JP4190043B2 - Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed - Google Patents

Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed Download PDF

Info

Publication number
JP4190043B2
JP4190043B2 JP33890597A JP33890597A JP4190043B2 JP 4190043 B2 JP4190043 B2 JP 4190043B2 JP 33890597 A JP33890597 A JP 33890597A JP 33890597 A JP33890597 A JP 33890597A JP 4190043 B2 JP4190043 B2 JP 4190043B2
Authority
JP
Japan
Prior art keywords
cmc
powder
surface area
fiber
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33890597A
Other languages
Japanese (ja)
Other versions
JPH10237101A (en
Inventor
重信 佐藤
寛樹 谷口
協 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP33890597A priority Critical patent/JP4190043B2/en
Publication of JPH10237101A publication Critical patent/JPH10237101A/en
Application granted granted Critical
Publication of JP4190043B2 publication Critical patent/JP4190043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は溶解速度に優れたカルボキシメチルセルロースアルカリ塩粉体に関し、さらに詳しくは、粉体の比表面積が1.1〜30m2/gである新規なカルボキシメチルセルロースアルカリ塩粉体に関する。また、本発明は、前記カルボキシメチルセルロースアルカリ塩粉体を含有する養魚飼料用粘結剤に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
周知の如く、カルボキシメチルセルロースアルカリ塩は古くより工業的に製造され、増粘性、分散性、接着性、乳化安定性などの特徴をもつため、養魚飼料用粘結剤など幅広い分野の用途に使われている。
【0003】
一般に、カルボキシメチルセルロースアルカリ塩は水に溶解して使用される。しかし、カルボキシメチルセルロースアルカリ塩を粉体のまま水中に投入すると粒子同士が粘着集合して塊状(ママコ)になり、カルボキシメチルセルロースアルカリ塩が完全に溶解するのに時間がかかっていた。そのため、ママコ防止の観点から、粒子表面の膨潤を遅らせる方法や、粉体を顆粒状にするなどのカルボキシメチルセルロースアルカリ塩の溶解速度の改善策が提案されている。
【0004】
粒子表面の膨潤を遅らせる方法として、粒子表面に疎水性物質をコーティングする方法や、表面をわずかに難溶化させる方法などが知られている。しかし、これらの方法は製品の品質に影響を与えるため、使用上の制約がある。粉体を顆粒状にする方法は品質そのものに影響を与えないため、ママコ防止法として多く用いられているが、造粒装置が別途必要となり、経済性の面から好ましくない。
【0005】
また、用途によっては、溶解速度の改善とともに、他の要素の改善についても求められる場合がある。例えば、養魚飼料は、魚粉、油粕、穀類、栄養剤などを配合した粉体飼料に粘結剤を添加し、さらに生餌破砕物、魚油、水などを添加したものを混練したのちペレットに成形して得られるが、このとき、粘結剤は原料の水分を吸収することにより粘結機能を発揮する。この場合の吸水機能が高いと、短い混練時間で、実用上充分な固さの養魚飼料ペレットを得ることができる。よって、養魚飼料用粘結剤には、その使用形態から水に溶解する性質とともに水を吸収する性質が優れていることが要求される。
【0006】
本発明は、溶解速度に優れたカルボキシメチルセルロースアルカリ塩粉体を提供することを目的とする。また、本発明は、前記カルボキシメチルセルロースアルカリ塩粉体を含む、養魚飼料の成形性に優れた養魚飼料用粘結剤を提供することを他の目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、カルボキシメチルセルロースアルカリ塩粉体について粒子そのものの溶解速度を改善すべく、カルボキシメチルセルロースアルカリ塩の粉体性状と溶解速度との相関を調べた。その結果、カルボキシメチルセルロースアルカリ塩粉体の通常の比表面積(0.1〜1.0m2/g)より大きい比表面積のカルボキシメチルセルロースアルカリ塩粉体が、そのものの溶解速度に優れ、さらに吸水性に優れることを見出し、本発明に到達した。
【0008】
本発明は、粉体の比表面積が1.1〜30m2/gであることを特徴とするカルボキシメチルセルロースアルカリ塩粉体を提供する。
【0009】
また、本発明は、粉体の比表面積が1.1〜30m2/gであるカルボキシメチルセルロースアルカリ塩粉体を含有することを特徴とする養魚飼料用粘結剤を提供する。
【0010】
なお、本発明における比表面積は、BET法により測定されたものである。BET法は液体窒素温度で粉体などの固体表面に窒素ガスを吸着させて表面積を求める方法で、吸着が平衡に達したときの窒素ガスの吸着量よりBET式を用いて表面積を算出する。求めた表面積を試料1gあたりの表面積に換算し比表面積とした。
【0011】
【発明の実施の形態】
本発明のカルボキシメチルセルロースアルカリ塩(以下、「CMC」と略す)粉体は、水に対する溶解性を高め、吸水性を高めるため、比表面積が1.1〜30m2/gであり、好ましくは1.5〜20m2/gである。
【0012】
CMC粉体の粒径は、用途に応じて適宜設定することができるが、本発明においては、微粉砕化した場合の粉立ち等を防止して取り扱いの容易さを確保し、溶解性及び吸水性を高めるため、粒度分布計より求められるメジアン粒径が、好ましくは30〜150μmであり、特に好ましくは70〜150μmである。なお、粒径の測定は、レーザー回折式粒度分布測定装置を用いてCMC粉体をヘキサンに分散させた状態で行い、得られた粒度分布より求められるメジアン粒径を、粒度分布計により求められるCMC粉体の粒径とした。したがって、実際の粒子の長さ(繊維長)とは等しくないが、この方法で求められる粉体の粒径の大小は繊維長の大小に相当する。
【0013】
