WO2021019970A1 - 電池パック - Google Patents
電池パック Download PDFInfo
- Publication number
- WO2021019970A1 WO2021019970A1 PCT/JP2020/024743 JP2020024743W WO2021019970A1 WO 2021019970 A1 WO2021019970 A1 WO 2021019970A1 JP 2020024743 W JP2020024743 W JP 2020024743W WO 2021019970 A1 WO2021019970 A1 WO 2021019970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- gap
- battery pack
- heat
- discharge
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
- H01M50/273—Lids or covers for the racks or secondary casings characterised by the material
- H01M50/28—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/244—Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/284—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/284—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
- H01M50/287—Fixing of circuit boards to lids or covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/35—Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
- H01M50/367—Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery pack in which a plurality of battery cells are connected in series or in parallel to increase the capacity.
- a battery pack containing multiple battery cells in a case is used as a power source for portable electric devices used cordlessly.
- a plurality of battery cells are connected in series or in parallel to increase the capacity.
- battery packs used as power sources for electric devices have been further required to have higher output, and non-aqueous electrolyte secondary batteries such as lithium ion batteries having excellent efficiency per unit volume have been adopted.
- the conventional pack battery has a hole in the outer case to discharge the exhaust gas injected from the discharge valve to the outside. It is difficult for this packed battery to safely discharge the high-temperature exhaust gas that is vigorously injected from the battery cell to the outside.
- the exhaust gas injected from the discharge valve of a lithium-ion battery which is a non-aqueous electrolyte secondary battery, is at an abnormally high temperature of 400 ° C or higher, and is injected vigorously. Therefore, the exhaust gas heats the outer case. If it melts and the exhaust gas is injected out of the case at a high temperature and ignites, the safety is significantly impaired.
- the present invention has been developed for the purpose of preventing the above adverse effects, and a main object of the present invention is a battery for preventing a decrease in safety due to high-temperature exhaust gas injected from a valve-opening exhaust valve. To provide the pack.
- a battery pack according to an embodiment of the present invention has a battery block in which a plurality of battery cells having an exhaust valve that opens when the internal pressure exceeds a set pressure are arranged in a fixed position by a battery holder, and a battery block at an end of the battery block.
- the heat-resistant cap that is connected and the circuit board that is arranged along the first surface adjacent to the end face of the battery block in which the heat-resistant cap is arranged and connected to the battery block, and the heat-resistant cap and the circuit board are connected. It is equipped with an exterior case that houses the battery block and has an exhaust unit that exhausts the exhaust gas discharged from the discharge valve to the outside.
- the battery block is provided with a discharge valve side end face provided with a battery cell discharge valve at a first end portion formed by connecting a heat-resistant cap.
- the heat-resistant cap is connected to a closing plate portion formed by forming a first discharge gap with the end face of the battery block and around the closing plate portion, and is connected to a second surface between the first surface of the battery block. It is equipped with a peripheral wall portion that forms a discharge gap.
- a ventilation gap is formed between the circuit board and the first surface of the battery block, and the edge portion on the first end side is laminated on the peripheral wall portion to communicate the ventilation gap with the second discharge gap.
- the battery pack of the present invention can enhance safety by suppressing adverse effects caused by high-temperature exhaust gas injected from the discharge valve of the battery cell.
- FIG. 2 is an enlarged cross-sectional view of a main part of the battery pack shown in FIG.
- the battery pack according to the first embodiment of the present invention includes a battery block in which a plurality of battery cells having an exhaust valve that opens when the internal pressure exceeds a set pressure are arranged in a fixed position by a battery holder, and an end of the battery block.
- the heat-resistant cap connected to the portion, the circuit board arranged along the first surface adjacent to the end face of the battery block in which the heat-resistant cap is arranged, and connected to the battery block, and the heat-resistant cap and the circuit board It is equipped with an exterior case that houses the connected battery block and has an exhaust unit that exhausts the exhaust gas discharged from the discharge valve to the outside.
- the battery block is provided with a discharge valve side end face provided with a battery cell discharge valve at a first end portion formed by connecting a heat-resistant cap.
- the heat-resistant cap is connected to a closing plate portion formed by forming a first discharge gap with the end face of the battery block and around the closing plate portion, and is connected to a second surface between the first surface of the battery block. It is equipped with a peripheral wall portion that forms a discharge gap.
- the circuit board is arranged so that a ventilation gap is formed between the circuit board and the first surface of the battery block, and the edge portion on the first end side is laminated on the peripheral wall portion to form a ventilation gap. It communicates with the discharge gap of 2.
- the exhaust gas discharged from the discharge valve of the battery cell passes through the ventilation gap through the discharge gap including the first discharge gap and the second discharge gap, and is exhausted to the outside from the exhaust portion.
- the above battery pack can ensure high safety by eliminating the harmful effects of high-temperature exhaust gas injected from the exhaust valve that opens. That is, the above battery pack allows the high-temperature exhaust gas injected from the discharge valve to be discharged from the discharge gap formed between the first end portion of the battery block and the heat-resistant cap to the first surface of the battery block. This is because the exhaust gas is exhausted from the exhaust unit 15 to the outside by passing through the ventilation gap formed between the circuit board and the circuit board.
- This battery pack guides the high-temperature exhaust gas discharged from the discharge valve from the first discharge gap to the second discharge gap, and further guides it from the second discharge gap to the ventilation gap, and passes through the ventilation gap. After that, it is exhausted to the outside from the exhaust part of the outer case.
- the high-temperature, high-energy exhaust gas injected from the discharge valve collides with the closing plate portion of the heat-resistant cap to attenuate the energy, and the energy-attenuated exhaust gas is further attenuated in the first discharge gap.
- the energy is attenuated by passing it from the second exhaust gap to the ventilation gap.
- the exhaust gas that passes through the ventilation gap collides with various members provided on the battery holder and circuit board when passing through the ventilation gap, and both kinetic energy and thermal energy are lost.
- the kinetic energy and thermal energy of the discharged high-temperature exhaust gas can be effectively attenuated, and the harmful effects of the high-temperature exhaust gas can be eliminated.
- the battery pack of the second embodiment of the present invention includes a sub-peripheral wall portion in which a heat-resistant cap is connected around the closing plate portion and is connected to the outer peripheral surface of the battery block.
- the heat-resistant cap is provided with a sub-peripheral wall portion connected to the outer peripheral surface of the battery block, the heat-resistant cap is securely connected to the end portion of the battery block, except for the first surface of the battery block. It is possible to effectively prevent the exhaust gas from leaking to the surface side. In particular, it is possible to effectively prevent the high-temperature exhaust gas discharged from the discharge valve from being directly injected onto the inner surface of the outer case and being damaged.
- the battery pack of the third embodiment of the present invention includes a partition wall in which a heat-resistant cap is arranged between the end faces of adjacent battery cells to partition a first discharge gap into the end faces of each battery cell. ..
- a partition wall is provided between the end faces of adjacent battery cells on the end face side of the battery block of the closing plate, and the first discharge gap is partitioned for each end face of each battery cell by this partition wall. Since the exhaust gas discharged to the valve side end face of the battery cell is passed through the first discharge gap and the second discharge gap and exhausted, the movement of the exhaust gas is prevented while preventing the induction of thermal runaway of the battery cell. Both energy and heat energy can be attenuated and exhausted to the outside.
- the outer case includes a surface plate portion facing the circuit board, and an expansion gap for exhaust gas is formed between the surface plate portion and the circuit board. , The exhaust gas that has passed through the ventilation gap is passed through the expansion gap and exhausted to the outside from the exhaust section.
- the exhaust gas that has passed through the ventilation gap is passed through the expansion gap formed between the circuit board and the surface plate portion of the outer case and exhausted from the exhaust portion to the outside, so that the exhaust gas passes through the ventilation gap.
- Exhaust gas whose energy has been attenuated can be further attenuated in the expansion gap and exhausted to the outside.
- the outer case is provided with an exhaust portion on the surface plate portion at the end portion facing the first end portion of the battery block.
- the energy of the exhaust gas exhausted from the exhaust gas is reliably attenuated while the structure is such that the exhaust gas portion is provided on the surface plate portion at the end portion of the outer case facing the first end portion of the battery block. it can.
- This structure is ensured by diverting the exhaust gas to the ventilation gap while arranging the first end of the battery block in which the exhaust valve of the battery cell is arranged and the exhaust portion provided in the surface plate portion close to each other. The energy can be attenuated and exhausted.
- the battery pack of the sixth embodiment of the present invention is made of reinforced plastic in which the heat-resistant cap is reinforced by embedding an inorganic material in resin.
- the battery cell is a cylindrical battery, and the end faces of the plurality of cylindrical batteries are arranged in the same plane and arranged in the battery holder in a parallel posture to form a battery block. ing.
- the battery cell is a non-aqueous electrolyte secondary battery. Further, in the battery pack of the eighth embodiment of the present invention, the battery cell is a lithium ion battery.
- 1 is a perspective view of the battery pack
- FIG. 2 is a vertical vertical sectional view of the battery pack
- FIG. 3 is a vertical cross-sectional view of the battery pack
- FIG. 4 is an exploded perspective view of the battery pack
- FIG. 5 is a battery.
- An exploded perspective view of the core pack of the pack is shown
- FIG. 6 shows an exploded perspective view of the battery block
- FIG. 7 shows an enlarged sectional view of a main part of FIG.
- the battery pack 100 shown in FIGS. 1 to 6 includes a battery block 10 in which a plurality of battery cells 1 are arranged in a fixed position by a battery holder 2, a heat-resistant cap 5 in which a plurality of battery cells 1 are connected to an end portion of the battery block 10.
- An exterior case 9 arranged along the first surface 10A of the battery block 10 and accommodating the circuit board 4 connected to the battery block 10 and the battery block 10 connected to the heat-resistant cap 5 and the circuit board 4. And have.
- the battery pack 100 is used as a power source for portable electric devices such as vacuum cleaners, for example.
- the present invention does not specify the electric device to be used for the battery pack, and can be used as a power source for other electric devices such as electric tools and assisted bicycles.
- the battery pack has a structure that is detachably connected to the electric device, and can also be used by being incorporated into the electric device in a non-detachable state.
- the battery cell 1 is a cylindrical battery provided with a discharge valve on the end surface 1a that opens when the internal pressure exceeds a set pressure.
- an electrode and an electrolytic solution are housed in a cylindrical metal case.
- the metal case has a hermetically sealed structure in which a sealing plate is airtightly fixed to the opening of a tubular outer can whose bottom is closed.
- the outer can is manufactured by pressing a metal plate into a tubular shape.
- the sealing plate is hermetically fixed by caulking the peripheral edge of the opening of the outer can via the packing of the insulating material.
