第2の同軸型給
電線路4の内導体は同様に、図1中のCD方向の底面と
垂直な面内で半球の誘電体1と接続される。両者の同軸
型給電線路は同じ長さであるため、半球へは同位相で給
電が行われる。
The inner conductor of the first coaxial feed line 3 is shown in FIG.
It is connected to the hemispherical dielectric 1 in a plane perpendicular to the bottom surface in the AB direction inside, and the position in the AB direction is determined by the impedance determined by the dielectric constant distribution. Similarly, the inner conductor of the second coaxial feed line 4 is connected to the hemispherical dielectric 1 in a plane perpendicular to the bottom surface in the CD direction in FIG. Since both coaxial feed lines have the same length, power is fed to the hemisphere in the same phase.

【0023】誘電体1内部に第1の同軸型給電線3によ
りAB方向、第2同軸型給電線4によりCD方向の電界
が発生するが、それぞれの方向で単位長さあたりの誘電
率の変化が異なるために、等価的に物理長が変わり共振
周波数はそれぞれの方向で異なった値f1およびf2と
なる。
In the dielectric 1, an electric field in the AB direction is generated by the first coaxial power supply line 3 and an electric field in the CD direction is generated by the second coaxial power supply line 4, and the dielectric constant per unit length changes in each direction. , The physical length is equivalently changed, and the resonance frequencies have different values f1 and f2 in the respective directions.

【0024】この場合に第1の同軸型給電線路3および
第2の同軸型給電線路4にf1とf2の中間の周波数f
0の信号を入力した場合、この誘電体共振器アンテナか
ら放射される電界は、位相の異なるAB方向の電界とC
D方向の電界の和となり、両者の位相差が90度の場合
に円偏波となる。
In this case, the first coaxial feed line 3 and the second coaxial feed line 4 have an intermediate frequency f between f1 and f2.
When a signal of 0 is input, the electric field radiated from this dielectric resonator antenna is the same as the electric field in the AB direction having a different phase and C.
It becomes the sum of the electric fields in the D direction, and becomes circularly polarized when the phase difference between them is 90 degrees.

【0025】図2(a)は、図1の半球の誘電体1のA
B方向の誘電率の変化、図2(b)はCD方向の誘電率
の変化の実施例を示したものである。
FIG. 2A shows A of the hemispherical dielectric 1 of FIG.
FIG. 2B shows an example of a change in the dielectric constant in the B direction, and FIG. 2B shows an example of a change in the dielectric constant in the CD direction.

【0026】図2において、5はAB方向の誘電率の変
化、6はCD方向の誘電率の変化である。本実施例では
AB方向の単位長さあたりの誘電率の変化が最大であ
り、またCD方向の単位長さあたりの誘電率の変化が最
小であるため、それぞれAB方向の誘電率の変化5、C
D方向の誘電率の変化6に示す誘電率の分布とすること
ができる。また、図1の中心点Oを含む他の方向での誘
電率分布は、AB方向、CD方向の中間値を採り連続的
に変化する。
In FIG. 2, 5 is a change in the dielectric constant in the AB direction, and 6 is a change in the dielectric constant in the CD direction. In this example, the change in the dielectric constant per unit length in the AB direction is the maximum, and the change in the dielectric constant per unit length in the CD direction is the minimum, so that the change in the dielectric constant 5 in the AB direction is 5, C
The distribution of the dielectric constant shown by the change 6 of the dielectric constant in the D direction can be obtained. In addition, the dielectric constant distribution in other directions including the center point O in FIG. 1 changes continuously with an intermediate value in the AB and CD directions.

【0027】なお、図2に示すような誘電率の変化を半
球の誘電体1で実現するには、誘電率の異なる材料を適
宜変化させて混ぜ合わせたり、同一の誘電材料に他の誘
電材料量を混入変化させるなどして、比較的自由に作成
が可能である。
In order to realize the change in the dielectric constant as shown in FIG. 2 with the hemispherical dielectric 1, materials having different dielectric constants are appropriately changed and mixed, or the same dielectric material is mixed with another dielectric material. It is possible to create relatively freely by changing the amount.

【0028】図3は、誘電体共振器アンテナから放射さ
れるAB方向の電界およびCD方向の電界の周波数と位
相の関係の実施例を示したものである。図3において、
7はAB方向の電界の周波数と位相の関係、8はCD方
向の電界の周波数と位相の関係である。AB方向は単位
長さあたりの誘電率の変化が最大であるため、等価的な
物理長は最小となり共振周波数は最大値f1となる。C
D方向は単位長さあたりの誘電率の変化が最小であるた
め、等価的な物理長は最大となり共振周波数は最小値f
2となる。
FIG. 3 shows an example of the relationship between the frequency and phase of the electric field in the AB direction and the electric field in the CD direction radiated from the dielectric resonator antenna. In FIG.
7 is the relationship between the frequency and the phase of the electric field in the AB direction, and 8 is the relationship between the frequency and the phase of the electric field in the CD direction. Since the change in the dielectric constant per unit length is the largest in the AB direction, the equivalent physical length is the minimum and the resonance frequency is the maximum value f1. C
Since the change in the dielectric constant per unit length is the minimum in the D direction, the equivalent physical length is the maximum and the resonance frequency is the minimum value f.
It becomes 2.

