JPH0564625B2 - - Google Patents

Info

Publication number
JPH0564625B2
JPH0564625B2 JP60052382A JP5238285A JPH0564625B2 JP H0564625 B2 JPH0564625 B2 JP H0564625B2 JP 60052382 A JP60052382 A JP 60052382A JP 5238285 A JP5238285 A JP 5238285A JP H0564625 B2 JPH0564625 B2 JP H0564625B2
Authority
JP
Japan
Prior art keywords
bon
granules
water
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60052382A
Other languages
Japanese (ja)
Other versions
JPS61212533A (en
Inventor
Ryuzo Ueno
Koichi Tago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Seiyaku Oyo Kenkyujo KK
Original Assignee
Ueno Seiyaku Oyo Kenkyujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Seiyaku Oyo Kenkyujo KK filed Critical Ueno Seiyaku Oyo Kenkyujo KK
Priority to JP5238285A priority Critical patent/JPS61212533A/en
Publication of JPS61212533A publication Critical patent/JPS61212533A/en
Publication of JPH0564625B2 publication Critical patent/JPH0564625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、2−ヒドロキシナフタリン−3−カ
ルボン酸の工業的に利用価値の高い顆粒の製造法
に関する。 2−ヒドロキシナフタリン−3−カルボン酸
(以下BONと称する)は、古くからいわゆるコル
ベ・シユミツト反応と呼ばれる固気相反応により
製造されてきたが、本発明者らの一人はその改良
法として、軽油又は灯油、β−ナフトールナトリ
ウム及びβ−ナフトールから成る液状混合物と二
酸化炭素とを反応させる方法を発明した(特公昭
56−53296号公報参照)。この方法によると、例え
ば融点220〜221℃、純度99.5%、β−ナフトール
ナトリウム含有量0.03%のような高品質のBON
が得られる。このBONは酸析、過、遠心分離
などの操作によつて母液より分離され、水洗後、
乾燥して顔料や染料の中間体として使用される。
しかしBONの結晶は一般に非常に微細なものが
含まれていて飛散性が強い。その上BONには強
い粘膜刺激性があるため取扱い上大きな支障を与
える。例えばBONを顔料や染料の中間体として
仕込む時にBONを反応タンクに投入すると、微
粉末状のBONが粉塵となつて舞い上がる。空気
中に舞い上がつたBONの微粉末はなかなか沈降
せず、広範囲に浮遊し、環境を汚染し、作業者の
皮膚、粘膜を刺激して不快感を与える。このよう
な仕込時の作業性や安全性の問題を軽減するた
め、作業者が防塵眼鏡や防塵マスクを着用した
り、反応タンクの原料仕込口とは別の口から吸引
脱気し、フイルターで微粉末を捕集したりする方
法が行われているが完全ではない。 BONの飛散性が強いのは、これが非常に微細
な結晶を含むためと、ほとんど水に溶解せず、吸
湿等の現象がほとんど起こらず、個々の結晶粒子
が付着水を介して凝集、結合することがないた
め、外からの衝撃に対して独立した個々の微細な
粒子として運動し易いことによると考えられる。
このような性状を有する物質の飛散性を抑えるた
めには、粒子の形状を飛散しない程度に大きくす
ることがまず考えられる。他の化合物ではこの目
的のために結晶径の大きなものを使用したり、微
粉末状のものを顆粒状にすることもある。しかし
BONについては市場にこのような製品は見られ
ず、またこのような試みが行われたとの報告もな
い。結晶径の大きいBONは適当な溶媒を選び再
結晶することにより得られるが、母液への溶存や
溶剤中への損失があつて非経済的である。その
上、大きな結晶径のものは溶解速度が遅いので、
顔料や染料を製造する際に取扱い上不便である。
本発明者らは乾式造粒の方法により、BONの見
掛けの粒子径を大きくすることを試みたが、この
ようにして得た顆粒剤は溶解速度が遅く実用に適
しなかつた。 BONはほとんど水に溶解せず(20℃で0.08
%)、通常このようなものを水のみを結合剤とし
て湿式造粒法によつて顆粒状にしても、もろい顆
粒剤しかできず、造粒時は顆粒の形状を保つてい
ても、これを乾燥すると大部分が元の微粉末に戻
つてしまい、顆粒状としての用をなさない。一般
にこのような場合は、デキストリン、アラビアガ
ム、カルボキシメチルセルロース等の結合剤を
水、アルコール等の溶媒と共に適宜添加し、混練
造粒することにより良好な顆粒剤が得られること
が多い。しかしBONは顔料や染料の原料となる
ものであるから、不純物となるような余計な結合
剤は使用できない。このことが今までBONの顆
粒剤が知られなかつた理由の一つと考えられる。 本発明者らは、水と低級アルコールの混合液を
結合剤として造粒を試み、特定の粒子径組成の原
料から造粒することにより、比較的良好な顆粒剤
が得られ、飛散性防止の目的が十分に達成され、
しかもこの方法は従来の微粉末のBONの製造費
と比較してほとんど費用の増大を招かないことを
見い出した。 本発明は、粒子径50μ以下の粒子を60%以上含
む2−ヒドロキシナフタリン−3−カルボン酸の
結晶100重量部と、低級アルコール5〜25重量%
を含む水18〜33重量部との混合物を、造粒して乾
燥することを特徴とする、飛散性が著しく抑制さ
れた2−ヒドロキシナフタリン−3−カルボン酸
の顆粒の製造法である。 本発明方法により得られる顆粒剤の強度には、
後記のとおりBON粒子の粒子径が関与している。
したがつて原料となるBON粒子の60%以上は粒
子径50μ以下であることが必要である。BON粒子
の粒子径は、酸析時の母液中のBONナトリウム
塩の濃度、タール分、未反応のβ−ナフトール等
の不純物の量、酸析に用いられる鉱酸の濃度、滴
下速度、酸析温度等の諸条件により影響される。
このうち母液中のBONナトリウムの濃度、ター
ル分、β−ナフトール等の不純物の量はBON製
造の際の反応条件に由来する。これらの条件を調
節することにより、所望の結晶径のBONを得る
ためには、連続法により製造することが好まし
い。連続法によれば、反応条件を設定することに
より、前記の範囲の粒子径を容易に調製すること
ができる。回分法で酸析したBON粒子を用いる
こともできる。 本発明を実施するに際しては、まず粒子径50μ
以下の粒子を60%以上含むBONの結晶粒子100重
量部に対して、低級アルコール5〜25重量%を含
む水18〜33重量部を均一に混合する。 水と有機溶媒の合計量がこれより少ないと顆粒
状に成形することができず、またこれより多いと
顆粒を乾燥するまでに顆粒表面がお互いに付着
し、団子状に固つたりしてきれいな顆粒ができな
い。混合に際しては、BONの乾燥粉末に所定量
の水と低級アルコールを別個に又は混合液として
加えてもよいが、酸析したBONを遠心脱水する
際に水分含量を調整し、これに所定量の低級アル
コールを加える方法が経済的に有利である。遠心
脱水時に調整する水分含量や添加する低級アルコ
ール量は容易に計算によつて求めることができ
る。酸析工程において得られるBONを用い、脱
水、低級アルコールの添加及び混練を連続的に行
うことは、BONの結晶表面が濡れた状態である
ので、乾燥した微粉末状の結晶に水と低級アルコ
ールを加えて混練する場合よりも混練時間を短縮
することができ、また連続造粒することが容易に
なる点でも有利である。 低級アルコールと水の割合は、低級アルコール
5〜25重量%及び水95〜75重量%とすることが必
要である。低級アルコールの量がこれより少ない
と十分な造粒効果が得られない。またこれより多
くしても造粒効果が低下することがあり、経済的
にも不利である。BONと低級アルコール及び水
との混練は、例えば混練機を用いて行うことがで
きる。 低級アルコールとしては、沸点100℃以下の低
級アルコール例えばメタノール、エタノール、ノ
ルマルプロピルアルコール、イソプロピルアルコ
ール等が用いられる。これらの溶媒の中でメタノ
ールが最も安価で経済的に有利である。低級アル
コールは、水に任意の割合で混合するので、脱水
したBONに添加したときになじみ易く、また自
由な割合で水との混合液を調製して、乾燥した
BONの粉末あるいは遠心脱水したままの未乾燥
のBONに添加することができる。しかもこれら
の低級アルコールは水よりも低沸点であるため、
造粒物の乾燥に際し、過度の加熱をすることなく
通常の乾燥温度で乾燥する。 次いで混練物を造粒したのち乾燥すると、本発
明の顆粒剤が得られる。造粒に際しては、孔径
0.5〜1.5mm程度のダイスを有する押出し式の造粒
機を用いることが好ましい。 こうして得られたBONの顆粒剤は、意外にも
良好な顆粒になり、かなり強い衝撃を与えても元
の微粉状のBONの結晶に戻ることはなく飛散性
がおさえられている。造粒に用いたBONを乾燥
して沈降法で粒子径を測定したところ、0〜10μ
が2%、10〜20μが13%、20〜30μが28%、30〜
40μが20%、40〜50μが10%、50μを越える粒子が
27%の分布を示した。このように予想外に良好な
BONの顆粒剤が得られた理由の一つは、造粒に
用いたBONの粒度分布が広く、微細な結晶を比
較的多く含むからだと考えられる。 押出し造粒の過程をみると、原料のBONは適
切な量の水と低級アルコールの混合溶液が添加さ
れたのち、混練され、造粒に適した物性を付与さ
れて適当な孔径のダイスを通して押出される。こ
の際、原料のBONには押出し圧がかかり、結晶
同士が水と低級アルコールの混合溶液を介して圧