- the battery cell 1 is provided with a discharge valve on the sealing plate in order to prevent the metal case from being damaged due to an abnormally high internal pressure.
- the battery cell 1 is provided with an opening of a discharge valve that opens and discharges internal gas or the like in the sealing plate.
- the battery cell 1 may be provided with a discharge valve and an opening thereof at the bottom of the outer can.
- the discharge valve opens when the internal pressure becomes higher than the set pressure, for example, 1.5 MPa, to prevent the metal case from being destroyed due to the increase in the internal pressure.
- the discharge valve is opened in an abnormal state. Therefore, when the discharge valve is open, the temperature of the battery cell 1 is also very high. Therefore, the gas and the electrolytic solution (spout) discharged from the discharge valve that opens have an abnormally high temperature.
- a battery pack in which the battery cell 1 is a non-aqueous electrolyte secondary battery such as a lithium ion battery has an abnormally high temperature of exhaust gas of 400 ° C. or higher.
- the lithium ion battery is filled with a non-aqueous electrolyte solution, when it is discharged to the outside of the case at a high temperature, it may come into contact with air and ignite, resulting in an even higher temperature.
- the exhaust gas ejected from the exhaust valve that opens becomes hot, so it is safe to attenuate the energy of the exhaust gas and exhaust it to the outside of the case. It is important because it is expensive.
- the battery block 10 has a plurality of battery cells 1 arranged in a parallel posture via a plastic battery holder 2.
- the battery block 10 shown in the figure four battery cells 1 are arranged in two rows and two stages by a battery holder 2.
- four battery cells 1 are arranged in two rows and two stages, and each battery cell 1 is connected in series by a lead plate 3.
- four battery cells 1 are arranged in two rows and two stages and connected in series, but the number of battery cells 1 and the connection form can be freely changed.
- each battery block 10 a battery cell 1 having the same outer shape, for example, a cylindrical battery having the same size is arranged in a fixed position by a battery holder 2 having the same shape, and the battery cell 1 is connected by a lead plate 3 having the same shape.
- a battery block 10 in which all the parts are shared can be mass-produced particularly inexpensively.
- Battery holder 2 In the battery holders 2 of FIGS. 5 and 6, a plurality of battery cells 1 are arranged in a parallel posture by arranging the terminal surfaces at both ends on the same plane. In the battery holder 2, a plurality of battery cells 1 are arranged in multiple stages and rows.
- the battery holder 2 in the figure is made of plastic in a shape having a holding cylinder 22 for arranging four battery cells 1 in a fixed position.
- the battery holder 2 has a shape in which four sets of holding cylinders 22 are connected in two rows and two stages in a parallel posture, and the inside of the holding cylinders 22 is substantially equal to the outer shape of the battery cell 1 to form a holding portion 21.
- the battery block 10 of FIG. 6 divides the battery holder 2 in the longitudinal direction of the battery cell 1 into a first battery holder 2A and a second battery holder 2B.
- the elongated battery cell 1 can be smoothly inserted into the battery holder 2.
- the first battery holder 2A and the second battery holder 2B are manufactured separately by molding plastic, and the battery cell 1 is inserted and connected to each other.
- the first battery holder 2A and the second battery holder 2B are provided with a cylindrical holding cylinder 22 for inserting the cylindrical battery cell 1 and arranging it in a fixed position.
- the inner shape of the holding cylinder 22 is substantially equal to the outer shape of the battery cell 1, and to be exact, the battery cell 1 is slightly enlarged so as to be smoothly inserted and placed in a fixed position.
- the first battery holder 2A and the second battery holder 2B having this structure are connected to each other in a fixed position via the battery cell 1 with both ends of the cylindrical battery cell 1 inserted.
- the first battery holder 2A and the second battery holder 2B can be more accurately connected with the facing surfaces as a fitting structure, and are also connected at a fixed position via a non-melting plate described later.
- the first battery holder 2A and the second battery holder 2B connected via the battery cell 1 are connected to the circuit board 4 and held in a connected state with each other.
- a holding cylinder 22 arranged between adjacent battery cells 1 is used as a partition wall 23, and a non-melted plate 13 such as a mica plate is arranged inside the partition wall 23.
- a cross-shaped partition wall 23 is provided between the four sets of battery cells 1 arranged vertically and horizontally.
- the partition wall 23 is provided with an insertion gap 25 into which the non-melted plate 13 inside is inserted.
- the partition wall 23 inserts a non-melted plate 13 such as a mica plate into the insertion gap 25.
- the battery block 10 can prevent thermal runaway from being induced in the adjacent battery cell 1 in a state where any of the battery cells 1 undergoes thermal runaway and abnormally generates heat.
- the battery cell 1 of the battery block 10 is electrically connected in series by the lead plate 3.
- the lead plate 3 is formed by bending a metal plate having excellent conductivity.
- the lead plate 3 is welded and fixed to an electrode provided on the end face of the battery cell 1.
- each battery cell 1 is connected in series by a lead plate 3 to increase the output voltage, but in the battery block 10, the battery cells 1 are connected in parallel by the lead plate 3. It can also be connected in series or in parallel.
- the lead plate 3 to which the battery cell 1 is connected is connected to the circuit board 4.
- the battery pack 100 shown in FIGS. 2 to 5 is a battery for attenuating and exhausting the energy of the exhaust gas ejected from the exhaust valve of the battery cell 1 arranged at the first end portion 10a of the battery block 10.
- a heat-resistant cap 5 is connected to the end of the block 10.
- the heat-resistant cap 5 is produced by molding a thermoplastic plastic having heat-resistant characteristics superior to those of the battery holder 2 and the outer case 9.
- the plastic having excellent heat resistance is produced by molding, for example, PBT resin, which is a fiber-reinforced plastic in which inorganic fibers such as glass fibers are embedded and reinforced.
- the heat-resistant cap 5 is connected to the end portion of the battery block 10 to attenuate the energy of the exhaust gas ejected from the valve side end surface of the battery cell 1 and change the flow direction.
- the heat-resistant cap 5 includes a closing plate portion 5X arranged to face the end surface 10X of the battery block 10 and a peripheral wall portion 5A connected to the periphery of the closing plate portion 5X.
- the peripheral wall portion 5A is integrally formed.
- the closing plate portion 5X is provided with a first discharge gap 11A between the closing plate portion 5X and the end surface 10X of the battery block 10 in order to discharge the exhaust gas ejected from the discharge valve.
- the closing plate portion 5X collides the exhaust gas ejected from the discharge valve with the inner surface to attenuate the energy.
- it is set to 0.5 mm or more and 3 mm or less so that the energy of the motion of the gas can be attenuated.
- a lead plate 3 fixed to the battery cell 1 is arranged in the first discharge gap 11A.
- the exhaust gas passing through the first discharge gap 11A is weakened by the closing plate portion 5X and collides with the inside of the peripheral wall portion 5A.
- the peripheral wall portion 5A has a second exhaust gap between the peripheral wall portion 5A and the first surface 10A (upper surface in the figure) of the battery block 10 in order to change the direction of the exhaust gas flowing in from the first exhaust gap 11A and exhaust the exhaust gas. 11B is provided.
- the peripheral wall portion 5A collides the exhaust gas flowing in from the first discharge gap 11A inward to attenuate the energy, and changes the flow direction at a right angle without further scattering the energy to the surroundings in the longitudinal direction of the battery cell 1. Change to.
- the exhaust gas collides with the inner surface of the peripheral wall portion 5A, changes direction, attenuates the energy of motion, and is discharged in the longitudinal direction of the battery cell 1.
- the peripheral wall portion 5A is provided with a second discharge gap 11B between the peripheral wall portion 5A and the first surface 10A in order to allow exhaust gas to flow between the peripheral wall portion 5A and the battery block 10.
- the peripheral wall portion 5A shown in FIGS. 3 and 7 is arranged away from the first surface 10A on which the circuit board 4 is arranged, and guides the exhaust gas between the peripheral wall portion 5A and the first surface 10A.
- a second discharge gap 11B is formed. The exhaust gas that collides with the inside of the closing plate portion 5X and flows into the second discharge gap 11B flows into the ventilation gap 12 formed between the circuit board 4 and the battery block 10.
- the heat-resistant cap 5 shown in the figure has a peripheral wall portion 5A so that the exhaust gas that has passed through the second discharge gap 11B smoothly flows into the ventilation gap 12 formed between the circuit board 4 and the battery block 10. Is arranged in a laminated state on the edge portion of the circuit board 4.
- the heat-resistant cap 5 shown in FIG. 7 is arranged so that the tip end portion of the peripheral wall portion 5A is inserted between the first surface 10A of the battery block 10 and the circuit board 4 in a plan view, and the second heat-resistant cap 5 is arranged.
- the discharge gap 11B communicates with the ventilation gap 12.
- the peripheral wall portion 5A is preferably laminated on the circuit board 4 in a contact state. However, the peripheral wall portion can be laminated on the circuit board in a non-contact state. Further, the peripheral wall portion can be laminated on the upper surface of the circuit board.
- the heat-resistant cap 5 shown in FIGS. 3 and 5 includes sub peripheral wall portions 5B and 5C connected to the periphery of the closing plate portion 5X and connected to the outer peripheral surface of the battery block 10.
- the heat-resistant cap shown in the figure is an outer peripheral surface of the battery block 10, and has a sub peripheral wall portion 5B connected to a second surface 10B (both side surfaces in the figure) adjacent to the first surface 10A, and a first surface. It includes a sub-peripheral wall portion 5C connected to a third surface 10C (bottom surface in the figure) facing the surface 10A.
- the heat-resistant cap 5 connects the sub peripheral wall portion 5B to the outside of the second surface 10B of the battery block 10, and connects the sub peripheral wall portion 5C to the outside of the third surface 10C of the battery block 10. It is connected to the lower surface). That is, the heat-resistant cap 5 is connected to the fixed position of the end portion of the battery block 10 in a state where the sub peripheral wall portions 5B and 5C are in close contact with the outer peripheral surface of the battery block 10. In the heat-resistant cap 5 provided with the sub peripheral wall portions 5B and C connected in contact with the outer peripheral surface of the battery block 10 in this way, the exhaust gas injected into the first discharge gap 11A is discharged to both sides and below the battery block 10.
- the heat-resistant cap 5 does not necessarily have to be provided with both the sub peripheral wall portion 5B connected to the side surface of the battery block 10 and the sub peripheral wall portion 5C connected to the bottom surface, and only one of them may be provided.
- the heat-resistant cap 5 shown in FIGS. 5 and 7 is arranged between the end faces 1a of the adjacent battery cells 1 and has a partition wall 5M for partitioning the first discharge gap 11A into the end faces 1a of each battery cell 1.
