WO2021018321A2 - Composición biopesticida y biofertilizante - Google Patents

Composición biopesticida y biofertilizante Download PDF

Info

Publication number
WO2021018321A2
WO2021018321A2 PCT/CU2020/050004 CU2020050004W WO2021018321A2 WO 2021018321 A2 WO2021018321 A2 WO 2021018321A2 CU 2020050004 W CU2020050004 W CU 2020050004W WO 2021018321 A2 WO2021018321 A2 WO 2021018321A2
Authority
WO
WIPO (PCT)
Prior art keywords
pseudoxanthomonas
indica
composition
metabolites
suspension
Prior art date
Application number
PCT/CU2020/050004
Other languages
English (en)
French (fr)
Other versions
WO2021018321A3 (es
Inventor
Irene María ALVAREZ LUGO
Ileana Sanchez Ortiz
Idania WONG PADILLA
Danalay SOMONTES SANCHEZ
Rolando MORAN VALDIVIA
Liszoe GALDÓS BETARTEZ
Laritza Caridad DOMINGUEZ RABILERO
Aylin NORDELO VALDIVIA
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to CN202080068753.XA priority Critical patent/CN114501999A/zh
Priority to MX2022001282A priority patent/MX2022001282A/es
Priority to EP20845905.7A priority patent/EP4005387A2/en
Priority to US17/631,843 priority patent/US20220272986A1/en
Priority to BR112022001668A priority patent/BR112022001668A2/pt
Publication of WO2021018321A2 publication Critical patent/WO2021018321A2/es
Publication of WO2021018321A3 publication Critical patent/WO2021018321A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants

Definitions

  • the present invention is related to the field of agriculture, and is based on the application of Pseudoxanthomonas indica as a beneficial microorganism for it.
  • the bacteria of this microbial species possess nematicidal, fungicidal, inducer of defensive response, and growth promoting activity in plants, and exert these effects without affecting the environment.
  • Plants are associated with microorganisms that exert biofertilizing and biocontrol action. These microorganisms, with their biofertilizing effect, favor the good condition of the plant through the increase in the availability of nutrients, nitrogen fixation and increase symbiosis. Biocontrol manifests itself with the increase in plant growth, due to the control of pathogenic organisms. This effect develops through mechanisms such as the production of antibiotics, siderophores, antagonist substances of bacteria and fungi, extracellular enzymes and the increase in resistance to biotic and abiotic stress.
  • nematodes one of the most common phytopathogens are nematodes, as they constitute one of the most important pests in agriculture in tropical, subtropical and temperate zones.
  • nematode species Meloidogyne ssp. it causes crop losses estimated between 1 1 and 25%, in many tropical areas. Annual losses from this concept are estimated at around $ 87 trillion worldwide.
  • chemical nematicides Due to their speed and efficiency, chemical nematicides have been the most used method for the control of nematodes. But fumigants, such as methyl bromide, have been banned in many countries, due to their high toxicity to mammals, their ozone-depleting action, and their residual effect.
  • Bacteria such as Pasteuria penetrans, Agrobacterium radiobacter, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis (Dong and Zhang 2006, Plant and Soil 288 (1): 31-45) and Tsukamurella paurometabola strain C924 (Patent EP 0774906 B1) are also found. More recently, strains of the genera Chromobacterium, Burkholderia, and Flavobacterium were patented to modulate nematode infestation.
  • the present invention solves the aforementioned problem, by providing a biopesticidal or biofertilizing composition comprising Pseudoxanthomonas indica, or metabolites of said bacterial species, and excipients or diluents.
  • a biopesticidal or biofertilizing composition comprising Pseudoxanthomonas indica, or metabolites of said bacterial species, and excipients or diluents.
  • This species can be used as a broad spectrum nematicide and fungicide, and that it is capable of controlling the populations of nematodes and phytopathogenic fungi in the main agricultural crops.
  • the biopesticidal composition comprising Pseudoxanthomonas indica reduces the hatching of Meloidoavne eggs "in vitro", compared to that observed in eggs not treated with said bacteria, and that it increases the mortality of nematode larvae.
  • the application to the soil of this bacterium reduces the infestation index by Meloidogyne spp. in tomato, and reduces the number of galls on the roots with a high technical efficiency (ET).
  • a biopesticide is understood to be a product that is used to control agricultural pests, by means of specific biological effects. This differentiates them from chemical pesticides, which have a broader action.
  • biopesticide products comprise a biological control agent, that is, an organism, its genes or its metabolites, for the control of pests (Lacey and Sporleder, 2013, Chapter 16 Biopesticides, Insect Pests of Potato, 463-497pp).
  • the biological control effect is exerted by a bacterium or the compounds that it produces.
  • a biofertilizer is understood as a product that contains a beneficial organism, which favors the growth and development of plants, as an alternative to chemical fertilizers, without adverse effects on the ecosystem.
  • biofertilizer products facilitate the availability and absorption of nutrients, as well as the production of plant hormones. In addition, they give the plant tolerance to stress, and increase resistance to pathogens, which results in an improvement of the crop (Bhardwaj et al., 2014 Microbial Cell Phaetones 13:66).
  • the invention provides an inducer of the defensive response and a promoter of the growth of the treated plants.
  • Pseudoxanthomonas comprising the microorganism, which is a positive or negative, motile, catalase and oxidase Gram and forms yellow colonies at 24 hours of growth at 28 Q C in Tryptone Soya Agar.
  • the bacterium was obtained from the rhizosphere of a healthy tomato plant, from a grow house infested with Meloidogyne spp., And it was identified as Pseudoxanthomonas indica by conventional biochemical techniques, and molecular biology. This bacterial species is not new, it has been isolated from soils in other regions of the world.
  • the representative strain of this species was isolated from the soil of an open air hexachlorocyclohexane dump in India, and was reported in 201 1 (Kumari et al. 2011, Int J Syst Evol Microbiol 61: 2107-2111 ). The species is commercially available in known collections of microorganisms.
  • the biopesticidal or biofertilizer composition comprises the live or inactivated Pseudoxanthomonas indica bacteria.
  • the culture supernatant as well as the living bacteria, and their volatile or soluble compounds (metabolites), have nematicidal and / or fungicidal activity.
  • metabolite is understood to be that substance or compound produced by Pseudoxanthomonas that indicates that it is capable of controlling pests in plants and zoonematodes, and / or possesses plant growth stimulating activity.
  • the metabolites originally produced by Pseudoxanthomonas indica are obtained via natural, recombinant or by chemical synthesis.
  • the metabolites are volatile or soluble compounds.
  • the composition further comprises stabilizing, enhancing, eliciting compounds of nematicidal activity or seed coatings.
  • concentration of the bacteria is between 1 x 10 8 and 1 x 10 10 colony forming units (ufe) per ml of composition.
  • the biopesticidal composition is useful for the direct or indirect control of phytopathogens and zoonematodes.
  • the invention comprises the use of Pseudoxanthomonas indica, or metabolites of that bacterium, for the manufacture of a biopesticidal or biofertilizer composition.
  • concentration of the bacteria is between 1 x 10 8 and 1 x 10 10 ufe per ml of composition.
  • the biofertilizer composition is formulated as a prepackaged soil, a powder, a liquid, a suspension, a granulate, a nebulizer or an encapsulation.
  • the invention reveals a method for the control of phytopathogens and zoonematodes that comprises the application of an effective amount of Pseudoxanthomonas indica, or metabolites thereof, to the plant or animal that needs it.
  • the bacterium in said method is applied as a suspension or a concentrate of the live or inactivated strain.
  • the bacterium in said method, is formulated as a prepackaged soil, a powder, a liquid, a suspension, a granulate, a nebulizer or an encapsulation.
  • the strain is useful to reduce the degree of infestation produced by nematodes or phytopathogenic fungi in plants.
  • Another object of the invention is a method for the stimulation of plant growth that comprises the application of an effective amount of Pseudoxanthomonas indica, or metabolites thereof, to the soil, substrate, plant, or seed.
  • the bacterium is formulated as a prepackaged soil, a powder, a liquid, a suspension, a granulate, a nebulizer or an encapsulation.
  • Figure 1 Phylogenetic tree of strain H32, according to the Neighbor-joining method based on the sequence of genes that encode ribosomal ribonucleic acid (rRNA) 16s, showing the relationship of strain H32 with representative members of the Pseudoxanthomonas family.
  • rRNA ribosomal ribonucleic acid
  • FIG. 1 Effect of volatile organic compounds (abbreviated VOCs, volatile organic compounds) on the growth of the fungus Bipolaris oryzae.
  • H32, H36 and H42 Bacterial strains under study.
  • Control Untreated group. Different letters indicate statistically significant differences, according to Duncan's test, p ⁇ 0.05.
  • Figure 3 Length of the branches (A) and weight of the plants (B) of Arabidopsis thaliana, after 14 days of exposure to VOCs of Pseudoxanthomonas indica strain H32 (H32) or of the culture medium Tryptone Soy Broth (Control) .
  • the asterisk indicates statistically significant differences, according to the Student's test p ⁇ 0.05.
  • Figure 4 Length of the main root in Arabidopsis thaliana plants, after eight days of co-cultivation with Pseudoxanthomonas indica, strains H32, H36 and H42, or with MgSO 4 (10 mmol / L) as negative control (Control) . Different letters indicate statistically significant differences, according to Duncan's test, p ⁇ 0.05.
  • Figure 5. Number of lateral roots in Arabidopsis thaliana plants exposed to Pseudoxanthomonas indica, strains H32, H36 and H42, or to MgSO 4 (10 mmol / L) as negative control (Control). Different letters indicate statistically significant differences, according to Duncan's test, p ⁇ 0.05.
  • Figure 6 Number of root hairs in 1 cm of the main root of Arabidopsis thaliana plants exposed to Pseudoxanthomonas indica, strains H32, H36 and H42, or to MgSO 4 (10 mmol / L) as a negative control (Control). Different letters indicate statistically significant differences, according to Duncan's test, p ⁇ 0.05.
  • Figure 7 Effect of Pseudoxanthomonas indica, strain H32, applied to roots, on the expression of defense genes PR1 and PDF1.2 in Arabidopsis thaliana leaves.
  • Experimental groups Control plants treated with water (C) and plants treated with the bacterial strain H32 (H32). Different letters indicate statistically significant differences, according to Duncan's test, p ⁇ 0.05.
  • Figure 8 Effect of Pseudoxanthomonas indica, strain H32, applied to roots, on the expression of defense genes: osmotin (panel A), hydroperoxide lyase (HPL) (panel B), chitinase (panel C), glutathione peroxidase (GPx) (panel D), PR-1 (panel E), alloy oxide synthase (AOS) (panel F) and phenylalanine-ammonium lyase (FAL) (panel G).
  • HPL hydroperoxide lyase
  • GPx glutathione peroxidase
  • PR-1 panel E
  • AOS alloy oxide synthase
  • FAL phenylalanine-ammonium lyase
  • Example 1 Isolation and conservation of bacterial strains with nematicidal properties.
  • rhizospheric soil samples were collected from less affected tomato plants, in a grow house with high infestation by Meloidogyne spp. in Ciego de ⁇ vila.
  • a selective pre-enrichment was carried out. For this, one gram of rhizosphere soil was taken and incubated for 48 hours at 30 Q C in M9 minimal medium containing 100 Meloidogyne eggs per ml of culture, as sole source of carbon and energy. From this preparation, serial dilutions were made which were inoculated in Petri dishes, with M9 minimal medium with 0.05% chitin; for the selection of strains.
  • the colonies with halo which showed different morphological characteristics, were selected and named with an H followed by the consecutive number of the isolate.
  • a second selection of the colonies was carried out, by determining the desulfurase and gelatinase activity.
  • the desulfurase activity is observed by blackening of a filter paper soaked in lead acetate, placed on the colonies in the Petri dish with Tryptone Soy Agar, due to the fact that the colonies produce hydrogen sulfide.
  • the Gelatinase activity is evaluated by observing hydrolysis halos, after 24 hours of growth on nutrient agar with 0.5% gelatin, and the addition of Frazier's reagent.
  • Example 2 Taxonomic identification of the isolated bacteria.
  • the strains referred to in Example 1 were also characterized by molecular biology, by sequencing a fragment of the gene that codes for 16S rRNA.
  • the oligonucleotides that were used as primers for the Polymerase Chain Reaction were 63F and 1387R (Marchesi et al. 1998 Applied and Environmental Microbiology 64 (2): 795-9).
  • the sequences were compared with those available in the GenBank database, from the National Center for Biotechnology Information in the United States, using the bioinformatics package MEGA 7.0 (Molecular Evolutionary Genetics Analysis Software Version 7.0, Center for Evolutionary Functional Genomies, The Biodesign Institute, Arizona State University).
  • the phylogenetic tree represented in Figure 1 which was obtained by the Neighbor-joining method, confirmed that the strains H32, H36 and H42 formed a coherent group with the members of the genus Pseudoxanthomonas of the phylum Bacteroidetes, and an intragenus branch with Pseudoxanthomonas indica .
  • Luteimonas mephitis B 1953/27, Arenimonas donghaensis FI03-R19, Lysobacter enzymogenes DSM 2043T and Thermomonas haemolytica A50-7-3 were used as out-of-group microorganisms. Resampling values greater than 70% appear at branch nodes.
  • Figure 1 shows only what is related to the H32 strain.
  • the phylogenetic tree obtained by the maximum probability method had a similar topology as that of Neighbor-joining.
  • Example 3 Nematicidal activity "in vitro" of the bacteria corresponding to the selected strains.
  • Control samples were also prepared, with 100 eggs and 100 larvae of this nematode contained only in 1 ml of sterile peptone water (1% (w / v)).
  • a criterion of activity against Meloidogyne spp. Eggs the percentage of inhibition of the hatching of the eggs was determined.
  • a criterion of activity against larvae or juveniles of this nematode the percentage reduction in their survival was calculated.
  • Pseudoxanthomonas indica whole live cell samples were prepared from a fresh culture of each strain, at which the bacterial concentration was determined as ufe per ml. 1 ml of the culture was taken, in duplicate, the cells were separated by centrifugation, and washed with peptone (1%) in water. Subsequently, three serial dilutions, 1: 100, were made in the same solution, which were used in the tests. Tables 2 and 3 show the effect of two of the dilutions of Pseudoxanthomonas indica on the eggs and larvae of nematodes.
  • Pseudoxanthomonas indica inhibits the hatching of Meloidogyne spp. It also reduces the survival of the larvae of this nematode.
  • Example 4 Carbohydrate utilization profiles and enzymatic activity of Pseudoxanthomonas indica.
  • Example 5 Effect of Pseudoxanthomonas indica on infestation by Meloidogyne spp. in Solanum lycopersicum.
  • the second application was made at 14 days after transplant.
  • the bacterial strain C-924 was used, which has known properties as a nematicide (European Patent EP 0774906 B1).
  • deionized water was used as a control (negative control).
  • bacteria of the species Pseudoxanthomonas indica reduce the infestation index by Meloidogyne spp. with an ET greater than 50%.
  • Example 6 Antifungal activity of the metabolites released to the culture medium of Pseudoxanthomonas indica.
  • % growth inhibition ((diameter of the control colony - diameter of the treated colony) / (diameter of the control colony -7)) * 100.
  • Example 7 Antifungal activity of volatile organic compounds produced by Pseudoxanthomonas indica.
  • a system was set up with two Petri dish bottoms. In the lower part, with PDA medium, a disk, approximately 7 mm, of the Bipolaris oryzae fungus was placed. In the upper part, with Tryptone Soy Agar, 100 ml_ of a 12 hour culture of the bacterial strains H32, H36 and H42 were dispersed in Tryptone Soy Broth. In the control treatment, only 100 ml of Tryptone Soy Broth were dispersed. 2 replications were made in each case. The system was sealed with a Parafilm TM film, and incubated at 28 ° C. At 5 days, the diameter of the fungal colonies was measured. Growth inhibition relative to control treatment was determined as:
  • % Growth inhibition ((diameter of the control colony - diameter of the treated colony) / (diameter of the control colony -7)) * 100
  • Example 8 Production of volatile plant growth promoting compounds by the bacterium Pseudoxanthomonas indica.
  • Arabidopsis thaliana seeds (approximately 100 seeds per treatment) were sterilized with a mixture consisting of 1 ml_ of sodium hypochlorite (2% (v / v)) and 3 ml_ of newt X100 ( 1% (v / v)), to then arrange for 8 minutes at 37 Q C, with stirring. Then they washed about 5 times with sterile distilled water, and stored at 4 Q C for 4 days. They were placed in 150 mm diameter Petri dishes, with MS medium, to which a small Petri dish (50 mm diameter) with Tryptone Soy Agar was placed towards the center.
  • Tryptone soy agar was inoculated with 10 pi ⁇ a culture of the microorganism under study, previously grown for 12 h in tryptone soy broth at 37 Q C.
  • the system was sealed with Parafilm TM film, and incubated at 20 ⁇ 2 Q C with a photoperiod of 16 h light and 8 h dark.
  • Example 9 Effect of soluble compounds released by Pseudoxanthomonas indica on the morphology of the roots.
  • Arabidopsis thaliana var Col 0 seeds were exposed to soluble compounds released to the culture medium by Pseudoxanthomonas indica. Previously, the seeds were sterilized by immersion for 8 minutes at 37 Q C, with stirring, in a solution containing 1 mL of sodium hypochlorite (2% (v / v)) and 3 pL of Triton X100 (1% ( v / v)). The seeds were washed five times with sterile distilled water, and kept at 4 Q C for 4 days.
  • the length of the primary root, the number of lateral roots, and the number of root hairs in 1 cm of primary root, from the lower end upwards were evaluated.
  • the stereoscope and the inverted microscope were used.
  • the roots of the plants co-cultivated with the bacterial strains presented different morphology, compared to the control group. This showed the possible alterations in the architecture of the roots, induced by this bacterium.
  • Example 10 Evaluation of the ability of Pseudoxanthomonas indica to induce the expression of immune response markers in Arabidopsis thaliana and tomato.
  • the seeds of A. thaliana were incubated in water at 4 ° C for four days, and then sown in a substrate composed of sand: peat (1: 1). Six weeks after germination, they were transplanted into small pots containing the same substrate composition. A week later, the pots were randomly divided into two groups. The first group was treated with bacteria of the H32 strain, at a rate of 1 mL per plant, with a suspension containing 10 9 cfu / mL, in saline solution. The second group (control) was only treated with 1 mL of saline solution. Four applications were made, at intervals of seven days.
  • Pseudoxanthomonas indica induced the expression of PDF1.2, systemically, which is reported as a defense mechanism related to resistance against infestation by nematodes.
  • the objective of the study was to evaluate the capacity of Pseudoxanthomonas indica to modulate the immune response in tomato (Solanum lycopersicum), at the systemic level.
  • Bacteria of the H32 strain were applied as a cell suspension of 10 9 cfu / mL, in the rhizosphere of the plants. Samples were taken at 12 h, 3 days and 7 days after applying the bacteria. At each collection time, samples of six plants of each treatment were randomly taken, which were distributed in two replicas, to homogenize the variations. Once the samples were collected, they were immediately conserved in liquid nitrogen, until further processing.
  • the relative expression of the defense genes phenylalanine-ammonium lyase (FAL), glutathione peroxidase (GPx), osmotin, chitinase, hydroperoxide lyase (HPL), alene oxide synthase (AOS) and PR1 was determined. in sheets. Actin was used as an internal test control.
  • Figure 8 shows that Pseudoxanthomonas indica can induce, in the early stages of interaction with the plant, the expression of the osmotin, HPL, chitinase, GPx and FAL genes.
  • suppression of the PR1 gene was observed at 12 hours and 3 days after applying the bacteria to the plants, and overexpression of the same gene at seven days, with respect to the plants of the control group.
  • the expression of the AOS gene, in the evaluated times did not increase with respect to the controls.
  • the results obtained show that Pseudoxanthomonas indica can modulate the plant immune system, to promote resistance to attack by pathogens.
  • Example 11 Obtaining a formulation of Pseudoxanthomonas indica and demonstration of its stability.
  • a formulation was obtained consisting of a concentrate of Pseudoxanthomonas indica, strain H32, as an active ingredient, yeast extract as a source of organic matter rich in amino acids, vitamins and growth factors, a surfactant and water.
  • the final composition of the formulation was: Yeast extract 70.4%; Sucrose 1.4%; DG-158 TM glanapon at 3.2%, and 20% of dry biomass of the microorganism Pseudoxanthomonas indica.
  • the bacteria remain at a concentration between 10 9 and 10 1 ° cfu / mL.
  • the residual moisture of the composition was 5.0%.
  • a real-time stability study was carried out on 3 batches of the formulation, for which the viable cell count and the nematicidal activity against the phytonmatode Meloidogyne incognita were determined, in pots, 6 and 12 months after the formulation was stored.
  • Table 7 shows the number of viable cells and the ET of the formulation for the indicated times. This reflects that the formulation or composition for the biological control of phytonmatodes is stable for at least 12 months.
  • Example 12 "In vivo" evaluation of the nematicidal effect of Pseudoxanthomonas indica on three species of phytonmatodes.
  • the substrate was inoculated with 3 000 eggs of Meloidogyne incognita, 3 000 eggs of Meloidogyne arenaria or 500 specimens of Radopholus similis.
  • the scheme used was two applications; the first 3 days after the infestation of the substrate.
  • the second application was made 14 days after transplantation.
  • the plants were extracted, and the degree of infestation was determined.
  • the amount of nematodes per 100 g of root was evaluated.
  • the ET of the Pseudoxanthomonas indica formulation was determined. As shown in Table 8, the bacterium was effective against the three nematode species evaluated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Microbiology (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Composición biopesticida y biofertilizante que comprende Pseudoxanthomonas indica, o metabolitos de dicha bacteria, y excipientes o diluentes. Uso de Pseudoxanthomonas indica, o metabolitos de dicha bacteria, para la fabricación de una composición biopesticida o biofertilizante. Método para el control de fitopatógenos y zoonematodos que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o sus metabolitos, a la planta o el animal que lo necesita. Método para la estimulación del crecimiento de las plantas que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o metabolitos de dicha bacteria, al suelo o sustrato, planta, o semilla.