着、結合する。BONは水にはほとんど溶解しな
いが、前記の低級アルコールには比較的溶解する
ので、結晶粒子の表面の一部が水と低級アルコー
ルの混合溶液に溶解し、押出し圧によつて結晶粒
子同士が結合するのであろうと考えられる。水と
低級アルコールの混合溶液の代わりに水のみで造
粒すると、乾燥後崩れ易い顆粒剤しかできない。
しかしこの混合溶液による結晶粒子の結合性の効
果は絶対的なものではなく、結合力の一部に寄与
しているものと考えられる。すなわち本発明の
BON顆粒における強い結晶粒子間の結合力は、
結晶の粒度分布が広く、微細な結晶を比較的多く
含んでいるため、押出し時に結晶粒子が最密充填
の状態になり、しかもそのうえ水と低級アルコー
ルの混合溶液により結晶粒子の表面の一部が溶解
し圧着、結合することによつて生じるものと考え
られる。 このことを確認するための比較実験として、微
細な結晶を減じたBONを用いて造粒を試みた。
すなわち乾燥した微粉末状のBONを分級して、
粒子径50μを越える粒子が70%含まれているBON
を調製した。このもの100重量部に対してエタノ
ール20重量%を含む水30重量部を加えてよく混練
し、孔径1.0mmのダイスを有する押出し式の造粒
機にかけて造粒した。これを乾燥すると、わずか
に顆粒の形状を保つているものの、少し衝撃を加
えると大部分が微粉状の結晶に戻つた。 本発明により製造される2−ヒドロキシナフタ
リン−3−カルボン酸の顆粒は、染料、顔料等を
製造するための工業的原料として有利に用いられ
る。 実施例 1 特公昭56−53296号公報に記載の連続法により
得られた乾燥前のBONを、遠心力を調節して水
分含量が18%になるように遠心脱水した。その
500gをニーダーに採り、メタノール10gを加え
て5分間混練し、孔径1mmの横押出し式の造粒機
を通して造粒し、バツトに広げて80℃で40分間通
気乾燥すると、水分含量0.2%の顆粒状BONが
410g得られた。このBONの顆粒剤は乾燥後も崩
れることもなく、微粉末状のBONに比べて著し
く飛散性が抑制されていた。造粒に用いたBON
を乾燥し、粒子径を測定すると50μ以下の粒子が
73%であつた。なお溶媒の添加量は、最終的には
BON100重量部に対し、メタノール10重量%を含
む水24.4重量部であつた。 実施例1で得たBON顆粒剤を錠剤摩損度試験
器によつて強度を調べるため、あらかじめ60メツ
シユのタイラーふるい網で篩別し、網上に残つた
顆粒剤を10g秤取し、試験器に3分間かけたの
ち、60メツシユのふるい網を通過する量を測つて
粉化率とした。実施例1で得たBON顆粒剤の粉
化率は6%であつた。 実施例2〜5、比較例1及び2 固相回分法により得られた微粉末状のBONの
粒子径を測定すると、50μ以下の粒子が81%であ
つた。その微粉末状のBON500gに、メタノール
20重量%を含む水を第1表に示す量を加えてニー
ダーで20分間混練し、以下実施例1と同様にして
顆粒状のBONを調製した。混合物を造粒機に通
したときの状態と、乾燥後の顆粒の状態及び顆粒
の粉化率を第1表に示す。なお比較例の結果によ
り、混合溶液の添加量が、BON100重量部に対し
て15重量部では顆粒状にならず、35重量部では造
粒後に顆粒同士が付着し、乾燥後はかなり崩れ易
く、粉化率が大きく実用に耐えないことが認めら
れた。
The present invention relates to a method for producing granules of 2-hydroxynaphthalene-3-carboxylic acid that have high industrial utility value. 2-Hydroxynaphthalene-3-carboxylic acid (hereinafter referred to as BON) has long been produced by a solid-gas phase reaction called the Kolbe-Schmidt reaction. He also invented a method of reacting a liquid mixture consisting of kerosene, sodium β-naphthol, and β-naphthol with carbon dioxide (Tokuko Sho
56-53296). According to this method, high quality BON such as melting point 220-221℃, purity 99.5%, β-naphthol sodium content 0.03%
is obtained. This BON is separated from the mother liquor through operations such as acid precipitation, filtration, and centrifugation, and after washing with water,
It is dried and used as an intermediate for pigments and dyes.
However, BON crystals generally contain very fine particles and are highly scattering. Furthermore, BON has a strong mucosal irritant property, which poses a major problem in handling. For example, when BON is used as an intermediate for pigments and dyes, if it is put into a reaction tank, the fine powder of BON will turn into dust and fly up. The fine BON powder that floats into the air does not settle easily and floats over a wide area, polluting the environment and irritating the skin and mucous membranes of workers, causing discomfort. In order to reduce such workability and safety problems during preparation, workers may wear dustproof glasses and masks, or use a filter to remove air by suctioning and degassing from a separate port from the raw material feeding port of the reaction tank. Methods such as collecting fine powder have been used, but they are not perfect. The reason why BON is highly scattering is because it contains very fine crystals, and it hardly dissolves in water, so phenomena such as moisture absorption hardly occur, and individual crystal particles aggregate and bond through adhering water. This is thought to be due to the fact that it is easy to move as individual fine particles in response to external shocks.
In order to suppress the scattering of substances having such properties, it is first possible to make the shape of the particles large enough to prevent them from scattering. For other compounds, a large crystal size may be used for this purpose, or a fine powder may be made into granules. but
Regarding BON, there is no such product on the market, and there are no reports of such an attempt being made. BON with a large crystal size can be obtained by selecting an appropriate solvent and recrystallizing it, but this is uneconomical because it is dissolved in the mother liquor or lost in the solvent. Moreover, large crystal diameters have a slow dissolution rate, so
It is inconvenient to handle when producing pigments and dyes.
The present inventors attempted to increase the apparent particle size of BON by a dry granulation method, but the granules obtained in this way had a slow dissolution rate and were not suitable for practical use. BON hardly dissolves in water (0.08 at 20℃
%), ordinarily, even if such materials are made into granules using a wet granulation method using only water as a binder, only brittle granules are produced, and even if the granules maintain their shape during granulation, they When it dries, most of it returns to its original fine powder form, making it useless as a granule. Generally, in such cases, good granules can often be obtained by appropriately adding a binder such as dextrin, gum arabic, or carboxymethyl cellulose together with a solvent such as water or alcohol, followed by kneading and granulation. However, since BON is a raw material for pigments and dyes, it cannot contain unnecessary binders that could become impurities. This is thought to be one of the reasons why BON granules were not well known until now. The present inventors attempted granulation using a mixed solution of water and lower alcohol as a binder, and by granulating from raw materials with a specific particle size composition, relatively good granules were obtained, and they were able to prevent scattering. the purpose has been fully achieved,
Moreover, it has been found that this method causes almost no increase in cost compared to the conventional manufacturing cost of fine powder BON. The present invention uses 100 parts by weight of 2-hydroxynaphthalene-3-carboxylic acid crystals containing 60% or more of particles with a particle size of 50 μ or less, and 5 to 25% by weight of lower alcohol.
This is a method for producing granules of 2-hydroxynaphthalene-3-carboxylic acid with significantly suppressed scattering properties, which is characterized by granulating and drying a mixture containing 18 to 33 parts by weight of water. The strength of the granules obtained by the method of the present invention includes:
As described later, the particle size of the BON particles is involved.
