JP7481812B2 - Carboxymethylcellulose or its salt and composition thereof - Google Patents

Carboxymethylcellulose or its salt and composition thereof Download PDF

Info

Publication number
JP7481812B2
JP7481812B2 JP2019138778A JP2019138778A JP7481812B2 JP 7481812 B2 JP7481812 B2 JP 7481812B2 JP 2019138778 A JP2019138778 A JP 2019138778A JP 2019138778 A JP2019138778 A JP 2019138778A JP 7481812 B2 JP7481812 B2 JP 7481812B2
Authority
JP
Japan
Prior art keywords
salt
cmc
particles
water
circularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138778A
Other languages
Japanese (ja)
Other versions
JP2021021018A (en
Inventor
邦朗 土井
真也 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Miraizu Ltd
Original Assignee
Daicel Miraizu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Miraizu Ltd filed Critical Daicel Miraizu Ltd
Priority to JP2019138778A priority Critical patent/JP7481812B2/en
Priority to KR1020217040239A priority patent/KR20220042057A/en
Priority to CN202080044736.2A priority patent/CN113993904B/en
Priority to PCT/JP2020/021609 priority patent/WO2021019896A1/en
Priority to TW109120126A priority patent/TWI836096B/en
Publication of JP2021021018A publication Critical patent/JP2021021018A/en
Application granted granted Critical
Publication of JP7481812B2 publication Critical patent/JP7481812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、カルボキシメチルセルロース(以下、単にCMCともいう)またはその塩、およびCMCまたはその塩と水とを含む水性組成物、ならびにCMCまたはその塩を所定の粒度分布を示す粒状に調製して、水に対する溶解性を向上する方法に関する。 The present invention relates to carboxymethylcellulose (hereinafter, simply referred to as CMC) or a salt thereof, an aqueous composition containing CMC or a salt thereof and water, and a method for preparing CMC or a salt thereof into granules having a predetermined particle size distribution to improve its solubility in water.

CMCは代表的な水溶性高分子材料の一つであり、食品、化粧品、医薬品などの他、リチウムイオン電池の負極材など幅広い用途で利用されている。通常、CMCは水溶液の形態で利用されることが多いものの、水と混合した際にママコ(凝集体または粘着凝集)が生じ易く、このママコ内部への水の浸透が阻害されるため、一旦ママコが生成するとCMCの溶解に多大な時間がかかり、製品の生産性を向上できない。そのため、CMCを短時間で効率よく溶解させる方法が検討されている。 CMC is one of the most representative water-soluble polymer materials, and is used in a wide range of applications, including food, cosmetics, pharmaceuticals, and negative electrode materials for lithium-ion batteries. Although CMC is usually used in the form of an aqueous solution, it is prone to form aggregates (aggregates or sticky floccules) when mixed with water, which inhibits the penetration of water into the aggregates. Once aggregates are formed, it takes a long time to dissolve the CMC, preventing improvement in product productivity. For this reason, methods are being investigated for efficiently dissolving CMC in a short time.

特公昭59-36941号公報(特許文献1)には、純度95%以上のCMCナトリウム塩(以下、単にCMC-Naともいう)に対して所定量の水溶性塩および水を添加してから造粒および篩分して得られたCMC-Naが、水易分散性を示すことが開示されている。この文献の実施例では、純度99%のCMC粉末に、無水芒硝またはその水溶液、食塩、L-グルタミン酸ナトリウムなどの水溶性塩および水を所定量加えて造粒して篩分し、20メッシュを通過し80メッシュを通過しなかったCMC顆粒が調製されている。 JP 59-36941 A (Patent Document 1) discloses that CMC-Na obtained by adding a predetermined amount of water-soluble salt and water to CMC sodium salt (hereinafter simply referred to as CMC-Na) with a purity of 95% or more, followed by granulation and sieving, exhibits easy water dispersibility. In the examples of this document, a predetermined amount of water-soluble salt such as anhydrous sodium sulfate or its aqueous solution, table salt, and sodium L-glutamate and water is added to CMC powder with a purity of 99%, which is then granulated and sieved to prepare CMC granules that pass through a 20 mesh but not an 80 mesh.

また、特許第3516358号公報(特許文献2)では、CMCアルカリ塩の溶剤-水含有スラリーを、所定ガス雰囲気下、回転円盤上に流下して霧化、またはノズルから噴霧して霧化させることにより噴霧乾燥して造粒する方法が開示されている。得られたCMC粉末は、全体の80%以上が粒径70~200μmの範囲内にあり、かつ粒径20μm以下の微粉の割合が全体の2.0%以下と少ないため、溶解性に優れることが記載されている。 In addition, Japanese Patent No. 3516358 (Patent Document 2) discloses a method of spray-drying and granulating a solvent-water-containing slurry of CMC alkali salt by atomizing it by flowing it down onto a rotating disk or by spraying it from a nozzle under a specified gas atmosphere. It is described that the obtained CMC powder has excellent solubility because 80% or more of the total has a particle size within the range of 70 to 200 μm, and the proportion of fine powder with a particle size of 20 μm or less is small, at 2.0% or less of the total.

特公昭59-36941号公報Japanese Patent Publication No. 59-36941 特許第3516358号公報Japanese Patent No. 3516358

しかし、特許文献1では、20メッシュを通過する比較的大きな粒子を含むためか、溶解に時間がかかる場合があるとともに、必須成分である水溶性塩の添加により純度が低下するため、用途が制限されるおそれがある。 However, in Patent Document 1, the product contains relatively large particles that pass through a 20 mesh screen, which may take a long time to dissolve, and the purity is reduced by the addition of water-soluble salts, which are essential components, so there is a risk that the product's uses may be limited.

特許文献2では、20μm以下の微粉の割合は少ないものの、スプレー噴射の圧力などの条件によっては霧状CMC溶液の粒が小さくなり、得られるCMC粉末の粒径も比較的小さくなるおそれがある。また、比較的粒径が小さい粒子の割合が多いためか、溶解に時間がかかる場合がある。 In Patent Document 2, although the proportion of fine powder of 20 μm or less is small, depending on conditions such as the pressure of the spray injection, the particles of the atomized CMC solution may become small, and the particle size of the resulting CMC powder may also be relatively small. Also, perhaps because the proportion of particles with relatively small particle sizes is high, it may take a long time to dissolve.

なお、特許文献1~2のいずれの文献においてもCMC-Naの具体的なメジアン径(D50)などの粒子径と溶解速度との関係については何ら記載されていない。 In addition, neither Patent Document 1 nor Patent Document 2 discloses any information about the relationship between the particle size, such as the specific median size (D50), of CMC-Na and the dissolution rate.

従って、本発明の目的は、緩やかな攪拌であっても、水に効率よく溶解可能な(即溶性に優れた)CMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 The object of the present invention is therefore to provide CMC or a salt thereof that can be efficiently dissolved in water (has excellent immediate solubility) even with gentle stirring, an aqueous composition thereof, and a method for preparing the CMC or a salt thereof to improve water solubility.

本発明の他の目的は、水溶液における粘度が高くても(またはCMCまたはその塩の分子量が大きくても)、水に効率よく溶解可能なCMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 Another object of the present invention is to provide CMC or a salt thereof that can be efficiently dissolved in water even if the viscosity of the aqueous solution is high (or even if the molecular weight of the CMC or a salt thereof is large), an aqueous composition thereof, and a method for preparing the CMC or a salt thereof to improve the water solubility.

本発明のさらに他の目的は、リチウムイオン電池用負極の生産性を向上できるCMCまたはその塩、およびその水性組成物、ならびに前記CMCまたはその塩を調製して水溶解性を向上する方法を提供することにある。 Yet another object of the present invention is to provide CMC or its salt, an aqueous composition thereof, and a method for preparing the CMC or its salt to improve the water solubility, which can improve the productivity of negative electrodes for lithium ion batteries.

本発明者らは、前記課題を達成するため鋭意検討した結果、所定の粒度分布(または粒子径分布)を有するカルボキシメチルセルロースまたはその塩が、水に対して効率よく溶解できることを見いだし、本発明を完成した。 As a result of intensive research into achieving the above object, the inventors discovered that carboxymethylcellulose or a salt thereof having a specific particle size distribution (or particle diameter distribution) can be efficiently dissolved in water, and thus completed the present invention.

すなわち、本発明のカルボキシメチルセルロースまたはその塩は、粒状であって、粒径の体積基準の累積分布(または累積度数分布)において、小粒径側から累積10%、累積50%および累積90%の粒径をそれぞれD10、D50およびD90としたとき、D10が90μm程度以上、D50が120~470μm程度、D90が500μm程度以下である。 In other words, the carboxymethylcellulose or salt thereof of the present invention is granular, and when the particle size at the cumulative 10%, cumulative 50% and cumulative 90% from the small particle size side in the volume-based cumulative distribution (or cumulative frequency distribution) of particle sizes is defined as D10, D50 and D90, respectively, D10 is about 90 μm or more, D50 is about 120 to 470 μm, and D90 is about 500 μm or less.

前記D10は100μm程度以上であってもよく、前記D50は150~200μm程度であってもよく、前記D90は250μm程度以下であってもよい。 The D10 may be about 100 μm or more, the D50 may be about 150 to 200 μm, and the D90 may be about 250 μm or less.