Description

COMPOSICIÓN BIOPESTICIDA Y BIOFERTILIZANTE
Campo de la técnica
La presente invención se relaciona con el campo de la agricultura, y se basa en la aplicación de Pseudoxanthomonas indica como un microorganismo beneficioso para la misma. Como se muestra en la invención, las bacterias de esta especie microbiana poseen actividad nematicida, fungicida, inductora de respuesta defensiva, y de promoción del crecimiento en plantas, y ejercen estos efectos sin afectar el medio ambiente.
Estado de la técnica anterior
Las plantas se encuentran asociadas con microorganismos que ejercen acción biofertilizante y de biocontrol. Estos microorganismos, con su efecto biofertilizante, favorecen el buen estado en la planta a través del incremento de la disponibilidad de nutrientes, la fijación de nitrógeno e incrementan la simbiosis. El biocontrol se manifiesta con el incremento del crecimiento vegetal, debido al control de organismos patógenos. Este efecto se desarrolla a través de mecanismos como la producción de antibióticos, sideróforos, sustancias antagonistas de bacterias y hongos, enzimas extracelulares y el incremento de la resistencia a estrés biótico y abiótico. De forma general, dentro de los géneros bacterianos de este tipo se encuentran Pseudomonas, Serratia, Bacillus, Enterobacter y Xanthomonas, y dentro de los hongos se puede citar Trichoderma ( Mabood , Zhou y Smith 2014, Can. J. Plant Sci. 94: 1051-1063 ).
De forma particular, uno de los fitopatógenos más comunes son los nematodos, pues constituyen una de las plagas más importantes en la agricultura de las zonas tropicales, subtropicales y templadas. Entre las especies de nematodos, Meloidogyne ssp. causa pérdidas de las cosechas estimadas entre el 1 1 y el 25%, en muchas áreas tropicales. Las pérdidas anuales por este concepto se estiman en alrededor de 87 billones en todo el mundo. Por su rapidez y eficacia, los nematicidas químicos han sido el método más utilizado para el control de nematodos. Pero los fumigantes, como el bromuro de metilo, se han prohibido en muchos países, por su alta toxicidad a los mamíferos, su acción reductora de la capa de ozono, y su efecto residual. Teniendo en cuenta estas premisas, actualmente se fomenta el uso de microorganismos beneficiosos antagonistas de fitonematodos, para la obtención de productos biológicos ( Jones et al. 2013, Mol Plañí Pathol 14(9), 946-961). Entre los enemigos naturales de los nematodos se encuentran los hongos Paecilomyces lilacinus, Verticillium chlamydosporium, Arthrobotrys oligospora y Trichoderma harzianum. También se hallan bacterias como Pasteuria penetrans, Agrobacterium radiobacter, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis ( Dong y Zhang 2006, Plant and Soil 288(1 ):31-45) y Tsukamurella paurometabola cepa C924 (Patente EP 0774906 B1 ). Más recientemente, cepas de los géneros Chromobacterium, Burkholderia, y Flavobacterium se patentaron para modular la infestación de nematodos.
Sin embargo, hasta el momento no se cuenta con bioproductos totalmente efectivos, por lo que existe la necesidad de disponer de microorganismos beneficiosos, hacia los que no se desarrolle resistencia por los patógenos de las plantas, y que posean un mínimo efecto ambiental.
Explicación de la invención
La presente invención resuelve el problema mencionado anteriormente, al proveer una composición biopesticida o biofertilizante que comprende Pseudoxanthomonas indica, o metabolitos de dicha especie bacteriana, y excipientes o diluentes. En la invención se demostró por primera vez que esta especie puede utilizarse como nematicida y fungicida de amplio espectro, y que es capaz de controlar las poblaciones de nematodos y hongos fitopatógenos en los principales cultivos agrícolas. Los experimentos de la invención pusieron en evidencia que la composición biopesticida que comprende Pseudoxanthomonas indica reduce la eclosión de los huevos de Meloidoavne“in vitro”, respecto a la que se observa en los huevos no tratados con dicha bacteria, y que aumenta la mortalidad de las larvas de nematodos. La aplicación al suelo de esta bacteria disminuye el índice de infestación por Meloidogyne spp. en tomate, y reduce el número de agallas en las raíces con una alta eficiencia técnica (ET).
En el contexto de esta invención, se entiende por biopesticida un producto que se utiliza para controlar plagas agrícolas, por medio de efectos biológicos específicos. Esto los diferencia de los pesticidas químicos, que tienen una acción más amplia. Como es conocido por los versados en este campo de la técnica, los productos biopesticidas comprenden un agente de control biológico, es decir, un organismo, sus genes o sus metabolitos, para el control de las plagas (Lacey y Sporleder, 2013, Capítulo 16 Biopesticides, Insect Pests of Potato, 463-497pp). En la composición biopesticida de la invención, el efecto de control biológico es ejercido por una bacteria o los compuestos que esta produce.
En el contexto de esta invención, se entiende por biofertilizante un producto que contiene un organismo beneficioso, que favorece el crecimiento y desarrollo de las plantas, como alternativa a los fertilizantes químicos, sin efectos adversos para el ecosistema. Como es conocido por los versados en este campo de la técnica, los productos biofertilizantes facilitan la disponibilidad y la absorción de nutrientes, así como la producción de hormonas vegetales. Además, le confieren a la planta tolerancia frente al estrés, y aumentan la resistencia a los patógenos, lo que resulta en una mejora del cultivo (Bhardwaj et al., 2014 Microbial Cell Faetones 13:66).
De acuerdo a las evidencias experimentales que se muestran, la invención provee un inductor de la respuesta defensiva y un promotor del crecimiento de las plantas tratadas. Este comprende el microorganismo Pseudoxanthomonas indica, que es una bacteria Gram negativa, motil, catalasa y oxidasa positiva, y que forma colonias de color amarillo, a las 24 horas de crecimiento a 28 QC, en medio Agar Triptona Soya. En la invención, la bacteria se obtuvo a partir de la rizosfera de una planta de tomate sana, proveniente de una casa de cultivo infestada con Meloidogyne spp., y se identificó como Pseudoxanthomonas indica mediante técnicas bioquímicas convencionales, y biología molecular. Esta especie bacteriana no es nueva, ha sido aislada en suelos de otras regiones del mundo. La cepa representativa de esta especie, nombrada P15, se aisló del suelo de un vertedero de hexaclorociclohexano al aire libre en la India, y se reportó en el 201 1 ( Kumari et al. 2011, Int J Syst Evol Microbiol 61: 2107-2111). La especie se encuentra comercialmente disponible en conocidas colecciones de microorganismos.
En una realización de la invención, la composición biopesticida o biofertilizante comprende la bacteria Pseudoxanthomonas indica viva o inactivada. En la presente invención se demuestra que tanto el sobrenadante de los cultivos, como la bacteria viva, y sus compuestos (metabolitos) volátiles o solubles, tienen actividad nematicida y/o fungicida.
En el contexto de la invención, se entiende por metabolito a aquella sustancia o compuesto producido por Pseudoxanthomonas indica que es capaz de controlar las plagas en las plantas y los zoonematodos, y/o posee actividad estimuladora del crecimiento vegetal. En una materialización de la invención, los metabolitos originalmente producidos por Pseudoxanthomonas indica se obtienen por vía natural, recombinante o por síntesis química. En una materialización particular, los metabolitos son compuestos volátiles o solubles.
Los metabolitos que libera Pseudoxanthomonas indica al medio de cultivo, y los compuestos volátiles que produce, tienen actividad “in vitrd’ sobre los hongos fitopatógenos: Rhizoctonia solani, Sarocladium oryzae, Stemphylium solani, Phytophthora nicotianae, Bipolaris oryzae y Fusarium oxysporum. Además, tienen actividad estimuladora del crecimiento vegetal, y aumentan la longitud y el peso de las plantas, la longitud de la raíz principal y el número de raíces laterales y pelos radiculares.
En una realización de la invención, la composición adicionalmente comprende compuestos estabilizantes, potenciadores, elicitores de la actividad nematicida o cobertores de semillas. En una materialización de la invención, la concentración de la bacteria está entre 1 x108 y 1 x1010 unidades formadoras de colonia (ufe) por mi de composición. La composición biopesticida es útil para el control directo o indirecto de fitopatógenos y zoonematodos.
En otro aspecto, la invención comprende el uso de Pseudoxanthomonas indica, o metabolitos de esa bacteria, para la fabricación de una composición biopesticida o biofertilizante. En una realización de la invención, para dicho uso, la concentración de la bacteria está entre 1 x108 y 1 x1010 ufe por mi de composición. En una materialización de la invención, la composición biofertilizante está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado.
Por otra parte, la invención revela un método para el control de fitopatógenos y zoonematodos que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o metabolitos de la misma, a la planta o el animal que lo necesita. En una realización de la invención, en dicho método la bacteria se aplica como una suspensión o un concentrado de la cepa viva o inactivada. En una realización particular, en dicho método, la bacteria está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado. En una materialización, en el método de la invención, la cepa es útil para reducir el grado de infestación producida por los nematodos u hongos fitopatógenos en plantas.
Es también objeto de la invención, un método para la estimulación del crecimiento de las plantas que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o metabolitos de la misma, al suelo, sustrato, planta, o semilla. En dicho método, opcionalmente, la bacteria está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado.
Breve descripción de las figuras
Figura 1. Árbol filogenético de la cepa H32, según el método de Neighbour-joining basado en la secuencia de los genes que codifican para el ácido ribonucleico ribosomal (ARNr) 16s, que muestra la relación de la cepa H32 con los miembros representativos de la familia Pseudoxanthomonas. Como microorganismos fuera del grupo se utilizaron Luteimonas mephitis B1953/27, Arenimonas donghaensis H03- R19, Lysobacter enzymogenes DSM 2043T y Thermomonas haemolytica A50-7-3. Los valores de remuestreo mayores del 70% aparecen en los nodos de las ramas (estos se expresan en % de 1 000 réplicas). La barra representa dos sustituciones por cada 100 nucleótidos.
Figura 2. Efecto de los compuestos orgánicos volátiles (abreviado VOCs, del inglés volatile organic compounds) sobre el crecimiento del hongo Bipolaris oryzae. H32, H36 y H42: Cepas bacterianas en estudio. Control: Grupo no tratado. Letras diferentes indican diferencias estadísticamente significativas, según la Prueba de Duncan, p< 0,05.
Figura 3. Longitud de las ramas (A) y peso de las plantas (B) de Arabidopsis thaliana, después de 14 días de exposición a los VOCs de Pseudoxanthomonas indica cepa H32 (H32) o del medio de cultivo Caldo Triptona Soya (Control). El asterisco indica diferencias estadísticamente significativas, según la prueba Test de Student p< 0,05.
Figura 4. Longitud de la raíz principal en las plantas de Arabidopsis thaliana, luego de ocho días de co-cultivo con Pseudoxanthomonas indica, cepas H32, H36 y H42, o con MgS04 (10 mmol/L) como control negativo (Control). Letras diferentes indican diferencias estadísticamente significativas, según la prueba de Duncan, p< 0,05. Figura 5. Número de raíces laterales en las plantas de Arabidopsis thaliana expuestas a Pseudoxanthomonas indica, cepas H32, H36 y H42, o a MgS04 (10 mmol/L) como control negativo (Control). Letras diferentes indican diferencias estadísticamente significativas, según la prueba de Duncan, p< 0,05.
Figura 6. Número de pelos radiculares en 1 cm de la raíz principal de las plantas de Arabidopsis thaliana expuestas a Pseudoxanthomonas indica, cepas H32, H36 y H42, o a MgS04 (10 mmol/L) como control negativo (Control). Letras diferentes indican diferencias estadísticamente significativas, según la prueba de Duncan, p< 0,05.
Figura 7. Efecto de Pseudoxanthomonas indica, cepa H32, aplicada en raíces, sobre la expresión de los genes de defensa PR1 y PDF1.2 en hojas de Arabidopsis thaliana. Grupos experimentales: Plantas controles tratadas con agua (C) y plantas tratadas con la cepa bacteriana H32 (H32). Letras diferentes indican diferencias estadísticamente significativas, según la prueba de Duncan, p< 0,05.
Figura 8. Efecto de Pseudoxanthomonas indica, cepa H32, aplicada en raíces, sobre la expresión de genes de defensa: osmotina (panel A), hidroperóxido liasa (HPL) (panel B), quitinasa (panel C), glutatión peroxidasa (GPx) (panel D), PR-1 (panel E), aleño óxido sintasa (AOS) (panel F) y fenilalanina-amonio liasa (FAL) (panel G). Letras diferentes indican diferencias estadísticamente significativas, según la prueba de Duncan, p< 0,05. La expresión de los genes se midió a nivel sistémico, en hojas de tomate.
Exposición detallada de modos de realización / Ejemplos de realización
Ejemplo 1. Aislamiento y conservación de cepas bacterianas con propiedades nematicidas.
Para el aislamiento de cepas bacterianas con propiedades nematicidas, se colectaron muestras de suelo rizosférico de plantas de tomate menos afectadas, en una casa de cultivo con alta infestación por Meloidogyne spp. en Ciego de Ávila. Primeramente, se realizó un pre-enriquecimiento selectivo. Para ello, se tomó un gramo de suelo rizosférico y se incubó durante 48 horas a 30 QC, en Medio Mínimo M9 que contenía 100 huevos de Meloidogyne por mL de cultivo, cómo única fuente de carbono y energía. A partir de este preparado, se realizaron diluciones seriadas que se inocularon en placas de Petri, con medio mínimo M9 con quitina al 0,05%; para la selección de cepas. Se seleccionaron las colonias con halo, que mostraron características morfológicas diferentes, y se denominaron con una H seguida por el número consecutivo del aislamiento. A continuación, se realizó una segunda selección de las colonias, mediante la determinación de la actividad desulfurasa y gelatinasa. La actividad desulfurasa se observa por ennegrecimiento de un papel de filtro embebido en acetato de plomo, colocado sobre las colonias en la placa de Petri con Agar Triptona Soya, debido a que las colonias producen ácido sulfhídrico. La actividad gelatinasa se evalúa mediante la observación de halos de hidrólisis, después de 24 horas de crecimiento en agar nutriente con gelatina al 0,5%, y de la adición del reactivo de Frazier.
Las cepas H32, H36 y H42, después de 24 horas de incubación a 30QC, en medio Agar Triptona Soya, mostraron colonias de entre 3 y 5 mm, opacas, de color amarillo claro, de forma circular y elevación convexa. Los bordes de esas colonias eran enteros, presentaban una superficie lisa y brillante, y su consistencia era cremosa. Para la conservación de los aislamientos, se creció una colonia durante 12 horas en Caldo Triptona Soya, se añadió glicerol como crioprotector (al 20% de concentración final (v/v)), y estas muestras se congelaron a -70 QC.
Ejemplo 2. Identificación taxonómica de las bacterias aisladas.
Para la identificación, se realizó la tinción de Gram, la prueba de la oxidasa y la catalasa, y la prueba de Hugh Leifson, según el manual de Bacteriología Sistemática de Bergey ( Vos et al. 2009, Springer Dordrecht Heidelberg London New York, 2da Edición, Vol 3, 1450 pp ISBN: 978-0-387-95041 -). Se determinó que las cepas H32, H36 y H42 eran bacilos Gram negativos, mótiles, aerobios y con metabolismo oxidativo. Las pruebas convencionales, realizadas mediante el kit API 20NE (Biomeriux), mostraron un perfil que no coincidió con ninguno de los del catálogo de identificación del kit. Los resultados de las pruebas bioquímicas se muestran en la Tabla 1.
Tabla 1. Resultados de las pruebas bioquímicas realizadas mediante el API 20NE. Prueba Resultado
Reducción de Nitrato a Nitrito +
Producción de Indol
Producción de ácido de glucosa
Arginina dihidrolasa
Ureasa
Hidrólisis de esculina +
Hidrólisis de gelatina +
b-galactosidasa +
Asimilación de:
D-Glucosa +
L-Arabinosa D-Manosa +
D-Manitol
N-acetil glucosamina +
D-Maltosa +
Gentibiosa
Ácido caproico
Adipato
Malato +
Citrato
Acido Fenil acetato
Oxidasa +
Las cepas referidas en el Ejemplo 1 también se caracterizaron por biología molecular, mediante la secuenciación de un fragmento del gen que codifica para el ARNr 16S. Los oligonucleótidos que se utilizaron como cebadores para la Reacción en Cadena de la Polimerasa fueron el 63F y el 1387R ( Marchesi et al. 1998 Applied and Environmental Microbiology 64(2):795-9). Las secuencias se compararon con las que estaban disponibles en la base de datos GenBank, del Centro Nacional para la Información Biotecnológica de Estados Unidos, mediante el paquete bioinformático MEGA 7.0 ( Molecular Evolutionary Genetics Analysis Software Versión 7.0, Center for Evolutionary Functional Geno mies, The Biodesign Institute, Arizona State University). El árbol filogenético representado en la Figura 1 , que se obtuvo por el método de Neighbour-joining, confirmó que las cepas H32, H36 y H42 formaban un grupo coherente con los miembros del género Pseudoxanthomonas del phylum Bacteroidetes, y una rama intragénero con Pseudoxanthomonas indica. Luteimonas mephitis B 1953/27, Arenimonas donghaensis FI03-R19, Lysobacter enzymogenes DSM 2043T y Thermomonas haemolytica A50-7-3 se utilizaron como microorganismos fuera del grupo. Los valores de remuestreo mayores del 70% aparecen en los nodos de las ramas. En la Figura 1 se muestra solo lo relativo a la cepa H32. El árbol filogenético obtenido por el método de máxima probabilidad tuvo una topología similar que el de Neighbour-joining.
El análisis de la matriz de distancia permitió determinar la mayor cercanía de la secuencia del gen ARNr 16S de las cepas en estudio con Pseudoxanthomonas indica P15, EF424397.1 . De acuerdo a los resultados del análisis filogenético, se infiere que las cepas estudiadas pertenecen a la especie Pseudoxanthomonas indica, y los resultados de las pruebas bioquímicas de las mismas se corresponden con las principales características descritas para esta especie bacteriana.
Ejemplo 3. Actividad nematicida“in vitro” de las bacterias correspondientes a las cepas seleccionadas.
Se realizaron ensayos in vitro con huevos y juveniles del fitonematodo Meloidogyne spp., y se determinó la actividad nematicida de las células vivas de Pseudoxanthomonas indica. Para ello se extrajeron las masas de huevos, a partir de raíces de plantas de tomate afectadas por esta plaga, se desagregaron las masas con hipoclorito de sodio al 0,5%; y se colocaron tres réplicas (de 100 huevos) para cada muestra a ensayar. Para obtener las larvas, se incubaron los huevos a la temperatura de 28-30 °C, en agua desionizada estéril, durante 6 días. Las muestras testigos se prepararon igualmente, con 100 huevos y 100 larvas de este nematodo contenidos solamente en 1 mi de agua con peptona (al 1 % (w/v)) estéril. Como criterio de actividad frente a huevos de Meloidogyne spp., se determinó el porciento de inhibición de la eclosión de los huevos. Como criterio de actividad frente a larvas o juveniles de este nematodo, se calculó el porciento de reducción de la supervivencia de las mismas.
Las muestras de células vivas completas de Pseudoxanthomonas indica se prepararon a partir de un cultivo fresco de cada cepa, al que se determinó la concentración bacteriana como ufe por mi. Se tomó 1 mi del cultivo, por duplicado, se separaron las células por centrifugación, y se lavaron con peptona (al 1 %) en agua. Posteriormente, se realizaron tres diluciones seriadas, de 1 :100, en la misma solución, que se utilizaron en los ensayos. Las tablas 2 y 3 muestran el efecto de dos de las diluciones de Pseudoxanthomonas indica sobre los huevos y larvas de nematodos.
Tabla 2. Porciento de inhibición de la eclosión de huevos del nematodo Meloidogyne spp. a dos concentraciones de células viables de Pseudoxanthomonas indica.
Cepa Inhibición de la eclosión
5x10b ufc/ml 5x104 ufc/ml
H32 83% 89% H36 75% 80%
H42 74% 85%
Testigo 20% 22%
Tabla 3. Porciento de reducción de la sobrevivencia de larvas del nematodo Meloidogyne spp. a dos concentraciones de células vivas de Pseudoxanthomonas indica.
Cepa Reducción de la sobrevivencia de las larvas
5x106 ufc/ml 5x104 ufc/ml
H32 50% 55%
H36 43% 45%
H42 38% 40%
Testigo 15% 20%
Por tanto, se evidencia que Pseudoxanthomonas indica inhibe la eclosión de los huevos de Meloidogyne spp. También reduce la sobrevivencia de las larvas de este nematodo.
Ejemplo 4. Perfiles de utilización de carbohidratos y actividad enzimática de Pseudoxanthomonas indica.
Para determinar los carbohidratos que utiliza la cepa H32 de Pseudoxanthomonas indica, como única fuente de carbono y energía, se utilizó el kit CH50 de la firma Biomeriux. Las bacterias de la cepa H32 de Pseudoxanthomonas indica oxidaron los siguientes carbohidratos: D-Glucosa, D-Fructosa, D-Mamnosa, N-acetil- Glucosamina, D-Maltosa, D-Lactosa, D-Sacarosa, tal como se informa para la cepa tipo de esta especie ( Pseudoxanthomonas indica P15).
Para la determinación del perfil enzimático de dicha cepa de Pseudoxanthomonas indica, se detectó la producción de quitinasas, mediante el crecimiento en medio M9 con quitina coloidal al 0,5%. Por su parte, la producción de proteasas se detectó por siembra en placas con Agar Nutriente y gelatina al 0,5%, y el revelado subsiguiente con el reactivo de Frazier. Además, se utilizó el kit APIZYM™ para la detección de fosfatasas, esterasas, lipasas, glucoronidasas, galactosidasas, fucosidasa, manosidasa, arilasas, N-acetil-p-glucosaminidasa y Naftol- AS-BI- fosfohidrolasa. Los resultados de estas determinaciones se muestran en la Tabla 4, y demuestran que las bacterias de la cepa H32 de Pseudoxanthomonas indica poseen un metabolismo oxidativo, y que son capaces de degradar un gran número de compuestos orgánicos y otros compuestos químicos complejos.
Tabla 4. Enzimas liberadas por la cepa H32 de Pseudoxanthomonas indica.
Enzima Resultado
Quitinasas +
Proteasas +
Esterasa (C4) +
Esterasa Lipasa (C8) +
Lipasa (C14)
Tripsina +
a quimotripsina +
b-glucosidasa
N-acetil^-glucosaminidasa +
Fosfatasa alcalina +
Leucina arilamidasa +
Valina arilamidasa +
Cistina arilamidasa +
Fosfatasa ácida +
Naftol-AS-BI-fosfohidrolasa +
+: presencia
Figure imgf000012_0001
ausencia
Ejemplo 5. Efecto de Pseudoxanthomonas indica sobre la infestación por Meloidogyne spp. en Solanum lycopersicum.
Se realizó un ensayo para evaluar la actividad nematicida “in vivo” de Pseudoxanthomonas indica en plantas de tomate ( Solanum lycopersicum). Las mismas se trasplantaron a macetas con 1 kg de sustrato, y se infestaron con 500 huevos de Meloidogyne spp. La bacteria se creció en medio Caldo Triptona Soya durante 24 h, y se realizaron diluciones seriadas en agua desionizada, para aplicarla a las plantas en concentraciones entre 4x107y 2x104 ufc/g de sustrato. El esquema que se utilizó fue de dos aplicaciones. Se realizó una aplicación a los 3 días de la infestación del sustrato con nematodos, y 7 días después se trasplantaron las posturas de tomate. La segunda aplicación se realizó a los 14 días después del trasplante. Como control positivo, se utilizó la cepa bacteriana C-924, que posee conocidas propiedades como nematicida (Patente Europea EP 0774906 B1 ). En este experimento, se utilizó agua desionizada como testigo (control negativo).
A los 35 días del trasplante, se extrajeron las plantas de tomate y se determinó el grado de infestación de las raíces, mediante la escala de Bridge y Page, de 0 a l o grados. A partir de estos resultados se determinó la ET (Wong et al. (2017) Biotecnología Aplicada, 34:4301 -43) de cada concentración de la cepa H32. La bacteria fue efectiva frente a nematodos del género Meloidogyne, en todos los tratamientos que se evaluaron, como se muestra en la Tabla 5.
Tabla 5. Grados de infestación de las raíces de Solanum lycopersicum y ET de los tratamientos con Pseudoxanthomonas indica.
Tratamiento ufc/g Gradología ET* (%)
TTÓ 4x10/ 1 .38 75,32
T 1 1 4x106 1 ,89 66,10
T 12 4x105 1 ,29 76,92
T 13 4x104 2.38 57,37
T 14 2x104 2,43 56,41
Cepa C-924 2x108 3,00 46,15
TESTIGO 5,60 0,0
*ET: Eficiencia Técnica
Por tanto, bacterias de la especie Pseudoxanthomonas indica reducen el índice de infestación por Meloidogyne spp. con una ET superior al 50%.
Ejemplo 6. Actividad antifúngica de los metabolitos liberados al medio de cultivo de Pseudoxanthomonas indica.
Para determinar la actividad antifúngica de los metabolitos liberados al medio de cultivo de la cepa H32 de Pseudoxanthomonas indica, primeramente se colocó un disco, de aproximadamente 7 mm, de medio de cultivo que contiene el hongo en el centro de una placa de Petri con medio Agar Papa Dextrosa (PDA). A ambos lados se depositaron, en forma de una línea, 10 pL de una suspensión bacteriana de la cepa H32 en Caldo Triptona Soya. En el tratamiento control sólo se colocó el mismo medio de cultivo. Se realizaron 2 réplicas en cada caso. A los 5 días de incubación a 28 QC, se midió el diámetro de las colonias de los hongos y se determinó el porciento de crecimiento relativo respecto al control como:
% inhibición del crecimiento = ((diámetro de la colonia control - diámetro de la colonia con tratamiento) / (diámetro de la colonia control -7))*100.
Los resultados se muestran en la Tabla 6, los que indican que Pseudoxanthomonas indica detuvo el desarrollo de un grupo de hongos fitopatógenos que afectan a cultivos de gran importancia económica.
Tabla 6. Inhibición del crecimiento de hongos fitopatógenos por los metabolitos liberados por Pseudoxanthomonas indica.
Hongo Inhibición del crecimiento (%)
fíhizoctonia solani 77,9
Sarocladium oryzae 47,8
Stemphylium solani 72,0
Phytophthora nicotianae 92,6
Bipolaris oryzae 80,9
Fusarium oxysporum cúbense 43,9
Ejemplo 7. Actividad antifúngica de los compuestos orgánicos volátiles producidos por Pseudoxanthomonas indica.
Se montó un sistema con dos fondos de placas de Petri. En la parte inferior, con medio PDA, se colocó un disco, de aproximadamente 7 mm, del hongo Bipolaris oryzae. En la parte superior, con Agar Triptona Soya, se dispersaron 100 mI_ de un cultivo de 12 horas de las cepas bacterianas H32, H36 y H42 en Caldo Triptona Soya. En el tratamiento control sólo se dispersaron 100 mI_ de Caldo Triptona Soya. Se realizaron 2 réplicas en cada caso. El sistema se selló con una película de Parafilm™, y se incubó a 28 QC. A los 5 días, se midió el diámetro de las colonias de los hongos. Se determinó la inhibición del crecimiento relativo al tratamiento control como:
% Inhibición del crecimiento = ((diámetro de la colonia control - diámetro de la colonia tratada) / (diámetro de la colonia control -7))*100
Las tres cepas estudiadas inhibieron el crecimiento de Bipolaris oryzae en más del 50%, sin existir contacto físico con el patógeno, tal como se aprecia en la Figura 2. Por tanto, los compuestos volátiles de Pseudoxanthomonas indica tienen actividad antifúngica.
Ejemplo 8. Producción de compuestos volátiles promotores del crecimiento vegetal por la bacteria Pseudoxanthomonas indica.
Para demostrar la actividad promotora del crecimiento en plantas, semillas de Arabidopsis thaliana (aproximadamente 100 semillas por tratamiento) se esterilizaron con una mezcla compuesta por 1 ml_ de hipoclorito de sodio (2% (v/v)) y 3 mI_ de tritón X100 (1 % (v/v)), para luego colocarlas durante 8 minutos a 37QC, con agitación. A continuación, se lavaron aproximadamente 5 veces con agua destilada estéril, y se almacenaron a 4QC durante 4 días. Se colocaron en placas de Petri de diámetro 150 mm, con medio MS, a las que se les puso hacia el centro una placa de Petri pequeña (diámetro 50 mm) con Agar Triptona Soya. A los dos días de la germinación de las plantas, se inoculó el medio Agar Triptona Soya con 10 pi¬ de un cultivo del microorganismo en estudio, previamente crecido durante 12 h en Caldo Triptona Soya, a 37 QC. El sistema se selló con una película de Parafilm™, y se incubó a 20 ± 2 QC, con un fotoperíodo de 16 h de luz y 8 h de oscuridad.
A los 14 días se tomaron muestras, para evaluar el largo y peso de las ramas y el número de las hojas. Las plantas de Arabidopsis thaliana, después de 14 días de incubación en placas de Petri que contenían Pseudoxanthomonas indica, mostraron mejor crecimiento que el control sin bacteria (Figura 3). Esto evidenció la estimulación del crecimiento de dichas plantas por los compuestos volátiles producidos por dicha bacteria.
Ejemplo 9. Efecto de compuestos solubles liberados por Pseudoxanthomonas indica sobre la morfología de las raíces.
Se expusieron las semillas de Arabidopsis thaliana var Col 0 a los compuestos solubles liberados al medio de cultivo por Pseudoxanthomonas indica. Previamente, se esterilizaron las semillas mediante la inmersión durante 8 minutos a 37 QC, con agitación, en una solución que contenía 1 mL de hipoclorito de sodio (2% (v/v)) y 3 pL de Tritón X100 (1 % (v/v)). Las semillas se lavaron cinco veces con agua destilada estéril, y se mantuvieron a 4 QC durante 4 días.
Se depositaron 10 semillas, en línea recta y equidistantes, en el extremo superior de una placa de Petri de 100 mm, que contenía medio MS. Las placas se colocaron verticalmente en el cuarto iluminado, a una temperatura de 22 ± 2 QC y a un fotoperíodo de 16 h luz y 8 h oscuridad. A los 4 días de la germinación de las plantas se añadieron 240 mI_ de una suspensión bacteriana de las cepas H32, H36 y H42 sobre el medio de cultivo, a una distancia de 2-3 cm del extremo inferior de las raíces. Estas suspensiones se prepararon a partir de un cultivo en medio Caldo Triptona Soya crecido a 28 QC, durante 18 h, que se centrifugó y se resuspendió en MgSC>4 10 mmol/L. El sistema se selló con Parafilm™, y se incubó en el cuarto iluminado, bajo las mismas condiciones. Como control negativo, se utilizó la solución de MgS04 10 mmol/L. Se montaron 3 réplicas en cada caso.
A los 8 días de co-cultivo, se evalúo el largo de la raíz primaria, el número de raíces laterales, y el número de pelos radiculares en 1 cm de raíz primaria, desde el extremo inferior hacia arriba. Para esta evaluación, se emplearon el estereoscopio y el microscopio invertido. Las raíces de las plantas co-cultivadas con las cepas bacterianas presentaron diferente morfología, en comparación con el grupo control. Esto evidenció las posibles alteraciones en la arquitectura de las raíces, inducidas por esta bacteria. La longitud de la raíz primaria, en las plantas sometidas a los tratamientos con la bacteria, fue mayor (con significación estadística p<0,05) que la longitud de la misma en el tratamiento control (Figura 4).
El número de raíces laterales y el número de pelos radiculares también fueron significativamente mayores que en el tratamiento control {p<0,05), tal como se aprecia en la Figura 5 y la Figura 6. Por lo tanto, la aplicación de Pseudoxanthomonas indica aumenta el área superficial de las raíces y, por consiguiente, la posibilidad de absorción de los nutrientes.
Ejemplo 10. Evaluación de la capacidad de Pseudoxanthomonas indica para inducir la expresión de marcadores de respuesta inmune en Arabidopsis thaliana y tomate.
Figure imgf000016_0001
Las semillas de A. thaliana se incubaron en agua a 4 °C, durante cuatro días, y a continuación se sembraron en sustrato compuesto por arena:turba (1 :1 ). A las seis semanas de germinadas, se trasplantaron hacia macetas pequeñas que contenían la misma composición de sustrato. Una semana después, se dividieron las macetas aleatoriamente en dos grupos. El primer grupo fue tratado con bacterias de la cepa H32, a razón de 1 mL por planta, con una suspensión que contenía 109 ufc/mL, en solución salina. El segundo grupo (control) solo se trató con 1 mL de solución salina. Se realizaron cuatro aplicaciones, a intervalos de siete días. A las dos horas posteriores a la última aplicación, se colectaron muestras de hojas y raíces de las plantas de cada tratamiento, y se congelaron inmediatamente en nitrógeno líquido. La expresión de los genes PR1 (marcador de respuesta inmune mediada por ácido salicílico) y PDF1.2 (marcador de respuesta inmune mediada por ácido jasmónico) se determinó mediante la reacción en cadena de la polimerasa cuantitativa en tiempo real (RT-qPCR). Como control interno se empleó el gen de la ubiquitina. Como muestra la Figura 7, se observó una expresión aumentada del gen PDF1.2 en las hojas de las plantas tratadas con bacterias de la cepa H32, respecto al control del experimento. El nivel de expresión del gen PR1 no resultó ser diferente del observado en el grupo control. Por lo tanto, las bacterias de la especie
Pseudoxanthomonas indica indujeron la expresión de PDF1.2, de forma sistémica, lo cual se reporta como un mecanismo de defensa relacionado con la resistencia frente a la infestación por nematodos.
Ensayo en tomate
El objetivo del estudio fue evaluar la capacidad de Pseudoxanthomonas indica para modular la respuesta inmune en tomate ( Solanum lycopersicum), a nivel sistémico. Bacterias de la cepa H32 se aplicaron como una suspensión celular de 109 ufc/mL, en la rizosfera de las plantas. Se realizaron tomas de muestra a las 12 h, 3 días y 7 días de aplicada la bacteria. En cada tiempo de colecta, se tomaron aleatoriamente muestras de seis plantas de cada tratamiento, las cuales se distribuyeron en dos réplicas, para homogenizar las variaciones. Una vez colectadas las muestras, se conservaron inmediatamente en nitrógeno líquido, hasta su posterior procesamiento. Mediante el método de RT-qPCR, se determinó la expresión relativa de los genes de defensa fenilalanina-amonio liasa (FAL), glutatión peroxidasa (GPx), osmotina, quitinasa, hidroperóxido liasa (HPL), aleño óxido sintasa (AOS) y PR1 en hojas. Se utilizó la actina como control interno del ensayo.
La Figura 8 muestra que Pseudoxanthomonas indica puede inducir, en las etapas tempranas de la interacción con la planta, la expresión de los genes osmotina, HPL, quitinasa, GPx y FAL. Por otro lado, se observó supresión del gen PR1 a las 12 horas y a los 3 días de aplicada la bacteria a las plantas, y sobreexpresión del mismo gen a los siete días, respecto a las plantas del grupo control. La expresión del gen AOS, en los tiempos evaluados, no aumentó respecto a los controles. Los resultados obtenidos evidencian que Pseudoxanthomonas indica puede modular el sistema inmune vegetal, para favorecer la resistencia al ataque de patógenos. Ejemplo 11. Obtención de una formulación de Pseudoxanthomonas indica y demostración de su estabilidad.
Se obtuvo una formulación compuesta por un concentrado de Pseudoxanthomonas indica, cepa H32, como ingrediente activo, extracto de levadura como fuente de materia orgánica rica en aminoácidos, vitaminas y factores de crecimiento, una sustancia tensoactiva y agua. La composición final de la formulación fue: Extracto de levadura 70,4%; Sacarosa 1 ,4%; Glanapón DG-158™ al 3,2%, y 20% de biomasa seca del microorganismo Pseudoxanthomonas indica. En la composición, la bacteria queda a una concentración entre 109 y 101° ufc/mL. La humedad residual de la composición fue de 5,0%. Se realizó un estudio de estabilidad a tiempo real de 3 lotes del formulado, para lo que se determinó el conteo de células viables y la actividad nematicida contra el fitonematodo Meloidogyne incógnita, en macetas, a los 6 y 12 meses de almacenada la formulación.
En la Tabla 7 se muestra el número de células viables y la ET de la formulación para los tiempos indicados. Esta refleja que la formulación o composición para el control biológico de fitonematodos es estable al menos durante 12 meses.
Tabla 7. Estudio de estabilidad de la formulación.
Figure imgf000018_0001
ET*: Eficiencia técnica
Ejemplo 12. Evaluación “in vivo” del efecto nematicida de Pseudoxanthomonas indica sobre tres especies de fitonematodos.
Se realizó un procedimiento, a nivel de casa de cultivo, para evaluar el efecto nematicida“in vivo” de la formulación descrita en el Ejemplo 1 1 , sobre las especies Meloidogyne incógnita, Meloidogyne arenaria y Radopholus similis. Los ensayos con las especies Meloidogyne incógnita y Meloidogyne arenaria se realizaron con plantas de tomate ( Solanum lycopersycum ), y el ensayo con Radopholus similis en plantas de plátano ( Musa spp.). Las plántulas de tomate y plátano se trasplantaron a macetas con 2 kg de sustrato compuesto por arena:turba (1 :1 ). Previo al trasplante, al sustrato se le inocularon 3 000 huevos de Meloidogyne incógnita, 3 000 huevos de Meloidogyne arenaria o 500 especímenes de Radopholus similis. En los ensayos con Meloidogyne incógnita y Meloidogyne arenaria, el esquema que se utilizó fue de dos aplicaciones; la primera a los 3 días de la infestación del sustrato. La segunda aplicación se realizó a los 14 días después del trasplante. A los 35 días del trasplante se extrajeron las plantas, y se determinó el grado de infestación. Para las plantas de plátano infestadas con Radopholus similis se realizaron 3 aplicaciones: a los 15, 49 y 63 días. A los 80 días del trasplante, se evaluó la cantidad de nematodos por 100 g de raíz. En los dos cultivos, a partir de estos resultados, se determinó la ET de la formulación de Pseudoxanthomonas indica. Como se muestra en la Tabla 8, la bacteria fue efectiva frente a las tres especies de nematodos evaluadas.
Tabla 8. Eficiencia técnica de la formulación de Pseudoxanthomonas indica frente a varias especies de fitonematodos.
Figure imgf000019_0001
ET*: Eficiencia técnica

Claims

REIVINDICACIONES COMPOSICIÓN BIOPESTICIDA Y BIOFERTILIZANTE
1. Composición biopesticida o biofertilizante que comprende Pseudoxanthomonas indica, o metabolitos de dicha especie bacteriana, y excipientes o diluentes.
2. La composición de la reivindicación 1 que comprende la suspensión o el concentrado de Pseudoxanthomonas indica viva o inactivada.
3. La composición de la reivindicación 1 donde los metabolitos se obtienen por vía natural, recombinante o por síntesis química.
4. La composición de la reivindicación 1 donde los metabolitos son compuestos volátiles o solubles.
5. La composición de la reivindicación 1 que adicionalmente comprende compuestos estabilizantes, potenciadores, elicitores de la actividad nematicida o cobertores de semillas.
6. La composición de la reivindicación 1 donde la concentración de Pseudoxanthomonas indica está entre 1 x108 y 1 x1010 ufc/ml.
7. La composición de la reivindicación 1 donde el biopesticida se utiliza para el control directo o indirecto de fitopatógenos y zoonematodos.
8. Uso de Pseudoxanthomonas indica, o metabolitos de dicha especie bacteriana, para la fabricación de una composición biopesticida o biofertilizante.
9. El uso de la reivindicación 8 donde la concentración de Pseudoxanthomonas indica está entre 1 x108 y 1 x1010 ufc/ml.
10. El uso de la reivindicación 8 donde el biopesticida se utiliza para el control directo o indirecto de fitopatógenos y zoonematodos.
1 1. El uso de la reivindicación 8 donde la composición biofertilizante está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado.
12. Método para el control de fitopatógenos y zoonematodos que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o metabolitos de dicha especie bacteriana, a la planta o el animal que lo necesita.
13. El método de la reivindicación 12 donde Pseudoxanthomonas indica se aplica como una suspensión o un concentrado de dicha bacteria viva o inactivada.
14. El método de la reivindicación 12 donde Pseudoxanthomonas indica está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado.
15. El método de la reivindicación 12 donde Pseudoxanthomonas indica se utiliza para reducir el grado de infestación producida por nematodos u hongos fitopatógenos en plantas.
16. Método para la estimulación del crecimiento de las plantas que comprende la aplicación de una cantidad efectiva de Pseudoxanthomonas indica, o metabolitos de dicha especie bacteriana, al suelo, sustrato, planta, o semilla.
17. El método de la reivindicación 16 donde Pseudoxanthomonas indica está formulada como un suelo preempacado, un polvo, un líquido, una suspensión, un granulado, un nebulizador o un encapsulado.
PCT/CU2020/050004 2019-07-31 2020-07-30 Composición biopesticida y biofertilizante WO2021018321A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080068753.XA CN114501999A (zh) 2019-07-31 2020-07-30 生物杀虫剂和生物肥料组合物
MX2022001282A MX2022001282A (es) 2019-07-31 2020-07-30 Composicion biopesticida y biofertilizante.
EP20845905.7A EP4005387A2 (en) 2019-07-31 2020-07-30 Biopesticide and biofertiliser composition
US17/631,843 US20220272986A1 (en) 2019-07-31 2020-07-30 Biopesticide and biofertilizer composition
BR112022001668A BR112022001668A2 (pt) 2019-07-31 2020-07-30 Composição biopesticida e biofertilizante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2019-0071 2019-07-31
CU2019000071A CU20190071A7 (es) 2019-07-31 2019-07-31 Composición biopesticida y biofertilizante

Publications (2)

Publication Number Publication Date
WO2021018321A2 true WO2021018321A2 (es) 2021-02-04
WO2021018321A3 WO2021018321A3 (es) 2021-12-23

Family

ID=74230876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2020/050004 WO2021018321A2 (es) 2019-07-31 2020-07-30 Composición biopesticida y biofertilizante

Country Status (8)

Country Link
US (1) US20220272986A1 (es)
EP (1) EP4005387A2 (es)
CN (1) CN114501999A (es)
AR (1) AR119504A1 (es)
BR (1) BR112022001668A2 (es)
CU (1) CU20190071A7 (es)
MX (1) MX2022001282A (es)
WO (1) WO2021018321A2 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025523A (zh) * 2021-03-17 2021-06-25 甘肃省科学院生物研究所 一株墨西哥假黄单胞菌及其在促进杂交构树繁育中的应用
DE202022104177U1 (de) 2022-07-23 2022-08-03 Sunita Arya Neuartige Zusammensetzung eines Biopestizids zur Vorab-Begasung
WO2023288294A1 (en) 2021-07-16 2023-01-19 Novozymes A/S Compositions and methods for improving the rainfastness of proteins on plant surfaces
KR20230145652A (ko) * 2022-04-11 2023-10-18 전북대학교산학협력단 식물의 생육 촉진 및 염해 저항성 증진이 우수한 슈도잔토모나스 jbce485와 바리오보락스 파라독서스 jbce486 균주 및 이를 포함하는 조성물
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117481124B (zh) * 2024-01-02 2024-03-22 东北林业大学 秦皮甲素在提高水曲柳抗旱能力中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774906B1 (en) 1994-08-10 2006-03-15 Centro De Ingenieria Genetica Y Biotecnologia Nematicidic agent and method for the bio-control of nematodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087955B (zh) * 2013-01-21 2014-08-20 南京师范大学 假黄单胞菌及其在降解烟碱类杀虫剂吡虫啉中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774906B1 (en) 1994-08-10 2006-03-15 Centro De Ingenieria Genetica Y Biotecnologia Nematicidic agent and method for the bio-control of nematodes

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BHARDWAJ ET AL., MICROBIAL CELL FACTORIES, vol. 13, 2014, pages 66
DONGZHANG, PLANT AND SOIL, vol. 288, no. 1, 2006, pages 31 - 45
JONES ET AL., MOL PLANT PATHOL, vol. 14, no. 9, 2013, pages 946 - 961
KUMARI ET AL., INT J SYST EVOL MICROBIOL, vol. 61, 2011, pages 2107 - 2111
MABOODZHOUSMITH, CAN. J. PLANT SCI., vol. 94, 2014, pages 1051 - 1063
MARCHESI ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 64, no. 2, 1998, pages 795 - 9
VOS ET AL.: "Bacteriología Sistemática de Bergey", vol. 3, 2009, SPRINGER DORDRECHT HEIDELBERG, pages: 1450
WONG ET AL., BIOTECNOLOGÍA APLICADA, vol. 34, 2017, pages 4301 - 43

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025523A (zh) * 2021-03-17 2021-06-25 甘肃省科学院生物研究所 一株墨西哥假黄单胞菌及其在促进杂交构树繁育中的应用
CN113025523B (zh) * 2021-03-17 2022-04-12 甘肃省科学院生物研究所 一株墨西哥假黄单胞菌及其在促进杂交构树繁育中的应用
WO2023288294A1 (en) 2021-07-16 2023-01-19 Novozymes A/S Compositions and methods for improving the rainfastness of proteins on plant surfaces
KR20230145652A (ko) * 2022-04-11 2023-10-18 전북대학교산학협력단 식물의 생육 촉진 및 염해 저항성 증진이 우수한 슈도잔토모나스 jbce485와 바리오보락스 파라독서스 jbce486 균주 및 이를 포함하는 조성물
KR102663790B1 (ko) 2022-04-11 2024-05-08 전북대학교산학협력단 식물의 생육 촉진 및 염해 저항성 증진이 우수한 슈도잔토모나스 jbce485와 바리오보락스 파라독서스 jbce486 균주 및 이를 포함하는 조성물
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections
DE202022104177U1 (de) 2022-07-23 2022-08-03 Sunita Arya Neuartige Zusammensetzung eines Biopestizids zur Vorab-Begasung

Also Published As

Publication number Publication date
BR112022001668A2 (pt) 2022-03-22
AR119504A1 (es) 2021-12-22
EP4005387A2 (en) 2022-06-01
WO2021018321A3 (es) 2021-12-23
US20220272986A1 (en) 2022-09-01
CU20190071A7 (es) 2021-03-11
CN114501999A (zh) 2022-05-13
MX2022001282A (es) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2021018321A2 (es) Composición biopesticida y biofertilizante
Han et al. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens
US11089785B2 (en) Bacterial and fungal metabolites possessing anti-microbial activity against Xanthomonas species, compositions, methods, kits and uses relating to same
Spadaro et al. Improving the efficacy of biocontrol agents against soilborne pathogens
JP5331010B2 (ja) バチルス・ベレツェンシス種の菌株ah2の純粋培養物と、植物病原菌を生物学的に制御する生物学的制御用生物
KR101569737B1 (ko) 벼 근권에서 분리된 신규 식물 내생세균 바실러스 오리지콜라 및 이를 이용한 천연식물 보호 및 식물 강화제 개발
Shen et al. Identification, solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot
Karimi et al. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet
Nga et al. Rhizobacterially induced protection of watermelon against Didymella bryoniae
US10000427B2 (en) Phosphate solubilizing rhizobacteria bacillus firmus as biofertilizer to increase canola yield
US20220132862A1 (en) Pseudomonas sp. strain, composition comprising the same, and uses thereof
Prajapati et al. Biological control a sustainable approach for plant diseases management: A review
Hassan et al. Suppression of red rot disease by Bacillus sp. based biopesticide formulated in non-sterilized sugarcane filter cake
Jain et al. Biotic stress management in agricultural crops using microbial consortium
JP7049689B2 (ja) シュードモナス・プチダ株、並びに植物において細菌及び真菌によって引き起こされる疾患の制御におけるその使用
Adame-García et al. Vanilla Rhizobacteria as Antagonists against Fusarium oxysporum f. sp. vanillae
US20210289793A1 (en) Bacteria from medicago root nodules as plant probiotic bacteria for agriculture
KR101535893B1 (ko) 신규미생물 바실러스 아밀로리퀴펜션스 cc110와 이를 함유하는 미생물제제 및 미생물농약
Antonelli et al. Plant growth‐promoting bacteria from solarized soil with the ability to protect melon against root rot and vine decline caused by Monosporascus cannonballus
US20220053769A1 (en) Microbacterium esteraromaticum strain, composition comprising the same, and uses thereof
Resti et al. Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of shallots
Barquero et al. Biocontrol of Fusarium oxysporum f. sp. phaseoli and Phytophthora capsici with autochthonous endophytes in common bean and pepper in Castilla y León (Spain)
CA3232711A1 (en) Halotolerant bacterial strains as bio-fertilizer with growth-promoting and abiotic stress alleviation benefits for plants and application thereof
Orel Biocontrol of bacterial diseases with beneficial bacteria in lettuce
Elbanna et al. Characterization of egyptian fluorescent rhizosphere pseudomonad isolates with high nematicidal activity against the plant parasitic nematode Meloidogyne incognita

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001668

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020845905

Country of ref document: EP

Effective date: 20220228

ENP Entry into the national phase

Ref document number: 112022001668

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845905

Country of ref document: EP

Kind code of ref document: A2