Therefore, it is necessary that 60% or more of the BON particles used as the raw material have a particle size of 50μ or less. The particle size of BON particles is determined by the concentration of BON sodium salt in the mother liquor during acid precipitation, the amount of tar, the amount of impurities such as unreacted β-naphthol, the concentration of mineral acid used for acid precipitation, the dropping rate, and the acid precipitation. It is affected by various conditions such as temperature.
Among these, the concentration of BON sodium, tar content, and the amount of impurities such as β-naphthol in the mother liquor are derived from the reaction conditions during BON production. In order to obtain BON with a desired crystal size by adjusting these conditions, it is preferable to manufacture by a continuous method. According to the continuous method, particle diameters within the above range can be easily prepared by setting reaction conditions. BON particles acid-precipitated by a batch method can also be used. When carrying out the present invention, first, the particle size is 50 μm.
18-33 parts by weight of water containing 5-25% by weight of lower alcohol is uniformly mixed with 100 parts by weight of BON crystal particles containing 60% or more of the following particles. If the total amount of water and organic solvent is less than this, it will not be possible to form it into granules, and if it is more than this, the surfaces of the granules will adhere to each other by the time the granules are dried, and they will harden into lumps, making it difficult to form them into granules. Granules cannot be formed. When mixing, a predetermined amount of water and a lower alcohol may be added to the dry powder of BON separately or as a mixture, but the water content is adjusted when centrifugally dehydrating the acid-precipitated BON, and a predetermined amount of water and lower alcohol are added to the dry powder of BON. The method of adding lower alcohols is economically advantageous. The water content to be adjusted during centrifugal dehydration and the amount of lower alcohol to be added can be easily determined by calculation. Using BON obtained in the acid precipitation process, dehydration, addition of lower alcohol, and kneading are continuously performed, since the BON crystal surface is wet, water and lower alcohol are added to the dried fine powder crystals. It is advantageous in that the kneading time can be shortened compared to when kneading with addition, and continuous granulation becomes easier. The ratio of lower alcohol to water needs to be 5 to 25% by weight of lower alcohol and 95 to 75% by weight of water. If the amount of lower alcohol is less than this, a sufficient granulation effect cannot be obtained. Moreover, if the amount is more than this, the granulation effect may decrease, which is also economically disadvantageous. BON, lower alcohol, and water can be kneaded using, for example, a kneader. As the lower alcohol, lower alcohols having a boiling point of 100° C. or less, such as methanol, ethanol, normal propyl alcohol, isopropyl alcohol, etc. are used. Among these solvents, methanol is the cheapest and economically advantageous. Lower alcohols can be mixed with water at any ratio, so they are easy to mix in when added to dehydrated BON, and they can be mixed with water at any ratio and dried.
It can be added to BON powder or undried BON that has been centrifugally dehydrated. Moreover, these lower alcohols have lower boiling points than water, so
When drying the granulated material, it is dried at a normal drying temperature without excessive heating. Next, the kneaded product is granulated and then dried to obtain the granules of the present invention. When granulating, the pore size
It is preferable to use an extrusion type granulator having a die of about 0.5 to 1.5 mm. The BON granules obtained in this way turn out to be surprisingly good granules, and do not return to the original finely powdered BON crystals even after being subjected to a fairly strong impact, and their scattering properties are suppressed. When the BON used for granulation was dried and the particle size was measured by the sedimentation method, it was 0 to 10μ.
2%, 10~20μ 13%, 20~30μ 28%, 30~
20% of particles are 40μ, 10% are between 40 and 50μ, and particles larger than 50μ
It showed a distribution of 27%. unexpectedly good like this
One of the reasons why BON granules were obtained is thought to be that the BON used for granulation has a wide particle size distribution and contains a relatively large number of fine crystals. Looking at the process of extrusion granulation, the raw material BON is mixed with an appropriate amount of water and lower alcohol, then kneaded, given physical properties suitable for granulation, and extruded through a die with an appropriate pore size. be done. At this time, extrusion pressure is applied to the raw material BON, and the crystals are pressed together and bonded together through a mixed solution of water and lower alcohol. Although BON hardly dissolves in water, it is relatively soluble in the lower alcohol mentioned above, so a part of the surface of the crystal particles dissolves in the mixed solution of water and lower alcohol, and the extrusion pressure causes the crystal particles to bond with each other. It is thought that they are combined. When granulating with only water instead of a mixed solution of water and lower alcohol, only granules that easily crumble after drying are produced.
