WO2021018064A1 - 一种多段轭宽的电动工具用电机 - Google Patents

一种多段轭宽的电动工具用电机 Download PDF

Info

Publication number
WO2021018064A1
WO2021018064A1 PCT/CN2020/104665 CN2020104665W WO2021018064A1 WO 2021018064 A1 WO2021018064 A1 WO 2021018064A1 CN 2020104665 W CN2020104665 W CN 2020104665W WO 2021018064 A1 WO2021018064 A1 WO 2021018064A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
motor
rotor
outer diameter
ratio
Prior art date
Application number
PCT/CN2020/104665
Other languages
English (en)
French (fr)
Inventor
吴晓婷
Original Assignee
吴晓婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910697584.5A external-priority patent/CN110417226A/zh
Priority claimed from CN201921216099.3U external-priority patent/CN210724523U/zh
Application filed by 吴晓婷 filed Critical 吴晓婷
Publication of WO2021018064A1 publication Critical patent/WO2021018064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • This application relates to a motor, in particular to a motor for an electric tool with a multi-section yoke width.
  • Hand-held electric tools such as angle grinders, swing machines, etc., require the user to hold the tools to operate the work tools such as cutting, drilling, and polishing on the workpiece.
  • a split stator motor is used to replace the conventional integral motor.
  • the so-called split motor means that the stator is divided into multiple pieces before winding. Each piece of independent winding can increase the amount of winding. After the winding is completed, the pieces are spliced or welded together.
  • the split stator can wind more coils than the integral stator, which can increase the power of the motor.
  • the manufacturing and assembly process of the split stator is more complicated than that of the integral stator, and the manufacturing cost is much higher, which limits its wide use in handheld power tools.
  • the present application provides a motor for an electric tool, which has low cost and high power density. Brushed motor with integral stator.
  • a multi-section yoke width electric tool motor which is characterized in that it comprises
  • An integral stator with a plurality of convex portions protruding outward in the radial direction on its outer side, and concave portions on the circumferential inner side of the convex portion for accommodating windings;
  • a rotor which is arranged inside the stator
  • the commutator assembly is coaxially connected with the rotor;
  • the commutator assembly includes an armature shaft connected coaxially with the rotor, a commutator matched and connected with the armature shaft, and The brushes electrically connected to the commutator;
  • the outer diameter of the stator is between 40 mm and 57 mm, and the ratio of the outer diameter of the rotor to the outer diameter of the stator is between 0.50 and 0.62,
  • the ratio of the yoke width of the stator to the thickness of the convex portion is between 0.75 and 1.0. With this design, the slot full rate and output capacity of the motor are improved.
  • the stator further includes a pair of oppositely arranged horn-shaped salient poles, which are respectively arranged inside the stator, and a pair of oppositely arranged oppositely arranged center yokes, which are respectively arranged inside the stator, and a pair of center lines of the center yoke and The center lines of the pair of salient poles are perpendicular, and the ratio of the yoke width of the center yoke to the thickness of the convex portion is between 0.75 and 1.0.
  • the outer diameter of the stator is 46mm or 48mm or 50mm or 52mm or 55mm or 57mm, and the ratio of the outer diameter of the rotor to the outer diameter of the stator is between 0.55 and 0.60.
  • the ratio of the outer diameter of the rotor to the outer diameter of the stator is 0.60, and the width of the center yoke of the stator is between 3.6 mm and 4.2 mm.
  • the ratio of the outer diameter of the rotor to the outer diameter of the stator is between 0.58 and 0.60, the thickness of the convex portion is 4.8 mm, and the ratio of the output power of the motor to its volume is between 9 and 11 (unit w/cm3) .
  • the convex portion is integrally formed with the stator, and the thickness of the convex portion is between 3.8 mm and 5.0 mm.
  • the length of the stator along the axial direction of the armature shaft is between 40 mm and 60 mm.
  • the diameter of the armature shaft is between 6 mm and 8 mm.
  • the motor further includes a heat dissipating fan, which is coaxially connected to the rotating shaft of the rotor through a connector, and drives the heat dissipating fan to rotate based on the rotation of the rotor; the diameter of the heat dissipating fan is larger than the outer diameter of the rotor, so The ratio of the diameter of the heat dissipation fan to the outer diameter of the rotor is between 1.5-3.
  • the ratio of the thickness of the convex portion to the area of the groove is 8.5-11%.
  • the motor electronics of the embodiment of the present application adopts the design of multi-section yoke width, which improves the slot full rate of the motor and the power density of the motor.
  • FIG. 1 is a schematic diagram of the structure of a motor according to an embodiment of the application
  • Fig. 2 is a schematic diagram of the stator structure of the motor of the embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a stator according to an embodiment of the application.
  • Figure 4 is a schematic diagram of a rotor according to an embodiment of the application
  • FIG. 5 is a schematic cross-sectional view of a stator according to another embodiment of the application.
  • FIG. 6 is a schematic cross-sectional view of a rotor assembly according to an embodiment of the application.
  • Fig. 7 is a schematic cross-sectional view of a motor according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of the area of the convex portion and the groove of the motor according to the embodiment of the application;
  • FIG. 9 is a schematic diagram of a simulation result of a motor according to an embodiment of the application.
  • FIGS. 1 to 8 the motor of the embodiment of the present application will be described with reference to FIGS. 1 to 8.
  • the drawings include schematic diagrams, and the scales and ratios of vertical and horizontal of each part may be different from actual ones.
  • FIG. 1 shows a schematic diagram of the structure of the motor.
  • the motor 50 includes a stator 51 with a winding 52 (also called enameled wire/copper wire), a rotor assembly (not shown), and a commutator assembly at one end 53. The other end is connected to a cooling fan 55, which drives the cooling fan based on the rotation of the rotor assembly.
  • the output terminal 55 of the motor is used to connect transmission components (not shown).
  • Tooth width bridges 56 also called recesses
  • the motor is a brushed motor.
  • the stator 10 includes a body (also called a stator yoke) 11, a convex portion 12 is arranged on the outer side, and the inner side of the convex portion 12 is configured to match the convex portion.
  • a recess 12b with a similar profile is protruded, and the depth of the recess 12b is t2.
  • the depth t2 of the recess 12b is the same as the height of the protrusion. In other embodiments, the depth t2 of the recess 12b is greater than the height of the protrusion.
  • the horn-shaped salient pole 13 is arranged opposite to the inner side of the main body 11, and the center yoke 14 is arranged opposite to the inner side of the body 11.
  • the center line of the center yoke 14 is substantially perpendicular to the center line of the salient pole 13.
  • the body and the convex part are integrally formed.
  • the convex part is also called the bottom yoke, and the yoke width is greater than or equal to the width of the non-bottom yoke.
  • the wire harness of the inner winding of the stator can be increased, thereby increasing the high slot full rate of the motor.
  • the motor electronics of the embodiment of the application adopts multi-section yoke width (the thickness of the convex part is different from the thickness of the non-convex part, preferably, the thickness of the convex part is greater than or equal to The thickness of the convex part) is designed to improve the slot full rate of the motor and the power density of the motor.
  • the multi-section yoke width is at least two sections.
  • the salient pole 13 includes a pole shoe 13a integrally formed therewith, and the pole shoe 103a is symmetrical along the center axis of the y direction.
  • the thickness of the pole shoe 13a gradually decreases from the connection with the salient pole 13 to the end of the pole shoe.
  • the angle between the ends of the two pole shoes and the center is between 110° and 140° (for example, 110°, 120°, 130°, 140°).
  • a tooth width bridge (also called a recess) 15 is arranged on the outer side of the body 11 opposite to the salient pole 13, and the y-direction center line of the tooth width bridge 15 coincides with the y-direction center line of the salient pole 13.
  • the convex portion 12 is symmetrical along the center line in the x/y direction.
  • the convex portion 12 is sometimes called the bottom portion.
  • the height h of the inward protrusion of the center yoke 14 and the thickness ratio (ratio) of the h to the body are between 0.01 and 0.3.
  • the yoke width of the stator is between 3.6mm and 5.0mm. Preferably, it is between 4.2 mm and 4.8 mm.
  • the ratio of the yoke width of the center yoke (the narrowest yoke width of the center yoke, yoke width 1) to the thickness of the convex portion 12 (also called yoke width 2) is between 0.75 and 1.0. If the yoke width of the center yoke is greater than the thickness at the convex portion 12, the yoke width at the narrowest part of the stator body (denoted as yoke width 1) is selected. The ratio of the rotor outer diameter to the stator outer diameter is between 0.55 and 0.60. As shown in Table 1 below, when the ratio of yoke width 1 to yoke width 2 is different, the ratio of output power to volume of the motor (W/cm3)
  • the center yoke can be omitted.
  • the ratio of the yoke width at the narrowest part of the stator body (denoted as yoke width 1) to the thickness at the convex portion 12 (also called yoke width 2) is selected to be 0.75 ⁇ 1.0, the ratio of output power to volume of the motor listed in the above table can be applied.
  • the thickness of the center yoke is the narrowest in the stator design).
  • the difference in the ratio of the rotor outer diameter to the stator outer diameter is the ratio of the output power to the volume of the motor (W/cm3) when the yoke width is 2 wide.
  • the yoke width affects the performance of the motor. With the yoke 1 unchanged, increasing the width of the bottom yoke width (yoke 2) will greatly increase the motor power density. However, the yoke 1 is affected by the structure and the slot full rate (the ratio of the winding copper wire to the slot area). When the width of the yoke 1 reaches a certain value, the power does not increase.
  • the optimal ratio of yoke 1 to yoke 2 which maximizes the power density of the motor.
  • the size of the yoke 2 is the place where the magnetic flux density of the motor is densest, which is easy to saturate the magnetic density, so that the motor power cannot be increased and the temperature rises.
  • the width of the yoke 2 must be increased.
  • the width of the yoke 2 affects the outer diameter of the stator (in the case of limited space, generally the outer diameter of the yoke 2 matches the inner diameter of its support, which is called profiling design, which maximizes the yoke width reasonably and increases the magnetic flux , Increase the output power), and compare the matching performance with the width of the yoke 2 through the best inner and outer diameter ratio to obtain the best performance parameters.
  • the power density is above 10W/cm3.
  • one side of the convex portion 12 is provided with an inclined surface 12a, and the tangent angle between the inclined surface 12a and the outer surface of the main body 101 that it contacts is greater than 90°, such as 100, 120°, and so on.
  • the convex portion 12 can be used to fix and prevent the motor from moving (rotating).
  • the ratio of the circumferential length of the center yoke 14 to the thickness of the body 11 at the position is between 0.5-2.
  • the circumferential length is slightly equal to the thickness of the body at its location.
  • the axial length of the horn-shaped salient pole 13 is equal to the axial length of the stator body, and it forms a slot with the stator side, and a winding (also called copper wire/enameled wire, not shown) wound according to a certain rule is wound inside the slot.
  • the outer contour of the integral stator can be circular, oval, oblate, or other shapes suitable for being housed in the housing of the hand-held tool.
  • the ratio of the height of the protrusion to the thickness of the protrusion is between 1.01 and 1.5.
  • the yoke of the stator is wide, and the radial thickness of the stator (the radial thickness of the stator where there is no convex portion).
  • the inclined surface 32a is arranged on one side of the convex 32, and the tangent angle between the inclined surface 32a and the outer surface of the body 31 with which it contacts is less than or equal to 90 °, such as 90°, 60°, 45°, 30°.
  • 90 ° such as 90°, 60°, 45°, 30°.
  • the motor stator 60 includes a body 61 with a convex portion 62 disposed in the circumferential direction, and a horn-shaped salient pole 63 is disposed on the inner side.
  • the salient pole 63 includes A pole shoe 63a integrally formed therewith.
  • the cross section of the motor stator is substantially circular, and its outer diameter D.
  • the height t1 of the protrusion 62 In one embodiment, the ratio of the depth t2 of the recess (see FIG. 3) to the height t1 of the protrusion is between 0.5-3.
  • the outer diameter includes the height at which the convex portion 62 protrudes.
  • a concave portion 62a is arranged on the inner side of the convex portion 62.
  • This design increases the number of windings on the salient pole 63 and improves the slot full rate of the motor.
  • the convex part (convex part is sometimes called the bottom yoke) has a wider yoke than other parts (compared to the conventional motor stator with equal yoke width), which increases the magnetic flux and reduces the magnetic flux. Close saturation, increase motor output power.
  • the wire diameter that can be thickened can also be used to reduce copper loss and increase the power of the motor.
  • FIG. 8 shows the schematic diagram of the thickness of the convex part and the groove area of the motor electronics, the thickness t of the convex part 62 and the groove area S corresponding to the winding (the shaded part in the figure, that is, the inside of the convex part, the inside of the part of the body, and the salient pole
  • the ratio of t/S is between 8.5-11%.
  • Such a designed motor increases the effective magnetic flux of the motor (as shown in FIG. 9, the effective magnetic flux near the convex portion 62 is high), and its output capacity is improved.
  • the angle ⁇ between the ends of the two pole shoes 63a and the center is between 110° and 140°.
  • the included angle ⁇ is between 130°.
  • Table 3 taking the stator outer diameter 52mm as an example (including the protrusion height of the protrusion), when the protrusions have different thicknesses (yoke width), the ratio of power to motor volume (W/cm3),
  • the thickness of the convex portion is 4.6 mm.
  • the rotor assembly 20 includes a rotor core 22 with teeth 21 uniformly arranged in the circumferential direction. Two adjacent teeth constitute a slot of the rotor, and the rotor is wound inside. For the winding (not shown), one end of the tooth 21 is connected to the rotor core 22, and the other end is connected to the tooth buckle 21a.
  • the rotating shaft of the rotor assembly 14 protrudes from the cooling fan 13.
  • the outer diameter of the stator ranges from 40 mm to 52 mm, and the ratio of the outer diameter of the rotor to the outer diameter of the stator ranges from 0.50 to 0.60.
  • the ratio of the outer diameter of the rotor to the outer diameter of the stator is 0.58 or 0.60.
  • the efficiency of the motor is high, and the ratio of the output power to the volume of the motor is close to more than 10W/cm3, which is larger than the current output power to volume ratio of the same type of motor at about 8 (or less than 8).
  • the improvement of the motor enhances the output capacity of the motor under the same size.
  • the ratio of the output power of the motor to its volume is between 8-12 (unit w/cm3).
  • the ratio of the output power of the motor to its volume is between 9-11 (unit w/cm3).
  • the stator of the motor adopts the structure of an integral stator, which is pressed and welded by a plurality of laminations to form a hollow integral stator.
  • each lamination of the stator is hollow in the axial direction. Integral.
  • the rotor assembly and the armature shaft rotated by the rotor assembly are located inside the stator assembly.
  • the hand-held electric tool using the motor preferably has a body approximately cylindrical, extending along the axial direction of the armature shaft, and the axis of the body and the axis of the armature shaft are coaxial.
  • the volume V of the motor is cm 3 and the calculated value is divided by 1000.
  • L is defined by the length of the stator (the length of the stator/rotor is the same).
  • the motor of the above-mentioned embodiment has a relatively high rotation speed, such as 40,000 rpm (e.g., 38,000 rpm, 39,000 rpm or higher) when it runs under no load.
  • the power during operation P2 Pl-P, Pl is the input power Pl, and P is the loss.
  • the motor output power P2 has a positive correlation with the diameter D of the motor, the axial length L of the motor, the speed of the motor, and the slot full rate of the motor.
  • FIG. 6 shows a schematic structural diagram of the connection between the rotor (rotor assembly) and the commutator assembly.
  • the rotor assembly 41 includes a rotating shaft (not shown), one end of which is connected to the commutator assembly 44, and the other end is connected to the cooling fan 43 and passing through
  • the output shaft 44 is connected to a power transmission component (not shown).
  • the commutator assembly 42 includes a commutator 42a, the armature shaft is matched with the commutator 42a, and a brush 42b is electrically connected to the commutator 42a.
  • the number of commutators is 24, and the rotor assembly includes 12 slots. In other embodiments, the number of chips and the number of slots can be other values.
  • the rotor assembly 41 has a rotor winding 41a arranged therein.
  • the rotor winding 41 a partially protrudes from the rotor assembly 41. It is covered with a protective net 41b.
  • This protection net 41b is also called a winding protection net.
  • the rotor assembly also includes a rotor blank 41c (rotation shaft) inside it.
  • the rotor assembly is usually a stack of metal laminations piled together in the axial direction and welded together.
  • the main component is iron, so it can also be called an iron core.
  • the outer diameter of the motor of the above embodiment can be 46mm, 48mm, 50mm, 52mm, 55mm, 57mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提出一种多段轭宽的电动工具用电机。该电机包括整体式定子,其外侧配置有复数个沿其径向外突出的凸部,所述凸部的周向内侧配置有凹部,其用以容纳绕线;转子,其配置于所述定子的内侧;换向器组件,其与所述转子同轴的连接;所述换向器组件包括,与所述转子同轴的连接电枢轴、与所述电枢轴匹配连接的换向器及与所述换向器电性连接的电刷;所述定子的外径介于40mm~57mm,所述转子外径与所述定子外径比值介于0.50~0.62。采用本申请实施方式的电机其与同尺寸的定子相比,提高电机的槽满率,同等条件下的输出能力。

Description

一种多段轭宽的电动工具用电机 技术领域
本申请涉及一种电机,具体地涉及一种多段轭宽的电动工具用电机。
背景技术
手持式电动工具,例如角磨、摆动机等要求用户手持工具进行操作在工件上实现切削、钻孔、打磨等工作的作业工具。现有技术中采用分体式定子电机来替代常规整体式电机。所谓分体式电机,是其定子在绕制前是被分为多块,每一块独立绕线可以增加绕线量,在绕完线之后再将各个块拼接或者焊接为一体。常规工艺下,分体式定子可以比整体式定子绕制更多线圈,从而能提升了电机的功率。但是,分体式定子的制造和装配工艺比整体式定子的复杂,制造的成本高很多,限制了其在手持式电动工具产品中广泛使用。
发明内容
基于上述问题,本申请提供一种电动工具用电机,其具有成本低、功率密度高。具有整体式定子的有刷电机。
为此本申请采用如下技术方案:
一种多段轭宽的电动工具用电机,其特征在于,包括
整体式定子,其外侧配置有复数个沿其径向外突出的凸部,所述凸部的周向内侧配置有凹部,其用以容纳绕线;
转子,其配置于所述定子的内侧;
换向器组件,其与所述转子同轴的连接;所述换向器组件包括,与所述转子同轴的连接电枢轴、与所述电枢轴匹配连接的换向器及与所述换向器电性连接的电刷;
所述定子的外径介于40mm~57mm,所述转子外径与所述定子外径比值介于0.50~0.62,
所述定子的轭宽与所述凸部的厚度比值介于0.75~1.0。采用这样的设计,提高电机了的槽满率以及输出能力。
优选的,该定子还包括一对相向配置的喇叭状凸极,其分别配置在定子内侧,一对相向配置相对的配置中心轭,其分别配置在定子内侧,一对所述中心轭的中线与一对所述凸极的中线垂直,所述中心轭的轭宽与所述凸部的厚度比值介于0.75~1.0。
优选的,该定子的外径为46mm或48mm或50mm或52mm或55mm或57mm,所述转子外径与所述定子外径的比值介于0.55~0.60。
优选的,该转子外径与所述定子外径的比值为0.60,所述定子的中心轭宽介于3.6mm~4.2mm。
优选的,该转子外径与所述定子外径比值介于0.58~0.60,所述凸部的厚度的4.8mm,所述电机的输出功率与其体积比介于9~11(单位w/cm3)。
优选的,该凸部与定子一体成型,所述凸部处的厚度介于3.8mm~5.0mm。
优选的,该定子沿所述电枢轴的轴向的长度介于40mm~60mm。
优选的,该电枢轴的直径介于6mm~8mm。
优选的,该电机还包括散热风扇,其通过连接件与转子的转轴同轴连接,基于所述转子的转动带动所述散热风扇旋转;所述散热风扇的直径大于所述转子的外径,所述散热风扇的直径与所述转子的外径比值介于1.5~3。
优选的,该凸部的厚度与槽面积的比值介于8.5~11%。
相对于现有技术中的方案,本申请的优点:
相较于现有电机的定子采用等轭宽的设计,本申请实施方式的电机电子采用多段轭宽的设计,其提高电机的槽满率,提高电机的功率密度等。
附图说明
下面结合附图及实施例对本申请作进一步描述:
图1为本申请实施例的电机的结构示意图;
图2本申请实施例的电机的定子结构示意图;
图3为本申请实施例的定子截面示意图;
图4为本申请实施例的转子的示意图
图5为本申请另一实施例的定子截面示意图;
图6为本申请实施例的转子组件截面示意图;
图7为本申请实施例的电机的截面示意图;
图8为本申请实施例的电机的凸部与槽面积的示意图;
图9为本申请实施例的电机的仿真结果示意图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。本实施方式中,提及的定子的外径,其包括凸部突出的高度。
实施例:
接下来结合图1-图8来描述本申请实施方式的电机。而且,附图中包括示意图,会有各个部件的缩尺以及纵横的比率等与实际不同的情况。
如图1所示为电机的结构示意图,电机50,包括定子51,内设有绕组52(也称漆包线/铜线)其内配置有转子组件(图未示),其一端连接换向器组件53,另一端连接散热风扇55,基于转子组件的转动带动散热风扇。该电机的输出端55,用以连接传动部件(图未示)。定子51的相对的两侧设有齿宽桥56(也称凹部)。较佳的,两侧分别齿宽桥56侧的面56a平行。本实施方式中,电机为有刷电机。
接下来结合图2,图3来描述本申请实施方式的定子结构示意图, 定子10,包括本体(也称定子轭)11、其外侧配置有凸部12、凸部12的内侧配置成与凸部突出轮廓相似的凹部12b,该凹部12b的深度为t2。凹部12b的深度t2与凸出的高度相同。在其他的实施方式中,凹部12b的深度t2大于凸出的高度。本体11内侧相对的配置喇叭状凸极13,本体11内侧相对的配置中心轭14,该中心轭14的中线与凸极13的中线大致垂直。较佳的,该本体与凸部一体成型,有时该凸部也称为底部轭,其轭宽大于等于非底部轭处的宽度。本实施方式,在同样的尺寸下通过在定子的凸部12处的内侧配置凹部,可提高定子内绕组的线束进而提高电机的高槽满率。相较于现有电机的定子大多采用等轭宽的设计,本申请实施方式的电机电子采用多段轭宽(凸部厚度与非凸部处的厚度不同,较佳的,凸部厚度大于等于非凸部处的厚度)的设计,其提高电机的槽满率,提高电机的功率密度等。多段轭宽至少为2段轭宽。该凸极13包括与其一体成型的极靴13a,该极靴103a沿y方向的中轴线对称。该极靴13a的厚度从与凸极13连接处至极靴的末端逐渐减小。两极靴的端部与中心的夹角介于110°~140°(如,110°,120°,130°,140°)。凸极13相对的本体11外侧配置有齿宽桥(也称凹部)15,齿宽桥15的y向中线与凸极13的y向中线重合。较佳的该凸部12沿x/y向中线对称。凸部12有时也称底部额。该中心轭14向内凸起的高度h,该h与本体的厚度比(比值)介于0.01~0.3。该定子的轭宽介于3.6mm~5.0mm。较佳的,介于4.2mm~4.8mm。
上述的实施方式中,中心轭的轭宽度(中心轭的轭宽最窄处,轭宽1)与凸部12处的厚度(也称轭宽2)比值介于0.75~1.0。若中心轭 的轭宽度大于凸部12处的厚度,则选取定子本体最窄处的轭宽度(记做轭宽1)。转子外径与定子外径的比值介于0.55~0.60。如下表1所示,轭宽1/轭宽2不同比值时,电机的输出功率与体积比值(W/cm3)
Figure PCTCN2020104665-appb-000001
表1
在其他的的实施方式中,可省略该中心轭,这时选取定子本体最窄处的轭宽度(记做轭宽1)与凸部12处的厚度(也称轭宽2)比值介于0.75~1.0,任适用上述表中列出的电机的输出功率与体积比值。(通常,定子设计时中心轭处厚度最窄)。
如下表2所示,转子外径与定子外径的比值不同是,不同的轭宽2宽时,电机的输出功率与体积比值(W/cm3)
Figure PCTCN2020104665-appb-000002
表2
从表2中,可以看出,表示轭宽对电机性能的影响,在轭1不变的 情况下,加大底部轭宽(轭2)的宽度,电机功率密度大大加大。但轭1因受到结构,槽满率(绕阻铜线占槽面积的比值)影响,当轭1宽达到一定值时,功率不在增加。这里就有了轭1和轭2的最佳比值,使得电机功率密度最大化。表2中,轭2尺寸为电机磁通密度最密集的地方,容易磁密饱和,使得电机功率无法加大,且温升高。所以要加大轭2宽度。轭2的宽带度,影响定子外径尺寸(空间有限的情况下,一般轭2的外径尺寸和其支撑件内径相配合,称为仿形设计,使得轭宽合理最大化,加大磁通,加大输出功率),同时通过最佳内外径比,和轭2的宽度进行配对性能对比,得到最佳性能参数。功率密度达到10W/cm3以上。
本实施方式中,凸部12的一侧配置有倾斜面12a,该斜面12a与其接触的本体101外侧面的切线夹角大于90°,如100,°120°等。这样该定子100与壳体(图未示)组装后,该凸部12可以起到固定并防止电机移动(转动)。该中心轭14的周向长度与其位置处本体11的厚度比值介于0.5~2。较佳的,周向长度略等于与其位置处本体的厚度。该喇叭状凸极13轴向长度等于定子本体的轴向长度,其与定子侧围成槽,槽内部绕有依据一定规则缠绕的绕线(也称铜线/漆包线,图未示)。整体式定子的外轮廓可为圆形、椭圆形、扁方形或者其他形状适合收容在手持式工具的机壳中的形状。凸部突出的高度与凸部的厚度比值介于1.01~1.5。本实施方式中定子的轭宽,定子的径向厚度(无凸部处的定子的径向厚度)。
作为图3实施方式的变形如图5所示,其与图5中的方式区别在于凸32的一 侧配置的倾斜面32a,该斜面32a与其接触的本体31外侧面的切线夹角小于等于90°,如90°、60°、45°、30°。这样的设计,使得凸起22可靠的与壳体配合,且起到防止电子转动的目的。
如图7所示,为本申请实施方式的电机定子的截面示意图;电机定子60,包括本体61,其周向上配置有凸部62,其内侧配置有喇叭状凸极63,该凸极63包括与其一体成型的极靴63a。本实施方式中,电机定子的截面大致呈圆形,其外径D。凸部62凸出的高度t1。在一的实施方式中,凹部的深度t2(参见图3)与凸出的高度t1的比值介于0.5~3。外径包括凸部62凸出的高度。该实施放置中,凸部62的内侧配置有凹部62a,这样的设计增加了凸极63上绕线的数量,提高了电机的槽满率。该实施方式中,采用了凸部(凸部有时也称底部轭)的轭较其它处宽的设计(相比与现有电机的定子采用等轭宽的方式),加大磁通,降低磁密饱和,加大电机输出功率。另外,由于加大了绕阻槽的面积,还可采用可加粗绕线的线径,这样降低铜损,提高电机功率。如图8所示电机电子的凸部厚度与槽面积的示意图,凸部62的厚度t与绕线对应的槽面积S(见图中阴影部分,即凸部内侧、部分本体内侧、凸极围城的面积)的比值,t/S介于8.5~11%。这样的设计电机的增加了电机的有效磁通(如图9所示,凸部62附近有效磁通高),提高其输出能力。两极靴63a末端与中心的夹角θ介于110°~140°。较佳的,夹角θ介于130°。如表3所示,以定子外径52mm为例(包括凸部突出的高度),凸部不同的厚度(轭宽)时,功率与电机体积比值(W/cm3),
Figure PCTCN2020104665-appb-000003
表3
本实施方式中选取凸部的厚度4.6mm。
接下来结合图4来描述本申请实施方式的转子组件结构,转子组件20,包括转子芯体22,其周向上均匀的配置有齿21,相邻两齿构成转子的槽,其内绕有转子绕组(图未示),齿21一端连接转子芯体22,另一端连接齿扣21a。
转子组件14的转轴突出于散热风扇13。该定子的外径介于40mm~52mm,所述转子外径与所述定子外径比值范围为0.50~0.60。较佳的,所述转子外径与所述定子外径比值为0.58、0.60。这时电机的效率高,电机的输出功率与体积的比值接近10W/cm3以上,相较于目前同类型的电机的输出功率与体积的比值8左右(或比值不到8),有了较大的提高,增强了相同尺寸下电机的输出能力。本实施方式中,电机的输出功率与其体积比介于8~12(单位w/cm3),较佳的,电机的输出功率与其体积比介于9~11(单位w/cm3)。本实施方式中,电机的定子采用整体式定子的结构,其由多个叠片压制焊接在一起,形成中空的整体式定子,该结构的定子在轴向上的每一层叠片都是中空的整体的。转子组件及由转子组件带动旋转的电枢轴位于定子组件的内侧。采用该电机的手持式电动工 具,较佳的其机身呈近似圆筒形,沿着电枢轴的轴向方向延伸,机身的轴线与电枢轴的轴线共轴线。
定义电机的体积V=π(D/2) 2*L,其中D为定子直径(也称定子的外径,包括凸部的高度),L为电机的轴向长度,,单位mm,若换算成电机体积V为cm 3再将上述计算值除以1000。L以定子长度来定义(定子/转子的长度相同)。
上述实施方式的电机,其在当空载时运行时具有较高的转速,如,40000rpm(如,38000rpm,39000rpm或更高)。运行过程中的功率P2=Pl-P,Pl为输入功率Pl,P为损耗。电机输出功率P2与电机的直径D、电机的轴向长度L、电机的转速、以及电机的槽满率成具有正相关性。
如图6所示为转子(转子组件)与换向器组件连接的结构示意图,转子组件41,包括转轴(图未示),其一端连接换向器组件44,另一端连接散热风扇43及通过输出轴44连接动力传输部件(图未示)。换向器组件42,包括换向器42a,与换向器42a匹配连接电枢轴,与换向器42a电性连接的电刷42b。本实施方式中,换向器的片数24片,转子组件包括12槽。在其他是实施方式中,片数及槽数可为其他的值。转子组件41其内配置有转子绕组41a。较佳的该转子绕组41a部分突出于转子组件41。其上覆盖有保护网41b。该保护网41b也称绕组保护线网。转子组件还包括位于其内部的转子毛坯41c(转轴)。转子组件通常是用适当数量的金属叠片沿轴向堆在一起并焊接而成的叠片堆,主要成分是铁,所以也可称为铁芯。
上述实施方式的电机,其外径可为46mm、48mm、50mm、52mm、55mm、57mm。
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。

Claims (11)

  1. 一种多段轭宽的电动工具用电机,其特征在于,包括:
    整体式定子,其外侧配置有复数个沿其径向外突出的凸部,所述凸部的周向内侧配置有凹部,其用以容纳绕线;
    转子,其配置于所述定子的内侧;
    换向器组件,其与所述转子同轴的连接;所述换向器组件包括,与所述转子同轴的连接电枢轴、与所述电枢轴匹配连接的换向器及与所述换向器电性连接的电刷;
    所述定子的外径介于40mm~57mm,所述转子外径与所述定子外径比值介于0.50~0.62。
  2. 如权利要求1所述的电机,其特征在于,
    所述定子还包括一对相向配置的喇叭状凸极,其分别配置在定子内侧,一对相向配置相对的配置中心轭,其分别配置在定子内侧,一对所述中心轭的中线与一对所述凸极的中线垂直,所述中心轭的轭宽与所述凸部的厚度比值介于0.75~1.0。
  3. 如权利要求2所述的电机,其特征在于,所述凸极包括与其一体成型的极靴,所述极靴沿第一方向的中轴线对称,其厚度从与凸极连接处至极靴的末端逐渐减小。
  4. 如权利要求1所述的电机,其特征在于,所述定子的外径为46mm或48mm或50mm或52mm或55mm或57mm,所述转子外径与所述定子外径的比值介于0.55~0.60。
  5. 如权利要求4所述的电机,其特征在于,所述转子外径与所述定子外径的比值为0.60,所述定子的中心轭宽介于3.6mm~4.2mm。
  6. 如权利要求4所述的电机,其特征在于,所述转子外径与所述定子外径比值介于0.58~0.60,所述凸部的厚度为4.8mm,所述电机的输出功率与其体积比介于9~11w/cm3。
  7. 如权利要求1所述的电机,其特征在于,所述凸部与定子一体成型,所述凸部处的厚度介于3.8mm~5.0mm。
  8. 如权利要求1所述的电机,其特征在于,所述定子沿所述电枢轴的轴向的长度介于40mm~60mm,电枢轴的直径介于6mm~8mm。
  9. 如权利要求1所述的电机,其特征在于,还包括散热风扇,其通过连接件与转子的转轴同轴连接,基于所述转子的转动带动所述散热风扇旋转;所述散热风扇的直径大于所述转子的外径,所述散热风扇的直径与所述转子的外径比值介于1.5~3。
  10. 如权利要求1所述的电机,其特征在于,所述凸部的厚度与槽面积的比值介于8.5~11%。
  11. 如权利要求1所述的电机,其特征在于,所述定子的轭宽与所述凸部的厚度比值介于0.75~1.0。
PCT/CN2020/104665 2019-07-31 2020-07-25 一种多段轭宽的电动工具用电机 WO2021018064A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910697584.5 2019-07-31
CN201921216099.3 2019-07-31
CN201910697584.5A CN110417226A (zh) 2019-07-31 2019-07-31 一种多段轭宽的电动工具用电机
CN201921216099.3U CN210724523U (zh) 2019-07-31 2019-07-31 一种多段轭宽的电动工具用电机

Publications (1)

Publication Number Publication Date
WO2021018064A1 true WO2021018064A1 (zh) 2021-02-04

Family

ID=74228355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104665 WO2021018064A1 (zh) 2019-07-31 2020-07-25 一种多段轭宽的电动工具用电机

Country Status (1)

Country Link
WO (1) WO2021018064A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837935B2 (en) 2021-02-02 2023-12-05 Black & Decker, Inc. Canned brushless motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201975875U (zh) * 2011-01-27 2011-09-14 德昌电机(深圳)有限公司 电动工具及其永磁电机
CN205911841U (zh) * 2016-07-29 2017-01-25 苏州工业园区星德胜电机有限公司 一种定子铁芯及包括该定子铁芯的高强度无刷直流电机
US20170117784A1 (en) * 2015-10-21 2017-04-27 Mcmaster University Double-rotor switched reluctance machine with segmented rotors
CN106953432A (zh) * 2015-12-15 2017-07-14 富士电机株式会社 旋转电机
CN110417226A (zh) * 2019-07-31 2019-11-05 吴晓婷 一种多段轭宽的电动工具用电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201975875U (zh) * 2011-01-27 2011-09-14 德昌电机(深圳)有限公司 电动工具及其永磁电机
US20170117784A1 (en) * 2015-10-21 2017-04-27 Mcmaster University Double-rotor switched reluctance machine with segmented rotors
CN106953432A (zh) * 2015-12-15 2017-07-14 富士电机株式会社 旋转电机
CN205911841U (zh) * 2016-07-29 2017-01-25 苏州工业园区星德胜电机有限公司 一种定子铁芯及包括该定子铁芯的高强度无刷直流电机
CN110417226A (zh) * 2019-07-31 2019-11-05 吴晓婷 一种多段轭宽的电动工具用电机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837935B2 (en) 2021-02-02 2023-12-05 Black & Decker, Inc. Canned brushless motor
US11855521B2 (en) 2021-02-02 2023-12-26 Black & Decker, Inc. Brushless DC motor for a body-grip power tool
US11870316B2 (en) 2021-02-02 2024-01-09 Black & Decker, Inc. Brushless motor including a nested bearing bridge
US11876424B2 (en) 2021-02-02 2024-01-16 Black & Decker Inc. Compact brushless motor including in-line terminals
US11955863B2 (en) 2021-02-02 2024-04-09 Black & Decker Inc. Circuit board assembly for compact brushless motor

Similar Documents

Publication Publication Date Title
JP5270548B2 (ja) 同期機および同期機の製造方法
KR102497011B1 (ko) 헤어핀 권선 모터의 고정자구조
JP2007159400A (ja) ユニバーサルモータ及びその固定子用ラミネーション
JP6668001B2 (ja) 永久磁石モータ
JP3950114B2 (ja) 誘導電動機の固定子
WO2021018064A1 (zh) 一种多段轭宽的电动工具用电机
WO2021018063A1 (zh) 一种手持式电动工具用电机
KR20130121009A (ko) 회전 전기기계
US20220320932A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
US10236735B2 (en) Electric conductor for coil and rotating electric machine
CN210724523U (zh) 一种多段轭宽的电动工具用电机
CN103779977A (zh) 无槽式无刷直流电机
CN108933487B (zh) 车用旋转电机
US7827672B2 (en) Method of manufacture stator for an automotive alternator
JP4269707B2 (ja) 整流子電動機
KR102460109B1 (ko) 헤어핀 권선 모터의 고정자구조
CN110417226A (zh) 一种多段轭宽的电动工具用电机
CN211151631U (zh) 一种手持式电动工具用电机
CN203632516U (zh) 无槽式无刷直流电机
CN207603313U (zh) 同步有刷发电机四极定转子铁芯冲片
CN107425624B (zh) 电机定子、电机及压缩机
JP5738084B2 (ja) 整流子、整流子を備えた回転子及び、整流子を備えた回転子の製造方法
CN211151782U (zh) 一种手持式电动工具用电机
JP2009296745A (ja) 多極アキシャルギャップ型コンデンサ電動機とその製造方法
US20170353074A1 (en) Rotor for rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846881

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20846881

Country of ref document: EP

Kind code of ref document: A1