【0029】両周波数の中間値f0の信号を入力した場
合、アンテナから放射されるAB方向の電界の位相は、
AB方向の電界の周波数と位相の関係7より周波数f0
のとき−45度の値をもち、アンテナから放射されるC
D方向の電界の位相は、CD方向の電界の周波数と位相
の関係8より周波数f0のとき45度の値をもつ。従っ
て、両電界の位相差は90度となる。
When a signal having an intermediate value f0 of both frequencies is input, the phase of the electric field in the AB direction radiated from the antenna is
From the relationship 7 between the frequency and the phase of the electric field in the AB direction, the frequency f0
C has a value of -45 degrees and radiates from the antenna
The phase of the electric field in the D direction has a value of 45 degrees at the frequency f0 according to the relationship 8 between the frequency and the phase of the electric field in the CD direction. Therefore, the phase difference between both electric fields is 90 degrees.

【0030】このように本実施例によれば、半球の誘電
体の底面の中心を通り互いに直交する断面内で単位長さ
あたりの誘電率の変化が最大および最小にすることによ
り、90度の位相差のある互いに直交する電界を発生す
ることができ、半球の誘電体共振器アンテナにおいて円
偏波を発生することができる。
As described above, according to the present embodiment, the change in the dielectric constant per unit length is maximized and minimized in the cross sections that pass through the center of the bottom surface of the hemispherical dielectric and are orthogonal to each other, so that It is possible to generate mutually orthogonal electric fields having a phase difference, and it is possible to generate circularly polarized waves in the hemispherical dielectric resonator antenna.

【0031】尚、上記実施例では、給電手段として2つ
の同軸型給電線路を用いているが、1つの同軸型給電線
路を用い、同軸型給電線路の内導体を図1の中心点Oで
AB方向と45度角度が異なる方向で半球の誘電体と接
続するようにしてもよい。
In the above embodiment, two coaxial feed lines are used as the feeding means, but one coaxial feed line is used and the inner conductor of the coaxial feed line is AB at the center point O in FIG. You may make it connect with a hemispherical dielectric body in the direction where a 45 degree angle differs from a direction.

【0032】(実施例2)以下、本発明の第2の実施例
について説明する。図4は本発明の第2の実施例におけ
る誘電体共振器アンテナの斜視図を示すものである。
(Second Embodiment) A second embodiment of the present invention will be described below. FIG. 4 is a perspective view of a dielectric resonator antenna according to the second embodiment of the present invention.

【0033】図4において、2は導電体板、3は第1の
同軸型給電線路、4は第2の同軸型給電線路、9は半回
転楕円体の誘電体である。図4において、図1の構成と
異なる点は、図1の半球の誘電体の代わりに、誘電率が
一定の半回転楕円体の誘電体9を用いている点である。
In FIG. 4, 2 is a conductor plate, 3 is a first coaxial feed line, 4 is a second feed line, and 9 is a semi-spheroidal dielectric. 4 is different from the configuration of FIG. 1 in that a semi-spheroidal dielectric 9 having a constant dielectric constant is used instead of the hemispherical dielectric of FIG.

【0034】以上のように構成された誘電体共振器アン
テナについて、以下その動作を説明する。
The operation of the dielectric resonator antenna configured as described above will be described below.

【0035】図4において、半回転楕円体9は導電体板
2上に、図中一点鎖線で表すAB方向、CD方向がそれ
ぞれ、底面の楕円の短径方向、長径方向となるように配
置される。第1の同軸型給電線路3および第2の同軸型
給電線路4は、図1と同様にAB方向、CD方向の底面
と垂直な面内で内導体と誘電体が接続され、外導体は導
電体板と接続される。両者の同軸型給電線路は同じ長さ
であるため、半球へは同位相で給電が行われる。誘電体
9内部に第1の同軸型給電線3によりAB方向、第2同
軸型給電線4によりCD方向の電界が発生するが、それ
ぞれの方向で誘電体9の長さが変わり、共振周波数はそ
れぞれの方向で異なった値f1およびf2となる。
In FIG. 4, the semi-spheroid 9 is arranged on the conductor plate 2 so that the AB direction and the CD direction, which are indicated by alternate long and short dash lines in the figure, are the minor axis direction and the major axis direction of the ellipse of the bottom surface, respectively. It In the first coaxial feed line 3 and the second coaxial feed line 4, as in FIG. 1, the inner conductor and the dielectric are connected in a plane perpendicular to the bottom faces in the AB and CD directions, and the outer conductor is conductive. Connected to the body plate. Since both coaxial feed lines have the same length, power is fed to the hemisphere in the same phase. An electric field in the AB direction is generated in the dielectric 9 by the first coaxial feed line 3 and an electric field in the CD direction is generated by the second coaxial feed line 4, but the length of the dielectric 9 changes in each direction, and the resonance frequency is The values f1 and f2 are different in each direction.