CMC粉体は、適度な粘結性及び混練性を確保するため、ブルックフィールド粘度計で測定した1%水溶液の粘度が、60rpmで好ましくは3000cP以上であり、特に好ましくは4000〜13000cPである。また、CMC粉体は、溶解性を高めるため、置換度(セルロース水酸基のカルボキシメチル基による置換度)が好ましくは0.4〜3.0であり、特に好ましくは0.6〜2.0である。
【0014】
次に、本発明のCMC粉体の製造方法を例を挙げて説明する。セルロース(パルプ繊維)に、反応溶媒中で水酸化ナトリウムを作用させてアルカリセルロースを得る(アルセル化)。次に、これにモノクロル酢酸を反応させてセルロースの水酸基にカルボキシメチル基を導入する(カルボキシメチル化)。その後、反応溶媒除去や塩分除去などの精製を行った後、精製したCMCの繊維を乾燥し、粉砕して、CMC粉体を得る。粉砕後のCMC粉体は、長さ30〜500μm、太さ10〜50μmの繊維状の粒子より構成される。
【0015】
CMC粉体の比表面積は、CMC粒子の表面状態(凹凸、ひび割れ、孔など)によって決まる。ところが、一般的にアルセル化はセルロースに水酸化ナトリウム水溶液を加えて行われるため、カルボキシメチル化終了後のCMCは反応溶媒中にいくらかの水を含んでいる。このため、反応溶媒中の水がCMCと共存すると精製及び粉体化の工程でCMC繊維の表面を溶かし、表面積が低下することが考えられる。そこで、比表面積を大きくするためには、カルボキシメチル化終了後のCMC繊維中の水分をできるだけ取り除くようにし、CMC繊維が表面積の大きい状態をできるだけ保つようにすることが必要である。
【0016】
よって、上記の製造方法において、カルボキシメチル化終了後の段階で、例えば、反応溶媒やCMC繊維に水と混合可能な有機溶媒を加えることにより、反応溶媒中の水を共沸して除去したり、乾燥によりCMC繊維中の水分を除去し、表面積の大きい状態で固めたりする方法を適用することもできる。この場合に使用する水と混合可能な有機溶媒としては、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類や、アセトンなどのケトン類、テトラヒドロフラン等のエーテル類や、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル類などがある。このうち、水と共沸しやすい有機溶媒としてエタノール、イソプロパノール、アセトンなどがある。これらの有機溶媒は、CMC粉体の比表面積を増加させるため、水分含有量をできるだけ低下させることが好ましい。
【0017】
また、水の共沸除去、反応溶媒除去及び塩分除去などの2以上の処理方法を適宜組み合わせることにより、比表面積増加の効果を、より大きくすることができる。例えば、洗浄工程で塩分を除いたCMC繊維を100%イソプロパノールで仕上げ洗浄する方法(CMC粉体の比表面積が約1.1〜5.0m2/gのものが得られる);カルボキシメチル化終了後、反応溶媒にイソプロパノールを加えて加熱して水を共沸除去したのち、回収したCMC繊維を100%メタノールに含浸し、洗浄工程で塩分を除いたのち100%イソプロパノールで仕上げ洗浄する方法(CMC粉末の比表面積が約10.0m2/g以上のものが得られる)などの組み合わせを挙げることができる。
【0018】
比表面積を高めることによる溶解速度の改善機構については明らかではないが、比表面積が大きいことで水の浸透速度が速くなり、かつ粒子内部まで水が到達しやすくなるためと考えられる。
【0019】
本発明のCMC粉体の用途は特に限定されず、CMC粉体を水を主とする溶媒に溶解して用いる用途だけでなく、例えば養魚用飼料ペレットのように、他の粉体と混合した状態でCMC粉体が水分を吸収して粘結機能を発現するような用途、即ち養魚飼料用粘結剤としても適用することができる。
【0020】
養魚飼料用粘結剤には、CMC粉体に加えて、さらに他の水溶性高分子を配合することができる。この水溶性高分子としては、アルギン酸ナトリウム、グアーガム、カゼインソーダ、デンプン、キサンタンガム、カラギーナン、海藻粉末などの天然物由来のもの、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースなどの水溶性セルロースエステル類、ポリアクリル酸ナトリウムなどの食品添加物として認可されている合成水溶性高分子から選ばれる1種又は2種以上を挙げることができる。CMC粉体と水溶性高分子の配合割合は特に限定されるものではないが、CMC粉末と水溶性高分子とを、重量比で99:1〜50:50で配合することが好ましい。
【0021】
本発明の養魚飼料用粘結剤は、養魚飼料の製造時において、魚粉、油粕、穀類、栄養剤などを配合した粉体飼料に添加し、混練することができ、さらにその後に添加する生餌破砕物、魚油、水などに添加し、混練することもできる。養魚飼料中への養魚飼料用粘結剤の添加量は、好ましくは0.5〜10重量%であり、特に好ましくは1〜5重量%である。
【0022】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】
実施例1〜4、比較例1〜4
カルボキシメチル化終了後(反応溶媒として、水酸化ナトリウム水溶液/イソプロパノール混合溶媒を使用)のCMC繊維(以下、「反応終了綿」という)と、次の工程として反応溶媒にイソプロパノールを加えて加熱し、水を共沸除去する処理を行ったCMC繊維(以下、「蒸発終了綿」という)をプラントから回収し、その後、ラボスケールでの処理条件を変えて、下記のA又はBの反応溶媒の除去処理及びC又はDの塩分の除去処理による比表面積の増加処理をした。その後、乾燥し、粉砕してCMC粉体を得た。得られたCMC粉体の比表面積を表1に示す。なお、比表面積の測定は、次の装置及び条件で行った。
・装置:自動表面積測定装置(AMS-8000 、(株)大倉理研製)
・吸着前の排気脱ガス処理条件:50℃、60分。
【0024】
(反応溶媒の除去処理)
反応溶媒を除去するため、回収した反応終了綿又は蒸発終了綿を、下記のA又はBの条件でメタノール溶媒中に含浸した(60分間)。
A:80%メタノール(メタノール/水重量比=80/20)に含浸
B:100%メタノールに含浸
(塩分の除去処理)
塩分を除去するため、反応溶媒の除去処理をした反応終了綿又は蒸発終了綿300gに、溶媒を2リットル加えて攪拌し洗浄を行った。1回の洗浄時間は30分とし、1回ごとに脱液してから次の洗浄を行った。このときの洗浄条件は次のC及びDで行った。
C:80%メタノールで2回洗浄
D:80%メタノールで2回洗浄、その後100%イソプロパノールで1回洗浄
【0025】
【表1】

Figure 0004190043
【0026】
その結果、表1に示すとおり、実施例1、3は、80%メタノールで洗浄後、100%イソプロパノールで洗浄する(洗浄条件D)ことにより、比表面積が1.2m2/g、2.1m2/gのCMC粉体を得ることができた。さらに、実施例2、4は、蒸発終了綿を100%メタノールに含浸した(含浸条件B)したものを、80%メタノールで洗浄後100イソプロパノールで洗浄する(洗浄条件D)ことにより、比表面積が1.4m2/g、10.5m2/gのCMC粉体を得ることができた。