前記粒状のCMCまたはその塩において、真円度50%以上の粒子の割合は、全体に対して90体積%程度以上であってもよく、真円度70%以上の粒子の割合は、全体に対して70体積%程度以上であってもよい。また、真円度50%以上の粒子の割合は、全体に対して95体積%程度以上であってもよく、真円度70%以上の粒子の割合は、全体に対して80体積%程度以上であってもよい。 In the granular CMC or salt thereof, the proportion of particles with a circularity of 50% or more may be about 90% by volume or more relative to the total, and the proportion of particles with a circularity of 70% or more may be about 70% by volume or more relative to the total. In addition, the proportion of particles with a circularity of 50% or more may be about 95% by volume or more relative to the total, and the proportion of particles with a circularity of 70% or more may be about 80% by volume or more relative to the total.

前記CMCまたはその塩の1質量%水溶液における粘度は、温度25℃において、1500~3000mPa・s程度であってもよい。前記CMCまたはその塩は電極材料であってもよい。 The viscosity of a 1% by mass aqueous solution of the CMC or its salt may be about 1500 to 3000 mPa·s at a temperature of 25°C. The CMC or its salt may be an electrode material.

本発明は、前記CMCまたはその塩と水とを含む水性組成物、および前記CMCまたはその塩と水とを混合して前記水性組成物を製造する方法を含むとともに、前記CMCまたはその塩を前述の粒状の形態に調製して、水に対する溶解性を向上する方法も包含する。 The present invention includes an aqueous composition containing the CMC or a salt thereof and water, and a method for producing the aqueous composition by mixing the CMC or a salt thereof with water, and also includes a method for preparing the CMC or a salt thereof in the above-mentioned granular form to improve its solubility in water.

本発明では、CMCまたはその塩が所定の粒度分布を有するため、ママコの生成が有効に抑制でき、緩やかな攪拌であっても水に効率よく溶解できる。また、水溶液における粘度が高くても(またはCMCまたはその塩の分子量が大きくても)、短時間で水に効率よく溶解できる。さらに、本発明のCMCまたはその塩をリチウムイオン電池の負極に用いると、CMCまたはその塩が効率よく溶解するため、電極形成用の水性組成物(またはスラリー状組成物)を調製する工程にかかる時間を短縮できるとともに、製品不良の原因となるママコの生成も抑制できるため、リチウムイオン電池の生産性(または歩留まり)を有効に向上できる。 In the present invention, since the CMC or its salt has a predetermined particle size distribution, the generation of maltose can be effectively suppressed, and it can be efficiently dissolved in water even with gentle stirring. In addition, even if the viscosity of the aqueous solution is high (or even if the molecular weight of the CMC or its salt is large), it can be efficiently dissolved in water in a short time. Furthermore, when the CMC or its salt of the present invention is used in the negative electrode of a lithium ion battery, the CMC or its salt dissolves efficiently, so that the time required for the process of preparing an aqueous composition (or a slurry composition) for forming an electrode can be shortened, and the generation of maltose, which causes product defects, can be suppressed, so that the productivity (or yield) of the lithium ion battery can be effectively improved.

図1は、実施例、比較例および参考例で得られたCMC-Naの溶解時間測定における攪拌機の最大トルク達成率の推移を示すグラフである。FIG. 1 is a graph showing the transition of the maximum torque achievement rate of the stirrer in the dissolution time measurement of CMC-Na obtained in the Examples, Comparative Examples, and Reference Examples. 図2は、実施例、比較例および参考例で得られたCMC-Naの体積基準の粒子径分布である。FIG. 2 shows the volume-based particle size distribution of the CMC-Na obtained in the Examples, Comparative Examples, and Reference Examples. 図3は、実施例、比較例および参考例で得られたCMC-Naの体積基準の真円度の分布である。FIG. 3 shows the distribution of the volumetric circularity of the CMC-Na obtained in the examples, comparative examples, and reference examples.

[CMCまたはその塩]
本発明の粒状のCMCまたはその塩は、所定の粒度分布を示す。すなわち、D10は90μm以上(例えば95~250μm)程度の範囲から選択でき、例えば100μm以上(例えば105~200μm)、好ましくは110μm以上(例えば115~150μm)、さらに好ましくは120μm以上(例えば120~140μm、好ましくは120~130μm)程度であってもよい。
[CMC or its salt]
The granular CMC or salt thereof of the present invention exhibits a predetermined particle size distribution. That is, D10 can be selected from a range of about 90 μm or more (e.g., 95 to 250 μm), and may be, for example, about 100 μm or more (e.g., 105 to 200 μm), preferably about 110 μm or more (e.g., 115 to 150 μm), and more preferably about 120 μm or more (e.g., 120 to 140 μm, preferably 120 to 130 μm).

また、D50は120~470μm(例えば130~400μm)程度の範囲から選択でき、例えば140~350μm(例えば155~300μm)、好ましくは145~250μm(例えば150~200μm)、さらに好ましくは160~190μm(例えば165~185μm、好ましくは170~180μm)程度であってもよい。 D50 can be selected from the range of about 120 to 470 μm (e.g., 130 to 400 μm), and may be, for example, about 140 to 350 μm (e.g., 155 to 300 μm), preferably about 145 to 250 μm (e.g., 150 to 200 μm), and more preferably about 160 to 190 μm (e.g., 165 to 185 μm, preferably 170 to 180 μm).

D90は500μm以下(例えば180~400μm)程度の範囲から選択でき、例えば450μm以下(例えば190~400μm)、好ましくは350μm以下(例えば200~300μm)、さらに好ましくは250μm以下(例えば210~240μm、好ましくは220~230μm)程度であってもよい。 D90 can be selected from a range of about 500 μm or less (e.g., 180 to 400 μm), and may be, for example, about 450 μm or less (e.g., 190 to 400 μm), preferably about 350 μm or less (e.g., 200 to 300 μm), and more preferably about 250 μm or less (e.g., 210 to 240 μm, preferably 220 to 230 μm).

なお、本明細書および特許請求の範囲において、D10、D50およびD90は体積基準の粒径であり、後述する実施例に記載の方法により測定できる。 In this specification and claims, D10, D50 and D90 are particle sizes based on volume and can be measured by the method described in the examples below.

また、CMCまたはその塩の粒度は、分布幅が狭く均一性が高い方が好ましいため、D10、D50およびD90は、例えば、D10が90μm以上であり、D50が130~400μmであり、D90が450μm以下であってもよく;好ましくはD10が100μm以上であり、D50が140~350μmであり、D90が450μm以下であってもよく;さらに好ましくはD10が100μm以上であり、D50が150~200μmであり、D90が250μm以下であってもよく;なかでもD10が110μm以上であり、D50が160~190μmであり、D90が250μm以下であってもよく;特に好ましくはD10が120μm以上であり、D50が165~185μmであり、D90が210~240μmであってもよい。 In addition, since it is preferable that the particle size of CMC or its salt has a narrow distribution width and high uniformity, D10, D50 and D90 may be, for example, D10 is 90 μm or more, D50 is 130 to 400 μm, and D90 is 450 μm or less; preferably D10 is 100 μm or more, D50 is 140 to 350 μm, and D90 is 450 μm or less; more preferably D10 is 100 μm or more, D50 is 150 to 200 μm, and D90 is 250 μm or less; particularly preferably D10 is 110 μm or more, D50 is 160 to 190 μm, and D90 is 250 μm or less; and particularly preferably D10 is 120 μm or more, D50 is 165 to 185 μm, and D90 is 210 to 240 μm.

なお、CMCまたはその塩の粒度分布におけるモード径(最頻径または最頻度粒子径)は、例えば120~470μm(例えば130~400μm)程度の範囲から選択でき、例えば140~350μm(例えば145~300μm)、好ましくは150~250μm(例えば150~200μm)、さらに好ましくは160~190μm程度であってもよい。 The mode diameter (the most frequent diameter or most frequent particle diameter) in the particle size distribution of CMC or its salt can be selected from the range of, for example, about 120 to 470 μm (for example, 130 to 400 μm), and may be, for example, about 140 to 350 μm (for example, 145 to 300 μm), preferably about 150 to 250 μm (for example, 150 to 200 μm), and more preferably about 160 to 190 μm.

小さな粒子の割合が多すぎると、粒子同士が凝集し易くママコの生成を抑制できなくなるおそれがあり、大きな粒子の割合が多すぎると、水と接触可能な面積(表面積)が減少して大きな粒子自体がママコ状となり、溶解時間が長くなるおそれがある。本発明のCMCまたはその塩は、粒子同士の凝集体が形成されるのを抑制しつつ、水との接触面積を増加できるバランスのよい粒子径に均一化されているため、溶解時間を大幅に短縮できる。 If the proportion of small particles is too high, the particles may easily aggregate and the formation of agglomerates may not be suppressed, and if the proportion of large particles is too high, the area (surface area) available for contact with water may decrease, causing the large particles themselves to become agglomerated, which may lengthen the dissolution time. The CMC or salt thereof of the present invention has a well-balanced, uniform particle size that suppresses the formation of agglomerates between particles while increasing the contact area with water, allowing the dissolution time to be significantly shortened.

CMCまたはその塩の粒子の形状は、略球状であるのが好ましい。略球状であると、粒子の凝集抑制と、水との接触面積増加とのバランスがよいためか、溶解時間を大きく短縮できる。そのため、本発明のCMCまたはその塩は、高い真円度(または面積円形度)を有する粒子の割合が多いのが好ましい。なお、CMCまたはその塩は、通常、見た目が粉状のためか、粒径について議論されることはあっても、その真円度については全く着目されていなかった。 The shape of the particles of CMC or its salt is preferably approximately spherical. The approximately spherical shape provides a good balance between inhibiting particle aggregation and increasing the contact area with water, and thus the dissolution time can be significantly shortened. For this reason, it is preferable that the CMC or its salt of the present invention has a high proportion of particles with high circularity (or area circularity). Note that although the particle size of CMC or its salt is often discussed, no attention has been paid to its circularity, probably because CMC or its salt usually has a powdery appearance.

CMCまたはその塩において、真円度50%以上の粒子の割合は、粒子全体に対して、例えば85体積%以上、好ましくは90体積%以上(例えば90~100体積%)、さらに好ましくは95体積%以上(例えば95~100体積%)程度であってもよい。 In CMC or a salt thereof, the proportion of particles with a circularity of 50% or more may be, for example, 85% by volume or more, preferably 90% by volume or more (e.g., 90 to 100% by volume), and more preferably 95% by volume or more (e.g., 95 to 100% by volume) relative to the total volume of the particles.

また、真円度70%以上の粒子の割合は、粒子全体に対して、例えば50体積%以上、好ましくは60体積%以上(例えば70~100体積%)、さらに好ましくは75体積%以上(例えば80~100体積%)程度であってもよい。 The proportion of particles with a circularity of 70% or more may be, for example, 50% by volume or more, preferably 60% by volume or more (e.g., 70 to 100% by volume), and more preferably 75% by volume or more (e.g., 80 to 100% by volume) relative to the total volume of the particles.

さらに、真円度90%以上の粒子の割合は、粒子全体に対して、例えば5体積%以上(例えば10~100体積%)、好ましくは13体積%以上(例えば15~100体積%)程度であってもよい。 Furthermore, the proportion of particles with a circularity of 90% or more may be, for example, 5% by volume or more (e.g., 10 to 100% by volume) and preferably 13% by volume or more (e.g., 15 to 100% by volume) relative to the total volume of the particles.

なお、本明細書および特許請求の範囲において、「真円度」は以下のように定義される。 In this specification and claims, "roundness" is defined as follows:

真円度[%]=4π×A/P ×100
(式中、πは円周率を示し、Aは粒子の面積(投影面積)を示し、Pは粒子の周囲長を示す。)
Circularity [%] = 4π × A/P 2 × 100
(In the formula, π represents the circular constant, A represents the area (projected area) of the particle, and P represents the perimeter of the particle.)

また、本発明の明細書および特許請求の範囲において、真円度の分布は体積基準の分布であり、後述する実施例に記載の方法により測定できる。 In addition, in the specification and claims of the present invention, the circularity distribution is a volume-based distribution, and can be measured by the method described in the examples below.

前記真円度50%以上、70%以上および90%以上の粒子の割合を、それぞれC50、C70およびC90としたとき、例えばC50が、粒子全体に対して90体積%程度以上であり、C70が、粒子全体に対して70体積%程度以上であってもよく;好ましくはC50が、粒子全体に対して95体積%程度以上であり、C70が、粒子全体に対して80体積%程度以上であってもよく;さらに好ましくはC50が、粒子全体に対して95体積%程度以上であり、C70が、粒子全体に対して80体積%程度以上であり、C90が、粒子全体に対して15体積%程度以上であってもよい。真円度が低い粒子の割合が多すぎると、溶解時間を短縮できなくなるおそれがある。なお、C90が比較的低くても、C70およびC50の値が高いと、溶解性を有効に向上し易いようである。 When the percentages of particles with a circularity of 50% or more, 70% or more, and 90% or more are respectively designated as C50, C70, and C90, for example, C50 may be about 90% by volume or more relative to the entire particles, and C70 may be about 70% by volume or more relative to the entire particles; preferably C50 may be about 95% by volume or more relative to the entire particles, and C70 may be about 80% by volume or more relative to the entire particles; more preferably C50 may be about 95% by volume or more relative to the entire particles, C70 may be about 80% by volume or more relative to the entire particles, and C90 may be about 15% by volume or more relative to the entire particles. If the percentage of particles with low circularity is too high, it may not be possible to shorten the dissolution time. It should be noted that even if C90 is relatively low, if the values of C70 and C50 are high, it seems that solubility can be effectively improved.

CMCまたはその塩の平均置換度(エーテル化度またはDS)は、例えば0.1~3(例えば0.3~2.5)程度の範囲から選択でき、好ましくは0.4~2(例えば0.5~1.5)、さらに好ましくは0.6~1.3(例えば0.7~1.2)、特に0.8~1.1(例えば0.85~1、好ましくは0.85~0.95)程度であってもよい。置換度が低すぎると溶解性または即溶性が低下するおそれがあり、置換度が高すぎると水溶性部分が多くなりママコは生じ難くなるものの、電極材料として用いる場合に、活物質との疎水性相互作用を生じ難くなるため、塗膜強度が低下するおそれがある。なお、本明細書および特許請求の範囲において、平均置換度(エーテル化度)は、下記記載の方法により測定できる。 The average degree of substitution (degree of etherification or DS) of CMC or its salt can be selected from the range of, for example, about 0.1 to 3 (for example, 0.3 to 2.5), preferably about 0.4 to 2 (for example, 0.5 to 1.5), more preferably about 0.6 to 1.3 (for example, 0.7 to 1.2), and particularly about 0.8 to 1.1 (for example, 0.85 to 1, preferably 0.85 to 0.95). If the degree of substitution is too low, the solubility or immediate solubility may decrease, and if the degree of substitution is too high, the water-soluble portion increases and it is difficult to form mamako, but when used as an electrode material, it is difficult to form hydrophobic interactions with the active material, and the coating strength may decrease. In this specification and claims, the average degree of substitution (degree of etherification) can be measured by the method described below.

試料1.000gを精秤し、磁製るつぼに入れ、炭化後、630℃で完全に灰化し、室温で放冷する(1)。ビーカーにイオン交換水約250mLおよび0.05mol/L硫酸40mLを精密にはかって加える(2)。前記(2)に前記(1)を入れ、ゆるくふたをして30分間煮沸後、冷水中で冷却する。冷却後、フェノールフタレイン溶液を5滴加え、0.1mol/L水酸化ナトリウム水溶液により中和滴定する。同様の方法で空試験を行い、下記式によりエーテル化度を算出する。 1.000 g of sample is weighed out precisely and placed in a porcelain crucible. After carbonization, it is completely incinerated at 630°C and allowed to cool at room temperature (1). Approximately 250 mL of ion-exchanged water and 40 mL of 0.05 mol/L sulfuric acid are precisely weighed and added to a beaker (2). (1) is added to (2), loosely covered, boiled for 30 minutes, and then cooled in cold water. After cooling, 5 drops of phenolphthalein solution are added and neutralized by titration with 0.1 mol/L sodium hydroxide aqueous solution. A blank test is performed in the same manner, and the degree of etherification is calculated using the following formula.

エーテル化度=162×A/(10000-80×A
[式中、Aは、乾燥物換算した試料1g中の結合アルカリに消費された0.05mol/L硫酸消費量(mL)であり、下記式で表される。
=(B-S)×F/(W×(1-M/100))-アルカリ度
(式中、Bは空試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Sは実試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Wは試料量(g)であり、Mは試料の乾燥減量(質量%)であり、Fは0.1mol/L水酸化ナトリウム水溶液のファクターである)]。
Degree of etherification=162×A 1 /(10000−80×A 1 )
[In the formula, A 1 is the amount (mL) of 0.05 mol/L sulfuric acid consumed by the bound alkali in 1 g of sample calculated as a dry matter, and is represented by the following formula.
A 1 = (B 1 - S 1 ) × F 1 / (W 1 × (1 - M 1 / 100)) - alkalinity (wherein B 1 is the amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution consumed in the blank test, S 1 is the amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution consumed in the actual test, W 1 is the amount of sample (g), M 1 is the drying loss of the sample (mass %), and F 1 is the factor of the 0.1 mol/L sodium hydroxide aqueous solution).

なお、前記乾燥減量は、JIS P 8203:2010 (ISO 638:2008),「紙,板紙及びパルプ-絶乾率の測定方法-乾燥器による方法」に準じて測定した。
また、前記アルカリ度は、下記記載の方法により測定できる。
The loss on drying was measured in accordance with JIS P 8203:2010 (ISO 638:2008), "Paper, paperboard and pulp - Determination of absolute dryness - Dryer method."
The alkalinity can be measured by the method described below.

イオン交換水約250mLをビーカーに入れ、精秤した試料1.000gを撹拌しながら少量ずつ加えて溶解後、0.05mol/L硫酸5mLを加える。ゆるくふたをして10分間煮沸後、冷水中で冷却する。冷却後、フェノールフタレイン溶液を5滴加え、0.1mol/L水酸化ナトリウム水溶液により中和滴定する。同様の方法で空試験を行い、下記式によりアルカリ度を算出する。 Place approximately 250 mL of ion-exchanged water in a beaker, add 1.000 g of precisely weighed sample little by little while stirring until dissolved, then add 5 mL of 0.05 mol/L sulfuric acid. Cover loosely and boil for 10 minutes, then cool in cold water. After cooling, add 5 drops of phenolphthalein solution and neutralize with 0.1 mol/L sodium hydroxide aqueous solution. Perform a blank test in the same way, and calculate the alkalinity using the following formula.

アルカリ度=(B-S)×F/(W×(1-M/100))
(式中、Bは空試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Sは実試験に要した0.1mol/L水酸化ナトリウム水溶液の消費量(mL)であり、Wは試料量(g)であり、Mは試料の乾燥減量(質量%)であり、Fは0.1mol/L水酸化ナトリウム水溶液のファクターである)。
Alkalinity = (B 2 - S 2 ) x F 2 / (W 2 x (1 - M 2 / 100))
(In the formula, B2 is the consumption amount (mL) of 0.1 mol/L aqueous sodium hydroxide solution required in the blank test, S2 is the consumption amount (mL) of 0.1 mol/L aqueous sodium hydroxide solution required in the actual test, W2 is the sample weight (g), M2 is the drying loss of the sample (mass %), and F2 is the factor of the 0.1 mol/L aqueous sodium hydroxide solution.)

なお、前記乾燥減量は、前記平均置換度の項に記載の方法と同様にして測定できる。 The loss on drying can be measured in the same manner as described in the section on average degree of substitution.

CMCの塩としては、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩などのアルカリ土類金属塩、アンモニウム塩などが挙げられる。これらの塩は、単独でまたは2種以上組み合わせて含んでいてもよい。これらの塩のうち、通常、ナトリウム塩またはアンモニウム塩であることが多く、ナトリウム塩が好ましい。なお、CMCまたはその塩は、それぞれ組み合わせて含んでいてもよいが、通常、CMCの塩(好ましくはCMC-Na)を単独で用いることが多い。 Examples of salts of CMC include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, and ammonium salt. These salts may be used alone or in combination of two or more. Of these salts, sodium salt or ammonium salt is usually used, and sodium salt is preferred. Note that CMC or its salts may be used in combination, but usually, a salt of CMC (preferably CMC-Na) is used alone.

CMCまたはその塩の1質量%水溶液の温度25℃における粘度は、用途などに応じて、例えば10~20000mPa・s(例えば100~15000mPa・s)程度の範囲から選択してもよく、例えば1000~10000mPa・s(例えば1100~8000mPa・s)、好ましくは1200~6000mPa・s(例えば1300~5000mPa・s)、さらに好ましくは1400~4000mPa・s(例えば1500~3000mPa・s)、特に1600~2000mPa・s(例えば1700~1900mPa・s)程度であってもよい。粘度が低すぎると、特に電極材料などの用途では利用できなくなるおそれがある。 The viscosity of a 1% by mass aqueous solution of CMC or its salt at a temperature of 25°C may be selected from a range of, for example, about 10 to 20,000 mPa·s (for example, 100 to 15,000 mPa·s) depending on the application, and may be, for example, about 1,000 to 10,000 mPa·s (for example, 1,100 to 8,000 mPa·s), preferably about 1,200 to 6,000 mPa·s (for example, 1,300 to 5,000 mPa·s), more preferably about 1,400 to 4,000 mPa·s (for example, 1,500 to 3,000 mPa·s), and particularly about 1,600 to 2,000 mPa·s (for example, 1,700 to 1,900 mPa·s). If the viscosity is too low, it may not be usable, particularly for applications such as electrode materials.

例えば、リチウムイオン電池の負極材(増粘剤、分散安定剤、結合剤(結着剤またはバインダー)など)として利用する場合、CMCまたはその塩自体は抵抗体となるため、多量に添加すると電池性能が低下することから、少ない添加量であっても所望の機能(増粘効果など)を発揮できるよう高粘度品が求められている。その一方で、生産性向上の観点からは、製品不良の原因となる未溶解物(ママコなど)が少なく、かつ短時間で素早く溶解可能なCMCまたはその塩が求められている。しかし、水溶液における粘度が高いほど、ママコが生じ易く溶解時間は長くなるため、これらの特性はトレードオフの関係にあり、全てを充足するのは困難であった。本発明のCMCまたはその塩は、水溶液における粘度が高くても、ママコの発生を抑制して溶解時間を有効に短縮できるため、電極材料(増粘剤、分散安定剤および/または結合剤など)として好適に利用できる。 For example, when used as a negative electrode material (such as a thickener, dispersion stabilizer, or binder (binding agent or binder)) for lithium ion batteries, CMC or its salt itself becomes a resistor, and adding a large amount of it reduces battery performance, so a high-viscosity product is required so that it can exert the desired function (such as a thickening effect) even when added in a small amount. On the other hand, from the viewpoint of improving productivity, CMC or its salt is required to have less undissolved matter (such as 'mako') that causes product defects and can be dissolved quickly in a short time. However, the higher the viscosity in the aqueous solution, the more likely it is that 'mako' will occur and the longer the dissolution time will be, so these characteristics are in a trade-off relationship, and it has been difficult to satisfy all of them. The CMC or its salt of the present invention can be suitably used as an electrode material (such as a thickener, dispersion stabilizer, and/or binder) because it can effectively shorten the dissolution time by suppressing the occurrence of 'mako' even when the viscosity is high in the aqueous solution.

なお、本明細書および特許請求の範囲において、粘度は、下記記載の方法により測定できる。 In this specification and claims, viscosity can be measured by the method described below.

イオン交換水100mLを粘度測定用溶解瓶(以下、「粘度瓶」という)に取り、別途精秤した試料(2.50 × X)gをママコ状にならないように少量ずつ加え、ガラス棒で軽く押しつぶす。充分膨潤した後、下記式により求めたイオン交換水補正追加水量V(mL)を追加し、ガラス棒で時々撹拌しながら完全に溶解する。溶解後、減圧脱泡し、液温が25℃になるまで粘度瓶を恒温水槽中に置き、試料溶液を均一に撹拌後、B型粘度計により60rpmで測定する。 100 mL of ion-exchanged water is placed in a dissolution bottle for viscosity measurement (hereinafter referred to as "viscosity bottle"), and a separately weighed sample (2.50 x X 3 ) g is added little by little so as not to form lumps, and lightly crushed with a glass rod. After sufficient swelling, the amount of additional water V 3 (mL) corrected for ion-exchanged water calculated by the following formula is added, and completely dissolved while stirring occasionally with a glass rod. After dissolution, the solution is degassed under reduced pressure, and the viscosity bottle is placed in a thermostatic water bath until the liquid temperature reaches 25°C, and the sample solution is stirred uniformly, and then measured at 60 rpm with a B-type viscometer.

粘度(mPa・s)=目盛りの読み×換算係数
=2.5×(100-X-M)-100
(式中、Vはイオン交換水補正追加水量(mL)であり、Xは測定濃度(質量%)であり、Mは試料乾燥減量(質量%)である)。
Viscosity (mPa·s) = scale reading × conversion factor V 3 = 2.5 × (100 - X 3 - M 3 ) - 100
(In the formula, V3 is the amount of water added (mL) corrected for ion-exchanged water, X3 is the measured concentration (mass%), and M3 is the sample drying loss (mass%).

なお、前記乾燥減量は、前記平均置換度の項に記載の方法と同様にして測定できる。 The loss on drying can be measured in the same manner as described in the section on average degree of substitution.

CMCまたはその塩の0.8質量%水溶液を調製する際の溶解時間は、温度25℃、攪拌速度300rpmにおいて、例えば10分以下(例えば10秒~8分)、好ましくは6分以下(例えば30秒~5分)、さらに好ましくは4分以下(例えば1~3分)、特に3分以下(例えば1.5~2.5分)程度であってもよい。なお、本明細書および特許請求の範囲において、溶解時間は後述の実施例に記載の方法により測定できる。 The dissolution time when preparing a 0.8% by mass aqueous solution of CMC or a salt thereof may be, at a temperature of 25°C and a stirring speed of 300 rpm, for example, 10 minutes or less (e.g., 10 seconds to 8 minutes), preferably 6 minutes or less (e.g., 30 seconds to 5 minutes), more preferably 4 minutes or less (e.g., 1 to 3 minutes), and particularly 3 minutes or less (e.g., 1.5 to 2.5 minutes). In this specification and claims, the dissolution time can be measured by the method described in the Examples below.

[製造方法]
本発明のCMCまたはその塩の製造方法は特に制限されない。通常、CMCまたはその塩を造粒する造粒工程を少なくとも含んでいることが多い。
[Production method]
The method for producing CMC or a salt thereof of the present invention is not particularly limited. Usually, the method includes at least a granulation step of granulating CMC or a salt thereof.

(造粒工程)
造粒工程で用いるCMCまたはその塩は、市販品などを利用でき、通常、微小粉体状および/または繊維状に形成されていることが多い。
(Granulation process)
The CMC or a salt thereof used in the granulation step can be a commercially available product, and is usually formed into a fine powder and/or fiber form.

造粒方法は、慣用の造粒方法、例えば、転動造粒、流動層造粒、攪拌造粒(混合・攪拌造粒)、解砕または破砕造粒(解砕・破砕造粒)、圧縮造粒(圧縮成形造粒)、押出し造粒、噴射造粒(溶融造粒)、噴霧乾燥造粒などの方法を利用できる。また、造粒方法は、乾式法であってもよいが、通常、湿式法であることが多い。これらの造粒方法のうち、攪拌造粒がよく利用される。なお、造粒は、常圧下、減圧下または加圧下で行ってもよい。 The granulation method may be a conventional granulation method, such as rolling granulation, fluidized bed granulation, stirring granulation (mixing and stirring granulation), crushing or crushing granulation (crushing and crushing granulation), compression granulation (compression molding granulation), extrusion granulation, spray granulation (melt granulation), or spray drying granulation. The granulation method may be a dry method, but is usually a wet method. Of these granulation methods, stirring granulation is often used. Granulation may be performed under normal pressure, reduced pressure, or increased pressure.

CMCまたはその塩には、造粒方法などに応じて結合剤を添加してもよい。結合剤は、有機溶媒であってもよいが、通常、水(例えば、純水など)であることが多い。例えば、攪拌造粒では、造粒機(または攪拌機)でCMCまたはその塩を攪拌しつつ、結合剤としての水(例えば、純水)をスプレー噴霧してもよい。 A binder may be added to CMC or its salt depending on the granulation method. The binder may be an organic solvent, but is usually water (e.g., pure water, etc.). For example, in agitation granulation, water (e.g., pure water) as a binder may be sprayed while agitating CMC or its salt in a granulator (or agitator).

結合剤(特に水)の噴霧量は、CMCまたはその塩100質量部に対して、例えば10~1000質量部(例えば30~800質量部)、好ましくは50~500質量部(例えば60~300質量部)、さらに好ましくは70~200質量部(例えば80~100質量部)程度であってもよい。 The amount of binder (especially water) sprayed may be, for example, about 10 to 1000 parts by mass (e.g., 30 to 800 parts by mass), preferably about 50 to 500 parts by mass (e.g., 60 to 300 parts by mass), and more preferably about 70 to 200 parts by mass (e.g., 80 to 100 parts by mass) per 100 parts by mass of CMC or its salt.

(乾燥工程)
造粒工程で得られた粒状のCMCまたはその塩は、乾燥工程で乾燥して結合剤(特に水)の残存量を調整することが多い。乾燥方法は、自然乾燥であってもよく、加熱および/または減圧して乾燥してもよい。通常、加熱して乾燥することが多く、加熱温度は、例えば50~200℃(例えば60~150℃)、好ましくは70~100℃(例えば80~90℃)程度であってもよい。
(Drying process)
The granular CMC or its salt obtained in the granulation step is often dried in a drying step to adjust the amount of remaining binder (especially water). The drying method may be natural drying, or drying under heating and/or reduced pressure. Usually, drying is often performed by heating, and the heating temperature may be, for example, about 50 to 200°C (e.g., 60 to 150°C), preferably about 70 to 100°C (e.g., 80 to 90°C).

結合剤の残存量は、乾燥後の粒状CMCまたはその塩全体に対して、例えば30質量%以下(例えば20質量%以下)程度であってもよく、好ましくは15質量%以下(例えば10質量%以下)、さらに好ましくは5質量%以下(例えば1質量%以下)程度に調整してもよい。 The amount of remaining binder may be, for example, about 30% by mass or less (e.g., 20% by mass or less) relative to the total amount of granular CMC or its salt after drying, and may be adjusted to preferably about 15% by mass or less (e.g., 10% by mass or less), and more preferably about 5% by mass or less (e.g., 1% by mass or less).

(粉砕工程)
乾燥後、得られたCMCまたはその塩は、必要に応じて、粉砕工程で粉砕することにより粒径を調整してもよい。粉砕は、慣用の粉砕機、例えば、ロールクラッシャー、コーンクラッシャー、カッターミル、スタンプミル、自生粉砕機、石臼型粉砕機、乳鉢、らいかい機、リングミルなどの数百μm程度に粉砕可能な粉砕機(または中砕機);ローラーミル、ジェットミル、高速回転ミル(ハンマーミル、ピンミルなど)、容器駆動型粉砕機(ボールミル、チューブミル、ロッドミルなどの回転ミル、振動ミル、遊星ミルなど)、媒体攪拌型粉砕機(アトライター、ビーズミルなど)などの数百μm以下にまで粉砕可能な粉砕機(微粉砕機または超微粉砕機)などを利用できる。これらの粉砕機は、単独でまたは2種以上組み合わせて使用することもできる。これらの粉砕機のうち、カッターミルなどの中砕機がよく利用される。
(Crushing process)
After drying, the obtained CMC or its salt may be pulverized in a pulverization step to adjust the particle size, if necessary. For pulverization, a conventional pulverizer, such as a roll crusher, a cone crusher, a cutter mill, a stamp mill, an autogenous pulverizer, a stone mill, a mortar, a mortar mill, a ring mill, or the like, capable of pulverizing to about several hundred μm (or a medium pulverizer); a roller mill, a jet mill, a high-speed rotary mill (hammer mill, pin mill, etc.), a container-driven pulverizer (a ball mill, a tube mill, a rod mill, or the like, a vibration mill, a planetary mill, etc.), a media-agitation pulverizer (attritor, bead mill, etc.), or the like, capable of pulverizing to several hundred μm or less (a fine pulverizer or an ultrafine pulverizer), may be used. These pulverizers may be used alone or in combination of two or more. Among these pulverizers, a medium pulverizer such as a cutter mill is often used.

カッターミルを用いる場合、回転速度は、例えば100~1000000rpm(例えば1000~100000rpm)、好ましくは5000~50000rpm(例えば10000~30000rpm)、さらに好ましくは15000~25000rpm程度であってもよい。 When a cutter mill is used, the rotation speed may be, for example, 100 to 1,000,000 rpm (e.g., 1,000 to 100,000 rpm), preferably 5,000 to 50,000 rpm (e.g., 10,000 to 30,000 rpm), and more preferably about 15,000 to 25,000 rpm.

粉砕時間は、粉砕機の種類などに応じて選択してもよく、例えば10秒~1時間(例えば30秒~30分)、好ましくは1~10分(例えば、1~3分)程度であってもよい。 The grinding time may be selected depending on the type of grinder, and may be, for example, 10 seconds to 1 hour (e.g., 30 seconds to 30 minutes), preferably 1 to 10 minutes (e.g., 1 to 3 minutes).

(分級工程)
得られた粒状のCMCまたはその塩は、分級工程で分級(または篩分)して、所望の粒度(および真円度)に調整することが多い。分級方法は慣用の方法、例えば、流体力学の原理を利用した分級[乾式分級(重力分級、慣性分級、遠心分級など)、湿式分級(沈降分級、機械的分級、水力分級、遠心分級)など]、ふるい分けなどが挙げられる。これらの分級方法は、単独でまたは2種以上組み合わせて使用することもできる。これらのうち、通常、ふるい分けで分級することが多い。
(Classification process)
The obtained granular CMC or its salt is often classified (or sieved) in a classification step to adjust to a desired particle size (and roundness). Classification methods include conventional methods, such as classification using the principles of fluid mechanics [dry classification (gravity classification, inertia classification, centrifugal classification, etc.), wet classification (sedimentation classification, mechanical classification, hydraulic classification, centrifugal classification, etc.)], sieving, etc. These classification methods can be used alone or in combination of two or more. Of these, classification is usually performed by sieving.

ふるい分けで分級する場合、通常、目開きの異なる複数のふるいのうち、目開きが最も小さなふるいの上に、目開きが順次に大きくなるようふるいを積み重ねて造粒したCMCまたはその塩を分級する。ふるい分けで分取する粒子は、目開きが、例えば500μm、好ましくは400μm、より好ましくは300μm、さらに好ましくは200μm、特に好ましくは180μm程度のふるいを通過し、かつ目開きが、例えば90μm、好ましくは100μm程度のふるいを通過しない粒子であってもよい。 When classifying by sieving, the granulated CMC or its salt is usually classified by stacking successively larger mesh sizes of sieves, starting with the smallest mesh size among multiple sieves with different mesh sizes. The particles separated by sieving may be particles that pass through a sieve with a mesh size of, for example, about 500 μm, preferably 400 μm, more preferably 300 μm, even more preferably 200 μm, and particularly preferably about 180 μm, but do not pass through a sieve with a mesh size of, for example, about 90 μm, preferably about 100 μm.

このようにして、本発明のCMCまたはその塩を調製することができる。なお、本発明は、CMCまたはその塩の粒度分布(および真円度)を前記方法により所定の範囲に調整して、水に対する溶解性を向上する方法も包含する。 In this manner, the CMC or salt thereof of the present invention can be prepared. The present invention also includes a method for improving the solubility in water by adjusting the particle size distribution (and circularity) of the CMC or salt thereof to a predetermined range by the above-mentioned method.

[水性組成物およびその製造方法]
本発明は、前記CMCまたはその塩と水とを含む水性組成物(液状、スラリー状またはペースト状組成物)も包含する。水性組成物において、CMCまたはその塩と水との総量に対するCMCまたはその塩の割合は、例えば0.01~10質量%(例えば0.1~5質量%)、好ましくは0.3~2質量%(例えば0.5~1.5質量%)、さらに好ましくは0.6~1質量%(例えば0.7~0.9質量%)程度であってもよい。
[Aqueous composition and method for producing same]
The present invention also includes an aqueous composition (liquid, slurry or paste composition) containing the CMC or its salt and water. In the aqueous composition, the ratio of CMC or its salt to the total amount of CMC or its salt and water may be, for example, about 0.01 to 10% by mass (e.g., 0.1 to 5% by mass), preferably about 0.3 to 2% by mass (e.g., 0.5 to 1.5% by mass), and more preferably about 0.6 to 1% by mass (e.g., 0.7 to 0.9% by mass).

水は、通常、純水であることが多い。また、水性組成物のpHは酸性であってもよいが、通常、中性またはアルカリ性(特に中性)であることが多い。 The water is usually pure water. The pH of the aqueous composition may be acidic, but is usually neutral or alkaline (especially neutral).

水性組成物は、CMCまたはその塩および水とは異なる他の成分を含んでいてもよい。例えば、CMCまたはその塩を電極材料(増粘剤および/または分散安定剤など)として利用する場合、水性組成物は、活物質(例えば、天然黒鉛、人造黒鉛、ハードカーボン、MCMB(メソフェーズ小球体)などの炭素材料、チタン酸リチウムなど)、バインダー(スチレンブタジエンコポリマーなど)などの他の電極材料を含んでいてもよい。 The aqueous composition may contain other components different from CMC or its salt and water. For example, when CMC or its salt is used as an electrode material (such as a thickener and/or dispersion stabilizer), the aqueous composition may contain other electrode materials such as active materials (e.g., carbon materials such as natural graphite, artificial graphite, hard carbon, MCMB (mesophase microspheres), lithium titanate, etc.), binders (such as styrene butadiene copolymers), etc.).

前記水性組成物は、前記CMCまたはその塩と、前記水と、必要に応じて前記他の成分とを混合して調製できる。混合する順序や方法などは特に制限されないが、ママコの生成を有効に抑制する観点から、攪拌機などを用いて水を攪拌しながら、CMCまたはその塩を添加(特に、ゆっくり添加または少量ずつ添加)するのが好ましい。 The aqueous composition can be prepared by mixing the CMC or its salt, the water, and, if necessary, the other components. There are no particular limitations on the order or method of mixing, but from the viewpoint of effectively suppressing the formation of mamaco, it is preferable to add the CMC or its salt (particularly slowly or in small amounts) while stirring the water using a stirrer or the like.

CMCまたはその塩を水に添加する際の攪拌速度(攪拌子または攪拌翼の回転速度)は、例えば10~2000rpm(例えば100~1500rpm)、好ましくは500~1000rpm(例えば600~900rpm)、さらに好ましくは650~850rpm(例えば700~800rpm)程度であってもよい。また、CMCまたはその塩の添加終了後、通常、溶解が完了(または攪拌トルクが安定)するまで攪拌することが多い。添加終了後の攪拌速度は、添加する際の攪拌速度と同等以上であってもよいが、ゆっくり攪拌してもよく、例えば10~1000rpm(例えば50~800rpm)、好ましくは100~500rpm(例えば150~450rpm)、さらに好ましくは200~400rpm(例えば250~350rpm)程度であってもよい。本発明では緩やかに攪拌しても、溶解時間を有効に短縮できる。 The stirring speed (rotation speed of the stirrer or impeller) when CMC or its salt is added to water may be, for example, about 10 to 2000 rpm (for example, 100 to 1500 rpm), preferably about 500 to 1000 rpm (for example, 600 to 900 rpm), and more preferably about 650 to 850 rpm (for example, 700 to 800 rpm). After the addition of CMC or its salt is completed, stirring is usually continued until dissolution is completed (or the stirring torque becomes stable). The stirring speed after the addition may be equal to or higher than the stirring speed during addition, but may also be slow, for example, about 10 to 1000 rpm (for example, 50 to 800 rpm), preferably about 100 to 500 rpm (for example, 150 to 450 rpm), and more preferably about 200 to 400 rpm (for example, 250 to 350 rpm). In the present invention, even if the stirring is slow, the dissolution time can be effectively shortened.

また、攪拌機の撹拌翼の形状は、例えば、タービン翼(例えば、エッジドタービン翼、平または傾斜タービン翼(ファンタービン翼、ディスクタービン翼など)など)、パドル翼(例えば、平パドル翼、傾斜パドル翼など)、プロペラ翼、ファウドラー翼、アンカー翼(例えば、ゲート翼など)、リボン翼(またはヘリカルリボン翼)(例えば、ダブルリボン翼などの多条リボン翼、シングルリボン翼など)などが挙げられる。これらの撹拌翼は、単独でまたは2種以上組み合わせて使用することもできる。これらの撹拌翼のうち、リボン翼が好ましい。 The shape of the impeller of the agitator may be, for example, a turbine impeller (e.g., an edged turbine impeller, a flat or inclined turbine impeller (e.g., a fan turbine impeller, a disk turbine impeller, etc.)), a paddle impeller (e.g., a flat paddle impeller, an inclined paddle impeller), a propeller impeller, a Pfaudle impeller, an anchor impeller (e.g., a gate impeller), a ribbon impeller (or a helical ribbon impeller) (e.g., a multi-strand ribbon impeller such as a double ribbon impeller, a single ribbon impeller, etc.). These impellers may be used alone or in combination of two or more kinds. Of these impellers, the ribbon impeller is preferred.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

[原料]
CMC-Na:カルボキシメチルセルロースナトリウム塩、ダイセルファインケム(株)製「CMCダイセル 品番2200」、エーテル化度(DS)=0.90、1質量%水溶液粘度(25℃、60rpm)=1800mPa・s。
[material]
CMC-Na: carboxymethylcellulose sodium salt, "CMC Daicel Product No. 2200" manufactured by Daicel FineChem Co., Ltd., degree of etherification (DS) = 0.90, viscosity of 1% by mass aqueous solution (25°C, 60 rpm) = 1800 mPa·s.

[評価方法]
(溶解時間)
Φ55mm、深さ130mmのシリンダー状ガラス容器に純水220gを計量し、恒温槽で25℃に調温し、トルクメーター(新東科学(株)製「ロータリートルクメーター TYPE YT」)およびヘリカルリボン型攪拌翼を備えた攪拌機(新東科学(株)製「スリーワンモーターBL1200」)を前記シリンダー状ガラス容器に取り付けた。なお、前記ヘリカルリボン型撹拌翼は、リボン幅:3mm、高さ:80mm、幅(回転軸に対する垂直方向の幅):40mm、翼の数:シングル、リボンの螺旋回数:3回(高さ方向に80mmでリボンが3周する形状)であった。純水を750rpmで攪拌しながら、0.8質量%分量(約1.77g)のサンプルを5~10秒かけてゆっくりと添加した。添加後、直ちに攪拌速度を300rpmに変更して時間を測定開始し、トルク値が所定の値で安定するまでにかかった時間を溶解時間とした。なお、最大トルク達成率は、前記所定の値で安定したトルク値を基準(100%)として、このトルク値に対する割合として算出した。
[Evaluation method]
(Dissolution time)
220 g of pure water was weighed into a cylindrical glass container with a diameter of 55 mm and a depth of 130 mm, and the temperature was adjusted to 25° C. in a thermostatic bath. A torque meter ("Rotary Torque Meter TYPE YT" manufactured by Shinto Scientific Co., Ltd.) and a stirrer equipped with a helical ribbon-type stirring blade ("Three-One Motor BL1200" manufactured by Shinto Scientific Co., Ltd.) were attached to the cylindrical glass container. The helical ribbon-type stirring blade had a ribbon width of 3 mm, a height of 80 mm, a width (width perpendicular to the rotation axis): 40 mm, a number of blades: single, and a number of spiral turns of the ribbon: 3 times (a shape in which the ribbon turns three times at a height of 80 mm). While stirring the pure water at 750 rpm, a 0.8% by mass amount (about 1.77 g) of the sample was slowly added over 5 to 10 seconds. After the addition, the stirring speed was immediately changed to 300 rpm and the time measurement was started, and the time it took for the torque value to stabilize at a predetermined value was taken as the dissolution time. The maximum torque achievement rate was calculated as a percentage of the torque value stabilized at the above-mentioned predetermined value, which was taken as the reference (100%).

(粒度分布および真円度)
Malvern社製「morphologiG3」を使用して、得られたサンプルの粒度分布および真円度の分布を測定し、粒度分布からD10、D50およびD90を算出し、真円度の分布から真円度50%以上、70%以上および90%以上の粒子の各割合を算出した。なお、サンプル数はN=5000個の任意の粒子を統計処理した。また粒度分布は体積基準の分布であり、真円度の分布は体積基準の分布である。
(Particle size distribution and circularity)
Using Malvern's "morphologiG3", the particle size distribution and circularity distribution of the obtained samples were measured, D10, D50 and D90 were calculated from the particle size distribution, and the respective percentages of particles with circularity of 50% or more, 70% or more and 90% or more were calculated from the circularity distribution. The number of samples was N=5000, and a statistical analysis was performed on any particles. The particle size distribution was a volume-based distribution, and the circularity distribution was a volume-based distribution.

なお、真円度は、以下のようにして算出される。 Circularity is calculated as follows:

真円度[%]=4π×A/P ×100
(式中、πは円周率を示し、Aは粒子の面積(投影面積)を示し、Pは粒子の周囲長を示す。)
Circularity [%] = 4π × A/P 2 × 100
(In the formula, π represents the circular constant, A represents the area (projected area) of the particle, and P represents the perimeter of the particle.)

[実施例1~2および参考例1~3]
(造粒CMC-Naの作製)
CMC-Na 200gを造粒機((株)東芝製「餅つき機AFC-283」)に入れた後、攪拌しながら純水をスプレー噴霧器((株)フルプラ製「No.503」)を用いてスプレーノズル部を最も絞った状態にして5秒に1回レバーを引いてスプレー噴霧した。なお、純水は、CMC-Na量に対して90質量%(180g)となるように添加した。85℃でCMC-Naと純水との総量に対する純水量(水分量)が10質量%以下になるまで、全排気型乾燥機(エスペック(株)製「SPH-301S」)を用いて85℃で乾燥させた。乾燥後、得られた試料を大阪ケミカル(株)製「Force Mill」を用いて2分間粉砕した。
[Examples 1 to 2 and Reference Examples 1 to 3]
(Preparation of granulated CMC-Na)
After 200 g of CMC-Na was placed in a granulator (Toshiba Corporation's "Mochitsuki Machine AFC-283"), pure water was sprayed while stirring using a spray sprayer (Fulpura Corporation's "No. 503") with the spray nozzle fully throttled and the lever pulled once every 5 seconds. The pure water was added so that the amount was 90% by mass (180 g) relative to the amount of CMC-Na. The mixture was dried at 85°C using a total exhaust dryer (Espec Corporation's "SPH-301S") until the amount of pure water (moisture content) relative to the total amount of CMC-Na and pure water was 10% by mass or less at 85°C. After drying, the obtained sample was pulverized for 2 minutes using Osaka Chemical Corporation's "Force Mill".

(造粒CMC-Naの分級)
受け皿の上に、330、166、83、30および16メッシュのふるい(JIS規格試験用ふるい(JIS Z 8801))を、目開きが小さいふるいから順に(前記記載の順に)重ねた。造粒した試料を最上部のふるい(16メッシュのふるい)に添加して蓋をしめ、(株)ダルトン製「マイクロシフター300」で5分間振動をかけ、ふるいわけを行った。分級したCMC-Naを、表2に記載のように実施例1~2および参考例1~3の評価用サンプルとして取り出し、評価した。
(Classification of granulated CMC-Na)
Sieves of 330, 166, 83, 30 and 16 mesh (JIS standard test sieves (JIS Z 8801)) were stacked on a tray in order of the sieve with the smallest mesh size (in the order described above). The granulated sample was added to the top sieve (16 mesh sieve), the lid was closed, and the sieve was subjected to vibration for 5 minutes using a "Microsifter 300" manufactured by Dalton Co., Ltd., for sieving. The classified CMC-Na was taken out as evaluation samples for Examples 1 and 2 and Reference Examples 1 to 3 as shown in Table 2, and evaluated.

[比較例1]
CMC-Naを造粒および分級することなく評価した。
[Comparative Example 1]
CMC-Na was evaluated without granulation or sieving.

用いたふるいのメッシュと目開きとの関係を表1に示し、評価結果を表2および図1~3に示す。なお、表2において、「pass」および「on」は、ふるいを通過したまたは通過しなかったことをそれぞれ示すため、例えば、実施例1の「30メッシュpass83メッシュon品」は、30メッシュのふるいを通過し、かつ83メッシュのふるいを通過しなかったCMC-Naであることを意味する。また、図2~3記載の「実施例1+実施例2(合体)」は、実施例1および2で得られたCMC-Naを混合(すなわち、30メッシュpass166メッシュon品)して測定した結果を示す。 The relationship between the mesh and the opening of the sieve used is shown in Table 1, and the evaluation results are shown in Table 2 and Figures 1 to 3. In Table 2, "pass" and "on" respectively indicate that the sieve was passed or not passed, so for example, "30 mesh pass, 83 mesh on product" in Example 1 means that the CMC-Na passed a 30 mesh sieve and did not pass an 83 mesh sieve. Also, "Example 1 + Example 2 (combined)" in Figures 2 to 3 shows the results of measuring a mixture of the CMC-Na obtained in Examples 1 and 2 (i.e., 30 mesh pass, 166 mesh on product).

Figure 0007481812000001
Figure 0007481812000001

Figure 0007481812000002
Figure 0007481812000002

表2および図1~3から明らかなように、実施例1~2に比べて小さ過ぎる粒子を含む比較例1および参考例3、または大き過ぎる粒子を含む参考例1では、ママコが発生し易く溶解に時間がかかったのに対して、実施例1~2および参考例2では、比較例1に比べて短時間で溶解した。特に実施例1~2ではママコの発生が確認されず、比較例1に対して溶解時間を1/6以下に短縮できた。 As is clear from Table 2 and Figures 1 to 3, in Comparative Example 1 and Reference Example 3, which contain particles that are too small compared to Examples 1 and 2, and Reference Example 1, which contains particles that are too large, the particles were prone to forming lumps and took a long time to dissolve, whereas in Examples 1 and 2 and Reference Example 2, the particles dissolved in a short time compared to Comparative Example 1. In particular, in Examples 1 and 2, no lumps were observed to form, and the dissolution time was reduced to less than 1/6 of that of Comparative Example 1.

また、溶解時間が長い比較例1では、造粒していないためか綿状物の割合が多く、参考例1では造粒したものの歪な形状の粒子の割合が多いのに対して、溶解時間が短い実施例1~2では、他の例に比べて真円度が高い粒子の割合が多かった。 In addition, in Comparative Example 1, which had a long dissolution time, the proportion of cotton-like material was high, possibly because granulation was not performed, and in Reference Example 1, although granulation was performed, the proportion of particles with distorted shapes was high, whereas in Examples 1 and 2, which had a short dissolution time, the proportion of particles with high circularity was high compared to the other examples.

本発明のカルボキシメチルセルロースまたはその塩は、緩やかな攪拌であっても効率よく溶解できるため、様々な用途、例えば、医薬品(例えば、錠剤、緩下剤、飲み薬(シロップなど)、パップ剤、冷却シート、X線造影剤、義歯安定剤など)、化粧品(例えば、ヘアケア用品(シャンプー、コンディショナーなど)、スキンケア用品または基礎化粧品(ジェルなど)、染毛剤など)、日用品(例えば、練歯磨剤、芳香剤、入浴剤、水解紙など)、食品(例えば、飲料、シャーベット、生麺またはチルド麺、タレなど)、電気・電子部品[例えば、電池(リチウムイオン電池などの2次電池など)の電極(例えば、負極)材料など]、土木または建築用材料(例えば、石油または温泉ボーリング、地中連続壁・場所打ち杭(基礎杭)、泥土圧式シールド工法などの工事における調泥剤(または泥水調整剤)や加泥剤など)、サイジング剤(例えば、経糸サイジング、バックサイジングなど)、養殖用飼料、耐火煉瓦、各種スラリーの増粘剤または分散剤などに利用できる。 The carboxymethylcellulose or salt thereof of the present invention can be efficiently dissolved even with gentle stirring, and therefore can be used in a variety of applications, such as pharmaceuticals (e.g., tablets, laxatives, oral medications (syrups, etc.), poultices, cooling sheets, X-ray contrast agents, denture adhesives, etc.), cosmetics (e.g., hair care products (shampoos, conditioners, etc.), skin care products or basic cosmetics (gels, etc.), hair dyes, etc.), daily necessities (e.g., toothpaste, air fresheners, bath additives, water-dissolvable paper, etc.), foods (e.g., beverages, sherbets, It can be used in raw or chilled noodles, sauces, etc.), electrical and electronic components [for example, electrode (e.g., negative electrode) materials for batteries (secondary batteries such as lithium ion batteries)], civil engineering or construction materials (for example, mud adjustment agents (or mud water adjustment agents) or mud addition agents in construction such as oil or hot spring boring, underground diaphragm walls and cast-in-place piles (foundation piles), and mud pressure shield construction), sizing agents (for example, warp sizing, back sizing), aquaculture feed, firebricks, and thickening or dispersing agents for various slurries.

特に、本発明のカルボキシメチルセルロースまたはその塩は分子量が大きくても(または溶液状態における粘度が高くても)短時間で溶解可能なため、例えば、2次電池など電池の電極を形成するための電極材料(または添加剤)[例えば、増粘剤、分散剤(分散安定剤または安定化剤)、流動化剤、結合剤(またはバインダー)、懸濁剤など]、特にリチウムイオン電池の負極材料(例えば、増粘剤、分散剤および/または結合剤)として有効に利用できる。 In particular, since the carboxymethylcellulose or its salt of the present invention can be dissolved in a short time even if it has a large molecular weight (or a high viscosity in a solution state), it can be effectively used, for example, as an electrode material (or additive) for forming electrodes of batteries such as secondary batteries [e.g., thickener, dispersant (dispersion stabilizer or stabilizer), fluidizing agent, binding agent (or binder), suspending agent, etc.], in particular as a negative electrode material for lithium ion batteries (e.g., thickener, dispersant and/or binding agent).

Claims (7)

粒状のカルボキシメチルセルロースまたはその塩で形成された電極材料であって、粒径の体積基準の累積分布において、小粒径側から累積10%、累積50%および累積90%の粒径をそれぞれD10、D50およびD90としたとき、D10が90μm以上、D50が120~470μm、D90が500μm以下であり、
真円度50%以上の粒子の割合が、全体に対して90体積%以上であり、真円度70%以上の粒子の割合が、全体に対して70体積%以上であり、
前記真円度が、下記式により定義され、
真円度[%]=4π×A/P ×100
(式中、πは円周率を示し、Aは粒子の面積を示し、Pは粒子の周囲長を示す。)
1質量%水溶液における粘度が、温度25℃において、100~15000mPa・sであるカルボキシメチルセルロースまたはその塩で形成された電極材料。
An electrode material formed of granular carboxymethyl cellulose or a salt thereof, wherein, in a volume-based cumulative distribution of particle diameters, when the particle diameters at 10%, 50% and 90% cumulative from the smallest particle diameter side are defined as D10, D50 and D90, respectively, D10 is 90 μm or more, D50 is 120 to 470 μm and D90 is 500 μm or less,
The ratio of particles having a circularity of 50% or more to the whole particles is 90% by volume or more, and the ratio of particles having a circularity of 70% or more to the whole particles is 70% by volume or more,
The circularity is defined by the following formula:
Circularity [%] = 4π × A/P 2 × 100
(In the formula, π represents the circular constant, A represents the area of the particle, and P represents the perimeter of the particle.)
An electrode material formed from carboxymethyl cellulose or a salt thereof, the viscosity of which in a 1% by mass aqueous solution at a temperature of 25° C. is 100 to 15,000 mPa·s.
D10が100μm以上、D50が150~200μm、D90が250μm以下である請求項1記載の電極材料。 The electrode material according to claim 1, in which D10 is 100 μm or more, D50 is 150 to 200 μm, and D90 is 250 μm or less. 真円度50%以上の粒子の割合が、全体に対して95体積%以上であり、真円度70%以上の粒子の割合が、全体に対して80体積%以上である請求項1または2記載の電極材料。 An electrode material according to claim 1 or 2, in which the proportion of particles with a circularity of 50% or more is 95% or more by volume relative to the total, and the proportion of particles with a circularity of 70% or more is 80% or more by volume relative to the total. 1質量%水溶液における粘度が、温度25℃において、1500~3000mPa・sである請求項1~3のいずれかに記載の電極材料。 An electrode material according to any one of claims 1 to 3, in which the viscosity of a 1% by mass aqueous solution is 1500 to 3000 mPa·s at a temperature of 25°C. 請求項1~4のいずれかに記載の電極材料と水とを含む水性組成物。 An aqueous composition comprising the electrode material according to any one of claims 1 to 4 and water. 請求項1~4のいずれかに記載の電極材料と、水とを混合して、請求項5記載の水性組成物を製造する方法。 A method for producing the aqueous composition according to claim 5 by mixing the electrode material according to any one of claims 1 to 4 with water. カルボキシメチルセルロースまたはその塩を請求項1~3のいずれかに記載の粒状の形態に調製して、水に対する溶解性を向上する方法。 A method for improving the solubility in water by preparing carboxymethylcellulose or a salt thereof in the granular form described in any one of claims 1 to 3.
JP2019138778A 2019-07-29 2019-07-29 Carboxymethylcellulose or its salt and composition thereof Active JP7481812B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019138778A JP7481812B2 (en) 2019-07-29 2019-07-29 Carboxymethylcellulose or its salt and composition thereof
KR1020217040239A KR20220042057A (en) 2019-07-29 2020-06-01 Carboxymethylcellulose or its salt and its composition
CN202080044736.2A CN113993904B (en) 2019-07-29 2020-06-01 Carboxymethyl cellulose or salt thereof and composition thereof
PCT/JP2020/021609 WO2021019896A1 (en) 2019-07-29 2020-06-01 Carboxymethyl cellulose or salt thereof, and composition thereof
TW109120126A TWI836096B (en) 2019-07-29 2020-06-16 Carboxymethyl cellulose or its salts and their compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138778A JP7481812B2 (en) 2019-07-29 2019-07-29 Carboxymethylcellulose or its salt and composition thereof

Publications (2)

Publication Number Publication Date
JP2021021018A JP2021021018A (en) 2021-02-18
JP7481812B2 true JP7481812B2 (en) 2024-05-13

Family

ID=74230552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138778A Active JP7481812B2 (en) 2019-07-29 2019-07-29 Carboxymethylcellulose or its salt and composition thereof

Country Status (4)

Country Link
JP (1) JP7481812B2 (en)
KR (1) KR20220042057A (en)
CN (1) CN113993904B (en)
WO (1) WO2021019896A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047349A (en) 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2003212901A (en) 2002-01-22 2003-07-30 Daicel Chem Ind Ltd Carboxymethyl cellulose and salt thereof, excellent in dispersion to water
JP2011063673A (en) 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516358A (en) 1974-07-04 1976-01-19 Hitachi Construction Machinery GANYUHAISUISHORIHOHOOYOBI SOCHI
JPS5936941A (en) 1982-08-25 1984-02-29 Toshiba Corp Manufacture of semiconductor device
US4650716A (en) * 1985-05-14 1987-03-17 Hercules Incorporated Novel salts of carboxymethylcellulose
JP2847249B2 (en) * 1989-10-31 1999-01-13 第一工業製薬株式会社 Method for producing granular water-soluble polymer
JPH0816162B2 (en) * 1992-05-20 1996-02-21 日本製紙株式会社 Granulation method of water-soluble cellulose derivative
JPH08176994A (en) * 1994-12-22 1996-07-09 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethyl cellulose for paper coating liquid and paper coating liquid containing the same
JP2966769B2 (en) * 1995-07-18 1999-10-25 第一工業製薬株式会社 Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt
JP4190043B2 (en) * 1996-12-26 2008-12-03 ダイセル化学工業株式会社 Carboxymethylcellulose alkali salt powder with excellent dissolution rate and binder for fish feed
JP2009051781A (en) * 2007-08-28 2009-03-12 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose spherical particles and cosmetic comprising the same
KR20180066723A (en) * 2016-12-09 2018-06-19 롯데정밀화학 주식회사 Method of manufacturing carboxymethyl cellulose particles, carboxymethyl cellulose particles and absorbent articles including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047349A (en) 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2003212901A (en) 2002-01-22 2003-07-30 Daicel Chem Ind Ltd Carboxymethyl cellulose and salt thereof, excellent in dispersion to water
JP2011063673A (en) 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same

Also Published As

Publication number Publication date
CN113993904A (en) 2022-01-28
JP2021021018A (en) 2021-02-18
CN113993904B (en) 2023-03-28
TW202118794A (en) 2021-05-16
WO2021019896A1 (en) 2021-02-04
KR20220042057A (en) 2022-04-04

Similar Documents

Publication Publication Date Title
CA2600380C (en) Thickening composition with improved viscosity-producing properties
JP4790716B2 (en) Method for producing granular detergent composition with improved solubility
CN106414332B (en) Method for manufacturing the particle of the calcium carbonate comprising surface reaction
JP6794216B2 (en) Pore water-soluble nonionic cellulose ether with excellent solubility and its production method
JP2008285406A (en) Silica spherical particle
JP7481812B2 (en) Carboxymethylcellulose or its salt and composition thereof
JP3454554B2 (en) Amorphous silica granules and production method thereof
TWI836096B (en) Carboxymethyl cellulose or its salts and their compositions
JP2011030495A (en) Fluidity improver
JP2010150067A (en) Method for producing readily-soluble calcium carbonate powder and calcium carbonate powder obtained thereby
JP5698903B2 (en) Method for producing dentifrice granules
JP3619905B2 (en) Method for producing zirconia micro-molded sphere
JPH0710728B2 (en) Method for producing fine calcium sulfate
JPH10305084A (en) Production of low substitution degree hydroxypropyl cellulose powder
JP2017086002A (en) Dried agar and manufacturing method thereof
JP4878695B2 (en) Granulated product of naphthol derivative and its production method
JPS6221572B2 (en)
JPH0141658B2 (en)
JPH0116768B2 (en)
JP3796872B2 (en) Method for producing clay mineral powder
JP2974123B2 (en) Granulation method of carboxymethyl cellulose ether alkaline salt and granular carboxymethyl cellulose ether alkaline salt obtained thereby
JP2001031770A (en) Preparation of improved water-absorptive resin particle
JP7441578B2 (en) Calcium carbonate water slurry and method for producing calcium carbonate water slurry
JP3619904B2 (en) Method for producing zirconia micro-molded sphere
JPH08283068A (en) Zirconia microsphere and its production

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7481812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150