WO2013178066A1 - 一种换热器的微通道结构以及集成式微通道换热器 - Google Patents

一种换热器的微通道结构以及集成式微通道换热器 Download PDF

Info

Publication number
WO2013178066A1
WO2013178066A1 PCT/CN2013/076409 CN2013076409W WO2013178066A1 WO 2013178066 A1 WO2013178066 A1 WO 2013178066A1 CN 2013076409 W CN2013076409 W CN 2013076409W WO 2013178066 A1 WO2013178066 A1 WO 2013178066A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
fins
microchannel
adjacent
Prior art date
Application number
PCT/CN2013/076409
Other languages
English (en)
French (fr)
Inventor
石景祯
Original Assignee
杭州沈氏换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012101708047A external-priority patent/CN102706201A/zh
Priority claimed from CN2012101708028A external-priority patent/CN102706187A/zh
Application filed by 杭州沈氏换热器有限公司 filed Critical 杭州沈氏换热器有限公司
Priority to US14/404,904 priority Critical patent/US20150122467A1/en
Priority to EP13796426.8A priority patent/EP2878910B1/en
Priority to JP2015600028U priority patent/JP3197685U/ja
Publication of WO2013178066A1 publication Critical patent/WO2013178066A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a heat exchange component for heat exchange between two fluids, and more particularly to a streamlined microchannel structure and an integrated microchannel that can be used as a heat transfer between water and a refrigerant.
  • Heat Exchanger Background technique
  • microchannel heat exchangers are a new direction in the research and development of heat exchangers due to their small size, light weight and high compactness.
  • microchannel heat exchangers for heat pump systems are almost always realized by the flat aluminum tube profiles plus the inlet and outlet of the refrigerant and working fluid, which is limited to the heat exchange between the refrigerant and the air.
  • Turbulent heat exchanger For example, a microchannel heat exchanger disclosed in Chinese Patent Publication No. CN102095285A is the above-described turbulent heat exchanger. Since the heat exchange flat tube is an aluminum tube profile, the dimensions of the profile are constant. There are limits to the choice of hydraulic diameter for microchannels, making it difficult to select aluminum tube profiles that are suitable for thermal design optimization.
  • the wall thickness between the microchannels cannot be the size required for heat transfer (requires a very thin wall thickness), thus using a flat tube to design a microchannel for the aluminum tube profile.
  • Heaters cannot be the development direction of microchannel heat exchanger technology.
  • microchannel heat exchangers processed by lithography, chemical or photoelectric etching, diamond cutting and wire cutting have become new technological developments in this field.
  • the microchannel heat exchanger disclosed in Chinese Patent Publication No. CN101509736A and CN201973962U belongs to such a heat exchanger.
  • due to limitations in processing and molding processes, such heat exchangers have the disadvantages of thick heat exchange walls, inconvenient assembly, and a single connection of the inlet and outlet.
  • the microchannel heat exchanger disclosed in CN101509736A is formed by stacking heat exchange units composed of three layers of a refrigerant working channel layer, a separator layer and a working fluid layer, and needs to process three different shapes of fluid channel layers and then diffuse through atoms.
  • the method is integrated as a whole, the assembly method is complicated, and the processing cost is high; in the microchannel heat exchanger disclosed in CN201973962U, the refrigerant working channel and the working fluid channel are formed between the stacked and connected metal plates, and at least one adjacent metal plate
  • the refrigerant working medium groove and the working fluid groove are alternately formed on the side surface, and after the metal plates are stacked and connected, the refrigerant working medium groove and the working fluid groove respectively form the refrigerant working medium channel and the working fluid channel, due to the multi-layer metal plate
  • the width of the joint surface of the metal plate cannot be less than 0.4 mm, which results in a thick wall thickness of the heat exchange of the heat exchanger, and the heat exchange capacity cannot be Meet the needs.
  • microchannel heat exchangers whether aluminum flat tubes or compact water and refrigerant microchannel heat exchangers, have internal channels in the form of straight channels of square or circular cross-section. Although the microchannels of this heat exchanger enhance heat transfer, they also increase the fluid pressure loss, and the microchannel structure does not consider the influence of disturbance on the heat transfer enhancement.
  • U.S. Patent No. 7,334,361 B2 and Japanese Patent Publication No. JP2006170549A all disclose a microchannel heat exchanger in which a microchannel structure is alternately formed between a plurality of stacked heat exchange plates; Regularly arranged streamlined fins; microchannels are formed between the fins.
  • this heat exchanger is forced to convect As the thermal coefficient increases, the pressure loss of the fluid decreases, but such a structure has a heat transfer property to be improved due to the lack of a fine structure which promotes condensation or evaporation phase change, and the resistance of the fluid flow needs to be further reduced.
  • the technical problem to be solved by the present invention is that the microchannel structure design of the existing heat exchanger is unreasonable, resulting in a problem of large resistance to fluid flow and poor heat exchange capability, thereby providing a forced convection heat transfer coefficient.
  • a microchannel structure of a heat exchanger is provided, the microchannel structure being formed between a plurality of stacked heat exchange plates, wherein the heat exchanger plate is formed with a plurality of fin units, the fin units are evenly arranged in a direction perpendicular to a fluid flow to form a fin unit group, and the plurality of fin unit groups are staggered at a distance along a fluid flow direction; the upstream side of the fins The rear end of the sheet unit is disposed at an intermediate position of two adjacent fin units on the downstream side; the fin unit is composed of at least two fins, and is adjacent to the fins by a distance; adjacent Fluid channels between the fin units and between adjacent fins form the microchannel structure.
  • the outer contour of the fin unit is linear or curved.
  • the adjacent fin unit groups are opposite to the direction of fluid flow, and the angle between the fin unit and the fluid flow direction is 45 ° « ⁇ ⁇ ⁇ 55 ° .
  • two fin units adjacent in the fluid flow direction form a pair of fin units, and the distance between adjacent two fin units in the fluid flow direction a « ⁇ 2mm, the spacing b « ⁇ 2mm in the direction perpendicular to the fluid flow direction ; the spacing 2a between the pair of adjacent fin units in the direction of fluid flow, the adjacent pair of fin units being perpendicular to The spacing 2b in the direction of fluid flow.
  • the fin unit has a length L « ⁇ 2.5 mm in the fluid flow direction, a width h 1.5 mm perpendicular to the fluid flow direction, and the fin thickness ⁇ 0.5 mm.
  • the fins constituting the fin unit include: a main flow side forming an outer contour of the fin unit and a split side adjacent to the main flow side, adjacent to the The split edges of the fins are parallel to each other and have a spacing of 0.05 mm « ⁇ t « ⁇ 0.35 mm ; the angle between the split edges and the direction of fluid flow is 0° « ⁇ « ⁇ 15 ° .
  • the outer contour of the fin unit is a "s" type curve in which the middle portion is a straight line, and the front end fins, the rear end fins, and the rear end fins are disposed at the front end An intermediate fin of a parallelogram between the fin and the rear end fin is formed.
  • the outer contour of the fin unit is linear; it is composed of three parallelogram fins, and the fins are circular arc transitions on the obtuse side of the parallelogram.
  • the microchannel structure is a flow guiding section, a heat exchange section and a confluence section in the fluid flow direction, and the guiding section and the adjacent fin unit of the confluence section
  • the spacing along the direction of fluid flow is greater than the spacing of adjacent fin units of the heat exchange section in the direction of fluid flow.
  • the fins on the heat exchange plate are preferably formed by photolithography.
  • an integrated microchannel heat exchanger comprising a multi-layered heat exchange plate, the heat exchanger plate being formed with a plurality of fin units, the fin units being vertical Evenly arranged in a direction of fluid flow as a group of fin units, a plurality of the fin unit groups are staggered at a distance along a fluid flow direction; a rear end of the fin unit on the upstream side is disposed adjacent to the downstream side An intermediate position of the fin unit; the fin unit is composed of at least two segments of fins, spaced apart from each other before the fins; adjacent to the fin units and adjacent to the fins
  • the fluid passages form a microchannel structure; the working fluid microchannels and the refrigerant medium microchannels are alternately disposed in a direction perpendicular to the surface of the heat exchanger plate to achieve heat exchange, wherein the fluid flow upstream of the microchannel structure
  • the fin is formed on one side of the heat exchange plate, and the fin side of the heat exchange plate is combined with the planar side of the heat exchange plate of the adjacent layer to form the microchannel. structure.
  • one side of the heat exchange plate is formed with the fins, and the fin sides adjacent to the heat exchange plates are combined with each other to form the microchannel structure.
  • the fins are respectively formed on both sides of the heat exchange plate, wherein the working fluid microchannels are formed between the fins on one side, and the fins on the other side are formed. Forming the refrigerant working microchannel.
  • the outer contour of the fin unit is linear or curved, and the angle between the fin unit and the fluid flow direction is 45 ° « ⁇ ⁇ 3 ⁇ 4 ⁇ 55 ° .
  • the outer contour of the fin unit is a "s" type curve in which the middle portion is a straight line, which is composed of two fins, and the spacing between the fins is 0.05 mm « ⁇ t « ⁇ 0.35mm ; the angle between the fin spacing and the streamline direction is 0° « ⁇ « ⁇ 15 ° .