【0027】
実施例5、比較例5
置換度0.75、1%粘度7500cPであるCMCの蒸発終了綿を100%メタノールに含浸した湿綿300gを、80%メタノール2リットル中で30分間の攪拌洗浄を2回行った。この洗浄後の湿綿をさらに100%イソプロパノールで30分間攪拌洗浄した後、乾燥及び粉砕を行ったところ、比表面積が10.5m2/gのCMC粉体が得られた(実施例5)。一方、洗浄後の湿綿をそのまま乾燥および粉砕したところ、比表面積が0.9m2/gのCMC粉体が得られた(比較例5)。得られたCMC粉体の粒径を、レーザー回折式粒度分布測定装置(LA-500、(株)堀場製作所製)を用い、さらに分散溶媒としてヘキサンを用いて測定した。結果を表2に示す。
【0028】
実施例6、比較例6
置換度0.75、1%粘度7500cPであるCMCの蒸発終了綿を80%メタノールに含浸した湿綿300gを、80%メタノール2リットル中で30分間の攪拌洗浄を2回行った。この洗浄後の湿綿をさらに100%イソプロパノールで30分間攪拌洗浄した後、乾燥、粉砕を行ったところ、比表面積が2.1m2/gのCMC粉体が得られた(実施例6)。一方、洗浄後の湿綿をそのまま乾燥および粉砕したところ、比表面積が0.3m2/gのCMC粉体が得られた(比較例6)。得られたCMC粉末の粒径を実施例5と同様にして測定した。結果を表2に示す。
【0029】
実施例7〜8、比較例7〜8
置換度0.75、1%粘度4500cPであるCMCの蒸発終了綿を100%メタノールに含浸した湿綿300gを、80%メタノール2リットル中で30分間の攪拌洗浄を2回行った。この洗浄後の湿綿をさらに100%イソプロパノールで30分間攪拌洗浄した後、乾燥、粉砕を行ったところ、比表面積が12.0m2/gのCMC粉体が得られた。一方、洗浄後の湿綿をそのまま乾燥および粉砕したところ、比表面積が0.4m2/gのCMC粉体が得られた。
【0030】
さらに、得られた比表面積が0.4及び12.0m2/gのCMC粉体についてふるい分けを行い、粉体を粒径によって2つに分けた。得られたCMC粉体の粒径をレーザー回折式粒度分布測定装置を用いて測定したところ、比表面積が12.0m2/gのCMC粉体について粒径が35.0及び75.0μmの2種類の粉体(実施例7、8)が、また、比表面積が0.4m2/gのCMC粉体について33.0及び77.0μmの2種類の粉体(比較例7、8)が得られた。なお、比表面積の測定は実施例1と同様にして行い、粒径の測定は実施例5と同様にして行った。結果を表2に示す。
【0031】
試験例1(溶解速度の測定)
実施例5〜8及び比較例5〜8のCMC粉体について、水への溶解速度を調べた。粒子そのものの溶解速度の測定方法には決まった方法はないが、ここでは次のようにして測定を行った。
12×5cmのポリスチレンシートに両面テープを貼ったものを用意した。その上に、CMC粉体0.15gをふるいで落とし、両面テープ上に粒子が分散した状態で粘着固定させた。容積300mlのビーカーに入れたイオン交換水300mlの中に、CMC粉体を固定したシートを浸すと同時に、マグネティックスターラーで200rpmで攪拌を開始した。各溶解時間ごとに溶液を2mlずつサンプリングして示差屈折率を測定し、前もって測定した検量線よりCMC濃度を求めて濃度変化の追跡を行った。溶液の濃度変化を溶解時間に対してプロットし、濃度増加が止まった時間を溶解完了時間とした。結果を表2に示す。
【0032】
【表2】
Figure 0004190043
【0033】
その結果、表2に示すように、比表面積が1.1m2/g以上である実施例5のCMCについて、比較例5より溶解完了時間が短くなっているので、本発明による溶解速度の向上の効果は明らかである。
【0034】
実施例9〜12、比較例9〜12
実施例5〜8及び比較例5〜8のCMC粉体とグアーガムを混合し(重量比で2:1)し、養魚飼料用粘結剤を得た。これらの養魚飼料用粘結剤を用い、モイスペレットを製造した。まず、下記組成の配合飼料を製造した。
(配合飼料の組成)
魚粉 65重量部
大豆粕 5重量部
小麦末粉 17重量部
養魚飼料用粘結剤 3重量部
次に、冷凍マイワシをチョッパーにて破砕した生餌150重量部を配合飼料100重量部と混練した。混練時間が10分、20分及び30分の混練物について造粒成形を行い、モイストペレットの固さが養魚用飼料として実用上好ましい固さになるまでの混練時間により、養魚飼料用粘結剤としての成形性を評価した。結果を表3に示す。なお、ペレットの固さの評価基準は次のとおりである。
◎:運搬時や実用時において、型崩れがまったくない
○:運搬時や実用時において、やや型崩れがある
△:運搬時や実用時において、型崩れが大きい
×:成形不能
【0035】
【表3】
Figure 0004190043
【0036】
その結果、表3に示すとおり、実施例9〜12は20分で混練が完了するのに対し、比較例9〜12は20分では混練は不完全で、完全に混練されるのに30分かかった。この結果から、CMC粉体の比表面積を大きくすることで溶解速度及び吸水性が向上され、生餌の水分を吸収することで粘結剤としての機能が発揮され、混練時間が短縮できることが確認された。
【0037】
【発明の効果】
以上詳述した如く、本発明のCMC粉体は溶解速度に優れているので、CMCの溶解工程の短縮・省力化や、粉体中における粘結機能発揮までの時間の短縮に役立ち、CMCを使用した製品の生産性向上につながる。また、このCMC粉体を含有する養魚飼料用粘結剤をモイスペレットなどの養魚飼料の製造に使用することにより、飼料製造時間を大幅に短縮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carboxymethyl cellulose alkali salt powder having an excellent dissolution rate, and more particularly to a novel carboxymethyl cellulose alkali salt powder having a powder having a specific surface area of 1.1 to 30 m 2 / g. Moreover, this invention relates to the binder for fish feed containing the said carboxymethylcellulose alkali salt powder.
[0002]
[Prior art and problems to be solved by the invention]
