JPH0931102A - Method for granulating carboxymethylcellulose ether alkali salt and granular caroboxymethylcellulose ether alkali salt - Google Patents
Method for granulating carboxymethylcellulose ether alkali salt and granular caroboxymethylcellulose ether alkali saltInfo
- Publication number
- JPH0931102A JPH0931102A JP18150595A JP18150595A JPH0931102A JP H0931102 A JPH0931102 A JP H0931102A JP 18150595 A JP18150595 A JP 18150595A JP 18150595 A JP18150595 A JP 18150595A JP H0931102 A JPH0931102 A JP H0931102A
- Authority
- JP
- Japan
- Prior art keywords
- cmc
- water
- alkali salt
- granular
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- -1 carboxymethylcellulose ether alkali salt Chemical class 0.000 title claims abstract description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 title description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 85
- 239000002245 particle Substances 0.000 claims abstract description 49
- 239000007788 liquid Substances 0.000 claims abstract description 40
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 150000001447 alkali salts Chemical class 0.000 claims description 5
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 abstract description 181
- 235000010948 carboxy methyl cellulose Nutrition 0.000 abstract description 181
- 238000005469 granulation Methods 0.000 abstract description 37
- 230000003179 granulation Effects 0.000 abstract description 37
- 239000000843 powder Substances 0.000 abstract description 21
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 175
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 175
- 239000000047 product Substances 0.000 description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 19
- 238000003756 stirring Methods 0.000 description 17
- 239000000428 dust Substances 0.000 description 15
- 238000006266 etherification reaction Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 238000011033 desalting Methods 0.000 description 11
- 125000001033 ether group Chemical group 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 208000005156 Dehydration Diseases 0.000 description 9
- 230000018044 dehydration Effects 0.000 description 9
- 238000006297 dehydration reaction Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 159000000000 sodium salts Chemical class 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000012937 correction Methods 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 4
- 101001048843 Homo sapiens Protein FAM163A Proteins 0.000 description 3
- 102100023773 Protein FAM163A Human genes 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011153 ceramic matrix composite Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229940095709 flake product Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液中処理を特徴と
するカルボキシメチルセルロースエーテルアルカリ塩
(以下「CMC」と称す)の造粒方法と、造粒品である
粒状CMCに関するものであって、CMCの粉体管理
上、発塵防止による作業環境の保全や、移送時の搬出入
の自動化、容器への付着を防止する目的と、水への溶解
性を改良し速溶性に優れ、各種分野でのハンドリング性
の向上を図ることができる粒状CMCと、CMCの造粒
方法に関するものである。TECHNICAL FIELD The present invention relates to a method for granulating an alkali salt of carboxymethyl cellulose ether (hereinafter referred to as “CMC”) characterized by in-liquid treatment, and a granular CMC which is a granulated product, In the powder management of CMC, the purpose is to protect the working environment by preventing dust generation, to automate loading and unloading at the time of transfer, to prevent adhesion to the container, and to improve the solubility in water and to excel in rapid dissolution, in various fields. The present invention relates to granular CMC capable of improving the handling property in the above and a granulation method of CMC.
【0002】[0002]
【従来の技術】従来から、各種用途に用いられるCMC
は、パルプ等を原料とし、アルセル化反応の後、エーテ
ル化反応を行い、ついで、酢酸等で中和し、脱液濾過し
て粗製CMCを作製する。その後、この粗製CMCに、
含水率が30重量%(以下「%」と略す)以下のメタノ
ール水溶液を加えて脱塩精製を行う。つぎに、濾過され
た精製CMCを熱風乾燥して粉砕することにより製造さ
れる。2. Description of the Related Art CMC conventionally used for various purposes
Is produced by using pulp or the like as a raw material, performing an etherification reaction and then an etherification reaction, then neutralizing with acetic acid or the like, and removing liquid by filtration to produce crude CMC. Then, on this crude CMC,
Desalination purification is performed by adding an aqueous methanol solution having a water content of 30% by weight (hereinafter abbreviated as "%"). Next, the purified CMC that has been filtered is produced by drying with hot air and crushing.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記工
程により得られるCMCは、下記に示す問題を有してい
る。However, the CMC obtained by the above process has the following problems.
【0004】得られたCMCの粒径が不均一であり、
かつ微粉(粒径75μm以下)で繊維状のものが多く含
有されているため、粉立ちが多く作業性に問題がある。 上記微粉のCMCを使用する際に、粉塵が発生し、作
業環境に悪影響をおよぼす。 得られたCMCの粒径が不均一、かつ、繊維状の微粉
が多いため、水に対する溶解において、継粉が生成し、
しかも溶解性が悪く溶解に長時間を要する。 CMCが微粉であるため、吸湿し易く、積圧で固化し
ハンドリング性が悪化する。The particle size of the obtained CMC is not uniform,
In addition, since a large amount of fine powder (particle diameter of 75 μm or less) in a fibrous form is contained, there is a lot of powder standing and there is a problem in workability. When the fine CMC is used, dust is generated, which adversely affects the working environment. Since the particle size of the obtained CMC is non-uniform and there are many fibrous fine powders, when dissolved in water, a continuous powder is generated,
Moreover, the solubility is poor and it takes a long time to dissolve. Since CMC is a fine powder, it easily absorbs moisture and solidifies at a product pressure to deteriorate handleability.
【0005】上記のような問題を有するために、流動性
が良好で、かつコンパクト化されたCMCの造粒化が検
討されている。例えば、CMCの造粒方法として、CM
Cの製造工程において、CMCの反応後、この反応に用
いた溶媒を分離して、いわゆるパサパサしたウエット状
の粗製CMCを作製する。そして、この粗製CMCに、
攪拌混合下でCMCに対して1〜2倍量の水を噴霧して
繊維状のCMCを一部溶かし込み固めて(角質化)造粒
化したCMCを作製する。続いて、脱水目的で、多量の
メタノールに上記造粒化したCMCを浸漬して、このメ
タノールを分離し脱水した後、乾燥して造粒品となる粒
状CMCを得るというCMCの造粒方法があげられる
(米国特許第2715124号)。しかしながら、上記
造粒方法では、上記のように水の噴霧によるゲル状CM
Cが不均一であるため、製品として粒度が均一な造粒品
が得られないという問題がある。また、上記のように、
ゲル状CMCが密着して粒状に成長するため、その粒形
状態はこんぺい糖のような表面に凹凸形状が形成された
粒子に形成され、その結果、流動性が悪くなるという問
題を有している。さらに、高エーテル置換度のCMCは
水溶性が高く、溶解し易いことから、装置への付着が強
く、さらにCMCが粘着して粒子にならないため、造粒
化できない等の問題がある。また、全体に、上記造粒方
法は、製品CMCの収率が悪くコスト高である。Due to the problems as described above, granulation of CMC having good fluidity and compact size has been studied. For example, as a granulation method of CMC, CM
In the production process of C, after the reaction of CMC, the solvent used in this reaction is separated to produce a so-called dry and rough crude CMC. And to this crude CMC,
While stirring and mixing, 1 to 2 times the amount of water is sprayed to CMC to partially dissolve and solidify (keratinize) fibrous CMC to prepare granulated CMC. Then, for the purpose of dehydration, the granulated CMC is prepared by immersing the granulated CMC in a large amount of methanol, separating and dehydrating the methanol, and then drying to obtain granular CMC to be a granulated product. (U.S. Pat. No. 2,715,124). However, in the above-mentioned granulation method, gel CM produced by spraying water as described above is used.
Since C is not uniform, there is a problem that a granulated product having a uniform particle size cannot be obtained. Also, as mentioned above,
Since the gel-like CMC grows in close contact with each other and has a granular shape, the granular state is formed into particles having irregularities formed on the surface such as sucrose, and as a result, the fluidity is deteriorated. ing. Further, since CMC having a high degree of ether substitution has high water solubility and is easily dissolved, there is a problem that the CMC adheres strongly to the apparatus and the CMC does not stick to particles and cannot be granulated. In addition, as a whole, the above-mentioned granulation method has a poor yield of product CMC and is costly.