【0036】この場合に第1の同軸型給電線路3および
第2の同軸型給電線路4にf1とf2の中間の周波数f
0の信号を入力した場合、この誘電体共振器アンテナか
ら放射される電界は、位相の異なるAB方向の電界とC
D方向の電界の和となり、両者の位相差が90度の場合
に円偏波となる。
In this case, the first coaxial feed line 3 and the second coaxial feed line 4 have an intermediate frequency f of f1 and f2.
When a signal of 0 is input, the electric field radiated from this dielectric resonator antenna is the same as the electric field in the AB direction having a different phase and C.
It becomes the sum of the electric fields in the D direction, and becomes circularly polarized when the phase difference between them is 90 degrees.

【0037】誘電体共振器アンテナから放射されるAB
方向の電界およびCD方向の電界の周波数、位相の関係
は図3に示した実施例と同じものとなる。
AB radiated from the dielectric resonator antenna
The relationship between the frequency and the phase of the electric field in the CD direction and the electric field in the CD direction is the same as that in the embodiment shown in FIG.

【0038】このように本実施例によれば、回転楕円体
の誘電体9の長径、短径方向で、90度の位相差のある
互いに直交する電界を発生することができ、回転楕円体
の誘電体共振器アンテナにおいて円偏波を発生すること
ができる。
As described above, according to the present embodiment, it is possible to generate mutually orthogonal electric fields having a phase difference of 90 degrees in the major axis direction and the minor axis direction of the spheroidal dielectric 9, and the spheroidal structure Circularly polarized waves can be generated in the dielectric resonator antenna.

【0039】尚、上記実施例では、給電手段として2つ
の同軸型給電線路を用いているが、1つの同軸型給電線
路を用い、同軸型給電線路の内導体を図4の中心点Oで
AB方向と45度角度が異なる方向で回転楕円体の誘電
体と接続するようにしてもよい。
In the above embodiment, two coaxial feed lines are used as the feeding means, but one coaxial feed line is used and the inner conductor of the coaxial feed line is AB at the center point O in FIG. You may make it connect with a spheroidal dielectric in a direction different from the direction by 45 degrees.

【0040】(実施例3)以下、本発明の第3の実施例
について説明する。図5は本発明の第3の実施例におけ
る誘電体共振器アンテナの斜視図を示すものである。
(Embodiment 3) A third embodiment of the present invention will be described below. FIG. 5 is a perspective view of a dielectric resonator antenna according to the third embodiment of the present invention.

【0041】図5において、1は半球の誘電体、2は導
電体板で、以上は図1の構成と同様なものである。図5
において、図1の構成と異なる点は、図1の第1、第2
の同軸型給電線路3、4の代わりに、導電体板2に長方
形の穴であるスロット10を設けるとともに、導電体板
2とは間隔を開けて平行に、かつ半球の誘電体1とは導
電体板2を介して裏面側に、またスロット10の長手方
向と直角に交差するように給電線路11を配置した点で
ある。
In FIG. 5, 1 is a hemispherical dielectric, 2 is a conductor plate, and the above is the same as the configuration of FIG. FIG.
1 is different from that of FIG. 1 in that
In place of the coaxial feed lines 3 and 4, a slot 10 which is a rectangular hole is provided in the conductor plate 2, and the conductor plate 2 is electrically connected to the conductor plate 2 at a distance from and in parallel with the hemispherical dielectric 1. The point is that the feed line 11 is arranged on the back surface side through the body plate 2 and at a right angle to the longitudinal direction of the slot 10.

【0042】以上のように構成された誘電体共振器アン
テナについて、以下その動作を説明する。
The operation of the dielectric resonator antenna configured as described above will be described below.

【0043】図5において、半球の誘電体1は導電体板
2上に、単位長さあたりの誘電率の変化がAB方向で最
大、CD方向で最小になるように配置される。
In FIG. 5, the hemispherical dielectric 1 is arranged on the conductor plate 2 so that the change in the dielectric constant per unit length is maximum in the AB direction and minimum in the CD direction.

【0044】スロット10は導電体板2に開けられた長
方形の穴であり、スロット10の長手方向がAB方向と
中心Oで45度角度が異なる方向になる様に配置され
る。
The slot 10 is a rectangular hole formed in the conductor plate 2, and is arranged so that the longitudinal direction of the slot 10 is different from the AB direction by 45 ° in the center O.