As is well known, carboxymethylcellulose alkali salt has been manufactured industrially for a long time, and has characteristics such as thickening, dispersibility, adhesiveness, and emulsion stability, so it is used in a wide range of applications such as binders for fish feed. ing.
[0003]
Generally, carboxymethylcellulose alkali salt is used by dissolving in water. However, when the carboxymethylcellulose alkali salt was put into water as powder, the particles adhered and aggregated into a lump (mamasko), and it took time for the carboxymethylcellulose alkali salt to completely dissolve. For this reason, from the viewpoint of preventing mamako, methods for delaying the swelling of the particle surface and measures for improving the dissolution rate of carboxymethyl cellulose alkali salt, such as making the powder granular, have been proposed.
[0004]
As a method for delaying the swelling of the particle surface, a method of coating the surface of the particle with a hydrophobic substance, a method of slightly making the surface slightly soluble, and the like are known. However, since these methods affect the quality of products, there are restrictions in use. Since the method of granulating the powder does not affect the quality itself, it is often used as a method for preventing mamako, but a granulator is required separately, which is not preferable from the viewpoint of economy.
[0005]
Further, depending on the application, there may be a demand for improvement of other factors as well as improvement of the dissolution rate. For example, fish feed is formed into pellets after adding a caking additive to powdered feed containing fish meal, oil cake, cereals, nutrients, etc., and kneaded with raw food crushed material, fish oil, water, etc. At this time, the binder exhibits a caking function by absorbing the moisture of the raw material. If the water absorption function in this case is high, it is possible to obtain fish feed pellets of practically sufficient hardness in a short kneading time. Therefore, the binding agent for fish feed is required to be excellent in the property of absorbing water as well as the property of dissolving in water because of its use form.
[0006]
An object of this invention is to provide the carboxymethylcellulose alkali salt powder excellent in the dissolution rate. Another object of the present invention is to provide a binding agent for fish feed that is excellent in moldability of fish feed, including the carboxymethylcellulose alkali salt powder.
[0007]
[Means for Solving the Problems]
In order to improve the dissolution rate of the particles themselves of the carboxymethyl cellulose alkali salt powder, the present inventors investigated the correlation between the powder property of the carboxymethyl cellulose alkali salt and the dissolution rate. As a result, the carboxymethylcellulose alkali salt powder having a specific surface area larger than the normal specific surface area (0.1 to 1.0 m 2 / g) of the carboxymethylcellulose alkali salt powder is excellent in its dissolution rate and more water-absorbing. As a result, the present invention was reached.
