WO2021019896A1 - Carboxymethyl cellulose or salt thereof, and composition thereof - Google Patents

Carboxymethyl cellulose or salt thereof, and composition thereof Download PDF

Info

Publication number
WO2021019896A1
WO2021019896A1 PCT/JP2020/021609 JP2020021609W WO2021019896A1 WO 2021019896 A1 WO2021019896 A1 WO 2021019896A1 JP 2020021609 W JP2020021609 W JP 2020021609W WO 2021019896 A1 WO2021019896 A1 WO 2021019896A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
cmc
water
carboxymethyl cellulose
particles
Prior art date
Application number
PCT/JP2020/021609
Other languages
French (fr)
Japanese (ja)
Inventor
邦朗 土井
真也 小野
Original Assignee
ダイセルファインケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルファインケム株式会社 filed Critical ダイセルファインケム株式会社
Priority to CN202080044736.2A priority Critical patent/CN113993904B/en
Priority to KR1020217040239A priority patent/KR20220042057A/en
Publication of WO2021019896A1 publication Critical patent/WO2021019896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • carboxymethyl cellulose hereinafter, also simply referred to as CMC
  • aqueous composition containing CMC or a salt thereof and water, and CMC or a salt thereof are prepared into granules showing a predetermined particle size distribution. It relates to a method for improving solubility in water.
  • CMC is one of the typical water-soluble polymer materials, and is used in a wide range of applications such as foods, cosmetics, pharmaceuticals, and negative electrode materials for lithium-ion batteries.
  • CMC is often used in the form of an aqueous solution, but when mixed with water, maco (aggregates or adhesive agglomerates) is likely to occur, and the penetration of water into the maco is hindered. It takes a lot of time to dissolve the CMC, and the productivity of the product cannot be improved. Therefore, a method for efficiently dissolving CMC in a short time is being studied.
  • Patent Document 1 a predetermined amount of water-soluble salt and water are added to a CMC sodium salt having a purity of 95% or more (hereinafter, also simply referred to as CMC-Na). It is disclosed that CMC-Na obtained by granulation and sieving exhibits water-easiness dispersibility.
  • a predetermined amount of anhydrous sodium sulfate or an aqueous solution thereof, salt, a water-soluble salt such as sodium L-glutamate, and water are added to CMC powder having a purity of 99%, granulated and sieved to obtain 20 meshes. CMC granules that have passed but not passed 80 mesh have been prepared.
  • Patent Document 2 a solvent-water-containing slurry of CMC alkali salt is atomized by flowing down on a rotating disk under a predetermined gas atmosphere, or by spraying from a nozzle to atomize. Discloses a method of spray-drying and granulating.
  • the obtained CMC powder has excellent solubility because 80% or more of the whole is in the range of 70 to 200 ⁇ m in diameter and the proportion of fine powder having a particle size of 20 ⁇ m or less is as small as 2.0% or less of the whole. Is described.
  • Patent Document 1 the use is limited because it may take a long time to dissolve because it contains relatively large particles that pass through 20 meshes, and the purity is lowered by the addition of a water-soluble salt which is an essential component. May be done.
  • Patent Document 2 although the proportion of fine powder of 20 ⁇ m or less is small, the particles of the atomized CMC solution may become small depending on the conditions such as the pressure of spray injection, and the particle size of the obtained CMC powder may become relatively small. In addition, it may take time to dissolve, probably because the proportion of particles having a relatively small particle size is large.
  • an object of the present disclosure is to prepare a CMC or a salt thereof that can be efficiently dissolved in water (excellent in quick solubility) even with gentle stirring, an aqueous composition thereof, and the CMC or a salt thereof.
  • the purpose is to provide a method for improving water solubility.
  • Another object of the present disclosure is a CMC or a salt thereof that is efficiently soluble in water even if the viscosity in an aqueous solution is high (or the molecular weight of the CMC or a salt thereof is large), and an aqueous composition thereof, and the CMC.
  • a method of preparing a salt thereof to improve water solubility is provided.
  • Yet another object of the present disclosure is to provide a CMC or a salt thereof capable of improving the productivity of a negative electrode for a lithium ion battery, an aqueous composition thereof, and a method for preparing the CMC or a salt thereof to improve water solubility. To do.
  • carboxymethyl cellulose having a predetermined particle size distribution (or particle size distribution) or a salt thereof can be efficiently dissolved in water, and the present invention has been developed. completed.
  • the carboxymethyl cellulose of the present disclosure or a salt thereof is granular, and in the volume-based cumulative distribution (or cumulative frequency distribution) of the particle size, the cumulative 10%, the cumulative 50%, and the cumulative 90% from the small particle size side.
  • the particle sizes are D10, D50 and D90, respectively, D10 is about 90 ⁇ m or more, D50 is about 120 to 470 ⁇ m, and D90 is about 500 ⁇ m or less.
  • the D10 may be about 100 ⁇ m or more, the D50 may be about 150 to 200 ⁇ m, and the D90 may be about 250 ⁇ m or less.
  • the proportion of particles having a roundness of 50% or more may be about 90% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is the whole. On the other hand, it may be about 70% by volume or more. Further, the proportion of particles having a roundness of 50% or more may be about 95% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is about 80% by volume or more with respect to the whole. It may be.
  • the viscosity of the CMC or its salt in a 1% by mass aqueous solution may be about 1500 to 3000 mPa ⁇ s at a temperature of 25 ° C.
  • the CMC or a salt thereof may be an electrode material.
  • the present disclosure includes an aqueous composition containing the CMC or a salt thereof and water, and a method for producing the aqueous composition by mixing the CMC or a salt thereof with water, and using the CMC or a salt thereof as described above. Also includes methods of preparing in granular form to improve solubility in water.
  • CMC or a salt thereof has a predetermined particle size distribution, the formation of maco can be effectively suppressed, and it can be efficiently dissolved in water even with gentle stirring. Further, even if the viscosity of the aqueous solution is high (or the molecular weight of CMC or a salt thereof is large), it can be efficiently dissolved in water in a short time. Further, when the CMC or a salt thereof of the present disclosure is used for the negative electrode of a lithium ion battery, the CMC or a salt thereof dissolves efficiently, so that the step of preparing an aqueous composition (or a slurry-like composition) for forming an electrode is involved. Since the time can be shortened and the generation of maco, which causes product defects, can be suppressed, the productivity (or yield) of the lithium ion battery can be effectively improved.
  • FIG. 1 is a graph showing changes in the maximum torque achievement rate of the stirrer in measuring the dissolution time of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples.
  • FIG. 2 shows the volume-based particle size distribution of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples.
  • FIG. 3 shows the volume-based roundness distribution of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples.
  • CMC or its salt The granular CMCs or salts thereof of the present disclosure exhibit a predetermined particle size distribution. That is, D10 can be selected from a range of about 90 ⁇ m or more (for example, 95 to 250 ⁇ m), for example, 100 ⁇ m or more (for example, 105 to 200 ⁇ m), preferably 110 ⁇ m or more (for example, 115 to 150 ⁇ m), and more preferably 120 ⁇ m or more (for example, 120 to 140 ⁇ m). , Preferably about 120 to 130 ⁇ m).
  • D50 can be selected from a range of about 120 to 470 ⁇ m (for example, 130 to 400 ⁇ m), for example, 140 to 350 ⁇ m (for example, 155 to 300 ⁇ m), preferably 145 to 250 ⁇ m (for example, 150 to 200 ⁇ m), and more preferably 160 to 190 ⁇ m (for example). For example, it may be about 165 to 185 ⁇ m, preferably 170 to 180 ⁇ m).
  • D90 can be selected from a range of about 500 ⁇ m or less (for example, 180 to 400 ⁇ m), for example, 450 ⁇ m or less (for example, 190 to 400 ⁇ m), preferably 350 ⁇ m or less (for example, 200 to 300 ⁇ m), and more preferably 250 ⁇ m or less (for example, 210 to 240 ⁇ m, preferably 210 to 240 ⁇ m). May be about 220 to 230 ⁇ m).
  • D10, D50 and D90 are volume-based particle diameters and can be measured by the method described in Examples described later.
  • the particle size of CMC or a salt thereof preferably has a narrow distribution width and high uniformity. Therefore, for D10, D50 and D90, for example, D10 is 90 ⁇ m or more, D50 is 130 to 400 ⁇ m, and D90 is 450 ⁇ m. It may be less than or equal to; preferably D10 is 100 ⁇ m or more, D50 is 140 to 350 ⁇ m, and D90 may be 450 ⁇ m or less; more preferably D10 is 100 ⁇ m or more and D50 is 150 to 200 ⁇ m.
  • D90 may be 250 ⁇ m or less; among them, D10 may be 110 ⁇ m or more, D50 may be 160 to 190 ⁇ m, and D90 may be 250 ⁇ m or less; particularly preferably D10 is 120 ⁇ m or more and D50. May be 165 to 185 ⁇ m and D90 may be 210 to 240 ⁇ m.
  • the mode diameter (most frequent diameter or most frequent particle diameter) in the particle size distribution of CMC or a salt thereof can be selected from the range of, for example, about 120 to 470 ⁇ m (for example, 130 to 400 ⁇ m), and for example, 140 to 350 ⁇ m (for example, 145 to 300 ⁇ m). ), It may be preferably about 150 to 250 ⁇ m (for example, 150 to 200 ⁇ m), and more preferably about 160 to 190 ⁇ m.
  • the CMC or salt thereof of the present disclosure is uniformed to a well-balanced particle size that can increase the contact area with water while suppressing the formation of agglomerates between particles, so that the dissolution time is significantly increased. Can be shortened.
  • the shape of the particles of CMC or its salt is preferably substantially spherical.
  • the dissolution time can be greatly shortened probably because the balance between the suppression of particle aggregation and the increase in the contact area with water is good. Therefore, the CMC or a salt thereof of the present disclosure preferably has a large proportion of particles having a high roundness (or area circularity). It should be noted that although the particle size of CMC or its salt is usually discussed because of its powdery appearance, its roundness has not been paid attention to at all.
  • the proportion of particles having a roundness of 50% or more is, for example, 85% by volume or more, preferably 90% by volume or more (for example, 90 to 100% by volume), more preferably 95% by volume, based on the whole particles. It may be about% or more (for example, 95 to 100% by volume).
  • the proportion of particles having a roundness of 70% or more is, for example, 50% by volume or more, preferably 60% by volume or more (for example, 70 to 100% by volume), and more preferably 75% by volume or more (for example) with respect to the entire particles. It may be about 80 to 100% by volume).
  • the proportion of the particles having a roundness of 90% or more is, for example, 5% by volume or more (for example, 10 to 100% by volume), preferably 13% by volume or more (for example, 15 to 100% by volume) with respect to the whole particles. There may be.
  • roundness is defined as follows.
  • Roundness [%] 4 ⁇ ⁇ A / P ⁇ 100 (In the equation, ⁇ indicates the pi, A indicates the area of the particle (projected area), and P indicates the peripheral length of the particle.)
  • the distribution of roundness is a volume-based distribution, and can be measured by the method described in Examples described later.
  • C50 is about 90% by volume or more with respect to the entire particles
  • C70 is , about 70% by volume or more with respect to the whole particle; preferably, C50 is about 95% by volume or more with respect to the whole particle, and C70 is about 80% by volume or more with respect to the whole particle. May; more preferably, C50 is about 95% by volume or more with respect to the whole particle, C70 is about 80% by volume or more with respect to the whole particle, and C90 is about 15% by volume with respect to the whole particle. It may be more than a degree. If the proportion of particles with low roundness is too large, the dissolution time may not be shortened. Even if C90 is relatively low, if the values of C70 and C50 are high, it seems that the solubility can be effectively improved.
  • the average degree of substitution (etherification degree or DS) of CMC or a salt thereof can be selected from the range of, for example, about 0.1 to 3 (for example, 0.3 to 2.5), and preferably 0.4 to 2 (for example, 0). .5 to 1.5), more preferably 0.6 to 1.3 (eg 0.7 to 1.2), especially 0.8 to 1.1 (eg 0.85 to 1, preferably 0.85) It may be about 0.95). If the degree of substitution is too low, the solubility or immediate solubility may decrease, and if the degree of substitution is too high, there are many water-soluble parts and maco is less likely to occur, but when used as an electrode material, it is hydrophobic with the active material. Since the interaction is less likely to occur, the strength of the coating film may decrease. In addition, in this specification and claims, the average degree of substitution (the degree of etherification) can be measured by the method described below.
  • a 1 is the consumption of 0.05 mol / L sulfuric acid (mL) consumed by the bound alkali in 1 g of the sample converted to a dry matter, and is represented by the following formula.
  • a 1 (B 1 -S 1 ) ⁇ F 1 / (W 1 ⁇ (1-M 1/100)) - 0.1mol / L sodium hydroxide required alkalinity (wherein, B 1 is for a blank test The consumption of the aqueous solution (mL), S 1 is the consumption of the 0.1 mol / L sodium hydroxide aqueous solution (mL) required for the actual test, W 1 is the sample amount (g), and M 1 is the sample amount (g). It is the dry weight loss (mass%) of the sample, and F 1 is a factor of 0.1 mol / L sodium hydroxide aqueous solution)].
  • the drying weight loss was measured according to JIS P 8203: 2010 (ISO 638: 2008), "Paper, paperboard and pulp-measurement method of absolute dryness-method by dryer”. Further, the alkalinity can be measured by the method described below.
  • Alkalinity (B 2 -S 2) ⁇ F 2 / (W 2 ⁇ (1-M 2/100))
  • B 2 is the consumption amount (mL) of the 0.1 mol / L sodium hydroxide aqueous solution required for the blank test
  • S 2 is the consumption amount of the 0.1 mol / L sodium hydroxide aqueous solution required for the actual test.
  • ML the sample amount
  • M 2 is the dry weight loss (mass%) of the sample
  • F 2 is the factor of the 0.1 mol / L sodium hydroxide aqueous solution).
  • the dry weight loss can be measured in the same manner as the method described in the section of the average degree of substitution.