【0006】一方、本願出願人は、先に、CMCの溶剤
−水含有スラリーを、回転円盤上に流下させて霧化させ
ることにより、噴霧乾燥して造粒化する方法を提案して
いる(特願平6−215058号)。しかし、この方法
によって得られるCMC造粒品は、かさ密度が小さく、
CMCの流動性とコンパクト化という点で好ましいもの
ではないことがわかった。On the other hand, the applicant of the present application has previously proposed a method in which a solvent-water containing slurry of CMC is made to flow on a rotating disk to be atomized and then spray-dried for granulation ( Japanese Patent Application No. 6-215058). However, the CMC granulated product obtained by this method has a low bulk density,
It was found that CMC is not preferable in terms of fluidity and compactness.
【0007】本発明は、このような事情に鑑みなされた
もので、得られる乾燥粉末の粒径が均一で、かつ微粉の
生成が抑制され、しかもかさ密度の高いハンドリング性
に優れたCMCを得ることのできるCMCの造粒方法、
および、粒状CMCの提供をその目的とする。The present invention has been made in view of the above circumstances, and obtains a CMC which has a uniform particle size of the dry powder to be obtained, suppresses the generation of fine powder, and has a high bulk density and excellent handling property. Granulation method of CMC capable of
And the purpose is to provide granular CMC.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
め、本発明は、塊状CMCを含水イソプロピルアルコー
ル中で解砕することにより液中で造粒するCMCの造粒
方法を第1の要旨とし、粒径149〜2000μmの範
囲内の粒子が全体の80%以上含有され、かつ、かさ密
度が0.4g/ml以上である粒状CMCを第2の要旨
とする。In order to achieve the above object, the present invention has a first aspect of a method for granulating CMC in which liquid CMS is granulated by crushing massive CMC in hydrous isopropyl alcohol. The second gist is a granular CMC containing 80% or more of particles having a particle size of 149 to 2000 μm and having a bulk density of 0.4 g / ml or more.
【0009】[0009]
【発明の実施の形態】本発明は、エーテル置換度に関係
なく、低エーテル置換度から高エーテル置換度まで、す
なわち、水溶性の高いCMCであっても、高品質のCM
Cの造粒品を得るために、塊状CMCを水含有のイソプ
ロピルアルコール(以下「IPA」と称す)中で解砕す
ることにより液中で造粒する方法である。この液中造粒
において、原料となる塊状CMCを含有する含水IPA
溶液からなる系を、CMCの含有割合が系全体の5〜3
0%、IPAの含有割合が系全体の55〜80%、水分
含有割合が系全体の15〜40%に設定することによ
り、均一な粒径で、かつ、微粉の生成が抑制されたかさ
密度の高いCMC造粒品(粒状CMC)が得られより効
果的である。さらに、上記液中造粒法において、塊状C
MCを含有する含水IPA溶液系の流動特性を示すレイ
ノルズ数(Re)を、1000以上に設定した条件下で
行うことにより、均一な粒径で、かつ、粒径が75μm
以下の微粉の生成が抑制された粒状CMCが得られる。
したがって、得られた粒状CMCを水に溶解する際に、
従来見られた継粉の生成現象が生じず、速やかに水に溶
解する。この結果、各種用途での使用時の溶解時間が大
幅に短縮され、さらに、粉立ちが少なく流動性が良好で
あるため、ハンドリング性にも優れている。また、粒状
CMC使用時に粉塵の発生が少なく、作業環境の悪化を
招くこともない。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, regardless of the degree of ether substitution, CM of high quality can be obtained from low ether substitution degree to high ether substitution degree, that is, even CMC having high water solubility.
In order to obtain a granulated product of C, it is a method of granulating in a liquid by crushing massive CMC in isopropyl alcohol containing water (hereinafter referred to as "IPA"). In this in-liquid granulation, hydrous IPA containing massive CMC as a raw material
A system consisting of a solution is used in which the CMC content is 5 to 3 of the total system.
By setting 0%, the content ratio of IPA to 55 to 80% of the whole system, and the water content ratio to 15 to 40% of the whole system, the bulk density is uniform and the generation of fine powder is suppressed. It is more effective because a CMC granulated product with high (granular CMC) is obtained. Further, in the submerged granulation method, lumpy C
By carrying out the Reynolds number (Re) showing the flow characteristics of the water-containing IPA solution system containing MC under a condition of 1000 or more, a uniform particle size and a particle size of 75 μm can be obtained.
The following granular CMC in which generation of fine powder is suppressed can be obtained.
Therefore, when the obtained granular CMC is dissolved in water,
It does not cause the generation phenomenon of powdered powder that has been seen in the past, but dissolves quickly in water. As a result, the dissolution time during use in various applications is greatly shortened, and further, handling is excellent because there is little powdering and good fluidity. Further, when the granular CMC is used, the generation of dust is small and the working environment is not deteriorated.
【0010】そして、粒状CMCとして、粒径149〜
2000μmの範囲内に全粒子の80%以上が存在し、
かつ、かさ密度が0.4g/ml以上に設定されたもの
は、流動性および溶解性に優れ、発塵問題も生じず、し
かも、良好なハンドリング性を有するようになる。The granular CMC has a particle size of 149-
80% or more of all particles are present within the range of 2000 μm,
In addition, when the bulk density is set to 0.4 g / ml or more, the fluidity and the solubility are excellent, the dusting problem does not occur, and the handling property becomes good.
【0011】つぎに、本発明を詳しく説明する。Next, the present invention will be described in detail.
【0012】本発明のCMCの造粒方法において、対象
となるCMCは、平均エーテル置換度が0.4〜3.0
であって、結着性を有するCMCにも適用できるという
点でいずれのCMCにも適用可能であるが、特に、親水
性の高い平均エーテル置換度が1.5〜3.0のCMC
が好適対象となる。また、アルカリ塩の種類としては、
ナトリウム塩、カリウム塩、アンモニウム塩等があげら
れるが、通常は、ナトリウム塩である。さらに、CMC
は、粗製CMC、また、この粗製CMCを用い、副生塩
を除去する工程を経由して得られる精製CMCのいずれ
であってもよい。なお、本発明により造粒化した後、脱
塩精製すると精製効果が劣ることから、精製CMCを用
いることが好ましい。In the CMC granulation method of the present invention, the target CMC has an average ether substitution degree of 0.4 to 3.0.
It is also applicable to any CMC in that it can also be applied to CMC having a binding property, and in particular, CMC having a highly hydrophilic average ether substitution degree of 1.5 to 3.0.
Is a suitable target. Also, as the type of alkali salt,
Examples thereof include sodium salt, potassium salt, ammonium salt and the like, but sodium salt is usually used. Furthermore, CMC
May be either crude CMC or purified CMC obtained by using this crude CMC and removing the by-product salt. It is preferable to use purified CMC because the purification effect is poor if desalted and purified after granulation according to the present invention.
【0013】本発明のCMCの造粒方法は、例えば、つ
ぎのようにして行われる。すなわち、従来公知の方法で
ある、パルプを原料に用い、アルセル化反応およびエー
テル化反応を経由して中和処理を行い、脱液濾過するこ
とによって粗製CMCを準備する。一方、水とIPA
を、重量比で、水/IPA=40/60〜70/30の
範囲内で混合した混合溶剤(含水IPA)を準備し、上
記粗製CMCに対して、この混合溶剤を上記粗製CMC
の重量の5〜20倍量投入し、30〜75℃で0.5〜
1時間攪拌して脱塩処理を行う(脱塩工程)。そして、
遠心分離機、デカンタ、スクリュー式連続分液機、濾過
器等により脱液してウエット状の精製CMCを作製す
る。ここで作製された精製CMCは、CMC固形分が2
0〜40%、水が45〜65%、IPAが15〜35%
の組成からなり、結着性を有する寒天状から蒟蒻状のよ
うな弾力のある塊状物である。このようにして得られる
塊状精製CMCは上記脱塩工程において、45〜65%
の高含水率となる。The CMC granulation method of the present invention is carried out, for example, as follows. That is, a crude CMC is prepared by using a conventionally known method of using pulp as a raw material, performing a neutralization treatment via an alcerization reaction and an etherification reaction, and performing deliquoring filtration. On the other hand, water and IPA
Was prepared in a weight ratio of water / IPA = 40/60 to 70/30 to prepare a mixed solvent (water-containing IPA), and the mixed solvent was added to the crude CMC.
5 to 20 times the weight of the
Desalting treatment is performed by stirring for 1 hour (desalting step). And
The liquid is deliquored using a centrifuge, a decanter, a screw-type continuous liquid separator, a filter, etc. to produce wet purified CMC. The purified CMC produced here has a CMC solid content of 2
0-40%, water 45-65%, IPA 15-35%
It is a lump-like material having a binding property and having elasticity such as agar-like to konnyaku-like. The bulk purified CMC thus obtained is 45 to 65% in the desalting step.
It has a high water content.
【0014】つぎに、所定の混合機に、上記で得られた
ウエット状で塊状の精製CMCと、含水率20%以下の
IPA(溶媒)を投入して、精製CMC中に残存する水
分を、IPAである溶媒中に移行させて精製CMCの脱
水処理を行う。この脱水処理を行うとともに、混合機内
で、羽根攪拌して塊状の精製CMCを解砕することによ
り細かく切断して液中造粒を行う。上記液中造粒で用い
る含水率20%以下のIPAは、前記精製CMCが高含
水率であるため、その含水率を5〜30%の範囲に調整
するために用いられる。すなわち、含水率20%以下の
IPAは、造粒時の再結着が防止でき、同時に精製CM
Cの脱水処理を行うことができる有用な溶剤である。そ
して、IPA以外の、他の有機溶剤、例えば低級アルコ
ールである、メタノール、エタノールの使用は、CMC
の水溶性と付着性が高いため、溶解してしまい液中造粒
を行うことが不可能となり好ましくない。また、ブタノ
ールの使用は、臭気が強く脱気し難いため、経済的に高
価となり好ましくない。Next, the wet and lump-shaped purified CMC obtained above and IPA (solvent) having a water content of 20% or less are put into a predetermined mixer to remove the residual water in the purified CMC. The purified CMC is dehydrated by transferring it to a solvent that is IPA. In addition to performing this dehydration treatment, stirring is performed in a mixer with a blade to crush the refined CMC in a lump form, thereby finely cutting and performing in-liquid granulation. Since the purified CMC has a high water content, IPA having a water content of 20% or less used in the above-mentioned liquid granulation is used to adjust the water content to a range of 5 to 30%. That is, IPA having a water content of 20% or less can prevent re-binding during granulation, and at the same time refined CM
It is a useful solvent that can perform the dehydration treatment of C. The use of other organic solvents other than IPA, for example, lower alcohols such as methanol and ethanol is
Since it has high water solubility and adhesiveness, it is not preferable because it dissolves and it becomes impossible to granulate in liquid. Also, the use of butanol is not preferable because it has a strong odor and is difficult to be deaerated, which is economically expensive.
【0015】つぎに、液中造粒したCMCは遠心分離機
により溶媒を除去し、続いて、流動乾燥機または減圧式
乾燥機等を用いて60〜110℃で5〜60分間乾燥を
行う。このようにして粒状CMCが得られる。Next, the CMC granulated in the liquid is subjected to a solvent removal by a centrifuge, and subsequently dried at 60 to 110 ° C. for 5 to 60 minutes by using a fluidized dryer or a vacuum dryer. In this way, granular CMC is obtained.
【0016】上記液中造粒において、精製CMCと含水
IPAを投入する混合機としては、図1に示すようなミ
キサー式混合機があげられる。すなわち、この混合機内
において、所定のレイノルズ数で攪拌した含水IPA溶
液3中で、ナイフ型攪拌羽根1を回転させて、塊状の精
製CMC2を小さく切断して回転を加えながら液中造粒
を行う。In the above-mentioned in-liquid granulation, a mixer type mixer as shown in FIG. 1 can be used as a mixer for introducing purified CMC and water-containing IPA. That is, in this mixer, in the water-containing IPA solution 3 stirred at a predetermined Reynolds number, the knife-type stirring blade 1 is rotated to cut the agglomerated purified CMC 2 into small pieces, and granulation in the liquid is performed while rotating. .
【0017】上記液中造粒において、塊状の精製CMC
2を含有する含水IPA溶液3系の流動特性を示す値の
レイノルズ数(Re)を1000以上の強い羽根攪拌で
行うことが好ましい。特に好ましくはレイノルズ数(R
e)が4000〜30000である。すなわち、レイノ
ルズ数(Re)を1000以上に設定することにより、
均一な粒径で、かつ、粒径が75μm以下の微粉の生成
が抑制された粒状CMCが得られるようになる。なお、
上記レイノルズ数(Re)は、下記に示す式(1)によ
り算出される。In the above in-liquid granulation, the purified CMC in a lump form
It is preferable to perform stirring with a strong blade of which the Reynolds number (Re) of the value showing the flow characteristics of the water-containing IPA solution 3 system containing 2 is 1000 or more. The Reynolds number (R
e) is 4000-30000. That is, by setting the Reynolds number (Re) to 1000 or more,
It becomes possible to obtain granular CMC having a uniform particle size and suppressing generation of fine powder having a particle size of 75 μm or less. In addition,
The Reynolds number (Re) is calculated by the following equation (1).
【0018】[0018]
【数2】Re=(D・U・ρ)/μ ・・・(1) 〔式(1)において、Dは羽根直径(cm)、Uは羽根
周速(cm/sec)、ρは液密度(g/cm3 )、μ
は液粘度(g/cm・sec)である〕[Equation 2] Re = (D · U · ρ) / μ (1) [In the formula (1), D is a blade diameter (cm), U is a blade peripheral speed (cm / sec), and ρ is a liquid. Density (g / cm 3 ), μ
Is the liquid viscosity (g / cm · sec)]
【0019】さらに、上記液中造粒において、攪拌時の
回転数は100〜2000rpmの範囲内で、投入する
塊状の精製CMC量等に応じて適宜に設定される。さら
に、投入する塊状の精製CMCの温度は10〜50℃
に、攪拌時間は5〜30分間に設定される。Further, in the above-mentioned in-liquid granulation, the number of revolutions at the time of stirring is in the range of 100 to 2000 rpm, and is appropriately set according to the amount of the bulk refined CMC to be charged. Furthermore, the temperature of the bulk purified CMC to be charged is 10 to 50 ° C.
In addition, the stirring time is set to 5 to 30 minutes.
【0020】そして、液中造粒に際して、塊状の精製C
MCの供給は、連続的に供給してもよいし、回分式に加
えてもよい。また、バッチ式で一度に加えてもよく、ま
た供給量を限定するものではない。When granulating in liquid, purified C
The MC may be supplied continuously or may be added batchwise. Further, they may be added all at once in a batch system, and the supply amount is not limited.
【0021】このような液中造粒工程での造粒形成過程
を詳しく説明する。The granulation forming process in the submerged granulation process will be described in detail.
【0022】すなわち、粗製CMC製造時の、エーテル
反応後のCMCは繊維状態を保っており、嵩張りのある
密度の低いものである。この粗製CMCに含まれる副生
塩等の不純物を除去する目的で、通常は、低含水溶媒で
脱塩精製を行う。しかし、本発明では、前述のように、
液中造粒に供与するに先立って、予め、含水率が40〜
70%の高含水IPAで脱塩精製する。この高含水IP
Aで脱塩処理を行い、濾液分離すると水分を45〜65
%含んだウエット状の塊状精製CMCが得られる。この
工程で、繊維状のCMCは水分を含むため、溶着して寒
天状から蒟蒻状の塊状固形物に変化する。この固形物
は、IPA系溶媒では溶解することなく、また、攪拌に
より分散性の良好な状態が保持される。That is, the CMC after the ether reaction during the production of crude CMC is in a fibrous state and is bulky and has a low density. For the purpose of removing impurities such as by-product salts contained in the crude CMC, desalting purification is usually performed in a low water content solvent. However, in the present invention, as described above,
The water content should be 40-
Purify by desalting with 70% high water content IPA. This high water content IP
When desalting treatment is performed with A and the filtrate is separated, the water content is 45 to 65.
% Wet solid lump purified CMC is obtained. In this step, since the fibrous CMC contains water, it fuses and changes from agar-like to konnyaku-like massive solid matter. This solid does not dissolve in the IPA-based solvent, and the good dispersibility is maintained by stirring.
【0023】ついで、濾液分離した後、蒟蒻状の塊状精
製CMCは、液中造粒および塊状精製CMCの脱水を目
的に、20%以下の含水IPA(溶媒)とともに投入
し、ここで、攪拌羽根を回転させ攪拌混合する。そし
て、塊状精製CMCは、液中で直ちに解砕され、粒径約
1mm程度に造粒切断される。ここで、解砕と同時に、
IPAへの水分移行による脱水が進行し、回転により球
状の粒子が得られる。Then, after separating the filtrate, the konjac-shaped refined CMC is charged together with 20% or less of water-containing IPA (solvent) for the purpose of in-liquid granulation and dehydration of the refined CMC. Rotate and stir mix. Then, the massive CMC is immediately crushed in the liquid, and granulated and cut to have a particle size of about 1 mm. Here, at the same time as crushing,
Dehydration proceeds due to the transfer of water to IPA, and spherical particles are obtained by rotation.
【0024】このようにして得られた粒状CMCは、全
体の80%以上の粒子が粒径149〜2000μmの範
囲内の粒度を有するものであり、粒径75μm以下の微
粉を含有しないものである。もしくは、粒径75μm以
下の微粉を含有したとしても、粉塵による悪影響および
継粉生成による溶解性の低下を招くことのない程度の極
少量の含有である。上記粒径の測定は、標準篩(JIS
Z8801に記載されている)によって測定され、全
体の粒度分布を確認することができる。このような粒度
分布で構成される粒状CMCは、さらに、かさ密度が
0.4g/ml以上、特に0.4〜0.8g/mlのか
さ密度の高いものである。In the granular CMC thus obtained, 80% or more of all particles have a particle size within the range of 149 to 2000 μm, and do not contain fine powder with a particle size of 75 μm or less. . Alternatively, even if a fine powder having a particle size of 75 μm or less is contained, it is contained in a very small amount that does not adversely affect the dust and reduce the solubility due to the generation of the continuous powder. The measurement of the above particle size is carried out using a standard sieve (JIS
Z8801) and the overall particle size distribution can be confirmed. The granular CMC having such a particle size distribution has a high bulk density of 0.4 g / ml or more, particularly 0.4 to 0.8 g / ml.
【0025】つぎに、実施例について比較例と併せて説
明する。Next, examples will be described together with comparative examples.
【0026】まず、本発明の造粒に際して原料となる、
エーテル化度(DS)の異なる3種類の精製CMCを作
製した。First, a raw material for the granulation of the present invention,
Three types of purified CMC having different etherification degrees (DS) were prepared.
【0027】〔溶媒法による精製CMCの作製〕原料
パルプ〔興人社製,NDSP(サルフェート法パル
プ)〕を粉砕機にかけて直径0.3mmまで粉砕して水
分5%含有のパルプを得た。続いて、IPA20重量部
(以下「部」と略す)と水2部とからなる含水IPAを
充填した30リットルのSUS製反応釜に、この粉砕パ
ルプ0.8部を加えて、20℃で約20分間攪拌した。
そして、これに100%苛性ソーダのフレーク品1.1
部を5分かけて加え、30℃で60分間攪拌することに
よりアルセル化反応を行った。つぎに、これに50%モ
ノクロル酢酸含有IPA溶液2.4部を10分かけて添
加した。続いて、約30分かけて70℃まで昇温した
後、再び、30℃まで冷却して100%苛性ソーダのフ
レーク品1.1部を5分かけて添加し、この30分後に
50%モノクロ酢酸含有IPA溶液2.4部を10分か
けて2度目の添加を行った。その後、30分かけて70
℃まで昇温し、この70℃の状態で60分間のエーテル
化反応を完結させた。エーテル化反応の後、10分かけ
て40℃まで冷却し、50%酢酸水溶液0.3部を加え
て、系中の過剰の苛性ソーダを中和した。そして、これ
を遠心分離機で脱液濾過して、エーテル化度(DS)
2.1の粗製CMC(ナトリウム塩)を8.7部作製し
た。この粗製CMCの組成は、CMCが52%、水が1
9.5%、IPAが28.5%であった。[Preparation of Purified CMC by Solvent Method] Raw material pulp [NDSP (sulfate method pulp) manufactured by Kojin Co., Ltd.] was pulverized by a pulverizer to a diameter of 0.3 mm to obtain a pulp having a water content of 5%. Subsequently, 0.8 part of this crushed pulp was added to a 30-liter SUS reaction kettle filled with water-containing IPA consisting of 20 parts by weight of IPA (hereinafter abbreviated as “part”) and 2 parts of water, and the mixture was added at about 20 ° C. at about 20 ° C. Stir for 20 minutes.
And 100% caustic soda flakes 1.1
Parts were added over 5 minutes and the mixture was stirred at 30 ° C. for 60 minutes to carry out an alcelization reaction. Then, 2.4 parts of an IPA solution containing 50% monochloroacetic acid was added thereto over 10 minutes. Subsequently, the temperature was raised to 70 ° C. over about 30 minutes, then cooled again to 30 ° C., 1.1 parts of 100% caustic soda flake product was added over 5 minutes, and after 30 minutes, 50% monochloroacetic acid was added. A second addition of 2.4 parts of the contained IPA solution was made over 10 minutes. Then 70 minutes over 30 minutes
The temperature was raised to 0 ° C., and the etherification reaction was completed for 60 minutes at 70 ° C. After the etherification reaction, the mixture was cooled to 40 ° C. over 10 minutes, and 0.3 part of a 50% aqueous acetic acid solution was added to neutralize excess caustic soda in the system. Then, this is subjected to dehydration filtration with a centrifuge, and the degree of etherification (DS)
8.7 parts of 2.1 crude CMC (sodium salt) was prepared. The composition of this crude CMC is CMC 52%, water 1
It was 9.5% and IPA was 28.5%.
【0028】上記粗製CMC1部に、水6部とIPA4
部の60%含水溶媒を加え、50℃で60分間攪拌を行
い脱塩処理を行った。その後、遠心分離機で脱液濾過し
てウエット状の塊状精製CMC(ナトリウム塩)0.8
部を得た。このようにして得られた精製CMCは、固形
分30%、水48%、IPA22%の組成からなり、寒
天状の軟らかさと脆さを有する塊状物であった。1 part of the above crude CMC, 6 parts of water and 4 parts of IPA
A 60% water-containing solvent was added, and the mixture was stirred at 50 ° C. for 60 minutes for desalting treatment. After that, the liquid was filtered with a centrifuge to remove wet CMC (sodium salt) 0.8.
Got a part. The purified CMC thus obtained was a lump having a solid content of 30%, water of 48% and IPA of 22%, and having agar-like softness and brittleness.
【0029】〔溶媒法による精製CMCの作製〕原料
パルプ〔興人社製,NDSP(サルフェート法パル
プ)〕を粉砕機にかけて直径0.3mmまで粉砕して水
分5%含有のパルプを得た。続いて、IPA25部と水
2.5部とからなる含水IPAを充填した30リットル
のSUS製反応釜に、この粉砕パルプ1.0部を加え
て、20℃で約20分間攪拌した。そして、これに40
%苛性ソーダ水溶液1.0部を5分かけて加え、30℃
で60分間攪拌することによりアルセル化反応を行っ
た。つぎに、これに50%モノクロル酢酸含有IPA溶
液0.78部を5分かけて添加した。続いて、約30分
かけて70℃まで昇温した。この70℃の状態で90分
間のエーテル化反応を行った。エーテル化反応の後、1
0分かけて40℃まで冷却し、50%酢酸水溶液0.3
部を加えて、系中の過剰の苛性ソーダを中和した。そし
て、これを遠心分離機で脱液濾過して、エーテル化度
(DS)0.6の粗製CMC(ナトリウム塩)を2.5
部作製した。この粗製CMCの組成は、CMCが65
%、水が11.4%、IPAが23.6%であった。[Preparation of Purified CMC by Solvent Method] Raw material pulp [NDSP (sulfate method pulp) manufactured by Kojin Co., Ltd.] was pulverized by a pulverizer to a diameter of 0.3 mm to obtain a pulp containing 5% of water. Subsequently, 1.0 part of this pulverized pulp was added to a 30-liter SUS reaction kettle filled with water-containing IPA consisting of 25 parts of IPA and 2.5 parts of water, and the mixture was stirred at 20 ° C. for about 20 minutes. And 40 to this
% Caustic soda aqueous solution 1.0 part was added over 5 minutes, and 30 ° C.
The alcerization reaction was performed by stirring for 60 minutes. Next, 0.78 part of an IPA solution containing 50% monochloroacetic acid was added thereto over 5 minutes. Then, it heated up to 70 degreeC over about 30 minutes. The etherification reaction was carried out for 90 minutes at 70 ° C. After the etherification reaction, 1
Cool to 40 ° C. over 0 minutes and add 50% acetic acid aqueous solution 0.3
Parts were added to neutralize excess caustic soda in the system. Then, this was subjected to dehydration filtration with a centrifuge to obtain 2.5 parts of crude CMC (sodium salt) having an etherification degree (DS) of 0.6.
Parts were produced. The composition of this crude CMC is 65
%, Water was 11.4%, and IPA was 23.6%.
【0030】上記粗製CMC1部に、水7部とIPA3
部の70%含水溶媒を加え、50℃で30分間攪拌を行
い脱塩処理を行った。その後、遠心分離機で脱液濾過し
てウエット状の塊状精製CMC(ナトリウム塩)2.3
部を得た。このようにして得られた精製CMCは、固形
分21%、水57%、IPA22%の組成からなり、蒟
蒻状の弾力と脆さを有する塊状物であった。1 part of the above crude CMC, 7 parts of water and 3 parts of IPA
70 parts of a 70% water-containing solvent was added, and the mixture was stirred at 50 ° C. for 30 minutes for desalting treatment. After that, the liquid is filtered with a centrifuge and filtered in the form of a wet block CMC (sodium salt) 2.3.
Got a part. The purified CMC thus obtained was composed of 21% solids, 57% water, and 22% IPA, and was a lump having konjac-like elasticity and brittleness.
【0031】〔溶媒法による精製CMCの作製〕原料
パルプ〔興人社製,NDSP(サルフェート法パル
プ)〕を粉砕機にかけて直径0.3mmまで粉砕して水
分5%含有のパルプを得た。続いて、IPA25部と水
2.5部とからなる含水IPAを充填した30リットル
のSUS製反応釜に、この粉砕パルプ1.0部を加え
て、20℃で約20分間攪拌した。そして、これに40
%苛性ソーダ水溶液2.7部を5分かけて加え、30℃
で60分間攪拌することによりアルセル化反応を行っ
た。つぎに、これに50%モノクロル酢酸含有IPA溶
液2.3部を5分かけて添加した。続いて、約30分か
けて70℃まで昇温した。この70℃の状態で90分間
のエーテル化反応を行った。エーテル化反応の後、10
分かけて40℃まで冷却し、50%酢酸水溶液0.3部
を加えて、系中の過剰の苛性ソーダを中和した。そし
て、これを遠心分離機で脱液濾過して、エーテル化度
(DS)1.5の粗製CMC(ナトリウム塩)を5.6
部作製した。この粗製CMCの組成は、CMCが58
%、水が14.7%、IPAが27.3%であった。[Preparation of Purified CMC by Solvent Method] Raw material pulp [NDSP (sulfate method pulp) manufactured by Kojin Co., Ltd.] was pulverized by a pulverizer to a diameter of 0.3 mm to obtain a pulp having a water content of 5%. Subsequently, 1.0 part of this pulverized pulp was added to a 30-liter SUS reaction kettle filled with water-containing IPA consisting of 25 parts of IPA and 2.5 parts of water, and the mixture was stirred at 20 ° C. for about 20 minutes. And 40 to this
% Aqueous caustic soda solution (2.7 parts) over 5 minutes, and the temperature is 30 ° C.
The alcerization reaction was performed by stirring for 60 minutes. Next, 2.3 parts of an IPA solution containing 50% monochloroacetic acid was added thereto over 5 minutes. Then, it heated up to 70 degreeC over about 30 minutes. The etherification reaction was carried out for 90 minutes at 70 ° C. After the etherification reaction, 10
The mixture was cooled to 40 ° C over a period of time, and 0.3 part of a 50% acetic acid aqueous solution was added to neutralize excess caustic soda in the system. Then, this was subjected to deliquoring filtration with a centrifuge to obtain 5.6 crude CMC (sodium salt) having an etherification degree (DS) of 1.5.
Parts were produced. The composition of this crude CMC is 58 CMC.
%, Water was 14.7%, and IPA was 27.3%.
【0032】上記粗製CMC1部に、水9部とIPA6
部の60%含水溶媒を加え、50℃で30分間攪拌を行
い脱塩処理を行った。その後、遠心分離機で脱液濾過し
てウエット状の塊状精製CMC(ナトリウム塩)1.4
部を得た。このようにして得られた精製CMCは、固形
分26%、水50%、IPA24%の組成からなり、蒟
蒻状の弾力と脆さを有する塊状物であった。1 part of the crude CMC was mixed with 9 parts of water and 6 parts of IPA.
Part of a 60% water-containing solvent was added, and the mixture was stirred at 50 ° C. for 30 minutes for desalting treatment. Then, the liquid was filtered with a centrifuge to remove wet CMB (sodium salt) 1.4.
Got a part. The purified CMC thus obtained was a lump having konjac-like elasticity and brittleness, having a composition of solid content 26%, water 50%, and IPA 24%.
【0033】[0033]
【実施例1〜15、比較実施例1〜6】上記のようにし
て作製した精製CMC,,を用いて、本発明によ
る造粒をつぎのようにして行った。すなわち、まず、図
1に示すような、ナイフ型攪拌羽根1を備えた容積10
リットルの大型ミキサー式混合機(国産遠心器社製)を
用い、これに後記の表1に示す塊状精製CMCの固形分
1部と、この8倍量の10%含水IPAを加えた。この
ときの系全体のCMC、IPA、水分の各含有割合を後
記の表1に示す。そして、直ちに、室温(25℃)で攪
拌を開始し、溶液の流動を示すレイノルズ数を後記の表
2に示す値に設定して攪拌を行った。上記混合機による
造粒条件を後記の表2に示す。なお、上記レイノルズ数
は、前記式(1)により算出した値であり、レイノルズ
数の算出に必要とする各因子、羽根直径D(cm)、羽
根周速U(cm/sec)、液密度ρ(g/cm3 )、
液粘度μ(g/cm・sec)の各値を後記の表2に併
せて示す。Examples 1 to 15 and Comparative Examples 1 to 6 Using the purified CMC, prepared as described above, granulation according to the present invention was carried out as follows. That is, first, as shown in FIG. 1, a volume 10 provided with a knife-type stirring blade 1
Using a liter large mixer-type mixer (manufactured by Domestic Centrifuge Co., Ltd.), 1 part of the solid content of the lump-refined CMC shown in Table 1 below and 8 times this amount of 10% water-containing IPA were added. The content ratios of CMC, IPA and water in the entire system at this time are shown in Table 1 below. Then, immediately, stirring was started at room temperature (25 ° C.), and the Reynolds number showing the flow of the solution was set to the value shown in Table 2 below, and stirring was performed. The granulation conditions by the above mixer are shown in Table 2 below. The Reynolds number is a value calculated by the equation (1), and each factor required for calculating the Reynolds number, the blade diameter D (cm), the blade peripheral velocity U (cm / sec), and the liquid density ρ. (G / cm 3 ),
Each value of the liquid viscosity μ (g / cm · sec) is also shown in Table 2 below.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】上記攪拌の結果、塊状精製CMCは含水I
PA液中で、小さく解砕されると同時に、液中で回転す
ることから小粒子の球状に形成された粒状CMCが得ら
れた。なお、実施例1品の粒状CMCの光学顕微鏡写真
を図2に示す。このように液中造粒により得られた粒状
CMCは全体が略球状であることがわかる。また、塊状
精製CMCに含まれていた多量の水分は上記攪拌の際
に、IPA液中に移行した。この結果、造粒されたCM
C表面は、脱水とともに角質化が進行し、固化と密度の
上昇が生起した。このため、CMC粒子はさらさら状で
装置類に付着し難く、良好なCMCの造粒品が得られ
た。そして、上記造粒処理工程は5〜20分間で行わ
れ、また、連続式もしくはバッチ式のいずれの方法でも
行うことができる。As a result of the agitation, the lump purified CMC was hydrated I
At the same time as being crushed into small pieces in the PA liquid and rotating in the liquid, granular CMC formed into small spherical particles was obtained. An optical micrograph of the granular CMC of Example 1 is shown in FIG. As described above, it can be seen that the granular CMC obtained by the in-liquid granulation has a substantially spherical shape as a whole. In addition, a large amount of water contained in the bulk purified CMC was transferred into the IPA solution during the stirring. As a result, the granulated CM
On the C surface, keratinization proceeded with dehydration, and solidification and an increase in density occurred. Therefore, the CMC particles were free-flowing and did not easily adhere to the equipment, and a good CMC granulated product was obtained. The granulation treatment step is performed for 5 to 20 minutes, and can be performed by either a continuous method or a batch method.
【0037】上記造粒処理後、遠心分離機にて、脱液分
離した後、温風乾燥機で100℃の温風で2時間の乾燥
を行った。このようにして粒状CMCを得た。After the above granulation treatment, the liquid was separated by a centrifugal separator, and then dried with a warm air dryer at 100 ° C. for 2 hours. In this way, granular CMC was obtained.
【0038】[0038]
【比較例1〜4】前述の精製CMC〜の製造工程中
に作製されたエーテル化度の異なる粗製CMC〜を
用い、これに20%含水メタノールを10倍量加え脱塩
洗浄を2回にわたって行い、精製CMCを得た。そし
て、上記精製CMCを、水分含有量を上記実施例と合わ
せるため、水を噴霧して増加させ、その後、8倍量の1
0%含水メタノール系により、上記実施例と同様の混合
機を用い、後記の表3に示す条件で造粒化を行った(比
較例1〜3)。また、一方では、脱液した精製CMCを
熱風乾燥機で100℃×2時間の乾燥を行った後、衝撃
式微粉砕機(ホソカワミクロン社製)で粉砕して粒状C
MCを得た(比較例4)。Comparative Examples 1 to 4 Crude CMCs having different degrees of etherification prepared during the above-mentioned production process of purified CMC were used, and 10 times amount of 20% water-containing methanol was added thereto to carry out desalting and washing twice. , Purified CMC was obtained. Then, the purified CMC was sprayed with water to increase the water content in order to match the water content with that in the above example, and then 8 times the volume of 1 was added.
Granulation was performed with a 0% water-containing methanol system under the conditions shown in Table 3 below using the same mixer as in the above example (Comparative Examples 1 to 3). On the other hand, the deliquored purified CMC is dried with a hot air dryer at 100 ° C. for 2 hours and then pulverized with an impact type fine pulverizer (manufactured by Hosokawa Micron Co., Ltd.) to form granular C.
MC was obtained (Comparative Example 4).
【0039】[0039]
【表3】 [Table 3]
【0040】[0040]
【従来例】前述の精製CMCの製造工程中に作製され
たエーテル化度1.5の粗製CMCを用い、これに2
0%含水メタノールを15倍量加え脱塩洗浄を2回にわ
たって行い、精製CMCを得た(精製CMC中のCM
C:65%、水分5%、メタノール30%)。そして、
この精製CMCを、水分含有量を上記実施例と合わせる
ため、水を噴霧して水分含有量50%まで増加させて繊
維状CMCの一部を溶かし込み固め(角質化)造粒した
CMCを作製した。続いて、脱水目的で、このCMCに
10倍量の100%IPAを加えて、溶媒を分離して脱
水した後、60℃の熱風乾燥処理を行うことにより粒状
CMCを得た。得られた従来例品の粒状CMCの光学顕
微鏡写真を図3に示す。このように、得られた粒状CM
Cは粒形状がこんぺい糖のような表面全体に凹凸形状が
形成されたものであった。Conventional Example A crude CMC having an etherification degree of 1.5, which was produced during the above-mentioned process for producing purified CMC, was used.
A 15-fold amount of 0% water-containing methanol was added, and desalting and washing were performed twice to obtain purified CMC (CM in the purified CMC.
C: 65%, water content 5%, methanol 30%). And
In order to match the water content of this purified CMC with that of the above-mentioned example, water was sprayed to increase the water content to 50%, and a part of the fibrous CMC was melted and solidified (keratinized) to form granulated CMC. did. Subsequently, for the purpose of dehydration, 10 times amount of 100% IPA was added to this CMC, the solvent was separated and dehydrated, and then hot air drying treatment was performed at 60 ° C. to obtain granular CMC. An optical microscope photograph of the obtained granular CMC of the conventional example is shown in FIG. In this way, the obtained granular CM
In C, the grain shape was such that unevenness was formed on the entire surface such as sugary sugar.
【0041】このようにして得られた実施例品、比較実
施例品、比較例品および従来品の各粒状CMCにおい
て、液中造粒下で造粒した粒状CMCの状態および得ら
れた粒状CMCの収率および含有水分量を後記の表4お
よび表5に示す。なお、上記粒状CMCの収率は下記の
式により算出される。In the granular CMCs of the example product, comparative example product, comparative example product and conventional product thus obtained, the state of granular CMC granulated under liquid granulation and the obtained granular CMC The yield and the water content are shown in Tables 4 and 5 below. The yield of the granular CMC is calculated by the following formula.
【0042】[0042]
【数3】収率(%)=〔(粒状CMCの純分)/(精製
CMCの純分)〕×100## EQU3 ## Yield (%) = [(pure CMC content) / (purified CMC content)] × 100
【0043】また、得られた各粒状CMCのかさ密度、
粒状CMC全体に対する粒径149〜2000μmの範
囲内の粒子の含有割合、および粒径75μm以下の粒子
の含有割合を標準篩(JIS Z8801)により測定
し、その結果を下記の表4および表5に示す。Further, the bulk density of each of the obtained granular CMCs,
The content ratio of particles within a particle size range of 149 to 2000 μm and the content ratio of particles having a particle size of 75 μm or less with respect to the entire granular CMC was measured by a standard sieve (JIS Z8801), and the results are shown in Tables 4 and 5 below. Show.
【0044】[0044]
【表4】 [Table 4]
【0045】[0045]
【表5】 [Table 5]
【0046】上記コールカウンターの測定のなかから、
実施例5品(エーテル置換度1.5)および実施例9品
(エーテル置換度2.1)の標準篩(JIS Z880
1)での測定による粒度分布を示すチャート図を図4
(実施例5品)および図5(実施例9品)にそれぞれ示
し、その測定により得られた数値を下記の表6(実施例
5品)および表7(実施例9品)に示す。なお、上記コ
ールカウンター測定による実施例5品の平均粒径は81
4.41μm、標準偏差は381.52μm、実施例9
品の平均粒径は597.28μm、標準偏差は267.
09μmであった。From the measurement of the above call counter,
Standard sieves (JIS Z880) of Example 5 product (ether substitution degree 1.5) and Example 9 product (ether substitution degree 2.1)
FIG. 4 is a chart showing the particle size distribution measured by 1).
(Example 5 product) and FIG. 5 (Example 9 product), respectively, and the numerical values obtained by the measurement are shown in Table 6 (Example 5 product) and Table 7 (Example 9 product) below. The average particle size of the product of Example 5 measured by the above-mentioned call counter was 81.
4.41 μm, standard deviation 381.52 μm, Example 9
The average particle size of the product was 597.28 μm, and the standard deviation was 267.
It was 09 μm.
【0047】[0047]
【表6】 [Table 6]
【0048】[0048]
【表7】 [Table 7]
【0049】さらに、得られた各CMCの溶解性および
溶解速度、発塵性、発塵量、付着性、流動性を下記の方
法にしたがって測定し評価した。その結果を後記の表8
に示す。Further, the solubility and dissolution rate of each CMC thus obtained, dust generation, dust generation amount, adhesion and fluidity were measured and evaluated according to the following methods. The results are shown in Table 8 below.
Shown in
【0050】〔粒状CMCの溶解性および溶解速度〕1
000mlビーカーに水800mlを入れ、この中にC
MC試料8g(1%濃度)を加えた。その結果、すぐに
分散状となり水溶解が素早く行えたものを○、すぐに継
粉状の塊が形成され、水溶解に長時間を要したものを
×、上記中間の評価のものを△として表示した。また、
軽く攪拌してCMC試料が溶解するまでの時間を測定し
た。[Solubility and Dissolution Rate of Granular CMC] 1
Put 800 ml of water in a 000 ml beaker, and add C
8 g of MC sample (1% concentration) was added. As a result, ○ was immediately dispersed and quickly dissolved in water, ○ was immediately formed a powdered lump and took a long time to dissolve in water, ×, and the intermediate evaluation was Δ. displayed. Also,
The time until the CMC sample was dissolved was measured by lightly stirring.
【0051】〔CMCの発塵性〕CMC試料を、100
mlスクリュー管に1/2容量充填し、これを上下に攪
拌した。その結果、微粉の埃立ちがなかったものを○、
微粉の埃立ちが多かったものを×、上記中間の評価のも
のを△として表示した。[CMC dust generation] CMC sample
A ml screw tube was filled with 1/2 volume, and this was stirred up and down. As a result, ○ if there was no dust of fine powder,
The one in which a large amount of fine dust was generated was indicated as ×, and the one in the above intermediate evaluation was indicated as Δ.
【0052】〔CMCの発塵量〕300mlマイヤーフ
ラスコに、CMC試料を10g入れ、上下10cmに3
回振った後、浮遊するCMC粉塵を円筒濾紙をセットし
た吸引捕集器で吸収し発塵量を測定した。[CMC dust generation amount] 10 g of the CMC sample was put into a 300 ml Meyer flask, and the upper and lower sides of the sample were 3 cm.
After shaking, the floating CMC dust was absorbed by a suction collector equipped with a cylindrical filter paper to measure the amount of dust generation.
【0053】〔CMCの付着性〕1リットルのポリエチ
レン袋にCMC試料を200g充填し、1日放置した
後、袋口を下向きにして、CMC試料を自然落下させ袋
内から取り出した。そして、袋内に付着して残ったCM
C粉末量を測定し付着率を算出した。[Adhesiveness of CMC] A 1-liter polyethylene bag was filled with 200 g of a CMC sample, left for 1 day, and then, with the bag mouth facing downward, the CMC sample was naturally dropped and taken out from the bag. And the CM that was left in the bag
The amount of C powder was measured and the adhesion rate was calculated.
【0054】〔CMCの流動性〕高さ20cmの所か
ら、出口下部の内径が10mmのロートを通して、CM
C試料50gをガラス板上に自然落下させた。そして、
落下してガラス板上に円状に広がったCMCの直径を測
定した。当然、直径の大きいものは流動性が高いといえ
る。[Fluidity of CMC] From a height of 20 cm, a CM having a diameter of 10 mm at the lower part of the outlet was passed through a CM.
50 g of the C sample was naturally dropped on the glass plate. And
The diameter of the CMC that dropped and spread in a circle on the glass plate was measured. Naturally, it can be said that a material with a large diameter has high fluidity.
【0055】[0055]
【表8】 [Table 8]
【0056】上記表8の結果から、比較例品は溶解性に
劣り、発塵量も高い。さらに、高付着性で流動性にも劣
っていることがわかる。これに対して、比較実施例品
は、比較例品よりも各特性に優れている。さらに、レイ
ノルズ数を1000以上に特定して得られた実施例品
は、溶解性および流動性に非常に優れており、しかも、
発塵量および付着量ともなく、各特性において好結果が
得られたことが明らかである。From the results shown in Table 8 above, the products of Comparative Examples are inferior in solubility and produce a large amount of dust. Furthermore, it can be seen that the adhesiveness is high and the fluidity is poor. On the other hand, the comparative example product is superior in each characteristic to the comparative example product. Further, the example products obtained by specifying the Reynolds number to be 1000 or more are very excellent in solubility and fluidity, and moreover,
It is clear that good results were obtained for each property, without the amount of dust generation and the amount of adhesion.
【0057】[0057]
【発明の効果】以上のように、本発明は、塊状CMCを
含水IPA中で解砕することにより液中で造粒する方法
である。この液中造粒方法では、吸湿性が高く水溶性の
大きい高エーテル置換度のCMCを原料として用いて
も、例えば、従来のような水の噴霧による方法ではない
ため、溶解粘着による凹凸の形成された粒子ではなく均
一な粒度の粒状CMCを容易に製造することができる。
また、得られる粒状CMCは、その粒径が均一であり、
かつ、粒径75μm以下の繊維状CMCの微粉CMCの
生成が抑制される。INDUSTRIAL APPLICABILITY As described above, the present invention is a method of granulating in-liquid by crushing massive CMC in water-containing IPA. In this in-liquid granulation method, even if CMC having a high degree of hygroscopicity and high water solubility and a high degree of ether substitution is used as a raw material, for example, it is not a method of spraying water as in the conventional method, and therefore unevenness due to dissolution adhesion is formed. Granular CMC with a uniform particle size can be easily produced instead of crushed particles.
Further, the obtained granular CMC has a uniform particle size,
In addition, generation of fine CMC of fibrous CMC having a particle size of 75 μm or less is suppressed.
【0058】そして、この液中造粒において、原料とな
る塊状CMCを含有する含水IPA溶液からなる系を、
CMCの含有割合が系全体の5〜25%、IPAの含有
割合が系全体の70〜90%、水分含有割合が系全体の
5〜40%に設定することにより、均一な粒径で、か
つ、微粉の生成が抑制されたかさ密度の高い粒状CMC
が得られ効果的である。さらに、上記液中造粒を、塊状
CMCを含有する含水IPA溶液系の流動特性を示すレ
イノルズ数(Re)が、1000以上の強い攪拌条件下
で行うことにより、均一な粒径で、かつ、粒径が75μ
m以下の微粉の生成が抑制された粒状CMCが得られ
る。したがって、得られた粒状CMCを水に溶解する際
に、従来見られる継粉の生成現象が生じず、速やかに水
に溶解する。この結果、粒状CMC使用時の溶解時間の
大幅な短縮化が実現し、さらに、流動性が良好であるた
め、ハンドリング性にも優れている。また、粒状CMC
の使用時での粉塵の発生が少なく、作業環境の向上が図
られる。しかも、得られた粒状CMCは流動性が良好で
あることから、使用に際して定量供給の自動化が可能と
なり、紙パルプ工業や食品工業等の生産工程でのオート
メーション化が図られ好ましい。Then, in this in-liquid granulation, a system consisting of a water-containing IPA solution containing massive CMC as a raw material was prepared.
By setting the content ratio of CMC to 5 to 25% of the whole system, the content ratio of IPA to 70 to 90% of the whole system, and the water content ratio to 5 to 40% of the whole system, a uniform particle size is obtained, and , Granular CMC with high bulk density, which suppresses generation of fine powder
Is obtained and is effective. Furthermore, by performing the above-mentioned in-liquid granulation under a strong stirring condition where the Reynolds number (Re) showing the flow characteristics of a water-containing IPA solution system containing agglomerated CMC is 1000 or more, a uniform particle size is obtained, and Particle size is 75μ
Granular CMC in which generation of fine powder of m or less is suppressed can be obtained. Therefore, when the obtained granular CMC is dissolved in water, the phenomenon of generation of the powdered granules that is conventionally seen does not occur, and the granular CMC is quickly dissolved in water. As a result, the dissolution time when using the granular CMC is significantly shortened, and the fluidity is good, so that the handling property is also excellent. Also, granular CMC
There is little dust generation during use, and the working environment is improved. Moreover, since the obtained granular CMC has good fluidity, it is possible to automate the quantitative supply at the time of use, and it is preferable because it can be automated in the production process of the paper pulp industry, the food industry and the like.
【0059】そして、粒状CMCとして、粒径149〜
2000μmの範囲内に全粒子の80%以上が存在し、
かつ、かさ密度が0.4g/ml以上のものは、流動性
および溶解性に優れ、発塵問題も生じず、しかも、良好
なハンドリング性を有するようになる。Then, as the granular CMC, a particle size of 149-
80% or more of all particles are present within the range of 2000 μm,
In addition, when the bulk density is 0.4 g / ml or more, the fluidity and the solubility are excellent, the dusting problem does not occur, and the handling property becomes good.
【図1】本発明のCMCの造粒方法で用いられるミキサ
ー式混合機の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a mixer-type mixer used in the CMC granulation method of the present invention.
【図2】液中造粒により得られた実施例1品の粒状CM
Cの粒子構造を示す倍率50倍の光学顕微鏡写真であ
る。FIG. 2 Granular CM of Example 1 product obtained by submerged granulation
It is an optical microscope photograph at a magnification of 50 times showing the particle structure of C.
【図3】従来の製法により得られた粒状CMCの粒子構
造を示す倍率50倍の光学顕微鏡写真である。FIG. 3 is an optical microscope photograph at a magnification of 50 showing the grain structure of granular CMC obtained by a conventional production method.
【図4】実施例5品(エーテル置換度1.5)である粒
状CMCの粒度分布を標準篩(JIS Z8801)に
より測定した結果の一例を示すチャート図である。FIG. 4 is a chart showing an example of the results of measuring the particle size distribution of granular CMC that is a product of Example 5 (ether substitution degree 1.5) by a standard sieve (JIS Z8801).
【図5】実施例9品(エーテル置換度2.1)である粒
状CMCの粒度分布をコールカウンターにより測定した
結果の一例を示すチャート図である。FIG. 5 is a chart showing an example of a result obtained by measuring the particle size distribution of granular CMC which is the product of Example 9 (ether substitution degree 2.1) with a Coal counter.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年8月11日[Submission date] August 11, 1995
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図2[Correction target item name] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図2】 [Fig. 2]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図3[Correction target item name] Figure 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図3】 [Figure 3]
Claims (4)
ルアルカリ塩を含水イソプロピルアルコール中で解砕す
ることにより液中で造粒することを特徴とするカルボキ
シメチルセルロースエーテルアルカリ塩の造粒方法。1. A method for granulating an alkali salt of carboxymethyl cellulose ether, which comprises granulating the massive carboxymethyl cellulose ether alkali salt in a liquid by crushing it in water-containing isopropyl alcohol.
シメチルセルロースエーテルアルカリ塩を含有する含水
イソプロピルアルコールからなる系において、カルボキ
シメチルセルロースエーテルアルカリ塩の含有割合が系
全体の5〜30重量%、イソプロピルアルコールの含有
割合が系全体の55〜80重量%、水分含有割合が系全
体の15〜40重量%に設定されている請求項1記載の
カルボキシメチルセルロースエーテルアルカリ塩の造粒
方法。2. A system comprising hydrous isopropyl alcohol containing a lumpy carboxymethyl cellulose ether alkali salt at the time of granulating in the above liquid, wherein the content ratio of the carboxymethyl cellulose ether alkali salt is 5 to 30% by weight of the whole system, The method for granulating an alkali salt of carboxymethyl cellulose ether according to claim 1, wherein the content ratio of isopropyl alcohol is set to 55 to 80% by weight of the whole system and the water content ratio is set to 15 to 40% by weight of the whole system.
シメチルセルロースエーテルアルカリ塩を含有する含水
イソプロピルアルコール溶液系の流動特性を示す下記の
式(1)により算出されるレイノルズ数(Re)が、1
000以上である請求項1または2記載のカルボキシメ
チルセルロースエーテルアルカリ塩の造粒方法。 【数1】Re=(D・U・ρ)/μ ・・・(1) 〔式(1)において、Dは羽根直径(cm)、Uは羽根
周速(cm/sec)、ρは液密度(g/cm3 )、μ
は液粘度(g/cm・sec)である〕3. The Reynolds number (Re) calculated by the following formula (1) showing the flow characteristics of a hydrous isopropyl alcohol solution system containing a lumpy carboxymethyl cellulose ether alkali salt in the crushing in the liquid is 1
The method for granulating an alkali salt of carboxymethyl cellulose ether according to claim 1 or 2, which is 000 or more. [Equation 1] Re = (D · U · ρ) / μ (1) [In the formula (1), D is a blade diameter (cm), U is a blade peripheral speed (cm / sec), and ρ is a liquid. Density (g / cm 3 ), μ
Is the liquid viscosity (g / cm · sec)]
子が全体の80重量%以上含有され、かつ、かさ密度が
0.4g/ml以上である粒状カルボキシメチルセルロ
ースエーテルアルカリ塩。4. A granular carboxymethyl cellulose ether alkali salt containing 80% by weight or more of particles having a particle size in the range of 149 to 2000 μm, and having a bulk density of 0.4 g / ml or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18150595A JP2966769B2 (en) | 1995-07-18 | 1995-07-18 | Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18150595A JP2966769B2 (en) | 1995-07-18 | 1995-07-18 | Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0931102A true JPH0931102A (en) | 1997-02-04 |
JP2966769B2 JP2966769B2 (en) | 1999-10-25 |
Family
ID=16101942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18150595A Expired - Fee Related JP2966769B2 (en) | 1995-07-18 | 1995-07-18 | Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2966769B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508074A (en) * | 2002-10-09 | 2006-03-09 | ノボザイムス アクティーゼルスカブ | Method for improving particle composition |
WO2010117783A1 (en) * | 2009-03-31 | 2010-10-14 | Dow Global Technologies Inc. | Tartaric salt stabilizer for wine |
WO2021019896A1 (en) * | 2019-07-29 | 2021-02-04 | ダイセルファインケム株式会社 | Carboxymethyl cellulose or salt thereof, and composition thereof |
-
1995
- 1995-07-18 JP JP18150595A patent/JP2966769B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508074A (en) * | 2002-10-09 | 2006-03-09 | ノボザイムス アクティーゼルスカブ | Method for improving particle composition |
WO2010117783A1 (en) * | 2009-03-31 | 2010-10-14 | Dow Global Technologies Inc. | Tartaric salt stabilizer for wine |
WO2021019896A1 (en) * | 2019-07-29 | 2021-02-04 | ダイセルファインケム株式会社 | Carboxymethyl cellulose or salt thereof, and composition thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2966769B2 (en) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2718412B1 (en) | Builder granules and process for their preparation | |
JP2001240602A (en) | Method for producing water-soluble cellulosic derivative particle using superheated gas mixture containing steam | |
US9334416B2 (en) | Process for producing cellulose derivatives of high bulk density, good flowability and improved dispersibility in cold water | |
KR20000070301A (en) | Process for Preparing Fine-Particle Polysaccharide Derivatives | |
US9359450B2 (en) | Process for reducing the amount of water-insoluble fibers in a water-soluble cellulose derivative | |
JP6794216B2 (en) | Pore water-soluble nonionic cellulose ether with excellent solubility and its production method | |
JPH0931102A (en) | Method for granulating carboxymethylcellulose ether alkali salt and granular caroboxymethylcellulose ether alkali salt | |
CN113382980B (en) | Fragile phase composition of methylglycine N, N-diacetic acid | |
JP2974123B2 (en) | Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt obtained thereby | |
JP3462499B2 (en) | Production of granular alkali metal borate composition | |
JP3408398B2 (en) | Method for producing low substituted hydroxypropylcellulose powder | |
JP3006060B2 (en) | Method for granulating 2,2,6,6-tetramethylpiperidine-based light stabilizer | |
JP2017186557A (en) | Method of producing powdery water-soluble nonionic cellulose ether having high bulk density | |
JPH09110813A (en) | Powder and its production, and granular detergent composition containing the powder | |
JP3516358B2 (en) | Method for granulating and drying alkali salts of carboxymethyl cellulose ether | |
JP4190043B2 (en) | Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed | |
JP2617410B2 (en) | Method for producing carboxymethyl cellulose having high bulk density | |
JP7518926B2 (en) | Process for preparing co-granules of methylglycine N,N diacetate with granulated phase composition of methylglycine N,N diacetate | |
JPH07121962B2 (en) | Method for producing carboxymethyl cellulose having high bulk density | |
RU2155191C1 (en) | Process for production of carboxymethylcellulose | |
JP2004189948A (en) | Method for producing carboxymethylcellulose salt | |
JPS5936940B2 (en) | Granulation method of carboxymethylcellulose sodium salt | |
JPH0564625B2 (en) | ||
JPH0474710A (en) | Production of granular slaked lime | |
JPH0258510A (en) | Production of granular vinyl chloride resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |