WO2021019993A1 - 隔壁式熱交換器 - Google Patents

隔壁式熱交換器 Download PDF

Info

Publication number
WO2021019993A1
WO2021019993A1 PCT/JP2020/025286 JP2020025286W WO2021019993A1 WO 2021019993 A1 WO2021019993 A1 WO 2021019993A1 JP 2020025286 W JP2020025286 W JP 2020025286W WO 2021019993 A1 WO2021019993 A1 WO 2021019993A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
wall
numbered
heat exchanger
odd
Prior art date
Application number
PCT/JP2020/025286
Other languages
English (en)
French (fr)
Inventor
王 凱建
暁 小泉
高橋 俊彦
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2020323285A priority Critical patent/AU2020323285B2/en
Priority to CN202080052132.2A priority patent/CN114174754A/zh
Priority to US17/627,011 priority patent/US11994349B2/en
Priority to EP20846809.0A priority patent/EP4006478A4/en
Publication of WO2021019993A1 publication Critical patent/WO2021019993A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates

Definitions

  • the technology of this disclosure relates to a bulkhead heat exchanger.
  • a partition type heat exchanger that exchanges heat between fluids separated by a partition is known.
  • Such a partition type heat exchanger can be made compact by determining the heat transfer area required for heat exchange of each fluid in consideration of the heat conductance equilibrium condition (see Patent Document 1).
  • the partition wall heat exchanger has a problem that it is difficult to optimize the shape of the heat transfer surface.
  • the disclosed technique has been made in view of the above points, and provides a partition type heat exchanger having a heat transfer surface having a shape that enables the heat exchanger to be compact and improves the heat transfer performance.
  • the purpose is.
  • the partition wall heat exchanger divides the space formed between the first partition wall, the second partition wall, and the first partition wall and the second partition wall into a plurality of first flow paths. It is equipped with a flow path wall.
  • the first partition wall and the second partition wall separate the plurality of first flow paths from a second flow path through which a second fluid different from the first fluid flowing through the plurality of first flow paths flows.
  • a plurality of wall surfaces are formed in the plurality of flow path walls. Each of the plurality of wall surfaces follows a sinusoidal curve whose position is different from each other.
  • a main flow path wall element is formed in a portion of the one flow path wall that overlaps the phase ⁇ of ⁇ 1 ⁇ ⁇ ⁇ 3 and ⁇ 6 ⁇ ⁇ ⁇ 8 by forming a plurality of flow path wall-less portions. ing. In the other flow path wall, a plurality of flow path wall-less portions are formed, so that a main flow path wall element is formed in a portion overlapping the phase ⁇ of ⁇ 2 ⁇ ⁇ ⁇ 4 and ⁇ 5 ⁇ ⁇ ⁇ 7. ing.
  • the disclosed partition type heat exchanger can make the heat exchanger compact and improve its heat transfer performance.
  • FIG. 1 is a perspective view showing the partition wall heat exchanger of the first embodiment.
  • FIG. 2 is an exploded perspective view showing the heat exchanger main body.
  • FIG. 3 is a plan view showing the first heat exchanger plate of one of the plurality of first heat exchanger plates.
  • FIG. 4 is a plan view showing a second heat exchanger plate of one of the plurality of second heat exchanger plates.
  • FIG. 5 is a plan view showing the recess for the first heat exchange flow path.
  • FIG. 6 is a plan view showing two adjacent flow path walls among the plurality of first flow path walls.
  • FIG. 7 is an enlarged cross-sectional view taken along the line AA of FIG. FIG.
  • FIG. 8 is a plan view showing a plurality of odd-numbered flow path walls and a plurality of even-numbered flow path walls formed in the partition wall heat exchanger of the second embodiment.
  • FIG. 9 is an explanatory view schematically showing a plurality of odd-numbered flow path walls and a plurality of even-numbered flow path walls formed in the partition wall heat exchanger of the second embodiment.
  • FIG. 10 is a plan view showing the odd-numbered flow path wall elements.
  • FIG. 11 is a plan view showing a plurality of odd-numbered flow path walls formed in the partition wall heat exchanger of the third embodiment.
  • FIG. 12 is an explanatory view schematically showing a plurality of odd-numbered flow path walls and a plurality of even-numbered flow path walls formed in the partition wall heat exchanger of the third embodiment.
  • FIG. 9 is an explanatory view schematically showing a plurality of odd-numbered flow path walls and a plurality of even-numbered flow path walls formed in the partition wall heat exchanger of the second embodiment.
  • FIG. 13 is a plan view showing the odd-numbered flow path wall elements.
  • FIG. 14 is a plan view showing a plurality of odd-numbered flow path walls formed in the partition wall heat exchanger of the fourth embodiment.
  • FIG. 15 is an explanatory view schematically showing a plurality of odd-numbered flow path walls and a plurality of even-numbered flow path walls formed in the partition wall heat exchanger of the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing an example of the presence or absence of a sub-channel wall element for each phase range of the sinusoidal curve of the odd-numbered channel wall which is the other channel wall and the even-numbered channel wall which is one channel wall. Is. FIG.
  • FIG. 17 is an explanatory view showing an example of a change in the flow path width of the partition wall heat exchanger of the comparative example having no notch in the element.
  • FIG. 18 is an explanatory view showing an example of a change in the flow path width of the partition wall heat exchanger of the fourth embodiment.
  • FIG. 19 is an explanatory diagram showing an example of the fluid behavior of the front edge effect of the partition wall heat exchanger of the fourth embodiment.
  • FIG. 20 is a plan view showing one odd-numbered flow path wall element and one odd-numbered main flow path wall element among the plurality of odd-numbered flow path wall elements formed in the partition wall heat exchanger of the fifth embodiment. is there.
  • FIG. 20 is a plan view showing one odd-numbered flow path wall element and one odd-numbered main flow path wall element among the plurality of odd-numbered flow path wall elements formed in the partition wall heat exchanger of the fifth embodiment. is there.
  • FIG. 21 is a graph showing the heat transfer rate K and the product KA of the heat transfer rate K and the heat transfer area in the partition type heat exchanger of Example 5 and the partition type heat exchanger of Comparative Example.
  • FIG. 22 is a graph showing the pressure loss of the partition wall heat exchanger of Example 5 and the pressure loss of the partition wall heat exchanger of Comparative Example.
  • FIG. 23 is a plan view showing a part of one flow path wall included in the partition wall heat exchanger of the modified example.
  • FIG. 1 is a perspective view showing the partition wall heat exchanger 1 of the first embodiment.
  • the partition wall type heat exchanger 1 of the first embodiment has a heat exchanger main body 2, a first inflow pipe 5, a first outflow pipe 6, a second inflow pipe 7, and a second outflow pipe. It has 8 and.
  • the first inflow pipe 5 causes the first fluid to flow into the heat exchanger main body 2.
  • the first outflow pipe 6 causes the first fluid, which has been heat-exchanged with the second fluid in the heat exchanger main body 2, to flow out from the heat exchanger main body 2 to the outside.
  • the second inflow pipe 7 causes the second fluid to flow into the heat exchanger main body 2.
  • the second outflow pipe 8 causes the second fluid, which has been heat-exchanged with the first fluid in the heat exchanger main body 2, to flow out from the heat exchanger main body 2 to the outside.
  • FIG. 2 is an exploded perspective view showing the heat exchanger main body 2.
  • the heat exchanger main body 2 of FIG. 2 is a view in which the partition wall type heat exchanger 1 of FIG. 1 is rotated 180 degrees around the pipe axis of the second inflow pipe 7 or the second outflow pipe 8.
  • the heat exchanger main body 2 includes a laminate 10, a first end plate 11, and a second end plate 12.
  • the laminated body 10 is formed in a pillar body.
  • the first end plate 11 covers one bottom surface S1 of the laminated body 10 which is a pillar body, and is fixed to the laminated body 10.
  • the second end plate 12 covers the other bottom surface S2 on the opposite side of the bottom surface S1 of the laminated body 10 which is a pillar body, and is fixed to the laminated body 10.
  • the heat exchanger main body 2 is formed with a first inflow chamber 14, a first outflow chamber 15, a second inflow chamber 16, and a second outflow chamber 17.
  • first inflow chamber 14 the first outflow chamber 15, the second inflow chamber 16, and the second outflow chamber 17, both ends of four through holes penetrating the laminate 10 in the stacking direction 20 of the laminate 10, which will be described later, are first. It is formed by being closed by the first end plate 11 and the second end plate 12, respectively.
  • the laminated body 10 is further formed with a first outflow hole 18 and a second outflow hole 19.
  • the first outflow hole 18 is formed in the vicinity of the first outflow chamber 15 on the side surface of the laminated body 10, and connects the first outflow chamber 15 and the outside of the heat exchanger main body 2.
  • one end of the first outflow pipe 6 is inserted into the first outflow hole 18 and fixed to the laminated body 10 so as to face the first outflow chamber 15, and the other end is arranged outside the heat exchanger main body 2.
  • the second outflow hole 19 is formed in the vicinity of the second outflow chamber 17 on the side surface of the laminated body 10, and connects the inside of the second outflow chamber 17 to the outside of the heat exchanger main body 2.
  • one end of the second outflow pipe 8 is inserted into the second outflow hole 19 and fixed to the laminated body 10 so as to face the second outflow chamber 17, and the other end is arranged outside the heat exchanger main body 2.
  • the laminated body 10 is further formed with a first inflow hole and a second inflow hole (not shown).
  • the first inflow hole is formed in the vicinity of the first inflow chamber 14 on the side surface of the laminated body 10, and connects the inside of the first inflow chamber 14 to the outside of the heat exchanger main body 2.
  • one end of the first inflow pipe 5 is inserted into the first inflow hole and fixed to the laminated body 10 so as to face the first inflow chamber 14, and the other end is arranged outside the heat exchanger main body 2.
  • the second inflow hole is formed in the vicinity of the second inflow chamber 16 on the side surface of the laminated body 10, and connects the inside of the second inflow chamber 16 to the outside of the heat exchanger main body 2.
  • one end of the second inflow pipe 7 is inserted into the second inflow hole and fixed to the laminated body 10 so as to face the second inflow chamber 16, and the other end is arranged outside the heat exchanger main body 2. ..
  • the laminated body 10 has a plurality of heat exchanger plates. Each of the plurality of heat exchanger plates is formed in a plate shape. The plurality of heat exchanger plates are arranged perpendicular to the stacking direction 20 and are laminated so as to be in close contact with each other. The plurality of heat exchanger plates has a plurality of first heat exchanger plates and a plurality of second heat exchanger plates. The first heat exchanger plate and the second heat exchanger plate are alternately laminated.
  • FIG. 3 is a plan view showing the first heat exchanger plate 21 of one of the plurality of first heat exchanger plates.
  • the first heat exchanger plate 21 has a first inflow chamber hole 22, a first outflow chamber hole 23, a second inflow chamber hole 24, and a second outflow chamber hole 25. And are formed.
  • the first inflow chamber hole 22, the first outflow chamber hole 23, the second inflow chamber hole 24, and the second outflow chamber hole 25 are respectively from one surface S3 of the first heat exchanger plate 21 to the other. It penetrates the surface S4 of.
  • the first heat exchanger plate 21 is further formed with a first heat exchange flow path recess 26, a first inflow flow path recess 27, and a first outflow flow path recess 28 on one surface S3.
  • the recess 26 for the first heat exchange flow path is formed substantially in the center of the first heat exchanger plate 21.
  • the first inflow channel recess 27 is formed between the first heat exchange channel recess 26 and the first inflow chamber hole 22 and is connected to the first inflow chamber hole 22 to form a first heat exchange channel. It is connected to the edge V1 on the side of the first inflow chamber hole 22 in the recess 26.
  • the first outflow flow path recess 28 is formed between the first heat exchange flow path recess 26 and the first outflow chamber hole 23, and is connected to the first outflow chamber hole 23 to form a first heat exchange flow path. It is connected to the edge V2 on the opposite side of the flow direction 29 with respect to the edge V1 connected to the first inflow flow path recess 27 of the recesses 26.
  • the flow direction 29 represents the direction in which the first fluid flows as a whole through the recess 26 for the first heat exchange flow path (the traveling direction of the first fluid flowing along the sinusoidal flow path described later), and is perpendicular to the stacking direction 20. That is, it is parallel to the first heat exchanger plate 21.
  • FIG. 4 is a plan view showing the second heat exchanger plate 31 of one of the plurality of second heat exchanger plates.
  • the second heat exchanger plate 31 has a first inflow chamber hole 32, a first outflow chamber hole 33, a second inflow chamber hole 34, and a second outflow chamber hole 35. And are formed.
  • the first inflow chamber hole 32, the first outflow chamber hole 33, the second inflow chamber hole 34, and the second outflow chamber hole 35 are respectively from one surface S5 of the second heat exchanger plate 31 to the other. It penetrates the surface S6 of.
  • the first inflow chamber hole 32 is connected to the first inflow chamber hole 22 of the first heat exchanger plate 21 to form the first inflow chamber 14 when a plurality of heat exchanger plates are appropriately laminated.
  • the first outflow chamber hole 33 is connected to the first outflow chamber hole 23 of the first heat exchanger plate 21 to form the first outflow chamber 15 when a plurality of heat exchanger plates are appropriately laminated.
  • the second inflow chamber hole 34 is connected to the second inflow chamber hole 24 of the first heat exchanger plate 21 to form the second inflow chamber 16 when a plurality of heat exchanger plates are appropriately laminated.
  • the second outflow chamber hole 35 is connected to the second outflow chamber hole 25 of the first heat exchanger plate 21 to form the second outflow chamber 17 when a plurality of heat exchanger plates are appropriately laminated.
  • the second heat exchanger plate 31 is further formed with a second heat exchange flow path recess 36, a second inflow flow path recess 37, and a second outflow flow path recess 38 on one surface S5.
  • the second heat exchange flow path recess 36 overlaps the first heat exchange flow path recess 26 of the first heat exchanger plate 21 in the stacking direction 20 when a plurality of heat exchanger plates are appropriately laminated.
  • it is formed in the center of the second heat exchanger plate 31.
  • the second inflow channel recess 37 is formed between the second inflow chamber hole 34 and the second heat exchange channel recess 36, and is connected to the second inflow chamber hole 34 to form a second heat exchange channel.
  • the second outflow channel recess 38 is formed between the second outflow chamber hole 35 and the second heat exchange channel recess 36, and is connected to the second outflow chamber hole 35 to form a second heat exchange channel. It is connected to the edge V4 on the opposite side of the flow direction 29 with respect to the edge V3 connected to the second inflow flow path recess 37 of the recesses 36.
  • the flow direction 29 is the same as the flow direction 29 in FIG. In FIG. 4, the flow direction 29 represents the direction in which the second fluid flows through the second heat exchange flow path recess 36 as a whole (the traveling direction of the second fluid flowing along the sinusoidal flow path described later), and is laminated. It is perpendicular to the direction 20, that is, parallel to the second heat exchanger plate 31. Since the flow directions of the first fluid and the second fluid are reversible, the flow directions 29 are indicated by double-headed arrows in FIGS. 3 and 4.
  • FIG. 5 is a plan view showing the recess 26 for the first heat exchange flow path.
  • the first heat exchanger plate 21 has a first side wall surface 41, a second side wall surface 42, and a bottom surface 43 due to the formation of the first heat exchange flow path recess 26. Is formed.
  • the first side wall surface 41 is formed on one edge of the first heat exchange flow path recess 26 in the span direction 44, and forms a part of the inner wall surface of the first heat exchange flow path recess 26. ..
  • the span direction 44 is a direction perpendicular to the stacking direction 20 and perpendicular to the flow direction 29. Further, the span direction 44 is the amplitude direction of the sinusoidal curve 51 described later.
  • the first side wall surface 41 is substantially perpendicular to the plane in which the first heat exchanger plate 21 is parallel, that is, is substantially parallel to the stacking direction 20.
  • the first side wall surface 41 is formed so as to follow a sinusoidal curve drawn on a plane parallel to the first heat exchanger plate 21.
  • the sinusoidal curve along the first side wall surface 41 is equal to the waveform shown by the sinusoidal function, and the amplitude changes periodically and smoothly in the flow direction 29. That is, the sine function is expressed by the following equation (1) using the variable x, the variable y, the amplitude A, and the period T.
  • y Asin (2 ⁇ / T ⁇ x) ⁇ ⁇ ⁇ (1)
  • the variable x indicates the position in the flow direction 29.
  • the variable y indicates the position in the span direction 44.
  • the amplitude A is exemplified by a value smaller than 1.0 mm, for example, 0.6 mm. As the period T, 3 mm is exemplified.
  • the second side wall surface 42 is formed on the edge opposite to the edge on which the first side wall surface 41 is formed in the recess 26 for the first heat exchange flow path in the span direction 44, and the first heat exchange flow path is formed. It forms a part of the inner wall surface of the recess 26.
  • the second side wall surface 42 is substantially perpendicular to the plane along which the first heat exchanger plate 21 is aligned, that is, is substantially parallel to the stacking direction 20.
  • the second side wall surface 42 is formed so as to follow a sinusoidal curve drawn on a plane along which the first heat exchanger plate 21 follows.
  • the sine curve along the second side wall surface 42 is the same sine curve as the sine curve along the first side wall surface 41.
  • the period of the sinusoidal curve along the second side wall surface 42 is equal to the period of the sinusoidal curve along the first side wall surface 41, and the amplitude of the sinusoidal curve along the second side wall surface 42 is such that the first side wall surface 41 has an amplitude. Equal to the amplitude of the sine curve along. Further, the position of the flow direction 29 of the point corresponding to a certain phase in the sinusoidal curve along the second side wall surface 42 is the flow direction 29 of the point corresponding to the phase in the sinusoidal curve along the first side wall surface 41. Is equal to the position of.
  • the bottom surface 43 forms a part of the inner wall surface of the first heat exchange flow path recess 26, and includes the first side wall surface 41 and the second side wall surface 42 of the inner wall surface of the first heat exchange flow path recess 26. It forms a surface sandwiched between.
  • the bottom surface 43 is formed so that the first heat exchanger plate 21 is parallel to a parallel plane.
  • the first heat exchanger plate 21 includes a first partition wall 45, a first side wall 46, a second side wall 47, and a plurality of first flow path walls 48-1 to 48-n (n is a positive integer. Hereinafter, other implementations are performed. In the example, n represents an arbitrary positive integer).
  • the first partition wall 45 is a portion that forms the bottom portion of the recess 26 for the first heat exchange flow path, that is, forms the bottom surface 43 of the first heat exchanger plate 21.
  • the first side wall 46 is a portion that forms one side wall of the first heat exchange flow path recess 26, that is, forms the first side wall surface 41 of the first heat exchanger plate 21.
  • the second side wall 47 is a portion that forms the other side wall of the first heat exchange flow path recess 26, that is, forms the second side wall surface 42 of the first heat exchanger plate 21.
  • Each of the plurality of first flow path walls 48-1 to 48-n is arranged inside the first heat exchange flow path recess 26, and is formed in the first partition wall 45 so as to project from the bottom surface 43 in the stacking direction 20. Has been done.
  • FIG. 6 is a plan view showing two adjacent flow path walls among the plurality of first flow path walls 48-1 to 48-n.
  • One of the plurality of first flow path walls 48-1 to 48-n, the first flow path wall 48-1 is a plane parallel to the first heat exchanger plate 21 as shown in FIG. It is formed so as to follow the sinusoidal curve 51 drawn in.
  • the sine curve 51 is the same sine curve as the sine curve along which the first side wall surface 41 or the second side wall surface 42 represented by the equation (1) is along, so that the amplitude changes periodically and smoothly in the flow direction 29. It is formed.
  • the period of the sinusoidal curve 51 is equal to the period T of the sinusoidal curve along which the first side wall surface 41 or the second side wall surface 42 follows, and the amplitude of the sinusoidal curve 51 is along the first side wall surface 41 or the second side wall surface 42. Equal to the amplitude A of the sine curve.
  • the first flow path wall 48-1 forms a first side flow path wall surface 52 and a second side flow path wall surface 53.
  • the first side flow path wall surface 52 is formed on the side of the first side wall 46 of the first flow path wall 48-1.
  • the first side flow path wall surface 52 is formed so as to follow a sinusoidal curve (corresponding to the “first sinusoidal curve”) drawn on a plane parallel to the first heat exchanger plate 21.
  • the sine curve along which the first side flow path wall surface 52 follows is the same sine curve as the sine curve 51, and the sine curve 51 is placed on the side of the first side wall 46 in the span direction (corresponding to the "amplitude direction of the sine curve 51") 44. It is formed so as to overlap a sinusoidal curve arranged by moving in parallel by an offset value y 0 .
  • the offset value y 0 0.1 mm is exemplified.
  • the second side flow path wall surface 53 is formed on the side of the second side wall 47 of the first flow path wall 48-1.
  • the second side flow path wall surface 53 is formed so as to overlap the sine curve (corresponding to the "second sine curve") in which the sine curve 51 is translated to the side of the second side wall 47 in the span direction 44 by an offset value y 0.
  • the first side flow path wall surface 52 and the second side flow path wall surface 53 are substantially perpendicular to the plane along which the first heat exchanger plate 21 is aligned, that is, substantially parallel to the stacking direction 20.
  • the portion orthogonal to the curve 51) is narrower than the width w 2 of the portion of the first flow path wall 48-1 that overlaps the maximum point or the minimum point of the sinusoidal curve 51.
  • the maximum point of the sinusoidal curve 51 corresponds to the point of the graph of the sinusoidal function corresponding to the phase ⁇ expressed by the following equation (3).
  • ⁇ / 2 + 2 ⁇ i ...
  • the minimum point of the sinusoidal curve 51 corresponds to the point of the graph of the sinusoidal function corresponding to the phase ⁇ expressed by the following equation (4).
  • 3 ⁇ / 2 + 2 ⁇ i ... (4)
  • the adjacent first flow path wall 48-2 arranged on the side of the second side wall 47 of the first flow path wall 48-1 among the plurality of first flow path walls 48-1 to 48-n is the first. It is formed in the same manner as the flow path wall 48-1. That is, the first flow path wall 48-2 is formed along the sinusoidal curve 51, and the first side flow path wall surface 52 and the second side flow path wall surface 53 are formed. Further, in the first flow path wall 48-2, the sine curve 51 along the first flow path wall 48-2 and the sine curve 51 along the first flow path wall 48-1 have only a predetermined pitch P in the span direction 44. It is arranged so as to overlap the parallel moving sine curve. 0.75 mm is exemplified as the pitch P.
  • the first flow It is formed in the same manner as the road wall 48-1 and the first flow path wall 48-2. That is, the plurality of first flow path walls 48-1 to 48-n are formed so as to be arranged at equal intervals in the span direction 44 at a pitch P.
  • a plurality of grooves are formed in the first heat exchanger plate 21 by forming a plurality of first flow path walls 48-1 to 48-n.
  • Each groove 57 is formed between two adjacent first flow path walls among the plurality of first flow path walls 48-1 to 48-n, and is a first side flow of one of the first flow path walls. It is formed between the road wall surface 52 and the second side flow path wall surface 53 of the other first flow path wall.
  • the width w 3 of the portion of the sine curve 51 near the inflection point is the sine curve 51. It is formed so as to be narrower than the width w 4 of the portion close to the maximum point or the minimum point of.
  • the second heat exchange flow path recess 36 of the second heat exchanger plate 31 is formed in the same manner as the first heat exchange flow path recess 26 of the first heat exchanger plate 21.
  • FIG. 7 is an enlarged cross-sectional view taken along the line AA of FIG.
  • the second heat exchanger plate 31 includes a second partition wall 61 and a plurality of second flow path walls 62-1 to 62-n.
  • the second partition wall 61 forms the bottom portion of the recess 36 for the second heat exchange flow path, like the first partition wall 45 of the first heat exchanger plate 21, that is, the bottom surface parallel to the second heat exchanger plate 31.
  • the plurality of second flow path walls 62-1 to 62-n are recesses for the second heat exchange flow path, similarly to the plurality of first flow path walls 48-1 to 48-n of the first heat exchanger plate 21. It is arranged inside the 36 and is formed on the second partition wall 61 so as to project from the bottom surface 63 in the stacking direction 20.
  • the plurality of second flow path walls 62-1 to 62-n are further formed so as to have the same shape as the plurality of first flow path walls 48-1 to 48-n of the first heat exchanger plate 21.
  • the second heat exchanger plate 31 further comprises two side walls (not shown).
  • the two side walls are formed at both ends of the recess 36 for the second heat exchange flow path in the span direction 44, respectively, like the first side wall 46 and the second side wall 47 of the first heat exchanger plate 21.
  • Two side wall surfaces excluding the bottom surface 63 of the inner wall surface of the heat exchange flow path recess 36 are formed.
  • one surface S3 of the first heat exchanger plate 21 is joined to the other surface S6 of the second heat exchanger plate 31, and one surface S5 of the second heat exchanger plate 31 is joined.
  • the laminated body 10 is formed by joining a plurality of heat exchanger plates to each other in a state where the first heat exchanger plate 21 and the second heat exchanger plate 31 are alternately laminated in this way.
  • the plurality of second flow path walls 62-1 to 62-n are arranged in the stacking direction 20 on the plurality of first flow path walls 48-1 to 48-n when the plurality of heat exchanger plates are appropriately laminated.
  • the crown S7 of the plurality of first flow path walls 48-1 to 48-n is joined to the other surface S6 of the second partition wall 61, and the crown portions of the plurality of second flow path walls 62-1 to 62-n are joined.
  • S8 is joined to the other surface S4 of the first partition wall 45.
  • the second heat exchanger plate 31 is when a plurality of heat exchanger plates are appropriately laminated. It is formed so as to overlap each of the two side walls in the stacking direction 20.
  • a plurality of first spaces 67 and a plurality of second spaces 68 are formed by laminating a plurality of heat exchanger plates.
  • the first space 67 is the inside of the recess 26 for the first heat exchange flow path of the first heat exchanger plate 21, and is a space formed between the first partition wall 45 and the second partition wall 61.
  • the plurality of first flow path walls 48-1 to 48-n divide the first space 67 inside the first heat exchange flow path recess 26 into the plurality of first flow paths 65.
  • the plurality of first flow paths 65 include a plurality of flow paths surrounded by the plurality of first flow path walls 48-1 to 48-n, the first partition wall 45, and the second partition wall 61.
  • the plurality of first flow paths 65 further include a flow path surrounded by the first side wall 46, one flow path wall 48-1, the first partition wall 45, and the second partition wall 61, and a second. It includes a side wall 47, one flow path wall 48-n, and a flow path surrounded by a first partition wall 45 and a second partition wall 61.
  • the second space 68 is the inside of the second heat exchange flow path recess 36 of the second heat exchanger plate 31, and is a space formed between the first partition wall 45 and the second partition wall 61.
  • the plurality of second flow path walls 62-1 to 62-n are the second space 68 inside the second heat exchange flow path recess 36, similarly to the plurality of first flow path walls 48-1 to 48-n. Is divided into a plurality of second flow paths 66.
  • the plurality of second flow paths 66 include a plurality of flow paths surrounded by the plurality of second flow path walls 62-1 to 62-n, the first partition wall 45, and the second partition wall 61.
  • the plurality of second flow paths 66 further include one of the two side walls, one of the plurality of second flow path walls 62-1 to 62-n, and the first partition wall 45. And the flow path surrounded by the second partition wall 61, the other of the two side walls, one of the plurality of second flow path walls 62-1 to 62-n, the first partition wall 45, and the second partition wall. It includes a flow path surrounded by 61.
  • the first flow path 65 and the second flow path 66 form a sinusoidal flow path in which the fluid flows in the flow direction 29 as the traveling direction while repeatedly vibrating in the span direction 44.
  • the width of the groove 57 formed between the first side flow path wall surface 52 and the second side flow path wall surface 53 of the first flow path 65 differs depending on the position along the flow path.
  • the cross-sectional area differs depending on the position along the flow path. Similar to the first flow path 65, the cross-sectional area of the second flow path 66 also differs depending on the position.
  • the cross-sectional area of the first flow path 65 and the second flow path 66 periodically expands and contracts depending on the position along each flow path.
  • the first flow path 65 is formed so that the following equation (5) is established by using the minimum first flow path width Wc1 and the first flow path wall height H1. 2.5 ⁇ Wc1 / H1 ⁇ 6 ... (5)
  • the minimum first flow path width Wc1 is the minimum value of the interval between the plurality of first flow path walls 48-1 to 48-n, and among the plurality of first flow path walls 48-1 to 48-n. Indicates the minimum value of the distance between two adjacent flow path walls, that is, the minimum value of the width of the first flow path 65.
  • the first flow path wall height H1 indicates the distance between the first partition wall 45 and the second partition wall 61, indicates the depth of the first heat exchange flow path recess 26, and a plurality of first flow path walls 48-1.
  • the second flow path 66 is formed so that the following equation (6) is established by using the minimum second flow path width Wc2 and the second flow path wall height H2. 2.5 ⁇ Wc2 / H2 ⁇ 6 ... (6)
  • the minimum second flow path width Wc2 is the minimum value of the interval between the plurality of second flow path walls 62-1 to 62-n, and is among the plurality of second flow path walls 62-1 to 62-n. Indicates the minimum value of the distance between two adjacent flow path walls, that is, the minimum value of the width of the second flow path 66.
  • the second flow path wall height H2 indicates the distance between the first partition wall 45 and the second partition wall 61, indicates the depth of the second heat exchange flow path recess 36, and a plurality of second flow path walls 62-1. It shows the height of about 62-n, that is, the height of the second flow path 66 in the stacking direction 20.
  • Wc1 / H1 and Wc2 / H2 are smaller than 6, sufficient strength is secured against the pressure of the flowing fluid, and the first fluid flows through the plurality of first flow paths 65.
  • the first partition wall 45 and the second partition wall 61 are prevented from bending due to the pressure of the respective fluids.
  • Wc1 / H1 and Wc2 / H2 are larger than 2.5 and smaller than 6, so that the first fluid and the second fluid and the first partition 45 and the second partition 61 It is possible to suppress a decrease in heat transfer performance between heat transfer and suppress a decrease in pressure resistance performance. Tune these design parameters according to the operating conditions of the working fluid.
  • the partition wall heat exchanger 1 is further formed so that the hydraulic diameter of the first flow path 65 is 0.3 mm or less and the hydraulic diameter of the second flow path 66 is 0.3 mm or less. ing. Further, at this time, the amplitude A of the sinusoidal curve along the first side flow path wall surface 52 and the second side flow path wall surface 53 shows a magnitude smaller than 1.0 mm, and for example, 0.6 mm is exemplified. As the period T of the sinusoidal curve, 3 mm is exemplified. By forming the partition wall heat exchanger 1 in this way, high heat exchange performance between the first fluid and the second fluid can be obtained. At this time, the first fluid and the second fluid are, for example, one is water and the other is a refrigerant (example: R410A, R32, R290).
  • the partition type heat exchanger 1 since the first side flow path wall surface 52 and the second side flow path wall surface 53 follow a simple sinusoidal curve, a plurality of first flow paths 65 and a plurality of first flow paths 65 and a plurality of first channels have a small number of parameters.
  • a computer simulation for determining the shape of the two flow paths 66 can be performed. Examples of the parameters include period T, amplitude A, offset value y 0 , and pitch P.
  • the partition type heat exchanger 1 reduces the amount of computer calculation when executing a computer simulation because the number of parameters that determine the shapes of the plurality of first flow paths 65 and the plurality of second flow paths 66 is small. However, the time required for computer simulation can be shortened. Therefore, the partition wall type heat exchanger 1 optimizes the shapes of the plurality of first flow path walls 48-1 to 48-n and the plurality of second flow path walls 62-1 to 62-n by computer simulation. The work can be facilitated.
  • the first heat exchanger plate 21 and the second heat exchanger plate 31 are manufactured by etching a metal plate.
  • the thickness of this metal plate is exemplified by 0.3 mm.
  • the plurality of heat exchanger plates are joined to each other together with the first end plate 11 and the second end plate 12, for example, by diffusion bonding.
  • the first inflow chamber hole 22 of the first heat exchanger plate 21 and the first inflow chamber hole 32 of the second heat exchanger plate 31 are a plurality of the first end plate 11 and the second end plate 12.
  • first outflow chamber hole 23 of the first heat exchanger plate 21 and the first outflow chamber hole 33 of the second heat exchanger plate 31 form the first outflow chamber 15.
  • the second inflow chamber hole 24 of the first heat exchanger plate 21 and the second inflow chamber hole 34 of the second heat exchanger plate 31 form a second inflow chamber 16.
  • the second outflow chamber hole 25 of the first heat exchanger plate 21 and the second outflow chamber hole 35 of the second heat exchanger plate 31 form a second outflow chamber 17.
  • the first outflow hole 18, the second outflow hole 19, the first inflow hole, and the second inflow hole are formed by joining the first end plate 11, the second end plate 12, and a plurality of laminated heat exchanger plates to each other. After that, it is formed by machining.
  • the first inflow pipe 5, the first outflow pipe 6, the second inflow pipe 7, and the second outflow pipe 8 are in the first inflow hole, the first outflow hole 18, the second inflow hole, and the second outflow hole 19, respectively. After being inserted, it is fixed to the heat exchanger body 2 by welding, for example.
  • the first fluid flows into the first inflow chamber 14 through the first inflow pipe 5. After flowing into the first inflow chamber 14, the first fluid is distributed to each of the plurality of first heat exchanger plates 21 and flows into the first inflow flow path recess 27 formed in the first heat exchanger plate 21. To do. After the first fluid flows into the first inflow flow path recess 27, the width of the flow is changed from the width of the first inflow chamber 14 to the width of the first heat exchange flow path recess 26 by the first inflow flow path recess 27. It flows into a plurality of first flow paths 65 formed in the recess 26 for the first heat exchange flow path.
  • the flow direction changes in a sinusoidal shape because the first side flow path wall surface 52 and the second side flow path wall surface 53 follow a sinusoidal curve.
  • the direction in which the first fluid flows changes more rapidly than the other parts.
  • the width of the flow path wall is formed at a portion of the plurality of first flow path walls 48-1 to 48-n that overlaps with the maximum point or the minimum point of the sinusoidal curve as compared with the other parts. ..
  • the strength against the stress received from the first fluid is larger than that of the other portion, and a sufficient strength against the large stress can be secured as compared with the other portion.
  • the cross-sectional area of the plurality of first flow paths 65 differs depending on the position in the flow direction along the flow paths, so that the flow speed is increased. Change.
  • the flow direction changes in a sinusoidal shape, and the flow speed changes, so that the first fluid is constantly locally disturbed.
  • the partition type heat exchanger 1 reduces the thermal resistance of heat transfer between the first fluid and the first partition 45 by constantly disturbing the first fluid locally, and the first fluid and the second partition 45. The thermal resistance of heat transfer to and from 61 can be reduced.
  • the second fluid further flows into the second inflow chamber 16 via the second inflow pipe 7.
  • the second fluid is distributed to each of the plurality of second heat exchanger plates 31 and flows into the second inflow flow path recess 37 formed in the second heat exchanger plate 31.
  • the width of the flow is changed from the width of the second inflow chamber 16 to the width of the second heat exchange flow path recess 36 by the second inflow flow path recess 37. It flows into a plurality of second flow paths 66 formed in the recess 36 for the second heat exchange flow path.
  • the second fluid as a whole flows in the flow direction 29 from the first inflow chamber 14 toward the first outflow chamber 15, whereas the first fluid as a whole flows in the direction opposite to the direction in which the first fluid flows.
  • the fluid flows in the flow direction 29 from the first outflow chamber 15 side toward the first inflow chamber 14 side. That is, the partition type heat exchanger 1 is a so-called countercurrent heat exchanger.
  • the flow direction changes in a sinusoidal shape because the first side flow path wall surface 52 and the second side flow path wall surface 53 follow a sinusoidal curve.
  • the direction in which the second fluid flows changes more rapidly than the other parts.
  • the width of the flow path wall is formed at a portion of the plurality of second flow path walls 62-1 to 62-n that overlaps with the maximum point or the minimum point of the sinusoidal curve as compared with the other portions.
  • the cross-sectional area of the plurality of second flow paths 66 differs depending on the position in the flow direction along the flow paths, so that the flow speed is increased. Change.
  • the partition type heat exchanger 1 reduces the thermal resistance of heat transfer between the second fluid and the first partition 45 by constantly disturbing the second fluid locally, and the second fluid and the second partition 45.
  • the thermal resistance of heat transfer to and from 61 can be reduced.
  • the partition type heat exchanger 1 is located between the first fluid and the second fluid by reducing the thermal resistance of heat transfer between the first fluid and the second fluid and the first partition 45 and the second partition 61. The performance of the heat exchange performed in the above can be improved.
  • the first fluid flows into the first outflow flow path recess 28 after flowing through the plurality of first flow paths 65.
  • the width of the flow is changed from the width of the first heat exchange flow path recess 26 to the width of the first outflow chamber 15 by the first outflow flow path recess 28. It is narrowed down to and flows into the first outflow chamber 15.
  • the first outflow chamber 15 merges the first fluids that have flowed in from the plurality of first heat exchanger plates 21 through the recesses 28 for the first outflow flow path.
  • the first fluid merged in the first outflow chamber 15 flows out to the outside through the first outflow pipe 6.
  • the second fluid flows into the second outflow flow path recess 38 after flowing through the plurality of second flow paths 66.
  • the width of the flow is changed from the width of the second heat exchange flow path recess 36 to the width of the second outflow chamber 17 by the second outflow flow path recess 38. It is narrowed down to and flows into the second outflow chamber 17.
  • the second outflow chamber 17 merges the second fluids supplied from the plurality of second heat exchanger plates 31 via the second outflow flow path recess 38.
  • the second fluid merged in the second outflow chamber 17 flows out to the outside through the second outflow pipe 8.
  • the partition wall type heat exchanger 1 of the first embodiment includes a first partition wall 45 (corresponding to the “first partition wall”), a second partition wall 61 (corresponding to the “second partition wall”), and a plurality of first flow path walls 48. It has -1 to 48-n.
  • the plurality of first flow path walls 48-1 to 48-n form a plurality of first spaces 67 inside the first heat exchange flow path recess 26 formed between the first partition wall 45 and the second partition wall 61. It is divided into the first flow path 65 of.
  • the first partition wall 45 and the second partition wall 61 have a plurality of first flow paths 65 from a plurality of second flow paths 66 through which a second fluid different from the first fluid flowing through the plurality of first flow paths 65 flows.
  • Each of the plurality of first flow path walls 48-1 to 48-n is formed along a sinusoidal curve.
  • the plurality of first flow path walls 48-1 to 48-n form a plurality of first side flow path wall surfaces 52 and a plurality of second side flow path wall surfaces 53, each of which follows a different sinusoidal curve.
  • a plurality of first side flow path walls 52 and a plurality of second side flow path wall surfaces 53 along a sine curve are formed, so that the plurality of first side flow paths 65
  • the direction in which the first fluid flowing through the water flows can be changed in a sinusoidal manner.
  • a plurality of first side flow path wall surfaces 52 and a plurality of second side flow path wall surfaces 53 along a sine curve are formed, so that the plurality of first side flow paths 65 are further formed.
  • the width can be varied along the direction in which the first fluid flows.
  • the cross-sectional area of the plurality of first flow paths 65 can be changed by changing the width of the plurality of first flow paths 65, and the first flow path 65 flows through the plurality of first flow paths 65. 1
  • the speed of the fluid can be changed.
  • the partition wall heat exchanger 1 locally moves the first fluid flowing through the plurality of first flow paths 65 by changing the direction in which the first fluid flows and by changing the speed of the first fluid. It can be disturbed at all times.
  • the partition type heat exchanger 1 reduces the thermal resistance of heat transfer between the first fluid and the first partition 45 by constantly locally disturbing the first fluid flowing through the plurality of first flow paths 65. It is possible to reduce the thermal resistance of heat transfer between the first fluid and the second partition wall 61.
  • the partition type heat exchanger 1 improves the heat transfer performance when heat is exchanged between the first fluid and the second fluid flowing through the plurality of second flow paths 66 by reducing the thermal resistance. be able to.
  • the partition type heat exchanger 1 when the behavior of the first fluid is computer-simulated by the plurality of first side flow path wall surfaces 52 and the plurality of second side flow path wall surfaces 53 each following a simple sine curve. , It is possible to facilitate input / change of the shapes of the plurality of first flow paths 65, and to reduce the calculation load of the computer. As a result, the partition wall heat exchanger 1 can facilitate the work of optimizing the shapes of the plurality of first flow path walls 48-1 to 48-n.
  • the partition wall type heat exchanger 1 of the first embodiment has a first side wall 46 on which the first side wall surface 41 formed at the end of the first space 67 inside the recess 26 for the first heat exchange flow path is formed. Further prepared. At this time, the first side wall surface 41 is formed so as to follow the same sine curve as the sine curve along which the plurality of first side flow path wall surfaces 52 and the plurality of second side flow path wall surfaces 53 follow.
  • the period of the sinusoidal curve along the first side wall surface 41 is equal to the period of the sinusoidal curve along with the plurality of first side flow path wall surfaces 52 and the plurality of second side flow path wall surfaces 53, and the first side wall surface 41
  • the amplitude of the along sine curve is equal to the amplitude of the sine curve along which the plurality of first side flow path wall surfaces 52 and the plurality of second side flow path wall surfaces 53 follow.
  • the first flow path wall 48-1 and the first flow path wall 48-1 and the first flow path wall 48-1 are similar to the first fluid flowing through the flow path sandwiched between the plurality of first flow path walls 48-1 to 48-n.
  • the first fluid flowing through the flow path formed between the side wall surface 41 and the side wall surface 41 can be locally and constantly disturbed.
  • the partition type heat exchanger 1 further improves the heat transfer performance when heat exchange is performed between the first fluid and the second fluid by constantly disturbing the first fluid locally. Can be done.
  • the minimum first flow path width Wc1 which is the minimum value of the interval between the plurality of first flow path walls 48-1 to 48-n of the partition wall type heat exchanger 1 of the first embodiment is set to the first partition wall 45 and the second.
  • the value Wc1 / H1 divided by the height H1 of the first flow path wall, which is the distance from the partition wall 61, is larger than 2.5 and smaller than 6.
  • Wc1 / H1 since Wc1 / H1 is smaller than 6, the strength between the first partition 45 and the second partition 61 is secured, and the first fluid flows through the plurality of first flow paths 65. Occasionally, the first partition 45 and the second partition 61 are prevented from bending due to the pressure of the fluid.
  • Wc1 / H1 is larger than 2.5 and smaller than 6, thereby suppressing deterioration of heat transfer performance between the first fluid and the first partition 45 and the second partition 61. Moreover, it is possible to suppress a decrease in pressure resistance performance.
  • the second flow path walls 62-1 to 62-n are also formed in the same manner as the plurality of first flow path walls 48-1 to 48-n, so that the partition wall type heat exchanger 1 is a second fluid. It is possible to suppress a decrease in heat transfer performance between the first partition wall 45 and the second partition wall 61, and to secure the strength between the first partition wall 45 and the second partition wall 61.
  • the partition wall heat exchanger of the second embodiment has a plurality of first flow path walls 48-1 to 48-n of the partition wall heat exchanger 1 of the first embodiment described above.
  • a plurality of odd-numbered flow path walls 71-1 to 71-n1 (n1 is a positive integer; hereinafter, n1 represents an arbitrary positive integer in other embodiments) and a plurality of even-numbered flow path walls 72-1 to 72-1 to It has been replaced with 72-n2 (n2 is a positive integer; hereinafter, n2 represents an arbitrary positive integer in other embodiments).
  • FIG. 8 is a plan showing a plurality of odd-numbered flow path walls 71-1 to 71-n1 and a plurality of even-numbered flow path walls 72-1 to 72-n2 formed in the partition wall heat exchanger of the second embodiment. It is a figure.
  • One of the plurality of odd-numbered flow path walls 71-1 to 71-n1 has the odd-numbered flow path wall 71-1 along the sinusoidal curve 51, similarly to the first flow path wall 48-1 described above. Is formed in.
  • other odd-numbered flow path walls different from the odd-numbered flow path wall 71-1 also have a sinusoidal curve like the odd-numbered flow path wall 71-1. It is formed along 51.
  • the even-numbered flow path wall 72-1 of the plurality of even-numbered flow path walls 72-1 to 72-n2 follows the sinusoidal curve 51 in the same manner as the first flow path wall 48-2 described above. Is formed in. Of the plurality of even-numbered flow path walls 72-1 to 72-n2, other even-numbered flow path walls different from the even-numbered flow path wall 72-1 are also sinusoidal curves like the even-numbered flow path wall 72-1. It is formed along 51.
  • One of a plurality of even-numbered flow path walls 72-1 to 72-n2 is located between two adjacent odd-numbered flow path walls among the plurality of odd-numbered flow path walls 71-1 to 71-n1. Even numbered flow path walls are arranged.
  • An odd numbered flow path wall is arranged. That is, the plurality of odd-numbered flow path walls 71-1 to 71-n1 and the plurality of even-numbered flow path walls 72-1 to 72-n2 are in the span direction (corresponding to the "amplitude direction of the sinusoidal curve 51") 44. They are lined up alternately.
  • the odd-numbered flow path wall 71-1 has a plurality of odd-numbered notch portions 73 formed in the first flow path wall 48-1 without a flow path wall, and the odd-numbered flow path wall 71-1 has the plurality of odd-numbered channels. It is divided into a plurality of odd-numbered flow path wall elements 74-1 to 74-m1 (m1 is a positive integer. Hereinafter, m1 represents an arbitrary positive integer in other embodiments) by the number notch portion 73. ..
  • the plurality of odd-numbered notch portions 73 are periodically formed in the odd-numbered flow path wall 71-1 for each cycle T.
  • a plurality of odd-numbered flow path walls 71-1 to 71-n1 that are different from the odd-numbered flow path wall 71-1 are also present.
  • the odd-numbered notch portion 73 is formed, and is divided into a plurality of odd-numbered flow path wall elements 74-1 to 74-m1.
  • the even-numbered flow path wall 72-1 has a plurality of even-numbered notches 75 having no flow path wall formed in the first flow path wall 48-2, and the even-numbered flow path wall 72-1 has the plurality of even-numbered flow path walls 72-1. It is divided into a plurality of even numbered flow path wall elements 76-1 to 76-m2 (m2 is a positive integer.
  • m2 represents an arbitrary positive integer in other embodiments) by the number notch portion 75.
  • the “notch portion” indicates both a plurality of odd-numbered notch portions 73 and a plurality of even-numbered notch portions 75.
  • the plurality of even-numbered notches 75 are periodically formed in the even-numbered flow path wall 72-1 for each period T. Similar to the even-numbered flow path wall 72-1, a plurality of even-numbered flow path walls 72-1 to 72-n2 different from the even-numbered flow path wall 72-1 are also present.
  • the even-numbered notch portion 75 is formed, and is divided into a plurality of even-numbered flow path wall elements 76-1 to 76-m2.
  • FIG. 9 schematically shows a plurality of odd-numbered flow path walls 71-1 to 71-n1 and a plurality of even-numbered flow path walls 72-1 to 72-n2 formed in the partition wall heat exchanger of the second embodiment. It is explanatory drawing shown in.
  • the odd-numbered flow path wall element 74-1 of one of the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 of the odd-numbered flow path wall 71-1 is as shown in FIG.
  • the phase of the sinusoidal curve 51 along the odd-numbered flow path wall 71-1 is formed so as to overlap the portion corresponding to the range of 240 ° from ⁇ / 3 to 5 ⁇ / 3.
  • the odd-numbered flow path wall element 74-1 is formed so as to overlap the portion of the sine curve 51 whose phase is ⁇ / 2 and the portion where the phase is 3 ⁇ / 2, and the maximum point and the minimum point of the sine curve 51. It is formed so as to overlap the parts corresponding to each of the above.
  • other odd-numbered flow path wall elements different from the odd-numbered flow path wall element 74-1 are also referred to as the odd-numbered flow path wall element 74-1.
  • the phase of the sinusoidal curve 51 along the odd-numbered flow path wall 71-1 overlaps the portion corresponding to the 240 ° range from ⁇ / 3 + 2 ⁇ i to 5 ⁇ / 3 + 2 ⁇ i. It is formed.
  • One of the plurality of odd-numbered notches 73 has a shape in which the portion of the sinusoidal curve 51 whose phase corresponds to the range of 120 ° from 5 ⁇ / 3 to 7 ⁇ / 3 is removed. Is formed in.
  • the odd-numbered notch portion 73 formed in this way includes a portion of the sinusoidal curve 51 having a phase of 2 ⁇ , that is, includes an inflection point of the sinusoidal curve 51.
  • the portion of the sinusoidal curve 51 whose phase is 2 ⁇ i is included so as to overlap the inflection point of the sinusoidal curve 51. It is formed.
  • the plurality of odd-numbered flow path walls 71-1 do not overlap the inflection points of the sinusoidal curve 51 whose phase is 2 ⁇ i so that the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 do not overlap.
  • a plurality of odd-numbered notches 73 are formed.
  • Other odd-numbered flow path walls different from the odd-numbered flow path wall 71-1 among the plurality of odd-numbered flow path walls 71-1 to 71-n1 are also formed in the same manner as the odd-numbered flow path wall 71-1. ing.
  • the even-numbered flow path wall element 76-1 of one of the plurality of even-numbered flow path wall elements 76-1 to 76-m2 of the even-numbered flow path wall 72-1 has a phase of 4 ⁇ / in the sinusoidal curve 51. It is formed so as to overlap the portion corresponding to the range of 240 ° from 3 to 8 ⁇ / 3. That is, the even-numbered flow path wall element 76-1 is formed so as to overlap the portion of the sinusoidal curve 51 having a phase of 3 ⁇ / 2 and the portion having a phase of 5 ⁇ / 2, and the maximum point and the minimum point of the sinusoidal curve 51. It is formed so as to overlap the parts corresponding to each of the above.
  • even-numbered flow path wall element 76-1 Of the plurality of even-numbered flow path wall elements 76-1 to 76-m2, other even-numbered flow path wall elements different from the even-numbered flow path wall element 76-1 are also referred to as the even-numbered flow path wall element 76-1.
  • the phase of the sinusoidal curve 51 along which the even-numbered flow path wall 72-1 follows is formed so as to overlap the portion corresponding to the range of 240 ° from 4 ⁇ / 3 + 2 ⁇ i to 8 ⁇ / 3 + 2 ⁇ i.
  • One of the plurality of even-numbered notches 75 is formed in a shape obtained by removing the portion of the sinusoidal curve 51 whose phase corresponds to the range of 120 ° from 2 ⁇ / 3 to 4 ⁇ / 3. Will be done.
  • the notch portion formed in this way is formed so as to include a portion of the sinusoidal curve 51 having a phase of ⁇ , that is, includes an inflection point of the sinusoidal curve 51.
  • the portion of the sinusoidal curve 51 whose phase corresponds to the range of 120 ° from 2 ⁇ / 3 + 2 ⁇ i to 4 ⁇ / 3 + 2 ⁇ i is included.
  • a plurality of even-numbered notches 75 are formed.
  • Other even-numbered flow path walls different from the even-numbered flow path walls 72-1 among the plurality of even-numbered flow path walls 72-1 to 72-n2 are also formed in the same manner as the even-numbered flow path walls 72-1. ing.
  • FIG. 10 is a plan view showing an example of the odd-numbered flow path wall element 74-1.
  • the odd-numbered flow path wall element 74-1 includes a head 77 and a tail 78, as shown in FIG.
  • the head 77 forms one end 79 (corresponding to "the end adjacent to the notch") of the flow direction 29 of the odd-numbered flow path wall elements 74-1 and is adjacent to one odd-numbered notch 73. doing.
  • the head 77 is formed so as to narrow toward one end 79 of the odd-numbered flow path wall element 74-1, that is, the width gradually decreases as it approaches one end 79 of the odd-numbered flow path wall element 74-1. It is formed to be.
  • the tail 78 forms the other end 80 (corresponding to the "end adjacent to the notch") on the opposite side of one end 79 on which the head 77 of the odd-numbered flow path wall element 74-1 is formed. It is adjacent to two odd-numbered notches 73.
  • the tail 78 is formed so as to taper toward the other end 80 of the flow direction 29 of the odd-numbered flow path wall element 74-1, that is, as it approaches the other end 80 of the odd-numbered flow path wall element 74-1. It is formed so that the width is gently reduced.
  • Other flow path wall elements different from the odd-numbered flow path wall elements 74-1 among the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 are also formed in the same manner as the odd-numbered flow path wall elements 74-1. Has been done.
  • the plurality of even-numbered flow path wall elements 76-1 to 76-m2 are formed in the same manner as the plurality of odd-numbered flow path wall elements 74-1 to 74-m1, and the plurality of even-numbered flow path wall elements 76-1 to 76-1 to Each of the 76-m2 is formed from one that is mirror-symmetric with the odd-numbered channel wall element 74-1. As a result, for example, a portion where the odd-numbered flow path wall elements adjacent to each other in the span direction 44 and the ends of the even-numbered flow path wall elements overlap each other in the span direction is formed. In FIG.
  • this overlapping portion is a portion in which the phase of each end of the even-numbered flow path wall element and the odd-numbered flow path wall element is in the range of 60 °.
  • the second heat exchanger plate of the partition type heat exchanger of the second embodiment is a plurality of second flow path walls 62-of the second heat exchanger plate 31 of the partition type heat exchanger 1 of the first embodiment. 1 to 62-n are formed by being replaced with a plurality of odd-numbered flow path walls 71-1 to 71-n1 and a plurality of even-numbered flow path walls 72-1 to 72-n2. ..
  • the partition type heat exchanger of the second embodiment is similar to the partition type heat exchanger 1 of the first embodiment described above, in which the first fluid flows through a plurality of first flow paths and the second fluid flows through a plurality of second streams. It flows through the path and exchanges heat between the first fluid and the second fluid. Similar to the partition wall heat exchanger 1 of the first embodiment described above, the partition wall heat exchanger of the second embodiment can locally and constantly disturb the first fluid and the second fluid, and the first fluid can be disturbed locally. The heat transfer performance of heat exchange between and the second fluid can be improved.
  • the wall surfaces of the plurality of odd-numbered flow path walls 71-1 to 71-n1 and the plurality of even-numbered flow path walls 72-1 to 72-n2 follow a sinusoidal curve. Similar to the partition wall heat exchanger 1 of the first embodiment described above, the shapes of the plurality of odd-numbered flow path walls 71-1 to 71-n1 and the plurality of even-numbered flow path walls 72-1 to 72-n2. The work of optimizing can be facilitated.
  • the partition wall heat exchanger of the second embodiment has the same as the partition wall heat exchanger of the first embodiment described above because the plurality of odd-numbered notches 73 and the plurality of even-numbered notches 75 are formed. In comparison, the frictional resistance when the first fluid flows through the plurality of first channels is reduced, resulting in a reduction in pressure loss.
  • a so-called front edge effect is generated by forming a plurality of odd-numbered notches 73 and a plurality of even-numbered notches 75, and the partition wall type according to the first embodiment described above.
  • the heat transfer coefficient between the first fluid and the first partition wall 45 and the second partition wall 61 can be improved.
  • the sinusoidal flow of the fluid is a plurality of odd-numbered flow path wall elements 74, which are the portions where the centrifugal force acting on the flowing fluid is large before and after the maximum point of the sinusoidal curve 51 of the flow path wall or the part overlapping the minimum point. It is mainly formed by -1 to 74-m1 and a plurality of even-numbered flow path wall elements 76-1 to 76-m2. Therefore, even if a plurality of odd-numbered notches 73 and a plurality of even-numbered notches 75 are formed as a shape that overlaps the inflection point of the sinusoidal curve 51 and removes a portion having a small centrifugal force acting on the flowing fluid, it is sinusoidal. The flow of is not disturbed. By providing such a notch, it is possible to reduce the frictional resistance due to the flow path wall when the fluid flows through the flow path while maintaining the sinusoidal flow.
  • Each of the plurality of flow path walls of the partition wall heat exchanger of the second embodiment is divided into a plurality of flow path wall elements by forming a plurality of notches for each period of the sinusoidal curve.
  • the plurality of notches show both the plurality of odd-numbered notches 73 and the plurality of even-numbered notches 75. That is, in each of the plurality of odd-numbered flow path walls 71-1 to 71-n1, the plurality of odd-numbered flow path wall elements 74 are formed by forming the plurality of odd-numbered notch portions 73 for each period of the sinusoidal curve. It is divided into -1 to 74-m1.
  • the plurality of odd-numbered notch portions 73 overlap with the inflection points of the sinusoidal curve 51.
  • the maximum point and the minimum point of the sinusoidal curve 51 overlap each other on the wall surface formed on the plurality of odd-numbered flow path wall elements 74-1 to 74-m1.
  • Each of the plurality of even-numbered flow path walls 72-1 to 72-n2 has a plurality of even-numbered flow path wall elements 76-1 due to the formation of the plurality of even-numbered notch portions 75 for each period of the sinusoidal curve. It is divided into ⁇ 76-m2.
  • the plurality of even-numbered notches 75 overlap the inflection points of the sinusoidal curve 51.
  • the maximum point and the minimum point of the sinusoidal curve 51 overlap each other on the wall surface formed on the plurality of even-numbered flow path wall elements 76-1 to 76-m2.
  • a plurality of odd-numbered notches 73 are formed in the plurality of odd-numbered flow path walls 71-1 to 71-n1, so that a plurality of odd-numbered notches 73 flow when the first fluid flows.
  • the frictional force received from the odd-numbered flow path walls 71-1 to 71-n1 can be reduced.
  • the partition wall heat exchanger of the second embodiment has a plurality of odd-numbered flow path walls by reducing the frictional force acting between the plurality of odd-numbered flow path walls 71-1 to 71-n1 and the first fluid. It is possible to reduce the flow resistance of the plurality of first flow paths formed between 71-1 and 71-n1.
  • the working fluid is adjacent to the edge (adjacent to the notch portion) of the flow path wall element. It provides an opportunity to contact the head 77 and the tail 78, which are the ends) to generate the so-called front edge effect, and improve the heat transfer coefficient between the first fluid and the first partition wall 45 and the second partition wall 61. be able to.
  • the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 of the partition wall heat exchanger of the second embodiment are formed so that the width gradually decreases as they approach the end.
  • the width of the head 77 and the tail 78 of the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 gradually becomes smaller as they approach the ends. It is possible to reduce the shape loss due to the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 when one fluid flows.
  • the shape loss referred to here is a loss that the working fluid receives depending on the shape of the flow path wall surface. If the shape of the flow path wall surface is not gentle, the shape loss to the working fluid due to friction or collision with the flow path wall surface becomes large.
  • the plurality of odd-numbered flow path wall elements 74-1 to 74-m1 and the plurality of even-numbered flow path wall elements 76-1 to 76-m2 of the partition wall heat exchanger of the second embodiment are arranged in the span direction 44.
  • a portion is formed in which the ends of adjacent objects overlap each other in the span direction 44.
  • the heat transfer coefficient between the first fluid and the first partition wall 45 and the second partition wall 61 can be improved. As a result, it is formed by providing local constant disturbance of the fluid due to periodic changes in the widths of the flow path walls 71-1 to 71-n1 and 72-1 to 72-n2, and providing notches 73 and 75.
  • Flow path wall Flow path wall elements 74-1 to 74-m1, 76-1 to 76-m2 combined with the front edge effect, further transfer compared to the partition wall heat exchanger of Example 1 described above. The thermal performance can be improved.
  • the partition wall heat exchanger of the third embodiment includes a plurality of odd-numbered flow path walls 71-1 to 71-n1 of the partition wall heat exchanger of the second embodiment described above.
  • the plurality of odd-numbered flow path walls 81-1 to 81-n1 are replaced, and the plurality of even-numbered flow path walls 72-1 to 72-n2 are replaced by a plurality of other even-numbered flow path walls 82-1 to 82-n2.
  • FIG. 11 is a plan showing a plurality of odd-numbered flow path walls 81-1 to 81-n1 and a plurality of even-numbered flow path walls 82-1 to 82-n2 formed in the partition wall heat exchanger of the third embodiment. It is a figure.
  • the plurality of odd-numbered flow path walls 81-1 to 81-n1 and the plurality of even-numbered flow path walls 82-1 to 82-n2 are the plurality of odd-numbered flow path walls 71-1 to 71-n1 described above. Similar to the plurality of even-numbered flow path walls 72-1 to 72-n2, the recesses 26 for the first heat exchange flow path are formed, and one of them is in the span direction (corresponding to the “amplitude direction of the sinusoidal curve 51”). It is formed so as to overlap one of a plurality of sinusoidal curves 51 arranged at a predetermined pitch P on 44.
  • the plurality of odd-numbered flow path walls 81-1 to 81-n1 and the plurality of even-numbered flow path walls 82-1 to 82-n2 are alternately arranged in the span direction 44.
  • One of the plurality of odd-numbered flow path walls 81-1 to 81-n1 has a plurality of odd-numbered flow path walls 81-1 having no flow path wall, similarly to the above-mentioned odd-numbered flow path walls 71-1.
  • the odd-numbered notch portion 73 is formed, and is divided into a plurality of odd-numbered flow path wall elements 83-1 to 83-m1.
  • One of the plurality of even-numbered flow path walls 82-1 to 82-n2 has a plurality of even-numbered flow path walls 82-1 without a flow path wall, similarly to the above-mentioned even-numbered flow path walls 72-1.
  • the even-numbered notch portion 75 is formed, and is divided into a plurality of even-numbered flow path wall elements 84-1 to 84-m2.
  • FIG. 12 schematically shows a plurality of odd-numbered flow path walls 81-1 to 81-n1 and a plurality of even-numbered flow path walls 82-1 to 82-n2 formed in the partition wall heat exchanger of the third embodiment. It is explanatory drawing shown in.
  • the odd-numbered flow path wall element 83-1 of one of the plurality of odd-numbered flow path wall elements 83-1 to 83-m1 is the odd-numbered flow path wall element 83-1 as shown in FIG.
  • In-element notch 89 (corresponding to "in-element notch") having a shape in which a part without a flow path wall, that is, a part of the odd-numbered flow path wall element 83-1 is removed is formed in 2 It is divided into two.
  • the notch portion 89 in the element is formed and is divided into two.
  • the in-element notch 89 is formed in the odd-numbered flow path wall element 83-1 so as to overlap the inflection point where the phase of the sinusoidal curve 51 is ⁇ + 2 ⁇ i.
  • the phase of the sinusoidal curve 51 is 5 ⁇ . It is formed so as to overlap the portion corresponding to the range of 60 ° from / 6 + 2 ⁇ i to 7 ⁇ / 6 + 2 ⁇ i.
  • the plurality of odd-numbered flow path wall elements 83-1 to 83-m1 are formed so as to overlap the portions corresponding to the maximum points and the minimum points of the sinusoidal curve 51.
  • One of the plurality of even-numbered flow path wall elements 84-1 to 84-m2 has the even-numbered flow path wall element 84-1 in the same manner as the odd-numbered flow path wall element 83-1.
  • the element 84-1 has no flow path wall, that is, the even-numbered flow path wall element 84-1 has a shape in which a part of the element 84-1 is removed. It is formed and divided into two parts.
  • other even-numbered flow path wall elements different from the even-numbered flow path wall element 84-1 are also the same as the even-numbered flow path wall element 84-1. Then, by removing a part of each, the notch portion 90 in the element is formed and divided into two.
  • the in-element notch 90 is formed in the even numbered flow path wall element 84-1 so as to overlap the inflection point where the phase of the sinusoidal curve 51 is 2 ⁇ i.
  • the phase of the sinusoidal curve 51 is ⁇ . It is formed so as to overlap the portion corresponding to the range of 60 ° from ⁇ / 6 + 2 ⁇ i to ⁇ / 6 + 2 ⁇ i.
  • the plurality of even-numbered flow path wall elements 84-1 to 84-m2 are formed so as to overlap the portions corresponding to the maximum points and the minimum points of the sinusoidal curve 51.
  • FIG. 13 is a plan view showing the odd-numbered flow path wall element 83-1.
  • the odd-numbered flow path wall element 83-1 is formed along the sinusoidal curve 51, similarly to the odd-numbered flow path wall element 74-1 described above, and has a head 77. And a tail 78.
  • the odd-numbered flow path wall element 83-1 includes a head side edge portion 85 and a tail side edge portion 86.
  • the head side edge portion 85 is adjacent to the in-element notch portion 89, and is arranged on the side of the head 77 from the in-element notch portion 89.
  • the head-side edge portion 85 is formed with a head-side end face 87 facing the in-element notch portion 89.
  • the head end surface 87 is formed along a plane orthogonal to the sinusoidal curve 51.
  • the tail side edge portion 86 is arranged closer to the tail portion 78 than the element inner notch portion 89, and the tail side end surface 88 facing the element inner notch portion 89 is formed.
  • the tail side end face 88 is formed along a plane orthogonal to the sinusoidal curve 51.
  • the shapes of the head side end face 87 and the tail side end face 88 are not only a shape formed along a plane orthogonal to the sinusoidal curve 51, but also a U that is convex or concave with respect to the notch portion 89 in the element. It includes a shape generated when the odd-numbered flow path wall element 83-1 is formed by etching or the like, such as a character shape.
  • the odd-numbered flow path wall element different from the odd-numbered flow path wall element 83-1 among the plurality of odd-numbered flow path wall elements 83-1 to 83-m1 An in-element notch 89 is formed that overlaps the inflection point of the sinusoidal curve along which the odd-numbered flow path wall element follows.
  • the plurality of even-numbered flow path wall elements 84-1 to 84-m2 are formed in the same manner as the plurality of odd-numbered flow path wall elements 83-1 to 83-m1, and the plurality of even-numbered flow path wall elements 84-1 to 84-1 to Each of the 84-m2 is formed from one that is mirror-symmetric with the odd-numbered channel wall element 83-1.
  • a plurality of odd-numbered flow path walls 81-1 to 81-n1 and a plurality of even-numbered flow paths are formed in the recess 36 for the second heat exchange flow path. Similar to the walls 82-1 to 82-n2 are formed.
  • the partition type heat exchanger of the third embodiment is similar to the partition type heat exchanger of the second embodiment described above, in which the first fluid flows through a plurality of first flow paths and the second fluid flows through a plurality of second flow paths. Heat exchange between the first fluid and the second fluid. Similar to the partition wall heat exchanger of the second embodiment described above, the partition wall heat exchanger of the third embodiment can locally and constantly disturb the first fluid and the second fluid, and can be the first fluid. The heat transfer performance for heat exchange with the second fluid can be improved. In the partition wall heat exchanger of the third embodiment, the wall surfaces of the plurality of odd-numbered flow path walls 81-1 to 81-n1 and the plurality of even-numbered flow path walls 82-1 to 82-n2 follow a sinusoidal curve.
  • the shapes of the plurality of odd-numbered flow path walls 81-1 to 81-n1 and the plurality of even-numbered flow path walls 82-1 to 82-n2 are formed. The work of optimization can be facilitated.
  • the partition wall heat exchanger of the third embodiment has a plurality of first fluids as compared with the partition wall heat exchanger of the second embodiment described above because the notches 89 in a plurality of elements are formed. Friction resistance when flowing through the first flow path is reduced, and pressure loss is reduced.
  • the head side edge portion 85 and the tail side edge portion 86 generate a so-called front edge effect as compared with the partition wall type heat exchanger of the second embodiment described above. Opportunities can be increased to improve the heat transfer coefficient between the first fluid and the first partition 45 and the second partition 61.
  • the partition wall heat exchanger of Example 3 can improve the heat transfer coefficient between the second fluid and the first partition wall 45 and the second partition wall 61.
  • the partition wall heat exchanger of the fourth embodiment includes a plurality of odd-numbered flow path walls 71-1 to 71-n1 of the partition wall heat exchanger of the second embodiment described above.
  • the plurality of odd-numbered flow path walls 121-1 to 121-n1 are replaced, and the plurality of even-numbered flow path walls 72-1 to 72-n2 are replaced by a plurality of other even-numbered flow path walls 122-1 to 122-n2.
  • FIG. 14 is a plan showing a plurality of odd-numbered flow path walls 121-1 to 121-n1 and a plurality of even-numbered flow path walls 122-1 to 122-n2 formed in the partition wall heat exchanger of the fourth embodiment. It is a figure.
  • the plurality of odd-numbered flow path walls 121-1 to 121-n1 and the plurality of even-numbered flow path walls 122-1 to 122-n2 are the plurality of odd-numbered flow path walls 71-1 to 71-n1 described above. Similar to the plurality of even numbered flow path walls 72-1 to 72-n2, they are formed in the recesses 26 for the first heat exchange flow path, and one of them is in the span direction (corresponding to the "amplitude direction of the sinusoidal curve 51"). It is formed so as to overlap one of a plurality of sinusoidal curves 51 arranged at a predetermined pitch P on 44.
  • the plurality of odd-numbered flow path walls 121-1 to 121-n1 and the plurality of even-numbered flow path walls 122-1 to 122-n2 are in the span direction (corresponding to the "amplitude direction of the sinusoidal curve 51") 44. They are lined up alternately. That is, one of the plurality of odd-numbered flow path walls 121-1 to 121-n1 and one of the plurality of even-numbered flow path walls 122-1 to 122-n2 are arranged adjacent to each other in the span direction.
  • One of the odd-numbered flow path wall and the even-numbered flow path wall arranged adjacent to each other in the span direction may be referred to as one flow path wall, and the other may be referred to as the other flow path wall.
  • one flow path wall may be an even numbered flow path wall and the other flow path wall may be an odd numbered flow path wall, but one flow path wall is an odd number flow path wall and the other is an odd number flow path wall. It is substantially the same even if the channel wall is an odd number channel wall.
  • the odd-numbered flow path wall 121-1 of one of the plurality of odd-numbered flow path walls 121-1 to 121-n1 is the odd-numbered flow path wall 48, similarly to the above-mentioned odd-numbered flow path wall 71-1.
  • a plurality of odd-numbered notch portions 73 having no flow path wall are formed in -1, and the odd-numbered flow path wall 121-1 has a plurality of odd-numbered main flow path wall elements 123- by the plurality of odd-numbered notch portions 73. It is divided into 1 to 123-m1.
  • One of the plurality of even-numbered flow path walls 122-1 to 122-n2 has the even-numbered flow path wall 122-1 as the even-numbered flow path wall 72-1 described above.
  • a plurality of even-numbered notch portions 75 having no flow path wall are formed in -2, and the even-numbered flow path wall 122-1 has a plurality of even-numbered main flow path wall elements 124- by the plurality of even-numbered notch portions 75. It is divided into 1 to 124-m2.
  • FIG. 15 schematically shows a plurality of odd-numbered flow path walls 121-1 to 121-n1 and a plurality of even-numbered flow path walls 122-1 to 122-n2 formed in the partition wall heat exchanger of the fourth embodiment. It is explanatory drawing shown in.
  • the odd-numbered main flow path wall element 123-1 of one of the plurality of odd-numbered main flow path wall elements 123-1 to 123-m1 is the odd-numbered main flow path wall element 123-1 as shown in FIG.
  • In-element notch 89 (corresponding to "in-element notch", odd in this embodiment) having a shape without a flow path wall, that is, a part of the odd-numbered main flow path wall element 123-1 is removed.
  • a notch in the number element 89 is formed, and the first odd-numbered sub-channel wall element 123-1A and the second odd-numbered sub-channel wall element 123-1B are formed.
  • the first odd-numbered sub-channel wall element 123-1A is formed in an upwardly convex shape
  • the second odd-numbered sub-channel wall element 123-1B is formed in a downwardly convex shape.
  • other odd-numbered main flow path wall elements 123-2 different from the odd-numbered main flow path wall element 123-1 are also odd-numbered main flow path wall elements 123-.
  • the notch 89 in the odd-numbered element has a plurality of odd-numbered numbers so as to overlap the inflection point (the point where the sine wave changes from convex upward to convex downward) in the sine curve 51 whose phase is (2i + 1) ⁇ . It is formed on the main flow path wall elements 123-1 to 123-m1. Further, the plurality of odd-numbered main flow path wall elements 123-1 to 123-m1 are formed so as to overlap each of the maximum point and the minimum point of the sinusoidal curve 51.
  • One of the plurality of even-numbered main flow path wall elements 124-1 to 124-m2 has the even-numbered main flow path wall element 124-1 in the same manner as the odd-numbered main flow path wall element 123-1.
  • In-element notch 90 (corresponding to "in-element notch", which has a shape in which the element 124-1 has no flow path wall, that is, a part of the odd-numbered main flow path wall element 124-1 is removed.
  • the notch portion 90 in the even-numbered element is formed, and the first even-numbered sub-channel wall element 124-1A and the second even-numbered sub-channel wall element 124-1B are divided into two. There is.
  • the first even-numbered sub-channel wall element 124-1A is formed in an upwardly convex shape
  • the second even-numbered sub-channel wall element 124-1B is formed in a downwardly convex shape.
  • other even-numbered main flow path wall elements 124-2 different from the even-numbered main flow path wall elements 124-1 are also even-numbered main flow path wall elements 124-.
  • the notch 90 in the even-numbered element is the even-numbered main flow path wall element 124 so as to overlap the inflection point (the point where the sine wave changes from convex downward to convex upward) in the sine curve 51 whose phase is 2 ⁇ i. It is formed at -1. Further, the plurality of even-numbered main flow path wall elements 124-1 to 124-m2 are formed so as to overlap each of the maximum point and the minimum point of the sinusoidal curve 51.
  • FIG. 16 shows the phase range of the sinusoidal curve 51 of the odd-numbered flow path walls 121-1 to 121-n1 which are the other flow path walls and the even-numbered flow path walls 122-1 to 122-n2 which are the one flow path walls. It is explanatory drawing which shows an example of the presence / absence of the sub-channel wall element for each. As described above, one of the even-numbered flow path walls 122-1 to 122-n2 which is one flow path wall and one of the odd-numbered flow path walls 121-1 to 121-n1 which are the other flow path walls. Formes two adjacent flow path walls among a plurality of sinusoidal flow path walls arranged in the span direction (amplitude direction) 44 of the sinusoidal curve 51.
  • the turning point (sine wave is convex downward to upward) in the sinusoidal curve 51 on which the odd-numbered main flow path wall element 123-1 overlaps has a phase of 2i ⁇ .
  • the phase of (the point where it changes to) is ⁇ 0
  • the phase advanced by 60 ° from ⁇ 0 is ⁇ 2
  • the phase advanced by 90 ° from ⁇ 2 is ⁇ 4
  • the phase advanced by 60 ° from ⁇ 4 is ⁇ 5
  • the phase advanced by 90 ° from ⁇ 5 is ⁇ 5.
  • the phase advanced by 60 ° from ⁇ 7 becomes the inflection point ⁇ 0 after one cycle. This phase relationship is repeated periodically.
  • the range of the phase ⁇ of ⁇ 0 to ⁇ 2 of the sinusoidal curve 51 on which the odd-numbered main flow path wall elements 123-1 overlap is a part of the odd-numbered notch 73
  • the range of the phase ⁇ of the sinusoidal curve 51 of ⁇ 2 to ⁇ 4 is.
  • the range of the phase ⁇ of the first odd-numbered subchannel wall element 123-1A and the sinusoidal curve 51 from ⁇ 4 to ⁇ 5 is the notch 89 in the odd-numbered element
  • the range of the phase ⁇ of the sinusoidal curve 51 from ⁇ 5 to ⁇ 7 is the second.
  • the range of the phase ⁇ of ⁇ 7 to ⁇ 0 of the odd-numbered subchannel wall element 123-1B and the sinusoidal curve 51 is formed so as to overlap a part of the odd-numbered notch portion 73.
  • the phases advanced by 30 ° from ⁇ 0 are ⁇ 1 and ⁇ 1 to 90.
  • ⁇ 3 be the phase advanced by °
  • ⁇ 6 be the phase advanced by 120 ° from ⁇ 3
  • ⁇ 8 be the phase advanced by 90 ° from ⁇ 6.
  • the phase advanced by 30 ° from ⁇ 8 becomes ⁇ 0, which is the inflection point. This phase relationship is repeated periodically.
  • the range of the phase ⁇ of ⁇ 0 to ⁇ 1 of the sinusoidal curve 51 on which the even-numbered main flow path wall elements 124-1 overlap is a part of the notch portion 90 in the even-numbered element, and the sinusoidal curve 51.
  • the range of the phase ⁇ of ⁇ 1 to ⁇ 3 is the first even number subchannel wall element 124-1A
  • the range of the phase ⁇ of the phase ⁇ 3 to ⁇ 6 of the sine curve 51 is the even numbered notch 75
  • the range of the phase ⁇ of the sine wave 51 The range of the phase ⁇ is formed so as to overlap the second odd-numbered subchannel wall element 124-1B, and the range of the phase ⁇ of the sinusoidal curve 51 from ⁇ 8 to ⁇ 0 overlaps with a part of the notch portion 90 in the even-numbered element. ..
  • the odd-numbered main flow path wall element Similar to the odd-numbered main flow path wall element 123-1, the odd-numbered main flow path wall element different from the odd-numbered main flow path wall element 123-1 among the plurality of odd-numbered main flow path wall elements 123-1 to 123-m1 ,
  • the notch in the odd-numbered element that overlaps the inflection point (the point where the sine wave changes from convex upward to convex downward) where the phase of the sine curve 51 along which the odd-numbered main flow path wall element is along is (2i + 1) ⁇ . 89 is formed.
  • the plurality of even-numbered main flow path wall elements 124-1 to 124-m2 are also formed in the same manner as the plurality of odd-numbered main flow path wall elements 123-1 to 123-m1, and the plurality of even-numbered main flow path wall elements 124-1 to 124-1 to Each of 124-m2 is formed from an odd-numbered main flow path wall element 123-1 that is mirror-symmetrical, and an inflection point (sine wave) in which the phase of the sinusoidal curve 51 along which the even-numbered main flow path wall element is along is 2i ⁇ .
  • the notch 90 in the even-numbered element is formed so as to overlap (the point at which the wave changes from convex downward to convex upward).
  • a plurality of odd-numbered flow path walls 121-1 to 121-n1 and a plurality of even-numbered flow paths are formed in the recess 36 for the second heat exchange flow path. Similar to the walls 122-1 to 122-n2 are formed.
  • the odd-numbered flow path walls 121-1 to 121-n1 and the even-numbered flow path walls 122-1 to 122-n2 are geometrically related to the shapes described above in addition to the shapes described above. Includes symmetrical or similar shapes.
  • the first fluid flows through a plurality of first flow paths, and the second fluid flows through a plurality of second flow paths.
  • Heat exchange between the first fluid and the second fluid Similar to the partition wall heat exchanger of the second embodiment described above, the partition wall heat exchanger of the fourth embodiment can locally and constantly disturb the first fluid and the second fluid, and can be the first fluid. The heat transfer performance when exchanging heat with the second fluid can be improved.
  • the wall surfaces of the plurality of odd-numbered flow path walls 121-1 to 121-n1 and the plurality of even-numbered flow path walls 122-1 to 122-n2 follow a sinusoidal curve.
  • the work of optimizing the shape can be facilitated.
  • the partition type heat exchanger of the fourth embodiment similarly to the third embodiment described above, a plurality of notches 89 in the odd-numbered elements are formed, so that the partition wall type heat exchanger of the second embodiment described above is formed.
  • the partition type heat exchanger of the second embodiment described above is provided by the head side edge portion 85 and the tail side edge portion 86 shown in FIG.
  • the chances of generating the so-called front edge effect can be increased to improve the heat transfer coefficient between the first fluid and the first partition wall 45 and the second partition wall 61.
  • the partition wall heat exchanger of the fourth embodiment can improve the heat transfer coefficient between the second fluid and the first partition wall 45 and the second partition wall 61, as in the third embodiment described above.
  • the flow of the working fluid flowing between the flow path walls sandwiched between the upper and lower partition walls includes an odd-numbered notch 73, an even-numbered notch 75, and an odd-numbered element internal notch 89 formed in the flow path wall. And the cross-sectional area of the flow path is changed by the notch 90 in the even-numbered element, so that the velocity change and the pressure change occur. Since the velocity is a vector quantity and has magnitude and direction, the velocity change of the working fluid includes the change of magnitude (flow velocity) and the change of direction (direction of flow).
  • the difference in the change in the cross-sectional area of the flow path when the odd-numbered element inscribed portion 89 and the even-numbered element inscribed portion 90 are not formed and when they are formed is considered. ..
  • the odd-numbered flow path walls 71-1, 71-2, 71-3 and the even-numbered flow path walls 72-1, 72-2 are formed with the odd-numbered notch portions 73, respectively, so that a plurality of odd-numbered flow path wall elements 74-1 to 74- Has m2.
  • the even-numbered flow path walls 72-1 and 72-2 also have a plurality of even-numbered flow path wall elements 76-1 to 76-m2 by forming even-numbered notches 75 in each of them.
  • the odd-numbered flow path walls 71-1, 71-2, and 71-3 do not have the notch 89 in the odd-numbered element, and the even-numbered flow path walls 72-1 and 72- Notches 90 in even-numbered elements are not formed in each of 2.
  • the flow path widths seen in the direction orthogonal to the sinusoidal curve 51 along which each flow path wall is, for example, are the odd number flow path wall elements 74-1 and the even number of the adjacent odd number flow path walls 71-2.
  • the odd-numbered element inner notch portion 89 and the even-numbered element inner notch portion 90 are formed as shown in FIG. 18, the second of the above-mentioned adjacent odd-numbered flow path walls 121-1.
  • the change in the flow path width (W22-W21) when the odd-numbered element inscribed portion 89 and the even-numbered element inscribed portion 90 are formed is the change in the odd-numbered element inscribed portion 89 and the even-numbered element. It can be seen that the change is twice as large as the change (W12-W11) of the flow path width (see FIG. 17) when the inner notch 90 is not formed.
  • the change in the flow path width that is, the change in the cross-sectional area of the flow path causes a change in the flow velocity and pressure of the flowing working fluid according to Bernoulli's theorem, and the larger the change in the flow path width, the more the flow velocity and pressure of the flowing working fluid. Will change significantly.
  • the change in the flow velocity and pressure of the flowing working fluid is large, the disturbance received by the working fluid is also large, and the heat transfer coefficient between the first fluid and the first partition wall 45 and the second partition wall 61 is greatly improved by the contribution of the front edge effect.
  • the heat transfer performance of the partition type heat exchanger can be improved.
  • the second odd sub-channel wall element 124-1B of the odd channel wall 122-1 sandwiched between 123-1B is an object placed in the stream, for example, "Chushu" often found in rivers. Works the same as.
  • the first even-numbered sub-channel wall element 124-1A and the second even-numbered sub-channel wall element 124-1B receive the force of the flow and receive the first even-numbered sub-channel.
  • the front edge effect is generated at the head portion 78 of the flow path wall element 124-1A and the edge portion 86 of the second even number sub-channel wall element 124-1B.
  • the flow of the working fluid is the first even-numbered flow path wall element 124-1A of the even-numbered flow path wall 122-1 and the first odd-numbered sub-channel wall element of the odd-numbered flow path walls 121-1 on both sides thereof.
  • a contracted flow is formed between 123-1A and the first odd-numbered sub-channel wall element 123-1A of the even-numbered flow path wall 121-2 to reduce the flow path width, and the even-numbered flow path wall 122-1 After passing through the first even-numbered flow path wall element 124-1A, a flow expansion is formed in which the flow path width expands, and the odd-numbered flow path wall 121-1 has an odd number with the second odd-numbered sub-channel wall element 123-1B.
  • the front edge effect obtained by dividing the sinusoidal flow path wall will be explained based on the behavior of the fluid.
  • the pressure of the working fluid flowing through the wide flow path is greater than the pressure of the working fluid flowing through the narrow flow path. Therefore, if the pressure at the point X1 is P1 and the pressure at the point X2 is P2 in FIG. 19, P2> P1 and the working fluid flowing between the odd-numbered flow path walls 121-1 and 121-2 is odd.
  • a force F1 is applied in the direction from the numbered flow path wall 121-1 to the odd numbered flow path wall 121-2.
  • the plurality of odd-numbered flow path wall elements 83-1 to 83-m1 of the partition wall type heat exchanger of the third embodiment described above are other plurality of odd-numbered flow path wall elements.
  • the plurality of even-numbered flow path wall elements 84-1 to 84-m2 are replaced with other plurality of even-numbered flow path wall elements.
  • the plurality of odd-numbered main flow paths wall elements 123-1 to 123-m1 of the partition wall heat exchanger of the fourth embodiment described above are other than a plurality of other odd-numbered main flow paths.
  • FIG. 20 is a plan showing one odd-numbered flow path wall element 91 and one odd-numbered main flow path wall element 91 among the plurality of odd-numbered flow path wall elements formed in the partition wall heat exchanger of Example 5. It is a figure. As shown in FIG. 20, the odd-numbered flow path wall element 91 is formed in the same manner as the odd-numbered flow path wall element 83-1 described above, includes a head 77 and a tail 78, and has a head side. It includes an edge portion 85 and a tail side edge portion 86.
  • odd-numbered main flow path wall element 91 is formed in the same manner as the odd-numbered main flow path wall element 123-1 described above, includes a head 77 and a tail 78, and has a head side edge portion 85 and a tail side edge portion 86. And have.
  • the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91 further include an intermediate flow path wall element 92 (corresponding to the “intermediate flow path wall element”), respectively.
  • the intermediate flow path wall element 92 is formed in a columnar shape.
  • the intermediate flow path wall element 92 is arranged in the region where the inscribed portion 89 is formed, and overlaps the inflection point of the sinusoidal curve 51 along which the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91 are formed. It is arranged like this.
  • each of the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91 is provided with the intermediate flow path wall element 92, whereby the partition wall heat of the above-described 3 and 4 examples shown in FIG. 13 is provided.
  • the length D of the in-element notch 89 which is the distance between the head side edge portion 85 and the tail side edge portion 86, can be increased.
  • flow path wall elements different from the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91 among the plurality of flow path wall elements are also the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91.
  • an intermediate flow path wall element 92 is provided. That is, the intermediate flow path wall element 92 is periodically formed in each of the plurality of flow path walls of the partition wall heat exchangers of the above-mentioned Examples 3 and 4 for each period T.
  • the plurality of even-numbered flow path wall elements are formed in the same manner as the plurality of odd-numbered flow path wall elements, and the plurality of even-numbered flow path wall elements of the above-described third embodiment and the plurality of even-numbered flow path wall elements of the above-described embodiment 4 are formed.
  • Each of the main flow path wall elements is formed from those that are mirror image symmetric with the odd number main flow path wall element 91 and the odd number main flow path wall element 91.
  • the partition type heat exchanger of Example 5 exchanges heat between the first fluid and the second fluid in the same manner as the partition type heat exchangers of Examples 3 and 4 described above.
  • the partition heat exchanger of the fifth embodiment can locally and constantly disturb the first fluid and the second fluid in the same manner as the partition heat exchangers of the third and fourth embodiments described above.
  • the heat transfer performance for heat exchange between the first fluid and the second fluid can be improved.
  • the partition wall heat exchanger of the fifth embodiment can be used as the partition wall heat exchanger of the third and fourth embodiments by forming the intermediate flow path wall element 92 and increasing the length D of the notch 89 in the element. In comparison, the frictional resistance due to the flow path wall when the fluid flows through the flow path can be reduced. Further, the intermediate flow path wall element 92 guides the flow of the fluid flowing along the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91, and the length D of the notch in the element 89 is increased.
  • the portion to be joined is reduced, and the decrease in strength of the first partition wall 45 and the second partition wall 61 caused by the fact that the first partition wall 45 and the second partition wall 61 are easily deformed in the stacking direction is reinforced. Further, the impact that the head side edge portion 85 and the tail side edge portion 86 receive from the first fluid can be reduced.
  • the intermediate flow path wall element 92 is arranged so as to overlap the inflection point of the sinusoidal curve 51 along which the odd-numbered flow path wall element 91 and the odd-numbered main flow path wall element 91 are aligned, but do not overlap the inflection point. As such, it may be formed. Even when the intermediate flow path wall element 92 is formed so as not to overlap the inflection point, the same action and effect as described above can be obtained by arranging the intermediate flow path wall element 92 in the region where the notch portion 89 in the element is formed. be able to. Further, although the intermediate flow path wall element 92 is formed in a columnar shape, it may be formed in a shape other than the columnar shape. Even when the intermediate flow path wall element 92 is formed in a shape other than a columnar shape, the same actions and effects as described above can be obtained.
  • FIG. 21 is a graph showing the heat transfer rate K and the product KA of the heat transfer rate K and the heat transfer area in the partition type heat exchanger of Example 5 and the partition type heat exchanger of Comparative Example.
  • the partition wall heat exchanger of the comparative example is a so-called plate heat exchanger.
  • the graph of FIG. 21 shows that the product KA in the partition heat exchanger of Example 5 and the product KA in the partition heat exchanger of Comparative Example are about the same, and the partition heat exchanger of Comparative Example is It is shown that it has the same heat exchange capacity as the partition type heat exchanger of Example 5.
  • the heat transfer rate K of the partition wall heat exchanger of Example 5 is approximately 10 times the heat transfer rate K of the partition wall heat exchanger of Comparative Example, and the partition wall of Example 5 shows. It shows that the heat transfer rate K of the heat exchanger is larger than the heat transfer rate K of the partition wall heat exchanger of the comparative example. That is, in the graph of FIG. 21, the heat exchanger of the fifth embodiment exchanges heat as compared with the plate heat exchanger having the same heat exchange capacity as the partition heat exchanger of the fifth embodiment. It shows that the thermal performance is high.
  • FIG. 22 is a graph showing the pressure loss of the partition wall heat exchanger of Example 5 and the pressure loss of the partition wall heat exchanger of Comparative Example.
  • the graph of FIG. 22 shows that the pressure loss of the partition heat exchanger of Example 5 is 44% of the pressure loss of the partition heat exchanger of Comparative Example, and the partition heat exchanger of Example 5 has a pressure loss of 44%.
  • the pressure loss can be reduced as compared with the partition type heat exchanger of the comparative example.
  • the reason why the pressure loss of the partition wall heat exchanger of Example 5 is reduced is that the hydraulic diameter of the flow path of the partition wall heat exchanger of Example 5 is smaller than 1.0 mm, and that of the partition wall heat exchanger of Comparative Example. It is smaller than the hydraulic diameter of the flow path.
  • the reason why the pressure loss of the partition type heat exchanger of the fifth embodiment is reduced is that a plurality of odd-numbered channel walls and a plurality of odd-numbered main channel wall elements have a plurality of odd-numbered notches 73 and a plurality of elements.
  • the inner notch 89 is formed, and the plurality of even numbered flow path walls and the plurality of even numbered main flow path wall elements are formed with a plurality of even numbered notch portions 75 and a plurality of element inner notch portions 90. It can be mentioned that it has been done.
  • first flow path walls 48-1 to 48-n (odd number flow path wall 71-n1, even number flow path wall 72-n2, odd number flow path wall 81) of the partition wall type heat exchanger of the embodiment. -N1, even numbered flow path wall 82-n2, odd numbered main flow path wall 121-n1, even numbered main flow path wall 122-n2 are included.
  • the first flow path walls 48-1 to 48-n are represented.
  • the first side flow path wall surface 52 and the second side flow path wall surface 53 are formed into two sine curves offset by a sine curve 51 in which a plurality of first flow path walls 48-1 to 48-n overlap.
  • FIG. 23 is a plan view showing a part of one flow path wall included in the partition wall heat exchanger of the modified example.
  • the flow path wall 101 is formed along a sinusoidal curve 51, and is formed of a plurality of first side portions 103 and a plurality of second side portions 104.
  • the plurality of first side portions 103 overlap with the upwardly convex portion of the sinusoidal curve 51.
  • the plurality of second side portions 104 overlap with the downwardly convex portion of the sinusoidal curve 51.
  • the plurality of first side portions 103 are formed with a first convex flow path wall surface 105 and a first concave flow path wall surface 106.
  • the first convex flow path wall surface 105 is formed on the side of the first side wall 46 of the plurality of first side portions 103.
  • the first concave flow path wall surface 106 is formed on the side of the second side wall 47 of the plurality of first side portions 103.
  • a second convex flow path wall surface 107 and a second concave flow path wall surface 108 are formed on the plurality of second side portions 104.
  • the second convex flow path wall surface 107 is formed on the side of the second side wall 47 of the plurality of second side portions 104.
  • the second concave flow path wall surface 108 is formed on the side of the first side wall 46 of the plurality of second side portions 104.
  • the first convex flow path wall surface 105 and the second convex flow path wall surface 107 are formed so as to follow one sine curve 111 (corresponding to the "first sine curve”).
  • the sinusoidal curve 111 is formed so that the period of the sinusoidal curve 111 is equal to the period of the sinusoidal curve 51.
  • the amplitude of the sinusoidal curve 111 is a numerical multiple (for example, 1.) of the amplitude A of the sinusoidal curve 51 so that the amplitude of the sinusoidal curve 111 is larger than the amplitude of the sinusoidal curve 51. It is formed so as to be equal to (twice).
  • the sinusoidal curve 111 further allows the plurality of inflection points of the sinusoidal curve 111 to overlap the plurality of inflection points of the sinusoidal curve 51 and intersects the sinusoidal curve 51 at the plurality of inflection points of the sinusoidal curve 111. Is formed in.
  • the first concave flow path wall surface 106 and the second concave flow path wall surface 108 are formed so as to follow one sine curve 112 (corresponding to the "second sine curve”).
  • the sinusoidal curve 112 is formed so that the period of the sinusoidal curve 112 is equal to the period of the sinusoidal curve 51.
  • the sinusoidal curve 112 further comprises, for example, a positive numerical multiple (eg,) of the amplitude A of the sinusoidal curve 51 being less than 1 so that the amplitude of the sinusoidal curve 112 is smaller than the amplitude of the sinusoidal curve 51. It is formed so as to be equal to 0.8 times).
  • the sinusoidal curve 112 is formed so that the period of the sinusoidal curve 112 is equal to the period of the sinusoidal curve 111 and the amplitude of the sinusoidal curve 112 is smaller than the amplitude of the sinusoidal curve 111.
  • the sinusoidal curve 112 further allows the plurality of inflection points of the sinusoidal curve 112 to overlap the plurality of inflection points of the sinusoidal curve 51 and intersects the sinusoidal curve 51 at the plurality of inflection points of the sinusoidal curve 112. Is formed in.
  • the sinusoidal curve 112 is such that the plurality of inflection points of the sinusoidal curve 112 overlap the plurality of inflection points of the sinusoidal curve 111 and intersect the sinusoidal curve 111 at the plurality of inflection points of the sinusoidal curve 112. Is formed in.
  • the partition wall heat exchanger can change the direction in which the first fluid flows in the plurality of first flow paths even when the plurality of first flow path walls are replaced by the flow path walls 101.
  • the cross-sectional area of the plurality of first flow paths differs depending on the position, and the speed of the first fluid flowing through the plurality of first flow paths can be changed.
  • the partition type heat exchanger can change the direction in which the second fluid flows in the plurality of second flow paths even when the plurality of second flow path walls are replaced by the flow path walls 101.
  • the cross-sectional area of the plurality of second flow paths differs depending on the position, and the speed of the second fluid flowing through the plurality of second flow paths can be changed.
  • such a partition type heat exchanger has a first fluid and a first fluid flowing through the plurality of first flow paths and the plurality of second flow paths, respectively, like the partition type heat exchanger of the above-described embodiment. It is possible to improve the heat transfer performance of heat exchange between the first fluid and the second fluid by constantly locally disturbing the two fluids.
  • frictional resistance is reduced by providing a plurality of notches and intermediate flow path wall elements in the flow path wall 101, similarly to the partition type heat exchanger of the above-described embodiment. , The front edge effect can be exhibited, the shape loss can be reduced, and the heat transfer performance for heat exchange between the first fluid and the second fluid can be improved.
  • such a partition type heat exchanger has a plurality of first flow paths, similarly to the partition type heat exchanger of the above-described embodiment, because the wall surface of the flow path wall 101 follows a sinusoidal curve. It is possible to facilitate the work of inputting / changing the shape with the plurality of second flow paths and facilitating the optimization of the shape by computer simulation.
  • the head 77 and the tail 78 of the flow path wall elements of the partition wall type heat exchangers of Examples 2 to 5 include such a plurality of first flow path walls and a plurality of second flow path walls.
  • the wall surface of the flow path wall element is formed more gently, so that the first flow is compared with the partition type heat exchangers of Examples 2 to 5 described above.
  • the shape loss expressed by the shape loss coefficient which is one of the pressure losses in fluid dynamics, can be reduced, and the pressure loss between the first flow path and the second flow path can be reduced. be able to.
  • the head 77 and the tail 78 are formed so as to be sharp, but the head 77 and the tail 78 are formed so as not to be sharp. May be done.
  • both the first side wall surface 41 and the second side wall surface 42 follow a sine curve, but it does not have to follow the sine curve.
  • the side wall surface 41 and the second side wall surface 42 may be formed substantially flat. Even in these cases, the partition type heat exchanger can improve the heat transfer performance by constantly locally disturbing the fluid because the walls of the plurality of flow path walls follow a sinusoidal curve. The work of optimizing the shape of a plurality of flow path walls can be facilitated.
  • the odd-numbered notch 73, the even-numbered notch 75, the odd-numbered element internal notch (elemental notch) 89, and the even-numbered element internal notch (elemental notch) 90 According to the flow path formed by the formed sinusoidal flow path wall, the thinness of the temperature boundary layer is physically secured by the limitation of the flow path wall height, and the flow of the working fluid is changed under the physical thickness. And, the leading edge effect due to the edge structure and the turbulent flow effect due to the generation of vortices can be obtained, and the means that can promote heat transfer can make full use of the thinness of the temperature boundary layer, the generation of many leading edge effects and the disturbance to the flow. , It is possible to obtain a heat transfer promoting effect of a fine structure that is unprecedented.
  • the odd-numbered element notch portion (in-element notch portion) 89 is a plurality of odd-numbered flow path wall elements 83-1 to 83-m1, and a plurality of odd-numbered flow path wall elements 123-.
  • One is formed in each of 1 to 123-m1
  • the even-numbered element inner notch (in-element notch) 90 is a plurality of even-numbered flow path wall elements 84-1 to 84-m2, and a plurality of even numbers.
  • the number of in-element notches) 90 formed may be two or more.
  • the examples are not limited by the contents described above. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those having a so-called equal range. Furthermore, the components described above can be combined as appropriate. Furthermore, at least one of the various omissions, substitutions and changes of the components can be made without departing from the gist of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

隔壁式熱交換器は、第1隔壁と、第2隔壁と、第1隔壁と第2隔壁との間に形成される空間を複数の第1流路に分割する複数の流路壁とを有する。第1隔壁と第2隔壁とは、複数の第1流路を流れる第1流体と異なる第2流体が流れる複数の第2流路から複数の第1流路を隔てる。流路壁は、複数の正弦曲線に沿う複数の壁面が形成され、隣り合う流路壁の一方の流路壁の変曲点に重なる位相をθ0(=0°)とした場合、θ0(=0°)<θ1<θ2<90°<θ3<θ4<180°<θ5<θ6<270°<θ7<θ8<θ0(=360°)の位相範囲を一周期とする正弦波状の流路壁である。一方の流路壁は、複数の流路壁のない部分が形成され、θ1≦θ<θ3及びθ6≦θ<θ8の位相範囲に主流路壁要素、他方の流路壁は、複数の流路壁のない部分が形成され、θ2≦θ<θ4及びθ5≦θ<θ7の位相範囲に主流路壁要素が形成される。熱交換器の伝熱性能を向上させる。

Description

隔壁式熱交換器
 本開示の技術は、隔壁式熱交換器に関する。
 隔壁により隔てられた流体の間で熱交換を行わせる隔壁式熱交換器が知られている。このような隔壁式熱交換器は、熱コンダクタンス平衡条件を考慮して、各々の流体の熱交換に必要な伝熱面積を決定することにより、コンパクト化が可能である(特許文献1参照)。
特開2009-68736号公報
 一方で、従来の隔壁式熱交換器では、熱交換器の伝熱性能を向上させる伝熱面の形状の開発が試行錯誤により進められている。このため、隔壁式熱交換器は、伝熱面の形状を最適化することが困難であるという問題がある。
 開示の技術は、かかる点に鑑みてなされたものであって、熱交換器のコンパクト化を可能にするとともに、伝熱性能を向上させる形状の伝熱面を有する隔壁式熱交換器を提供することを目的とする。
 開示の技術では、隔壁式熱交換器は、第1隔壁と、第2隔壁と、前記第1隔壁と前記第2隔壁との間に形成される空間を複数の第1流路に分割する複数の流路壁とを備えている。前記第1隔壁と前記第2隔壁とは、前記複数の第1流路を流れる第1流体と異なる第2流体が流れる第2流路から前記複数の第1流路を隔てている。前記複数の流路壁は、複数の壁面が形成されている。前記複数の壁面の各々は、互いに位置が異なる正弦曲線に沿っている。前記正弦曲線の振幅方向に並んだ複数の正弦波状の流路壁のうち、隣り合う二つの流路壁は、一方の流路壁の正弦曲線の変曲点に重なる位相をθ0(=0°)としたとき、θ0(=0°)<θ1<θ2<90°<θ3<θ4<180°<θ5<θ6<270°<θ7<θ8<θ0(=360°)の位相の範囲を一周期とする正弦波状の流路壁である。前記一方の流路壁は、複数の流路壁のない部分が形成されることで、θ1≦θ<θ3及びθ6≦θ<θ8の位相θの範囲に重なる部分に主流路壁要素が形成されている。前記他方の流路壁は、複数の流路壁のない部分が形成されることで、θ2≦θ<θ4及びθ5≦θ<θ7の位相θの範囲に重なる部分に主流路壁要素が形成されている。
 開示の隔壁式熱交換器は、熱交換器をコンパクト化するとともに、その伝熱性能を向上させることができる。
図1は、実施例1の隔壁式熱交換器を示す斜視図である。 図2は、熱交換器本体を示す分解斜視図である。 図3は、複数の第1熱交換器板のうちの1つの第1熱交換器板を示す平面図である。 図4は、複数の第2熱交換器板のうちの1つの第2熱交換器板を示す平面図である。 図5は、第1熱交換流路用凹部を示す平面図である。 図6は、複数の第1流路壁のうちの隣り合う2つの流路壁を示す平面図である。 図7は、図2のA-A断面拡大図である。 図8は、実施例2の隔壁式熱交換器に形成される複数の奇数番流路壁と複数の偶数番流路壁とを示す平面図である。 図9は、実施例2の隔壁式熱交換器に形成される複数の奇数番流路壁と複数の偶数番流路壁とを概略的に示す説明図である。 図10は、奇数番流路壁要素を示す平面図である。 図11は、実施例3の隔壁式熱交換器に形成される複数の奇数番流路壁を示す平面図である。 図12は、実施例3の隔壁式熱交換器に形成される複数の奇数番流路壁と複数の偶数番流路壁とを概略的に示す説明図である。 図13は、奇数番流路壁要素を示す平面図である。 図14は、実施例4の隔壁式熱交換器に形成される複数の奇数番流路壁を示す平面図である。 図15は、実施例4の隔壁式熱交換器に形成される複数の奇数番流路壁と複数の偶数番流路壁とを概略的に示す説明図である。 図16は、他方の流路壁である奇数番流路壁及び一方の流路壁である偶数番流路壁の正弦曲線の位相範囲毎の副流路壁要素の有無の一例を示す説明図である。 図17は、要素内切欠き部がなしの比較例の隔壁式熱交換器の流路幅の変化の一例を示す説明図である。 図18は、実施例4の隔壁式熱交換器の流路幅の変化の一例を示す説明図である。 図19は、実施例4の隔壁式熱交換器の前縁効果の流体の振る舞いの一例を示す説明図である。 図20は、実施例5の隔壁式熱交換器に形成される複数の奇数番流路壁要素のうちの1つの奇数番流路壁要素および1つの奇数番主流路壁要素を示す平面図である。 図21は、実施例5の隔壁式熱交換器と比較例の隔壁式熱交換器とにおける、熱通過率Kと、熱通過率Kと伝熱面積との積KAとを示すグラフである。 図22は、実施例5の隔壁式熱交換器の圧力損失と比較例の隔壁式熱交換器の圧力損失とを示すグラフである。 図23は、変形例の隔壁式熱交換器が備える1つの流路壁の一部を示す平面図である。
 以下に、本願が開示する実施形態にかかる隔壁式熱交換器について、図面を参照して説明する。なお、以下の記載により本願が開示する技術が限定されるものではない。また、以下の記載においては、同一の構成要素に同一の符号を付与し、重複する説明を省略する。
 図1は、実施例1の隔壁式熱交換器1を示す斜視図である。実施例1の隔壁式熱交換器1は、図1に示されているように、熱交換器本体2と第1流入管5と第1流出管6と第2流入管7と第2流出管8とを備えている。第1流入管5は、第1流体を熱交換器本体2に流入させる。第1流出管6は、熱交換器本体2で第2流体と熱交換された第1流体を熱交換器本体2から外部に流出させる。第2流入管7は、第2流体を熱交換器本体2に流入させる。第2流出管8は、熱交換器本体2で第1流体と熱交換された第2流体を熱交換器本体2から外部に流出させる。
 図2は、熱交換器本体2を示す分解斜視図である。図2の熱交換器本体2は、図1の隔壁式熱交換器1を第2流入管7または第2流出管8の管軸を中心に、180度回転させた図である。熱交換器本体2は、図2に示されているように、積層体10と第1端板11と第2端板12とを備えている。積層体10は、柱体に形成されている。第1端板11は、柱体である積層体10の一方の底面S1を覆い、積層体10に固定されている。第2端板12は、柱体である積層体10の底面S1の反対側の他方の底面S2を覆い、積層体10に固定されている。
 熱交換器本体2は、第1流入室14と第1流出室15と第2流入室16と第2流出室17とが形成されている。第1流入室14と第1流出室15と第2流入室16と第2流出室17とは、後述する積層体10の積層方向20に積層体10を貫通する4つの貫通孔の両端が第1端板11と第2端板12とによりそれぞれ閉塞されることにより、形成されている。
 積層体10は、さらに、第1流出孔18と第2流出孔19とが形成されている。第1流出孔18は、積層体10の側面のうちの第1流出室15の近傍に形成され、第1流出室15と熱交換器本体2の外部とを接続している。このとき、第1流出管6は、一端が第1流出孔18に挿入されて第1流出室15に臨むように積層体10に固定され、他端が熱交換器本体2の外部に配置される。第2流出孔19は、積層体10の側面のうちの第2流出室17の近傍に形成され、第2流出室17の内部と熱交換器本体2の外部とを接続している。このとき、第2流出管8は、一端が第2流出孔19に挿入されて第2流出室17に臨むように積層体10に固定され、他端が熱交換器本体2の外部に配置される。
 積層体10は、さらに、図示されていない第1流入孔と第2流入孔とが形成されている。第1流入孔は、積層体10の側面のうちの第1流入室14の近傍に形成され、第1流入室14の内部と熱交換器本体2の外部とを接続している。このとき、第1流入管5は、一端が第1流入孔に挿入されて第1流入室14に臨むように積層体10に固定され、他端が熱交換器本体2の外部に配置される。第2流入孔は、積層体10の側面のうちの第2流入室16の近傍に形成され、第2流入室16の内部と熱交換器本体2の外部とを接続している。このとき、第2流入管7は、一端が第2流入孔に挿入されて第2流入室16に臨むように積層体10に固定され、他端が熱交換器本体2の外部に配置される。
 積層体10は、複数の熱交換器板を有する。複数の熱交換器板は、それぞれ、板状に形成されている。複数の熱交換器板は、積層方向20に垂直に配置され、互いに密着するように積層されている。複数の熱交換器板は、複数の第1熱交換器板と複数の第2熱交換器板とを有する。第1熱交換器板と第2熱交換器板は交互に積層される。
 複数の第1熱交換器板は、互いに等しい形状に形成されている。図3は、複数の第1熱交換器板のうちの1つの第1熱交換器板21を示す平面図である。第1熱交換器板21は、図3に示されているように、第1流入室用孔22と第1流出室用孔23と第2流入室用孔24と第2流出室用孔25とが形成されている。第1流入室用孔22と第1流出室用孔23と第2流入室用孔24と第2流出室用孔25とは、それぞれ、第1熱交換器板21の一方の面S3から他方の面S4に貫通している。
 第1熱交換器板21は、一方の面S3に第1熱交換流路用凹部26と第1流入流路用凹部27と第1流出流路用凹部28とがさらに形成されている。第1熱交換流路用凹部26は、第1熱交換器板21の概ね中央に形成されている。第1流入流路用凹部27は、第1熱交換流路用凹部26と第1流入室用孔22との間に形成され、第1流入室用孔22に繋がり、第1熱交換流路用凹部26のうちの第1流入室用孔22の側の縁V1に繋がっている。第1流出流路用凹部28は、第1熱交換流路用凹部26と第1流出室用孔23との間に形成され、第1流出室用孔23に繋がり、第1熱交換流路用凹部26のうちの第1流入流路用凹部27に繋がる縁V1に対して流れ方向29の反対側の縁V2に繋がっている。流れ方向29は、第1熱交換流路用凹部26を第1流体が全体として流れる方向(後述する正弦波状の流路に沿って流れる第1流体の進行方向)を表し、積層方向20に垂直であり、すなわち、第1熱交換器板21に平行である。
 複数の第2熱交換器板は、互いに等しい形状に形成されている。図4は、複数の第2熱交換器板のうちの1つの第2熱交換器板31を示す平面図である。第2熱交換器板31は、図4に示されているように、第1流入室用孔32と第1流出室用孔33と第2流入室用孔34と第2流出室用孔35とが形成されている。第1流入室用孔32と第1流出室用孔33と第2流入室用孔34と第2流出室用孔35とは、それぞれ、第2熱交換器板31の一方の面S5から他方の面S6に貫通している。第1流入室用孔32は、複数の熱交換器板が適切に積層されたときに、第1熱交換器板21の第1流入室用孔22と繋がり第1流入室14を形成する。第1流出室用孔33は、複数の熱交換器板が適切に積層されたときに、第1熱交換器板21の第1流出室用孔23と繋がり第1流出室15を形成する。第2流入室用孔34は、複数の熱交換器板が適切に積層されたときに、第1熱交換器板21の第2流入室用孔24と繋がり第2流入室16を形成する。第2流出室用孔35は、複数の熱交換器板が適切に積層されたときに、第1熱交換器板21の第2流出室用孔25と繋がり第2流出室17を形成する。
 第2熱交換器板31は、一方の面S5に第2熱交換流路用凹部36と第2流入流路用凹部37と第2流出流路用凹部38とがさらに形成されている。第2熱交換流路用凹部36は、複数の熱交換器板が適切に積層されたときに、第1熱交換器板21の第1熱交換流路用凹部26と積層方向20に重なるように、第2熱交換器板31の概ね中央に形成されている。第2流入流路用凹部37は、第2流入室用孔34と第2熱交換流路用凹部36との間に形成され、第2流入室用孔34に繋がり、第2熱交換流路用凹部36のうちの第1流出室用孔33の側の縁V3に繋がっている。第2流出流路用凹部38は、第2流出室用孔35と第2熱交換流路用凹部36との間に形成され、第2流出室用孔35に繋がり、第2熱交換流路用凹部36のうちの第2流入流路用凹部37に繋がる縁V3に対して流れ方向29の反対側の縁V4に繋がっている。流れ方向29は、図3の流れ方向29と同じ方向である。図4では、流れ方向29は、第2流体が全体として第2熱交換流路用凹部36を流れる方向(後述する正弦波状の流路に沿って流れる第2流体の進行方向)を表し、積層方向20に垂直であり、すなわち、第2熱交換器板31に平行である。なお、第1流体、第2流体の流れる方向は可逆的であるため、図3、図4において流れ方向29は両矢印で示している。
 図5は、第1熱交換流路用凹部26を示す平面図である。第1熱交換器板21は、図5に示されているように、第1熱交換流路用凹部26が形成されることにより、第1側壁面41と第2側壁面42と底面43とが形成されている。第1側壁面41は、第1熱交換流路用凹部26のうちのスパン方向44の一方の縁に形成され、第1熱交換流路用凹部26の内壁面の一部を形成している。スパン方向44は、積層方向20に垂直であり、かつ、流れ方向29に垂直な方向である。また、スパン方向44は後述する正弦曲線51の振幅方向である。第1側壁面41は、第1熱交換器板21が平行な平面に概ね垂直であり、すなわち、積層方向20に概ね平行である。第1側壁面41は、第1熱交換器板21に平行な平面に描かれる正弦曲線に沿うように、形成されている。第1側壁面41が沿う正弦曲線は、正弦関数により示される波形に等しく、振幅が流れ方向29に周期的になめらかに変化する。すなわち、その正弦関数は、変数xと変数yと振幅Aと周期Tとを用いて、次式(1)により表現される。
 y=Asin(2π/T・x)・・・(1)
 ここで、変数xは、流れ方向29における位置を示している。変数yは、スパン方向44における位置を示している。振幅Aは、1.0mmより小さい値、たとえば、0.6mmが例示される。周期Tとしては、3mmが例示される。
 第2側壁面42は、第1熱交換流路用凹部26のうちの第1側壁面41が形成される縁に対してスパン方向44の反対側の縁に形成され、第1熱交換流路用凹部26の内壁面の一部を形成している。第2側壁面42は、第1熱交換器板21が沿う平面に概ね垂直であり、すなわち、積層方向20に概ね平行である。第2側壁面42は、第1熱交換器板21が沿う平面に描かれる正弦曲線に沿うように、形成されている。第2側壁面42が沿う正弦曲線は、第1側壁面41が沿う正弦曲線と同じ正弦曲線である。すなわち、第2側壁面42が沿う正弦曲線の周期は、第1側壁面41が沿う正弦曲線の周期に等しく、かつ、第2側壁面42が沿う正弦曲線の振幅は、第1側壁面41が沿う正弦曲線の振幅に等しい。さらに、第2側壁面42が沿う正弦曲線のうちのある位相に対応する点の流れ方向29の位置は、第1側壁面41が沿う正弦曲線のうちのその位相に対応する点の流れ方向29の位置に等しい。
 底面43は、第1熱交換流路用凹部26の内壁面の一部を形成し、第1熱交換流路用凹部26の内壁面のうちの第1側壁面41と第2側壁面42とに挟まれた面を形成している。底面43は、第1熱交換器板21が平行な平面と平行に、形成されている。
 第1熱交換器板21は、第1隔壁45と第1側壁46と第2側壁47と複数の第1流路壁48-1~48-n(nは正の整数。以下、他の実施例でもnは任意の正の整数を表す)とを備えている。第1隔壁45は、第1熱交換流路用凹部26の底部を形成し、すなわち、第1熱交換器板21のうちの底面43を形成する部分である。第1側壁46は、第1熱交換流路用凹部26の一方の側壁を形成し、すなわち、第1熱交換器板21のうちの第1側壁面41を形成する部分である。第2側壁47は、第1熱交換流路用凹部26の他方の側壁を形成し、すなわち、第1熱交換器板21のうちの第2側壁面42を形成する部分である。複数の第1流路壁48-1~48-nは、それぞれ、第1熱交換流路用凹部26の内部に配置され、底面43から積層方向20に突出するように第1隔壁45に形成されている。
 図6は、複数の第1流路壁48-1~48-nのうちの隣り合う2つの流路壁を示す平面図である。複数の第1流路壁48-1~48-nのうちの1つの第1流路壁48-1は、図6に示されているように、第1熱交換器板21に平行な平面に描かれた正弦曲線51に沿うように、形成されている。正弦曲線51は、式(1)で表現される第1側壁面41または第2側壁面42が沿う正弦曲線と同じ正弦曲線であり、振幅が流れ方向29に周期的になめらかに変化するように形成されている。すなわち、正弦曲線51の周期は、第1側壁面41または第2側壁面42が沿う正弦曲線の周期Tに等しく、正弦曲線51の振幅は、第1側壁面41または第2側壁面42が沿う正弦曲線の振幅Aに等しい。第1流路壁48-1は、第1側流路壁面52と第2側流路壁面53とを形成する。第1側流路壁面52は、第1流路壁48-1のうちの第1側壁46の側に形成されている。第1側流路壁面52は、第1熱交換器板21に平行な平面に描かれた正弦曲線(「第1正弦曲線」に対応)に沿うように、形成されている。第1側流路壁面52が沿う正弦曲線は、正弦曲線51と同じ正弦曲線であり、正弦曲線51をスパン方向(「正弦曲線51の振幅方向」に対応)44の第1側壁46の側にオフセット値yだけ平行移動させて配置した正弦曲線に重なるように形成されている。オフセット値yとしては、0.1mmが例示される。
 第2側流路壁面53は、第1流路壁48-1のうちの第2側壁47の側に形成されている。第2側流路壁面53は、正弦曲線51をスパン方向44の第2側壁47の側にオフセット値yだけ平行移動させた正弦曲線(「第2正弦曲線」に対応)に重なるように形成されている。第1側流路壁面52と第2側流路壁面53は第1熱交換器板21が沿う平面に概ね垂直であり、すなわち、積層方向20に概ね平行である。第1流路壁48-1は、このように形成されることにより、第1流路壁48-1のうちの正弦曲線51の変曲点に重なる部分の幅w(変曲点で正弦曲線51に直交する部分)が、第1流路壁48-1のうちの正弦曲線51の極大点または極小点に重なる部分の幅wより狭い。式(1)で表現される正弦曲線51の変曲点は、整数i(以下、他の実施例でもiは任意の整数を表す)を用いて、次式(2)により表現される位相θを変曲点とする正弦関数のグラフの点に対応している。
 θ=πi・・・(2)
 また、正弦曲線51の極大点は、次式(3)により表現される位相θに対応する正弦関数のグラフの点に対応している。
 θ=π/2+2πi・・・(3)
 さらに、正弦曲線51の極小点は、次式(4)により表現される位相θに対応する正弦関数のグラフの点に対応している。
 θ=3π/2+2πi・・・(4)
 複数の第1流路壁48-1~48-nのうちの第1流路壁48-1の第2側壁47の側に配置される隣の第1流路壁48-2は、第1流路壁48-1と同様に、形成されている。すなわち、第1流路壁48-2は、正弦曲線51に沿うように形成され、第1側流路壁面52と第2側流路壁面53とが形成されている。さらに、第1流路壁48-2は、第1流路壁48-2が沿う正弦曲線51が、第1流路壁48-1が沿う正弦曲線51がスパン方向44に所定のピッチPだけ平行移動した正弦曲線に重なるように、配置されている。ピッチPとしては0.75mmが例示される。複数の第1流路壁48-1~48-nのうちの第1流路壁48-1と第1流路壁48-2とを除く他の第1流路壁に関しても、第1流路壁48-1と第1流路壁48-2と同様に、形成されている。すなわち、複数の第1流路壁48-1~48-nは、ピッチPで等間隔にスパン方向44に並ぶように、形成されている。
 第1熱交換器板21は、複数の第1流路壁48-1~48-nが形成されることにより、複数の溝が形成されている。各々の溝57は、複数の第1流路壁48-1~48-nのうちの隣り合う2つの第1流路壁の間に形成され、一方の第1流路壁の第1側流路壁面52と他方の第1流路壁の第2側流路壁面53との間に形成されている。溝57は、第1側流路壁面52と第2側流路壁面53とが同じ正弦曲線に沿っていることにより、正弦曲線51の変曲点に近い部分の幅wが、正弦曲線51の極大点または極小点に近い部分の幅wより狭くなるように、形成されている。
 第2熱交換器板31の第2熱交換流路用凹部36は、第1熱交換器板21の第1熱交換流路用凹部26と同様に形成されている。図7は、図2のA-A断面拡大図である。第2熱交換器板31は、図7に示されているように、第2隔壁61と複数の第2流路壁62-1~62-nとを備えている。第2隔壁61は、第1熱交換器板21の第1隔壁45と同様に、第2熱交換流路用凹部36の底部を形成し、すなわち、第2熱交換器板31に平行な底面63を形成する。複数の第2流路壁62-1~62-nは、第1熱交換器板21の複数の第1流路壁48-1~48-nと同様に、第2熱交換流路用凹部36の内部に配置され、底面63から積層方向20に突出するように第2隔壁61に形成されている。複数の第2流路壁62-1~62-nは、さらに、第1熱交換器板21の複数の第1流路壁48-1~48-nと形状が等しくなるように形成されている。第2熱交換器板31は、図示されていない2つの側壁をさらに備えている。2つの側壁は、第1熱交換器板21の第1側壁46と第2側壁47と同様に、第2熱交換流路用凹部36のうちのスパン方向44の両端にそれぞれ形成され、第2熱交換流路用凹部36の内壁面のうちの底面63を除いた2つの側壁面をそれぞれ形成している。
 複数の熱交換器板は、第1熱交換器板21の一方の面S3が、第2熱交換器板31の他方の面S6に接合され、第2熱交換器板31の一方の面S5が、第1熱交換器板21の他方の面S4に接合されることにより、積層される。すなわち、積層体10は、このように第1熱交換器板21と第2熱交換器板31とが交互に積層されている状態で、複数の熱交換器板が互いに接合されることにより形成されている。複数の第2流路壁62-1~62-nは、複数の熱交換器板が適切に積層されたときに、複数の第1流路壁48-1~48-nに積層方向20に重なるように、形成されている。複数の第1流路壁48-1~48-nの頭頂部S7は、第2隔壁61の他方の面S6に接合され、複数の第2流路壁62-1~62-nの頭頂部S8は、第1隔壁45の他方の面S4に接合されている。また、第1熱交換器板21の第1側壁46と第2側壁47とは、図示されていないが、複数の熱交換器板が適切に積層されたときに、第2熱交換器板31の2つの側壁に積層方向20にそれぞれ重なるように、形成されている。
 積層体10は、複数の熱交換器板が積層されることにより、複数の第1空間67と複数の第2空間68とが形成される。第1空間67は、第1熱交換器板21の第1熱交換流路用凹部26の内部であり、第1隔壁45と第2隔壁61との間に形成される空間である。複数の第1流路壁48-1~48-nは、第1熱交換流路用凹部26の内部の第1空間67を複数の第1流路65に分割している。複数の第1流路65は、複数の第1流路壁48-1~48-nと第1隔壁45と第2隔壁61とに囲まれている複数の流路を含んでいる。複数の第1流路65は、図示されていないが、さらに、第1側壁46と1つの流路壁48-1と第1隔壁45と第2隔壁61とに囲まれる流路と、第2側壁47と1つの流路壁48-nと第1隔壁45と第2隔壁61とに囲まれる流路とを含んでいる。
 第2空間68は、第2熱交換器板31の第2熱交換流路用凹部36の内部であり、第1隔壁45と第2隔壁61との間に形成される空間である。複数の第2流路壁62-1~62-nは、複数の第1流路壁48-1~48-nと同様に、第2熱交換流路用凹部36の内部の第2空間68を複数の第2流路66に分割している。複数の第2流路66は、複数の第2流路壁62-1~62-nと第1隔壁45と第2隔壁61とに囲まれている複数の流路を含んでいる。複数の第2流路66は、図示されていないが、さらに、2つの側壁の一方と複数の第2流路壁62-1~62-nのうちの1つの流路壁と第1隔壁45と第2隔壁61とに囲まれる流路と、2つの側壁の他方と複数の第2流路壁62-1~62-nのうちの1つの流路壁と第1隔壁45と第2隔壁61とに囲まれる流路とを含んでいる。第1流路65と第2流路66は、流体がスパン方向44に振動を繰り返しながら、流れ方向29を進行方向として流れる正弦波状の流路を形成する。
 このとき、第1流路65は、第1側流路壁面52と第2側流路壁面53との間に形成される溝57の幅が流路に沿った位置によって異なっていることにより、断面積が流路に沿った位置によって異なっている。第2流路66に関しても、第1流路65と同様に、断面積が位置によって異なっている。第1流路65と第2流路66の断面積は、それぞれの流路に沿った位置によって周期的に拡大と縮小を繰り返す。
 第1流路65は、最小第1流路幅Wc1と第1流路壁高さH1とを用いて、次式(5)が成立するように形成されている。
 2.5<Wc1/H1<6・・・(5)
 ここで、最小第1流路幅Wc1は、複数の第1流路壁48-1~48-nの間隔の最小値であり、複数の第1流路壁48-1~48-nのうちの隣り合う2つの流路壁間の距離の最小値を示し、すなわち、第1流路65の幅の最小値を示している。第1流路壁高さH1は、第1隔壁45と第2隔壁61との間隔を示し、第1熱交換流路用凹部26の深さを示し、複数の第1流路壁48-1~48-nの高さを示し、すなわち、第1流路65の積層方向20の高さを示している。第2流路66は、最小第2流路幅Wc2と第2流路壁高さH2とを用いて、次式(6)が成立するように形成されている。
 2.5<Wc2/H2<6・・・(6)
 ここで、最小第2流路幅Wc2は、複数の第2流路壁62-1~62-nの間隔の最小値であり、複数の第2流路壁62-1~62-nのうちの隣り合う2つの流路壁間の距離の最小値を示し、すなわち、第2流路66の幅の最小値を示している。第2流路壁高さH2は、第1隔壁45と第2隔壁61との間隔を示し、第2熱交換流路用凹部36の深さを示し、複数の第2流路壁62-1~62-nの高さを示し、すなわち、第2流路66の積層方向20の高さを示している。隔壁式熱交換器1は、Wc1/H1とWc2/H2とが6より小さいことにより流れる流体の圧力に対して十分な強度を確保し、複数の第1流路65に第1流体が流れ、複数の第2流路66に第2流体が流れるときに、第1隔壁45と第2隔壁61とが各々の流体の圧力により撓むことが防止される。隔壁式熱交換器1は、Wc1/H1とWc2/H2とが2.5より大きく、かつ、6より小さいことにより、第1流体および第2流体と第1隔壁45および第2隔壁61との間の熱伝達の伝熱性能の低下を抑制し、かつ、耐圧性能の低下を抑制することができる。作動流体の稼働条件に応じてこれらの設計パラメータをチューニングする。
 隔壁式熱交換器1は、さらに、第1流路65の水力直径が0.3mm以下になるように、かつ、第2流路66の水力直径が0.3mm以下になるように、形成されている。さらに、このとき、第1側流路壁面52と第2側流路壁面53とが沿う正弦曲線の振幅Aは、1.0mmより小さい大きさを示し、たとえば、0.6mmが例示される。その正弦曲線の周期Tとしては、3mmが例示される。隔壁式熱交換器1は、このように形成されることにより、第1流体と第2流体との間で高い熱交換性能を得ることができる。このときの第1流体と第2流体は、たとえば一方が水、他方が冷媒(例示:R410A、R32、R290)である。
[実施例1の隔壁式熱交換器1の製造方法]
 隔壁式熱交換器1が作製される前に、複数の第1流路65と複数の第2流路66との形状が異なる、隔壁式熱交換器1の複数の数学モデルが作成される。その複数の数学モデルは、コンピュータシミュレーションに利用され、複数の第1流路65と複数の第2流路66とを流れる流体の挙動や熱交換器の伝熱性能を算出することに利用される。隔壁式熱交換器1は、その算出された流体の挙動や熱交換器の伝熱性能に基づいて、複数の第1流路と複数の第2流路とが適切な形状に形成されるように、設計される。
 隔壁式熱交換器1は、第1側流路壁面52と第2側流路壁面53とが単純な正弦曲線に沿っていることにより、少ないパラメータで複数の第1流路65と複数の第2流路66との形状を決定するためのコンピュータシミュレーションを行うことができる。そのパラメータとしては、周期T、振幅A、オフセット値y、ピッチPが例示される。隔壁式熱交換器1は、複数の第1流路65と複数の第2流路66との形状を決定するパラメータの数が少ないことにより、コンピュータシミュレーションを実行するときのコンピュータの演算量を低減し、コンピュータシミュレーションに要する時間を短縮することができる。このため、隔壁式熱交換器1は、複数の第1流路壁48-1~48-nと複数の第2流路壁62-1~62-nとの形状をコンピュータシミュレーションにより最適化する作業を容易化することができる。
 第1熱交換器板21と第2熱交換器板31とは、金属板がエッチングされることにより、作製される。この金属板の厚さとしては0.3mmが例示される。複数の熱交換器板は、第1端板11と第2端板12とともに、たとえば拡散接合により互いに接合される。このとき、第1熱交換器板21の第1流入室用孔22と第2熱交換器板31の第1流入室用孔32とは、第1端板11と第2端板12と複数の熱交換器板とが互いに接合されることにより、互いに接続され、第1流入室14を形成する。さらに、第1熱交換器板21の第1流出室用孔23と第2熱交換器板31の第1流出室用孔33とは、第1流出室15を形成する。第1熱交換器板21の第2流入室用孔24と第2熱交換器板31の第2流入室用孔34とは、第2流入室16を形成する。第1熱交換器板21の第2流出室用孔25と第2熱交換器板31の第2流出室用孔35とは、第2流出室17を形成する。
 第1流出孔18と第2流出孔19と第1流入孔と第2流入孔とは、第1端板11と第2端板12と積層された複数の熱交換器板とが互いに接合された後に、機械加工により形成される。第1流入管5と第1流出管6と第2流入管7と第2流出管8とは、第1流入孔と第1流出孔18と第2流入孔と第2流出孔19とにそれぞれ挿入された後に、たとえば溶接により熱交換器本体2に固定される。
[実施例1の隔壁式熱交換器1の動作]
 隔壁式熱交換器1は、第1流入管5を介して第1流体が第1流入室14に流入する。第1流体は、第1流入室14に流入した後に、複数の第1熱交換器板21にそれぞれ分配され、第1熱交換器板21に形成される第1流入流路用凹部27に流入する。第1流体は、第1流入流路用凹部27に流入した後に、第1流入流路用凹部27により流れの幅が第1流入室14の幅から第1熱交換流路用凹部26の幅に広げられ、第1熱交換流路用凹部26に形成された複数の第1流路65に流入する。第1流体は、複数の第1流路65を流れるときに、第1側流路壁面52と第2側流路壁面53とが正弦曲線に沿っていることにより、流れる方向が正弦波状に変化する。複数の第1流路壁48-1~48-nのうちの正弦曲線の極大点、または、極小点と重なる部分は、第1流体が流れる方向が他の部分に比べて急激に変化することにより、第1流体からより大きい応力を受ける。複数の第1流路壁48-1~48-nのうちの正弦曲線の極大点、または、極小点と重なる部分は、他の部分に比べて、流路壁の幅が大きく形成されている。これにより、第1流体から受ける応力に対する強度が他の部分より大きく、他の部分に比べて大きな応力に対して十分な強度を確保することができる。
 第1流体は、複数の第1流路65を流れるときに、さらに、複数の第1流路65の断面積が流路に沿った流れ方向の位置によって異なっていることにより、流れる速さが変化する。第1流体は、複数の第1流路65を流れるときに、流れる方向が正弦波状に変化し、流れる速さが変化することにより、局所的に常時攪乱される。隔壁式熱交換器1は、第1流体が局所的に常時攪乱されることにより、第1流体と第1隔壁45との間の熱伝達の熱抵抗を低減し、第1流体と第2隔壁61との間の熱伝達の熱抵抗を低減することができる。
 隔壁式熱交換器1は、さらに、第2流入管7を介して第2流体が第2流入室16に流入する。第2流体は、第2流入室16に流入した後に、複数の第2熱交換器板31にそれぞれ分配され、第2熱交換器板31に形成される第2流入流路用凹部37に流入する。第2流体は、第2流入流路用凹部37に流入した後に、第2流入流路用凹部37により流れの幅が第2流入室16の幅から第2熱交換流路用凹部36の幅に広げられ、第2熱交換流路用凹部36に形成された複数の第2流路66に流入する。このとき、第2流体は、第1流体が全体として流れ方向29を第1流入室14から第1流出室15に向かって流れることに対して、第1流体が流れる方向と反対方向に全体として流れ方向29を第1流出室15側から第1流入室14側に向かって流れる。すなわち、隔壁式熱交換器1は、いわゆる向流型熱交換器である。
 第2流体は、複数の第2流路66を流れるときに、第1側流路壁面52と第2側流路壁面53とが正弦曲線に沿っていることにより、流れる方向が正弦波状に変化する。複数の第2流路壁62-1~62-nのうちの正弦曲線の極大点、または、極小点と重なる部分は、第2流体が流れる方向が他の部分に比べて急激に変化することにより、第2流体からより大きい応力を受ける。複数の第2流路壁62-1~62-nのうちの正弦曲線の極大点、または、極小点と重なる部分は、他の部分に比べて、流路壁幅が大きく形成されている。これにより、第2流体から受ける応力に対する強度が他の部分より大きく、他の部分に比べて大きな応力に対して十分な強度を確保することができる。
 第2流体は、複数の第2流路66を流れるときに、さらに、複数の第2流路66の断面積が流路に沿った流れ方向の位置によって異なっていることにより、流れる速さが変化する。第2流体は、複数の第2流路66を流れるときに、流れる方向が正弦波状に変化し、流れる速さが変化することにより、局所的に常時攪乱される。隔壁式熱交換器1は、第2流体が局所的に常時攪乱されることにより、第2流体と第1隔壁45との間の熱伝達の熱抵抗を低減し、第2流体と第2隔壁61との間の熱伝達の熱抵抗を低減することができる。隔壁式熱交換器1は、第1流体および第2流体と第1隔壁45および第2隔壁61との間の熱伝達の熱抵抗が低減することにより、第1流体と第2流体との間で行われる熱交換の性能を向上させることができる。
 第1流体は、複数の第1流路65を流れた後に、第1流出流路用凹部28に流入する。第1流体は、第1流出流路用凹部28に流入した後に、第1流出流路用凹部28により流れの幅が第1熱交換流路用凹部26の幅から第1流出室15の幅に狭められ、第1流出室15に流入する。第1流出室15は、第1流出流路用凹部28を介して複数の第1熱交換器板21から流入した第1流体を合流させる。第1流出室15で合流した第1流体は、第1流出管6を介して外部に流出する。第2流体は、複数の第2流路66を流れた後に、第2流出流路用凹部38に流入する。第2流体は、第2流出流路用凹部38に流入した後に、第2流出流路用凹部38により流れの幅が第2熱交換流路用凹部36の幅から第2流出室17の幅に狭められ、第2流出室17に流入する。第2流出室17は、第2流出流路用凹部38を介して複数の第2熱交換器板31から供給された第2流体を合流させる。第2流出室17で合流した第2流体は、第2流出管8を介して外部に流出する。
[実施例1の隔壁式熱交換器1の効果]
 実施例1の隔壁式熱交換器1は、第1隔壁45(「第1隔壁」に対応)と、第2隔壁61(「第2隔壁」に対応)と、複数の第1流路壁48-1~48-nとを備えている。複数の第1流路壁48-1~48-nは、第1隔壁45と第2隔壁61との間に形成される第1熱交換流路用凹部26の内部の第1空間67を複数の第1流路65に分割する。このとき、第1隔壁45と第2隔壁61とは、複数の第1流路65を流れる第1流体と異なる第2流体が流れる複数の第2流路66から複数の第1流路65を隔てている。複数の第1流路壁48-1~48-nは、それぞれが正弦曲線に沿って形成される。また、複数の第1流路壁48-1~48-nは、それぞれが互いに異なる正弦曲線に沿う複数の第1側流路壁面52と複数の第2側流路壁面53とを形成する。
 このような隔壁式熱交換器1は、正弦曲線に沿う複数の第1側流路壁面52と複数の第2側流路壁面53とが形成されていることにより、複数の第1流路65を流れる第1流体が流れる方向を正弦波状に変化させることができる。隔壁式熱交換器1は、正弦曲線に沿う複数の第1側流路壁面52と複数の第2側流路壁面53とが形成されていることにより、さらに、複数の第1流路65の幅を第1流体が流れる方向に沿って変化させることができる。隔壁式熱交換器1は、複数の第1流路65の幅が変化することにより、複数の第1流路65の断面積を変化させることができ、複数の第1流路65を流れる第1流体の速さを変化させることができる。隔壁式熱交換器1は、第1流体が流れる方向が変化することにより、また、第1流体の速さが変化することにより、複数の第1流路65を流れる第1流体を局所的に常時攪乱することができる。隔壁式熱交換器1は、複数の第1流路65を流れる第1流体が局所的に常時攪乱されることにより、第1流体と第1隔壁45との熱伝達の熱抵抗を低減することができ、第1流体と第2隔壁61との熱伝達の熱抵抗を低減することができる。隔壁式熱交換器1は、熱抵抗が低減されることにより、第1流体と、複数の第2流路66を流れる第2流体との間で熱交換を行うときの伝熱性能を向上させることができる。隔壁式熱交換器1は、複数の第1側流路壁面52と複数の第2側流路壁面53とが単純な正弦曲線にそれぞれ沿うことにより、第1流体の挙動をコンピュータシミュレーションするときに、複数の第1流路65の形状の入力・変更を容易化し、また、コンピュータの演算負荷を低減することができる。その結果、隔壁式熱交換器1は、複数の第1流路壁48-1~48-nの形状を最適化する作業を容易化することができる。
 また、実施例1の隔壁式熱交換器1は、第1熱交換流路用凹部26の内部の第1空間67の端に形成される第1側壁面41が形成される第1側壁46をさらに備えている。このとき、第1側壁面41は、複数の第1側流路壁面52と複数の第2側流路壁面53とが沿う正弦曲線と同じ正弦曲線に沿うように形成されている。すなわち、第1側壁面41が沿う正弦曲線の周期は、複数の第1側流路壁面52と複数の第2側流路壁面53とが沿う正弦曲線の周期に等しく、第1側壁面41が沿う正弦曲線の振幅は、複数の第1側流路壁面52と複数の第2側流路壁面53とが沿う正弦曲線の振幅に等しい。
 このような隔壁式熱交換器1は、複数の第1流路壁48-1~48-nに挟まれる流路を流れる第1流体と同様に、第1流路壁48-1と第1側壁面41との間に形成される流路を流れる第1流体を局所的に常時攪乱することができる。その結果、隔壁式熱交換器1は、第1流体が局所的に常時攪乱されることにより、第1流体と第2流体との間で熱交換を行うときの伝熱性能をさらに向上させることができる。
 また、実施例1の隔壁式熱交換器1の複数の第1流路壁48-1~48-nの間隔の最小値である最小第1流路幅Wc1を、第1隔壁45と第2隔壁61との間隔である第1流路壁高さH1で除算した値Wc1/H1は、2.5より大きく、かつ、6より小さい。このような隔壁式熱交換器1は、Wc1/H1が6より小さいことにより、第1隔壁45と第2隔壁61との強度を確保し、複数の第1流路65に第1流体が流れるときに、第1隔壁45と第2隔壁61とが流体の圧力により撓むことが防止される。隔壁式熱交換器1は、Wc1/H1が2.5より大きく、かつ、6より小さいことにより、第1流体と第1隔壁45および第2隔壁61との間の伝熱性能の低下を抑制し、かつ、耐圧性能の低下を抑制することができる。なお、第2流路壁62-1~62-nに関しても、複数の第1流路壁48-1~48-n同様に形成されることにより、隔壁式熱交換器1は、第2流体と第1隔壁45および第2隔壁61との間の伝熱性能の低下を抑制し、かつ、第1隔壁45と第2隔壁61との強度を確保することができる。
 実施例2の隔壁式熱交換器は、図8に示されているように、既述の実施例1の隔壁式熱交換器1の複数の第1流路壁48-1~48-nが複数の奇数番流路壁71-1~71-n1(n1は正の整数。以下、他の実施例でもn1は任意の正の整数を表す)と複数の偶数番流路壁72-1~72-n2(n2は正の整数。以下、他の実施例でもn2は任意の正の整数を表す)とに置換されている。図8は、実施例2の隔壁式熱交換器に形成される複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2とを示す平面図である。複数の奇数番流路壁71-1~71-n1のうちの1つの奇数番流路壁71-1は、既述の第1流路壁48-1と同様に、正弦曲線51に沿うように形成されている。複数の奇数番流路壁71-1~71-n1のうちの奇数番流路壁71-1と異なる他の奇数番流路壁も、奇数番流路壁71-1と同様に、正弦曲線51に沿うように形成されている。複数の偶数番流路壁72-1~72-n2のうちの1つの偶数番流路壁72-1は、既述の第1流路壁48-2と同様に、正弦曲線51に沿うように形成されている。複数の偶数番流路壁72-1~72-n2のうちの偶数番流路壁72-1と異なる他の偶数番流路壁も、偶数番流路壁72-1と同様に、正弦曲線51に沿うように形成されている。複数の奇数番流路壁71-1~71-n1のうちの隣り合う2つの奇数番流路壁の間には、複数の偶数番流路壁72-1~72-n2のうちの1つの偶数番流路壁が配置されている。複数の偶数番流路壁72-1~72-n2のうちの隣り合う2つの偶数番流路壁の間には、複数の奇数番流路壁71-1~71-n1のうちの1つの奇数番流路壁が配置されている。すなわち、複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2とは、スパン方向(「正弦曲線51の振幅方向」に対応)44に交互に並んでいる。
 奇数番流路壁71-1は、第1流路壁48-1に流路壁のない複数の奇数番切欠き部73が形成され、奇数番流路壁71-1は、この複数の奇数番切欠き部73により複数の奇数番流路壁要素74-1~74-m1(m1は正の整数。以下、他の実施例でもm1は任意の正の整数を表す)に分割されている。複数の奇数番切欠き部73は、奇数番流路壁71-1に周期Tごとに周期的に形成されている。複数の奇数番流路壁71-1~71-n1のうちの奇数番流路壁71-1と異なる他の奇数番流路壁に関しても、奇数番流路壁71-1と同様に、複数の奇数番切欠き部73が形成され、複数の奇数番流路壁要素74-1~74-m1に分割されている。偶数番流路壁72-1は、第1流路壁48-2に流路壁のない複数の偶数番切欠き部75が形成され、偶数番流路壁72-1は、この複数の偶数数番切欠き部75により複数の偶数番流路壁要素76-1~76-m2(m2は正の整数。以下、他の実施例でもm2は任意の正の整数を表す)に分割されている。「切欠き部」は、複数の奇数番切欠き部73と複数の偶数番切欠き部75との両方を示している。複数の偶数番切欠き部75は、偶数番流路壁72-1に周期Tごとに周期的に形成されている。複数の偶数番流路壁72-1~72-n2のうちの偶数番流路壁72-1と異なる他の偶数番流路壁に関しても、偶数番流路壁72-1と同様に、複数の偶数番切欠き部75が形成され、複数の偶数番流路壁要素76-1~76-m2に分割されている。
 図9は、実施例2の隔壁式熱交換器に形成される複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2とを概略的に示す説明図である。奇数番流路壁71-1の複数の奇数番流路壁要素74-1~74-m1のうちの1つの奇数番流路壁要素74-1は、図9に示されているように、奇数番流路壁71-1が沿う正弦曲線51のうちの位相がπ/3から5π/3までの240°分の範囲に対応する部分に重なるように形成されている。すなわち、奇数番流路壁要素74-1は、正弦曲線51のうちの位相がπ/2である部分と3π/2である部分に重なるように形成され、正弦曲線51の極大点と極小点のそれぞれに対応する部分に重なるように形成されている。複数の奇数番流路壁要素74-1~74-m1のうちの奇数番流路壁要素74-1と異なる他の奇数番流路壁要素に関しても、奇数番流路壁要素74-1と同様に、整数iを用いて、奇数番流路壁71-1が沿う正弦曲線51のうちの位相がπ/3+2πiから5π/3+2πiまでの240°分の範囲に対応する部分に重なるように、形成されている。
 複数の奇数番切欠き部73のうちの1つの奇数番切欠き部は、正弦曲線51のうちの位相が5π/3から7π/3までの120°分の範囲に対応する部分を除去した形状に形成される。このように形成される奇数番切欠き部73は、正弦曲線51のうちの位相が2πである部分を含み、すなわち、正弦曲線51のうちの変曲点を含んでいる。複数の奇数番切欠き部73うちの他の切欠き部に関しても、同様に、正弦曲線51のうちの位相が2πiである部分を含み、正弦曲線51のうちの変曲点に重なるように、形成されている。すなわち、複数の奇数番流路壁71-1は、複数の奇数番流路壁要素74-1~74-m1が正弦曲線51のうちの位相が2πiである変曲点に重ならないように、複数の奇数番切欠き部73が形成されている。複数の奇数番流路壁71-1~71-n1のうちの奇数番流路壁71-1と異なる他の奇数番流路壁も、奇数番流路壁71-1と同様に、形成されている。
 偶数番流路壁72-1の複数の偶数番流路壁要素76-1~76-m2のうちの1つの偶数番流路壁要素76-1は、正弦曲線51のうちの位相が4π/3から8π/3までの240°分の範囲に対応する部分に重なるように形成されている。すなわち、偶数番流路壁要素76-1は、正弦曲線51のうちの位相が3π/2である部分と5π/2である部分に重なるように形成され、正弦曲線51の極大点と極小点のそれぞれに対応する部分に重なるように形成されている。複数の偶数番流路壁要素76-1~76-m2のうちの偶数番流路壁要素76-1と異なる他の偶数番流路壁要素に関しても、偶数番流路壁要素76-1と同様に、偶数番流路壁72-1が沿う正弦曲線51のうちの位相が4π/3+2πiから8π/3+2πiまでの240°分の範囲に対応する部分に重なるように、形成されている。
 複数の偶数番切欠き部75のうちの1つの切欠き部は、正弦曲線51のうちの位相が2π/3から4π/3までの120°分の範囲に対応する部分を除去した形状に形成される。このように形成される切欠き部は、正弦曲線51のうちの位相がπである部分を含むように形成され、すなわち、正弦曲線51のうちの変曲点を含んでいる。複数の偶数番切欠き部75のうちの他の切欠き部に関しても、同様に、正弦曲線51のうちの位相が2π/3+2πiから4π/3+2πiまでの120°分の範囲に対応する部分を含み、正弦曲線51のうちの変曲点に重なるように、形成されている。すなわち、複数の偶数番流路壁72-1は、複数の偶数番流路壁要素76-1~76-m2が正弦曲線51のうちの位相がπ+2πiである変曲点に重ならないように、複数の偶数番切欠き部75が形成されている。複数の偶数番流路壁72-1~72-n2のうちの偶数番流路壁72-1と異なる他の偶数番流路壁も、偶数番流路壁72-1と同様に、形成されている。
 図10は、奇数番流路壁要素74-1の一例を示す平面図である。奇数番流路壁要素74-1は、図10に示されているように、頭部77と尾部78とを備えている。頭部77は、奇数番流路壁要素74-1のうちの流れ方向29の一端79(「切欠き部に隣接する端」に対応)を形成し、1つの奇数番切欠き部73に隣接している。頭部77は、奇数番流路壁要素74-1の一端79に向かって細くなるように形成され、すなわち、奇数番流路壁要素74-1の一端79に近付くにつれ、幅がなだらかに小さくなるように形成されている。尾部78は、奇数番流路壁要素74-1のうちの頭部77が形成される一端79の反対側の他端80(「切欠き部に隣接する端」に対応)を形成し、1つの奇数番切欠き部73に隣接している。尾部78は、奇数番流路壁要素74-1の流れ方向29の他端80に向かって細くなるように形成され、すなわち、奇数番流路壁要素74-1の他端80に近付くにつれ、幅がなだらかに小さくなるように形成されている。複数の奇数番流路壁要素74-1~74-m1のうちの奇数番流路壁要素74-1と異なる他の流路壁要素も、奇数番流路壁要素74-1と同様に形成されている。
 複数の偶数番流路壁要素76-1~76-m2は、複数の奇数番流路壁要素74-1~74-m1と同様に形成され、複数の偶数番流路壁要素76-1~76-m2の各々は、奇数番流路壁要素74-1と鏡像対称であるものから形成されている。これにより、たとえば、スパン方向44に隣り合う奇数番流路壁要素と偶数番流路壁要素の端部どうしがスパン方向に重なる部分が形成される。図9では、この重なる部分は、偶数番流路壁要素、奇数番流路壁要素それぞれの端部の位相が60°の範囲の部分である。さらに、実施例2の隔壁式熱交換器の第2熱交換器板は、実施例1の隔壁式熱交換器1の第2熱交換器板31のうちの複数の第2流路壁62-1~62-nが、複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2と同様のものに置換されたものから形成されている。
 実施例2の隔壁式熱交換器は、既述の実施例1の隔壁式熱交換器1と同様に、第1流体を複数の第1流路に流し、第2流体を複数の第2流路に流し、第1流体と第2流体との間で熱交換を行う。実施例2の隔壁式熱交換器は、既述の実施例1の隔壁式熱交換器1と同様に、第1流体と第2流体とを局所的に常時攪乱することができ、第1流体と第2流体との間の熱交換の伝熱性能を向上させることができる。実施例2の隔壁式熱交換器は、複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2との壁面が正弦曲線に沿うことにより、既述の実施例1の隔壁式熱交換器1と同様に、複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2との形状を最適化する作業を容易化することができる。
 実施例2の隔壁式熱交換器は、複数の奇数番切欠き部73と複数の偶数番切欠き部75とが形成されていることにより、既述の実施例1の隔壁式熱交換器に比較して、第1流体が複数の第1流路を流れるときの摩擦抵抗が低減され、その結果、圧力損失が低減される。隔壁式熱交換器は、複数の奇数番切欠き部73と複数の偶数番切欠き部75とが形成されていることにより、いわゆる前縁効果を発生させ、既述の実施例1の隔壁式熱交換器に比較して、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。流体の正弦波状の流れは、流路壁の正弦曲線51の極大点、または、極小点に重なる部分の前後で、流れる流体に働く遠心力の大きい部分である複数の奇数番流路壁要素74-1~74-m1、および、複数の偶数番流路壁要素76-1~76-m2で、主に形成される。従って、正弦曲線51の変曲点に重なり、流れる流体に働く遠心力の小さい部分を除去した形状として複数の奇数番切欠き部73と複数の偶数番切欠き部75を形成しても正弦波状の流れは乱されない。このような切欠き部を設けることにより、正弦波状の流れを維持しながら、流体が流路を流れるときの流路壁による摩擦抵抗を低減させることができる。
[実施例2の隔壁式熱交換器の効果]
 実施例2の隔壁式熱交換器の複数の流路壁の各々は、複数の切欠き部が正弦曲線の周期ごとに形成されることにより、複数の流路壁要素に分割されている。この複数の切欠き部は、複数の奇数番切欠き部73と複数の偶数番切欠き部75との両方を示している。すなわち、複数の奇数番流路壁71-1~71-n1の各々は、複数の奇数番切欠き部73が正弦曲線の周期ごとに形成されることにより、複数の奇数番流路壁要素74-1~74-m1に分割されている。このとき、複数の奇数番切欠き部73は、正弦曲線51の変曲点に重なっている。正弦曲線51の極大点と極小点はそれぞれ、複数の奇数番流路壁要素74-1~74-m1に形成される壁面に重なっている。複数の偶数番流路壁72-1~72-n2の各々は、複数の偶数番切欠き部75が正弦曲線の周期ごとに形成されることにより、複数の偶数番流路壁要素76-1~76-m2に分割されている。このとき、複数の偶数番切欠き部75は、正弦曲線51の変曲点に重なっている。正弦曲線51の極大点と極小点はそれぞれ、複数の偶数番流路壁要素76-1~76-m2に形成される壁面に重なっている。
 このような隔壁式熱交換器は、複数の奇数番流路壁71-1~71-n1に複数の奇数番切欠き部73が形成されていることにより、第1流体が流れるときに複数の奇数番流路壁71-1~71-n1から受ける摩擦力を低減することができる。実施例2の隔壁式熱交換器は、複数の奇数番流路壁71-1~71-n1と第1流体との間に作用する摩擦力を低減することにより、複数の奇数番流路壁71-1~71-n1の間に形成される複数の第1流路の流動抵抗を低減することができる。実施例2の隔壁式熱交換器1は、複数の奇数番流路壁要素74-1~74-m1が形成されていることにより、作動流体が流路壁要素のエッジ(切欠き部に隣接する端)となる頭部77、尾部78に接触する機会を与えて、いわゆる前縁効果を発生させ、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。
 また、実施例2の隔壁式熱交換器の複数の奇数番流路壁要素74-1~74-m1は、端に近付くにつれてなだらかに幅が小さくなるように、形成されている。このような隔壁式熱交換器は、複数の奇数番流路壁要素74-1~74-m1の頭部77と尾部78とが端に近付くにつれなだらかに幅が小さくなっていることにより、第1流体が流れるときの複数の奇数番流路壁要素74-1~74-m1による形状損失を低減することができる。ここでいう形状損失とは、流路壁面の形状によって作動流体が受ける損失である。流路壁面の形状がなだらかでない場合、流路壁面との摩擦や衝突によって作動流体が受ける形状損失は大きくなる。
 また、実施例2の隔壁式熱交換器の複数の奇数番流路壁要素74-1~74-m1と複数の偶数番流路壁要素76-1~76-m2とは、スパン方向44に隣り合うものどうしの端部がスパン方向44に重なる部分が形成される。これにより、重なる部分がない流路の幅は広く、重なる部分のある流路の幅は狭くなり、流路の幅の変化は周期的に繰り返される。この流路の幅の周期的な変化(流路の幅の拡縮)は流路を流れる流体に周期的な攪乱を与えて、既述の実施例1の隔壁式熱交換器に比較して、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。この結果、流路壁71-1~71-n1、72-1~72-n2の幅の周期的な変化による流体の局所的な常時攪乱と、切欠き部73、75を設けることにより形成される流路壁流路壁要素74-1~74-m1、76-1~76-m2による前縁効果と合わせて、既述の実施例1の隔壁式熱交換器に比較して、さらなる伝熱性能の向上を図ることができる。
 実施例3の隔壁式熱交換器は、図11に示されているように、既述の実施例2の隔壁式熱交換器の複数の奇数番流路壁71-1~71-n1が他の複数の奇数番流路壁81-1~81-n1に置換され、複数の偶数番流路壁72-1~72-n2が他の複数の偶数番流路壁82-1~82-n2に置換されている。図11は、実施例3の隔壁式熱交換器に形成される複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2とを示す平面図である。複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2とは、既述の複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2と同様に、第1熱交換流路用凹部26に形成され、それぞれの一つが、スパン方向(「正弦曲線51の振幅方向」に対応)44に所定のピッチPで配置された複数の正弦曲線51の一つに重なるように形成されている。すなわち、複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2とは、スパン方向44に交互に並んでいる。複数の奇数番流路壁81-1~81-n1のうちの1つの奇数番流路壁81-1は、既述の奇数番流路壁71-1と同様に、流路壁のない複数の奇数番切欠き部73が形成され、複数の奇数番流路壁要素83-1~83-m1に分割されている。複数の偶数番流路壁82-1~82-n2のうちの1つの偶数番流路壁82-1は、既述の偶数番流路壁72-1と同様に、流路壁のない複数の偶数番切欠き部75が形成され、複数の偶数番流路壁要素84-1~84-m2に分割されている。
 図12は、実施例3の隔壁式熱交換器に形成される複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2とを概略的に示す説明図である。複数の奇数番流路壁要素83-1~83-m1のうちの1つの奇数番流路壁要素83-1は、図12に示されているように、奇数番流路壁要素83-1に流路壁のない部分、つまり奇数番流路壁要素83-1の一部が除去された形状を有する要素内切欠き部89(「要素内切欠き部」に対応)が形成され、2つに分割されている。複数の奇数番流路壁要素83-1~83-m1のうちの奇数番流路壁要素83-1と異なる他の奇数番流路壁要素も、奇数番流路壁要素83-1と同様にして、各々の一部を除去することで要素内切欠き部89が形成され、2つに分割されている。要素内切欠き部89は、正弦曲線51のうちの位相がπ+2πiである変曲点に重なるように奇数番流路壁要素83-1に形成され、たとえば、正弦曲線51のうちの位相が5π/6+2πiから7π/6+2πiまでの60°分の範囲に対応する部分に重なるように形成されている。また、複数の奇数番流路壁要素83-1~83-m1は、正弦曲線51の極大点と極小点のそれぞれに対応する部分に重なるように形成されている。
 複数の偶数番流路壁要素84-1~84-m2のうちの1つの偶数番流路壁要素84-1は、奇数番流路壁要素83-1と同様にして、偶数番流路壁要素84-1に流路壁のない部分、つまり偶数番流路壁要素84-1の一部が除去された形状を有する要素内切欠き部90(「要素内切欠き部」に対応)が形成され、2つに分割されている。複数の偶数番流路壁要素84-1~84-m2のうちの偶数番流路壁要素84-1と異なる他の偶数番流路壁要素も、偶数番流路壁要素84-1と同様にして、各々の一部を除去することで要素内切欠き部90が形成され、2つに分割されている。要素内切欠き部90は、正弦曲線51のうちの位相が2πiである変曲点に重なるように偶数番流路壁要素84-1に形成され、たとえば、正弦曲線51のうちの位相が-π/6+2πiからπ/6+2πiまでの60°分の範囲に対応する部分に重なるように形成されている。また、複数の偶数番流路壁要素84-1~84-m2は、正弦曲線51の極大点と極小点のそれぞれに対応する部分に重なるように形成されている。
 図13は、奇数番流路壁要素83-1を示す平面図である。奇数番流路壁要素83-1は、図13に示されているように、既述の奇数番流路壁要素74-1と同様に、正弦曲線51に沿うように形成され、頭部77と尾部78とを備えている。奇数番流路壁要素83-1は、頭部側エッジ部85と尾部側エッジ部86とを備えている。頭部側エッジ部85は、要素内切欠き部89に隣接し、要素内切欠き部89より頭部77の側に配置されている。頭部側エッジ部85は、要素内切欠き部89に面する頭部側端面87が形成されている。頭部側端面87は、正弦曲線51に直交する平面に沿うように形成されている。尾部側エッジ部86は、要素内切欠き部89より尾部78の側に配置され、要素内切欠き部89に面する尾部側端面88が形成されている。尾部側端面88は、正弦曲線51に直交する平面に沿うように形成されている。ここで、頭部側端面87および尾部側端面88の形状は正弦曲線51に直交する平面に沿うように形成される形状だけでなく、要素内切欠き部89に対して凸または凹となるU字形状など、奇数番流路壁要素83-1をエッチング等で形成する際に生じる形状を含む。
 複数の奇数番流路壁要素83-1~83-m1のうちの奇数番流路壁要素83-1と異なる奇数番流路壁要素に関しても、奇数番流路壁要素83-1と同様に、奇数番流路壁要素が沿う正弦曲線の変曲点に重なる要素内切欠き部89が形成されている。複数の偶数番流路壁要素84-1~84-m2は、複数の奇数番流路壁要素83-1~83-m1と同様に形成され、複数の偶数番流路壁要素84-1~84-m2の各々は、奇数番流路壁要素83-1と鏡像対称であるものから形成されている。実施例3の隔壁式熱交換器の第2熱交換器板に関しても、第2熱交換流路用凹部36に複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2と同様のものが形成されている。
 実施例3の隔壁式熱交換器は、既述の実施例2の隔壁式熱交換器と同様に、第1流体を複数の第1流路に流し、第2流体を複数の第2流路に流し、第1流体と第2流体とを熱交換する。実施例3の隔壁式熱交換器は、既述の実施例2の隔壁式熱交換器と同様に、第1流体と第2流体とを局所的に常時攪乱することができ、第1流体と第2流体とを熱交換する伝熱性能を向上させることができる。実施例3の隔壁式熱交換器は、複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2との壁面が正弦曲線に沿うことにより、既述の実施例2の隔壁式熱交換器と同様に、複数の奇数番流路壁81-1~81-n1と複数の偶数番流路壁82-1~82-n2との形状を最適化する作業を容易化することができる。
 実施例3の隔壁式熱交換器は、複数の要素内切欠き部89が形成されていることにより、既述の実施例2の隔壁式熱交換器に比較して、第1流体が複数の第1流路を流れるときの摩擦抵抗が低減され、圧力損失が低減される。実施例3の隔壁式熱交換器は、頭部側エッジ部85と尾部側エッジ部86とにより、既述の実施例2の隔壁式熱交換器に比較して、いわゆる前縁効果を発生させる機会を増やして、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。実施例3の隔壁式熱交換器は、同様に、第2流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。
 実施例4の隔壁式熱交換器は、図14に示されているように、既述の実施例2の隔壁式熱交換器の複数の奇数番流路壁71-1~71-n1が他の複数の奇数番流路壁121-1~121-n1に置換され、複数の偶数番流路壁72-1~72-n2が他の複数の偶数番流路壁122-1~122-n2に置換されている。図14は、実施例4の隔壁式熱交換器に形成される複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2とを示す平面図である。複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2とは、既述の複数の奇数番流路壁71-1~71-n1と複数の偶数番流路壁72-1~72-n2と同様に、第1熱交換流路用凹部26に形成され、それぞれの一つが、スパン方向(「正弦曲線51の振幅方向」に対応)44に所定のピッチPで配置された複数の正弦曲線51の一つに重なるように形成されている。すなわち、複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2とは、スパン方向(「正弦曲線51の振幅方向」に対応)44に交互に並んでいる。つまり複数の奇数番流路壁121-1~121-n1のうちの1つと複数の偶数番流路壁122-1~122-n2のうちの1つはスパン方向に隣り合って配置されており、スパン方向に隣り合って配置された奇数番流路壁と偶数番流路壁のいずれか一方を一方の流路壁、他方を他方の流路壁と呼ぶことがある。なお、以下の説明では一方の流路壁を偶数番流路壁、他方の流路壁を奇数番流路壁とする場合があるが、一方の流路壁を奇数番流路壁、他方の流路壁を奇数番流路壁としても実質的に同じものである。複数の奇数番流路壁121-1~121-n1のうちの1つの奇数番流路壁121-1は、既述の奇数番流路壁71-1と同様に、奇数番流路壁48-1に流路壁のない複数の奇数番切欠き部73が形成され、奇数番流路壁121-1は、この複数の奇数番切欠き部73により複数の奇数番主流路壁要素123-1~123-m1に分割されている。複数の偶数番流路壁122-1~122-n2のうちの1つの偶数番流路壁122-1は、既述の偶数番流路壁72-1と同様に、偶数番流路壁48-2に流路壁のない複数の偶数番切欠き部75が形成され、偶数番流路壁122-1は、この複数の偶数番切欠き部75により複数の偶数番主流路壁要素124-1~124-m2に分割されている。
 図15は、実施例4の隔壁式熱交換器に形成される複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2とを概略的に示す説明図である。複数の奇数番主流路壁要素123-1~123-m1のうちの1つの奇数番主流路壁要素123-1は、図15に示されているように、奇数番主流路壁要素123-1に流路壁のない部分、つまり奇数番主流路壁要素123-1の一部が除去された形状を有する要素内切欠き部89(「要素内切欠き部」に対応、本実施例では奇数番要素内切欠き部89とも呼ぶ)が形成され、第1奇数番副流路壁要素123-1Aと第2奇数番副流路壁要素123-1Bの2つに分割されている。図15では第1奇数番副流路壁要素123-1Aは上に凸の形状、第2奇数番副流路壁要素123-1Bは下に凸の形状にそれぞれ形成されている。複数の奇数番主流路壁要素123-1~123-m1のうちの奇数番主流路壁要素123-1と異なる他の奇数番主流路壁要素123-2も、奇数番主流路壁要素123-1と同様にして、各々に流路壁のない部分、つまり各々の一部が除去された形状を有する奇数番要素内切欠き部89が形成され、第1奇数番副流路壁要素123-2Aと第2奇数番副流路壁要素123-2Bの2つに分割されている。
 奇数番要素内切欠き部89は、正弦曲線51のうちの位相が(2i+1)πである変曲点(正弦波が上に凸から下に凸に変わる点)に重なるように複数の奇数番主流路壁要素123-1~123-m1に形成されている。また、複数の奇数番主流路壁要素123-1~123-m1は、正弦曲線51の極大点と極小点のそれぞれに重なるように形成されている。
 複数の偶数番主流路壁要素124-1~124-m2のうちの1つの偶数番主流路壁要素124-1は、奇数番主流路壁要素123-1と同様にして、偶数番主流路壁要素124-1に流路壁のない部分、つまり奇数番主流路壁要素124-1の一部が除去された形状を有する要素内切欠き部90(「要素内切欠き部」に対応、本実施例では偶数番要素内切欠き部90とも呼ぶ)が形成され、第1偶数番副流路壁要素124-1Aと第2偶数番副流路壁要素124-1Bの2つに分割されている。図15では第1偶数番副流路壁要素124-1Aは上に凸の形状、第2偶数番副流路壁要素124-1Bは下に凸の形状にそれぞれ形成されている。複数の偶数番主流路壁要素124-1~124-m2のうちの偶数番主流路壁要素124-1と異なる他の偶数番主流路壁要素124-2も、偶数番主流路壁要素124-1と同様にして、各々に流路壁のない部分、つまり各々の一部が除去された形状を有する偶数番要素内切欠き部90が形成され、第1偶数番副流路壁要素124-2Aと第2偶数番副流路壁要素124-2Bの2つに分割されている。
 偶数番要素内切欠き部90は、正弦曲線51のうちの位相が2πiである変曲点(正弦波が下に凸から上に凸に変わる点)に重なるように偶数番主流路壁要素124-1に形成されている。また、複数の偶数番主流路壁要素124-1~124-m2は、正弦曲線51の極大点と極小点のそれぞれに重なるように形成されている。
 図16は、他方の流路壁である奇数番流路壁121-1~121-n1及び一方の流路壁である偶数番流路壁122-1~122-n2の正弦曲線51の位相範囲毎の副流路壁要素の有無の一例を示す説明図である。すでに説明したように、一方の流路壁である偶数番流路壁122-1~122-n2の1つと他方の流路壁である奇数番流路壁121-1~121-n1の1つは、正弦曲線51のスパン方向(振幅方向)44に並んだ複数の正弦波状の流路壁のうち、隣り合う二つの流路壁を形成している。ここで、奇数番主流路壁要素123-1について、奇数番主流路壁要素123-1が重なる正弦曲線51のうちの位相が2iπである変曲点(正弦波が下に凸から上に凸に変わる点)の位相をθ0とした場合、θ0から60°進んだ位相をθ2、θ2から90°進んだ位相をθ4、θ4から60°進んだ位相をθ5、θ5から90°進んだ位相をθ7とする。θ7から60°進んだ位相は一周期後の変曲点θ0となる。この位相関係は周期的に繰り返される。
 この場合、奇数番主流路壁要素123-1が重なる正弦曲線51のθ0~θ2の位相θの範囲は奇数番切欠き部73の一部、正弦曲線51のθ2~θ4の位相θの範囲は第1奇数番副流路壁要素123-1A、正弦曲線51のθ4~θ5の位相θの範囲は奇数番要素内切欠き部89、正弦曲線51のθ5~θ7の位相θの範囲は第2奇数番副流路壁要素123-1B、正弦曲線51のθ7~θ0の位相θの範囲は奇数番切欠き部73の一部と重なるように形成されている。
 また、偶数番主流路壁要素124-1について、偶数番主流路壁要素124-1が重なる正弦曲線51の変曲点をθ0とした場合、θ0から30°進んだ位相をθ1、θ1から90°進んだ位相をθ3、θ3から120°進んだ位相をθ6、θ6から90°進んだ位相をθ8とする。θ8から30°進んだ位相を変曲点となるθ0となる。この位相関係は周期的に繰り返される。
 この場合、図16に示すように、偶数番主流路壁要素124-1が重なる正弦曲線51のθ0~θ1の位相θの範囲は偶数番要素内切欠き部90の一部、正弦曲線51のθ1~θ3の位相θの範囲は第1偶数番副流路壁要素124-1A、正弦曲線51のθ3~θ6の位相θの範囲は偶数番切欠き部75、正弦曲線51のθ6~θ8の位相θの範囲は第2奇数番副流路壁要素124-1B、正弦曲線51のθ8~θ0の位相θの範囲は偶数番要素内切欠き部90の一部と重なるように形成されている。
 複数の奇数番主流路壁要素123-1~123-m1のうちの奇数番主流路壁要素123-1と異なる奇数番主流路壁要素に関しても、奇数番主流路壁要素123-1と同様に、奇数番主流路壁要素が沿う正弦曲線51のうちの位相が(2i+1)πである変曲点(正弦波が上に凸から下に凸に変わる点)に重なる奇数番要素内切欠き部89が形成されている。複数の偶数番主流路壁要素124-1~124-m2も、複数の奇数番主流路壁要素123-1~123-m1と同様に形成され、複数の偶数番主流路壁要素124-1~124-m2の各々は、奇数番主流路壁要素123-1と鏡像対称であるものから形成され、偶数番主流路壁要素が沿う正弦曲線51のうちの位相が2iπである変曲点(正弦波が下に凸から上に凸に変わる点)に重なる偶数番要素内切欠き部90が形成されている。実施例4の隔壁式熱交換器の第2熱交換器板に関しても、第2熱交換流路用凹部36に複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2と同様のものが形成されている。なお、奇数番流路壁121-1~121-n1及び偶数番流路壁122-1~122-n2は、上記で説明した形状に加えて、上記で説明した形状に対して幾何学的に対称な形状のもの、または相似な形状のものを含む。
 実施例4の隔壁式熱交換器は、既述の実施例2の隔壁式熱交換器と同様に、第1流体を複数の第1流路に流し、第2流体を複数の第2流路に流し、第1流体と第2流体とを熱交換する。実施例4の隔壁式熱交換器は、既述の実施例2の隔壁式熱交換器と同様に、第1流体と第2流体とを局所的に常時攪乱することができ、第1流体と第2流体とを熱交換する際の伝熱性能を向上させることができる。実施例4の隔壁式熱交換器は、複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2のそれぞれの壁面が正弦曲線に沿うことにより、既述の実施例2の隔壁式熱交換器と同様に、複数の奇数番流路壁121-1~121-n1と複数の偶数番流路壁122-1~122-n2のそれぞれの形状を最適化する作業を容易化することができる。
 実施例4の隔壁式熱交換器は、既述の実施例3と同様に、複数の奇数番要素内切欠き部89が形成されていることにより、既述の実施例2の隔壁式熱交換器に比較して、第1流体が複数の第1流路を流れるときの摩擦抵抗が低減され、圧力損失が低減される。実施例4の隔壁式熱交換器は、既述の実施例3と同様に、図13に示す頭部側エッジ部85と尾部側エッジ部86とにより、既述の実施例2の隔壁式熱交換器に比較して、いわゆる前縁効果を発生させる機会を増やして、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。実施例4の隔壁式熱交換器は、既述の実施例3と同様に、第2流体と第1隔壁45および第2隔壁61との間の熱伝達率を向上させることができる。
 上下を隔壁で挟まれた流路壁の間を流れる作動流体の流れには、流路壁に形成された奇数番切欠き部73、偶数番切欠き部75、奇数番要素内切欠き部89及び偶数番要素内切欠き部90により流路の断面積が変化することで、速度変化と圧力変化が生じる。速度はベクトル量で大きさと方向を持つため、作動流体の速度変化は大きさ(流速)の変化と方向(流れの向き)の変化を含む。ベルヌーイの定理、例えば「密度ρ[kg/m3]×(速度v[m/s])/2+圧力p[Pa]=一定」の式が示すように作動流体の速度が速くなると圧力は低くなり、速度が遅くなると圧力は高くなる。従って、断面積が小さい狭い流路と断面積が大きい広い流路を流れる作動流体の流速と圧力を比べると、狭い流路を流れる作動流体の流速が速く圧力が低いのに対して、広い流路を流れる作動流体の流速は遅く圧力は高くなる。また、狭い流路から広い流路に、流路の断面積が急激に変化すると渦が発生する。
 ここで、図17と図18をもとに奇数番要素内切欠き部89、偶数番要素内切欠き部90が形成されない場合と形成された場合の流路の断面積の変化の違いを考える。例えば、奇数番流路壁71-1、71-2、71-3と偶数番流路壁72-1、72-2に注目する。図17において奇数番流路壁71-1、71-2、71-3は、それぞれに奇数番切欠き部73が形成されることで、複数の奇数番流路壁要素74-1~74-m2を有する。偶数番流路壁72-1、72-2も、それぞれに偶数番切欠き部75が形成されることで、複数の偶数番流路壁要素76-1~76-m2を有する。尚、図17に示す例では、奇数番流路壁71-1、71-2、71-3のそれぞれに奇数番要素内切欠き部89はなく、偶数番流路壁72-1、72-2のそれぞれに偶数番要素内切欠き部90が形成されていない。この場合、各々の流路壁が沿う正弦曲線51に直交する方向に見た流路幅は、例えば、隣り合う奇数番流路壁71-2の奇数番流路壁要素74-1と偶数番流路壁72-2の偶数番流路壁要素76-1との間隔W11と、偶数番流路壁72-2に形成された偶数番切欠き部75を介して隣り合う奇数番流路壁71-2の奇数番流路壁要素74-1と奇数番流路壁71-3の奇数番流路壁要素74-1との間隔W12との間で変化する。
 これに対して、図18に示すように奇数番要素内切欠き部89、偶数番要素内切欠き部90が形成された場合は、上記の隣り合う奇数番流路壁121-1の第2奇数番副流路壁要素123-1Bと偶数番流路壁122-1の第2偶数番流路壁要素124-1Bとの間隔W21と、偶数番流路壁122-1、122-2のそれぞれに形成された偶数番切欠き部75及び、奇数番流路壁121-2に形成された奇数番要素内切欠き部89を介して隣り合う奇数番流路壁121-1の第2奇数番副流路要素123-1Bと奇数番流路壁121-3の第1奇数番副流路要素123-1Aとの間隔W22との間で変化する。つまり、奇数番要素内切欠き部89、偶数番要素内切欠き部90が形成された場合の流路幅の変化(W22-W21)は、これら奇数番要素内切欠き部89,偶数番要素内切欠き部90が形成されない場合の流路幅(図17参照)の変化(W12-W11)に比べて2倍変化することがわかる。
 流路幅の変化、つまり流路の断面積の変化は、上記のベルヌーイの定理より流れる作動流体の流速と圧力の変化を生じさせ、流路幅の変化が大きいほど流れる作動流体の流速と圧力の変化が大きいことになる。流れる作動流体の流速と圧力の変化が大きいと作動流体が受ける攪乱も大きくなり、第1流体と第1隔壁45および第2隔壁61との間の熱伝達率が前縁効果の寄与により大きく向上し、隔壁式熱交換器の伝熱性能を向上させることができる。
 また、図19にハッチングを付けて示す奇数番流路壁121-1及び121-2、偶数番流路壁122-1に着目すると、上下を二つの奇数番流路壁121-1の第1奇数番副流路壁要素123-1A及び奇数番流路壁121-2の第1奇数番副流路壁要素123-1Aで挟まれた偶数番流路壁122-1の第1偶数番副流路壁要素124-1A及び上下を奇数番流路壁121-1の第2奇数番副流路壁要素123-1Bと奇数番流路壁121-2の第2奇数番副流路壁要素123-1Bで挟まれた偶数番流路壁122-1の第2偶数番副流路壁要素124-1Bは、流れの中に置かれた物体、たとえば川の中によくみられる“中州”と同じ働きをする。図19の左側を上流側としたとき、この第1偶数番副流路壁要素124-1Aと第2偶数番副流路壁要素124-1Bは、流れの力を受け、第1偶数番副流路壁要素124-1Aの頭部78と第2偶数番副流路壁要素124-1Bのエッジ部86で前縁効果を発生する。また、作動流体の流れは、偶数番流路壁122-1の第1偶数番流路壁要素124-1Aとその両側の奇数番流路壁121-1の第1奇数番副流路壁要素123-1Aと奇数番流路壁121-2の第1奇数番副流路壁要素123-1Aとの間で流路幅が縮小する縮流を形成し、偶数番流路壁122-1の第1偶数番流路壁要素124-1Aを通過した後に流路幅が拡大する拡流を形成し、奇数番流路壁121-1の第2奇数番副流路壁要素123-1Bと奇数番流路壁121-2の第2奇数番副流路壁要素123-1Bとの間に流入して偶数番流路壁122-1の第2偶数番流路壁要素124-1Bにより流路幅が縮小する縮流を形成する。このように作動流体の流れが縮流と拡流を繰り返すことにより流れへの攪乱効果を得ることができる。
 正弦波状の流路壁の分割により得られる前縁効果について、流体の振る舞いに基づいて説明する。ベルヌーイの定理について上記で説明したように、広い流路を流れる作動流体の圧力は狭い流路を流れる作動流体の圧力より大きい。このため、図19において点X1の圧力をP1、点X2の圧力をP2とすると、P2>P1となり、奇数番流路壁121-1と121-2との間を流れる作動流体には、奇数番流路壁121-1から奇数番流路壁121-2に向かう方向に力F1が加わる。この力F1により、奇数番流路壁121-1の第2奇数番副流路壁要素123-1Bのエッジ点Y1、奇数番流路壁121-2の第1奇数番副流路壁要素123-1Aのエッジ点Y2において剥離流れが生じる。さらに作動流体が前に進むと力F1と同じ原理で発生する力F2により、偶数番流路壁122-1の第2偶数番副流路壁要素124-1Bのエッジ点Y3、奇数番流路壁121-2の第2奇数番副流路壁要素123-1Bのエッジ点Y4において剥離流れが生じる。このように流路壁要素のエッジ点で剥離流れが生じることでさらに前縁効果が得られ、伝熱促進に大きく寄与することができる。
 実施例5の隔壁式熱交換器は、既述の実施例3の隔壁式熱交換器の複数の奇数番流路壁要素83-1~83-m1が他の複数の奇数番流路壁要素に置換され、複数の偶数番流路壁要素84-1~84-m2が他の複数の偶数番流路壁要素に置換されている。また、実施例5の隔壁式熱交換器は、既述の実施例4の隔壁式熱交換器の複数の奇数番主流路壁要素123-1~123-m1が他の複数の奇数番主流路壁要素に置換され、複数の偶数番主流路壁要素124-1~124-m2が他の複数の偶数番流路壁要素に置換されている。図20は、実施例5の隔壁式熱交換器に形成される複数の奇数番流路壁要素のうちの1つの奇数番流路壁要素91および1つの奇数番主流路壁要素91を示す平面図である。図20に示されているように、奇数番流路壁要素91は、既述の奇数番流路壁要素83-1と同様に形成され、頭部77と尾部78とを備え、頭部側エッジ部85と尾部側エッジ部86とを備えている。また、奇数番主流路壁要素91は既述の奇数番主流路壁要素123-1と同様に形成され、頭部77と尾部78とを備え、頭部側エッジ部85と尾部側エッジ部86とを備えている。奇数番流路壁要素91および奇数番主流路壁要素91は、それぞれ中間流路壁要素92(「中間流路壁要素」に対応)をさらに備えている。中間流路壁要素92は、円柱状に形成されている。中間流路壁要素92は、要素内切欠き部89が形成されている領域に配置され、奇数番流路壁要素91および奇数番主流路壁要素91が沿う正弦曲線51の変曲点に重なるように配置されている。なお、奇数番流路壁要素91および奇数番主流路壁要素91の各々は、中間流路壁要素92を設けることにより、図13に示す既述の実施例3および実施例4の隔壁式熱交換器に比較して、頭部側エッジ部85と尾部側エッジ部86との間の距離である要素内切欠き部89の長さDを大きくすることができる。複数の流路壁要素のうちの奇数番流路壁要素91および奇数番主流路壁要素91と異なる他の流路壁要素も、奇数番流路壁要素91および奇数番主流路壁要素91と同様に、中間流路壁要素92を備えている。すなわち、中間流路壁要素92は、既述の実施例3および実施例4の隔壁式熱交換器の複数の流路壁の各々に周期Tごとに周期的に形成されている。複数の偶数番流路壁要素は、複数の奇数番流路壁要素と同様に形成され、既述の実施例3の複数の偶数番流路壁要素および既述の実施例4の複数の偶数番主流路壁要素の各々は、奇数番流路壁要素91および奇数番主流路壁要素91と鏡像対称であるものから形成されている。
 実施例5の隔壁式熱交換器は、既述の実施例3および実施例4の隔壁式熱交換器と同様に、第1流体と第2流体とを熱交換する。実施例5の隔壁式熱交換器は、既述の実施例3および実施例4の隔壁式熱交換器と同様に、第1流体と第2流体とを局所的に常時攪乱することができ、第1流体と第2流体とを熱交換する伝熱性能を向上させることができる。
 実施例5の隔壁式熱交換器は、中間流路壁要素92を形成し要素内切欠き部89の長さDを大きくすることにより、実施例3および実施例4の隔壁式熱交換器に比較して、流体が流路を流れるときの流路壁による摩擦抵抗を低減させることができる。また、中間流路壁要素92は奇数番流路壁要素91および奇数番主流路壁要素91に沿って流れる流体の流れをガイドするとともに、要素内切欠き部89の長さDを大きくしたことにより奇数番流路壁要素および偶数番流路壁要素と第1隔壁45および第2隔壁61、または、奇数番主流路壁要素および偶数番主流路壁要素と第1隔壁45および第2隔壁61が接合される部分が減少し、第1隔壁45および第2隔壁61が積層方向に変形しやすくなることで生じる、第1隔壁45および第2隔壁61の強度の低下を補強する。また、頭部側エッジ部85と尾部側エッジ部86とが第1流体から受ける衝撃を低減することができる。
 ところで、中間流路壁要素92は、奇数番流路壁要素91および奇数番主流路壁要素91が沿う正弦曲線51の変曲点に重なるように配置されているが、変曲点に重ならないように、形成されてもよい。中間流路壁要素92は、変曲点に重ならないように形成された場合でも、要素内切欠き部89が形成されている領域に配置されることにより、上記と同様の作用・効果を得ることができる。また、中間流路壁要素92は、円柱状に形成されているが、円柱状以外の形状に形成されてもよい。中間流路壁要素92は、円柱状以外の形状に形成された場合でも、上記と同様の作用・効果を得ることができる。
 図21は、実施例5の隔壁式熱交換器と比較例の隔壁式熱交換器とにおける、熱通過率Kと、熱通過率Kと伝熱面積との積KAとを示すグラフである。比較例の隔壁式熱交換器は、いわゆるプレート式熱交換器である。図21のグラフは、実施例5の隔壁式熱交換器における積KAと、比較例の隔壁式熱交換器における積KAとが同程度であることを示し、比較例の隔壁式熱交換器が実施例5の隔壁式熱交換器と同等の熱交換能力を有するものであることを示している。図21のグラフは、実施例5の隔壁式熱交換器の熱通過率Kが、比較例の隔壁式熱交換器の熱通過率Kの概ね10倍であることを示し、実施例5の隔壁式熱交換器の熱通過率Kが、比較例の隔壁式熱交換器の熱通過率Kより大きいことを示している。すなわち、図21のグラフは、実施例5の隔壁式熱交換器が、実施例5の隔壁式熱交換器と同等の熱交換能力を有するプレート式熱交換器に比較して、熱交換する伝熱性能が高いことを示している。
 図22は、実施例5の隔壁式熱交換器の圧力損失と比較例の隔壁式熱交換器の圧力損失とを示すグラフである。図22のグラフは、実施例5の隔壁式熱交換器の圧力損失が、比較例の隔壁式熱交換器の圧力損失の44%であることを示し、実施例5の隔壁式熱交換器が、比較例の隔壁式熱交換器に比較して、圧力損失を低減することができることを示している。実施例5の隔壁式熱交換器の圧力損失が低減する理由としては、実施例5の隔壁式熱交換器の流路の水力直径が1.0mmより小さく、比較例の隔壁式熱交換器の流路の水力直径より小さいことが挙げられる。実施例5の隔壁式熱交換器の圧力損失が低減する理由としては、さらに、複数の奇数番流路壁および複数の奇数番主流路壁要素に複数の奇数番切欠き部73と複数の要素内切欠き部89とが形成されていること、複数の偶数番流路壁および複数の偶数番主流路壁要素に複数の偶数番切欠き部75と複数の要素内切欠き部90とが形成されていることが挙げられる。
 ところで、実施例の隔壁式熱交換器の複数の第1流路壁48-1~48-n(奇数番流路壁71-n1、偶数番流路壁72-n2、奇数番流路壁81-n1、偶数番流路壁82-n2、奇数番主流路壁121-n1、偶数番主流路壁122-n2を含む。以下の説明では第1流路壁48-1~48-nを代表として用いる)は、第1側流路壁面52と第2側流路壁面53が、複数の第1流路壁48-1~48-nが重なる正弦曲線51をオフセットした二つの正弦曲線にそれぞれ沿って形成されているが、正弦曲線51の振幅を変えた二つの正弦曲線に沿うように形成されてもよい。図23は、変形例の隔壁式熱交換器が備える1つの流路壁の一部を示す平面図である。その流路壁101は、図23に示されているように、正弦曲線51に沿うように形成され、複数の第1側部分103と複数の第2側部分104とから形成されている。複数の第1側部分103は、正弦曲線51のうちの上に凸である部分に重なっている。複数の第2側部分104は、正弦曲線51のうちの下に凸である部分に重なっている。複数の第1側部分103は、第1凸面流路壁面105と第1凹面流路壁面106とが形成されている。第1凸面流路壁面105は、複数の第1側部分103の第1側壁46の側に形成されている。第1凹面流路壁面106は、複数の第1側部分103の第2側壁47の側に形成されている。
 複数の第2側部分104は、第2凸面流路壁面107と第2凹面流路壁面108とが形成されている。第2凸面流路壁面107は、複数の第2側部分104の第2側壁47の側に形成されている。第2凹面流路壁面108は、複数の第2側部分104の第1側壁46の側に形成されている。
 第1凸面流路壁面105と第2凸面流路壁面107と(「第1壁面」に対応)は、1つの正弦曲線111(「第1正弦曲線」に対応)に沿うように、形成されている。正弦曲線111は、正弦曲線111の周期が正弦曲線51の周期と等しくなるように形成されている。さらに、正弦曲線111は、正弦曲線111の振幅が正弦曲線51の振幅より大きくなるように、たとえば、正弦曲線111の振幅が正弦曲線51の振幅Aを、1を超える数値倍(たとえば、1.2倍)に等しくなるように、形成されている。正弦曲線111は、さらに、正弦曲線111の複数の変曲点が正弦曲線51の複数の変曲点に重なるように、かつ、正弦曲線111の複数の変曲点で正弦曲線51に交差するように、形成されている。
 第1凹面流路壁面106と第2凹面流路壁面108と(「第2壁面」に対応)は、1つの正弦曲線112(「第2正弦曲線」に対応)に沿うように、形成されている。正弦曲線112は、正弦曲線112の周期が正弦曲線51の周期と等しくなるように形成されている。正弦曲線112は、さらに、正弦曲線112の振幅が正弦曲線51の振幅より小さくなるように、たとえば、正弦曲線112の振幅が正弦曲線51の振幅Aを、1未満の正の数値倍(たとえば、0.8倍)に等しくなるように、形成されている。すなわち、正弦曲線112は、正弦曲線112の周期が正弦曲線111の周期と等しくなるように、かつ、正弦曲線112の振幅が正弦曲線111の振幅より小さくなるように、形成されている。正弦曲線112は、さらに、正弦曲線112の複数の変曲点が正弦曲線51の複数の変曲点に重なるように、かつ、正弦曲線112の複数の変曲点で正弦曲線51に交差するように、形成されている。すなわち、正弦曲線112は、正弦曲線112の複数の変曲点が正弦曲線111の複数の変曲点に重なるように、かつ、正弦曲線112の複数の変曲点で正弦曲線111に交差するように、形成されている。
 隔壁式熱交換器は、複数の第1流路壁が流路壁101に置換された場合でも、複数の第1流路で第1流体が流れる方向を変化させることができる。このような隔壁式熱交換器は、さらに、複数の第1流路が位置により断面積が異なり、複数の第1流路を流れる第1流体の速さを変化させることができる。隔壁式熱交換器は、さらに、複数の第2流路壁が流路壁101に置換された場合でも、複数の第2流路で第2流体が流れる方向を変化させることができる。このような隔壁式熱交換器は、さらに、複数の第2流路が位置により断面積が異なり、複数の第2流路を流れる第2流体の速さを変化させることができる。この結果、このような隔壁式熱交換器は、既述の実施例の隔壁式熱交換器と同様に、複数の第1流路と複数の第2流路とをそれぞれ流れる第1流体と第2流体とを局所的に常時攪乱し、第1流体と第2流体とを熱交換する伝熱性能を向上させることができる。このような隔壁式熱交換器は、既述の実施例の隔壁式熱交換器と同様に、流路壁101に複数の切欠き部や中間流路壁要素を設けることで、摩擦抵抗の低減、前縁効果の発揮、形状損失の低減を実現し、第1流体と第2流体とを熱交換する伝熱性能を向上させることができる。このような隔壁式熱交換器は、さらに、流路壁101の壁面が正弦曲線に沿っていることにより、既述の実施例の隔壁式熱交換器と同様に、複数の第1流路と複数の第2流路との形状の入力・変更作業を容易化し、コンピュータシミュレーションによる形状の最適化を容易化することができる。
 このような複数の第1流路壁と複数の第2流路壁とは、さらに、正弦曲線の変曲点に近付くにつれ幅が小さくなり、正弦曲線の変曲点に重なる部分で尖っている。このため、実施例2~実施例5の隔壁式熱交換器の流路壁要素の頭部77と尾部78とは、このような複数の第1流路壁と複数の第2流路壁とが設けられたときに、流路壁要素の端に近付くにつれて幅がよりなだらかに小さくなるように形成されることができる。このような隔壁式熱交換器は、流路壁要素の壁面がよりなだらかに形成されることにより、既述の実施例2~実施例5の隔壁式熱交換器に比較して、第1流路と第2流路において、流体力学における圧力損失の一つである形状損失係数で表現される形状損失を低減することができ、第1流路と第2流路との圧力損失を低減することができる。
 ところで、既述の実施例2~実施例5の隔壁式熱交換器は、頭部77と尾部78とが尖るように形成されているが、頭部77と尾部78とが尖らないように形成されてもよい。また、既述の実施例の隔壁式熱交換器は、第1側壁面41と第2側壁面42とがともに正弦曲線に沿っているが、正弦曲線に沿わなくてもよく、たとえば、第1側壁面41と第2側壁面42とは概ね平坦に形成されてもよい。これらのような場合も、隔壁式熱交換器は、複数の流路壁の壁面が正弦曲線に沿っていることにより、流体を局所的に常時攪乱して伝熱性能を向上させることができ、複数の流路壁の形状の最適化する作業を容易にすることができる。
 以上のように奇数番切欠き部73、偶数番切欠き部75、奇数番要素内切欠き部(要素内切欠き部)89および偶数番要素内切欠き部(要素内切欠き部)90が形成された正弦波状の流路壁で形成された流路によれば、流路壁高さの制限により温度境界層の薄さが物理的に確保され、そのもとで作動流体の流れの変化と、エッジ構造による前縁効果と、渦の発生による乱流効果が得られ、伝熱促進可能な手段を温度境界層の薄さ、前縁効果の多く発生および流れへの攪乱をフル活用でき、これまでに類のない微細構造の伝熱促進効果を得ることができる。
 なお、本実施例では奇数番要素内切欠き部(要素内切欠き部)89は複数の奇数番流路壁要素83-1~83-m1、および、複数の奇数番流路壁要素123-1~123-m1のそれぞれに1つ形成され、偶数番要素内切欠き部(要素内切欠き部)90は複数の偶数番流路壁要素84-1~84-m2、および、複数の偶数番流路壁要素124-1~124-m2のそれぞれに1つ形成されるものとして説明したが、奇数番要素内切欠き部(要素内切欠き部)89、偶数番要素内切欠き部(要素内切欠き部)90が形成される数は、それぞれ2つ以上であってもよい。
 以上、実施例を説明したが、前述した内容により実施例が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施例の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
 1 :隔壁式熱交換器
 41 :第1側壁面
 42 :第2側壁面
 45 :第1隔壁
 46 :第1側壁
 47 :第2側壁
 48-1~48-n:複数の第1流路壁
 51 :正弦曲線
 52 :第1側流路壁面
 53 :第2側流路壁面
 61 :第2隔壁
 62-1~62-n:複数の第2流路壁
 65 :第1流路
 66 :第2流路
 67 :第1空間
 68 :第2空間
 73 :奇数番切欠き部
 75 :偶数番切欠き部
 89 :要素内切欠き部(奇数番要素内切欠き部)
 90 :要素内切欠き部(偶数番要素内切欠き部)
 85 :頭部側エッジ部
 86 :尾部側エッジ部
 91 :奇数番流路壁要素(流路壁要素)、奇数番主流路壁要素(流路壁要素)
 92 :中間流路壁要素
 121-1~121-n1:複数の奇数番流路壁
 122-1~122-n2:複数の偶数番流路壁
 123-1~123-m1:複数の奇数番主流路壁要素
 123-1A~123-m1A:第1奇数番副流路壁要素
 123-1B~123-m1B:第2奇数番副流路壁要素
 124-1~124-m2:複数の偶数番主流路壁要素
 124-1A~124-m2A:第1偶数番副流路壁要素
 124-1B~124-m2B:第2偶数番副流路壁要素

Claims (10)

  1.  第1隔壁と、
     第2隔壁と、
     前記第1隔壁と前記第2隔壁との間に形成される空間を複数の第1流路に分割する複数の流路壁とを備え、
     前記第1隔壁と前記第2隔壁とは、前記複数の第1流路を流れる第1流体と異なる第2流体が流れる第2流路から前記複数の第1流路を隔て、
     前記複数の流路壁は、複数の壁面が形成され、
     前記複数の壁面の各々は、互いに位置が異なる正弦曲線に沿い、
     前記正弦曲線の振幅方向に並んだ複数の正弦波状の流路壁のうち、隣り合う二つの流路壁は、一方の流路壁の正弦曲線の変曲点に重なる位相をθ0(=0°)としたとき、θ0(=0°)<θ1<θ2<90°<θ3<θ4<180°<θ5<θ6<270°<θ7<θ8<θ0(=360°)の位相の範囲を一周期とする正弦波状の流路壁であり、
     前記一方の流路壁は、複数の流路壁のない部分が形成されることで、θ1≦θ<θ3及びθ6≦θ<θ8の位相θの範囲に重なる部分に主流路壁要素が形成され、
     他方の流路壁は、複数の流路壁のない部分が形成されることで、θ2≦θ<θ4及びθ5≦θ<θ7の位相θの範囲に重なる部分に主流路壁要素が形成される
     隔壁式熱交換器。
  2.  前記一方の流路壁は、
     θ0≦θ<θ1、θ3≦θ<θ6及びθ8≦θ<θ0の位相θの範囲に重なる部分に流路壁のない部分が形成されることで、θ1≦θ<θ3及びθ6≦θ<θ8の位相θの範囲に重なる部分に主流路壁要素が形成され、
     前記他方の流路壁は、
     θ0≦θ<θ2、θ4≦θ<θ5及びθ7≦θ<θ0の位相θの範囲に重なる部分に流路壁のない部分が形成されることで、θ2≦θ<θ4及びθ5≦θ<θ7の位相θの範囲に重なる部分に主流路壁要素が形成される
     請求項1に記載の隔壁式熱交換器。
  3.  前記一方の流路壁の前記主流路壁要素は、
     前記θ1≦θ<θ3の位相θの範囲に重なる部分に形成された第1副流路壁要素と、前記θ6≦θ<θ8の位相θの範囲に重なる部分に形成された第2副流路壁要素とを有し、
     前記他方の流路壁の前記主流路壁要素は、
     前記θ2≦θ<θ4の位相θの範囲に重なる部分に形成された第1副流路壁要素と、前記θ5≦θ<θ7の位相θの範囲に重なる部分に形成された第2副流路壁要素とを有する
     請求項2に記載の隔壁式熱交換器。
  4.  前記複数の流路壁の各々は、
     第1壁面と、
     前記第1壁面の反対側に形成される第2壁面とが形成され、
     前記正弦曲線は第1正弦曲線と第2正弦曲線を有し、
     前記第1壁面は前記第1正弦曲線に沿うとともに前記第2壁面は前記第2正弦曲線に沿い、
     前記第1正弦曲線の周期と振幅は、前記第2正弦曲線の周期と振幅に等しく、
     前記第1正弦曲線と前記第2正弦曲線は各々の振幅方向に所定のオフセット値だけ平行移動された位置にある
     請求項1~請求項3のうち、何れか一つに記載の隔壁式熱交換器。
  5.  前記一方の流路壁の前記流路壁のない部分は、
     θ0≦θ<θ1及びθ8≦θ<θ0の位相θの範囲に重なる部分に形成された流路壁のない切欠き部と、θ3≦θ<θ6の位相θの範囲に重なる部分に形成された流路壁のない要素内切欠き部とを有し、
     前記他方の流路壁の前記流路壁のない部分は、
     θ0≦θ<θ2及びθ7≦θ<θ0の位相θの範囲に重なる部分に形成された流路壁のない切欠き部と、θ4≦θ<θ5の位相θの範囲に重なる部分に形成された流路壁のない要素内切欠き部とを有する
     請求項1~請求項4のうち、何れか一つに記載の隔壁式熱交換器。
  6.  前記主流路壁要素は、前記要素内切欠き部に配置される中間流路壁要素を備える
     請求項5に記載の隔壁式熱交換器。
  7.  前記主流路壁要素は、前記切欠き部に隣接する端に近付くにつれてなだらかに幅が小さくなるように、形成される
     請求項5または請求項6に記載の隔壁式熱交換器。
  8.  前記複数の流路壁の各々は、
     第1壁面と、
     前記第1壁面の反対側に形成される第2壁面とが形成され、
     前記正弦曲線は第1正弦曲線と第2正弦曲線を有し、
     前記第1壁面は第1正弦曲線に沿うとともに前記第2壁面は第2正弦曲線に沿い、
     前記第1正弦曲線の周期は、前記第2正弦曲線の周期に等しく、
     前記第1正弦曲線の振幅は、前記第2正弦曲線の振幅より小さく、
     前記第1正弦曲線と前記第2正弦曲線とは、各々の変曲点で互いに交差する
     請求項1~請求項7のうち、何れか一つに記載の隔壁式熱交換器。
  9.  前記空間の端に側壁面を形成する側壁をさらに備え、
     前記側壁面は、前記正弦曲線と周期が等しい他の正弦曲線に沿う
     請求項1~請求項8のうち、何れか一つに記載の隔壁式熱交換器。
  10.  前記複数の流路壁の間隔の最小値を、前記第1隔壁と前記第2隔壁との間隔で除算した値は、2.5より大きく、かつ、6より小さい
     請求項1~請求項9のうち、何れか一つに記載の隔壁式熱交換器。
PCT/JP2020/025286 2019-07-29 2020-06-26 隔壁式熱交換器 WO2021019993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020323285A AU2020323285B2 (en) 2019-07-29 2020-06-26 Partition-wall-type heat exchanger
CN202080052132.2A CN114174754A (zh) 2019-07-29 2020-06-26 间壁式换热器
US17/627,011 US11994349B2 (en) 2019-07-29 2020-06-26 Bulkhead heat exchanger
EP20846809.0A EP4006478A4 (en) 2019-07-29 2020-06-26 PARTIAL TYPE PLATE HEAT EXCHANGER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139140A JP6881516B2 (ja) 2019-07-29 2019-07-29 隔壁式熱交換器
JP2019-139140 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021019993A1 true WO2021019993A1 (ja) 2021-02-04

Family

ID=74228704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025286 WO2021019993A1 (ja) 2019-07-29 2020-06-26 隔壁式熱交換器

Country Status (6)

Country Link
US (1) US11994349B2 (ja)
EP (1) EP4006478A4 (ja)
JP (1) JP6881516B2 (ja)
CN (1) CN114174754A (ja)
AU (1) AU2020323285B2 (ja)
WO (1) WO2021019993A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125767A (ja) * 2004-10-29 2006-05-18 Tokyo Institute Of Technology 熱交換器
WO2008062802A1 (fr) * 2006-11-21 2008-05-29 Kabushiki Kaisha Toshiba Échangeur de chaleur
JP2009068736A (ja) 2007-09-11 2009-04-02 Fujitsu General Ltd 熱交換器
JP2017106648A (ja) * 2015-12-07 2017-06-15 大日本印刷株式会社 熱交換器
JP2019102505A (ja) * 2017-11-29 2019-06-24 本田技研工業株式会社 冷却装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170549A (ja) * 2004-12-17 2006-06-29 Yasuyoshi Kato 熱交換器
JP4675283B2 (ja) * 2006-06-14 2011-04-20 トヨタ自動車株式会社 ヒートシンクおよび冷却器
KR20080060933A (ko) * 2006-12-27 2008-07-02 엘지전자 주식회사 환기 장치의 열교환기
US8474516B2 (en) * 2008-08-08 2013-07-02 Mikros Manufacturing, Inc. Heat exchanger having winding micro-channels
JP5487423B2 (ja) * 2009-07-14 2014-05-07 株式会社神戸製鋼所 熱交換器
DE102010030781A1 (de) 2010-06-30 2012-01-05 Sgl Carbon Se Wärmeübertragerplatte, damit versehener Plattenwärmeübertrager und Verfahren zum Herstellen eines Plattenwärmeübertragers
CN202361862U (zh) * 2011-08-30 2012-08-01 南京航空航天大学 高低交错波纹的板式换热器板片
WO2013178066A1 (zh) * 2012-05-29 2013-12-05 杭州沈氏换热器有限公司 一种换热器的微通道结构以及集成式微通道换热器
FR3024224B1 (fr) * 2014-07-25 2018-12-07 Airbus Helicopters Echangeur thermique a plaques avec renforts structurels pour turbomoteur
JP6536205B2 (ja) * 2015-06-19 2019-07-03 大日本印刷株式会社 シート状ロウ材、熱交換器の製造方法および熱交換器
CN105547019B (zh) * 2015-12-15 2017-10-20 西安交通大学 一种非均匀分布肋片的高温高压板式换热器
JP6642603B2 (ja) 2018-02-28 2020-02-05 株式会社富士通ゼネラル 隔壁式熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125767A (ja) * 2004-10-29 2006-05-18 Tokyo Institute Of Technology 熱交換器
WO2008062802A1 (fr) * 2006-11-21 2008-05-29 Kabushiki Kaisha Toshiba Échangeur de chaleur
JP2009068736A (ja) 2007-09-11 2009-04-02 Fujitsu General Ltd 熱交換器
JP2017106648A (ja) * 2015-12-07 2017-06-15 大日本印刷株式会社 熱交換器
JP2019102505A (ja) * 2017-11-29 2019-06-24 本田技研工業株式会社 冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006478A4

Also Published As

Publication number Publication date
US20220260325A1 (en) 2022-08-18
EP4006478A1 (en) 2022-06-01
JP6881516B2 (ja) 2021-06-02
JP2021021549A (ja) 2021-02-18
CN114174754A (zh) 2022-03-11
AU2020323285A1 (en) 2022-03-03
EP4006478A4 (en) 2023-08-09
US11994349B2 (en) 2024-05-28
AU2020323285B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6642603B2 (ja) 隔壁式熱交換器
JP5487423B2 (ja) 熱交換器
JP5185975B2 (ja) マイクロチャネル熱交換器
Rosaguti et al. Low-Reynolds number heat transfer enhancement in sinusoidal channels
US10578367B2 (en) Plate heat exchanger with alternating symmetrical and asymmetrical plates
JP2010043850A (ja) マイクロチャネル熱交換器、熱源を冷却する方法
JP5884055B2 (ja) 熱交換器および熱交換器用オフセットフィン
SE528275C2 (sv) Värmeöverföringsplatta med styrorgan samt värmeväxlare som innefattar sådana plattor
WO2018047469A1 (ja) 熱交換器
WO2021019993A1 (ja) 隔壁式熱交換器
JP6479271B1 (ja) プレート式熱交換器
TW202024554A (zh) 傳熱板
JP7072790B2 (ja) 熱交換器
JP5814163B2 (ja) 冷却器
JP5746906B2 (ja) 熱交換器
JP2022128039A (ja) 熱交換器
JP6187038B2 (ja) 熱交換器及び熱交換器の製造方法
JP2021050838A (ja) 熱交換器
US20190376750A1 (en) Water heat exchanger
KR20200065779A (ko) 열교환판 및 이를 포함하는 판형 열교환기
JP2022102191A (ja) 熱交換器
US9677828B2 (en) Engineered packing for heat exchange and systems and methods constructing the same
WO2018092355A1 (ja) 伝熱管群の制振構造
JP2015045455A (ja) 熱交換器
JP2018096584A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020323285

Country of ref document: AU

Date of ref document: 20200626

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020846809

Country of ref document: EP

Effective date: 20220228