[0008]
The present invention provides a carboxymethyl cellulose alkali salt powder, wherein the powder has a specific surface area of 1.1 to 30 m 2 / g.
[0009]
The present invention also provides a binding agent for fish feed, comprising carboxymethyl cellulose alkali salt powder having a powder specific surface area of 1.1 to 30 m 2 / g.
[0010]
In addition, the specific surface area in this invention is measured by BET method. The BET method is a method for obtaining a surface area by adsorbing nitrogen gas on the surface of a solid such as a powder at a liquid nitrogen temperature. The surface area is calculated by using the BET equation from the amount of adsorption of nitrogen gas when the adsorption reaches equilibrium. The determined surface area was converted to the surface area per 1 g of the sample and used as the specific surface area.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The carboxymethyl cellulose alkali salt (hereinafter abbreviated as “CMC”) powder of the present invention has a specific surface area of 1.1 to 30 m 2 / g, preferably 1 in order to increase solubility in water and increase water absorption. .5 to 20 m 2 / g.
[0012]
The particle size of the CMC powder can be set as appropriate according to the application, but in the present invention, it prevents powder dusting when finely pulverized to ensure ease of handling, solubility and water absorption. In order to improve the properties, the median particle size obtained from the particle size distribution meter is preferably 30 to 150 μm, particularly preferably 70 to 150 μm. The particle size is measured in a state where CMC powder is dispersed in hexane using a laser diffraction particle size distribution analyzer, and the median particle size obtained from the obtained particle size distribution is obtained with a particle size distribution meter. The particle size of CMC powder was used. Therefore, although it is not equal to the actual particle length (fiber length), the particle size of the powder obtained by this method corresponds to the fiber length.
[0013]
The CMC powder has a viscosity of 1% aqueous solution measured with a Brookfield viscometer of preferably 3000 cP or more, particularly preferably 4000 to 13000 cP at 60 rpm in order to ensure appropriate caking and kneading properties. The CMC powder preferably has a substitution degree (substitution degree of cellulose hydroxyl group by carboxymethyl group) of 0.4 to 3.0, particularly preferably 0.6 to 2.0 in order to enhance solubility. is there.
[0014]
Next, the method for producing the CMC powder of the present invention will be described with an example. Sodium hydroxide is allowed to act on cellulose (pulp fiber) in a reaction solvent to obtain alkali cellulose (arcelization). Next, this is reacted with monochloroacetic acid to introduce a carboxymethyl group into the hydroxyl group of cellulose (carboxymethylation). Thereafter, after purification such as reaction solvent removal and salt removal, the purified CMC fiber is dried and pulverized to obtain CMC powder. The pulverized CMC powder is composed of fibrous particles having a length of 30 to 500 μm and a thickness of 10 to 50 μm.
[0015]
The specific surface area of the CMC powder is determined by the surface state of the CMC particles (irregularities, cracks, holes, etc.). However, since arselation is generally performed by adding an aqueous sodium hydroxide solution to cellulose, CMC after completion of carboxymethylation contains some water in the reaction solvent. For this reason, when the water in the reaction solvent coexists with CMC, it is considered that the surface of the CMC fiber is dissolved in the purification and pulverization steps, and the surface area is reduced. Therefore, in order to increase the specific surface area, it is necessary to remove as much water as possible from the CMC fiber after completion of carboxymethylation and to keep the CMC fiber having a large surface area as much as possible.
[0016]
Therefore, in the above production method, at the stage after completion of carboxymethylation, for example, by adding an organic solvent that can be mixed with water to the reaction solvent or CMC fiber, water in the reaction solvent is removed azeotropically. Further, it is possible to apply a method of removing moisture in the CMC fiber by drying and solidifying it with a large surface area. Examples of organic solvents that can be mixed with water used in this case include alcohols such as methanol, ethanol, isopropanol, and butanol, ketones such as acetone, ethers such as tetrahydrofuran, methyl acetate, ethyl acetate, and propyl acetate. Of esters. Among these, there are ethanol, isopropanol, acetone, and the like as organic solvents that easily azeotrope with water. Since these organic solvents increase the specific surface area of the CMC powder, it is preferable to reduce the water content as much as possible.
[0017]
Moreover, the effect of increasing the specific surface area can be further increased by appropriately combining two or more treatment methods such as water azeotropic removal, reaction solvent removal, and salt removal. For example, a method in which the CMC fiber from which salt has been removed in the washing step is finished and washed with 100% isopropanol (a CMC powder having a specific surface area of about 1.1 to 5.0 m 2 / g is obtained); carboxymethylation completed Thereafter, isopropanol is added to the reaction solvent and heated to azeotropically remove water, and then the recovered CMC fiber is impregnated with 100% methanol, and the salt is removed in the washing step, followed by final washing with 100% isopropanol (CMC). The specific surface area of the powder is about 10.0 m 2 / g or more).
[0018]
Although the mechanism for improving the dissolution rate by increasing the specific surface area is not clear, it is thought that the large specific surface area increases the water permeation rate and facilitates water to reach the inside of the particles.
[0019]
The use of the CMC powder of the present invention is not particularly limited, and is used not only for use by dissolving the CMC powder in a solvent mainly composed of water, but also mixed with other powders, for example, fish feed pellets. The present invention can also be applied as an application in which the CMC powder absorbs moisture and develops a caking function, that is, as a caking additive for fish feed.
[0020]
In addition to CMC powder, other water-soluble polymer can be further blended in the binder for fish feed. Examples of the water-soluble polymer include those derived from natural products such as sodium alginate, guar gum, casein soda, starch, xanthan gum, carrageenan, and seaweed powder, and water-soluble cellulose such as methyl cellulose, hydroxyethyl cellulose, carboxymethyl hydroxyethyl cellulose, and hydroxypropyl methyl cellulose. One type or two or more types selected from synthetic water-soluble polymers approved as food additives such as esters and sodium polyacrylate can be mentioned. The mixing ratio of the CMC powder and the water-soluble polymer is not particularly limited, but it is preferable to mix the CMC powder and the water-soluble polymer in a weight ratio of 99: 1 to 50:50.
[0021]
The binding agent for fish feed of the present invention can be added to and mixed with a powder feed containing fish meal, oil cake, cereals, nutrients, etc. at the time of production of the fish feed, and further added to the raw feed It can be added to crushed material, fish oil, water, etc. and kneaded. The addition amount of the binding agent for fish feed in the fish feed is preferably 0.5 to 10% by weight, particularly preferably 1 to 5% by weight.
[0022]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
[0023]
Examples 1-4, Comparative Examples 1-4
After completion of carboxymethylation (using a sodium hydroxide aqueous solution / isopropanol mixed solvent as a reaction solvent) CMC fiber (hereinafter referred to as “reaction completed cotton”), as the next step, isopropanol is added to the reaction solvent and heated, CMC fibers (hereinafter referred to as “end-of-evaporation cotton”) that have been subjected to azeotropic removal of water are collected from the plant, and then the processing conditions on the lab scale are changed to remove the reaction solvent A or B below. The specific surface area was increased by treatment and C or D salt removal treatment. Then, it dried and grind | pulverized and obtained CMC powder. The specific surface area of the obtained CMC powder is shown in Table 1. In addition, the measurement of the specific surface area was performed with the following apparatus and conditions.
・ Device: Automatic surface area measuring device (AMS-8000, manufactured by Okura Riken Co., Ltd.)
Exhaust degassing treatment conditions before adsorption: 50 ° C., 60 minutes.
[0024]
(Reaction solvent removal treatment)
In order to remove the reaction solvent, the collected reaction finished cotton or evaporated cotton was impregnated in a methanol solvent under the following conditions A or B (60 minutes).
A: impregnated with 80% methanol (methanol / water weight ratio = 80/20) B: impregnated with 100% methanol (salt removal treatment)
In order to remove the salt, 2 liters of the solvent was added to 300 g of the reaction-finished cotton or the evaporation-finished cotton after the removal of the reaction solvent, followed by washing with stirring. The washing time for one time was 30 minutes, and the next washing was carried out after removing the liquid every time. The cleaning conditions at this time were the following C and D.
C: Washed twice with 80% methanol D: Washed twice with 80% methanol, then washed once with 100% isopropanol
[Table 1]
Figure 0004190043
[0026]
As a result, as shown in Table 1, in Examples 1 and 3, the specific surface area was 1.2 m 2 / g, 2.1 m by washing with 80% methanol and then with 100% isopropanol (washing condition D). A 2 / g CMC powder could be obtained. Further, Examples 2 and 4 were obtained by impregnating 100% methanol with impregnated cotton (impregnation condition B), and then washing with 100% isopropanol after washing with 80% methanol (washing condition D). It could be obtained CMC powder 1.4m 2 /g,10.5m 2 / g.
[0027]
Example 5, Comparative Example 5
300 g of wet cotton obtained by impregnating 100% methanol with CMC evaporation finished cotton having a degree of substitution of 0.75 and a 1% viscosity of 7500 cP was washed twice in 30 liters of 80% methanol for 30 minutes. The washed wet cotton was further stirred and washed with 100% isopropanol for 30 minutes, and then dried and pulverized to obtain CMC powder having a specific surface area of 10.5 m 2 / g (Example 5). On the other hand, when the wet cotton after washing was dried and pulverized as it was, CMC powder having a specific surface area of 0.9 m 2 / g was obtained (Comparative Example 5). The particle size of the obtained CMC powder was measured using a laser diffraction particle size distribution analyzer (LA-500, manufactured by Horiba, Ltd.) and further using hexane as a dispersion solvent. The results are shown in Table 2.
[0028]
Example 6 and Comparative Example 6
300 g of wet cotton obtained by impregnating 80% methanol with CMC evaporating cotton having a substitution degree of 0.75 and a 1% viscosity of 7500 cP was washed twice by stirring for 30 minutes in 2 liters of 80% methanol. The washed cotton was further stirred and washed with 100% isopropanol for 30 minutes, dried and pulverized to obtain CMC powder having a specific surface area of 2.1 m 2 / g (Example 6). On the other hand, when the wet cotton after washing was dried and pulverized as it was, a CMC powder having a specific surface area of 0.3 m 2 / g was obtained (Comparative Example 6). The particle size of the obtained CMC powder was measured in the same manner as in Example 5. The results are shown in Table 2.
[0029]
Examples 7-8, Comparative Examples 7-8
300 g of wet cotton obtained by impregnating 100% methanol with CMC evaporating cotton having a substitution degree of 0.75 and a 1% viscosity of 4500 cP was washed twice by stirring in 2 liters of 80% methanol for 30 minutes. The washed cotton was further stirred and washed with 100% isopropanol for 30 minutes, and then dried and pulverized. As a result, CMC powder having a specific surface area of 12.0 m 2 / g was obtained. On the other hand, when the wet cotton after washing was dried and pulverized as it was, CMC powder having a specific surface area of 0.4 m 2 / g was obtained.