【0045】また、給電線路11は導電体板2と間隔を
開けて平行に半球の誘電体1とは裏面側に、またスロッ
トの長手方向と直角に交差するように配置される。給電
線路11は導電体で構成され、導電体板2と給電線路1
1の間に誘電体が挿入された場合には、マイクロストリ
ップ線路となる。
The feed line 11 is arranged in parallel with the conductor plate 2 with a space therebetween so as to intersect the hemispherical dielectric 1 on the back side and at a right angle to the longitudinal direction of the slot. The power supply line 11 is made of a conductor, and has a conductor plate 2 and a power supply line 1.
When a dielectric is inserted between the 1 and 2, it becomes a microstrip line.

【0046】スロット10により、半球の誘電体1の内
部にはスロット10と直角方向の電界が発生する。この
スロット10と直角の電界はAB方向、CD方向の電界
成分に分解することができるが、それぞれの方向での共
振周波数が異なるため、図1の実施例と同様に、この誘
電体共振器アンテナからの放射電界はAB方向とCD方
向で90度位相異なり、円偏波となる。
An electric field in a direction perpendicular to the slot 10 is generated inside the hemispherical dielectric 1 by the slot 10. The electric field orthogonal to the slot 10 can be decomposed into electric field components in the AB direction and the CD direction, but since the resonance frequencies in the respective directions are different, this dielectric resonator antenna is similar to the embodiment of FIG. The radiated electric field from is phase-shifted by 90 degrees in the AB direction and the CD direction, and is circularly polarized.

【0047】このように本実施例によれば、円偏波を発
生する半球の誘電体共振器アンテナにおいて給電手段を
平面回路、すなわち平面線路で構成することができる。
As described above, according to the present embodiment, in the hemispherical dielectric resonator antenna that generates circularly polarized waves, the feeding means can be configured by a plane circuit, that is, a plane line.

【0048】尚、上記実施例では、半球の誘電体1を用
いているが、半球の誘電体の代わりに実施例2の半回転
楕円体の誘電体9を用い、底面の楕円の短径方向をAB
方向、長径方向をCD方向に一致するように配置しても
よい。
Although the hemispherical dielectric 1 is used in the above embodiment, the semi-spheroidal dielectric 9 of the second embodiment is used instead of the hemispherical dielectric, and the ellipse of the bottom surface is in the minor axis direction. AB
The direction and the major axis direction may be arranged so as to coincide with the CD direction.

【0049】(実施例4)以下、本発明の第4の実施例
について説明する。図6は本発明の第4の実施例におけ
る誘電体共振器アンテナの斜視図を示すものである。
(Fourth Embodiment) The fourth embodiment of the present invention will be described below. FIG. 6 is a perspective view of a dielectric resonator antenna according to the fourth embodiment of the present invention.

【0050】図6において、1は半球の誘電体、2は導
電体板で、以上は図1の構成と同様なものである。図6
において、図1の構成と異なる点は、図1の第1、第2
の同軸型給電線路3、4の代わりに、導電体板2に十字
型の穴である十字型スロット12を設けるとともに、導
電体板2とは間隔を開けて平行に、かつ半球の誘電体1
とは導電体板2を介して裏面側に、また十字型スロット
12の2つの長手方向と直角に交差するように第1、第
2の給電線路13、14を配置した点である。
In FIG. 6, 1 is a hemispherical dielectric, 2 is a conductor plate, and the above is the same as the configuration of FIG. Figure 6
1 is different from that of FIG. 1 in that
In place of the coaxial feed lines 3 and 4, the conductor plate 2 is provided with a cross-shaped slot 12 which is a cross-shaped hole, and the hemispherical dielectric 1 is parallel to the conductor plate 2 at a distance.
Means that the first and second feed lines 13 and 14 are arranged on the back surface side through the conductor plate 2 and so as to intersect the two longitudinal directions of the cross-shaped slot 12 at a right angle.

【0051】以上のように構成された誘電体共振器アン
テナについて、以下その動作を説明する。
The operation of the dielectric resonator antenna configured as described above will be described below.

【0052】図6において、半球の誘電体1は導電体板
2上に、単位長さあたりの誘電率の変化がAB方向で最
大、CD方向で最小になるように配置される。
In FIG. 6, the hemispherical dielectric 1 is arranged on the conductor plate 2 so that the change in the dielectric constant per unit length is maximum in the AB direction and minimum in the CD direction.