  • the outer contour of the fin unit is linear; it is composed of three parallelogram fins, and the fins are circular arc transitions on the obtuse side of the parallelogram.
  • the inlets are respectively disposed on opposite sides of the flow guiding section, and the outlets are respectively disposed on opposite sides of the collecting section.
  • the fins on the heat exchange plate are formed by photolithography.
  • the heat exchange plates are integrated by atom diffusion.
  • the fin unit is composed of at least two fins, and the microchannels of the same length and width have an increase in heat exchange area of about 55% compared with the straight channel, compared to the existing streamline type.
  • the microchannel heat exchange area is increased by 4.8% ⁇ 7.5%; and the structure of the multi-stage fins increases the contact area with the fluid, and more vaporization cores can be formed, which is more favorable for the phase change heat transfer of the refrigerant.
  • intermittent fin structures can increase fluid perturbations. For low Reynolds number flow conditions, such perturbations can enhance heat transfer between the refrigerant and the working fluid with less fluid resistance increase.
  • the forced convection heat transfer coefficient of the heat exchanger using the microchannel structure is greatly improved, and the heat exchange capacity is enhanced.
  • the fins constituting the fin unit are spaced apart to facilitate the splitting and mixing of the fluid, thereby avoiding the eddy current caused by the angle of the continuous fold line of the fluid microchannel formed by the prior streamless fin-shaped fin. Reduce the resistance to fluid flow.
  • the outer contour of the fin unit of the present invention may be linear or curved, which are all formed by photolithography, which can process the heat exchange wall between adjacent microchannels to a thickness of less than 0.12. Mm, can further improve the heat transfer performance of the heat exchanger, in addition, the plane side of the two adjacent heat exchange plates and the fin side or the fin side are combined with each other, which can ensure the overall strength of the heat exchanger
  • the heat exchange wall thickness is further greatly reduced under the condition, and the heat exchange capacity of the heat exchanger is further improved.
  • the applicant applied the first embodiment of the present invention and the second embodiment
  • the channel structure is compared with the existing microchannel structure formed by the gapless streamline fins. It can be seen from the test results of FIG. 13 that the fluid pressure loss ⁇ ⁇ of the microchannel structure to which the present invention is applied is reduced;
  • the microchannel structure shape in 1 is reduced by 30.8% compared with the microchannel structure pressure loss ⁇ ⁇ in the prior art, and the microchannel structure in Embodiment 2 is reduced compared with the microchannel structure pressure loss ⁇ ⁇ in the prior art.
  • the integrated microchannel heat exchanger of the present invention is composed of a heat exchanger plate having a working fluid microchannel and a heat exchanger plate having a refrigerant working microchannel, and only two heat exchanger plates are required, compared to the three-layer plate.
  • the sheet constitutes the structure of the heat exchange unit, and the number of sheets is small, the assembly is simple, and the processing cost is lowered.
  • the integrated microchannel heat exchanger of the present invention is provided with two inlets and two outlets on opposite sides of the diversion section and the confluence section, respectively, which is convenient for the user to select the connection pipeline according to different installation positions.
  • Figure 1 is a view showing the overall structure of a microchannel structure of a heat exchanger of the present invention
  • Figure 2 is a view showing the positional structure between a part of the fin units of the embodiment 1 of the present invention
  • Figure 3 is a view showing the structure of a single fin unit in Embodiment 1 of the present invention.
  • Figure 4 is a view showing the positional structure between partial fin units of Embodiment 2 of the present invention.
  • Figure 5 is a view showing the structure of a single fin unit in Embodiment 2 of the present invention.
  • Figure 6 shows a perspective view of the integrated microchannel heat exchanger of the present invention
  • Figure 7 is a structural view showing a heat exchange plate of the refrigerant layer of the integrated microchannel heat exchanger of the present invention.
  • Figure 8 is a structural view showing a heat exchange plate of a working fluid layer of the integrated microchannel heat exchanger of the present invention.
  • Figure 9 is a view showing the positional structure between the partial fin units of the embodiment 4 of the present invention.
  • Figure 10 is a structural view showing a single fin unit in Embodiment 4 of the present invention
  • Figure 11 is a view showing the positional structure between partial fin units of Embodiment 5 of the present invention
  • Figure 12 is a view showing the structure of a single fin unit in Embodiment 5 of the present invention.
  • Figure 13 shows a comparison of performance between the present invention and prior art microchannel structures.
  • 1-heat exchanger plate 2-fin unit, 21-fin, 211-front end fin, 212-intermediate fin, 213-rear fin, 214-mainstream side, 215-split edge, 3-fin Unit pair, 4-conductor section, 5-merction section, 6-heat exchange section, 7-inlet, 8-outlet, 9-fin unit.
  • the microchannel structure is formed between a plurality of stacked heat exchange plates 1 on which a plurality of fin units 2 are formed, the fins
  • the sheet units 2 are evenly arranged in a direction perpendicular to the flow of the fluid into the fin unit group 9, and the plurality of fin unit groups 9 are staggered at a distance in the fluid flow direction; the fin unit 2 on the upstream side
  • the rear end is disposed at an intermediate position of two adjacent fin units 2 on the downstream side.
  • the intermediate position according to the present invention means any position between two adjacent fin units 2 on the downstream side, which includes not only the rear end of the upstream side fin unit 2 but also the adjacent side of the downstream side.
  • the inside between the fin units 2 also includes the rear end of the upstream side fin unit 2 on the outside between the adjacent fin units 2 on the downstream side.
  • the fin unit 2 is composed of at least two segments of fins 21, the fins 21 being previously spaced apart by a distance; fluid passages between the fin units 2 and between the fins 21 form the microchannel structure . Therefore, the heat exchange area of the heat exchanger microchannel of the present invention is greatly increased compared to the existing microchannel heat exchange surface.
  • V direction of Fig. 1 represents the linear direction from the inlet to the outlet of the microchannel structure.
  • the outer contour of the fin unit 2 is curved.
  • the outer contour of the fin unit 2 is an "s" type curve in which the middle portion is a straight line, as shown in FIG. 2 and FIG. It is composed of a circular crown-shaped front end fin 211, a rear end fin 213, and a parallelogram intermediate fin 212 provided between the front end fin 211 and the rear end fin 213.
  • the adjacent fin unit groups 9 are inclined in opposite directions with respect to the fluid flow direction; the angle ⁇ between the fin units 2 and the fluid flow direction is 50°.
  • two adjacent fin units 2 form a pair of fin units 3, wherein the spacing a of the two fin units 2 in the fluid flow direction is 2 mm, the spacing b in the direction perpendicular to the fluid flow is 1 mm; the spacing between adjacent pairs of fin units 3 in the direction of fluid flow is 4 mm, and the adjacent pairs of fin units 3 are perpendicular to The spacing in the direction of fluid flow is 2 mm.
  • the length L of the fin unit 2 in the fluid flow direction is 2.5 mm, which is perpendicular to the fluid flow.
  • the width h of the direction is 1.5 mm, and the thickness ⁇ of the fin is 0.35 mm.
  • the fin 21 constituting the fin unit 2 includes: a main flow side 214 that forms an outer contour of the fin unit, and a split side 215 adjacent to the main flow side 214, adjacent to the fin 21
  • the splitting edges 215 are parallel to each other and have a spacing t of 0.35 mm; the angle ⁇ between the splitting edges 215 and the fluid flow direction is 15 °.
  • the microchannel structure is sequentially composed of a flow guiding section 4 connecting the inlet section, a heat exchange section 5, and a confluence section 6 communicating with the outlet section in the fluid flow direction; the guiding section 4 and the adjacent fin of the confluence section 6
  • the spacing of the sheet units 2 in the direction of fluid flow is greater than the spacing of adjacent fin units 2 of the heat exchange section 5 in the direction of fluid flow.
  • the fluid flows from the inlet section into the single-layer sheet, and the distribution into the guiding section is evenly distributed.
  • the heat exchange is completed in the heat exchange section, and the confluence section enters the confluence section for confluence, and then flows out through the outlet section.
  • the fins 21 on the heat exchange plate 1 are formed by photolithography.
  • Fig. 4 and Fig. 5 show another microchannel structure of the present invention which is substantially identical to the microchannel structure of the embodiment 1, and the point is the shape of the fin unit.
  • the outer contour of the fin unit 2 is a straight line.
  • the fin unit 2 is composed of three parallelogram fins 21, and the fins 21 are on the obtuse side of the parallelogram. Arc transition.
  • Such a microchannel structure avoids eddy currents formed by continuous curves, thereby reducing the resistance loss of flow.
  • the angle ⁇ between the fin unit 2 and the direction of fluid flow is 45 °.
  • the spacing a of the two fin units 2 in the fluid flow direction is 1 mm, and the spacing b in the direction perpendicular to the fluid flow direction is 2 mm; the adjacent fin unit pair 3
  • the spacing between the fluid flow directions was 3 mm, and the spacing of the adjacent fin unit pairs 3 in the direction perpendicular to the fluid flow was 5 mm.
  • the length L of the fin unit 2 in the fluid flow direction is 2.3 mm
  • the width h perpendicular to the fluid flow direction is 1.3 mm
  • the fin thickness ⁇ is 0.5 mm.
  • the pitch t of the splitting edge 215 adjacent to the fin 21 is 0.2 mm ; the angle ⁇ between the splitter edge 215 and the fluid flow direction is 10°.
  • the microchannel structure of this embodiment is basically the same as that of Embodiment 2, and the difference lies in the arrangement position and the size parameter of the fin.
  • the angle ⁇ between the fin unit 2 and the fluid flow direction is 55 °.
  • the spacing a of the two fin units 2 in the fluid flow direction is 1.5 mm, and the spacing b in the direction perpendicular to the fluid flow direction is 1.5 mm ; the adjacent fin unit pairs 3 are in the fluid flow direction.
  • the upper pitch is 3 mm, and the adjacent fin unit pair 3 has a pitch of 4 mm perpendicular to the fluid flow direction.
  • the length L of the fin unit 2 in the fluid flow direction is 2 mm
  • the width h perpendicular to the fluid flow direction is l mm
  • the fin thickness ⁇ is 0.25 mm.
  • the spacing t of the splitting edges 214 adjacent to the fins 21 is 0.05 mm ; the angle ⁇ between the splitting edges 214 and the direction of fluid flow is 0°.
  • the fin unit 2 of the present invention may also be composed of two, four or more segments of the fins 21, depending on different design requirements.
  • the curved structure of the outer contour of the fin unit may also be a part of a sin curve or a circular, elliptical or parabolic curve.
  • FIG. 6 is an integrated microchannel heat exchanger of the present invention, comprising: a multi-layered heat exchange plate 1 having a plurality of fin units 2 formed thereon, the fin units 2 being perpendicular to The fin flow unit group 9 is evenly arranged in the direction of fluid flow, and the plurality of fin unit groups 9 are staggered at a distance in the fluid flow direction; the rear end of the fin unit 2 on the upstream side is disposed on the downstream side An intermediate position of two adjacent fin units 2; an intermediate position according to the present invention means any position of two adjacent fin units 2 on the downstream side, which includes not only the upstream side fin unit The rear end of 2 projects into the interior between the adjacent fin units 2 on the downstream side, and also includes the rear end of the upstream side fin unit 2 on the outside between the adjacent fin units 2 on the downstream side;
  • the fin unit 2 is composed of at least two fins 21 spaced apart from each other before the fins 21; a fluid passage formed between adjacent fin units 2 and between the adjacent fins 21 Microchannel structure; therefore, the heat exchange
  • a working fluid (B fluid in FIG. 1) microchannel and a refrigerant medium (A fluid in FIG. 1) microchannels are alternately disposed in a direction perpendicular to the surface of the heat exchanger plate 1 to achieve heat exchange, wherein the microchannel structure
  • An upstream portion of the fluid flow is provided with a flow guiding section 4 and an inlet 7 communicating with the fluid flowing into the pipeline; downstream of the fluid flow of the microchannel structure is provided with a confluence section 5 and an outlet 8 connecting the fluid outflow conduit;
  • the inlet 7 and the outlet 8 of the passage are each disposed in communication; the inlet 7 and the outlet 8 of the plurality of refrigerant refrigerant microchannels are each disposed in communication.
  • the fluid flow direction of the present invention is shown in the V direction in Fig. 7, which indicates the direction from the inlet to the outlet of the microchannel.
  • the fin 21 is formed on one side of the heat exchange plate 1; the fin side of the heat exchange plate 1 is combined with the planar side of the heat exchange plate 1 of the adjacent layer to form the microchannel structure.
  • the heat exchange plate 1 is formed by photolithography, and the adjacent heat exchange plates 1 are integrated by atom diffusion.
  • Fig. 7 shows the structure of the heat exchange plate 1 in which the working fluid layer is located; and
  • Fig. 8 shows the structure of the heat exchange plate 1 in which the working fluid layer is formed.
  • the inlets 7 of the working fluid layer are respectively disposed on opposite sides of the flow guiding section 4, and the outlets 8 are respectively disposed on opposite sides of the collecting section 5 to accommodate different pipeline installations. Location requirements.
  • the outer contour of the fin unit 2 is curved.
  • the outer contour of the fin unit 2 is an "s" type curve in which the middle portion is a straight line, as shown in FIG. 9 and FIG. It is composed of two fins 21, and the pitch t between the fins 21 is 0.35 mm ; the angle ⁇ between the spaced edges of the fins 21 and the streamline direction is 15 °.
  • the adjacent fin unit groups 9 are inclined in opposite directions with respect to the fluid flow direction; the angle ⁇ between the fin units 2 and the fluid flow direction is 55 °.
  • two adjacent fin units 2 form a pair of fin units 3, wherein the spacing a of the two fin units 2 in the fluid flow direction is 2 mm, the spacing b in the direction perpendicular to the fluid flow is 1 mm; the spacing between adjacent pairs of fin units 3 in the direction of fluid flow is 4 mm, and the adjacent pairs of fin units 3 are perpendicular to The spacing in the direction of fluid flow is 2 mm.
  • the length L of the fin unit 2 in the fluid flow direction is 2.5 mm, which is perpendicular to the fluid flow.
  • the width h of the direction is 1.5 mm, and the thickness ⁇ of the fin is 0.5 mm.
  • the flow direction of the two fluids of the integrated microchannel heat exchanger is perpendicular to the flow direction of the heat exchange section.
  • the refrigerant fluid enters from its inlet 7 and, after being diverted by its flow guiding section 4, is distributed into the surface of the heat exchanger plate 1 having the refrigerant fluid passage, and the working fluid enters through its inlet 7, through which After the diversion of the flow guiding section 4, it is distributed into the surface of the heat exchange plate 1 having the working fluid passage, and the two fluids are exchanged by the heat exchange section 6 and then respectively flowed through the confluence of the confluent sections 5 of the respective fluids. They are respectively discharged from the outlet 8 of the refrigerant fluid and the outlet 8 of the working fluid.
  • the inlet and outlet on the other side of the workflow are reserved for use with different connections.
  • the integrated microchannel heat exchanger of this embodiment is basically the same as that of the embodiment 4, and the difference lies in the shape of the fin unit.
  • the outer contour of the fin unit 2 of the present embodiment is a straight type, and the angle ⁇ between the fin unit 2 and the fluid flow direction is 45 °.
  • the fin unit 2 is composed of three parallelogram fins 21, and the fins 21 are arc-transitioned at the obtuse angle sides of the parallelogram.
  • Such a microchannel structure avoids eddy currents formed by continuous curves, thereby reducing the resistance loss of flow.
  • the spacing a of the two fin units 2 in the fluid flow direction is 1 mm, and the spacing b in the direction perpendicular to the fluid flow direction is 0.5 mm; the adjacent fin unit pairs The spacing between the three in the direction of fluid flow is 3 mm, and the spacing of adjacent pairs of fin units 3 in the direction perpendicular to the flow of the fluid is 2 mm.
  • the length L of the fin unit 2 in the fluid flow direction was 2.3 mm
  • the width h perpendicular to the fluid flow direction was 1.3 mm
  • the fin thickness ⁇ was 0.5 mm.
  • the pitch t of the spaced sides of the adjacent fins 21 is 0.2 mm ; the angle ⁇ between the spaced edges and the fluid flow direction is 10°.
  • the integrated microchannel heat exchanger of this embodiment is basically the same as that of the embodiment 4, and the difference lies in the position of the fins and the size parameters.
  • the angle ⁇ between the fin unit 2 and the fluid flow direction is 55 °.
  • the spacing a of the two fin units 2 in the fluid flow direction is 1.5 mm, and the spacing b in the direction perpendicular to the fluid flow direction is 1.5 mm ; the adjacent fin unit pairs 3 are in the fluid flow direction.
  • the upper pitch is 3 mm, and the adjacent fin unit pair 3 has a pitch of 4 mm perpendicular to the fluid flow direction.
  • the length L of the fin unit 2 in the fluid flow direction is 2 mm
  • the width h perpendicular to the fluid flow direction is 1 mm
  • the fin thickness ⁇ is 0.25 mm.
  • the pitch t of the spaced sides of the adjacent fins 21 is 0.05 mm ; the angle ⁇ between the spaced edges and the fluid flow direction is 0°.
  • the fin unit 2 of the present invention may also be composed of four or more segments of the fins 21, depending on various design requirements.
  • the curved structure of the outer contour of the fin unit may also be a part of a sin curve or a circular, elliptical or parabolic curve.
  • the heat exchange plate 1 may further have the fins 21 formed on one side thereof; the fin sides adjacent to the heat exchange plates 1 are combined with each other to form a microchannel of one of the fluids. Structure, the same microfluidic structure of another fluid Formed on the fin-side combined heat exchanger plate; the two fluid passages are staggered to form the heat exchanger.
  • the heat exchange plate 1 may further be formed with the fins 21 on both sides; wherein the working fluid microchannels are formed between the fins 21 on one side, and the fins 21 on the other side are formed.
  • the refrigerant medium microchannel is formed between.
  • the plurality of heat exchanger plates 1 are laminated to form the heat exchanger.
  • the inlets 7 of the refrigerant working layer are respectively disposed on opposite sides of the flow guiding section 4, and the outlets 8 are respectively disposed in the confluence section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器的微通道结构以及集成式微通道换热器。该微通道结构形成于多层叠置的换热板(1)之间,换热板(1)上成型多个翅片单元(2),翅片单元(2)沿垂直于流体流动的方向上均匀排列成翅片单元组(9),若干翅片单元组(9)沿流体流动方向间隔一段距离交错排列;上游的翅片单元(2)的后端设置于下游的相邻两个翅片单元(2)的中间位置;翅片单元(2)由至少两段间隔的翅片(21)组成,相邻翅片(21)之间间隔一段距离;相邻翅片单元(2)之间以及相邻翅片(21)之间的流体通道形成微通道结构。该集成式微通道换热器包括多层叠置的换热板(1),换热板(1)之间形成有上述的微通道结构。

Description

一种换热器的微通道结构以及集成式微通道换热器 技术领域
本发明涉及两种流体之间以热交换为目的的换热部件, 具体而言, 涉及一种流线型的微 通道结构, 以及一种可以作为水和制冷工质之间进行热能传递的集成式微通道换热器。 背景技术
目前的换热器领域里, 微通道换热器由于体积小、 重量轻, 紧凑度高, 是当今换热器研 究开发应用的新方向。
现有的用于热泵系统的微通道换热器, 几乎都是用扁平铝管型材加上制冷工质和工作流 体的进出口来实现, 其仅限于制冷工质和空气之间的热交换用的岔流型换热器。 例如, 中国 专利文件 CN102095285A公开的一种微通道换热器即为上述岔流型换热器。 由于换热扁平管 为铝管型材, 型材的尺寸为定值。 对于微通道的水力学直径选择有限制, 很难选到适合于热 设计优化以后的铝管型材。 还有, 目前受生产铝管型材技术的限制, 微通道之间的壁厚不能 做到传热要求的尺寸 (要求壁厚很薄), 这样, 使用扁平管为铝管型材设计的微通道换热器就 不能成为微通道换热器技术的发展方向。
随着微加工技术的提高, 通过平板印刷术、 化学或光电蚀刻、 钻石切削以及线切割等方 式加工的金属微通道换热器成为了本领域新的技术发展方向。 例如, 中国专利文献 CN101509736A 以及 CN201973962U 中公开的微通道换热器即属于这种换热器。 但是, 由于 加工及成型工艺的限制, 这种换热器存在热交换壁厚厚、 装配不便、 出入口的连接方式单一 等缺点。 其中, CN101509736A公开的微通道换热器由制冷工质通道层、 隔板层、 工作流体层 三层组成换热单元叠置而成, 其需要加工三种不同形状的流体通道层再通过原子扩散的方式 结合为整体, 装配方式复杂, 加工成本较高; CN201973962U公开的微通道换热器中制冷工质 通道与工作流体通道成型于叠置结合连接的金属板之间, 相邻金属板至少一个侧面上交替成 型有制冷工质凹槽以及工作流体凹槽, 金属板叠置结合连接后, 制冷工质凹槽以及工作流体 凹槽分别形成制冷工质通道与工作流体通道, 由于多层金属板通过原子扩散的方式结合连接, 为了保证换热器整体的连接强度, 金属板的结合面的宽度不能低于 0.4mm, 这就导致换热器 的热交换的壁厚较厚, 换热能力不能满足需求。 目前的大多数微通道换热器, 不论是铝扁平 管或紧凑型水与制冷工质微通道换热器, 内部通道的形式基本为方形或圆形横截面的直通道。 虽然这种换热器的微细通道可强化换热, 但是同时带来了流体压力损失的增大, 而且这种微 通道结构也未考虑扰动对强化换热的影响。
美国专利文献 US7334631B2以及日本专利文献 JP2006170549A都公开了一种微通道换热 器, 该换热器的微通道结构交替地成型于多层叠置的换热板之间; 换热板上成型有多个规则 排列的流线型翅片; 翅片之间形成微通道。 与直通道的换热器相比, 这种换热器强制对流传 热系数增加, 流体的压力损失减小, 但是这样的结构由于缺少催生冷凝或蒸发相变的微细结 构, 传热性能还有待提高, 流体流动的阻力有待进一步减小。 发明内容 为此, 本发明所要解决的技术问题在于现有换热器的微通道结构设计不合理导致流体流 动的阻力较大、 换热能力较差的问题, 进而提供一种强制对流传热系数高并且流动阻力小的 换热器微通道结构以及集成式微通道换热器。
为解决上述技术问题, 根据本发明的一个方面, 提供了一种换热器的微通道结构, 所述 微通道结构形成于多层叠置的换热板之间, 所述换热板上成型有多个翅片单元, 所述翅片单 元沿垂直于流体流动的方向上均匀排列成翅片单元组, 若干所述翅片单元组沿流体流动方向 间隔一段距离交错排列; 上游侧的所述翅片单元的后端设置于下游侧的相邻两个所述翅片单 元的中间位置; 所述翅片单元由至少两段翅片构成, 相邻所述翅片之前间隔一段距离; 相邻 所述翅片单元之间以及相邻所述翅片之间的流体通道形成所述微通道结构。
上述换热器的微通道结构中, 所述翅片单元的外轮廓为直线形或者曲线形。
上述换热器的微通道结构中, 相邻的所述翅片单元组相对流体流动方向的倾斜方向相反, 所述翅片单元与流体流动方向之间的夹角 45 ° «Ξ α ίΞ55 ° 。
上述换热器的微通道结构中, 在流体流动方向上相邻的两个所述翅片单元形成一个翅片 单元对, 相邻的两个所述翅片单元在流体流动方向上的间距 a«≡2mm, 在垂直于流体流动方向 上的间距 b«≡2mm; 相邻的所述翅片单元对之间在流体流动方向上的间距 2a, 相邻的所述翅 片单元对在垂直于流体流动方向上的间距 2b。
上述换热器的微通道结构中, 所述翅片单元沿流体流动方向上的长度 L«≡2.5mm, 沿垂直 于流体流动方向的宽度 h 1.5mm, 所述翅片的厚度 δ 0.5mm。
上述换热器的微通道结构中, 组成所述翅片单元的所述翅片包括: 形成所述翅片单元的 外轮廓的主流边以及与所述主流边邻接的分流边, 相邻所述翅片的所述分流边相互平行且其 间距 0.05mm«≡t«≡0.35mm; 所述分流边与流体流动方向的夹角 0° «≡β «Ξ 15 ° 。
上述换热器的微通道结构中, 所述翅片单元的外轮廓呈中间段为直线的 " s "型曲线, 其 由圆冠形的前端翅片、 后端翅片以及设置于所述前端翅片和所述后端翅片之间的平行四边形 的中间翅片构成。
上述换热器的微通道结构中, 所述翅片单元的外轮廓为直线形; 其由三个平行四边形的 翅片构成, 所述翅片在平行四边形的钝角边为圆弧过渡。
上述换热器的微通道结构中, 所述微通道结构沿流体流动方向依次为导流段、 换热段和 汇流段, 所述导流段和所述汇流段的相邻所述翅片单元沿流体流动方向上的间距大于所述换 热段的相邻所述翅片单元沿流体流动方向上的间距。
上述换热器的微通道结构中, 所述换热板上的所述翅片优选通过光蚀刻的方法成型。 根据本发明的另一个方面, 还提供了一种集成式微通道换热器, 包括多层叠置的换热板, 所述换热板上成型有多个翅片单元, 所述翅片单元沿垂直于流体流动的方向上均匀排列成翅 片单元组, 若干所述翅片单元组沿流体流动方向间隔一段距离交错排列; 上游侧的所述翅片 单元的后端设置于下游侧的相邻两个所述翅片单元的中间位置; 所述翅片单元由至少两段翅 片构成, 相邻所述翅片之前间隔一段距离; 相邻所述翅片单元之间以及相邻所述翅片之间的 流体通道形成微通道结构; 垂直于所述换热板板面方向上交替设置有工作流体微通道和制冷 工质微通道实现换热, 其中所述微通道结构的流体流动的上游设置有导流段以及连通流体流 入管道的入口, 所述微通道结构的流体流动的下游设置有汇流段以及连通流体流出管道的出 口; 多层所述工作流体微通道的所述入口以及所述出口各自连通设置; 多层所述制冷工质微 通道的所述入口和所述出口各自连通设置。
上述集成式微通道换热器中, 所述换热板的一侧成型有所述翅片, 所述换热板的翅片侧 与相邻层的换热板的平面侧结合形成所述微通道结构。
上述集成式微通道换热器中, 所述换热板的一侧成型有所述翅片, 相邻所述换热板的所 述翅片侧相互结合形成所述微通道结构。
上述集成式微通道换热器中, 所述换热板的两侧分别成型有所述翅片, 其中, 一侧的翅 片之间形成所述工作流体微通道, 另一侧的翅片之间形成所述制冷工质微通道。
上述集成式微通道换热器中, 所述翅片单元的外轮廓为直线形或者曲线形, 所述翅片单 元与流体流动方向之间的夹角 45 ° «Ξ α ¾Ξ55 ° 。
上述集成式微通道换热器中, 所述翅片单元的外轮廓呈中间段为直线的 " s"型曲线, 其由 两个所述翅片构成, 所述翅片之间的间距 0.05mm«≡t«≡0.35mm; 所述翅片间隔边与流线方向 的夹角 0° «≡β «Ξ 15 ° 。
上述集成式微通道换热器中, 所述翅片单元的外轮廓为直线形; 其由三个平行四边形的 翅片构成, 所述翅片在平行四边形的钝角边为圆弧过渡。
上述集成式微通道换热器中, 所述入口分别设置于所述导流段的相对两侧, 所述出口分 别设置于所述汇流段的相对两侧。
上述集成式微通道换热器中, 所述换热板上的所述翅片通过光蚀刻成型。
上述集成式微通道换热器中, 所述换热板之间通过原子扩散的方法结合成一体。
本发明的上述技术方案相比现有技术具有以下优点:
( 1 ) 本发明的微通道结构, 翅片单元由至少两段翅片构成, 相同长度和宽度的微通道其 换热面积较直通道时增大了约 55%,相比于现有的流线型的微通道换热面积增加 4.8%〜7.5%; 并且多段翅片的结构形式增加了与流体的接触面积, 可以形成了更多的汽化核心, 这样更加 有利于制冷工质的相变传热; 并且, 断续的翅片结构可以增加流体的扰动, 对于低雷诺数的 流动条件, 这种扰动可以在流体阻力增加较少的前提下增强制冷工质和工作流体之间的换热。 因此, 采用这种微通道结构的换热器的强制对流传热系数大大提高, 换热能力增强。 (2) 本发明中组成翅片单元的翅片间隔设置, 便于流体的分流和混合, 避免了现有技术 中无间隙的流线型翅片形成的流体微通道由于连续折线的角度引起的涡流, 从而降低流体流 动的阻力。
( 3 ) 本发明的翅片单元的外轮廓可以是直线形或曲线形, 其均通过光蚀刻的方式加工成 型, 其可以使相邻的微通道之间的换热壁加工至厚度低于 0.12mm, 可以进一步提高换热器的 热通过性能, 另外, 相邻两层的换热板的平面侧与翅片侧之间或者翅片侧之间相互结合, 其 可以在保证换热器整体强度的条件下进一步大大降低换热壁厚, 从而换热器的换热能力进一 步地提高。
(4) 为了获得本发明的微通道结构和现有技术中无间隙翅片的微通道结构之间在流体压 力损失上的差别, 申请人应用了本发明的实施例 1、 实施例 2中微通道结构与现有的无间隙流 线型翅片形成的微通道结构进行了对比试验, 由图 13的试验结果可以看出, 应用了本发明的 微通道结构的流体压力损失 Δ Ρ降低;其中实施例 1中的微通道结构形状较现有技术中的微通 道结构压力损失 Δ Ρ降低了 30.8%, 实施例 2中的微通道结构较现有技术中的微通道结构压力 损失 Δ Ρ降低了概。
( 5 ) 本发明的集成式微通道换热器由具有工作流体微通道的换热板和具有制冷工质微通 道的换热板构成, 只需两种结构的换热板, 相对于三层板片构成换热单元的结构, 由于板片 数量少, 装配简单, 加工成本降低。
( 6 ) 本发明的集成式微通道换热器分别在导流段和汇流段的相对两侧设置两个入口和两 个出口, 这种设置方式, 便于用户根据不同的安装位置选择连接管路。 附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1示出了本发明换热器的微通道结构的整体结构图;
图 2示出了本发明实施例 1部分翅片单元之间的位置结构图;
图 3示出了本发明实施例 1中单个翅片单元的结构图;
图 4示出了本发明实施例 2部分翅片单元之间的位置结构图;
图 5示出了本发明实施例 2中单个翅片单元的结构图;
图 6示出了本发明的集成式微通道换热器的立体图;
图 7示出了本发明的集成式微通道换热器制冷工质层的换热板结构图;
图 8示出了本发明的集成式微通道换热器工作流体层的换热板结构图;
图 9示出了本发明实施例 4部分翅片单元之间的位置结构图;
图 10示出了本发明实施例 4中单个翅片单元的结构图; 图 11示出了本发明实施例 5部分翅片单元之间的位置结构图;
图 12示出了本发明实施例 5中单个翅片单元的结构图; 以及
图 13示出了本发明与现有技术的微通道结构之间的性能对比图。
图中附图标记表示为:
1-换热板, 2-翅片单元, 21-翅片, 211-前端翅片, 212-中间翅片, 213-后端翅片, 214-主 流边, 215-分流边, 3-翅片单元对, 4-导流段, 5-汇流段, 6-换热段, 7-入口, 8-出口, 9-翅片 单元组。 具体实施方式
下面将结合本发明实施例, 对本发明的技术方案进行详细的说明, 但如下实施例仅是用 以理解本发明, 而不能限制本发明, 本发明中的实施例及实施例中的特征可以相互组合, 本 发明可以由权利要求限定和覆盖的多种不同方式实施。
实施例 1
图 1是本发明的新型微通道结构, 其中, 所述微通道结构形成于多层叠置的换热板 1之 间, 所述换热板 1上成型有多个翅片单元 2, 所述翅片单元 2沿垂直于流体流动的方向上均匀 排列成翅片单元组 9, 多个所述翅片单元组 9沿流体流动方向上间隔一段距离交错排列; 上游 侧的所述翅片单元 2的后端设置于下游侧的相邻两个所述翅片单元 2的中间位置。 本发明所 述的中间位置是指下游侧的相邻两个所述翅片单元 2之间的任一位置, 其不仅包括所述上游 侧翅片单元 2的后端伸入下游侧的相邻翅片单元 2之间的内部, 也包括上游侧翅片单元 2的 后端在下游侧的相邻翅片单元 2之间的外部。 所述翅片单元 2由至少两段翅片 21构成, 所述 翅片 21之前间隔一段距离; 所述翅片单元 2之间以及所述翅片 21之间的流体通道形成所述 微通道结构。 因此, 本发明的换热器微通道的换热面积相比现有的微通道换热面大大增加。
本发明所述的流体流动方向如图 1 中的 V方向所示, 其表示从微通道结构的入口到出口 的直线方向。
所述翅片单元 2的外轮廓为曲线形, 具体的, 本实施例中, 所述翅片单元 2的外轮廓为 中间段为直线的 " s"型曲线, 如图 2和图 3所示, 其由圆冠形的前端翅片 211、 后端翅片 213 以及设置于所述前端翅片 211和所述后端翅片 213之间的平行四边形的中间翅片 212构成。相 邻的所述翅片单元组 9相对流体流动方向的倾斜方向相反; 所述翅片单元 2与流体流动方向 之间的夹角 α为 50° 。
如图 2所示, 在流体流动方向上, 相邻的两个所述翅片单元 2形成一个翅片单元对 3, 其 中, 两个所述翅片单元 2在流体流动方向上的间距 a为 2mm, 在垂直于流体流动方向上的间 距 b为 lmm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距为 4mm, 相邻的所述翅 片单元对 3在垂直于流体流动方向上的间距为 2mm。
如图 3所示, 所述翅片单元 2沿流体流动方向上的长度 L为 2.5mm, 沿垂直于流体流动 方向的宽度 h为 1.5mm, 所述翅片的厚度 δ为 0.35mm。
组成所述翅片单元 2的所述翅片 21包括: 形成所述翅片单元的外轮廓的主流边 214以及 与所述主流边 214邻接的分流边 215, 相邻所述翅片 21的所述分流边 215相互平行且其间距 t为 0.35mm; 所述分流边 215与流体流动方向的夹角 β为 15 ° 。
所述微通道结构沿流体流动方向依次由连通入口段的导流段 4、换热段 5以及连通出口段 的汇流段 6组成; 所述导流段 4和所述汇流段 6的相邻翅片单元 2沿流体流动方向上的间距 大于所述换热段 5的相邻翅片单元 2沿流体流动方向上的间距。 流体由入口段流入单层板片, 进入导流段分布均匀, 在换热段完成热交换, 进入汇流段进行汇流, 再经过出口段流出。
所述换热板 1上的所述翅片 21通过光蚀刻成型。
实施例 2
图 4与图 5为本发明的另一种微通道结构, 其与实施例 1 中的微通道结构基本一致, 区 别点在于翅片单元的形状。
所述翅片单元 2的外轮廓为直线型, 具体的, 本实施例中, 所示翅片单元 2由三个平行 四边形的翅片 21构成, 所述翅片 21在平行四边形的钝角边为圆弧过渡。 这样的微通道结构 避免了连续曲线形成的涡流, 从而降低流动的阻力损失。 所述翅片单元 2 与流体流动方向之 间的夹角 α为 45 ° 。
其中, 如图 4所示, 两个所述翅片单元 2在流体流动方向上的间距 a为 lmm, 在垂直于 流体流动方向上的间距 b为 2mm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距为 3mm, 相邻的所述翅片单元对 3在垂直于流体流动方向上的间距为 5mm。
如图 5所示, 所述翅片单元 2沿流体流动方向上的长度 L为 2.3mm, 沿垂直于流体流动 方向的宽度 h为 1.3mm, 所述翅片的厚度 δ为 0.5mm。
相邻所述翅片 21的所述分流边 215的间距 t为 0.2mm; 所述分流边 215与流体流动方向 的夹角 β为 10° 。
实施例 3
本实施例的微通道结构与实施例 2基本一致, 区别点在于翅片的设置位置以及尺寸参数。 其中, 如图 4所示, 所述翅片单元 2与流体流动方向之间的夹角 α为 55 ° 。 两个所述翅 片单元 2在流体流动方向上的间距 a为 1.5mm, 在垂直于流体流动方向上的间距 b为 1.5mm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距为 3mm, 相邻的所述翅片单元对 3在 垂直于流体流动方向上的间距为 4mm。
如图 5所示, 所述翅片单元 2沿流体流动方向上的长度 L为 2mm, 沿垂直于流体流动方 向的宽度 h为 lmm, 所述翅片的厚度 δ为 0.25mm。
相邻所述翅片 21的所述分流边 214的间距 t为 0.05mm;所述分流边 214与流体流动方向 的夹角 β为 0° 。 在其他实施方式中, 根据不同的设计要求, 本发明所述的翅片单元 2还可以由两段、 四 段或更多段的所述翅片 21组成。 另外, 所述翅片单元的外轮廓的曲线结构, 还可以是 sin曲 线或者圆形、 椭圆形、 抛物线曲线的一部分。
实施例 4
图 6为本发明的集成式微通道换热器, 其包括: 多层叠置的换热板 1, 所述换热板 1上成 型有多个翅片单元 2, 所述翅片单元 2沿垂直于流体流动的方向上均匀排列成翅片单元组 9, 若干所述翅片单元组 9沿流体流动方向间隔一段距离交错排列; 上游侧的所述翅片单元 2的 后端设置于下游侧的相邻两个所述翅片单元 2 的中间位置; 本发明所述的中间位置是指下游 侧的相邻两个所述翅片单元 2的任一位置, 其不仅包括所述上游侧翅片单元 2的后端伸入下 游侧的相邻翅片单元 2的之间的内部, 也包括上游侧翅片单元 2的后端在下游侧的相邻翅片 单元 2的之间的外部; 所述翅片单元 2由至少两段翅片 21构成, 相邻所述翅片 21之前间隔 一段距离; 相邻所述翅片单元 2之间以及相邻所述翅片 21之间的流体通道形成所述微通道结 构; 因此, 本发明的换热器微通道的换热面积相比现有的微通道换热面大大提高。 垂直于所 述换热板 1板面方向上交替设置有工作流体 (图 1中 B流体) 微通道和制冷工质 (图 1中 A 流体) 微通道实现换热, 其中所述微通道结构的流体流动的上游设置有导流段 4 以及连通流 体流入管道的入口 7;所述微通道结构的流体流动的下游设置有汇流段 5以及连通流体流出管 道的出口 8 ; 多层所述工作流体微通道的所述入口 7以及所述出口 8各自连通设置; 多层所述 制冷工质微通道的所述入口 7和所述出口 8各自连通设置。
本发明所述的流体流动方向如图 7中的 V方向所示, 其表示从微通道的入口到出口的直 线方向。
本实施例中, 所述换热板 1的一侧成型有所述翅片 21 ; 所述换热板 1的翅片侧与相邻层 的换热板 1 的平面侧结合形成所述微通道结构。 所述换热板 1通过光蚀刻的方式成型, 相邻 的所述换热板 1之间通过原子扩散的方法结合成一体。 如图 7所示为其中制冷工质层的所述 换热板 1结构; 如图 8所示为其中工作流体层的所述换热板 1结构。 其中, 所述工作流体层 的所述入口 7分别设置于所述导流段 4的相对两侧, 所述出口 8分别设置于所述汇流段 5的 相对两侧, 以适应不同管路的安装位置要求。
所述翅片单元 2的外轮廓为曲线形, 具体的, 本实施例中, 所述翅片单元 2的外轮廓为 中间段为直线的 " s"型曲线, 如图 9、 图 10所示, 其由两个所述翅片 21构成, 所述翅片 21 之间的间距 t为 0.35mm; 所述翅片 21间隔边与流线方向的夹角 β为 15 ° 。
相邻的所述翅片单元组 9相对流体流动方向的倾斜方向相反; 所述翅片单元 2与流体流 动方向之间的夹角 α为 55 ° 。
如图 9所示, 在流体流动方向上, 相邻的两个所述翅片单元 2形成一个翅片单元对 3, 其 中, 两个所述翅片单元 2在流体流动方向上的间距 a为 2mm, 在垂直于流体流动方向上的间 距 b为 lmm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距为 4mm, 相邻的所述翅 片单元对 3在垂直于流体流动方向上的间距为 2mm。
如图 10所示, 所述翅片单元 2沿流体流动方向上的长度 L为 2.5mm, 沿垂直于流体流动 方向的宽度 h为 1.5mm, 所述翅片的厚度 δ为 0.5mm。
所述集成式微通道换热器的两股流体在出入口的流动方向与换热段流动方向垂直布置。 制冷工质流体由其入口 7进入, 经过其导流段 4的分流后, 分布到具有制冷工质流体通道的 所述换热板 1的板面内, 工作流体由其入口 7进入, 经过其导流段 4的分流后, 分布到具有 工作流体通道的所述换热板 1板面内, 两股流体通过换热段 6进行热交换, 然后分别经过各 自流体的汇流段 5的汇流后, 分别由制冷工质流体的出口 8、 工作流体的出口 8流出。 工作流 体另一侧的的入口和出口备用, 以便不同连接方式的使用。
实施例 5
本实施例集成式微通道换热器与实施例 4基本一致, 区别点在于翅片单元的形状。
本实施例的所述翅片单元 2的外轮廓为直线型, 所述翅片单元 2与流体流动方向之间的 夹角 α为 45 ° 。 具体的, 本实施例中, 所述翅片单元 2由三个平行四边形的翅片 21构成, 所 述翅片 21在平行四边形的钝角边为圆弧过渡。这样的微通道结构避免了连续曲线形成的涡流, 从而降低流动的阻力损失。
其中, 如图 11所示, 两个所述翅片单元 2在流体流动方向上的间距 a为 lmm, 在垂直于 流体流动方向上的间距 b为 0.5mm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距 为 3mm, 相邻的所述翅片单元对 3在垂直于流体流动方向上的间距为 2mm。
如图 12所示, 所述翅片单元 2沿流体流动方向上的长度 L为 2.3mm, 沿垂直于流体流动 方向的宽度 h为 1.3mm, 所述翅片的厚度 δ为 0.5mm。 相邻所述翅片 21的间隔边的间距 t为 0.2mm; 所述间隔边与流体流动方向的夹角 β为 10° 。
实施例 6
本实施例集成式微通道换热器与实施例 4基本一致, 区别点在于翅片的设置位置以及尺 寸参数。
其中, 如图 11所示, 所述翅片单元 2与流体流动方向之间的夹角 α为 55 ° 。 两个所述翅 片单元 2在流体流动方向上的间距 a为 1.5mm, 在垂直于流体流动方向上的间距 b为 1.5mm; 相邻的所述翅片单元对 3之间在流体流动方向上的间距为 3mm, 相邻的所述翅片单元对 3在 垂直于流体流动方向上的间距为 4mm。
如图 12所示,所述翅片单元 2沿流体流动方向上的长度 L为 2mm,沿垂直于流体流动方 向的宽度 h为 lmm, 所述翅片的厚度 δ为 0.25mm。 相邻所述翅片 21 的间隔边的间距 t为 0.05mm; 所述间隔边与流体流动方向的夹角 β为 0° 。
在其他实施方式中, 根据不同的设计要求, 本发明所述的翅片单元 2还可以由四段或更 多段的所述翅片 21组成。 另外, 所述翅片单元的外轮廓的曲线结构, 还可以是 sin曲线或者 圆形、 椭圆形、 抛物线曲线的一部分。
在其他实施方式中, 所述换热板 1还可以在其中一侧成型有所述翅片 21 ; 相邻所述换热 板 1 的所述翅片侧相互结合形成其中一种流体的微通道结构, 另一种流体的微通道结构同样 形成于上述翅片侧结合的换热板上; 两种流体通道互相交错排列后形成所述换热器。
在其他实施方式中, 所述换热板 1还可以在两侧分别成型有所述翅片 21 ; 其中一侧的翅 片 21之间形成所述工作流体微通道, 另一侧的翅片 21之间形成所述制冷工质微通道。 多层 所述换热板 1层叠后形成所述换热器。
在其他实施方式中, 为了方便不同连接方式的使用, 所述制冷工质层的所述入口 7 分别 设置于所述导流段 4的相对两侧, 所述出口 8分别设置于所述汇流段 5的相对两侧。
以上所述仅为本发明的优选实施例而己, 并不用于限制本发明, 对于本领域的技术人员 来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种换热器的微通道结构, 其特征在于: 所述微通道结构形成于多层叠置的换热板 (1) 之间, 所述换热板 (1) 上成型有多个翅片单元 (2), 所述翅片单元 (2) 沿垂直于流体 流动的方向上均匀排列成翅片单元组 (9), 若干所述翅片单元组 (9) 沿流体流动方向间 隔一段距离交错排列; 上游侧的所述翅片单元 (2) 的后端设置于下游侧的相邻两个所述 翅片单元 (2) 的中间位置; 所述翅片单元 (2) 由至少两段翅片 (21) 构成, 相邻所述 翅片 (21) 之前间隔一段距离; 相邻所述翅片单元 (2) 之间以及相邻所述翅片 (21) 之 间的流体通道形成所述微通道结构。
2. 根据权利要求 1所述的换热器的微通道结构, 其特征在于: 所述翅片单元 (2) 的外轮廓 为直线形或者曲线形。
3. 根据权利要求 1或 2所述的换热器的微通道结构, 其特征在于: 相邻的所述翅片单元组
(9) 相对流体流动方向的倾斜方向相反, 所述翅片单元 (2) 与流体流动方向之间的夹 角 45° «Ξ α «Ξ55° 。
4. 根据权利要求 1〜3中任一项所述的换热器的微通道结构, 其特征在于: 在流体流动方向 上相邻的两个所述翅片单元(2)形成一个翅片单元对(3),相邻的两个所述翅片单元(2) 在流体流动方向上的间距 a«≡2mm, 在垂直于流体流动方向上的间距 b«≡2mm; 相邻的所 述翅片单元对(3)之间在流体流动方向上的间距 2a, 相邻的所述翅片单元对(3)在垂 直于流体流动方向上的间距 2b。
5. 根据权利要求 1〜4中任一项所述的换热器的微通道结构,其特征在于:所述翅片单元(2) 沿流体流动方向上的长度 L«≡2.5mm, 沿垂直于流体流动方向的宽度 h«≡1.5mm, 所述翅 片 (21) 的厚度 δ ¾≡0.5mm。
6. 根据权利要求 1〜5中任一项所述的换热器的微通道结构, 其特征在于: 组成所述翅片单 元 (2) 的所述翅片 (21) 包括: 形成所述翅片单元 (2) 的外轮廓的主流边 (214) 以及 与所述主流边 (214) 邻接的分流边 (215), 相邻所述翅片 (21) 的所述分流边 (215) 相互平行且其间距 0.05mm«≡t«≡0.35mm, 所述分流边 (215) 与流体流动方向的夹角 0° «Ξβ «Ξ15° 。
7. 根据权利要求 1〜6中任一项所述的换热器的微通道结构,其特征在于:所述翅片单元(2) 的外轮廓呈中间段为直线的 "s"型曲线, 其由圆冠形的前端翅片(211)、 后端翅片(213) 以及设置于所述前端翅片 (211)和所述后端翅片 (213)之间的平行四边形的中间翅片 (212) 构成。
8. 根据权利要求 1〜6中任一项所述的换热器的微通道结构,其特征在于:所述翅片单元(2) 的外轮廓为直线形; 其由三个平行四边形的翅片 (21) 构成, 所述翅片 (21) 在平行四 边形的钝角边为圆弧过渡。
9. 根据权利要求 1〜8中任一项所述的换热器的微通道结构, 其特征在于: 所述微通道结构 沿流体流动方向依次为导流段 (4)、 换热段 (6) 和汇流段 (5), 所述导流段 (4) 和所 述汇流段 (5) 的相邻所述翅片单元 (2) 沿流体流动方向上的间距大于所述换热段 (6) 的相邻所述翅片单元 (2) 沿流体流动方向上的间距。
10. 根据权利要求 1〜9中任一项所述的换热器的微通道结构, 其特征在于: 所述换热板 (1) 上的所述翅片 (21) 通过光蚀刻成型。
11. 一种集成式微通道换热器, 其特征在于: 包括多层叠置的换热板 (1), 所述换热板 (1) 上成型有多个翅片单元 (2), 所述翅片单元 (2) 沿垂直于流体流动的方向上均匀排列成 翅片单元组 (9), 若干所述翅片单元组 (9) 沿流体流动方向间隔一段距离交错排列; 上 游侧的所述翅片单元 (2) 的后端设置于下游侧的相邻两个所述翅片单元 (2) 的中间位 置; 所述翅片单元 (2) 由至少两段翅片 (21) 构成, 相邻所述翅片 (21) 之前间隔一段 距离; 相邻所述翅片单元 (2) 之间以及相邻所述翅片 (21) 之间的流体通道形成微通道 结构; 垂直于所述换热板 (1) 板面方向上交替设置有工作流体微通道和制冷工质微通道 实现换热, 其中所述微通道结构的流体流动的上游设置有导流段 (4) 以及连通流体流入 管道的入口 (7), 所述微通道结构的流体流动的下游设置有汇流段 (5) 以及连通流体流 出管道的出口 (8); 多层所述工作流体微通道的所述入口 (7) 以及所述出口 (8) 各自 连通设置; 多层所述制冷工质微通道的所述入口 (7) 和所述出口 (8) 各自连通设置。
12. 根据权利要求 11所述的集成式微通道换热器, 其特征在于: 所述换热板(1)的一侧成型 有所述翅片 (21), 所述换热板 (1) 的翅片侧与相邻层的换热板 (1) 的平面侧结合形成 所述微通道结构。
13. 根据权利要求 11所述的集成式微通道换热器, 其特征在于: 所述换热板(1)的一侧成型 有所述翅片 (21), 相邻所述换热板 (1) 的所述翅片侧相互结合形成所述微通道结构。
14. 根据权利要求 11所述的集成式微通道换热器, 其特征在于: 所述换热板(1)的两侧分别 成型有所述翅片 (21), 其中, 一侧的翅片 (21) 之间形成所述工作流体微通道, 另一侧 的翅片 (21) 之间形成所述制冷工质微通道。
15. 根据权利要求 11〜14中任一项所述的集成式微通道换热器, 其特征在于: 所述翅片单元
(2)的外轮廓为直线形或者曲线形,所述翅片单元(2)与流体流动方向之间的夹角 45° «Ξ α «Ξ55° 。
16. 根据权利要求 11〜15中任一项所述的集成式微通道换热器, 其特征在于: 所述翅片单元
(2) 的外轮廓呈中间段为直线的 "s"型曲线, 其由两个所述翅片 (21) 构成, 所述翅片 (21)之间的间距 0.05mm«≡t«≡0.35mm; 所述翅片(21) 间隔边与流线方向的夹角 0° «Ξ β «Ξ15° 。
17. 根据权利要求 11〜15中任一项所述的集成式微通道换热器, 其特征在于: 所述翅片单元
(2) 的外轮廓为直线形; 其由三个平行四边形的翅片 (21) 构成, 所述翅片 (21) 在平 行四边形的钝角边为圆弧过渡。
18. 根据权利要求 11〜17中任一项所述的集成式微通道换热器, 其特征在于: 所述入口 (7) 分别设置于所述导流段 (4) 的相对两侧, 所述出口 (8) 分别设置于所述汇流段 (5) 的 相对两侧。
19. 根据权利要求 11〜18中任一项所述的集成式微通道换热器,其特征在于:所述换热板(1 ) 上的所述翅片 (21 ) 通过光蚀刻成型。
20. 根据权利要求 11〜19中任一项所述的集成式微通道换热器,其特征在于:所述换热板(1 ) 之间通过原子扩散的方法结合成一体。
PCT/CN2013/076409 2012-05-29 2013-05-29 一种换热器的微通道结构以及集成式微通道换热器 WO2013178066A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/404,904 US20150122467A1 (en) 2012-05-29 2013-05-29 Micro-channel structure for heat exchanger and integrated type micro-channel heat exchanger
EP13796426.8A EP2878910B1 (en) 2012-05-29 2013-05-29 Micro-channel structure for heat exchanger, and integrated type micro-channel heat exchanger
JP2015600028U JP3197685U (ja) 2012-05-29 2013-05-29 熱交換器のマイクロチャンネル構造及び集積式マイクロチャンネル熱交換器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210170802.8 2012-05-29
CN2012101708047A CN102706201A (zh) 2012-05-29 2012-05-29 一种换热器的微通道结构
CN201210170804.7 2012-05-29
CN2012101708028A CN102706187A (zh) 2012-05-29 2012-05-29 一种集成式微通道换热器

Publications (1)

Publication Number Publication Date
WO2013178066A1 true WO2013178066A1 (zh) 2013-12-05

Family

ID=49672425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076409 WO2013178066A1 (zh) 2012-05-29 2013-05-29 一种换热器的微通道结构以及集成式微通道换热器

Country Status (5)

Country Link
US (1) US20150122467A1 (zh)
EP (1) EP2878910B1 (zh)
JP (1) JP3197685U (zh)
HU (1) HUE046861T2 (zh)
WO (1) WO2013178066A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190162483A1 (en) * 2017-11-29 2019-05-30 Honda Motor Co., Ltd. Cooling apparatus
CN113543600A (zh) * 2021-07-21 2021-10-22 中国石油大学(华东) 一种不完全填充错列式微通道换热器
CN117001289A (zh) * 2023-08-25 2023-11-07 西安交通大学 一种制备异形微细通道板式换热器的复合工艺及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056928B1 (ja) * 2015-09-09 2017-01-11 株式会社富士通ゼネラル マイクロ流路熱交換器
CN105679722B (zh) * 2016-01-22 2018-08-21 东南大学 基于筒状双层分流结构微通道的换热系统
JP6815965B2 (ja) * 2017-10-12 2021-01-20 株式会社神戸製鋼所 熱交換プレートに用いられる金属製元板材
CN108106469B (zh) * 2018-01-26 2023-08-25 上海交通大学 一种适用于摇晃工况的板翅式换热器翅片组件及换热器
JP6642603B2 (ja) * 2018-02-28 2020-02-05 株式会社富士通ゼネラル 隔壁式熱交換器
JP7210151B2 (ja) * 2018-03-30 2023-01-23 住友精密工業株式会社 拡散接合型熱交換器
CN108548437B (zh) * 2018-06-08 2023-11-03 陕西益信伟创智能科技有限公司 基于仿生的鱼刺型微小交错肺泡换热器芯体及换热器
JP6881516B2 (ja) * 2019-07-29 2021-06-02 株式会社富士通ゼネラル 隔壁式熱交換器
DE102020202835A1 (de) * 2020-03-05 2021-09-09 Hanon Systems Wärmeübertrager und Verfahren zum Betreiben eines Wärmeübertragers
EP4012313A1 (en) * 2020-12-14 2022-06-15 Asetek Danmark A/S Radiator with adapted fins
CN114783967A (zh) * 2022-03-31 2022-07-22 江苏大学 一种芯片液冷散热用硅基腔槽
CN115117514B (zh) * 2022-08-25 2022-11-11 四川大学 一种交错逆流式一体化冷却系统及电动车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170549A (ja) 2004-12-17 2006-06-29 Yasuyoshi Kato 熱交換器
US7334631B2 (en) 2004-10-29 2008-02-26 Yasuyoshi Kato Heat exchanger
US20080066888A1 (en) * 2006-09-08 2008-03-20 Danaher Motion Stockholm Ab Heat sink
CN101178292A (zh) * 2006-11-08 2008-05-14 浙江三花制冷集团有限公司 一种翅片和冷凝器
CN101509736A (zh) 2009-03-10 2009-08-19 江苏三江电器集团有限公司 紧凑型微通道换热器
CN102095285A (zh) 2011-02-10 2011-06-15 Tcl空调器(中山)有限公司 一种微通道换热器及其扁管加工方法
CN201973962U (zh) 2011-01-30 2011-09-14 杭州沈氏换热器有限公司 一种微通道换热器
CN102706187A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种集成式微通道换热器
CN102706201A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种换热器的微通道结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817709A (en) * 1987-12-02 1989-04-04 Carrier Corporation Ramp wing enhanced plate fin
DE102005029321A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Wärmeübertrager
DE102006013503A1 (de) * 2006-03-23 2008-01-24 Esk Ceramics Gmbh & Co. Kg Plattenwärmetauscher, Verfahren zu dessen Herstellung und dessen Verwendung
ATE549085T1 (de) * 2008-11-26 2012-03-15 Corning Inc Wärmetauscher für mikrostrukturen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7334631B2 (en) 2004-10-29 2008-02-26 Yasuyoshi Kato Heat exchanger
JP2006170549A (ja) 2004-12-17 2006-06-29 Yasuyoshi Kato 熱交換器
US20080066888A1 (en) * 2006-09-08 2008-03-20 Danaher Motion Stockholm Ab Heat sink
CN101178292A (zh) * 2006-11-08 2008-05-14 浙江三花制冷集团有限公司 一种翅片和冷凝器
CN101509736A (zh) 2009-03-10 2009-08-19 江苏三江电器集团有限公司 紧凑型微通道换热器
CN201973962U (zh) 2011-01-30 2011-09-14 杭州沈氏换热器有限公司 一种微通道换热器
CN102095285A (zh) 2011-02-10 2011-06-15 Tcl空调器(中山)有限公司 一种微通道换热器及其扁管加工方法
CN102706187A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种集成式微通道换热器
CN102706201A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种换热器的微通道结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190162483A1 (en) * 2017-11-29 2019-05-30 Honda Motor Co., Ltd. Cooling apparatus
CN113543600A (zh) * 2021-07-21 2021-10-22 中国石油大学(华东) 一种不完全填充错列式微通道换热器
CN117001289A (zh) * 2023-08-25 2023-11-07 西安交通大学 一种制备异形微细通道板式换热器的复合工艺及系统
CN117001289B (zh) * 2023-08-25 2024-05-03 西安交通大学 一种制备异形微细通道板式换热器的复合工艺及系统

Also Published As

Publication number Publication date
US20150122467A1 (en) 2015-05-07
JP3197685U (ja) 2015-06-04
EP2878910A4 (en) 2016-06-08
EP2878910A1 (en) 2015-06-03
EP2878910B1 (en) 2019-07-31
HUE046861T2 (hu) 2020-03-30

Similar Documents

Publication Publication Date Title
WO2013178066A1 (zh) 一种换热器的微通道结构以及集成式微通道换热器
CN102706187A (zh) 一种集成式微通道换热器
JP6349465B2 (ja) 円弧状板型熱交換器
EP2975352B1 (en) Heat exchanger
CN102706201A (zh) 一种换热器的微通道结构
EP1867944A3 (en) Heat exchanger
CN108151561B (zh) 一种用于三种或四种流体换热的印刷电路板式换热器
JP2017180856A (ja) 熱交換器
JP6528283B2 (ja) 熱交換器
CN202599166U (zh) 一种集成式微通道换热器
CN104567509A (zh) 一种翅片型换热单元及制作方法及含有该单元的换热器
CN113834354B (zh) 一种三维均混流换热器芯体及换热器
CN202599167U (zh) 微通道换热器
CN202599189U (zh) 一种换热器的微通道结构
WO2014059893A1 (zh) 一种热交换器
CN210051186U (zh) 三介质换热器
CN101182974A (zh) 导流式折流板管壳型换热器
CN102313401B (zh) 微通道换热器
CN214199794U (zh) 一种螺旋换热器
WO2022116960A1 (zh) 螺旋换热器及其制法
CN108955319B (zh) 一种箱式换热器
CN217275757U (zh) 一种换热器及其涡旋形换热板体
CN202281422U (zh) 微通道换热器
CN1971198B (zh) 热交换器
CN215177074U (zh) 一种微通道换热器及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796426

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015600028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14404904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013796426

Country of ref document: EP