However, the effect of this mixed solution on the bonding properties of crystal particles is not absolute, and it is thought that it contributes to a part of the bonding force. That is, the present invention
The strong bonding force between crystal particles in BON granules is
Since the crystal grain size distribution is wide and contains a relatively large number of fine crystals, the crystal grains are in a close-packed state during extrusion, and in addition, a part of the surface of the crystal grains is damaged by the mixed solution of water and lower alcohol. This is thought to be caused by melting, crimping, and bonding. As a comparative experiment to confirm this, granulation was attempted using BON with reduced fine crystals.
In other words, by classifying dried fine powder BON,
BON containing 70% particles with a particle size of over 50μ
was prepared. To 100 parts by weight of this product, 30 parts by weight of water containing 20% by weight of ethanol was added, thoroughly kneaded, and granulated using an extrusion type granulator having a die with a hole diameter of 1.0 mm. When this was dried, it retained a slight granule shape, but when a slight impact was applied, most of it returned to fine crystals. The granules of 2-hydroxynaphthalene-3-carboxylic acid produced according to the present invention can be advantageously used as an industrial raw material for producing dyes, pigments, and the like. Example 1 BON before drying obtained by the continuous method described in Japanese Patent Publication No. 56-53296 was centrifugally dehydrated by adjusting the centrifugal force so that the water content was 18%. the
Take 500g in a kneader, add 10g of methanol, knead for 5 minutes, granulate it through a horizontal extrusion type granulator with a hole diameter of 1mm, spread it in a vat and air dry it at 80℃ for 40 minutes to obtain granules with a moisture content of 0.2%. The BON is
410g was obtained. This BON granule did not crumble even after drying, and its scattering properties were significantly suppressed compared to fine powder BON. BON used for granulation
When dried and the particle size was measured, particles smaller than 50μ were found.
It was 73%. The amount of solvent added is ultimately determined by
The amount of water containing 10% by weight of methanol was 24.4 parts by weight based on 100 parts by weight of BON. In order to examine the strength of the BON granules obtained in Example 1 using a tablet friability tester, they were sieved in advance through a 60-mesh Tyler sieve screen, 10g of the granules remaining on the screen was weighed out, and the strength was tested using a tablet friability tester. After 3 minutes, the amount passing through a 60-mesh sieve was measured and determined as the powderization rate. The powdering rate of the BON granules obtained in Example 1 was 6%. Examples 2 to 5, Comparative Examples 1 and 2 When the particle size of the fine powder BON obtained by the solid phase batch method was measured, 81% of the particles were 50 μm or less. Methanol is added to 500g of the finely powdered BON.
BON granules were prepared in the same manner as in Example 1 by adding water containing 20% by weight in the amount shown in Table 1 and kneading for 20 minutes in a kneader. Table 1 shows the state of the mixture when it was passed through the granulator, the state of the granules after drying, and the pulverization rate of the granules. According to the results of the comparative example, when the amount of the mixed solution added was 15 parts by weight to 100 parts by weight of BON, granules did not form, and when 35 parts by weight, the granules adhered to each other after granulation and were quite easy to crumble after drying. It was found that the powdering rate was too high to be of practical use.

【表】 実施例6〜10、比較例3及び4 実施例2で用いた微粉末状のBON500gに、第
2表に示すような濃度のメタノールを含む水125
gを加えてニーダーで20分間混練し、以下実施例
1と同様にして顆粒状のBONを調製した。混合
物を造粒機に通した時の状態と、乾燥後の顆粒の
状態及び粉化率を第2表に示す。比較例の結果に
より混合液中のメタノールの濃度が3%では顆粒
は崩れ易く粉化率が大きい。またメタノールの濃
度が30%になると同様に顆粒が崩れ易くなつてい
ることが認められた。
[Table] Examples 6 to 10, Comparative Examples 3 and 4 500 g of the finely powdered BON used in Example 2 was mixed with 125 g of water containing methanol at the concentration shown in Table 2.
g was added thereto and kneaded for 20 minutes using a kneader, and then the same procedure as in Example 1 was carried out to prepare granular BON. Table 2 shows the state of the mixture when it was passed through the granulator, the state of the granules after drying, and the pulverization rate. The results of the comparative example show that when the concentration of methanol in the mixed liquid is 3%, the granules are easily crumbled and the pulverization rate is high. It was also observed that when the methanol concentration increased to 30%, the granules became more easily disintegrated.