【0053】十字型スロット12は、スロットの長手方
向がそれぞれ、AB方向、CD方向に一致する様に配置
される。また、第1の給電線路13および第2の給電線
路14は導電体板2と間隔を開けて平行に半球の誘電体
1と反対側に、またスロットの長手方向と直角に交差す
るように配置される。第1の給電線路13および第2の
給電線路14は導電体で構成され、導電体板2と第1の
給電線路13、第2の給電線路14の間に誘電体が挿入
された場合には、マイクロストリップ線路となる。十字
型スロット12により、半球の誘電体1の内部にはスロ
ットと直角方向の電界が発生する。すなわち、AB方
向、CD方向の電界が発生するが、それぞれの方向での
共振周波数が異なるため、図1の実施例と同様に、この
誘電体共振器アンテナからの放射電界はAB方向とCD
方向で90度位相が異なり、円偏波となる。
The cross-shaped slots 12 are arranged so that the longitudinal directions of the slots coincide with the AB direction and the CD direction, respectively. Further, the first feeding line 13 and the second feeding line 14 are arranged in parallel with the conductor plate 2 with a space therebetween, on the side opposite to the hemispherical dielectric 1 and at a right angle to the longitudinal direction of the slot. To be done. The first feeding line 13 and the second feeding line 14 are made of a conductor, and when a dielectric is inserted between the conductor plate 2 and the first feeding line 13 and the second feeding line 14, , Becomes a microstrip line. Due to the cross-shaped slot 12, an electric field in the direction perpendicular to the slot is generated inside the hemispherical dielectric 1. That is, although electric fields in the AB direction and the CD direction are generated, since the resonance frequencies in the respective directions are different, the radiated electric field from this dielectric resonator antenna is the same as in the embodiment of FIG.
The phase is different by 90 degrees in the direction and becomes circular polarization.

【0054】図7は、第1の給電線路13と第2の給電
線路14の平面図を示したものである。
FIG. 7 is a plan view of the first feeding line 13 and the second feeding line 14.

【0055】図7において、2は導電体板、12は十字
型スロット、13は第1の給電線路、13は第2の給電
線路である。第1の給電線路13および第2の給電線路
14は十字スロットの存在する場所でスロットと直交す
る様に配置されるが、同じ長さの給電線路で外部の機器
と接続される。
In FIG. 7, 2 is a conductor plate, 12 is a cross-shaped slot, 13 is a first feeding line, and 13 is a second feeding line. The first feeding line 13 and the second feeding line 14 are arranged so as to be orthogonal to the slot where the cross slot exists, but are connected to an external device by the feeding line having the same length.

【0056】このように本実施例によれば、円偏波を発
生する半球の誘電体共振器アンテナにおいて給電手段を
平面回路で構成することができる。
As described above, according to the present embodiment, in the hemispherical dielectric resonator antenna that generates circularly polarized waves, the feeding means can be configured by a planar circuit.

【0057】尚、上記実施例では、半球の誘電体1を用
いているが、半球の誘電体の代わりに実施例2の半回転
楕円体の誘電体9を用い、底面の楕円の短径方向をAB
方向、長径方向をCD方向に一致するように配置しても
よい。
Although the hemispherical dielectric 1 is used in the above embodiment, the semi-spheroidal dielectric 9 of the second embodiment is used in place of the hemispherical dielectric, and the ellipse of the bottom surface is in the minor axis direction. AB
The direction and the major axis direction may be arranged so as to coincide with the CD direction.

【0058】(実施例5)以下、本発明の第5の実施例
について説明する。図8は本発明の第5の実施例におけ
る誘電体共振器アンテナの斜視図を示すものである。
(Fifth Embodiment) The fifth embodiment of the present invention will be described below. FIG. 8 is a perspective view of a dielectric resonator antenna according to the fifth embodiment of the present invention.

【0059】図8において、15は誘電体が充填されて
いる誘電体の球、16は誘電体の球15の内部に設けら
れた第1の平衡給電線路、17は第1の平衡給電線路1
6と同様に誘電体の球15の内部に設けられた第2の平
衡給電線路である。
In FIG. 8, reference numeral 15 is a dielectric sphere filled with a dielectric, 16 is a first balanced feed line provided inside the dielectric sphere 15, and 17 is a first balanced feed line 1.
6 is a second balanced feed line provided inside the dielectric sphere 15 as in 6.

【0060】以上のように構成された誘電体共振器アン
テナについて、以下にその動作を説明する。
The operation of the dielectric resonator antenna configured as described above will be described below.

【0061】誘電体の球15は、図中一点鎖線で表すA
B方向、CD方向それぞれで単位長さあたりの誘電率の
変化が最大、最小となるように構成される。図2に示す
AB方向、CD方向の誘電率の変化がその実施例とな
る。第1の平衡給電線路16、第2の平衡給電線路17
は通常ダイポールアンテナが先端に接続された平行2線
線路である。第1の平衡給電線路16および第2の平衡
給電線路17はそれぞれAB方向、CD方向の面上に設
置される。
The dielectric sphere 15 is represented by A indicated by a one-dot chain line in the figure.
It is configured so that the change in the dielectric constant per unit length is maximum and minimum in each of the B direction and the CD direction. The change in the dielectric constants in the AB and CD directions shown in FIG. 2 is an example. First balanced feed line 16 and second balanced feed line 17
Is usually a parallel two-wire line with a dipole antenna connected to the tip. The first balanced feed line 16 and the second balanced feed line 17 are installed on the planes in the AB direction and the CD direction, respectively.