  • CMC salt examples include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, and ammonium salts. These salts may be contained alone or in combination of two or more. Of these salts, sodium salts or ammonium salts are usually used, and sodium salts are preferable. CMC or a salt thereof may be contained in combination, but usually, a salt of CMC (preferably CMC-Na) is often used alone.
  • the viscosity of a 1% by mass aqueous solution of CMC or a salt thereof at a temperature of 25 ° C. may be selected from a range of, for example, about 10 to 20000 mPa ⁇ s (for example, 100 to 15000 mPa ⁇ s), for example, 1000 to 1000. 10000 mPa ⁇ s (eg 1100-8000 mPa ⁇ s), preferably 1200-6000 mPa ⁇ s (eg 1300-5000 mPa ⁇ s), more preferably 1400-4000 mPa ⁇ s (eg 1500-3000 mPa ⁇ s), especially 1600-2000 mPa ⁇ s. It may be about s (for example, 1700 to 1900 mPa ⁇ s). If the viscosity is too low, it may not be usable, especially in applications such as electrode materials.
  • CMC or its salt when used as a negative electrode material (thickening agent, dispersion stabilizer, binder (binder or binder), etc.) of a lithium-ion battery, CMC or its salt itself becomes a resistor, so if a large amount is added, the battery Since the performance is deteriorated, a high-viscosity product is required so that a desired function (thickening effect, etc.) can be exhibited even with a small amount of addition.
  • CMC or a salt thereof which has few undissolved substances (such as maco) that cause product defects and can be quickly dissolved in a short time.
  • the viscosity can be measured by the method described below.
  • viscosity bottle Take 100 mL of ion-exchanged water in a dissolving bottle for viscosity measurement (hereinafter referred to as "viscosity bottle"), add a separately weighed sample (2.50 x X 3 ) g little by little so as not to form a maco, and use a glass rod. Lightly crush. After extensive swelling, by adding the ion exchange water correction adding water V 3 (mL) was calculated by the following equation, to completely dissolve with occasional stirring with a glass rod. After dissolution, defoam under reduced pressure, place the viscosity bottle in a constant temperature water tank until the liquid temperature reaches 25 ° C., stir the sample solution uniformly, and then measure at 60 rpm with a B-type viscometer.
  • the dry weight loss can be measured in the same manner as the method described in the section of the average degree of substitution.
  • the dissolution time for preparing a 0.8% by mass aqueous solution of CMC or a salt thereof is, for example, 10 minutes or less (for example, 10 seconds to 8 minutes), preferably 6 minutes or less (for example, 30) at a temperature of 25 ° C. and a stirring speed of 300 rpm. Seconds to 5 minutes), more preferably 4 minutes or less (for example, 1 to 3 minutes), particularly 3 minutes or less (for example, 1.5 to 2.5 minutes).
  • the dissolution time can be measured by the method described in Examples described later.
  • the method for producing CMC or a salt thereof of the present disclosure is not particularly limited. Usually, it often includes at least a granulation step of granulating CMC or a salt thereof.
  • the granulation method is a conventional granulation method, for example, rolling granulation, fluidized bed granulation, stirring granulation (mixing / stirring granulation), crushing or crushing granulation (crushing / crushing granulation), compression.
  • Methods such as granulation (compression molding), extrusion granulation, injection granulation (melt granulation), and spray drying granulation can be used.
  • the granulation method may be a dry method, but usually a wet method is often used. Of these granulation methods, stirring granulation is often used.
  • the granulation may be carried out under normal pressure, reduced pressure or pressure.
  • a binder may be added to CMC or a salt thereof depending on the granulation method or the like.
  • the binder may be an organic solvent, but is usually water (eg, pure water).
  • water for example, pure water
  • a binder may be spray-sprayed while stirring CMC or a salt thereof with a granulator (or a stirrer).
  • the amount of the binder (particularly water) sprayed is, for example, 10 to 1000 parts by mass (for example, 30 to 800 parts by mass), preferably 50 to 500 parts by mass (for example, 60 to 300 parts by mass) with respect to 100 parts by mass of CMC or a salt thereof. Parts), more preferably about 70 to 200 parts by mass (for example, 80 to 100 parts by mass).
  • Granular CMC or salts thereof obtained in the granulation step are often dried in the drying step to adjust the residual amount of the binder (particularly water).
  • the drying method may be natural drying, or may be heated and / or dried under reduced pressure. Usually, it is often heated and dried, and the heating temperature may be, for example, 50 to 200 ° C. (for example, 60 to 150 ° C.), preferably about 70 to 100 ° C. (for example, 80 to 90 ° C.).
  • the residual amount of the binder may be, for example, about 30% by mass or less (for example, 20% by mass or less), preferably 15% by mass or less (for example, 10% by mass) with respect to the whole granular CMC or its salt after drying.
  • the following more preferably about 5% by mass or less (for example, 1% by mass or less) may be adjusted.
  • the obtained CMC or a salt thereof may be adjusted in particle size by pulverizing in a pulverization step, if necessary.
  • a conventional crusher for example, a roll crusher, a cone crusher, a cutter mill, a stamp mill, a self-made crusher, a stone mill type crusher, a dairy bowl, a raft machine, a ring mill, or the like, which can crush to several hundred ⁇ m.
  • Or medium crusher Roller mill, jet mill, high-speed rotary mill (hammer mill, pin mill, etc.), container-driven crusher (ball mill, tube mill, rod mill, etc.
  • a crusher fine crusher or ultra-fine crusher capable of crushing to several hundred ⁇ m or less such as a mold crusher (atwriter, bead mill, etc.) can be used. These crushers can also be used alone or in combination of two or more. Of these crushers, medium crushers such as cutter mills are often used.
  • the rotation speed may be, for example, 100 to 10000 rpm (for example, 1000 to 100,000 rpm), preferably 5000 to 50000 rpm (for example, 10000 to 30000 rpm), and more preferably about 15000 to 25000 rpm.
  • the crushing time may be selected according to the type of the crusher and the like, and is, for example, about 10 seconds to 1 hour (for example, 30 seconds to 30 minutes), preferably about 1 to 10 minutes (for example, 1 to 3 minutes). You may.
  • the obtained granular CMC or a salt thereof is often classified (or sieved) in a classification step to adjust the particle size (and roundness) to a desired value.
  • the classification method is a conventional method, for example, classification using the principle of fluid dynamics [dry classification (gravity classification, inertia classification, centrifugal classification, etc.), wet classification (sedimentation classification, mechanical classification, hydraulic classification, centrifugal classification, etc.)] , Sieving, etc. These classification methods can also be used alone or in combination of two or more. Of these, they are usually classified by sieving.
  • CMC or its salt is usually classified by stacking sieves on the sieve with the smallest opening among multiple sieves with different opening so that the opening becomes larger in sequence. ..
  • the particles to be sorted by sieving pass through a sieve having a mesh size of, for example, 500 ⁇ m, preferably 400 ⁇ m, more preferably 300 ⁇ m, still more preferably 200 ⁇ m, particularly preferably about 180 ⁇ m, and the mesh size is, for example, 90 ⁇ m, preferably 90 ⁇ m.
  • the particles may not pass through a sieve of about 100 ⁇ m.
  • the present disclosure also includes a method of adjusting the particle size distribution (and roundness) of CMC or a salt thereof within a predetermined range by the above method to improve the solubility in water.
  • the present disclosure also includes an aqueous composition (liquid, slurry-like or paste-like composition) containing the CMC or a salt thereof and water.
  • an aqueous composition liquid, slurry-like or paste-like composition
  • the ratio of CMC or its salt to the total amount of CMC or its salt and water is, for example, 0.01 to 10% by mass (for example, 0.1 to 5% by mass), preferably 0.3 to 2% by mass.
  • % (For example, 0.5 to 1.5% by mass), more preferably about 0.6 to 1% by mass (for example, 0.7 to 0.9% by mass).
  • Water is usually pure water.
  • the pH of the aqueous composition may be acidic, but is usually neutral or alkaline (particularly neutral).
  • the aqueous composition may contain CMC or a salt thereof and other components different from water.
  • CMC or a salt thereof is used as an electrode material (such as a thickener and / or a dispersion stabilizer)
  • the aqueous composition is an active material (eg, natural graphite, artificial graphite, hard carbon, MCMB (mesophase microspheres)).
  • active material eg, natural graphite, artificial graphite, hard carbon, MCMB (mesophase microspheres)
  • MCMB meophase microspheres
  • other carbon materials lithium titanate, etc.
  • binders styrene butadiene copolymers, etc.
  • the aqueous composition can be prepared by mixing the CMC or a salt thereof, the water, and if necessary, the other components.
  • the order and method of mixing are not particularly limited, but from the viewpoint of effectively suppressing the production of maco, CMC or a salt thereof is added while stirring water using a stirrer or the like (particularly, slowly or little by little). It is preferable to do so.
  • the stirring speed (rotational speed of the stirrer or stirring blade) when adding CMC or a salt thereof to water is, for example, 10 to 2000 rpm (for example, 100 to 1500 rpm), preferably 500 to 1000 rpm (for example, 600 to 900 rpm), more preferably. May be about 650 to 850 rpm (for example, 700 to 800 rpm). Further, after the addition of CMC or a salt thereof is completed, it is usually stirred until the dissolution is completed (or the stirring torque is stable).
  • the stirring speed after the addition is completed may be equal to or higher than the stirring speed at the time of addition, but may be stirred slowly, for example, 10 to 1000 rpm (for example, 50 to 800 rpm), preferably 100 to 500 rpm (for example, 150). It may be about 450 rpm), more preferably about 200 to 400 rpm (for example, 250 to 350 rpm). In the present disclosure, the dissolution time can be effectively shortened even with gentle stirring.
  • the shape of the stirring blade of the stirrer is, for example, a turbine blade (for example, an edged turbine blade, a flat or inclined turbine blade (fan turbine blade, a disc turbine blade, etc.), etc.), a paddle blade (for example, a flat paddle blade, an inclined blade, etc.).
  • Paddle wings, etc. propeller wings, Faudler wings, anchor wings (eg, gate wings, etc.), ribbon wings (or helical ribbon wings, etc.) (eg, multi-row ribbon wings such as double ribbon wings, single ribbon wings, etc.) Be done.
  • These stirring blades can be used alone or in combination of two or more. Of these stirring blades, ribbon blades are preferable.
  • the helical ribbon type stirring blade has a ribbon width of 3 mm, a height of 80 mm, a width (width in the direction perpendicular to the rotation axis): 40 mm, a number of blades: single, and the number of ribbon spirals: 3 times (height direction).
  • the shape was 80 mm and the ribbon made three turns).
  • a 0.8 mass% amount (about 1.77 g) of the sample was slowly added over 5 to 10 seconds.
  • the stirring speed was changed to 300 rpm and the measurement was started, and the time required for the torque value to stabilize at a predetermined value was defined as the dissolution time.
  • the maximum torque achievement rate was calculated as a ratio to the torque value based on the torque value stable at the predetermined value (100%).
  • the particle size distribution is a volume-based distribution
  • the roundness distribution is a volume-based distribution.
  • the roundness is calculated as follows.
  • Roundness [%] 4 ⁇ ⁇ A / P ⁇ 100 (In the equation, ⁇ indicates the pi, A indicates the area of the particle (projected area), and P indicates the peripheral length of the particle.)
  • Example 1 shows the relationship between the mesh of the sieve used and the opening, and Table 2 and FIGS. 1 to 3 show the evaluation results.
  • "pass” and “on” indicate that they passed or did not pass through the sieve. Therefore, for example, "30 mesh pass 83 mesh on product” of Example 1 is a 30 mesh sieve. It means that it is CMC-Na that has passed through and has not passed through the sieve of 83 mesh.
  • “Example 1 + Example 2 (combination)” shown in FIGS. 2 to 3 is a result of mixing CMC-Na obtained in Examples 1 and 2 (that is, 30 mesh pass166 mesh on product) and measuring. Is shown.
  • carboxymethyl cellulose of the present disclosure or a salt thereof can be efficiently dissolved even with gentle stirring, various uses such as pharmaceuticals (for example, tablets, slurries, swallows (such as syrup)), poultices, cooling sheets, etc. X-ray contrast agents, artificial tooth stabilizers, etc.), cosmetics (eg, hair care products (shampoo, conditioner, etc.), skin care products or basic cosmetics (gel, etc.), hair dyes, etc.), daily necessities (eg, dentin polish, fragrance) , Bathing agents, water melts, etc.), foods (eg, beverages, sherbets, raw or chilled noodles, sauces, etc.), electrical and electronic parts [eg, electrodes (eg, secondary batteries such as lithium-ion batteries) , Negative electrode) materials, etc.], civil engineering or building materials (for example, oil or hot spring boring, underground continuous wall / cast-in-place pile (foundation pile), mud pressure type shield method, etc. It can be used as a thickener or dis
  • the carboxymethyl cellulose of the present disclosure or a salt thereof can be dissolved in a short time even if it has a large molecular weight (or has a high viscosity in a solution state), it is an electrode for forming an electrode of a battery such as a secondary battery.
  • Materials (or additives) eg, thickeners, dispersants (dispersion stabilizers or stabilizers), fluidizers, binders (or binders), suspending agents, etc.
  • negative electrode materials for lithium ion batteries for example, it can be effectively used as a thickener, a dispersant and / or a binder).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Carboxymethyl cellulose or a salt thereof is adjusted to a form such that D10 is 90 μm or higher, D50 is 120-470 μm, and D90 is 500 μm or lower, where D10, D50, and D90 are, respectively, the 10% cumulative, 50% cumulative, and 90% cumulative grain sizes from the small-grain-size side in the volume-based cumulative grain size distribution. D10 may be about 100 μm or higher, D50 may be about 150-200 μm, and D90 may be about 250 μm or lower. In granular carboxymethyl cellulose or a salt thereof, the proportion of particles having a roundness of 50% or higher may be about 90 vol% or higher with respect to the whole, and the proportion of particles having a roundness of 70% or higher may be about 70 vol% with respect to the whole. The carboxymethyl cellulose or salt thereof can be dissolved efficiently in water even with gentle stirring.

Description

カルボキシメチルセルロースまたはその塩およびその組成物Carboxymethyl cellulose or its salt and its composition
 本開示は、カルボキシメチルセルロース(以下、単にCMCともいう)またはその塩、およびCMCまたはその塩と水とを含む水性組成物、ならびにCMCまたはその塩を所定の粒度分布を示す粒状に調製して、水に対する溶解性を向上する方法に関する。 In the present disclosure, carboxymethyl cellulose (hereinafter, also simply referred to as CMC) or a salt thereof, an aqueous composition containing CMC or a salt thereof and water, and CMC or a salt thereof are prepared into granules showing a predetermined particle size distribution. It relates to a method for improving solubility in water.
 CMCは代表的な水溶性高分子材料の一つであり、食品、化粧品、医薬品などの他、リチウムイオン電池の負極材など幅広い用途で利用されている。通常、CMCは水溶液の形態で利用されることが多いものの、水と混合した際にママコ(凝集体または粘着凝集)が生じ易く、このママコ内部への水の浸透が阻害されるため、一旦ママコが生成するとCMCの溶解に多大な時間がかかり、製品の生産性を向上できない。そのため、CMCを短時間で効率よく溶解させる方法が検討されている。 CMC is one of the typical water-soluble polymer materials, and is used in a wide range of applications such as foods, cosmetics, pharmaceuticals, and negative electrode materials for lithium-ion batteries. Normally, CMC is often used in the form of an aqueous solution, but when mixed with water, mamaco (aggregates or adhesive agglomerates) is likely to occur, and the penetration of water into the mamaco is hindered. It takes a lot of time to dissolve the CMC, and the productivity of the product cannot be improved. Therefore, a method for efficiently dissolving CMC in a short time is being studied.
 特公昭59-36941号公報(特許文献1)には、純度95%以上のCMCナトリウム塩(以下、単にCMC-Naともいう)に対して所定量の水溶性塩および水を添加してから造粒および篩分して得られたCMC-Naが、水易分散性を示すことが開示されている。この文献の実施例では、純度99%のCMC粉末に、無水芒硝またはその水溶液、食塩、L-グルタミン酸ナトリウムなどの水溶性塩および水を所定量加えて造粒して篩分し、20メッシュを通過し80メッシュを通過しなかったCMC顆粒が調製されている。 According to Japanese Patent Publication No. 59-36941 (Patent Document 1), a predetermined amount of water-soluble salt and water are added to a CMC sodium salt having a purity of 95% or more (hereinafter, also simply referred to as CMC-Na). It is disclosed that CMC-Na obtained by granulation and sieving exhibits water-easiness dispersibility. In the examples of this document, a predetermined amount of anhydrous sodium sulfate or an aqueous solution thereof, salt, a water-soluble salt such as sodium L-glutamate, and water are added to CMC powder having a purity of 99%, granulated and sieved to obtain 20 meshes. CMC granules that have passed but not passed 80 mesh have been prepared.
 また、特許第3516358号公報(特許文献2)では、CMCアルカリ塩の溶剤-水含有スラリーを、所定ガス雰囲気下、回転円盤上に流下して霧化、またはノズルから噴霧して霧化させることにより噴霧乾燥して造粒する方法が開示されている。得られたCMC粉末は、全体の80%以上が粒径70~200μmの範囲内にあり、かつ粒径20μm以下の微粉の割合が全体の2.0%以下と少ないため、溶解性に優れることが記載されている。 Further, in Japanese Patent No. 3516358 (Patent Document 2), a solvent-water-containing slurry of CMC alkali salt is atomized by flowing down on a rotating disk under a predetermined gas atmosphere, or by spraying from a nozzle to atomize. Discloses a method of spray-drying and granulating. The obtained CMC powder has excellent solubility because 80% or more of the whole is in the range of 70 to 200 μm in diameter and the proportion of fine powder having a particle size of 20 μm or less is as small as 2.0% or less of the whole. Is described.
特公昭59-36941号公報Special Publication No. 59-36941 特許第3516358号公報Japanese Patent No. 3516358
 しかし、特許文献1では、20メッシュを通過する比較的大きな粒子を含むためか、溶解に時間がかかる場合があるとともに、必須成分である水溶性塩の添加により純度が低下するため、用途が制限されるおそれがある。 However, in Patent Document 1, the use is limited because it may take a long time to dissolve because it contains relatively large particles that pass through 20 meshes, and the purity is lowered by the addition of a water-soluble salt which is an essential component. May be done.
 特許文献2では、20μm以下の微粉の割合は少ないものの、スプレー噴射の圧力などの条件によっては霧状CMC溶液の粒が小さくなり、得られるCMC粉末の粒径も比較的小さくなるおそれがある。また、比較的粒径が小さい粒子の割合が多いためか、溶解に時間がかかる場合がある。 In Patent Document 2, although the proportion of fine powder of 20 μm or less is small, the particles of the atomized CMC solution may become small depending on the conditions such as the pressure of spray injection, and the particle size of the obtained CMC powder may become relatively small. In addition, it may take time to dissolve, probably because the proportion of particles having a relatively small particle size is large.
 なお、特許文献1~2のいずれの文献においてもCMC-Naの具体的なメジアン径(D50)などの粒子径と溶解速度との関係については何ら記載されていない。 In any of Patent Documents 1 and 2, the relationship between the particle size and the dissolution rate, such as the specific median diameter (D50) of CMC-Na, is not described at all.
 従って、本開示の目的は、緩やかな攪拌であっても、水に効率よく溶解可能な(即溶性に優れた)CMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 Therefore, an object of the present disclosure is to prepare a CMC or a salt thereof that can be efficiently dissolved in water (excellent in quick solubility) even with gentle stirring, an aqueous composition thereof, and the CMC or a salt thereof. The purpose is to provide a method for improving water solubility.
 本開示の他の目的は、水溶液における粘度が高くても(またはCMCまたはその塩の分子量が大きくても)、水に効率よく溶解可能なCMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 Another object of the present disclosure is a CMC or a salt thereof that is efficiently soluble in water even if the viscosity in an aqueous solution is high (or the molecular weight of the CMC or a salt thereof is large), and an aqueous composition thereof, and the CMC. Alternatively, there is to provide a method of preparing a salt thereof to improve water solubility.
 本開示のさらに他の目的は、リチウムイオン電池用負極の生産性を向上できるCMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 Yet another object of the present disclosure is to provide a CMC or a salt thereof capable of improving the productivity of a negative electrode for a lithium ion battery, an aqueous composition thereof, and a method for preparing the CMC or a salt thereof to improve water solubility. To do.
 本発明者らは、前記課題を達成するため鋭意検討した結果、所定の粒度分布(または粒子径分布)を有するカルボキシメチルセルロースまたはその塩が、水に対して効率よく溶解できることを見いだし、本発明を完成した。 As a result of diligent studies to achieve the above problems, the present inventors have found that carboxymethyl cellulose having a predetermined particle size distribution (or particle size distribution) or a salt thereof can be efficiently dissolved in water, and the present invention has been developed. completed.
 すなわち、本開示のカルボキシメチルセルロースまたはその塩は、粒状であって、粒径の体積基準の累積分布(または累積度数分布)において、小粒径側から累積10%、累積50%および累積90%の粒径をそれぞれD10、D50およびD90としたとき、D10が90μm程度以上、D50が120~470μm程度、D90が500μm程度以下である。 That is, the carboxymethyl cellulose of the present disclosure or a salt thereof is granular, and in the volume-based cumulative distribution (or cumulative frequency distribution) of the particle size, the cumulative 10%, the cumulative 50%, and the cumulative 90% from the small particle size side. When the particle sizes are D10, D50 and D90, respectively, D10 is about 90 μm or more, D50 is about 120 to 470 μm, and D90 is about 500 μm or less.
 前記D10は100μm程度以上であってもよく、前記D50は150~200μm程度であってもよく、前記D90は250μm程度以下であってもよい。 The D10 may be about 100 μm or more, the D50 may be about 150 to 200 μm, and the D90 may be about 250 μm or less.
 前記粒状のCMCまたはその塩において、真円度50%以上の粒子の割合は、全体に対して90体積%程度以上であってもよく、真円度70%以上の粒子の割合は、全体に対して70体積%程度以上であってもよい。また、真円度50%以上の粒子の割合は、全体に対して95体積%程度以上であってもよく、真円度70%以上の粒子の割合は、全体に対して80体積%程度以上であってもよい。 In the granular CMC or a salt thereof, the proportion of particles having a roundness of 50% or more may be about 90% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is the whole. On the other hand, it may be about 70% by volume or more. Further, the proportion of particles having a roundness of 50% or more may be about 95% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is about 80% by volume or more with respect to the whole. It may be.
 前記CMCまたはその塩の1質量%水溶液における粘度は、温度25℃において、1500~3000mPa・s程度であってもよい。前記CMCまたはその塩は電極材料であってもよい。 The viscosity of the CMC or its salt in a 1% by mass aqueous solution may be about 1500 to 3000 mPa · s at a temperature of 25 ° C. The CMC or a salt thereof may be an electrode material.
 本開示は、前記CMCまたはその塩と水とを含む水性組成物、および前記CMCまたはその塩と水とを混合して前記水性組成物を製造する方法を含むとともに、前記CMCまたはその塩を前述の粒状の形態に調製して、水に対する溶解性を向上する方法も包含する。 The present disclosure includes an aqueous composition containing the CMC or a salt thereof and water, and a method for producing the aqueous composition by mixing the CMC or a salt thereof with water, and using the CMC or a salt thereof as described above. Also includes methods of preparing in granular form to improve solubility in water.
 本開示では、CMCまたはその塩が所定の粒度分布を有するため、ママコの生成が有効に抑制でき、緩やかな攪拌であっても水に効率よく溶解できる。また、水溶液における粘度が高くても(またはCMCまたはその塩の分子量が大きくても)、短時間で水に効率よく溶解できる。さらに、本開示のCMCまたはその塩をリチウムイオン電池の負極に用いると、CMCまたはその塩が効率よく溶解するため、電極形成用の水性組成物(またはスラリー状組成物)を調製する工程にかかる時間を短縮できるとともに、製品不良の原因となるママコの生成も抑制できるため、リチウムイオン電池の生産性(または歩留まり)を有効に向上できる。 In the present disclosure, since CMC or a salt thereof has a predetermined particle size distribution, the formation of mamaco can be effectively suppressed, and it can be efficiently dissolved in water even with gentle stirring. Further, even if the viscosity of the aqueous solution is high (or the molecular weight of CMC or a salt thereof is large), it can be efficiently dissolved in water in a short time. Further, when the CMC or a salt thereof of the present disclosure is used for the negative electrode of a lithium ion battery, the CMC or a salt thereof dissolves efficiently, so that the step of preparing an aqueous composition (or a slurry-like composition) for forming an electrode is involved. Since the time can be shortened and the generation of mamaco, which causes product defects, can be suppressed, the productivity (or yield) of the lithium ion battery can be effectively improved.
図1は、実施例、比較例および参考例で得られたCMC-Naの溶解時間測定における攪拌機の最大トルク達成率の推移を示すグラフである。FIG. 1 is a graph showing changes in the maximum torque achievement rate of the stirrer in measuring the dissolution time of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples. 図2は、実施例、比較例および参考例で得られたCMC-Naの体積基準の粒子径分布である。FIG. 2 shows the volume-based particle size distribution of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples. 図3は、実施例、比較例および参考例で得られたCMC-Naの体積基準の真円度の分布である。FIG. 3 shows the volume-based roundness distribution of CMC-Na obtained in Examples, Comparative Examples, and Reference Examples.
 [CMCまたはその塩]