[0030]
Further, the obtained CMC powder having a specific surface area of 0.4 and 12.0 m 2 / g was screened, and the powder was divided into two according to the particle diameter. When the particle size of the obtained CMC powder was measured using a laser diffraction particle size distribution measuring apparatus, the CMC powder having a specific surface area of 12.0 m 2 / g had a particle size of 35.0 and 75.0 μm. Types of powders (Examples 7 and 8), and two types of powders (Comparative Examples 7 and 8) of 33.0 and 77.0 μm for CMC powder having a specific surface area of 0.4 m 2 / g Obtained. The specific surface area was measured in the same manner as in Example 1, and the particle size was measured in the same manner as in Example 5. The results are shown in Table 2.
[0031]
Test Example 1 (Measurement of dissolution rate)
About the CMC powder of Examples 5-8 and Comparative Examples 5-8, the dissolution rate in water was investigated. There is no fixed method for measuring the dissolution rate of the particles themselves, but here the measurement was performed as follows.
A 12 × 5 cm polystyrene sheet with a double-sided tape was prepared. On top of that, 0.15 g of CMC powder was dropped with a sieve, and the adhesive was fixed on the double-sided tape with the particles dispersed. The sheet on which the CMC powder was fixed was immersed in 300 ml of ion-exchanged water placed in a 300 ml beaker, and at the same time, stirring was started at 200 rpm with a magnetic stirrer. The differential refractive index was measured by sampling 2 ml of the solution at each dissolution time, and the CMC concentration was determined from the calibration curve measured in advance, and the change in concentration was traced. The concentration change of the solution was plotted against the dissolution time, and the time when the concentration increase stopped was defined as the dissolution completion time. The results are shown in Table 2.
[0032]
[Table 2]
Figure 0004190043
[0033]
As a result, as shown in Table 2, the CMC of Example 5 having a specific surface area of 1.1 m 2 / g or more has a shorter dissolution completion time than Comparative Example 5, so that the dissolution rate is improved by the present invention. The effect of is obvious.
[0034]
Examples 9-12, Comparative Examples 9-12
CMC powders of Examples 5 to 8 and Comparative Examples 5 to 8 and guar gum were mixed (2: 1 by weight) to obtain a binder for fish feed. Moist pellets were produced using these fish feed binders. First, a mixed feed having the following composition was produced.
(Composition of compound feed)
Fish powder 65 parts by weight Soybean meal 5 parts by weight Wheat powder 17 parts by weight Binder for fish feed 3 parts by weight Next, 150 parts by weight of raw feed obtained by crushing frozen sardines with a chopper was kneaded with 100 parts by weight of the mixed feed. The kneading time is 10 minutes, 20 minutes, and 30 minutes for the kneaded product, and the kneading time until the hardness of the moist pellets becomes a practically preferable hardness for fish feed is determined. As a result, the moldability was evaluated. The results are shown in Table 3. In addition, the evaluation criteria of the hardness of a pellet are as follows.
◎: No loss of shape during transportation or practical use ○: Slightly out of shape during transportation or practical use △: Large shape loss during transportation or practical use ×: Inability to mold
[Table 3]
Figure 0004190043
[0036]
As a result, as shown in Table 3, in Examples 9-12, kneading was completed in 20 minutes, whereas in Comparative Examples 9-12, kneading was incomplete in 20 minutes, and 30 minutes were required for complete kneading. It took. From this result, it is confirmed that the dissolution rate and water absorption are improved by increasing the specific surface area of the CMC powder, the function as a binder is exhibited by absorbing the moisture of the raw bait, and the kneading time can be shortened. It was done.
[0037]
【The invention's effect】
As described above in detail, since the CMC powder of the present invention has an excellent dissolution rate, it is useful for shortening and saving labor of the CMC dissolution process and shortening the time until the caking function is exhibited in the powder. It leads to the productivity improvement of the used product. Moreover, feed production time can be significantly shortened by using the binding agent for fish feed containing this CMC powder for manufacture of fish feed such as moisture pellets.

Claims (5)

比表面積が1.1〜30m/gであることを特徴とするカルボキシメチルセルロースアルカリ塩(以下「CMC」という)粉体の製造方法であって、
カルボキシメチル化終了後のCMC繊維に対して、反応溶媒を除去するための含浸処理工程、塩分を除去するために洗浄処理する工程、乾燥工程、粉砕工程をこの順序で含んでおり、
前記洗浄処理が、前記含浸処理後のCMC繊維とメタノール水溶液を攪拌混合し脱液した後、更にCMC繊維とイソプロパノールを攪拌混合する工程である、CMC粉体の製造方法。
A method for producing a carboxymethylcellulose alkali salt (hereinafter referred to as “CMC”) powder having a specific surface area of 1.1 to 30 m 2 / g ,
The CMC fiber after completion of carboxymethylation includes an impregnation treatment step for removing the reaction solvent, a washing treatment step for removing salt, a drying step, and a pulverization step in this order.
The method for producing CMC powder, wherein the washing treatment is a step of stirring and mixing the impregnated CMC fiber and aqueous methanol solution and then stirring and mixing the CMC fiber and isopropanol.