【0062】この給電線路16、17により誘電体の球
15の内部にはAB方向、CD方向の電界が発生する
が、それぞれの方向での共振周波数が異なるため、図1
の実施例と同様に、この誘電体共振器アンテナからの放
射電界はAB方向とCD方向で90度位相が異なり、円
偏波となる。
Electric fields in the AB direction and the CD direction are generated inside the dielectric sphere 15 by the feed lines 16 and 17, but the resonance frequencies in the respective directions are different.
Similar to the embodiment described above, the radiated electric field from this dielectric resonator antenna has a 90 ° phase difference between the AB direction and the CD direction, and is circularly polarized.

【0063】このように本実施例によれば、円偏波を発
生する誘電体共振器アンテナを、球形または回転楕円体
により構成することができる。
As described above, according to this embodiment, the dielectric resonator antenna that generates circularly polarized waves can be formed of a spherical shape or a spheroid.

【0064】尚、上記実施例では、球の誘電体を用いて
いるが、球の誘電体の代わりに誘電率が一定の半回転楕
円体の誘電体を用い、短径方向をAB方向、長径方向を
CD方向に一致するように配置してもよい。
In the above embodiment, the spherical dielectric is used. However, instead of the spherical dielectric, a semi-spheroidal dielectric having a constant dielectric constant is used, with the minor axis direction being the AB direction and the major axis being the major axis. You may arrange | position so that a direction may correspond to CD direction.

【0065】[0065]

【発明の効果】以上のように、本発明は、中心を通り互
いに直交する断面内で単位長さあたりの誘電率の変化が
最大および最小となる誘電体の球、または半球および導
電体板、または誘電率が一定の誘電体の回転楕円体、ま
たは半回転楕円体および導電体板に同軸型給電線、また
はスロットなどの給電手段を接続することにより、簡易
な構成の誘電体共振器アンテナで、円偏波を発生するこ
とができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a dielectric sphere, or a hemisphere and a conductor plate, in which the change of the dielectric constant per unit length is the maximum and the minimum in the cross section passing through the center and orthogonal to each other, Alternatively, a dielectric resonator antenna having a simple structure can be obtained by connecting a coaxial spheroid or a feeding means such as a slot to a spheroid or semi-spheroid of a dielectric having a constant permittivity and a conductor plate. , Circularly polarized waves can be generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における誘電体共振器ア
ンテナの斜視図
FIG. 1 is a perspective view of a dielectric resonator antenna according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における誘電体共振器ア
ンテナの誘電率の特性図
FIG. 2 is a characteristic diagram of a dielectric constant of the dielectric resonator antenna according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における誘電体共振器ア
ンテナの周波数と位相の関係図
FIG. 3 is a frequency-phase relationship diagram of the dielectric resonator antenna according to the first embodiment of the present invention.

【図4】本発明の第2の実施例における誘電体共振器ア
ンテナの斜視図
FIG. 4 is a perspective view of a dielectric resonator antenna according to a second embodiment of the present invention.

【図5】本発明の第3の実施例における誘電体共振器ア
ンテナの斜視図
FIG. 5 is a perspective view of a dielectric resonator antenna according to a third embodiment of the present invention.

【図6】本発明の第4の実施例における誘電体共振器ア
ンテナの斜視図
FIG. 6 is a perspective view of a dielectric resonator antenna according to a fourth embodiment of the present invention.

【図7】本発明の第4の実施例における誘電体共振器ア
ンテナの要部平面図
FIG. 7 is a plan view of an essential part of a dielectric resonator antenna according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施例における誘電体共振器ア
ンテナの斜視図
FIG. 8 is a perspective view of a dielectric resonator antenna according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体 2 導電体板 3 第1の同軸型給電線路 4 第2の同軸型給電線路 5 AB方向の誘電率の変化 6 CD方向の誘電率の変化 7 AB方向の電界の周波数と位相の関係 8 CD方向の電界の周波数と位相の関係 9 半回転楕円体の誘電体 10 スロット 11 給電線路 12 十字型スロット 13 第1の給電線路 14 第2の給電線路 15 誘電体の球 16 第1の平衡給電線路 17 第2の平衡給電線路 1 Dielectric 2 Conductor Plate 3 First Coaxial Feed Line 4 Second Coaxial Feed Line 5 Change in Permittivity in AB Direction 6 Change in Permittivity in CD Direction 7 Relationship between Frequency and Phase of Electric Field in AB Direction 8 Relationship between Frequency and Phase of Electric Field in CD Direction 9 Semi-spheroidal Dielectric 10 Slot 11 Feed Line 12 Cross-shaped Slot 13 First Feed Line 14 Second Feed Line 15 Dielectric Sphere 16 First Balance Feed line 17 Second balanced feed line

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 中心を通り互いに直交する断面内で単位
長さあたりの誘電率の変化が最大および最小となる誘電
体の球と、前記誘電体の球への給電手段を有することを
特徴とする誘電体共振器アンテナ。
1. A dielectric sphere having a maximum and minimum change in permittivity per unit length in cross-sections passing through the center and orthogonal to each other, and a power feeding means to the sphere of the dielectric. Dielectric resonator antenna.
【請求項2】 請求項1記載の誘電体共振器アンテナの
誘電体の球に代えて、誘電率が一定の誘電体の回転楕円
体を有することを特徴とする誘電体共振器アンテナ。
2. A dielectric resonator antenna according to claim 1, which has a spheroid of a dielectric material having a constant dielectric constant, instead of the dielectric sphere of the dielectric resonator antenna.
【請求項3】 請求項1記載の誘電体共振器アンテナの
誘電体の球に代えて、底面の中心を通り互いに直交する
断面内で単位長さあたりの誘電率の変化が最大および最
小となる半球の誘電体と、前記半球の誘電体の底面に接
着した導電体板を有することを特徴とする誘電体共振器
アンテナ。
3. The dielectric sphere of the dielectric resonator antenna according to claim 1, in place of the dielectric sphere, a change in permittivity per unit length becomes maximum and minimum in a cross section that passes through the center of the bottom surface and is orthogonal to each other. A dielectric resonator antenna comprising a hemispherical dielectric and a conductor plate adhered to a bottom surface of the hemispherical dielectric.
【請求項4】 給電手段として、1つまたは複数の同軸
型給電線路を有し、前記同軸型給電線路の外導体を前記
導電体板に接続し内導体を前記半球の誘電体と接続する
ことを特徴とする請求項3の誘電体共振器アンテナ。
4. A power supply means comprising one or a plurality of coaxial feed lines, wherein an outer conductor of the coaxial feed line is connected to the conductor plate and an inner conductor is connected to the hemispherical dielectric. 4. The dielectric resonator antenna according to claim 3.
【請求項5】 給電手段として、前記導電体板に、前記
半球の誘電体の単位長さあたりの誘電率の変化が最大と
なる方向と45度の角度を成す方向に長方形の長手方向
が一致するスロットを有し、前記スロットと直交し前記
導電体板と平行に配置された給電線路を有することを特
徴とする請求項3の誘電体共振器アンテナ。
5. As a power feeding means, the longitudinal direction of the rectangle coincides with the direction in which the change of the dielectric constant per unit length of the hemispherical dielectric is maximum and the direction forming an angle of 45 degrees with the conductor plate. 4. The dielectric resonator antenna according to claim 3, further comprising a feed line that has a slot that is parallel to the conductor plate and that is orthogonal to the slot.
【請求項6】 給電手段として、前記導電体板に、前記
半球の誘電体の単位長さあたりの誘電率の変化が最大お
よび最小となる方向とスロットの長手方向が一致する十
字型スロットを有し、前記十字型スロットと直交し前記
導電体板と平行に配置された2本の等しい長さの給電線
路を有することを特徴とする請求項3の誘電体共振器ア
ンテナ。
6. As a power feeding means, the conductor plate has a cross-shaped slot in which the direction in which the change in the dielectric constant per unit length of the hemispherical dielectric becomes maximum and minimum and the longitudinal direction of the slot coincide with each other. 4. The dielectric resonator antenna according to claim 3, further comprising two feed lines having the same length and arranged orthogonal to the cross-shaped slot and parallel to the conductor plate.
【請求項7】 請求項1記載の誘電体共振器アンテナの
誘電体の球に代えて、底面の長径と短径が異なる半回転
楕円体の一定の誘電率の誘電体と、前記半回転楕円体の
底面に接着した導電体板を有することを特徴とする誘電
体共振器アンテナ。
7. A dielectric sphere of a dielectric resonator antenna according to claim 1, wherein a semi-spheroid with a constant permittivity and a semi-spheroid of which the major axis and the minor axis of the bottom surface are different, and the semi-spheroid. A dielectric resonator antenna having a conductor plate adhered to the bottom surface of the body.
【請求項8】 給電手段として、前記導電体板に、前記
半回転楕円体の長径方向と45度の角度を成す方向に長
方形の長手方向が一致するスロットを有し、前記スロッ
トと直交し前記導電体板と平行に配置された給電線路を
有することを特徴とする請求項7の誘電体共振器アンテ
ナ。
8. As a power feeding means, the conductor plate has a slot whose rectangular longitudinal direction coincides with a direction forming an angle of 45 degrees with the major axis direction of the semi-spheroid, and is orthogonal to the slot. The dielectric resonator antenna according to claim 7, further comprising a feed line arranged in parallel with the conductor plate.
【請求項9】 給電手段として、前記導電体板に、前記
半回転楕円体の長径および短径方向とスロットの長手方
向が一致する十字型スロットを有し、前記十字型スロッ
トと直交し前記導電体板と平行に配置された2本の等し
い長さの給電線路を有することを特徴とする請求項7の
誘電体共振器アンテナ。
9. As a power feeding means, the conductor plate has a cross-shaped slot in which the major axis direction and the minor axis direction of the semi-spheroid coincide with the longitudinal direction of the slot, and the cross section is orthogonal to the cross-shaped slot. 8. The dielectric resonator antenna according to claim 7, further comprising two feed lines having the same length and arranged in parallel with the body plate.
JP15287995A 1995-06-20 1995-06-20 Dielectric resonator antenna Pending JPH098539A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15287995A JPH098539A (en) 1995-06-20 1995-06-20 Dielectric resonator antenna
US09/584,789 US6198450B1 (en) 1995-06-20 2000-06-01 Dielectric resonator antenna for a mobile communication
US09/793,044 US6531991B2 (en) 1995-06-20 2001-02-27 Dielectric resonator antenna for a mobile communication
US09/794,339 US6407718B2 (en) 1995-06-20 2001-02-28 Dielectric resonator antenna for a mobile communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15287995A JPH098539A (en) 1995-06-20 1995-06-20 Dielectric resonator antenna

Publications (1)

Publication Number Publication Date
JPH098539A true JPH098539A (en) 1997-01-10

Family

ID=15550127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15287995A Pending JPH098539A (en) 1995-06-20 1995-06-20 Dielectric resonator antenna

Country Status (1)

Country Link
JP (1) JPH098539A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355855A (en) * 1999-10-29 2001-05-02 Univ Sheffield Steerable-beam multiple-feed dielectric resonator antenna
JP2003513495A (en) * 1999-10-29 2003-04-08 アンテノバ・リミテツド Multi-feed dielectric resonator antenna with variable cross section and steerable beam direction
GB2402552A (en) * 2003-06-04 2004-12-08 Andrew Fox Broadband dielectric resonator antenna system
JP2010226279A (en) * 2009-03-23 2010-10-07 Kyocera Corp Triplate line substrate
CN103066384A (en) * 2012-12-27 2013-04-24 武汉基数星通信科技有限公司 Miniaturization broadband navigation antenna
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna
CN110635228A (en) * 2019-08-27 2019-12-31 南通大学 Dual-passband circularly polarized dielectric resonator antenna
CN111602298A (en) * 2018-01-15 2020-08-28 罗杰斯公司 Dielectric resonator antenna with first and second dielectric portions
CN112993560A (en) * 2021-04-20 2021-06-18 成都天锐星通科技有限公司 Antenna structure and phased array antenna

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355855A (en) * 1999-10-29 2001-05-02 Univ Sheffield Steerable-beam multiple-feed dielectric resonator antenna
JP2003513495A (en) * 1999-10-29 2003-04-08 アンテノバ・リミテツド Multi-feed dielectric resonator antenna with variable cross section and steerable beam direction
GB2355855B (en) * 1999-10-29 2004-06-30 Univ Sheffield Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections
GB2402552A (en) * 2003-06-04 2004-12-08 Andrew Fox Broadband dielectric resonator antenna system
US7423591B2 (en) 2003-06-04 2008-09-09 Andrew John Fox Antenna system
JP2010226279A (en) * 2009-03-23 2010-10-07 Kyocera Corp Triplate line substrate
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna
CN103066384A (en) * 2012-12-27 2013-04-24 武汉基数星通信科技有限公司 Miniaturization broadband navigation antenna
CN111602298A (en) * 2018-01-15 2020-08-28 罗杰斯公司 Dielectric resonator antenna with first and second dielectric portions
CN110635228A (en) * 2019-08-27 2019-12-31 南通大学 Dual-passband circularly polarized dielectric resonator antenna
CN112993560A (en) * 2021-04-20 2021-06-18 成都天锐星通科技有限公司 Antenna structure and phased array antenna

Similar Documents

Publication Publication Date Title
JP3875592B2 (en) Multi-element array type planar antenna
US6198450B1 (en) Dielectric resonator antenna for a mobile communication
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US6970134B2 (en) Broadband antenna apparatus
CN111430896B (en) Broadband millimeter wave dual-circular polarization dual-mode orbit angular momentum antenna
KR20010033668A (en) Antenna system for circularly polarized radio waves including antenna means and interface network
JP6923490B2 (en) Antenna device
WO2021083223A1 (en) Antenna unit and electronic device
CN110828985A (en) Antenna unit and electronic equipment
JP2001168637A (en) Cross dipole antenna
JPH098539A (en) Dielectric resonator antenna
JP2001177326A (en) Antenna system and communication system
JP2002246837A (en) Circularly polarized wave antenna
Wang et al. An electrically small antenna with quasi-isotropic coverage for linearly polarized receiver
JP2824384B2 (en) Dual frequency microstrip antenna
CN110828988B (en) Antenna unit and electronic equipment
JP2777332B2 (en) Microstrip antenna
JPH08186425A (en) Miniaturized antenna and diversity antenna
WO2021083218A1 (en) Antenna unit and electronic device
US9484635B2 (en) Waveguide antenna assembly and system for electronic devices
CN113270710B (en) Dual-mode antenna structure
JPS5829203A (en) Multilayered microstrip diversity antenna
CN110828986A (en) Antenna unit and electronic equipment
CN110808453A (en) Antenna unit and electronic equipment
US5870058A (en) Receiver module for receiving extremely high frequency electromagnetic directional radiation fields