- the partition wall 5M partitions a first discharge gap 11A which is vertically fixed to the inner surface of the closing plate portion 5X and is provided between the partition wall 5M and the end surface 1a of the battery cell 1.
- the partition wall 5M partitions a gap provided between the valve side end surface of the abnormal battery cell in which the discharge valve is opened and the closing plate portion 5X, and a gap between the adjacent battery cell and the closing plate portion 5X.
- the partition wall 5M prevents high-temperature exhaust gas from flowing to the end face of the adjacent battery cell to prevent the induction of thermal runaway. Since the partition wall 5M is provided to prevent the exhaust gas ejected from the abnormal battery cell from heating the adjacent battery cell 1, the first discharge gap 11A is partitioned between the battery cells 1.
- the partition wall 5M prevents the ejected exhaust gas from flowing to the end surface 1a of the adjacent battery cell 1 and suppresses the exhaust gas from heating the adjacent battery cell 1.
- the partition wall 5M is provided so as to project from the closing plate portion 5X to the first discharge gap 11A, and is arranged between the end faces 1a of each battery cell 1.
- the partition wall 5M arranged in the first discharge gap 11A has a shape protruding from the inner surface of the closing plate portion 5X, and contacts the surface of the lead plate 3 to divide the first discharge gap 11A between the battery cells 1. ing.
- the circuit board 4 mounts a protection circuit that charges and discharges the battery cell 1, and connects each battery cell 1 to the protection circuit.
- the protection circuit detects the voltage and current of each battery cell 1 and controls the charging / discharging current to charge / discharge while protecting the battery.
- the circuit board 4 is connected to an output lead unit 3x for inputting positive and negative outputs of each battery block 10, or an intermediate potential for measuring an intermediate potential in order to grasp the voltage of each battery cell 1.
- the lead unit 3y for use can be connected, or the potential of the temperature detection unit (not shown) for detecting the temperature of each battery cell 1 can also be connected.
- a thermistor or the like is used for the temperature detection unit.
- the circuit board 4 is arranged along the first surface 10A (upper surface in the figure) adjacent to the end surface 10X of the battery block 10 in which the heat resistant cap 5 is arranged.
- the circuit board 4 is arranged in a state of forming a ventilation gap 12 with the first surface 10A of the battery block 10.
- the ventilation gap 12 is a gap through which the exhaust gas discharged from the discharge valve of the battery cell 1 and passing through the first discharge gap 11A and the second discharge gap 11B passes through.
- the circuit board 4 is fixed to the battery block 10 so that the distance between the ventilation gaps 12 is, for example, 2.5 mm to 3.0 mm.
- the circuit board 4 is connected to a fixed position on the first surface 10A of the battery block 10 and is formed so that the ventilation gaps 12 are at predetermined intervals.
- the battery holder 2 shown in the perspective view of FIG. 6 is provided with a fitting convex portion 29 protruding from a facing surface (upper surface in the drawing) facing the circuit board 4 in order to connect the circuit board 4 in a fixed position.
- the fitting convex portion 29 is a hollow columnar boss that projects upward and vertically at the four corners of the facing surface, and is provided by being integrally molded with the plastic of the battery holder 2. As shown in FIG. 4, the fitting convex portion 29 guides the fitting recess 4a provided in the circuit board 4 to arrange the circuit board 4 at a fixed position.
- the battery holder 2 shown in FIG. 6 is integrally formed with mounting ribs 31 for mounting the circuit board 4 on the facing surface and specifying the vertical position at a plurality of positions on the facing surface.
- the mounting ribs 31 are provided at a plurality of locations on both sides of the facing surface of the battery holder 2, and the circuit board 4 is arranged at a fixed position with a predetermined distance from the first surface 10A.
- the battery block 10 of FIG. 6 is provided with the locking hook 30 of the circuit board 4 integrally molded on the facing surface of the battery holder 2. As shown in FIG. 4, the locking hook 30 locks the circuit board 4 arranged on the first surface 10A and arranges it in a fixed position.
- the output lead portion 3x and the intermediate potential lead portion 3y protruding from the first surface 10A of the battery block 10 are inserted into the through holes of the circuit board 4, and the fitting convex portion 29 of the battery holder 2 is fitted.
- the bottom surface is guided to the joint recess 4a, and the bottom surface is placed on the rib 31 to be placed in a fixed position.
- the output lead portion 3x and the intermediate potential lead portion 3y are soldered to the connection portion of the circuit board 4 to connect the battery block 10.
- each battery block 10 is electrically connected, and further physically connected.
- the circuit board 4 is screwed to the two sets of battery blocks 10 with the set screws 18 penetrating the circuit board 4, and the plurality of battery blocks 10 are more firmly connected.
- the battery block 10 is provided with a fixing boss 28 for screwing the set screw 18 on the facing surface of the battery holder 2.
- the output lead portion 3x of each battery block 10 is connected via the circuit board 4 and further connected to the connector 19.
- the circuit board 4 is provided with a conductive layer (not shown) such as copper foil on the surface thereof.
- the conductive layer electrically connects the connection portion of the output lead portion 3x to connect the battery blocks 10 in series, and also connects the output lead portion 3x to the lead wire 16 of the connector 19. Further, the conductive layer connects the connecting portion of the intermediate potential lead portion 3y to the protection circuit of the circuit board 4.
- the plurality of battery blocks 10 are fixed to the circuit board 4 in a linearly connected state to form the battery core pack 20.
- the core pack 20 shown in the figure two battery blocks 10 are linearly connected, and an insulating plate portion 6 is arranged between the opposing battery blocks 10 to insulate the two battery blocks 10 from each other, and at both end portions.
- the heat-resistant cap 5 is connected, and the circuit board 4 is further connected to the first surface 10A of the battery block 10.
- the insulating plate portion 6 is arranged between the battery blocks 10 arranged side by side in the longitudinal direction.
- the insulating plate portion 6 is produced by molding a material having excellent insulating properties and heat insulating properties, for example, PBT resin, which is a fiber reinforced plastic in which inorganic fibers such as glass fibers are embedded and reinforced.
- PBT resin which is a fiber reinforced plastic in which inorganic fibers such as glass fibers are embedded and reinforced.
- an inorganic plate such as a mica plate can also be used for the insulating plate portion.
- the outer case 9 is formed in a square tubular box shape as shown in FIGS. 1 to 4.
- the exterior case 9 in the figure is divided into a case body 9A and a closing portion 9B.
- the outer case 9 pulls out a connector 19 for connecting to an electric device that supplies electric power with the battery pack 100 to the outside.
- the outer case 9 is made of a material having excellent heat insulating properties and heat insulating properties, for example, polycarbonate, ABS, or a resin in which these are combined.
- the above exterior case 9 has an exhaust unit 15 that exhausts the exhaust gas discharged from the exhaust valve to the outside.
- the exterior case 9 shown in the figure is an end portion of the case body 9A, and a portion for pulling out the connector 19 to the outside of the case is an exhaust portion 15.
- the exterior case 9 has a structure in which an opening window 9a is provided in the case main body 9 and a lead wire 16 is guided to a groove portion 9b provided at the opening edge portion of the opening window 9a to pull out the connector 19 to the outside of the case. Therefore, in this exterior case, the opening window 9a and the groove portion 9b from which the lead wire is drawn out serve as an exhaust portion for exhausting the exhaust gas in the case to the outside.
- the exterior case 9 is opened by passing the connector 19 through the opening window 9a opened in the case body 9A, storing the battery core pack 20 in the case body 9A, and then closing the case body 9A with the lid 9B. After passing the lead wire 16 through the groove 9b provided on the peripheral edge of the window 9a, the opening window 9a of the case body 9A is closed with the closing lid 17.
- the exterior case 9 shown in FIG. 2 includes a surface plate portion 9x in which the case body 9A faces the circuit board 4.
- the exhaust gas expansion gap 14 is formed between the circuit board 4 and the surface plate portion 9x in a state where the battery core pack 20 is housed inside.
- the battery pack 100 allows the exhaust gas that has passed through the ventilation gap 12 to pass through the expansion gap 14 and exhausts the exhaust gas to the outside from the exhaust unit 15.
- the exhaust gas whose energy is attenuated in the ventilation gap 12 is further increased in the expansion gap 14. The energy can be attenuated and exhausted to the outside.
- an exhaust portion 15 is provided on the surface plate portion 9x at the end portion of the battery block 10 facing the first end portion 10a.
- the battery pack 100 having the above structure is exhausted from the exhaust portion 15 at the end of the exterior case 9 facing the first end portion 10a of the battery block 10 while having an exhaust portion 15 provided on the surface plate portion 9x.
- the energy of the exhaust gas can be reliably attenuated.
- the exhaust gas is introduced into the ventilation gap 12 while the first end portion 10a of the battery block 10 in which the exhaust valve of the battery cell 1 is arranged and the exhaust portion 15 provided in the surface plate portion 9x are arranged close to each other. By detouring to, the energy can be reliably attenuated and exhausted. Therefore, although the linear distance between the exhaust valve of the battery cell 1 and the exhaust portion 15 of the outer case 9 is shortened, the exhaust gas path can be lengthened to reliably attenuate the energy.
- the exterior case shown in FIG. 3 is an end portion of the surface plate portion of the case body 9A, and the exhaust portion 15 is provided at the end portion on the same side as the first end portion 10a provided in the battery block 10.
- the exhaust portion 15 may be provided at the center or the side surface of the surface plate portion 9x of the case body 9A.
- the exhaust gas discharged from the discharge valve side end surface 1a of the battery cell 1 arranged at the first end portion 10a of the battery block 10 is discharged from the first discharge gap 11A and the second discharge gap 11B. After passing through the ventilation gap 12 through the discharge gap 11 and the expansion gap 14 through the ventilation gap 12, the exhaust gas is exhausted to the outside from the exhaust unit 15.
- the battery pack of the present invention allows the high-temperature exhaust gas to pass through the ventilation gap 12 formed between the battery block 10 and the circuit board 4, so that the exhaust gas path is lengthened and energy is surely generated. Can be attenuated and exhausted to the outside. Further, the battery pack 100 also extends the exhaust gas path to the outside while attenuating energy even at the exhaust valve side end surface of the battery cell arranged at a position other than the first end portion 10a of the battery block 10. Can be exhausted.
- Heat dissipation plate 8 Further, in the battery pack 100 of FIG. 4, a heat radiating plate 8 is arranged on the lower surface of the core pack 20 in order to more effectively attenuate the energy of the exhaust gas.
- the heat radiating plate 8 is arranged inside the closed portion 9B of the outer case 9 and between the heat radiating plate 8 and the battery block 10 to attenuate the energy of the exhaust gas ejected from the battery cell 1.
- a plate material having heat conduction characteristics superior to that of the outer case 9 is suitable.
- the heat radiation plate 8 absorbs the heat energy of the colliding exhaust gas, quickly diffuses the absorbed heat energy over a wide area, conducts heat to the outer case 9, and the outer case 9 transfers the heat energy to the outside over a wide area. Dissipate heat.
- a metal plate is used for the heat radiating plate 8 as a plate material having preferable heat conduction characteristics.
- an aluminum (including aluminum alloy) plate is suitable for the heat dissipation plate 8. Since the aluminum plate has heat resistance and excellent heat conduction characteristics and is light, it can quickly diffuse the heat energy of the exhaust gas and dissipate heat efficiently while reducing the weight.
- the battery pack 100 of FIG. 4 has a band-like shape arranged along the longitudinal direction of the closing portion 9B, and both ends are bent in an L shape and arranged between the heat-resistant cap 5 and the outer case 9. ing. As a result, the case connecting portions at both ends of the exterior case 9 are covered from the inside, and the exhaust gas discharged from the exhaust valve is prevented from being discharged to the outside from this portion.
- the battery pack of the present invention is suitably used for a battery pack used as a power source for portable electric devices such as vacuum cleaners, power tools, and assisted bicycles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Aviation & Aerospace Engineering (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
電池セルの排出弁から噴射される高温の排出ガスによる弊害を抑制する。 電池パックは、排出弁を有する複数の電池セル(1)を電池ホルダ(2)で定位置に配置してなる電池ブロック(10)の端部に耐熱キャップ(5)を連結し、第1の表面(10A)に回路基板(4)を連結して外装ケース(9)に収納している。耐熱キャップ(5)は、電池ブロック(10)の端面(10X)との間に第1の排出隙間(11A)を形成する閉塞プレート部(5X)と、電池ブロック(10)の第1の表面(10A)との間に第2の排出隙間を形成する周壁部(5A)とを備え、回路基板(4)は、電池ブロック(10)の第1の表面(10A)との間に通気隙間(12)が形成されるように配置されて、通気隙間(12)が第2の排出隙間(11B)に連通されており、電池セル(1)の排出弁から排出される排出ガスが、第1の排出隙間(11A)と第2の排出隙間(11B)からなる排出隙間(11)から通気隙間(12)を通過して、排気部(15)から外部に排気される。
Description
本発明は、複数の電池セルを直列や並列に接続して容量を大きくしてなる電池パックに関する。
コードレスで用いられる携帯型電気機器の電源として、複数の電池セルをケースに収納した電池パックが使用される。この電池パックは、複数の電池セルを直列や並列に接続して、容量を大きくしている。電気機器の電源として使用される電池パックは、近年、高出力化が一層求められており、単位体積あたりの効率に優れたリチウムイオン電池等の非水系電解液二次電池が採用されている。
リチウムイオン電池は、高出力である反面、何らかの原因によって内圧が上昇することがある。電池の内圧上昇に対する安全性を確保するために、設定圧力で開弁して破裂を防止する排出弁を設けている。排出弁が開弁するとき、電池は異常な発熱状態にあって排出弁からは高温のガスが勢いよく噴出される。排出弁から排出される排出ガスを外部に排出するために外装ケースに穴を設けているパック電池が開発されている。(特許文献1参照)
さらに、外装ケースに複数の貫通穴を設けて、内部の通気性を向上し、電池の放熱を促進して、ケース内に熱がこもることを防止するパック電池も開発されている。(特許文献2参照)
さらに、外装ケースに複数の貫通穴を設けて、内部の通気性を向上し、電池の放熱を促進して、ケース内に熱がこもることを防止するパック電池も開発されている。(特許文献2参照)
従来のパック電池は、外装ケースに穴を設けて、排出弁から噴射される排出ガスを外部に排出する。このパック電池は、電池セルから勢いよく噴射される高温の排出ガスを安全に外部に排出するのが難しい。とくに、非水系電解液二次電池であるリチウムイオン電池の排出弁から噴射される排出ガスは、400℃以上と異常な高温で、しかも勢いよく噴射されることから、排出ガスが外装ケースを熱溶融し、さらに排出ガスが高温状態でケース外に噴射されて発火すると安全性が著しく阻害される。
本発明は、以上の弊害を防止することを目的として開発されたもので、本発明の主な目的は、開弁する排出弁から噴射される高温の排出ガスによる安全性の低下を防止する電池パックを提供することにある。
本発明のある態様に係る電池パックは、内圧が設定圧力を超えると開弁する排出弁を有する複数の電池セルを電池ホルダで定位置に配置してなる電池ブロックと、電池ブロックの端部に連結してなる耐熱キャップと、耐熱キャップが配置された電池ブロックの端面と隣り合う第1の表面に沿って配置されて、電池ブロックに連結された回路基板と、耐熱キャップと回路基板が連結された電池ブロックを収納してなり、排出弁から排出される排出ガスを外部に排気する排気部を有する外装ケースとを備えている。電池ブロックは、耐熱キャップを連結してなる第1の端部に、電池セルの排出弁を設けてなる排出弁側端面を配置している。耐熱キャップは、電池ブロックの端面との間に第1の排出隙間を形成してなる閉塞プレート部と、閉塞プレート部の周囲に連結されて、電池ブロックの第1の表面との間に第2の排出隙間を形成してなる周壁部とを備えている。回路基板は、電池ブロックの第1の表面との間に通気隙間を形成すると共に、第1の端部側の端縁部を周壁部に積層させて、通気隙間を第2の排出隙間に連通している。電池パックは、電池セルの排出弁から排出される排出ガスが、第1の排出隙間と第2の排出隙間からなる排出隙間から通気隙間を通過して、排気部から外部に排気されるようにしている。
本発明の電池パックは、電池セルの排出弁から噴射される高温の排出ガスによる弊害を抑制して安全性を高めることができる。
本発明の第1の実施態様の電池パックは、内圧が設定圧力を超えると開弁する排出弁を有する複数の電池セルを電池ホルダで定位置に配置してなる電池ブロックと、電池ブロックの端部に連結してなる耐熱キャップと、耐熱キャップが配置された電池ブロックの端面と隣り合う第1の表面に沿って配置されて、電池ブロックに連結された回路基板と、耐熱キャップと回路基板が連結された電池ブロックを収納してなり、排出弁から排出される排出ガスを外部に排気する排気部を有する外装ケースと備えている。電池ブロックは、耐熱キャップを連結してなる第1の端部に、電池セルの排出弁を設けてなる排出弁側端面を配置している。耐熱キャップは、電池ブロックの端面との間に第1の排出隙間を形成してなる閉塞プレート部と、閉塞プレート部の周囲に連結されて、電池ブロックの第1の表面との間に第2の排出隙間を形成してなる周壁部とを備えている。回路基板は、電池ブロックの第1の表面との間に通気隙間が形成されるように配置されると共に、第1の端部側の端縁部が周壁部に積層されて、通気隙間が第2の排出隙間に連通されている。電池パックは、電池セルの排出弁から排出される排出ガスが、第1の排出隙間と第2の排出隙間からなる排出隙間から通気隙間を通過して、排気部から外部に排気される。
以上の電池パックは、開弁する排出弁から噴射される高温の排出ガスによる弊害を解消して高い安全性を確保できる。それは、以上の電池パックが、排出弁から噴射される高温の排出ガスを、電池ブロックの第1の端部と耐熱キャップとの間に形成される排出隙間から、電池ブロックの第1の表面と回路基板との間に形成される通気隙間に通過させて、排気部15から外部に排気するからである。この電池パックは、排出弁から排出される高温の排出ガスを第1の排出隙間から第2の排出隙間に案内し、さらに、第2の排出隙間から通気隙間に案内して、通気隙間を通過させた後、外装ケースの排気部から外部に排気する。この構造は、排出弁から噴射される高温で高エネルギーの排出ガスを、耐熱キャップの閉塞プレート部に衝突させてエネルギーを減衰し、第1の排出隙間で、エネルギーの減衰された排出ガスをさらに第2の排出隙間から通気隙間に通過させてエネルギーを減衰する。とくに、通気隙間を通過する排出ガスは、通気隙間を通過する際に、電池ホルダや回路基板に設けた種々の部材に衝突することで運動エネルギーと熱エネルギーの両方が失われるので、排出弁から排出された高温の排出ガスがもつ運動エネルギーと熱エネルギーを効果的に減衰させて、高温の排出ガスによる弊害を解消できる。
本発明の第2の実施態様の電池パックは、耐熱キャップが、閉塞プレート部の周囲に連結されて、電池ブロックの外周面に連結されるサブ周壁部を備えている。
上記構成によると、耐熱キャップが電池ブロックの外周面に連結されるサブ周壁部を備えているので、耐熱キャップを電池ブロックの端部に確実に連結しながら、電池ブロックの第1の表面以外の表面側に排出ガスが漏れるのを有効に防止できる。とくに、排出弁から排出される高温の排出ガスが、外装ケースの内側面に直接噴射されて損傷を受けるのを有効に防止できる。
本発明の第3の実施態様の電池パックは、耐熱キャップが、隣接する電池セルの端面の間に配置されて、第1の排出隙間を各々の電池セルの端面に区画する隔壁を備えている。
上記構成によると、閉塞プレートの電池ブロック端面側には、隣接する電池セルの端面の間に隔壁を設けて、この隔壁で第1の排出隙間を各々の電池セルの端面毎に区画して、電池セルの弁側端面に排出される排出ガスを、第1の排出隙間と第2の排出隙間に通過させて排気するので、電池セルの熱暴走の誘発を防止しながら、排出ガスの運動のエネルギーと熱エネルギーの両方を減衰して外部に排気できる。
本発明の第4の実施態様の電池パックは、外装ケースが、回路基板と対向する表面プレート部を備えると共に、表面プレート部と回路基板との間に、排出ガスの膨張隙間を形成しており、通気隙間を通過した排出ガスを膨張隙間に通過させて排気部から外部に排気している。
上記構成によると、通気隙間を通過した排出ガスを、回路基板と外装ケースの表面プレート部との間に形成された膨張隙間に通過させて排気部から外部に排気するので、通気隙間を通過してエネルギーが減衰した排出ガスを、膨張隙間でさらにエネルギーを減衰させて外部に排気できる。
本発明の第5の実施態様の電池パックは、外装ケースが、電池ブロックの第1の端部と対向する端部において、表面プレート部に排気部を設けている。
以上の構成によると、電池ブロックの第1の端部と対向する外装ケースの端部において、表面プレート部に排気部を設ける構造としながら、排気部から排気される排出ガスのエネルギーを確実に減衰できる。この構造は、電池セルの排出弁が配置される電池ブロックの第1の端部と、表面プレート部に設ける排気部とを接近して配置しながら、排出ガスを通気隙間に迂回させることで確実にエネルギーを減衰させて排気できる。
本発明の第6の実施態様の電池パックは、耐熱キャップを、無機質材を樹脂に埋設して補強している強化プラスチック製としている。
本発明の第7の実施態様の電池パックは、電池セルが円筒形電池で、複数の円筒形電池の端面を同一平面に配置し、かつ平行姿勢で電池ホルダに配置されて電池ブロックを構成している。
本発明の第8の実施態様の電池パックは、電池セルを非水系電解液二次電池としている。さらに、本発明の第8の実施態様の電池パックは、電池セルをリチウムイオン電池としている。
以下、図面に基づいて本発明の実施態様を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
さらに、以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
本発明の一実施形態にかかる電池パックを図1~図7に示す。図1は、電池パックの斜視図を、図2は電池パックの垂直縦断面図を、図3は電池パックの垂直横断面図を、図4は電池パックの分解斜視図を、図5は電池パックのコアパックの分解斜視図を、図6は電池ブロックの分解斜視図を、図7は図2の要部拡大断面図をそれぞれ示している。
図1~図6に示す電池パック100は、複数の電池セル1を電池ホルダ2で定位置に配置してなる電池ブロック10と、電池ブロック10の端部に連結してなる耐熱キャップ5と、電池ブロック10の第1の表面10Aに沿って配置されて、電池ブロック10に連結された回路基板4と、耐熱キャップ5と回路基板4が連結された電池ブロック10を収納してなる外装ケース9とを備えている。
電池パック100は、例えば、掃除機等の携帯型電気機器の電源として使用される。ただ、本発明は、電池パックの用途となる電気機器を特定せず、他の電気機器、例えば電動工具、アシスト自転車等の電源として利用することもできる。また、電池パックは、電気機器に脱着自在に連結される構造とする他、脱着できない状態で電気機器に組み込んで使用することもできる。
(電池セル1)
電池セル1は、内圧が設定圧力を超えると開弁する排出弁を端面1aに設けている円筒形電池である。円筒形電池は、円筒状の金属ケースに電極と電解液を収納している。金属ケースは、底を閉塞している筒状の外装缶の開口部に、封口板を気密に固定して密閉構造としている。外装缶は、金属板を筒状にプレス加工して製作される。封口板は、絶縁材のパッキンを介して外装缶の開口部周縁にカシメ加工して気密に固定される。
電池セル1は、内圧が設定圧力を超えると開弁する排出弁を端面1aに設けている円筒形電池である。円筒形電池は、円筒状の金属ケースに電極と電解液を収納している。金属ケースは、底を閉塞している筒状の外装缶の開口部に、封口板を気密に固定して密閉構造としている。外装缶は、金属板を筒状にプレス加工して製作される。封口板は、絶縁材のパッキンを介して外装缶の開口部周縁にカシメ加工して気密に固定される。
電池セル1は、図示しないが、金属ケースの内圧が異常に高くなって破損するのを防止するために、封口板に排出弁を設けている。この電池セル1は、開口して内部のガスなどを排出する排出弁の開口部を封口板に設けている。ただ、電池セル1は、外装缶の底部に排出弁とその開口部を設けることもできる。排出弁は、内圧が設定圧力、たとえば1.5MPaよりも高くなると開弁して、内圧上昇による金属ケースの破壊を防止する。排出弁は、異常な状態で開弁される。したがって、排出弁が開弁する状態では、電池セル1の温度も非常に高くなっている。このため、開弁する排出弁から排出されるガスや電解液(噴出物)は異常な高温となっている。とくに、電池セル1をリチウムイオン電池等の非水系電解液二次電池とする電池パックは、排出ガスが400℃以上である異常な高温となる。さらに、リチウムイオン電池は、非水系の電解液を充填していることから、これが高温でケース外に排出されると、空気に触れて発火して、さらに異常な高温となることがある。リチウムイオン電池に限らず、他の充電できる電池においても、開弁する排出弁から噴出される排出ガスは高温となるので、排出ガスのエネルギーを減衰してケース外に排気することは安全性を高くすることから大切である。
(電池ブロック10)
電池ブロック10は、図6に示すように、複数の電池セル1をプラスチック製の電池ホルダ2を介して平行姿勢に配置している。図の電池ブロック10は、4本の電池セル1を電池ホルダ2で2列2段に配置している。図の電池ブロック10は、4本の電池セル1を2列2段に配置して、各々の電池セル1をリード板3で直列に接続している。図の電池ブロック10は、4本の電池セル1を2列2段に配置して直列に接続しているが、電池セル1の本数や接続形態は自由に変更することができる。各々の電池ブロック10は、同じ外形の電池セル1、たとえば同じ寸法の円筒形電池を同一形状の電池ホルダ2で定位置に配置して、同一形状のリード板3で電池セル1を接続して共通化できる。全ての部品を共通化している電池ブロック10は、とくに安価に多量生産できる。
電池ブロック10は、図6に示すように、複数の電池セル1をプラスチック製の電池ホルダ2を介して平行姿勢に配置している。図の電池ブロック10は、4本の電池セル1を電池ホルダ2で2列2段に配置している。図の電池ブロック10は、4本の電池セル1を2列2段に配置して、各々の電池セル1をリード板3で直列に接続している。図の電池ブロック10は、4本の電池セル1を2列2段に配置して直列に接続しているが、電池セル1の本数や接続形態は自由に変更することができる。各々の電池ブロック10は、同じ外形の電池セル1、たとえば同じ寸法の円筒形電池を同一形状の電池ホルダ2で定位置に配置して、同一形状のリード板3で電池セル1を接続して共通化できる。全ての部品を共通化している電池ブロック10は、とくに安価に多量生産できる。
(電池ホルダ2)
図5と図6の電池ホルダ2は、複数の電池セル1を、両端の端子面を同一平面に配置して平行姿勢に配置している。電池ホルダ2は、複数の電池セル1を多段多列に配置している。図の電池ホルダ2は、4個の電池セル1を定位置に配置する保持筒22のある形状にプラスチックを成形している。この電池ホルダ2は、4組の保持筒22を平行姿勢で2列2段に連結する形状であって、保持筒22の内側を電池セル1の外形にほぼ等しくして保持部21としている。
図5と図6の電池ホルダ2は、複数の電池セル1を、両端の端子面を同一平面に配置して平行姿勢に配置している。電池ホルダ2は、複数の電池セル1を多段多列に配置している。図の電池ホルダ2は、4個の電池セル1を定位置に配置する保持筒22のある形状にプラスチックを成形している。この電池ホルダ2は、4組の保持筒22を平行姿勢で2列2段に連結する形状であって、保持筒22の内側を電池セル1の外形にほぼ等しくして保持部21としている。
図6の電池ブロック10は、電池ホルダ2を電池セル1の長手方向に分割して、第1の電池ホルダ2Aと第2の電池ホルダ2Bに分割している。この電池ホルダ2は、細長い電池セル1をスムーズに挿入できる。第1の電池ホルダ2Aと第2の電池ホルダ2Bは、プラスチックを成形して別々に製作されて、電池セル1を挿入して互いに連結される。第1の電池ホルダ2Aと第2の電池ホルダ2Bは、円筒形の電池セル1を挿入して定位置に配置するために、円柱状の保持筒22を設けている。保持筒22の内形は、電池セル1の外形にほぼ等しく、正確には電池セル1をスムーズに挿入して定位置に配置ように僅かに大きくしている。この構造の第1の電池ホルダ2Aと第2の電池ホルダ2Bは、円筒形の電池セル1の両端部を挿入する状態で、電池セル1を介して互いに定位置に連結される。第1の電池ホルダ2Aと第2の電池ホルダ2Bは、対向面を嵌合構造としてより正確に連結でき、また、後述する非溶融プレートを介して定位置に連結される。電池セル1を介して連結された第1の電池ホルダ2Aと第2の電池ホルダ2Bは、回路基板4に連結されて互いに連結状態に保持される。
図3と図6に示す電池ブロック10は、隣接する電池セル1の間に配置される保持筒22を区画壁23として、区画壁23の内部にマイカプレートなどの非溶融プレート13を配置している。図の電池ホルダ2は、電池セル1を2列2段に配置するので、上下左右に配置している4組の電池セル1の間に、十字状の区画壁23を設けている。区画壁23は、内部の非溶融プレート13を挿入する挿入隙間25を設けている。区画壁23は、この挿入隙間25にマイカプレートなどの非溶融プレート13を挿入している。この電池ブロック10は、何れかの電池セル1が熱暴走して異常発熱する状態で、隣の電池セル1に熱暴走が誘発されるのを防止できる。
(リード板3)
電池ブロック10の電池セル1は、リード板3で電気的に直列に接続される。リード板3は導電性に優れた金属板を折曲して構成される。リード板3は、電池セル1の端面に設けた電極に溶接して固定される。図6に示す電池ブロック10は、各々の電池セル1をリード板3で直列に接続して出力電圧を高くしているが、電池ブロック10は、リード板3で電池セル1を並列に接続することもでき、あるいは直列と並列に接続することもできる。電池セル1を接続したリード板3は、回路基板4に接続される。
電池ブロック10の電池セル1は、リード板3で電気的に直列に接続される。リード板3は導電性に優れた金属板を折曲して構成される。リード板3は、電池セル1の端面に設けた電極に溶接して固定される。図6に示す電池ブロック10は、各々の電池セル1をリード板3で直列に接続して出力電圧を高くしているが、電池ブロック10は、リード板3で電池セル1を並列に接続することもでき、あるいは直列と並列に接続することもできる。電池セル1を接続したリード板3は、回路基板4に接続される。
(耐熱キャップ5)
図2~図5に示す電池パック100は、電池ブロック10の第1の端部10aに配置された電池セル1の排出弁から噴出される排出ガスのエネルギーを減衰して排気するために、電池ブロック10の端部に耐熱キャップ5を連結している。耐熱キャップ5は、電池ホルダ2や外装ケース9よりも優れた耐熱特性の熱可塑性のプラスチックを成形して制作される。耐熱特性に優れたプラスチックには、たとえばガラス繊維等の無機繊維を埋設して補強している繊維強化プラスチックであるPBT樹脂等を成形して制作される。耐熱キャップ5は、電池ブロック10の端部に連結されて、電池セル1の弁側端面から噴出される排出ガスのエネルギーを減衰し、流動方向を変更する。耐熱キャップ5は、電池ブロック10の端面10Xと対向して配置している閉塞プレート部5Xと、閉塞プレート部5Xの周囲に連結している周壁部5Aとを備えており、閉塞プレート部5Xと周壁部5Aとを一体構造に成形している。
図2~図5に示す電池パック100は、電池ブロック10の第1の端部10aに配置された電池セル1の排出弁から噴出される排出ガスのエネルギーを減衰して排気するために、電池ブロック10の端部に耐熱キャップ5を連結している。耐熱キャップ5は、電池ホルダ2や外装ケース9よりも優れた耐熱特性の熱可塑性のプラスチックを成形して制作される。耐熱特性に優れたプラスチックには、たとえばガラス繊維等の無機繊維を埋設して補強している繊維強化プラスチックであるPBT樹脂等を成形して制作される。耐熱キャップ5は、電池ブロック10の端部に連結されて、電池セル1の弁側端面から噴出される排出ガスのエネルギーを減衰し、流動方向を変更する。耐熱キャップ5は、電池ブロック10の端面10Xと対向して配置している閉塞プレート部5Xと、閉塞プレート部5Xの周囲に連結している周壁部5Aとを備えており、閉塞プレート部5Xと周壁部5Aとを一体構造に成形している。
閉塞プレート部5Xは、排出弁から噴出される排出ガスを排出するために、電池ブロック10の端面10Xとの間に第1の排出隙間11Aを設けている。閉塞プレート部5Xは、第1の排出隙間11Aにおいて、排出弁から噴出される排出ガスを内面に衝突させてエネルギーを減衰する。閉塞プレート部5Xと電池ブロック10の端面10X、正確には閉塞プレート部5Xと電池セル1の端面1aとの間に設けられる第1の排出隙間11Aは、排出ガスをスムーズに排気しながら、排出ガスの運動のエネルギーを減衰できるように、たとえば、0.5mm以上であって3mm以下に設定される。第1の排出隙間11Aには、電池セル1に固定しているリード板3が配置される。
第1の排出隙間11Aを通過する排出ガスは、閉塞プレート部5Xで勢いが弱められて、周壁部5Aの内側に衝突する。周壁部5Aは、第1の排出隙間11Aから流入する排出ガスを方向転換して排気するために、電池ブロック10の第1の表面10A(図においては上面)との間に第2の排出隙間11Bを設けている。周壁部5Aは、第1の排出隙間11Aから流入する排出ガスを内側に衝突させてエネルギーを減衰し、さらに周囲に飛散させることなく、流動方向を直角に変更して、電池セル1の長手方向に変更する。排出ガスは、周壁部5Aの内面に衝突し、方向転換して運動のエネルギーを減衰して、電池セル1の長手方向に排出される。
周壁部5Aは、電池ブロック10との間に排出ガスを流動させるために、第1の表面10Aとの間に第2の排出隙間11Bを設けている。図3及び図7に示す周壁部5Aは、回路基板4が配置される第1の表面10Aから離して配置されており、周壁部5Aと第1の表面10Aとの間に排出ガスを案内する第2の排出隙間11Bを形成している。閉塞プレート部5Xの内側に衝突して第2の排出隙間11Bに流入した排出ガスは、回路基板4と電池ブロック10との間に形成される通気隙間12に流入される。図に示す耐熱キャップ5は、第2の排出隙間11Bを通過した排出ガスが、回路基板4と電池ブロック10との間に形成される通気隙間12にスムーズに流入されるように、周壁部5Aの先端部を回路基板4の端縁部に積層状態で配置している。図7に示す耐熱キャップ5は、平面視において、周壁部5Aの先端部が、電池ブロック10の第1の表面10Aと回路基板4との間に挿入されるように配置して、第2の排出隙間11Bを通気隙間12に連通させている。周壁部5Aは、好ましくは、接触状態で回路基板4に積層する。ただ、周壁部は、非接触状態で回路基板に積層することもできる。また、周壁部は、回路基板の上面に積層することもできる。
さらに、図3及び図5に示す耐熱キャップ5は、閉塞プレート部5Xの周囲に連結されて、電池ブロック10の外周面に連結されるサブ周壁部5B、5Cを備えている。図に示す耐熱キャップは、電池ブロック10の外周面であって、第1の表面10Aと隣り合う第2の表面10B(図においては両側面)に連結されるサブ周壁部5Bと、第1の表面10Aと対向する第3の表面10C(図においては底面)に連結されるサブ周壁部5Cとを備えている。この耐熱キャップ5は、図3に示すように、サブ周壁部5Bを電池ブロック10の第2の表面10Bの外側に連結し、サブ周壁部5Cを電池ブロック10の第3の表面10Cの外側(下面)に連結している。すなわち、この耐熱キャップ5は、サブ周壁部5B、5Cを電池ブロック10の外周面に密着させる状態で、電池ブロック10の端部の定位置に連結している。このように、電池ブロック10の外周面に接触して連結されるサブ周壁部5B、Cを備える耐熱キャップ5は、第1の排出隙間11Aに噴射される排出ガスが電池ブロック10の両側及び下側に漏れるのを防止して、第1の排出隙間11Aに排出された排出ガスを第2の排出隙間11Bに確実に誘導できる。ただ、耐熱キャップ5は、必ずしも電池ブロック10の側面に連結されるサブ周壁部5Bと底面に連結されるサブ周壁部5Cの両方を設ける必要なく、いずれか一方のみを設けてもよい。
さらに、図5と図7に示す耐熱キャップ5は、隣接する電池セル1の端面1aの間に配置されて、第1の排出隙間11Aを各々の電池セル1の端面1aに区画する隔壁5Mを備えている。隔壁5Mは、閉塞プレート部5Xの内面に垂直に固定されて電池セル1の端面1aとの間に設けている第1の排出隙間11Aを区画する。隔壁5Mは、排出弁が開弁した異常電池セルの弁側端面と閉塞プレート部5Xとの間に設けている隙間と、隣接電池セルと閉塞プレート部5Xとの間の隙間を区画する。電池セル1は、たとえば内部ショートなどが原因で熱暴走すると、内圧が異常に上昇して排出弁が開弁する。この状態で、排出弁から噴出される排出ガスは異常な高温となる。高温の排出ガスが隣接電池セルを加熱すると、熱暴走が誘発される原因となる。隔壁5Mは、高温の排出ガスが隣接電池セルの端面に流動するのを阻止して、熱暴走の誘発を防止する。隔壁5Mは、異常電池セルから噴出される排出ガスが、隣接電池セル1を加熱するのを防止ために設けられるので、電池セル1の間で第1の排出隙間11Aを区画する。
隔壁5Mは、噴出される排出ガスが、隣の電池セル1の端面1aに流れるのを阻止して、排出ガスが隣の電池セル1を加熱するのを抑制する。隔壁5Mは、閉塞プレート部5Xから第1の排出隙間11Aに突出して設けられて、各々の電池セル1の端面1aの間に配置される。第1の排出隙間11Aに配置される隔壁5Mは、閉塞プレート部5Xの内面から突出する形状として、リード板3の表面に接触して第1の排出隙間11Aを電池セル1の間で分割している。
(回路基板4)
回路基板4は、電池セル1を充放電する保護回路を実装し、各々の電池セル1を保護回路に接続する。保護回路は、各々の電池セル1の電圧や電流を検出して、充放電する電流をコントロールして電池を保護しながら充放電する。また、回路基板4は、各電池ブロック10の正負の出力を入力するための出力リード部3xを接続し、あるいは各電池セル1の電圧を把握するために、中間電位を測定するための中間電位用リード部3yを接続し、あるいはまた各電池セル1の温度を検出するための温度検出部(図示せず)の電位を接続することもできる。温度検出部には、サーミスタなどが利用される。
回路基板4は、電池セル1を充放電する保護回路を実装し、各々の電池セル1を保護回路に接続する。保護回路は、各々の電池セル1の電圧や電流を検出して、充放電する電流をコントロールして電池を保護しながら充放電する。また、回路基板4は、各電池ブロック10の正負の出力を入力するための出力リード部3xを接続し、あるいは各電池セル1の電圧を把握するために、中間電位を測定するための中間電位用リード部3yを接続し、あるいはまた各電池セル1の温度を検出するための温度検出部(図示せず)の電位を接続することもできる。温度検出部には、サーミスタなどが利用される。
回路基板4は、耐熱キャップ5が配置される電池ブロック10の端面10Xと隣り合う第1の表面10A(図においては上面)に沿って配置される。回路基板4は、電池ブロック10の第1の表面10Aとの間に通気隙間12を形成する状態で配置される。この通気隙間12は、電池セル1の排出弁から排出されて、第1の排出隙間11Aと第2の排出隙間11Bを通過した排出ガスを通過させる隙間である。高温の排出ガスは、この通気隙間12を通過することで、電池ホルダ2や回路基板4設けられた部材に接触して、運動のエネルギーと熱エネルギーが減衰する。回路基板4は、通気隙間12の間隔が、例えば2.5mm~3.0mmとなるように電池ブロック10に固定される。
回路基板4は、電池ブロック10の第1の表面10Aの定位置に連結されて、通気隙間12が所定の間隔となるように形成される。図6の斜視図に示す電池ホルダ2は、回路基板4を定位置に連結するために、回路基板4と対向する対向面(図にあって上面)に嵌合凸部29を突出して設けている。嵌合凸部29は、対向面の四隅部に上向きに垂直姿勢に突出する中空柱状のボスで、電池ホルダ2のプラスチックと一体的に成形して設けられる。嵌合凸部29は、図4に示すように、回路基板4に設けた嵌合凹部4aを案内して、回路基板4を定位置に配置する。さらに、図6に示す電池ホルダ2は、対向面の複数カ所に、回路基板4を上に載せて上下位置を特定するための載せリブ31を一体的に成形して設けている。載せリブ31は、電池ホルダ2の対向面の両側の複数カ所に設けられており、回路基板4を第1の表面10Aに対して所定の間隔を離して定位置に配置する。さらに、図6の電池ブロック10は、電池ホルダ2の対向面に、回路基板4の係止フック30を一体的に成形して設けている。係止フック30は、図4に示すように、第1の表面10Aに配置された回路基板4を係止して定位置に配置する。回路基板4は、電池ブロック10の第1の表面10Aに突出する出力リード部3xと中間電位用リード部3yを回路基板4の貫通穴に挿入し、電池ホルダ2の嵌合凸部29を嵌合凹部4aに案内し、さらに底面を載せリブ31に載せて定位置に配置され、係止フック30に係止されて定位置に配置される。回路基板4は、係止フック30で定位置にセットされた状態で、出力リード部3xと中間電位用リード部3yを回路基板4の接続部にハンダ付けして、電池ブロック10を連結する。
さらに、図に示す回路基板4は、複数の電池ブロック10を連結して、各々の電池ブロック10を電気接続し、さらに物理的に連結する。図5の分解斜視図に示す電池パック100は、回路基板4を貫通する止ネジ18で回路基板4を2組の電池ブロック10にネジ止めして、さらに強固に複数の電池ブロック10を連結している。電池ブロック10は、止ネジ18をねじ込む固定ボス28を電池ホルダ2の対向面に設けている。
各々の電池ブロック10の出力リード部3xは、回路基板4を介して接続され、さらにコネクタ19に接続される。回路基板4は、表面に銅箔などの導電層(図示せず)を設けている。導電層は、出力リード部3xの接続部を電気接続して電池ブロック10を直列に接続し、また、出力リード部3xをコネクタ19のリード線16に接続する。さらに、導電層は、中間電位用リード部3yの接続部を回路基板4の保護回路に接続する。
以上のように、複数の電池ブロック10は、直線状に連結された状態で回路基板4に固定されて電池のコアパック20が形成される。図に示すコアパック20は、2つの電池ブロック10を直線状に連結しており、対向する電池ブロック10の間には絶縁プレート部6を配置して互いに絶縁すると共に、両方の端部には耐熱キャップ5を連結し、さらに、電池ブロック10の第1の表面10Aには回路基板4を連結している。絶縁プレート部6は、長手方向に並べて配置している電池ブロック10の間に配置される。この絶縁プレート部6は、絶縁性と断熱性に優れた材質、たとえばガラス繊維等の無機繊維を埋設して補強している繊維強化プラスチックであるPBT樹脂等を成形して制作される。ただ、絶縁プレート部には、マイカプレートなどの無機プレートを使用することもできる。
(外装ケース9)
外装ケース9は、図1~図4に示すように四角筒状の箱形に形成している。図の外装ケース9は、ケース本体9Aと閉塞部9Bに二分割されている。外装ケース9の内部には、図3に示すように、2組の電池ブロック10と、電池ブロック10の端部に配置している耐熱キャップ5と、電池ブロック10に連結している回路基板4とを備える電池のコアパック20を収納している。外装ケース9は、電池パック100で電力を供給する電気機器と接続するためのコネクタ19を外部に引き出している。外装ケース9は、絶縁性と断熱性に優れた材質、例えば、ポリカーボネートやABS、あるいはこれらを組み合わせた樹脂製とする。
外装ケース9は、図1~図4に示すように四角筒状の箱形に形成している。図の外装ケース9は、ケース本体9Aと閉塞部9Bに二分割されている。外装ケース9の内部には、図3に示すように、2組の電池ブロック10と、電池ブロック10の端部に配置している耐熱キャップ5と、電池ブロック10に連結している回路基板4とを備える電池のコアパック20を収納している。外装ケース9は、電池パック100で電力を供給する電気機器と接続するためのコネクタ19を外部に引き出している。外装ケース9は、絶縁性と断熱性に優れた材質、例えば、ポリカーボネートやABS、あるいはこれらを組み合わせた樹脂製とする。
以上の外装ケース9は、排出弁から排出される排出ガスを外部に排気する排気部15を有している。図に示す外装ケース9は、ケース本体9Aの端部であって、コネクタ19をケース外に引き出す部分を排気部15としている。この外装ケース9は、ケース本体9に開口窓9aを設けて、開口窓9aの開口縁部に設けた溝部9bにリード線16を案内してコネクタ19をケース外に引き出す構造としている。したがって、この外装ケースは、リード線が引き出される開口窓9a及び溝部9bがケース内の排出ガスを外部に排出するための排気部となる。この外装ケース9は、コネクタ19をケース本体9Aに開口された開口窓9aに通過させて、電池のコアパック20をケース本体9Aに収納した後、ケース本体9Aを蓋部9Bで閉塞し、開口窓9aの周縁部に設けた溝部9bにリード線16を通過させた後、ケース本体9Aの開口窓9aを閉塞蓋17で閉塞する。
さらに、図2に示す外装ケース9は、ケース本体9Aが回路基板4と対向する表面プレート部9xを備えている。この外装ケース9は、内部に電池のコアパック20を収納する状態で、回路基板4と表面プレート部9xとの間に、排出ガスの膨張隙間14が形成されている。この電池パック100は、通気隙間12を通過した排出ガスを膨張隙間14に通過させて排気部15から外部に排気する。このように、通気隙間12を通過した排出ガスを、膨張隙間14に通過させて排気部15から外部に排気する構造によると、通気隙間12でエネルギーが減衰した排出ガスを、膨張隙間14でさらにエネルギーを減衰させて外部に排気できる。
さらに、図2に示す外装ケース9は、電池ブロック10の第1の端部10aと対向する端部において、表面プレート部9xに排気部15を設けている。以上の構造の電池パック100は、電池ブロック10の第1の端部10aと対向する外装ケース9の端部において、表面プレート部9xに排気部15を設ける構造としながら、排気部15から排気される排出ガスのエネルギーを確実に減衰できる。この構造は、電池セル1の排出弁が配置される電池ブロック10の第1の端部10aと、表面プレート部9xに設ける排気部15とを接近して配置しながら、排出ガスを通気隙間12に迂回させることで確実にエネルギーを減衰させて排気できる。したがって、電池セル1の排出弁と外装ケース9の排気部15との直線距離を短くするにもかかわらず、排出ガスの経路を長くして確実にエネルギーを減衰できる。
なお、図3に示す外装ケースは、ケース本体9Aの表面プレート部の端部であって、電池ブロック10に設けた第1の端部10aと同じ側の端部に排気部15を設けているが、排気部15は、ケース本体9Aの表面プレート部9xの中央部や側面に設けても良い。この場合においても、電池ブロック10の第1の端部10aに配置された電池セル1の排出弁側端面1aから排出される排出ガスは、第1の排出隙間11Aと第2の排出隙間11Bからなる排出隙間11から通気隙間12を通過すると共に、通気隙間12から膨張隙間14を通過した後、排気部15から外部に排気される。このように、本発明の電池パックは、電池ブロック10と回路基板4の間に形成される通気隙間12に高温の排出ガスを通過させることで、排出ガスの経路を長くしながら、確実にエネルギーを減衰させて外部に排気できる。さらに、電池パック100は、電池ブロック10の第1の端部10a以外の位置に配置される電池セルの排出弁側端面においても、排出ガスの経路を長くして、エネルギーを減衰させながら外部に排気できる。
(放熱プレート8)
さらに、図4の電池パック100は、排出ガスのエネルギーをより効果的に減衰するために、コアパック20の下面に放熱プレート8を配置している。放熱プレート8は、外装ケース9の閉塞部9Bの内側であって電池ブロック10との間に配置されて、電池セル1から噴出される排出ガスのエネルギーを減衰させる。放熱プレート8は、外装ケース9よりも優れた熱伝導特性の板材が適している。この放熱プレート8は、衝突する排出ガスの熱エネルギーを吸収し、吸収した熱エネルギーを速やかに広い面積に拡散して外装ケース9に熱伝導し、外装ケース9が広い面積で熱エネルギーを外部に放熱する。
さらに、図4の電池パック100は、排出ガスのエネルギーをより効果的に減衰するために、コアパック20の下面に放熱プレート8を配置している。放熱プレート8は、外装ケース9の閉塞部9Bの内側であって電池ブロック10との間に配置されて、電池セル1から噴出される排出ガスのエネルギーを減衰させる。放熱プレート8は、外装ケース9よりも優れた熱伝導特性の板材が適している。この放熱プレート8は、衝突する排出ガスの熱エネルギーを吸収し、吸収した熱エネルギーを速やかに広い面積に拡散して外装ケース9に熱伝導し、外装ケース9が広い面積で熱エネルギーを外部に放熱する。
好ましい熱伝導特性の板材として、放熱プレート8には金属板が使用される。とくに、放熱プレート8はアルミニウム(アルミニウム合金を含む)板が適している。アルミニウム板は耐熱性と優れた熱伝導特性があって軽いので、軽量化しながら排出ガスの熱エネルギーを速やかに拡散して効率よく放熱できる。図4の電池パック100は、閉塞部9Bの長手方向に沿って配置された帯状の形状として、両端部をL字状に折曲して、耐熱キャップ5と外装ケース9との間に配置している。これにより、外装ケース9の両端部におけるケース連結部を内側からカバーして、排出弁から排出される排出ガスが、この部分から外部に排出されるのを防止している。
本発明の電池パックは、掃除機、電動工具、アシスト自転車等の携帯型電気機器の電源として利用される電池パックに、好適に使用される。
100…電池パック
1…電池セル
1a…端面
2…電池ホルダ
2A…第1の電池ホルダ
2B…第2の電池ホルダ
3…リード板
3x…出力リード部
3y…中間電位用リード部
4…回路基板
4a…嵌合凹部
5…耐熱キャップ
5X…閉塞プレート部
5A…周壁部
5B…第2の周壁部
5C…第3の周壁部
5M…隔壁
6…絶縁プレート部
8…放熱プレート
9…外装ケース
9A…ケース本体
9a…開口窓
9b…溝部
9x…表面プレート部
9B…閉塞部
10…電池ブロック
10a…第1の端部
10X…端面
10A…第1の表面
10B…第2の表面
10C…第3の表面
11…排出隙間
11A…第1の排出隙間
11B…第2の排出隙間
・BR>P2…通気隙間
13…非溶融プレート
14…膨張隙間
15…排気部
16…リード線
17…閉塞蓋
18…止ネジ
19…コネクタ
20…コアパック
21…保持部
22…保持筒
23…区画壁
25…挿入隙間
28…固定ボス
29…嵌合凸部
30…係止フック
31…載せリブ
1…電池セル
1a…端面
2…電池ホルダ
2A…第1の電池ホルダ
2B…第2の電池ホルダ
3…リード板
3x…出力リード部
3y…中間電位用リード部
4…回路基板
4a…嵌合凹部
5…耐熱キャップ
5X…閉塞プレート部
5A…周壁部
5B…第2の周壁部
5C…第3の周壁部
5M…隔壁
6…絶縁プレート部
8…放熱プレート
9…外装ケース
9A…ケース本体
9a…開口窓
9b…溝部
9x…表面プレート部
9B…閉塞部
10…電池ブロック
10a…第1の端部
10X…端面
10A…第1の表面
10B…第2の表面
10C…第3の表面
11…排出隙間
11A…第1の排出隙間
11B…第2の排出隙間
・BR>P2…通気隙間
13…非溶融プレート
14…膨張隙間
15…排気部
16…リード線
17…閉塞蓋
18…止ネジ
19…コネクタ
20…コアパック
21…保持部
22…保持筒
23…区画壁
25…挿入隙間
28…固定ボス
29…嵌合凸部
30…係止フック
31…載せリブ
Claims (8)
- 内圧が設定圧力を超えると開弁する排出弁を有する複数の電池セルを電池ホルダで定位置に配置してなる電池ブロックと、
前記電池ブロックの端部に連結してなる耐熱キャップと、
前記耐熱キャップが配置された前記電池ブロックの端面と隣り合う第1の表面に沿って配置されて、該電池ブロックに連結された回路基板と、
前記耐熱キャップと前記回路基板が連結された前記電池ブロックを収納してなり、前記排出弁から排出される排出ガスを外部に排気する排気部を有する外装ケースと、
を備える電池パックであって、
前記電池ブロックは、
前記耐熱キャップを連結してなる第1の端部に、前記電池セルの排出弁を設けてなる排出弁側端面を配置しており、
前記耐熱キャップは、
前記電池ブロックの端面との間に第1の排出隙間を形成してなる閉塞プレート部と、
前記閉塞プレート部の周囲に連結されて、前記電池ブロックの第1の表面との間に第2の排出隙間を形成してなる周壁部とを備えており、
前記回路基板は、
前記電池ブロックの第1の表面との間に通気隙間が形成されるように配置されると共に、前記第1の端部側の端縁部が前記周壁部に積層されて、前記通気隙間が前記第2の排出隙間に連通されており、
前記電池セルの排出弁から排出される排出ガスが、前記第1の排出隙間と前記第2の排出隙間からなる排出隙間から前記通気隙間を通過して、前記排気部から外部に排気されるようにしてなることを特徴とする電池パック。 - 請求項1に記載される電池パックであって、
前記耐熱キャップが、前記閉塞プレート部の周囲に連結されて、前記電池ブロックの外
周面に連結されるサブ周壁部を備えることを特徴とする電池パック。 - 請求項1または2に記載される電池パックであって、
前記耐熱キャップが、隣接する前記電池セルの端面の間に配置されて、前記第1の排出隙間を各々の電池セルの端面に区画する隔壁を備えることを特徴とする電池パック。 - 請求項1から3のいずれか一項に記載される電池パックであって、
前記外装ケースが、前記回路基板と対向する表面プレート部を備えると共に、前記表面プレート部と前記回路基板との間に、排出ガスの膨張隙間が形成されており、
前記通気隙間を通過した排出ガスを前記膨張隙間に通過させて前記排気部から外部に排気することを特徴とする電池パック。 - 請求項4に記載される電池パックであって、
前記外装ケースが、前記電池ブロックの第1の端部と対向する端部において、前記表面プレート部に前記排気部を設けてなることを特徴とする電池パック。 - 請求項1から5のいずれか一項に記載される電池パックであって、
前記耐熱キャップが、無機質材を樹脂に埋設して補強している強化プラスチック製であることを特徴とする電池パック。 - 請求項1から6のいずれか一項に記載される電池パックであって、
前記電池セルが円筒形電池で、複数の円筒形電池が端面を同一平面に配置し、かつ平行姿勢で前記電池ホルダに配置されて電池ブロックを構成してなることを特徴とする電池パック。 - 請求項7に記載する電池パックであって、
前記電池セルがリチウムイオン電池であることを特徴とする電池パック。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080048379.7A CN114080718B (zh) | 2019-07-29 | 2020-06-24 | 电池组 |
JP2021536836A JPWO2021019970A1 (ja) | 2019-07-29 | 2020-06-24 | |
US17/630,730 US20220263185A1 (en) | 2019-07-29 | 2020-06-24 | Battery pack |
EP20847184.7A EP4007007A4 (en) | 2019-07-29 | 2020-06-24 | BATTERY PACK |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019139102 | 2019-07-29 | ||
JP2019-139102 | 2019-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021019970A1 true WO2021019970A1 (ja) | 2021-02-04 |
Family
ID=74228586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/024743 WO2021019970A1 (ja) | 2019-07-29 | 2020-06-24 | 電池パック |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220263185A1 (ja) |
EP (1) | EP4007007A4 (ja) |
JP (1) | JPWO2021019970A1 (ja) |
CN (1) | CN114080718B (ja) |
WO (1) | WO2021019970A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023120435A1 (ja) * | 2021-12-24 | 2023-06-29 | パナソニックホールディングス株式会社 | 電池パック |
WO2023120436A1 (ja) * | 2021-12-24 | 2023-06-29 | パナソニックホールディングス株式会社 | 電池パック |
WO2023166847A1 (ja) * | 2022-03-04 | 2023-09-07 | パナソニックエナジ-株式会社 | 電池パック |
WO2024116646A1 (ja) * | 2022-11-30 | 2024-06-06 | パナソニックエナジー株式会社 | 電池パック |
US12113378B2 (en) | 2020-06-02 | 2024-10-08 | Inventus Power, Inc. | Large-format battery management system with state of charge balancing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022213649A1 (de) * | 2022-12-14 | 2024-06-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Energiespeichereinheit für einen elektrischen Verbraucher |
CN116845474B (zh) * | 2023-09-01 | 2024-01-26 | 宁德时代新能源科技股份有限公司 | 电池单体、电池及用电设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162795A (ja) | 1996-11-28 | 1998-06-19 | Shin Kobe Electric Mach Co Ltd | パック電池 |
JP2001196039A (ja) | 2000-01-14 | 2001-07-19 | Tookado:Kk | 電池ボックスのガス抜き構造 |
WO2014065110A1 (ja) * | 2012-10-25 | 2014-05-01 | 日産自動車株式会社 | 電池モジュールのガス排出構造 |
WO2014156001A1 (ja) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | 電池パック |
WO2018123573A1 (ja) * | 2016-12-27 | 2018-07-05 | パナソニックIpマネジメント株式会社 | 電池モジュール |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3728254B2 (ja) * | 2002-01-31 | 2005-12-21 | 三洋電機株式会社 | 組電池 |
JP4358245B2 (ja) * | 2007-03-09 | 2009-11-04 | レノボ・シンガポール・プライベート・リミテッド | 電池パックおよび携帯式電子機器 |
JP5334420B2 (ja) * | 2008-01-16 | 2013-11-06 | 三洋電機株式会社 | バッテリシステム |
JP2010108788A (ja) * | 2008-10-30 | 2010-05-13 | Sanyo Electric Co Ltd | バッテリシステム |
EP2463331A4 (en) * | 2009-08-06 | 2013-08-21 | Sumitomo Chemical Co | POROUS FILM, SEPARATOR FOR BATTERIES AND BATTERY |
JP5507173B2 (ja) * | 2009-09-25 | 2014-05-28 | パナソニック株式会社 | 電池モジュールとそれを用いた電池パック |
JP2013214354A (ja) * | 2010-07-30 | 2013-10-17 | Panasonic Corp | 電池モジュール |
JP5651444B2 (ja) * | 2010-11-30 | 2015-01-14 | パナソニックIpマネジメント株式会社 | 電池モジュール |
JP5803513B2 (ja) * | 2011-09-29 | 2015-11-04 | ソニー株式会社 | 電池パック、蓄電システム、電子機器および電動車両 |
JP5903607B2 (ja) * | 2011-11-11 | 2016-04-13 | パナソニックIpマネジメント株式会社 | 電池パック |
CN109417139B (zh) * | 2016-06-30 | 2021-07-23 | 三洋电机株式会社 | 电池块 |
DE102016118753A1 (de) * | 2016-10-04 | 2018-04-05 | Johnson Controls Advanced Power Solutions Gmbh | Energiespeichersystem |
CN113302774B (zh) * | 2019-01-25 | 2024-03-29 | 松下新能源株式会社 | 电池组 |
-
2020
- 2020-06-24 US US17/630,730 patent/US20220263185A1/en active Pending
- 2020-06-24 JP JP2021536836A patent/JPWO2021019970A1/ja active Pending
- 2020-06-24 WO PCT/JP2020/024743 patent/WO2021019970A1/ja unknown
- 2020-06-24 CN CN202080048379.7A patent/CN114080718B/zh active Active
- 2020-06-24 EP EP20847184.7A patent/EP4007007A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162795A (ja) | 1996-11-28 | 1998-06-19 | Shin Kobe Electric Mach Co Ltd | パック電池 |
JP2001196039A (ja) | 2000-01-14 | 2001-07-19 | Tookado:Kk | 電池ボックスのガス抜き構造 |
WO2014065110A1 (ja) * | 2012-10-25 | 2014-05-01 | 日産自動車株式会社 | 電池モジュールのガス排出構造 |
WO2014156001A1 (ja) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | 電池パック |
WO2018123573A1 (ja) * | 2016-12-27 | 2018-07-05 | パナソニックIpマネジメント株式会社 | 電池モジュール |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12113378B2 (en) | 2020-06-02 | 2024-10-08 | Inventus Power, Inc. | Large-format battery management system with state of charge balancing |
WO2023120435A1 (ja) * | 2021-12-24 | 2023-06-29 | パナソニックホールディングス株式会社 | 電池パック |
WO2023120436A1 (ja) * | 2021-12-24 | 2023-06-29 | パナソニックホールディングス株式会社 | 電池パック |
WO2023166847A1 (ja) * | 2022-03-04 | 2023-09-07 | パナソニックエナジ-株式会社 | 電池パック |
WO2024116646A1 (ja) * | 2022-11-30 | 2024-06-06 | パナソニックエナジー株式会社 | 電池パック |
Also Published As
Publication number | Publication date |
---|---|
EP4007007A1 (en) | 2022-06-01 |
EP4007007A4 (en) | 2023-03-08 |
CN114080718B (zh) | 2023-08-25 |
US20220263185A1 (en) | 2022-08-18 |
JPWO2021019970A1 (ja) | 2021-02-04 |
CN114080718A (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021019970A1 (ja) | 電池パック | |
WO2021020003A1 (ja) | 電池パック | |
CN112020783B (zh) | 电池组 | |
JP7418405B2 (ja) | 電池モジュール | |
WO2020188949A1 (ja) | 電池モジュール | |
JPWO2020153016A1 (ja) | パック電池 | |
EP3660945B1 (en) | Power supply device | |
US20130040173A1 (en) | Battery pack | |
JP6991748B2 (ja) | 電池モジュール | |
TW202215698A (zh) | 電池模組、包括其之電池組以及車輛 | |
JP2011003527A (ja) | 二次電池 | |
JP7461722B2 (ja) | 電源装置 | |
JP2021086679A (ja) | 電池パック | |
CN114156530A (zh) | 一种锂离子电池组件及浇封方法 | |
WO2021020329A1 (ja) | パック電池 | |
WO2020195423A1 (ja) | 電源装置 | |
JP7216079B2 (ja) | 電源装置 | |
WO2021020328A1 (ja) | パック電池 | |
WO2024004504A1 (ja) | 電池パック | |
WO2023171187A1 (ja) | 電池パック | |
KR20230063235A (ko) | 난연성이 향상된 커넥터를 적용한 배터리 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021536836 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020847184 Country of ref document: EP Effective date: 20220228 |