 本開示の粒状のCMCまたはその塩は、所定の粒度分布を示す。すなわち、D10は90μm以上(例えば95~250μm)程度の範囲から選択でき、例えば100μm以上(例えば105~200μm)、好ましくは110μm以上(例えば115~150μm)、さらに好ましくは120μm以上(例えば120~140μm、好ましくは120~130μm)程度であってもよい。
[CMC or its salt]
The granular CMCs or salts thereof of the present disclosure exhibit a predetermined particle size distribution. That is, D10 can be selected from a range of about 90 μm or more (for example, 95 to 250 μm), for example, 100 μm or more (for example, 105 to 200 μm), preferably 110 μm or more (for example, 115 to 150 μm), and more preferably 120 μm or more (for example, 120 to 140 μm). , Preferably about 120 to 130 μm).
 また、D50は120~470μm(例えば130~400μm)程度の範囲から選択でき、例えば140~350μm(例えば155~300μm)、好ましくは145~250μm(例えば150~200μm)、さらに好ましくは160~190μm(例えば165~185μm、好ましくは170~180μm)程度であってもよい。 Further, D50 can be selected from a range of about 120 to 470 μm (for example, 130 to 400 μm), for example, 140 to 350 μm (for example, 155 to 300 μm), preferably 145 to 250 μm (for example, 150 to 200 μm), and more preferably 160 to 190 μm (for example). For example, it may be about 165 to 185 μm, preferably 170 to 180 μm).
 D90は500μm以下(例えば180~400μm)程度の範囲から選択でき、例えば450μm以下(例えば190~400μm)、好ましくは350μm以下(例えば200~300μm)、さらに好ましくは250μm以下(例えば210~240μm、好ましくは220~230μm)程度であってもよい。 D90 can be selected from a range of about 500 μm or less (for example, 180 to 400 μm), for example, 450 μm or less (for example, 190 to 400 μm), preferably 350 μm or less (for example, 200 to 300 μm), and more preferably 250 μm or less (for example, 210 to 240 μm, preferably 210 to 240 μm). May be about 220 to 230 μm).
 なお、本明細書および請求の範囲において、D10、D50およびD90は体積基準の粒径であり、後述する実施例に記載の方法により測定できる。 In addition, in this specification and claims, D10, D50 and D90 are volume-based particle diameters and can be measured by the method described in Examples described later.
 また、CMCまたはその塩の粒度は、分布幅が狭く均一性が高い方が好ましいため、D10、D50およびD90は、例えば、D10が90μm以上であり、D50が130~400μmであり、D90が450μm以下であってもよく;好ましくはD10が100μm以上であり、D50が140~350μmであり、D90が450μm以下であってもよく;さらに好ましくはD10が100μm以上であり、D50が150~200μmであり、D90が250μm以下であってもよく;なかでもD10が110μm以上であり、D50が160~190μmであり、D90が250μm以下であってもよく;特に好ましくはD10が120μm以上であり、D50が165~185μmであり、D90が210~240μmであってもよい。 Further, the particle size of CMC or a salt thereof preferably has a narrow distribution width and high uniformity. Therefore, for D10, D50 and D90, for example, D10 is 90 μm or more, D50 is 130 to 400 μm, and D90 is 450 μm. It may be less than or equal to; preferably D10 is 100 μm or more, D50 is 140 to 350 μm, and D90 may be 450 μm or less; more preferably D10 is 100 μm or more and D50 is 150 to 200 μm. Yes, D90 may be 250 μm or less; among them, D10 may be 110 μm or more, D50 may be 160 to 190 μm, and D90 may be 250 μm or less; particularly preferably D10 is 120 μm or more and D50. May be 165 to 185 μm and D90 may be 210 to 240 μm.
 なお、CMCまたはその塩の粒度分布におけるモード径(最頻径または最頻度粒子径)は、例えば120~470μm(例えば130~400μm)程度の範囲から選択でき、例えば140~350μm(例えば145~300μm)、好ましくは150~250μm(例えば150~200μm)、さらに好ましくは160~190μm程度であってもよい。 The mode diameter (most frequent diameter or most frequent particle diameter) in the particle size distribution of CMC or a salt thereof can be selected from the range of, for example, about 120 to 470 μm (for example, 130 to 400 μm), and for example, 140 to 350 μm (for example, 145 to 300 μm). ), It may be preferably about 150 to 250 μm (for example, 150 to 200 μm), and more preferably about 160 to 190 μm.
 小さな粒子の割合が多すぎると、粒子同士が凝集し易くママコの生成を抑制できなくなるおそれがあり、大きな粒子の割合が多すぎると、水と接触可能な面積(表面積)が減少して大きな粒子自体がママコ状となり、溶解時間が長くなるおそれがある。本開示のCMCまたはその塩は、粒子同士の凝集体が形成されるのを抑制しつつ、水との接触面積を増加できるバランスのよい粒子径に均一化されているため、溶解時間を大幅に短縮できる。 If the proportion of small particles is too large, the particles tend to aggregate with each other and the formation of mamaco may not be suppressed. If the proportion of large particles is too large, the area (surface area) that can come into contact with water decreases and the large particles It may become mamaco-like and dissolve for a long time. The CMC or salt thereof of the present disclosure is uniformed to a well-balanced particle size that can increase the contact area with water while suppressing the formation of agglomerates between particles, so that the dissolution time is significantly increased. Can be shortened.
 CMCまたはその塩の粒子の形状は、略球状であるのが好ましい。略球状であると、粒子の凝集抑制と、水との接触面積増加とのバランスがよいためか、溶解時間を大きく短縮できる。そのため、本開示のCMCまたはその塩は、高い真円度(または面積円形度)を有する粒子の割合が多いのが好ましい。なお、CMCまたはその塩は、通常、見た目が粉状のためか、粒径について議論されることはあっても、その真円度については全く着目されていなかった。 The shape of the particles of CMC or its salt is preferably substantially spherical. When it is substantially spherical, the dissolution time can be greatly shortened probably because the balance between the suppression of particle aggregation and the increase in the contact area with water is good. Therefore, the CMC or a salt thereof of the present disclosure preferably has a large proportion of particles having a high roundness (or area circularity). It should be noted that although the particle size of CMC or its salt is usually discussed because of its powdery appearance, its roundness has not been paid attention to at all.
 CMCまたはその塩において、真円度50%以上の粒子の割合は、粒子全体に対して、例えば85体積%以上、好ましくは90体積%以上(例えば90~100体積%)、さらに好ましくは95体積%以上(例えば95~100体積%)程度であってもよい。 In CMC or a salt thereof, the proportion of particles having a roundness of 50% or more is, for example, 85% by volume or more, preferably 90% by volume or more (for example, 90 to 100% by volume), more preferably 95% by volume, based on the whole particles. It may be about% or more (for example, 95 to 100% by volume).
 また、真円度70%以上の粒子の割合は、粒子全体に対して、例えば50体積%以上、好ましくは60体積%以上(例えば70~100体積%)、さらに好ましくは75体積%以上(例えば80~100体積%)程度であってもよい。 The proportion of particles having a roundness of 70% or more is, for example, 50% by volume or more, preferably 60% by volume or more (for example, 70 to 100% by volume), and more preferably 75% by volume or more (for example) with respect to the entire particles. It may be about 80 to 100% by volume).
 さらに、真円度90%以上の粒子の割合は、粒子全体に対して、例えば5体積%以上(例えば10~100体積%)、好ましくは13体積%以上(例えば15~100体積%)程度であってもよい。 Further, the proportion of the particles having a roundness of 90% or more is, for example, 5% by volume or more (for example, 10 to 100% by volume), preferably 13% by volume or more (for example, 15 to 100% by volume) with respect to the whole particles. There may be.
 なお、本明細書および請求の範囲において、「真円度」は以下のように定義される。 In the present specification and claims, "roundness" is defined as follows.
 真円度[%]=4π×A/P×100
(式中、πは円周率を示し、Aは粒子の面積(投影面積)を示し、Pは粒子の周囲長を示す。)
Roundness [%] = 4π × A / P × 100
(In the equation, π indicates the pi, A indicates the area of the particle (projected area), and P indicates the peripheral length of the particle.)
 また、本明細書および請求の範囲において、真円度の分布は体積基準の分布であり、後述する実施例に記載の方法により測定できる。 Further, in the present specification and claims, the distribution of roundness is a volume-based distribution, and can be measured by the method described in Examples described later.
 前記真円度50%以上、70%以上および90%以上の粒子の割合を、それぞれC50、C70およびC90としたとき、例えばC50が、粒子全体に対して90体積%程度以上であり、C70が、粒子全体に対して70体積%程度以上であってもよく;好ましくはC50が、粒子全体に対して95体積%程度以上であり、C70が、粒子全体に対して80体積%程度以上であってもよく;さらに好ましくはC50が、粒子全体に対して95体積%程度以上であり、C70が、粒子全体に対して80体積%程度以上であり、C90が、粒子全体に対して15体積%程度以上であってもよい。真円度が低い粒子の割合が多すぎると、溶解時間を短縮できなくなるおそれがある。なお、C90が比較的低くても、C70およびC50の値が高いと、溶解性を有効に向上し易いようである。 When the proportions of the particles having a roundness of 50% or more, 70% or more, and 90% or more are C50, C70, and C90, respectively, for example, C50 is about 90% by volume or more with respect to the entire particles, and C70 is , About 70% by volume or more with respect to the whole particle; preferably, C50 is about 95% by volume or more with respect to the whole particle, and C70 is about 80% by volume or more with respect to the whole particle. May; more preferably, C50 is about 95% by volume or more with respect to the whole particle, C70 is about 80% by volume or more with respect to the whole particle, and C90 is about 15% by volume with respect to the whole particle. It may be more than a degree. If the proportion of particles with low roundness is too large, the dissolution time may not be shortened. Even if C90 is relatively low, if the values of C70 and C50 are high, it seems that the solubility can be effectively improved.
 CMCまたはその塩の平均置換度(エーテル化度またはDS)は、例えば0.1~3(例えば0.3~2.5)程度の範囲から選択でき、好ましくは0.4~2(例えば0.5~1.5)、さらに好ましくは0.6~1.3(例えば0.7~1.2)、特に0.8~1.1(例えば0.85~1、好ましくは0.85~0.95)程度であってもよい。置換度が低すぎると溶解性または即溶性が低下するおそれがあり、置換度が高すぎると水溶性部分が多くなりママコは生じ難くなるものの、電極材料として用いる場合に、活物質との疎水性相互作用を生じ難くなるため、塗膜強度が低下するおそれがある。なお、本明細書および請求の範囲において、平均置換度(エーテル化度)は、下記記載の方法により測定できる。 The average degree of substitution (etherification degree or DS) of CMC or a salt thereof can be selected from the range of, for example, about 0.1 to 3 (for example, 0.3 to 2.5), and preferably 0.4 to 2 (for example, 0). .5 to 1.5), more preferably 0.6 to 1.3 (eg 0.7 to 1.2), especially 0.8 to 1.1 (eg 0.85 to 1, preferably 0.85) It may be about 0.95). If the degree of substitution is too low, the solubility or immediate solubility may decrease, and if the degree of substitution is too high, there are many water-soluble parts and mamaco is less likely to occur, but when used as an electrode material, it is hydrophobic with the active material. Since the interaction is less likely to occur, the strength of the coating film may decrease. In addition, in this specification and claims, the average degree of substitution (the degree of etherification) can be measured by the method described below.
 試料1.000gを精秤し、磁製るつぼに入れ、炭化後、630℃で完全に灰化し、室温で放冷する(1)。ビーカーにイオン交換水約250mLおよび0.05mol/L硫酸40mLを精密にはかって加える(2)。前記(2)に前記(1)を入れ、ゆるくふたをして30分間煮沸後、冷水中で冷却する。冷却後、フェノールフタレイン溶液を5滴加え、0.1mol/L水酸化ナトリウム水溶液により中和滴定する。同様の方法で空試験を行い、下記式によりエーテル化度を算出する。 1.000 g of sample is precisely weighed, placed in a porcelain crucible, carbonized, completely incinerated at 630 ° C, and allowed to cool at room temperature (1). Precisely add about 250 mL of ion-exchanged water and 40 mL of 0.05 mol / L sulfuric acid to the beaker (2). Put the above (1) in the above (2), cover it loosely, boil for 30 minutes, and then cool it in cold water. After cooling, 5 drops of a phenolphthalein solution is added, and neutralization titration is performed with a 0.1 mol / L sodium hydroxide aqueous solution. A blank test is performed in the same manner, and the degree of etherification is calculated by the following formula.
 エーテル化度=162×A/(10000-80×A
[式中、Aは、乾燥物換算した試料1g中の結合アルカリに消費された0.05mol/L硫酸消費量(mL)であり、下記式で表される。
 A=(B-S)×F/(W×(1-M/100))-アルカリ度
(式中、Bは空試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Sは実試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Wは試料量(g)であり、Mは試料の乾燥減量(質量%)であり、Fは0.1mol/L水酸化ナトリウム水溶液のファクターである)]。
Degree of etherification = 162 x A 1 / (10000-80 x A 1 )
[In the formula, A 1 is the consumption of 0.05 mol / L sulfuric acid (mL) consumed by the bound alkali in 1 g of the sample converted to a dry matter, and is represented by the following formula.
A 1 = (B 1 -S 1 ) × F 1 / (W 1 × (1-M 1/100)) - 0.1mol / L sodium hydroxide required alkalinity (wherein, B 1 is for a blank test The consumption of the aqueous solution (mL), S 1 is the consumption of the 0.1 mol / L sodium hydroxide aqueous solution (mL) required for the actual test, W 1 is the sample amount (g), and M 1 is the sample amount (g). It is the dry weight loss (mass%) of the sample, and F 1 is a factor of 0.1 mol / L sodium hydroxide aqueous solution)].
 なお、前記乾燥減量は、JIS P 8203:2010 (ISO 638:2008),「紙,板紙及びパルプ-絶乾率の測定方法-乾燥器による方法」に準じて測定した。また、前記アルカリ度は、下記記載の方法により測定できる。 The drying weight loss was measured according to JIS P 8203: 2010 (ISO 638: 2008), "Paper, paperboard and pulp-measurement method of absolute dryness-method by dryer". Further, the alkalinity can be measured by the method described below.
 イオン交換水約250mLをビーカーに入れ、精秤した試料1.000gを撹拌しながら少量ずつ加えて溶解後、0.05mol/L硫酸5mLを加える。ゆるくふたをして10分間煮沸後、冷水中で冷却する。冷却後、フェノールフタレイン溶液を5滴加え、0.1mol/L水酸化ナトリウム水溶液により中和滴定する。同様の方法で空試験を行い、下記式によりアルカリ度を算出する。 Put about 250 mL of ion-exchanged water in a beaker, add 1.000 g of the precisely weighed sample little by little with stirring, dissolve, and then add 5 mL of 0.05 mol / L sulfuric acid. Loosely cover and boil for 10 minutes, then cool in cold water. After cooling, 5 drops of a phenolphthalein solution is added, and neutralization titration is performed with a 0.1 mol / L sodium hydroxide aqueous solution. A blank test is performed in the same manner, and the alkalinity is calculated by the following formula.
 アルカリ度=(B-S)×F/(W×(1-M/100))
(式中、Bは空試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Sは実試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Wは試料量(g)であり、Mは試料の乾燥減量(質量%)であり、Fは0.1mol/L水酸化ナトリウム水溶液のファクターである)。
Alkalinity = (B 2 -S 2) × F 2 / (W 2 × (1-M 2/100))
(In the formula, B 2 is the consumption amount (mL) of the 0.1 mol / L sodium hydroxide aqueous solution required for the blank test, and S 2 is the consumption amount of the 0.1 mol / L sodium hydroxide aqueous solution required for the actual test. (ML), W 2 is the sample amount (g), M 2 is the dry weight loss (mass%) of the sample, and F 2 is the factor of the 0.1 mol / L sodium hydroxide aqueous solution).
 なお、前記乾燥減量は、前記平均置換度の項に記載の方法と同様にして測定できる。 The dry weight loss can be measured in the same manner as the method described in the section of the average degree of substitution.
 CMCの塩としては、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩などのアルカリ土類金属塩、アンモニウム塩などが挙げられる。これらの塩は、単独でまたは2種以上組み合わせて含んでいてもよい。これらの塩のうち、通常、ナトリウム塩またはアンモニウム塩であることが多く、ナトリウム塩が好ましい。なお、CMCまたはその塩は、それぞれ組み合わせて含んでいてもよいが、通常、CMCの塩(好ましくはCMC-Na)を単独で用いることが多い。 Examples of the CMC salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, and ammonium salts. These salts may be contained alone or in combination of two or more. Of these salts, sodium salts or ammonium salts are usually used, and sodium salts are preferable. CMC or a salt thereof may be contained in combination, but usually, a salt of CMC (preferably CMC-Na) is often used alone.
 CMCまたはその塩の1質量%水溶液の温度25℃における粘度は、用途などに応じて、例えば10~20000mPa・s(例えば100~15000mPa・s)程度の範囲から選択してもよく、例えば1000~10000mPa・s(例えば1100~8000mPa・s)、好ましくは1200~6000mPa・s(例えば1300~5000mPa・s)、さらに好ましくは1400~4000mPa・s(例えば1500~3000mPa・s)、特に1600~2000mPa・s(例えば1700~1900mPa・s)程度であってもよい。粘度が低すぎると、特に電極材料などの用途では利用できなくなるおそれがある。 The viscosity of a 1% by mass aqueous solution of CMC or a salt thereof at a temperature of 25 ° C. may be selected from a range of, for example, about 10 to 20000 mPa · s (for example, 100 to 15000 mPa · s), for example, 1000 to 1000. 10000 mPa · s (eg 1100-8000 mPa · s), preferably 1200-6000 mPa · s (eg 1300-5000 mPa · s), more preferably 1400-4000 mPa · s (eg 1500-3000 mPa · s), especially 1600-2000 mPa · s. It may be about s (for example, 1700 to 1900 mPa · s). If the viscosity is too low, it may not be usable, especially in applications such as electrode materials.
 例えば、リチウムイオン電池の負極材(増粘剤、分散安定剤、結合剤(結着剤またはバインダー)など)として利用する場合、CMCまたはその塩自体は抵抗体となるため、多量に添加すると電池性能が低下することから、少ない添加量であっても所望の機能(増粘効果など)を発揮できるよう高粘度品が求められている。その一方で、生産性向上の観点からは、製品不良の原因となる未溶解物(ママコなど)が少なく、かつ短時間で素早く溶解可能なCMCまたはその塩が求められている。しかし、水溶液における粘度が高いほど、ママコが生じ易く溶解時間は長くなるため、これらの特性はトレードオフの関係にあり、全てを充足するのは困難であった。本開示のCMCまたはその塩は、水溶液における粘度が高くても、ママコの発生を抑制して溶解時間を有効に短縮できるため、電極材料(増粘剤、分散安定剤および/または結合剤など)として好適に利用できる。 For example, when used as a negative electrode material (thickening agent, dispersion stabilizer, binder (binder or binder), etc.) of a lithium-ion battery, CMC or its salt itself becomes a resistor, so if a large amount is added, the battery Since the performance is deteriorated, a high-viscosity product is required so that a desired function (thickening effect, etc.) can be exhibited even with a small amount of addition. On the other hand, from the viewpoint of improving productivity, there is a demand for CMC or a salt thereof, which has few undissolved substances (such as mamaco) that cause product defects and can be quickly dissolved in a short time. However, the higher the viscosity in the aqueous solution, the easier it is for mamaco to occur and the longer the dissolution time. Therefore, these characteristics are in a trade-off relationship, and it is difficult to satisfy all of them. Since the CMC or its salt of the present disclosure can suppress the generation of mamaco and effectively shorten the dissolution time even if the viscosity in the aqueous solution is high, the electrode material (thickener, dispersion stabilizer and / or binder, etc.) Can be suitably used as.
 なお、本明細書および請求の範囲において、粘度は、下記記載の方法により測定できる。 In the present specification and claims, the viscosity can be measured by the method described below.
 イオン交換水100mLを粘度測定用溶解瓶(以下、「粘度瓶」という)に取り、別途精秤した試料(2.50 × X)gをママコ状にならないように少量ずつ加え、ガラス棒で軽く押しつぶす。充分膨潤した後、下記式により求めたイオン交換水補正追加水量V(mL)を追加し、ガラス棒で時々撹拌しながら完全に溶解する。溶解後、減圧脱泡し、液温が25℃になるまで粘度瓶を恒温水槽中に置き、試料溶液を均一に撹拌後、B型粘度計により60rpmで測定する。 Take 100 mL of ion-exchanged water in a dissolving bottle for viscosity measurement (hereinafter referred to as "viscosity bottle"), add a separately weighed sample (2.50 x X 3 ) g little by little so as not to form a mamaco, and use a glass rod. Lightly crush. After extensive swelling, by adding the ion exchange water correction adding water V 3 (mL) was calculated by the following equation, to completely dissolve with occasional stirring with a glass rod. After dissolution, defoam under reduced pressure, place the viscosity bottle in a constant temperature water tank until the liquid temperature reaches 25 ° C., stir the sample solution uniformly, and then measure at 60 rpm with a B-type viscometer.
 粘度(mPa・s)=目盛りの読み×換算係数
 V=2.5×(100-X-M)-100
(式中、Vはイオン交換水補正追加水量(mL)であり、Xは測定濃度(質量%)であり、Mは試料乾燥減量(質量%)である)。
Viscosity (mPa · s) = Scale reading x Conversion coefficient V 3 = 2.5 x (100-X 3- M 3 ) -100
(In the formula, V 3 is the ion-exchanged water-corrected additional water volume (mL), X 3 is the measured concentration (mass%), and M 3 is the sample drying weight loss (mass%)).
 なお、前記乾燥減量は、前記平均置換度の項に記載の方法と同様にして測定できる。 The dry weight loss can be measured in the same manner as the method described in the section of the average degree of substitution.
 CMCまたはその塩の0.8質量%水溶液を調製する際の溶解時間は、温度25℃、攪拌速度300rpmにおいて、例えば10分以下(例えば10秒~8分)、好ましくは6分以下(例えば30秒~5分)、さらに好ましくは4分以下(例えば1~3分)、特に3分以下(例えば1.5~2.5分)程度であってもよい。なお、本明細書および請求の範囲において、溶解時間は後述の実施例に記載の方法により測定できる。 The dissolution time for preparing a 0.8% by mass aqueous solution of CMC or a salt thereof is, for example, 10 minutes or less (for example, 10 seconds to 8 minutes), preferably 6 minutes or less (for example, 30) at a temperature of 25 ° C. and a stirring speed of 300 rpm. Seconds to 5 minutes), more preferably 4 minutes or less (for example, 1 to 3 minutes), particularly 3 minutes or less (for example, 1.5 to 2.5 minutes). In the present specification and claims, the dissolution time can be measured by the method described in Examples described later.
 [製造方法]
 本開示のCMCまたはその塩の製造方法は特に制限されない。通常、CMCまたはその塩を造粒する造粒工程を少なくとも含んでいることが多い。
[Production method]
The method for producing CMC or a salt thereof of the present disclosure is not particularly limited. Usually, it often includes at least a granulation step of granulating CMC or a salt thereof.
 (造粒工程)
 造粒工程で用いるCMCまたはその塩は、市販品などを利用でき、通常、微小粉体状および/または繊維状に形成されていることが多い。
(Granulation process)
As the CMC or a salt thereof used in the granulation step, a commercially available product or the like can be used, and it is usually formed in the form of fine powder and / or fibrous.
 造粒方法は、慣用の造粒方法、例えば、転動造粒、流動層造粒、攪拌造粒(混合・攪拌造粒)、解砕または破砕造粒(解砕・破砕造粒)、圧縮造粒(圧縮成形造粒)、押出し造粒、噴射造粒(溶融造粒)、噴霧乾燥造粒などの方法を利用できる。また、造粒方法は、乾式法であってもよいが、通常、湿式法であることが多い。これらの造粒方法のうち、攪拌造粒がよく利用される。なお、造粒は、常圧下、減圧下または加圧下で行ってもよい。 The granulation method is a conventional granulation method, for example, rolling granulation, fluidized bed granulation, stirring granulation (mixing / stirring granulation), crushing or crushing granulation (crushing / crushing granulation), compression. Methods such as granulation (compression molding), extrusion granulation, injection granulation (melt granulation), and spray drying granulation can be used. Further, the granulation method may be a dry method, but usually a wet method is often used. Of these granulation methods, stirring granulation is often used. The granulation may be carried out under normal pressure, reduced pressure or pressure.
 CMCまたはその塩には、造粒方法などに応じて結合剤を添加してもよい。結合剤は、有機溶媒であってもよいが、通常、水(例えば、純水など)であることが多い。例えば、攪拌造粒では、造粒機(または攪拌機)でCMCまたはその塩を攪拌しつつ、結合剤としての水(例えば、純水)をスプレー噴霧してもよい。 A binder may be added to CMC or a salt thereof depending on the granulation method or the like. The binder may be an organic solvent, but is usually water (eg, pure water). For example, in agitation granulation, water (for example, pure water) as a binder may be spray-sprayed while stirring CMC or a salt thereof with a granulator (or a stirrer).
 結合剤(特に水)の噴霧量は、CMCまたはその塩100質量部に対して、例えば10~1000質量部(例えば30~800質量部)、好ましくは50~500質量部(例えば60~300質量部)、さらに好ましくは70~200質量部(例えば80~100質量部)程度であってもよい。 The amount of the binder (particularly water) sprayed is, for example, 10 to 1000 parts by mass (for example, 30 to 800 parts by mass), preferably 50 to 500 parts by mass (for example, 60 to 300 parts by mass) with respect to 100 parts by mass of CMC or a salt thereof. Parts), more preferably about 70 to 200 parts by mass (for example, 80 to 100 parts by mass).
 (乾燥工程)
 造粒工程で得られた粒状のCMCまたはその塩は、乾燥工程で乾燥して結合剤(特に水)の残存量を調整することが多い。乾燥方法は、自然乾燥であってもよく、加熱および/または減圧して乾燥してもよい。通常、加熱して乾燥することが多く、加熱温度は、例えば50~200℃(例えば60~150℃)、好ましくは70~100℃(例えば80~90℃)程度であってもよい。
(Drying process)
Granular CMC or salts thereof obtained in the granulation step are often dried in the drying step to adjust the residual amount of the binder (particularly water). The drying method may be natural drying, or may be heated and / or dried under reduced pressure. Usually, it is often heated and dried, and the heating temperature may be, for example, 50 to 200 ° C. (for example, 60 to 150 ° C.), preferably about 70 to 100 ° C. (for example, 80 to 90 ° C.).
 結合剤の残存量は、乾燥後の粒状CMCまたはその塩全体に対して、例えば30質量%以下(例えば20質量%以下)程度であってもよく、好ましくは15質量%以下(例えば10質量%以下)、さらに好ましくは5質量%以下(例えば1質量%以下)程度に調整してもよい。 The residual amount of the binder may be, for example, about 30% by mass or less (for example, 20% by mass or less), preferably 15% by mass or less (for example, 10% by mass) with respect to the whole granular CMC or its salt after drying. The following), more preferably about 5% by mass or less (for example, 1% by mass or less) may be adjusted.
 (粉砕工程)
 乾燥後、得られたCMCまたはその塩は、必要に応じて、粉砕工程で粉砕することにより粒径を調整してもよい。粉砕は、慣用の粉砕機、例えば、ロールクラッシャー、コーンクラッシャー、カッターミル、スタンプミル、自生粉砕機、石臼型粉砕機、乳鉢、らいかい機、リングミルなどの数百μm程度に粉砕可能な粉砕機(または中砕機);ローラーミル、ジェットミル、高速回転ミル(ハンマーミル、ピンミルなど)、容器駆動型粉砕機(ボールミル、チューブミル、ロッドミルなどの回転ミル、振動ミル、遊星ミルなど)、媒体攪拌型粉砕機(アトライター、ビーズミルなど)などの数百μm以下にまで粉砕可能な粉砕機(微粉砕機または超微粉砕機)などを利用できる。これらの粉砕機は、単独でまたは2種以上組み合わせて使用することもできる。これらの粉砕機のうち、カッターミルなどの中砕機がよく利用される。
(Crushing process)
After drying, the obtained CMC or a salt thereof may be adjusted in particle size by pulverizing in a pulverization step, if necessary. For crushing, a conventional crusher, for example, a roll crusher, a cone crusher, a cutter mill, a stamp mill, a self-made crusher, a stone mill type crusher, a dairy bowl, a raft machine, a ring mill, or the like, which can crush to several hundred μm. (Or medium crusher); Roller mill, jet mill, high-speed rotary mill (hammer mill, pin mill, etc.), container-driven crusher (ball mill, tube mill, rod mill, etc. rotary mill, vibration mill, planetary mill, etc.), medium stirring A crusher (fine crusher or ultra-fine crusher) capable of crushing to several hundred μm or less such as a mold crusher (atwriter, bead mill, etc.) can be used. These crushers can also be used alone or in combination of two or more. Of these crushers, medium crushers such as cutter mills are often used.
 カッターミルを用いる場合、回転速度は、例えば100~1000000rpm(例えば1000~100000rpm)、好ましくは5000~50000rpm(例えば10000~30000rpm)、さらに好ましくは15000~25000rpm程度であってもよい。 When a cutter mill is used, the rotation speed may be, for example, 100 to 10000 rpm (for example, 1000 to 100,000 rpm), preferably 5000 to 50000 rpm (for example, 10000 to 30000 rpm), and more preferably about 15000 to 25000 rpm.
 粉砕時間は、粉砕機の種類などに応じて選択してもよく、例えば10秒~1時間(例えば30秒~30分)、好ましくは1~10分(例えば、1~3分)程度であってもよい。 The crushing time may be selected according to the type of the crusher and the like, and is, for example, about 10 seconds to 1 hour (for example, 30 seconds to 30 minutes), preferably about 1 to 10 minutes (for example, 1 to 3 minutes). You may.
 (分級工程)
 得られた粒状のCMCまたはその塩は、分級工程で分級(または篩分)して、所望の粒度(および真円度)に調整することが多い。分級方法は慣用の方法、例えば、流体力学の原理を利用した分級[乾式分級(重力分級、慣性分級、遠心分級など)、湿式分級(沈降分級、機械的分級、水力分級、遠心分級)など]、ふるい分けなどが挙げられる。これらの分級方法は、単独でまたは2種以上組み合わせて使用することもできる。これらのうち、通常、ふるい分けで分級することが多い。
(Classification process)
The obtained granular CMC or a salt thereof is often classified (or sieved) in a classification step to adjust the particle size (and roundness) to a desired value. The classification method is a conventional method, for example, classification using the principle of fluid dynamics [dry classification (gravity classification, inertia classification, centrifugal classification, etc.), wet classification (sedimentation classification, mechanical classification, hydraulic classification, centrifugal classification, etc.)] , Sieving, etc. These classification methods can also be used alone or in combination of two or more. Of these, they are usually classified by sieving.
 ふるい分けで分級する場合、通常、目開きの異なる複数のふるいのうち、目開きが最も小さなふるいの上に、目開きが順次に大きくなるようふるいを積み重ねて造粒したCMCまたはその塩を分級する。ふるい分けで分取する粒子は、目開きが、例えば500μm、好ましくは400μm、より好ましくは300μm、さらに好ましくは200μm、特に好ましくは180μm程度のふるいを通過し、かつ目開きが、例えば90μm、好ましくは100μm程度のふるいを通過しない粒子であってもよい。 When classifying by sieving, CMC or its salt is usually classified by stacking sieves on the sieve with the smallest opening among multiple sieves with different opening so that the opening becomes larger in sequence. .. The particles to be sorted by sieving pass through a sieve having a mesh size of, for example, 500 μm, preferably 400 μm, more preferably 300 μm, still more preferably 200 μm, particularly preferably about 180 μm, and the mesh size is, for example, 90 μm, preferably 90 μm. The particles may not pass through a sieve of about 100 μm.
 このようにして、本開示のCMCまたはその塩を調製することができる。なお、本開示は、CMCまたはその塩の粒度分布(および真円度)を前記方法により所定の範囲に調整して、水に対する溶解性を向上する方法も包含する。 In this way, the CMC of the present disclosure or a salt thereof can be prepared. The present disclosure also includes a method of adjusting the particle size distribution (and roundness) of CMC or a salt thereof within a predetermined range by the above method to improve the solubility in water.
 [水性組成物およびその製造方法]
 本開示は、前記CMCまたはその塩と水とを含む水性組成物(液状、スラリー状またはペースト状組成物)も包含する。水性組成物において、CMCまたはその塩と水との総量に対するCMCまたはその塩の割合は、例えば0.01~10質量%(例えば0.1~5質量%)、好ましくは0.3~2質量%(例えば0.5~1.5質量%)、さらに好ましくは0.6~1質量%(例えば0.7~0.9質量%)程度であってもよい。
[Aqueous composition and method for producing the same]
The present disclosure also includes an aqueous composition (liquid, slurry-like or paste-like composition) containing the CMC or a salt thereof and water. In the aqueous composition, the ratio of CMC or its salt to the total amount of CMC or its salt and water is, for example, 0.01 to 10% by mass (for example, 0.1 to 5% by mass), preferably 0.3 to 2% by mass. % (For example, 0.5 to 1.5% by mass), more preferably about 0.6 to 1% by mass (for example, 0.7 to 0.9% by mass).
 水は、通常、純水であることが多い。また、水性組成物のpHは酸性であってもよいが、通常、中性またはアルカリ性(特に中性)であることが多い。 Water is usually pure water. The pH of the aqueous composition may be acidic, but is usually neutral or alkaline (particularly neutral).
 水性組成物は、CMCまたはその塩および水とは異なる他の成分を含んでいてもよい。例えば、CMCまたはその塩を電極材料(増粘剤および/または分散安定剤など)として利用する場合、水性組成物は、活物質(例えば、天然黒鉛、人造黒鉛、ハードカーボン、MCMB(メソフェーズ小球体)などの炭素材料、チタン酸リチウムなど)、バインダー(スチレンブタジエンコポリマーなど)などの他の電極材料を含んでいてもよい。 The aqueous composition may contain CMC or a salt thereof and other components different from water. For example, when CMC or a salt thereof is used as an electrode material (such as a thickener and / or a dispersion stabilizer), the aqueous composition is an active material (eg, natural graphite, artificial graphite, hard carbon, MCMB (mesophase microspheres)). ) And other carbon materials, lithium titanate, etc.), binders (styrene butadiene copolymers, etc.) and other electrode materials may be included.
 前記水性組成物は、前記CMCまたはその塩と、前記水と、必要に応じて前記他の成分とを混合して調製できる。混合する順序や方法などは特に制限されないが、ママコの生成を有効に抑制する観点から、攪拌機などを用いて水を攪拌しながら、CMCまたはその塩を添加(特に、ゆっくり添加または少量ずつ添加)するのが好ましい。 The aqueous composition can be prepared by mixing the CMC or a salt thereof, the water, and if necessary, the other components. The order and method of mixing are not particularly limited, but from the viewpoint of effectively suppressing the production of mamaco, CMC or a salt thereof is added while stirring water using a stirrer or the like (particularly, slowly or little by little). It is preferable to do so.
 CMCまたはその塩を水に添加する際の攪拌速度(攪拌子または攪拌翼の回転速度)は、例えば10~2000rpm(例えば100~1500rpm)、好ましくは500~1000rpm(例えば600~900rpm)、さらに好ましくは650~850rpm(例えば700~800rpm)程度であってもよい。また、CMCまたはその塩の添加終了後、通常、溶解が完了(または攪拌トルクが安定)するまで攪拌することが多い。添加終了後の攪拌速度は、添加する際の攪拌速度と同等以上であってもよいが、ゆっくり攪拌してもよく、例えば10~1000rpm(例えば50~800rpm)、好ましくは100~500rpm(例えば150~450rpm)、さらに好ましくは200~400rpm(例えば250~350rpm)程度であってもよい。本開示では緩やかに攪拌しても、溶解時間を有効に短縮できる。 The stirring speed (rotational speed of the stirrer or stirring blade) when adding CMC or a salt thereof to water is, for example, 10 to 2000 rpm (for example, 100 to 1500 rpm), preferably 500 to 1000 rpm (for example, 600 to 900 rpm), more preferably. May be about 650 to 850 rpm (for example, 700 to 800 rpm). Further, after the addition of CMC or a salt thereof is completed, it is usually stirred until the dissolution is completed (or the stirring torque is stable). The stirring speed after the addition is completed may be equal to or higher than the stirring speed at the time of addition, but may be stirred slowly, for example, 10 to 1000 rpm (for example, 50 to 800 rpm), preferably 100 to 500 rpm (for example, 150). It may be about 450 rpm), more preferably about 200 to 400 rpm (for example, 250 to 350 rpm). In the present disclosure, the dissolution time can be effectively shortened even with gentle stirring.
 また、攪拌機の撹拌翼の形状は、例えば、タービン翼(例えば、エッジドタービン翼、平または傾斜タービン翼(ファンタービン翼、ディスクタービン翼など)など)、パドル翼(例えば、平パドル翼、傾斜パドル翼など)、プロペラ翼、ファウドラー翼、アンカー翼(例えば、ゲート翼など)、リボン翼(またはヘリカルリボン翼)(例えば、ダブルリボン翼などの多条リボン翼、シングルリボン翼など)などが挙げられる。これらの撹拌翼は、単独でまたは2種以上組み合わせて使用することもできる。これらの撹拌翼のうち、リボン翼が好ましい。 Further, the shape of the stirring blade of the stirrer is, for example, a turbine blade (for example, an edged turbine blade, a flat or inclined turbine blade (fan turbine blade, a disc turbine blade, etc.), etc.), a paddle blade (for example, a flat paddle blade, an inclined blade, etc.). Paddle wings, etc.), propeller wings, Faudler wings, anchor wings (eg, gate wings, etc.), ribbon wings (or helical ribbon wings, etc.) (eg, multi-row ribbon wings such as double ribbon wings, single ribbon wings, etc.) Be done. These stirring blades can be used alone or in combination of two or more. Of these stirring blades, ribbon blades are preferable.
 なお、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。 It should be noted that each aspect disclosed herein can be combined with any other feature disclosed herein.
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示はこれらの実施例によって限定されるものではない。 The present disclosure will be described in more detail below based on examples, but the present disclosure is not limited to these examples.
 [原料]
 CMC-Na:カルボキシメチルセルロースナトリウム塩、ダイセルファインケム(株)製「CMCダイセル 品番2200」、エーテル化度(DS)=0.90、1質量%水溶液粘度(25℃、60rpm)=1800mPa・s。
[material]
CMC-Na: Sodium salt of carboxymethyl cellulose, "CMC Dycel product number 2200" manufactured by Dycel Finechem Co., Ltd., degree of etherification (DS) = 0.90, viscosity of 1% by mass aqueous solution (25 ° C., 60 rpm) = 1800 mPa · s.
 [評価方法]
 (溶解時間)
 Φ55mm、深さ130mmのシリンダー状ガラス容器に純水220gを計量し、恒温槽で25℃に調温し、トルクメーター(新東科学(株)製「ロータリートルクメーター TYPE YT」)およびヘリカルリボン型攪拌翼を備えた攪拌機(新東科学(株)製「スリーワンモーターBL1200」)を前記シリンダー状ガラス容器に取り付けた。なお、前記ヘリカルリボン型撹拌翼は、リボン幅:3mm、高さ:80mm、幅(回転軸に対する垂直方向の幅):40mm、翼の数:シングル、リボンの螺旋回数:3回(高さ方向に80mmでリボンが3周する形状)であった。純水を750rpmで攪拌しながら、0.8質量%分量(約1.77g)のサンプルを5~10秒かけてゆっくりと添加した。添加後、直ちに攪拌速度を300rpmに変更して時間を測定開始し、トルク値が所定の値で安定するまでにかかった時間を溶解時間とした。なお、最大トルク達成率は、前記所定の値で安定したトルク値を基準(100%)として、このトルク値に対する割合として算出した。
[Evaluation method]
(Dissolution time)
Weigh 220 g of pure water in a cylindrical glass container with a diameter of 55 mm and a depth of 130 mm, adjust the temperature to 25 ° C in a constant temperature bath, and use a torque meter ("Rotary torque meter TYPE YT" manufactured by Shinto Kagaku Co., Ltd.) and a helical ribbon type. A stirrer equipped with a stirrer blade (“Three One Motor BL1200” manufactured by Shinto Kagaku Co., Ltd.) was attached to the cylindrical glass container. The helical ribbon type stirring blade has a ribbon width of 3 mm, a height of 80 mm, a width (width in the direction perpendicular to the rotation axis): 40 mm, a number of blades: single, and the number of ribbon spirals: 3 times (height direction). The shape was 80 mm and the ribbon made three turns). While stirring the pure water at 750 rpm, a 0.8 mass% amount (about 1.77 g) of the sample was slowly added over 5 to 10 seconds. Immediately after the addition, the stirring speed was changed to 300 rpm and the measurement was started, and the time required for the torque value to stabilize at a predetermined value was defined as the dissolution time. The maximum torque achievement rate was calculated as a ratio to the torque value based on the torque value stable at the predetermined value (100%).
 (粒度分布および真円度)
 Malvern社製「morphologiG3」を使用して、得られたサンプルの粒度分布および真円度の分布を測定し、粒度分布からD10、D50およびD90を算出し、真円度の分布から真円度50%以上、70%以上および90%以上の粒子の各割合を算出した。なお、サンプル数はN=5000個の任意の粒子を統計処理した。また粒度分布は体積基準の分布であり、真円度の分布は体積基準の分布である。
(Particle size distribution and roundness)
Using Malvern's "morphologi G3", measure the particle size distribution and roundness distribution of the obtained sample, calculate D10, D50 and D90 from the particle size distribution, and calculate the roundness 50 from the roundness distribution. The percentages of particles of% or more, 70% or more, and 90% or more were calculated. As for the number of samples, N = 5000 arbitrary particles were statistically processed. The particle size distribution is a volume-based distribution, and the roundness distribution is a volume-based distribution.
 なお、真円度は、以下のようにして算出される。 The roundness is calculated as follows.
 真円度[%]=4π×A/P×100
(式中、πは円周率を示し、Aは粒子の面積(投影面積)を示し、Pは粒子の周囲長を示す。)
Roundness [%] = 4π × A / P × 100
(In the equation, π indicates the pi, A indicates the area of the particle (projected area), and P indicates the peripheral length of the particle.)
 [実施例1~2および参考例1~3]
 (造粒CMC-Naの作製)
 CMC-Na 200gを造粒機((株)東芝製「餅つき機AFC-283」)に入れた後、攪拌しながら純水をスプレー噴霧器((株)フルプラ製「No.503」)を用いてスプレーノズル部を最も絞った状態にして5秒に1回レバーを引いてスプレー噴霧した。なお、純水は、CMC-Na量に対して90質量%(180g)となるように添加した。85℃でCMC-Naと純水との総量に対する純水量(水分量)が10質量%以下になるまで、全排気型乾燥機(エスペック(株)製「SPH-301S」)を用いて85℃で乾燥させた。乾燥後、得られた試料を大阪ケミカル(株)製「Force Mill」を用いて2分間粉砕した。
[Examples 1 and 2 and Reference Examples 1 to 3]
(Preparation of granulated CMC-Na)
After putting 200 g of CMC-Na into a granulator (Toshiba Co., Ltd. "Mochitsukiki AFC-283"), spray pure water with stirring using a spray atomizer (Furupla Co., Ltd. "No. 503"). The spray nozzle was squeezed to the maximum position, and the lever was pulled once every 5 seconds to spray. Pure water was added so as to be 90% by mass (180 g) with respect to the amount of CMC-Na. At 85 ° C, use a total exhaust type dryer (“SPH-301S” manufactured by ESPEC CORPORATION) at 85 ° C until the amount of pure water (water content) relative to the total amount of CMC-Na and pure water becomes 10% by mass or less. It was dried with. After drying, the obtained sample was pulverized for 2 minutes using "Force Mill" manufactured by Osaka Chemical Co., Ltd.
 (造粒CMC-Naの分級)
 受け皿の上に、330、166、83、30および16メッシュのふるい(JIS規格試験用ふるい(JIS Z 8801))を、目開きが小さいふるいから順に(前記記載の順に)重ねた。造粒した試料を最上部のふるい(16メッシュのふるい)に添加して蓋をしめ、(株)ダルトン製「マイクロシフター300」で5分間振動をかけ、ふるいわけを行った。分級したCMC-Naを、表2に記載のように実施例1~2および参考例1~3の評価用サンプルとして取り出し、評価した。
(Classification of granulated CMC-Na)
A sieve of 330, 166, 83, 30 and 16 mesh (JIS standard test sieve (JIS Z 8801)) was placed on the saucer in order from the sieve having the smallest opening (in the order described above). The granulated sample was added to the uppermost sieve (16-mesh sieve), the lid was closed, and the sample was vibrated with "Microshifter 300" manufactured by Dalton Co., Ltd. for 5 minutes to perform sieving. The classified CMC-Na was taken out as evaluation samples of Examples 1 and 2 and Reference Examples 1 to 3 as shown in Table 2 and evaluated.
 [比較例1]
 CMC-Naを造粒および分級することなく評価した。
[Comparative Example 1]
CMC-Na was evaluated without granulation and classification.
 用いたふるいのメッシュと目開きとの関係を表1に示し、評価結果を表2および図1~3に示す。なお、表2において、「pass」および「on」は、ふるいを通過したまたは通過しなかったことをそれぞれ示すため、例えば、実施例1の「30メッシュpass83メッシュon品」は、30メッシュのふるいを通過し、かつ83メッシュのふるいを通過しなかったCMC-Naであることを意味する。また、図2~3記載の「実施例1+実施例2(合体)」は、実施例1および2で得られたCMC-Naを混合(すなわち、30メッシュpass166メッシュon品)して測定した結果を示す。 Table 1 shows the relationship between the mesh of the sieve used and the opening, and Table 2 and FIGS. 1 to 3 show the evaluation results. In Table 2, "pass" and "on" indicate that they passed or did not pass through the sieve. Therefore, for example, "30 mesh pass 83 mesh on product" of Example 1 is a 30 mesh sieve. It means that it is CMC-Na that has passed through and has not passed through the sieve of 83 mesh. In addition, "Example 1 + Example 2 (combination)" shown in FIGS. 2 to 3 is a result of mixing CMC-Na obtained in Examples 1 and 2 (that is, 30 mesh pass166 mesh on product) and measuring. Is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図1~3から明らかなように、実施例1~2に比べて小さ過ぎる粒子を含む比較例1および参考例3、または大き過ぎる粒子を含む参考例1では、ママコが発生し易く溶解に時間がかかったのに対して、実施例1~2および参考例2では、比較例1に比べて短時間で溶解した。特に実施例1~2ではママコの発生が確認されず、比較例1に対して溶解時間を1/6以下に短縮できた。 As is clear from Table 2 and FIGS. 1 to 3, in Comparative Example 1 and Reference Example 3 containing particles that are too small as compared with Examples 1 and 2, or Reference Example 1 containing particles that are too large, mamaco is likely to occur. While it took a long time to dissolve, in Examples 1 and 2 and Reference Example 2, it was dissolved in a shorter time than in Comparative Example 1. In particular, in Examples 1 and 2, the occurrence of mamaco was not confirmed, and the dissolution time could be shortened to 1/6 or less as compared with Comparative Example 1.
 また、溶解時間が長い比較例1では、造粒していないためか綿状物の割合が多く、参考例1では造粒したものの歪な形状の粒子の割合が多いのに対して、溶解時間が短い実施例1~2では、他の例に比べて真円度が高い粒子の割合が多かった。 Further, in Comparative Example 1 in which the dissolution time is long, the proportion of cotton-like particles is large probably because the particles are not granulated, and in Reference Example 1, the proportion of particles having a distorted shape is large, whereas the dissolution time is large. In Examples 1 and 2 in which the value was short, the proportion of particles having a high degree of roundness was higher than in the other examples.
 本開示のカルボキシメチルセルロースまたはその塩は、緩やかな攪拌であっても効率よく溶解できるため、様々な用途、例えば、医薬品(例えば、錠剤、緩下剤、飲み薬(シロップなど)、パップ剤、冷却シート、X線造影剤、義歯安定剤など)、化粧品(例えば、ヘアケア用品(シャンプー、コンディショナーなど)、スキンケア用品または基礎化粧品(ジェルなど)、染毛剤など)、日用品(例えば、練歯磨剤、芳香剤、入浴剤、水解紙など)、食品(例えば、飲料、シャーベット、生麺またはチルド麺、タレなど)、電気・電子部品[例えば、電池(リチウムイオン電池などの2次電池など)の電極(例えば、負極)材料など]、土木または建築用材料(例えば、石油または温泉ボーリング、地中連続壁・場所打ち杭(基礎杭)、泥土圧式シールド工法などの工事における調泥剤(または泥水調整剤)や加泥剤など)、サイジング剤(例えば、経糸サイジング、バックサイジングなど)、養殖用飼料、耐火煉瓦、各種スラリーの増粘剤または分散剤などに利用できる。 Since the carboxymethyl cellulose of the present disclosure or a salt thereof can be efficiently dissolved even with gentle stirring, various uses such as pharmaceuticals (for example, tablets, slurries, swallows (such as syrup)), poultices, cooling sheets, etc. X-ray contrast agents, artificial tooth stabilizers, etc.), cosmetics (eg, hair care products (shampoo, conditioner, etc.), skin care products or basic cosmetics (gel, etc.), hair dyes, etc.), daily necessities (eg, dentin polish, fragrance) , Bathing agents, water melts, etc.), foods (eg, beverages, sherbets, raw or chilled noodles, sauces, etc.), electrical and electronic parts [eg, electrodes (eg, secondary batteries such as lithium-ion batteries) , Negative electrode) materials, etc.], civil engineering or building materials (for example, oil or hot spring boring, underground continuous wall / cast-in-place pile (foundation pile), mud pressure type shield method, etc. It can be used as a thickener or dispersant for sizing agents (for example, warp sizing, back sizing, etc.), culture feeds, fire-resistant bricks, and various slurries.
 特に、本開示のカルボキシメチルセルロースまたはその塩は分子量が大きくても(または溶液状態における粘度が高くても)短時間で溶解可能なため、例えば、2次電池など電池の電極を形成するための電極材料(または添加剤)[例えば、増粘剤、分散剤(分散安定剤または安定化剤)、流動化剤、結合剤(またはバインダー)、懸濁剤など]、特にリチウムイオン電池の負極材料(例えば、増粘剤、分散剤および/または結合剤)として有効に利用できる。
 
In particular, since the carboxymethyl cellulose of the present disclosure or a salt thereof can be dissolved in a short time even if it has a large molecular weight (or has a high viscosity in a solution state), it is an electrode for forming an electrode of a battery such as a secondary battery. Materials (or additives) [eg, thickeners, dispersants (dispersion stabilizers or stabilizers), fluidizers, binders (or binders), suspending agents, etc.], especially negative electrode materials for lithium ion batteries ( For example, it can be effectively used as a thickener, a dispersant and / or a binder).

Claims (9)

  1.  粒状のカルボキシメチルセルロースまたはその塩であって、粒径の体積基準の累積分布において、小粒径側から累積10%、累積50%および累積90%の粒径をそれぞれD10、D50およびD90としたとき、D10が90μm以上、D50が120~470μm、D90が500μm以下であるカルボキシメチルセルロースまたはその塩。 Granular carboxymethyl cellulose or a salt thereof, in which the cumulative 10%, 50%, and 90% particle sizes from the small particle size side are D10, D50, and D90, respectively, in the volume-based cumulative distribution of the particle size. , D10 is 90 μm or more, D50 is 120 to 470 μm, and D90 is 500 μm or less. Carboxymethyl cellulose or a salt thereof.
  2.  D10が100μm以上、D50が150~200μm、D90が250μm以下である請求項1記載のカルボキシメチルセルロースまたはその塩。 The carboxymethyl cellulose or a salt thereof according to claim 1, wherein D10 is 100 μm or more, D50 is 150 to 200 μm, and D90 is 250 μm or less.
  3.  真円度50%以上の粒子の割合が、全体に対して90体積%以上であり、真円度70%以上の粒子の割合が、全体に対して70体積%以上である請求項1または2記載のカルボキシメチルセルロースまたはその塩。 Claim 1 or 2 in which the proportion of particles having a roundness of 50% or more is 90% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is 70% by volume or more with respect to the whole. Carboxymethyl cellulose or a salt thereof.
  4.  真円度50%以上の粒子の割合が、全体に対して95体積%以上であり、真円度70%以上の粒子の割合が、全体に対して80体積%以上である請求項1~3のいずれかに記載のカルボキシメチルセルロースまたはその塩。 Claims 1 to 3 in which the proportion of particles having a roundness of 50% or more is 95% by volume or more with respect to the whole, and the proportion of particles having a roundness of 70% or more is 80% by volume or more with respect to the whole. Carboxymethyl cellulose or a salt thereof according to any one of.
  5.  1質量%水溶液における粘度が、温度25℃において、1500~3000mPa・sである請求項1~4のいずれかに記載のカルボキシメチルセルロースまたはその塩。 The carboxymethyl cellulose or a salt thereof according to any one of claims 1 to 4, wherein the viscosity in a 1% by mass aqueous solution is 1500 to 3000 mPa · s at a temperature of 25 ° C.
  6.  電極材料である請求項1~5のいずれかに記載のカルボキシメチルセルロースまたはその塩。 The carboxymethyl cellulose or a salt thereof according to any one of claims 1 to 5, which is an electrode material.
  7.  請求項1~6のいずれかに記載のカルボキシメチルセルロースまたはその塩と水とを含む水性組成物。 An aqueous composition containing carboxymethyl cellulose or a salt thereof and water according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載のカルボキシメチルセルロースまたはその塩と、水とを混合して、請求項7記載の水性組成物を製造する方法。 The method for producing an aqueous composition according to claim 7, wherein the carboxymethyl cellulose or a salt thereof according to any one of claims 1 to 6 is mixed with water.
  9.  カルボキシメチルセルロースまたはその塩を請求項1~4のいずれかに記載の粒状の形態に調製して、水に対する溶解性を向上する方法。
     
    A method for improving solubility in water by preparing carboxymethyl cellulose or a salt thereof in the granular form according to any one of claims 1 to 4.
PCT/JP2020/021609 2019-07-29 2020-06-01 Carboxymethyl cellulose or salt thereof, and composition thereof WO2021019896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044736.2A CN113993904B (en) 2019-07-29 2020-06-01 Carboxymethyl cellulose or salt thereof and composition thereof
KR1020217040239A KR20220042057A (en) 2019-07-29 2020-06-01 Carboxymethylcellulose or its salt and its composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138778A JP7481812B2 (en) 2019-07-29 2019-07-29 Carboxymethylcellulose or its salt and composition thereof
JP2019-138778 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021019896A1 true WO2021019896A1 (en) 2021-02-04

Family

ID=74230552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021609 WO2021019896A1 (en) 2019-07-29 2020-06-01 Carboxymethyl cellulose or salt thereof, and composition thereof

Country Status (4)

Country Link
JP (1) JP7481812B2 (en)
KR (1) KR20220042057A (en)
CN (1) CN113993904B (en)
WO (1) WO2021019896A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143604A (en) * 1989-10-31 1991-06-19 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of granular water-soluble polymer
JPH08176994A (en) * 1994-12-22 1996-07-09 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethyl cellulose for paper coating liquid and paper coating liquid containing the same
JPH0931102A (en) * 1995-07-18 1997-02-04 Dai Ichi Kogyo Seiyaku Co Ltd Method for granulating carboxymethylcellulose ether alkali salt and granular caroboxymethylcellulose ether alkali salt
JPH10237101A (en) * 1996-12-26 1998-09-08 Daicel Chem Ind Ltd Carboxymethylcellulose alkali salt powder excellent in dissolution speed, and binding agent for fish-culturing feed
JP2002047349A (en) * 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2003212901A (en) * 2002-01-22 2003-07-30 Daicel Chem Ind Ltd Carboxymethyl cellulose and salt thereof, excellent in dispersion to water
JP2011063673A (en) * 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516358A (en) 1974-07-04 1976-01-19 Hitachi Construction Machinery GANYUHAISUISHORIHOHOOYOBI SOCHI
JPS5936941A (en) 1982-08-25 1984-02-29 Toshiba Corp Manufacture of semiconductor device
US4650716A (en) * 1985-05-14 1987-03-17 Hercules Incorporated Novel salts of carboxymethylcellulose
JPH0816162B2 (en) * 1992-05-20 1996-02-21 日本製紙株式会社 Granulation method of water-soluble cellulose derivative
JP2009051781A (en) * 2007-08-28 2009-03-12 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose spherical particles and cosmetic comprising the same
KR20180066723A (en) * 2016-12-09 2018-06-19 롯데정밀화학 주식회사 Method of manufacturing carboxymethyl cellulose particles, carboxymethyl cellulose particles and absorbent articles including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143604A (en) * 1989-10-31 1991-06-19 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of granular water-soluble polymer
JPH08176994A (en) * 1994-12-22 1996-07-09 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethyl cellulose for paper coating liquid and paper coating liquid containing the same
JPH0931102A (en) * 1995-07-18 1997-02-04 Dai Ichi Kogyo Seiyaku Co Ltd Method for granulating carboxymethylcellulose ether alkali salt and granular caroboxymethylcellulose ether alkali salt
JPH10237101A (en) * 1996-12-26 1998-09-08 Daicel Chem Ind Ltd Carboxymethylcellulose alkali salt powder excellent in dissolution speed, and binding agent for fish-culturing feed
JP2002047349A (en) * 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2003212901A (en) * 2002-01-22 2003-07-30 Daicel Chem Ind Ltd Carboxymethyl cellulose and salt thereof, excellent in dispersion to water
JP2011063673A (en) * 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same

Also Published As

Publication number Publication date
TW202118794A (en) 2021-05-16
KR20220042057A (en) 2022-04-04
CN113993904B (en) 2023-03-28
CN113993904A (en) 2022-01-28
JP2021021018A (en) 2021-02-18
JP7481812B2 (en) 2024-05-13

Similar Documents

Publication Publication Date Title
DK1867239T3 (en) THICKENING COMPOSITION WITH IMPROVED VISCOSITY MANIFESTATION
JP4790716B2 (en) Method for producing granular detergent composition with improved solubility
JP4371394B2 (en) Controlled release polyacrylic acid granules and process for their preparation
WO2008020497A1 (en) Thickening composition improved in viscosity development
JPH11178539A (en) Granular sweetener
WO2021019896A1 (en) Carboxymethyl cellulose or salt thereof, and composition thereof
JP2015120686A (en) Dentifrice granules
JP3454554B2 (en) Amorphous silica granules and production method thereof
TWI836096B (en) Carboxymethyl cellulose or its salts and their compositions
JP2011030495A (en) Fluidity improver
JP5698903B2 (en) Method for producing dentifrice granules
JP4711648B2 (en) Method for producing polyhedral calcium carbonate
WO1999032000A1 (en) Sweetener composition
JP3619905B2 (en) Method for producing zirconia micro-molded sphere
JP4801543B2 (en) Thickening composition
JP5093430B2 (en) Method for producing detergent-added particles
JP2015110556A (en) Method of producing dentifrice granules
JP2974123B2 (en) Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt obtained thereby
US9187572B2 (en) Treatment of polysaccarides with dialdehydes
JP3796872B2 (en) Method for producing clay mineral powder
JP4878695B2 (en) Granulated product of naphthol derivative and its production method
JP3619904B2 (en) Method for producing zirconia micro-molded sphere
JPH05201725A (en) Calcium carbonate slurry of ultrahigh concentration
JPH08283068A (en) Zirconia microsphere and its production
JP5971753B2 (en) Method for producing detergent particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848030

Country of ref document: EP

Kind code of ref document: A1