【表】 実施例 11 特公昭56−53296号公報記載の連続法により得
られたBONを、遠心力を調節し水分含量が20%
になるようにして遠心脱水した。このものの乾燥
品の粒子径を測定すると、50μ以下の粒子を72%
含んでいた。この水分含量20%のBONを、連続
式ニーダーに毎時100Kgの割合で供給し、これに
メタノールを毎時3Kgの割合で添加し、3分間混
練したのち、孔径1mmの2軸の横押出し式造粒機
(不二パウダル社製、EXD−100)を通して連続
的に造粒した。造粒後、流動乾燥機で乾燥し、整
粒機を通してBON顆粒剤を毎時75Kgの割合で連
続的に得た。こうして得られたBON顆粒剤は乾
燥後も崩れることはなく、飛散性は著しく抑制さ
れ、扱い易い製剤になつていた。なお混練時の水
とメタノールの混合液の添加量は、BON100重量
部に対して28.8重量部であり、混合液中のメタノ
ール濃度は13%である。 試験例 1〜5 特公昭56−53296号公報記載の連続法により得
られたBONを、乾燥して粒子径を測定すると、
50μ以下の粒子を65%含んでいた。これを分級し
て50μ以下の粒子と50μを超える粒子に分けたの
ち、第3表に示すように両者の含量を変えて混合
し、この混合物200gにエタノール20重量%を含
む水60gを加えて混練し、造粒、乾燥して顆粒状
のBONを調製し、その強度を調べた。混練物を
造粒機に通した時の状態と顆粒の粉化率を第3表
に示す。50μ以下の結晶粒子の含有量が60%未満
のときは、顆粒状になつても崩れ易く、粉化率の
大きな顆粒しかできなかつた。以上の結果から顆
粒を調製するためには、50μ以下の結晶粒子を60
%以上含有していることが必要であることが知ら
れる。
[Table] Example 11 BON obtained by the continuous method described in Japanese Patent Publication No. 56-53296 was adjusted to a water content of 20% by adjusting the centrifugal force.
It was dehydrated by centrifugation. When we measured the particle size of the dry product of this product, 72% of the particles were 50μ or less.
It contained. This BON with a moisture content of 20% is fed to a continuous kneader at a rate of 100 kg/hour, to which methanol is added at a rate of 3 kg/hour, and after kneading for 3 minutes, it is granulated using a twin-screw horizontal extrusion method with a pore size of 1 mm. The mixture was continuously granulated through a machine (manufactured by Fuji Paudal Co., Ltd., EXD-100). After granulation, it was dried in a fluidized fluid dryer and passed through a sieving machine to continuously obtain BON granules at a rate of 75 kg/hour. The BON granules thus obtained did not crumble even after drying, had significantly reduced scattering properties, and was an easy-to-handle formulation. The amount of the mixed solution of water and methanol added during kneading was 28.8 parts by weight per 100 parts by weight of BON, and the methanol concentration in the mixed solution was 13%. Test Examples 1 to 5 When BON obtained by the continuous method described in Japanese Patent Publication No. 56-53296 was dried and the particle size was measured,
Contained 65% particles smaller than 50μ. After classifying this into particles smaller than 50μ and particles larger than 50μ, they were mixed in varying amounts as shown in Table 3, and 60g of water containing 20% ethanol by weight was added to 200g of this mixture. Granular BON was prepared by kneading, granulating, and drying, and its strength was examined. Table 3 shows the state of the kneaded material when it was passed through the granulator and the pulverization rate of the granules. When the content of crystal particles of 50μ or less was less than 60%, even if it was made into granules, it was easy to crumble, and only granules with a high pulverization rate could be made. Based on the above results, in order to prepare granules, 60
It is known that it is necessary to contain at least %.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 粒子径50μ以下の粒子を60%以上含む2−ヒ
ドロキシナフタリン−3−カルボン酸の結晶100
重量部と、低級アルコール5〜25重量%を含む水
18〜33重量部との混合物を、造粒して乾燥するこ
とを特徴とする、2−ヒドロキシナフタリン−3
−カルボン酸の顆粒の製造法。
1 100 crystals of 2-hydroxynaphthalene-3-carboxylic acid containing 60% or more of particles with a particle size of 50μ or less
parts by weight and water containing 5 to 25% by weight of lower alcohol
2-hydroxynaphthalene-3, characterized by granulating and drying a mixture of 18 to 33 parts by weight.
- A method for producing carboxylic acid granules.
JP5238285A 1985-03-18 1985-03-18 Production of granule of 2-hydroxynaphthalene-3-carboxylic acid Granted JPS61212533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5238285A JPS61212533A (en) 1985-03-18 1985-03-18 Production of granule of 2-hydroxynaphthalene-3-carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5238285A JPS61212533A (en) 1985-03-18 1985-03-18 Production of granule of 2-hydroxynaphthalene-3-carboxylic acid

Publications (2)

Publication Number Publication Date
JPS61212533A JPS61212533A (en) 1986-09-20
JPH0564625B2 true JPH0564625B2 (en) 1993-09-16

Family

ID=12913251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5238285A Granted JPS61212533A (en) 1985-03-18 1985-03-18 Production of granule of 2-hydroxynaphthalene-3-carboxylic acid

Country Status (1)

Country Link
JP (1) JPS61212533A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531592B1 (en) * 1999-10-26 2005-11-28 가부시키가이샤 우에노 세이야꾸 오요 겡뀨조 Granules of 2-hydroxynaphthalene-3-carboxylic acid and method for preparing the same
JP4093731B2 (en) * 2001-04-20 2008-06-04 上野製薬株式会社 Granules of parahydroxybenzoic acid or parahydroxybenzoic acid ester and process for producing the same
JP2007254436A (en) * 2006-03-27 2007-10-04 Nippon Shokubai Co Ltd Powder composition of mandelic acids and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127020A (en) * 1975-04-26 1976-11-05 Nippon Synthetic Chem Ind Co Ltd:The Process for granulating of potassium sorbate
JPS59196841A (en) * 1983-04-21 1984-11-08 Ueno Seiyaku Oyo Kenkyusho:Kk Granule of 2-hydroxynaphthalene-3-carboxylic acid and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127020A (en) * 1975-04-26 1976-11-05 Nippon Synthetic Chem Ind Co Ltd:The Process for granulating of potassium sorbate
JPS59196841A (en) * 1983-04-21 1984-11-08 Ueno Seiyaku Oyo Kenkyusho:Kk Granule of 2-hydroxynaphthalene-3-carboxylic acid and its preparation

Also Published As

Publication number Publication date
JPS61212533A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
US4308288A (en) Method of producing granular cocoa
US4661647A (en) Directly compressible granular mannitol and method for its manufacture
KR100329312B1 (en) Manufacturing method of granular alkaline carbonate metal
EP0365046A1 (en) Process for colouring concrete
EP0328768B1 (en) Continuous process for making granules of sodium perborate
JPS62265295A (en) Spray drying lactose product and its production
US5108728A (en) Process for the production of granulated dicalcium phosphate dihydrate
DE1240508B (en) Process for granulating perborate
JPH0564625B2 (en)
JPH0465822B2 (en)
CN113382980A (en) Fragile phase composition of methylglycine N, N-diacetic acid
JPH0139689B2 (en)
US3445283A (en) Process for the preparation of instantaneously soluble,porous granular sugar
US4055617A (en) Process for preparing granular potassium sorbate
JPS6335621A (en) Production of polycarbonate resin powder
US1891891A (en) Granular organic material
JPS5835173B2 (en) Kali Yujiyou Sorbinsanno Seizouhouhou
JPH0688936B2 (en) Method for producing granular sodium benzoate
US7329748B2 (en) Method for the production of riboflavin of modification b/c in granular form
DE102008031294A1 (en) Producing calcium carbonate pellets useful for producing quicklime products comprises homogenizing a mixture of calcium carbonate and carbon and granulating or pelletizing the mixture with a binder
US2092054A (en) Process for granulating materials
JPH0662281B2 (en) Rapidly dissolving calcium hypochlorite particles and process for producing the same
JP3697414B2 (en) Granulated product of 2-hydroxynaphthalene-3-carboxylic acid and process for producing the same
JPS5937080B2 (en) Method for producing easily soluble granulated sugar
JPH01117765A (en) Production of granular seaweed essence

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term