比表面積が1.1〜30Specific surface area of 1.1-30 mm 2 /g/ g であることを特徴とするCMC粉体の製造方法であって、A method for producing CMC powder, characterized in that:
カルボキシメチル化終了後のCMC繊維に水と混合可能な有機溶媒を加えて加熱蒸留し、水を共沸除去したCMC繊維に対して、反応溶媒を除去するための含浸処理工程、塩分を除去するために洗浄処理する工程、乾燥工程、粉砕工程をこの順序で含んでおり、An organic solvent that can be mixed with water is added to the CMC fiber after completion of carboxymethylation and heated and distilled, and the CMC fiber from which water has been removed azeotropically is removed by an impregnation treatment step for removing the reaction solvent, and salt is removed. In order, the cleaning process, the drying process, and the pulverization process are included.
前記洗浄処理が、前記含浸処理後のCMC繊維とメタノール水溶液を攪拌混合し脱液した後、更にCMC繊維とイソプロパノールを攪拌混合する工程である、CMC粉体の製造方法。The method for producing CMC powder, wherein the washing treatment is a step of stirring and mixing the impregnated CMC fiber and aqueous methanol solution and then stirring and mixing the CMC fiber and isopropanol.
更に粒度分布計より求められるメジアン粒径が30〜150μmである請求項1又は2記載のCMC粉体の製造方法 The method for producing CMC powder according to claim 1 or 2 , wherein the median particle size obtained from a particle size distribution meter is 30 to 150 µm. 更に粒度分布計より求められるメジアン粒径が70〜150μmである請求項1又は2記載のCMC粉体の製造方法 Furthermore, the median particle diameter calculated | required from a particle size distribution meter is 70-150 micrometers, The manufacturing method of the CMC powder of Claim 1 or 2 . 更にブルックフィールド粘度計で測定した1%水溶液の粘度が60rpmで3000cP以上、かつ置換度が0.4〜3.0である請求項1〜4のいずれか1項記載のCMC粉体の製造方法 Furthermore , the viscosity of 1% aqueous solution measured with the Brookfield viscometer is 3000 cP or more at 60 rpm, and substitution degree is 0.4-3.0, The manufacturing method of the CMC powder of any one of Claims 1-4 .
JP33890597A 1996-12-26 1997-12-09 Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed Expired - Fee Related JP4190043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33890597A JP4190043B2 (en) 1996-12-26 1997-12-09 Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-347422 1996-12-26
JP34742296 1996-12-26
JP33890597A JP4190043B2 (en) 1996-12-26 1997-12-09 Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed

Publications (2)

Publication Number Publication Date
JPH10237101A JPH10237101A (en) 1998-09-08
JP4190043B2 true JP4190043B2 (en) 2008-12-03

Family

ID=26576255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33890597A Expired - Fee Related JP4190043B2 (en) 1996-12-26 1997-12-09 Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed

Country Status (1)

Country Link
JP (1) JP4190043B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602994B1 (en) * 1999-02-10 2003-08-05 Hercules Incorporated Derivatized microfibrillar polysaccharide
KR100525252B1 (en) * 2003-12-16 2005-10-31 삼성정밀화학 주식회사 Method for preparation of fine powdered Cellulose ethers
MX2018005050A (en) * 2015-10-30 2018-11-22 Toray Industries Cellulose ether derivative fine particles.
JP2021021018A (en) * 2019-07-29 2021-02-18 ダイセルミライズ株式会社 Carboxy methylcellulose or salt thereof and composition thereof
JP7215553B1 (en) * 2021-10-29 2023-01-31 横河電機株式会社 Fine cellulose fiber solids and method for producing fine cellulose fiber solids

Also Published As

Publication number Publication date
JPH10237101A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
Ma et al. Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films
CN103261233A (en) Novel cellulose ethers and their use
CA1198104A (en) Cellulose granules and process for producing the same
JP4484426B2 (en) Delayed dissolution cellulose ethers and their preparation
TWI706962B (en) Porous water-soluble nonionic cellulose ether having excellent solubility and method for producing the same
EP2694041A1 (en) Process for producing cellulose derivatives of high bulk density, good flowability and improved dispersibility in cold water
JP5265124B2 (en) Amorphous cellulose derivative
JP4190043B2 (en) Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed
JPS5945685B2 (en) Method for producing polymeric substances that can be treated with glyoxal
WO2009070168A1 (en) Method of preparing alkali cellulose or a cellulose derivative
US8445671B2 (en) Method for preparing polyanhydroglucuronic acid and/or salts thereof
JP2018505269A (en) Method for producing water-soluble cellulose derivatives with reduced content of water-insoluble particles
EP0038107B1 (en) Method of improving dispersibility of water-soluble anionic cellulose ethers
US5360024A (en) Relating to polymer viscosity and application of such polymers
JPS5834802A (en) Microcrystalline cellulose derivative and its production
JP5635516B2 (en) Hydroxypropyl cellulose particles
JP2022145947A (en) Carboxymethylated cellulose powder
JP2966769B2 (en) Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt
Agwamba et al. Physicochemical analysis of carboxymethyl mango (Mangifera indica) starch
JP3046105B2 (en) Chitosan-plant fiber composite and method for preparing the same
JP2974123B2 (en) Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt obtained thereby
CN110643303A (en) Adhesive for heating non-combustible tobacco products and application thereof
JP3423334B2 (en) Micronized cellulose-based water-containing composition
JPH0820556A (en) Production of powdered lactic acid and/or lactic acid salt
CN114617284A (en) Tobacco sheet adhesive, preparation method thereof and tobacco sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees