WO2021018062A1 - 踏板故障诊断方法及装置 - Google Patents

踏板故障诊断方法及装置 Download PDF

Info

Publication number
WO2021018062A1
WO2021018062A1 PCT/CN2020/104654 CN2020104654W WO2021018062A1 WO 2021018062 A1 WO2021018062 A1 WO 2021018062A1 CN 2020104654 W CN2020104654 W CN 2020104654W WO 2021018062 A1 WO2021018062 A1 WO 2021018062A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
zero
voltage
fault diagnosis
fault
Prior art date
Application number
PCT/CN2020/104654
Other languages
English (en)
French (fr)
Inventor
吴自贤
张永生
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20847666.3A priority Critical patent/EP3995378A4/en
Publication of WO2021018062A1 publication Critical patent/WO2021018062A1/zh
Priority to US17/583,588 priority patent/US20220144293A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0225Failure correction strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/06Disposition of pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/038Limiting the input power, torque or speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/403Brake circuit failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0881Seat occupation; Driver or passenger presence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/0215Sensor drifts or sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/38Controlling members actuated by foot comprising means to continuously detect pedal position

Definitions

  • This application relates to the field of vehicle electronics technology, and in particular to a pedal fault diagnosis method and device.
  • the pedal zero fault includes a zero offset fault.
  • Zero offset fault refers to the deviation between the initial zero position and the actual zero position of the vehicle pedal (such as accelerator pedal, brake pedal, etc.) caused by long-term aging and wear.
  • the vehicle control program or software is usually based on The initial zero position of the vehicle pedal is used as a reference to control the vehicle, and the control basis does not match the actual zero position, resulting in a certain safety hazard in vehicle control.
  • the existing zero fault detection usually includes the following steps: collect the voltage when the pedal is at the zero position, that is, the actual zero voltage, and compare the actual zero voltage with the voltage corresponding to the initial zero position, that is, the initial zero voltage.
  • the zero voltage in the controller of the vehicle control program or software is updated to the actual zero voltage.
  • the difficulty lies in accurately judging whether the pedal is in the zero position, that is, judging whether the pedal is stepped on by the driver.
  • One of the current main implementations is to infer whether the pedal is at the zero position based on driving operations or statistical data.
  • the embodiments of the present application provide a pedal fault diagnosis method and device, which can solve the problems of false alarms and missed reports that may occur in the process of inferring whether the pedal is at the zero position based on driving operation or statistical data, and can improve the safety of vehicle control , Reduce driving risk.
  • a pedal fault diagnosis method includes: detecting whether the driver's seat is in an unmanned state, and when the driver's seat is in an unmanned state, collecting the actual zero voltage of the pedal. Then, determine whether the pedal has a zero fault based on the actual zero voltage.
  • the pedal fault diagnosis method can detect whether there is a person on the driver's seat, and collect the actual zero voltage of the pedal when the driver's seat is unmanned, that is, the actual zero voltage when the pedal is not depressed. According to the actual zero voltage, it is determined whether the pedal has a zero fault, such as a zero offset fault or a stuck fault. Then the vehicle can be controlled based on the above actual zero voltage, such as the zero voltage in the on-board controller The set value is updated to the actual zero voltage collected above, which can solve the problem of indirectly inferring whether the pedal has a zero fault based on driving operation or statistical data. The pedal is depressed because it cannot be accurately inferred whether the pedal is depressed or not.
  • the actual zero voltage collected during the download is updated to the set value of the zero voltage in the on-board controller, which leads to the control commands issued by the on-board controller, such as torque commands that cannot reflect the actual operating conditions of the vehicle, which leads to the safety of vehicle control
  • the problem of poor performance can improve the safety of vehicle control and reduce driving risks.
  • detecting whether the driver's seat is in an unmanned state may include one or more of the following: not detecting that there is face information at the location of the driver's seat; detecting that the pressure on the driver's seat is less than the pressure threshold.
  • determining whether the pedal has a zero fault based on the actual zero voltage may include the following steps: calculating the absolute value of the difference between the actual zero voltage and the initial zero voltage, and determining according to the comparison result of the absolute value and the voltage threshold Whether the pedal has a zero fault.
  • the above voltage threshold may include a first voltage threshold
  • the above zero fault may include a pedal jam fault.
  • determining whether the pedal has a zero fault based on the comparison result of the absolute value and the voltage threshold may include the following steps: if the absolute value is greater than or equal to the first voltage threshold, it is determined that the pedal has a stuck fault.
  • the pedal fault diagnosis method described in the first aspect may further include the following step: outputting prompt information.
  • the prompt information may include sound, text, images, etc., for prompting to check whether there is a foreign object in the space where the pedal is located. The driver can check and remove foreign objects in the space where the pedal is located according to the prompt information to improve driving safety.
  • the above pedal fault diagnosis method may further include the following steps: processing the pedal at a zero opening degree.
  • the zero opening processing is: when it is detected that the voltage when the pedal is stepped on is less than or equal to the actual zero voltage corresponding to the stuck fault, the pedal is processed by pressing the opening to zero to ensure driving safety.
  • the above pedal fault diagnosis method may further include the following steps: controlling the vehicle to enter a speed limit mode.
  • the speed limit mode is: controlling the speed of the vehicle to be less than or equal to the first safe speed threshold to ensure driving safety.
  • the above voltage threshold includes a first voltage threshold and a second voltage threshold, and the first voltage threshold is greater than the second voltage threshold; the zero fault includes a zero offset fault of the pedal.
  • determining whether the pedal has a zero fault based on the comparison result of the absolute value and the voltage threshold may include the following steps: if the absolute value is less than the first voltage threshold and the absolute value is greater than or equal to the second voltage threshold, then determining the pedal There is a zero offset fault.
  • the above pedal fault diagnosis method may further include the following step: determining the actual zero voltage as the set value of the zero voltage in the controller.
  • the setting value of the zero voltage in the controller is used to calculate the opening degree of the pedal to improve the safety of vehicle control.
  • determining the actual zero voltage as the set value of the zero voltage in the controller may include the following steps: determining the maximum value of the multiple actual zero voltages as the set value of the zero voltage of the controller, To further improve the safety of vehicle control.
  • a pedal fault diagnosis device in the second aspect, includes a detection module, an acquisition module and a processing module.
  • the detection module is used to detect whether the driver's seat is in an unmanned state.
  • the acquisition module is used to acquire the actual zero voltage of the pedal when the driver's seat is in an unmanned state.
  • the processing module is used to determine whether the pedal has a zero fault according to the actual zero voltage.
  • the aforementioned detection module is also used to detect whether there is face information at the location of the driver's seat, and/or whether the pressure experienced by the driver's seat is less than a pressure threshold.
  • the aforementioned processing module is also used to calculate the absolute value of the difference between the actual zero voltage and the initial zero voltage, and to determine whether the pedal has a zero fault based on the comparison result of the absolute value and the voltage threshold.
  • the above voltage threshold may include the first voltage threshold; the zero fault may include a pedal jam fault.
  • the above-mentioned processing module is further configured to determine that the pedal has a stuck fault if the absolute value is greater than or equal to the first voltage threshold.
  • the pedal fault diagnosis device of the second aspect may further include: an output module.
  • the output module is used to output prompt information.
  • the prompt information may include sound, text, images, etc., for prompting to check whether there is a foreign object in the space where the pedal is located.
  • the above-mentioned processing module is also used for processing the pedal at zero opening.
  • the zero opening processing is: when it is detected that the voltage when the pedal is stepped on is less than or equal to the actual zero voltage corresponding to the stuck fault, then the pedal is processed by pressing the opening to zero.
  • the aforementioned processing module is also used to control the vehicle to enter the speed limit mode.
  • the speed limit mode is: controlling the speed of the vehicle to be less than or equal to the first safe speed threshold.
  • the foregoing voltage threshold may include a first voltage threshold and a second voltage threshold, and the first voltage threshold is greater than the second voltage threshold; the foregoing zero fault may include a pedal zero offset fault.
  • the aforementioned processing module is further configured to determine that the pedal has a zero offset fault if the absolute value is less than the first voltage threshold and the absolute value is greater than or equal to the second voltage threshold.
  • the above-mentioned processing module is further configured to determine the actual zero voltage as the set value of the zero voltage in the controller.
  • the set value of the zero voltage in the controller is used to calculate the opening of the pedal.
  • the actual zero voltage may be multiple.
  • the above-mentioned processing module is also used to determine the maximum value of the multiple actual zero voltages as the set value of the controller zero voltage.
  • the pedal fault diagnosis device of the second aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction
  • the pedal failure diagnosis device described in the second aspect can execute the pedal failure diagnosis method described in the first aspect.
  • the pedal fault diagnosis device described in the second aspect may be a vehicle-mounted controller, or a vehicle-mounted control system provided with the vehicle-mounted controller, or a vehicle provided with the vehicle-mounted control system. This is not limited.
  • the technical effect of the pedal fault diagnosis device described in the second aspect can be referred to the technical effect of the pedal fault diagnosis method described in the first aspect, which will not be repeated here.
  • another pedal fault diagnosis device includes: a processor coupled with a memory; and the memory is used to store a computer program.
  • the processor is configured to execute a computer program stored in the memory, so that the pedal fault diagnosis device described in the third aspect executes the pedal fault diagnosis method described in the first aspect and any one of its implementation modes.
  • the pedal fault diagnosis device described in the third aspect may be a vehicle-mounted controller, or a vehicle-mounted control system provided with the vehicle-mounted controller, or a vehicle provided with the vehicle-mounted control system. This is not limited.
  • the technical effect of the pedal fault diagnosis device described in the third aspect can be referred to the technical effect of the pedal fault diagnosis method described in the first aspect, which will not be repeated here.
  • a chip system in the fourth aspect, includes a processor and an input/output port.
  • the processor is used to implement the processing functions involved in the pedal fault diagnosis method described in the first aspect and any one of its implementation modes, and the input/output port is used to implement The transceiver function involved in the pedal fault diagnosis method described in the first aspect and any one of its implementations.
  • an in-vehicle controller may include the pedal fault diagnosis device described in the second aspect or the third aspect, or the chip system described in the fourth aspect.
  • a vehicle-mounted control system includes the vehicle-mounted controller described in the fifth aspect.
  • a vehicle in a seventh aspect, includes the vehicle-mounted control system described in the sixth aspect.
  • a readable storage medium includes a program or instruction.
  • the program or instruction runs on a computer, the computer executes the pedal fault diagnosis method as described in the first aspect and any one of its implementation modes.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the pedal fault diagnosis method described in the first aspect and any one of its implementation modes .
  • FIG. 1 is a schematic diagram of the architecture of a vehicle control system provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a pedal zero fault provided by an embodiment of the application.
  • FIG. 3 is a first structural diagram of a pedal fault diagnosis device provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a pedal fault diagnosis method provided by an embodiment of the application.
  • FIG. 5 is a second structural diagram of the pedal fault diagnosis device provided by an embodiment of the application.
  • FIG. 6 is the third structural diagram of the pedal fault diagnosis device provided by the embodiment of the application.
  • the subscript sometimes as W 1 may form a clerical error at non-target as W1, while not emphasize the difference, to express their meaning is the same.
  • FIG. 1 is a schematic diagram of the architecture of a vehicle control system to which the pedal fault diagnosis method according to an embodiment of the application is applicable. Some scenarios in the embodiments of the present application are described by taking the vehicle control system shown in FIG. 1 as an example. It should be noted that the solution in the embodiment of the present application can also be applied to other vehicle control systems, which is not limited in the embodiment of the present application.
  • the vehicle-mounted control system shown in FIG. 1 is taken as an example to describe in detail the vehicle-mounted control system applicable to the embodiments of the present application.
  • the vehicle control system includes: vehicle controller 101 and various in-vehicle sensors, such as pedal position sensor 102, driving position visual sensor 103, driving seat pressure sensor 104, and power subsystem 105, warning device 106.
  • the on-board controller 101 that is, the vehicle control center, used to monitor and control the vehicle, such as acceleration, deceleration, and steering, and to implement the processing functions involved in the pedal fault diagnosis method provided in this application.
  • the onboard controller 101 detects whether there is a person in the driving seat, detects the pedal zero voltage, and performs zero fault diagnosis and processing according to sensor information.
  • Fig. 1 only shows one vehicle-mounted controller. In actual vehicles, multiple on-board controllers may be installed in the same vehicle, and information can be exchanged between the controllers.
  • Pedal position sensor 102 used to provide a voltage signal of the actual pedal position for the on-board controller to reflect the actual operation intention of the driver.
  • the actual position of the pedal includes: the position when the pedal is depressed, and the position when the pedal is not depressed. The corresponding voltage when the pedal is not depressed is the actual zero voltage, etc.
  • Driving position visual sensor 103 usually located in front of the driving position, it may be a camera, used to detect the actual image of the driving position, such as whether there is a person in the driving seat.
  • Driver seat pressure sensor 104 used to detect the actual pressure on the driver seat.
  • the detection results of the various sensors can also be input to different on-board controllers, so as to realize different control functions.
  • the power subsystem 105 may include an engine, a gearbox, etc., to provide power to the vehicle according to the torque command output by the on-board controller 101, such as to achieve operations such as acceleration, deceleration, and steering, and is one of the execution devices for troubleshooting measures.
  • Alarm device 106 used to output the fault diagnosis result obtained by the controller, and prompt the driver that the vehicle has a fault. It is another execution device for fault handling measures, and may include one or more of the following: speaker, warning light, and display. For example, the fault warning voice can be played through the speaker. For another example, fault warning information can also be displayed to the driver on the display.
  • the aforementioned pedal failure may include the following two failures: pedal zero offset failure and pedal jam failure.
  • the former is suitable for the pedal aging offset scene, and the latter is suitable for the pedal stuck scene.
  • the pedal aging offset scenario means that after the pedal is depressed and relaxed for many times during the life cycle of the pedal, the components are worn and aging, which causes the pedal to fail to return to the initial zero position when the pedal is not stressed.
  • the stagnant pedal scene refers to a scene where the pedal is pressed due to foreign objects such as floor mats in the foothole and cannot return to the normal zero position.
  • FIG. 2 is a schematic diagram of a scenario of a pedal zero fault provided in an embodiment of the application.
  • position 201 represents the initial position of the pedal when the vehicle is off the assembly line, that is, the initial zero position
  • position 202 represents the position when the pedal is aging when the pedal is not stressed
  • position 203 represents the pedal stuck state and no driver The position when stepped on.
  • the on-board controller usually generates the aforementioned torque command according to the absolute value of the difference between the voltage when the pedal is depressed and the initial zero voltage of the pedal, and the power subsystem controls the vehicle action according to the torque command.
  • the difference between the actual zero voltage of the pedal and the initial zero voltage is large, which leads to the difference between the voltage when the pedal is depressed and the initial zero voltage of the pedal.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and an example.
  • the vehicle control system 100 may also include other devices, components, or subsystems, such as communication modules, positioning and navigation modules for communicating with other vehicles or mobile networks. Not shown in Figure 1.
  • FIG. 3 is a schematic structural diagram of a pedal fault diagnosis device provided by an embodiment of the application.
  • the pedal fault diagnosis device may be a vehicle-mounted control device, or a chip applied in the vehicle-mounted control device or other components with vehicle control functions.
  • the pedal fault diagnosis device 300 may include a processor 301, a memory 302, and an input/output port 303.
  • the processor 301 is coupled with the memory 302 and the input/output port 303, for example, can be connected through a communication bus.
  • pedal fault diagnosis device 300 The components of the pedal fault diagnosis device 300 will be specifically introduced below in conjunction with FIG. 3.
  • the processor 301 is the control center of the pedal fault diagnosis device 300, and may be a processor or a collective name for multiple processing elements.
  • the processor 301 is one or more central processing units (CPU), or an application specific integrated circuit (ASIC), or is configured to implement one or more of the embodiments of the present application.
  • An integrated circuit for example: one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (FPGA).
  • the processor 301 can execute various functions of the pedal fault diagnosis device 300 by running or executing a software program stored in the memory 302, and calling data stored in the memory 302.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 3.
  • the pedal fault diagnosis device 300 may also include multiple processors, such as the processor 301 and the processor 304 shown in FIG. 3. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more vehicle-mounted control devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 302 can be a read-only memory (ROM) or other types of static storage pedal fault diagnosis equipment that can store static information and instructions, a random access memory (RAM) or can store information and instructions
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage pedal fault diagnosis equipment can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM or Other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage pedal fault diagnosis equipment, or can be used to carry or store instructions or data structures
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM Compact disc read-only memory
  • CD-ROM Compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage pedal fault diagnosis equipment or can be used to
  • the memory 302 is used to store a software program for executing the solution of the present application, and the processor 301 controls the execution.
  • the processor 301 controls the execution.
  • the input/output port 303 is used to receive the detection results from the above-mentioned various sensors, and send torque commands to the power subsystem 105, and/or send alarm information to the alarm device 106.
  • the structure of the pedal failure diagnosis device 300 shown in FIG. 3 does not constitute a limitation on the pedal failure diagnosis device.
  • the actual pedal failure diagnosis device may include more or less components than shown, such as A communication module for communication with other vehicles or wireless networks, a positioning and navigation module for vehicle position positioning and navigation, or a combination of certain components, or different component arrangements.
  • FIG. 4 is a schematic flowchart of a pedal fault diagnosis method provided by an embodiment of the application.
  • the pedal fault diagnosis method can be applied to the vehicle control system shown in FIG. 1 to detect the two types of pedal faults shown in FIG. 2.
  • the pedal fault diagnosis method includes the following steps:
  • detecting whether the driver's seat is in an unmanned state may include one or more of the following: detecting whether there is face information at the location of the driver's seat; detecting whether the pressure on the driver's seat is less than a pressure threshold.
  • the on-board controller 101 may perform face recognition on the image information collected by the driving position visual sensor 103. If the face information is recognized, it can be considered that the driver's seat is in a occupant state, otherwise it can be considered that the driver's seat is in an unmanned state.
  • the onboard controller 101 may determine the pressure value collected by the driver seat pressure sensor 104, that is, whether the pressure on the driver seat is greater than the pressure threshold. If it is greater than the pressure threshold, it can be considered that the driver's seat is in a occupant state, otherwise it can be considered that the driver's seat is unmanned.
  • the pressure threshold can be set according to actual conditions, for example, can be set to 45 kilograms (kilogram, kg) or 50 kg according to the weight of an adult.
  • the above two conditions for determining that the driver's seat is in an unmanned state can also be used in combination to further improve the safety of the determination result. Therefore, optionally, if face information is not detected at the location of the driver's seat, and the pressure on the driver's seat is less than the pressure threshold, it can be determined that the driver's seat is in an unmanned state.
  • the detection results of other in-vehicle sensors can also be used for judgment.
  • a joint judgment can be made based on the image collected by the driving position visual sensor 103 and the detection result of a steering wheel sensor (not shown in FIG. 1), such as an angle sensor.
  • the vehicle controller 101 determines that the driver's seat is in an unmanned state, it receives the actual zero voltage of the pedal collected by the pedal position sensor 102.
  • multiple sets of pedal voltages can be continuously collected. If the absolute value of the difference between the maximum value and the minimum value of the multiple sets of pedal voltage is less than the debounce voltage threshold, the more The average value of the group pedal voltage is used as the actual zero voltage (hereinafter referred to as the first debounce processing).
  • the debounce voltage threshold can be set according to actual conditions, usually a small value, such as 15 millivolts (millivolt, mV).
  • determining whether the pedal has a zero fault based on the actual zero voltage may include the following steps:
  • the above voltage threshold may include a first voltage threshold, and the above zero fault may include a pedal jam fault.
  • determining whether the pedal has a zero fault based on the comparison result of the absolute value and the voltage threshold may include the following steps:
  • the first voltage threshold can be set according to actual conditions, and is usually a larger value.
  • the first voltage threshold may be the voltage value corresponding to the maximum offset position that can be reached when the pedal is not depressed under the normal use of the pedal.
  • the first voltage threshold of pedals produced by different manufacturers can be obtained through durability aging tests.
  • the first voltage threshold may be the voltage value collected by the pedal position sensor 102 when the pedal is at a position where the opening degree is 1%.
  • pedal fault diagnosis method shown in FIG. 4 may further include the following steps:
  • the prompt information may include one or more of the following forms: sound, text, and image, which is used to prompt the driver to check whether there is a foreign object in the space where the pedal is located.
  • the driver can check and remove foreign objects in the space where the pedal is located according to the prompt information to improve driving safety.
  • the above-mentioned output prompt information can be output through output devices such as on-board speakers, prompt lights, displays, etc. when the driver’s seat is detected again, or it can be output immediately when a stuck fault is detected, or it can be controlled on the vehicle.
  • output devices such as on-board speakers, prompt lights, displays, etc.
  • prompt information is sent to the driver’s handheld terminal.
  • the embodiments of the present application do not make any limitation on the specific output mode of the prompt information, and the equipment or device that receives the prompt information.
  • the above pedal fault diagnosis method may further include the following steps:
  • the zero opening processing is: when it is detected that the voltage when the pedal is depressed is less than or equal to the actual zero voltage corresponding to the stuck fault, the pedal will be processed by pressing the opening to zero, that is, the pedal is not depressed To ensure driving safety.
  • the pedal voltage V1 is greater than the actual zero voltage corresponding to the jam fault when it is detected that there is no one in the driving position, then this voltage V1 is used as the processing reference.
  • the absolute value of the difference between the voltage of V1 and the voltage V1 is used as the set value of the zero voltage in the controller to generate a torque command for controlling the action of the vehicle.
  • the actual zero voltage when the pedal has a stuck fault is the zero voltage V1 collected by the pedal sensor when the pedal is at the position 203.
  • the above pedal fault diagnosis method may further include the following steps:
  • the speed limit mode is: controlling the speed of the vehicle to be less than or equal to the first safe speed threshold to ensure driving safety.
  • the first safe speed threshold can be determined according to the experience value of safe driving, for example, it can be set to 60 kilometers per hour (km/h) or 80 mk/h.
  • the above-mentioned outputting prompt information, processing the pedal at zero opening, and controlling the vehicle to enter the speed limit mode can only execute some of the options. For example, only the prompt information can be output, or all options can be executed. Not limited.
  • the above voltage threshold includes a first voltage threshold and a second voltage threshold, and the first voltage threshold is greater than the second voltage threshold; the above zero fault may include a pedal zero offset fault.
  • the second voltage threshold can be the smallest correction unit of the pedal zero offset, which can usually be determined by the vehicle manufacturer according to the pedal stroke corresponding to the minimum adjustable torque of the vehicle pedal when designing and producing the vehicle. Its main function is to avoid Frequent zero corrections will affect the service life of the carrier controller. For example, the number of EEPROM writes is limited. Frequent writes may cause the service life of the EEPROM, thereby affecting the service life of the vehicle controller.
  • determining whether the pedal has a zero fault based on the comparison result of the absolute value and the voltage threshold may include the following steps:
  • the actual zero voltage when the pedal has a stuck fault is the zero voltage V2 collected by the pedal sensor when the pedal is at the position 202.
  • second debounce processing when it is determined that the pedal is a suspected zero drift fault.
  • steps may be included: setting the position of the suspected fault flag with zero offset to 1, and setting a debounce accumulator, and when the suspected zero offset fault is detected again, the debounce accumulator adds 1. Then, when the count value of the debounce accumulator is greater than or equal to the debounce threshold, that is, when the number of occurrences of the suspected zero shift fault is greater than or equal to the debounce threshold, it is determined that a zero shift fault has occurred.
  • the actual zero voltage used in the process of judging the suspected zero offset fault may be the actual zero voltage obtained by the first debounce processing in S401. It is easy to understand that if the count value of the debounce accumulator does not reach the debounce threshold number of times within the preset detection period, then return to execute S401, or end this round of detection.
  • the preset detection period can be greater than or equal to the minimum detection duration of the vehicle control system. For example, the minimum detection duration is 1 second (second, s), and the preset detection period can be 1s, or slightly larger than the preset detection period, such as 1.2 s.
  • the second debounce processing may also include the following steps: when it is detected that the judgment condition of the suspected zero offset fault is not met, that is, the maximum value and the minimum value of the multiple sets of pedal voltages detected in the first debounce processing process When the absolute value of the value difference is greater than or equal to the debounce voltage threshold, the current round of fault detection is ended, or S401 is executed again, and the debounce accumulator is cleared to 0.
  • the above pedal fault diagnosis method may further include the following steps:
  • the set value of the zero voltage in the controller is used to calculate the opening degree of the pedal, and to generate a torque command for controlling the motion of the vehicle, so as to improve the safety of vehicle control.
  • determining the actual zero voltage as the set value of the zero voltage in the controller may include the following steps:
  • the maximum value of the multiple actual zero voltages is determined as the set value of the controller zero voltage to further improve the safety of vehicle control.
  • the pedal fault diagnosis method can detect whether there is a person on the driver's seat, and collect the actual zero voltage of the pedal when the driver's seat is unmanned, that is, the actual zero voltage when the pedal is not depressed. According to the actual zero voltage, it is determined whether the pedal has a zero fault, such as a zero offset fault or a stuck fault. Then the vehicle can be controlled based on the above actual zero voltage, such as the zero voltage in the on-board controller The set value is updated to the actual zero voltage collected above, which can solve the problem of indirectly inferring whether the pedal has a zero fault based on driving operation or statistical data. The pedal is depressed because it cannot be accurately inferred whether the pedal is depressed or not.
  • the actual zero voltage collected during the download is updated to the set value of the zero voltage in the on-board controller, which leads to the control commands issued by the on-board controller, such as torque commands that cannot reflect the actual operating conditions of the vehicle, which leads to the safety of vehicle control
  • the problem of poor performance can improve the safety of vehicle control and reduce driving risks.
  • the pedal fault diagnosis method provided by the embodiments of the present application can detect whether the pedal has the above-mentioned zero fault based on the existing on-board sensor, without adding additional sensors, such as adding a camera in the space where the pedal is located to detect whether the pedal is jammed by a foreign object. It will not increase the cost of the vehicle.
  • the pedal fault diagnosis method provided by the embodiment of the present application is described in detail above with reference to FIGS. 2 and 4.
  • the pedal fault diagnosis device provided by the embodiment of the present application will be described in detail below in conjunction with FIGS. 5 to 6.
  • Fig. 5 is a second structural diagram of a pedal fault diagnosis device provided by an embodiment of the present application.
  • the pedal fault diagnosis device can be applied to the pedal fault diagnosis system shown in FIG. 1 to implement the pedal fault diagnosis method shown in FIG. 4.
  • FIG. 5 only shows the main components of the pedal fault diagnosis device.
  • the pedal fault diagnosis device 500 includes: a processing module 501, a detection module 502, and an acquisition module 503.
  • the detection module 502 is used to detect whether the driver's seat is in an unmanned state.
  • the collection module 503 is used to collect the actual zero voltage of the pedal when the driver's seat is in an unmanned state.
  • the processing module 501 is used to determine whether the pedal has a zero fault according to the actual zero voltage.
  • the aforementioned detection module 502 is also used to detect whether there is face information at the location of the driver's seat, and/or whether the pressure experienced by the driver's seat is less than a pressure threshold.
  • the processing module 501 may determine that the driver’s seat is unmanned. status.
  • the above-mentioned processing module 501 is also used to calculate the absolute value of the difference between the actual zero voltage and the initial zero voltage, and to determine whether the pedal has a zero fault according to the comparison result of the absolute value and the voltage threshold.
  • the above voltage threshold may include the first voltage threshold; the zero fault may include a pedal jam fault.
  • the aforementioned processing module 501 is further configured to determine that the pedal has a stuck fault if the absolute value is greater than or equal to the first voltage threshold.
  • Fig. 6 is a third structural diagram of a pedal fault diagnosis device provided by an embodiment of the present application.
  • the pedal fault diagnosis device 500 may further include: an output module 504.
  • the output module 504 is used to output prompt information.
  • the prompt information may include sounds, text, images, etc., to prompt the driver to check whether there are foreign objects in the space where the pedal is located.
  • the above-mentioned processing module 501 is also used for processing the pedal at zero opening.
  • the zero opening processing is: when it is detected that the voltage when the pedal is stepped on is less than or equal to the actual zero voltage corresponding to the stuck fault, then the pedal is processed by pressing the opening to zero.
  • the aforementioned processing module 501 is also used to control the vehicle to enter the speed limit mode.
  • the speed limit mode is: controlling the speed of the vehicle to be less than or equal to the first safe speed threshold.
  • the aforementioned voltage threshold may include a first voltage threshold and a second voltage threshold, and the first voltage threshold is greater than the second voltage threshold; the aforementioned zero fault may include a pedal zero offset fault.
  • the aforementioned processing module 501 is further configured to determine that the pedal has a zero offset fault if the absolute value is less than the first voltage threshold and the absolute value is greater than or equal to the second voltage threshold.
  • the above-mentioned processing module 501 is further configured to determine the actual zero voltage as the set value of the zero voltage in the controller.
  • the set value of the zero voltage in the controller is used to calculate the opening of the pedal.
  • the actual zero voltage may be multiple.
  • the above-mentioned processing module 501 is further configured to determine the maximum value of the multiple actual zero voltages as the set value of the controller zero voltage.
  • the pedal fault diagnosis device 500 may further include a storage module (not shown in FIG. 5 or FIG. 6), and the storage module stores programs or instructions.
  • the processing module 501 executes the program or instruction
  • the pedal fault diagnosis device 500 shown in FIG. 5 or FIG. 6 can execute the pedal fault diagnosis method described in the foregoing method embodiment.
  • the pedal fault diagnosis device 500 may be an on-board controller, a chip or chip system installed in the on-board controller, or a vehicle equipped with the on-board controller, which is not covered in this application limited.
  • the technical effects of the pedal fault diagnosis device 500 shown in FIG. 5 or FIG. 6 can refer to the technical effects of the pedal fault diagnosis method described in the foregoing method embodiment, and will not be repeated here.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and an input/output port.
  • the processor is used to implement the processing functions involved in the pedal fault diagnosis method described in the foregoing method embodiment, and the input/output port is used to implement the foregoing method embodiment.
  • the chip system further includes a memory for storing program instructions and data involved in implementing the above method embodiments.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the technical effect of the chip system can be referred to the technical effect of the pedal fault diagnosis method described in the above method embodiment, which will not be repeated here.
  • the embodiment of the present application provides a vehicle-mounted controller.
  • the vehicle-mounted controller may include the above-mentioned pedal fault diagnosis device or the above-mentioned chip system.
  • the embodiment of the application provides an on-board control system.
  • the vehicle-mounted control system may include the vehicle-mounted controller described above.
  • the embodiment of the present application provides a vehicle.
  • the vehicle may include the above-mentioned on-board control system.
  • the embodiment of the present application provides a readable storage medium.
  • the readable storage medium includes a program or instruction, and when the program or instruction runs on a computer, the computer executes the pedal fault diagnosis method described in the foregoing method embodiment.
  • the embodiment of the present application provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the pedal fault diagnosis method described in the foregoing method embodiment.
  • the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integrated Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or pedal fault diagnosis connection may be through some interfaces, indirect coupling or pedal fault diagnosis connection of devices or units, and may be electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种对车辆进行踏板故障诊断的方法及装置,具体包括:检测驾驶座椅是否处于无人状态,并在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压,然后根据该实际零位电压确定踏板是否存在零位故障。该装置可以基于驾驶座椅处于无人状态时的实际零位电压来更新车辆控制器中的零位电压的设定值,可应用于辅助驾驶和自动驾驶领域,通过驾驶座椅处于无人状态时的实际零位电压来提升车辆控制的安全性。

Description

踏板故障诊断方法及装置
本申请要求于2019年07月26日提交国家知识产权局、申请号为201910680263.4、申请名称为“踏板故障诊断方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车载电子技术领域,尤其涉及一种踏板故障诊断方法及装置。
背景技术
智能驾驶技术要求对车辆工况实时监控,如车速监测、踏板零位故障检测。其中,踏板零位故障包括零位偏移故障。零位偏移故障是指,诸如长期老化磨损等原因导致的车辆踏板(如加速踏板、制动踏板等)的初始零位与实际零位之间存在偏差,而车辆控制程序或软件通常是以车辆踏板的初始零位为参考对车辆进行控制的,控制依据与实际零位不符,从而导致车辆控制存在一定的安全隐患。
现有的零位故障检测通常包括如下步骤:采集踏板处于零位时的电压,即实际零位电压,并将实际零位电压与初始零位对应的电压,即初始零位电压作比较,当两个零位电压之间的偏差较大时,将车辆控制程序或软件的控制器中零位电压更新为该实际零位电压。其中,难点在于:准确判断踏板是否处于零位,也就是判断踏板是否被驾驶员踩下。目前的一种主要实现方式为:基于驾驶操作或统计数据推断踏板是否处于零位。但是,该方法并不能确保采集零位电压时驾驶员没有踩踏板,可能导致采集的踏板电压不是实际零位电压,进而导致控制器中零位电压的设定值与实际不符,并最终导致车辆控制的安全性较差的问题。
发明内容
本申请实施例提供一种踏板故障诊断方法及装置,能够解决基于驾驶操作或统计数据推断踏板是否处于零位的过程中可能发生的故障虚警、漏报等问题,能够提高车辆控制的安全性,降低行车风险。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种踏板故障诊断方法。该方法包括:检测驾驶座椅是否处于无人状态,并在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压。然后,根据实际零位电压确定踏板是否存在零位故障。
本申请实施例提供的踏板故障诊断方法,能够检测驾驶座椅上是否有人,并采集踏板在驾驶座椅处于无人状态下的实际零位电压,也就是采集踏板没有被踩下时的实际零位电压,并根据该实际零位电压确定踏板是否存在零位故障,如零位偏移故障或卡滞故障,然后可以基于上述实际零位电压控制车辆,如将车载控制器中的零位电压的设定值更新为上述采集到的实际零位电压,可以解决基于驾驶操作或统计数据间接推断踏板是否存在零位故障的过程中,由于不能准确推断踏板是否被踩下,导致将踏板被踩下时采集到的实际零位电压更新为车载控制器中的零位电压的设定值,从而导 致车载控制器发出的控制指令,如扭矩指令不能反映车辆实际工况,进而导致车辆控制的安全性较差的问题,能够提高车辆控制的安全性,降低行车风险。
示例性地,上述检测驾驶座椅是否处于无人状态,可以包括如下一项或多项:未检测到驾驶座椅所在位置存在人脸信息;检测到驾驶座椅所承受的压力小于压力阈值。
具体地,上述根据实际零位电压确定踏板是否存在零位故障,可以包括如下步骤:计算实际零位电压与初始零位电压之差的绝对值,以及根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障。
在一种可能的设计方法中,上述电压阈值可以包括第一电压阈值,上述零位故障可以包括踏板的卡滞故障。相应地,上述根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障,可以包括如下步骤:若绝对值大于或等于第一电压阈值,则确定踏板存在卡滞故障。
可选地,第一方面所述的踏板故障诊断方法还可以包括如下步骤:输出提示信息。其中,提示信息可以包括声音、文字、图像等,用于提示检查踏板所在空间是否存在异物。驾驶员可以依据提示信息检查并清除踏板所在空间存在的异物,以提高驾驶安全性。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:将踏板按零开度处理。其中,零开度处理为:当检测到踏板被踩下时的电压小于或等于卡滞故障对应的实际零位电压,则将踏板按开度为零进行处理,以确保驾驶安全。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:控制车辆进入限速模式。其中,限速模式为:控制车辆的速度小于或等于第一安全速度阈值,以确保驾驶安全。
在另一种可能的设计方法中,上述电压阈值包括第一电压阈值和第二电压阈值,且第一电压阈值大于第二电压阈值;零位故障包括踏板的零位偏移故障。相应地,上述根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障,可以包括如下步骤:若绝对值小于第一电压阈值,且绝对值大于或等于第二电压阈值,则确定踏板存在零位偏移故障。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:将实际零位电压确定为控制器中零位电压的设定值。其中,控制器中零位电压的设定值用于计算踏板的开度大小,以提高车辆控制的安全性。
进一步地,上述实际零位电压可以为多个。相应地,上述将实际零位电压确定为控制器中零位电压的设定值,可以包括如下步骤:将多个实际零位电压中的最大值确定为控制器零位电压的设定值,以进一步提高车辆控制的安全性。
第二方面,提供一种踏板故障诊断装置。该装置包括:检测模块、采集模块和处理模块。其中,检测模块,用于检测驾驶座椅是否处于无人状态。采集模块,用于在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压。处理模块,用于根据实际零位电压确定踏板是否存在零位故障。
可选地,上述检测模块,还用于检测驾驶座椅所在位置是否存在人脸信息,和/或,检测驾驶座椅所承受的压力是否小于压力阈值。
具体地,上述处理模块,还用于计算实际零位电压与初始零位电压之差的绝对值, 以及根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障。
在一种可能的设计中,上述电压阈值可以包括第一电压阈值;零位故障可以包括踏板的卡滞故障。相应地,上述处理模块,还用于若绝对值大于或等于第一电压阈值,则确定踏板存在卡滞故障。
可选地,第二方面所述的踏板故障诊断装置还可以包括:输出模块。其中,输出模块,用于输出提示信息。其中,提示信息可以包括声音、文字、图像等,用于提示检查踏板所在空间是否存在异物。
或者,可选地,上述处理模块,还用于将踏板按零开度处理。其中,零开度处理为:当检测到踏板被踩下时的电压小于或等于卡滞故障对应的实际零位电压,则将踏板按开度为零进行处理。
或者,可选地,上述处理模块,还用于控制车辆进入限速模式。其中,限速模式为:控制车辆的速度小于或等于第一安全速度阈值。
在另一种可能的设计中,上述电压阈值可以包括第一电压阈值和第二电压阈值,且第一电压阈值大于第二电压阈值;上述零位故障可以包括踏板的零位偏移故障。相应地,上述处理模块,还用于若绝对值小于第一电压阈值,且绝对值大于或等于第二电压阈值,则确定踏板存在零位偏移故障。
或者,可选地,上述处理模块,还用于将实际零位电压确定为控制器中零位电压的设定值。其中,控制器中零位电压的设定值用于计算踏板的开度大小。
进一步地,上述实际零位电压可以为多个。相应地,上述处理模块,还用于将多个实际零位电压中的最大值确定为控制器零位电压的设定值。
可选地,第二方面所述的踏板故障诊断装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第二方面所述的踏板故障诊断装置可以执行上述第一方面所述的踏板故障诊断方法。
需要说明的是,第二方面所述的踏板故障诊断装置可以是车载控制器,也可以是设置有该车载控制器的车载控制系统,还可以是设置有该车载控制系统的车辆,本申请对此不做限定。
第二方面所述的踏板故障诊断装置的技术效果可以参考第一方面所述的踏板故障诊断方法的技术效果,此处不再赘述。
第三方面,提供另一种踏板故障诊断装置。该装置包括:处理器,该处理器与存储器耦合;该存储器,用于存储计算机程序。该处理器,用于执行存储器中存储的计算机程序,以使得第三方面所述的踏板故障诊断装置执行如第一方面及其任意一种实现方式所述的踏板故障诊断方法。
需要说明的是,第三方面所述的踏板故障诊断装置可以是车载控制器,也可以是设置有该车载控制器的车载控制系统,还可以是设置有该车载控制系统的车辆,本申请对此不做限定。
第三方面所述的踏板故障诊断装置的技术效果可以参考第一方面所述的踏板故障诊断方法的技术效果,此处不再赘述。
第四方面,提供一种芯片系统。该芯片系统包括处理器和输入/输出端口,该处理器用于实现如第一方面及其任意一种实现方式所述的踏板故障诊断方法中所涉及的处 理功能,该输入/输出端口用于实现如第一方面及其任意一种实现方式所述的踏板故障诊断方法中所涉及的收发功能。
第四方面所述的芯片系统的技术效果可以参考第一方面所述的踏板故障诊断方法的技术效果,此处不再赘述。
第五方面,提供一种车载控制器。该车载控制器可以包括第二方面或第三方面所述的踏板故障诊断装置,或者第四方面所述的芯片系统。
第六方面,提供一种车载控制系统。该车载控制系统包括第五方面所述的车载控制器。
第七方面,提供一种车辆。该车辆包括第六方面所述的车载控制系统。
第八方面,提供一种可读存储介质。该可读存储介质包括程序或指令,当程序或指令在计算机上运行时,使得该计算机执行如第一方面及其任意一种实现方式所述的踏板故障诊断方法。
第九方面,提供一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行第一方面及其任意一种实现方式所述的踏板故障诊断方法。
附图说明
图1为本申请实施例提供的车载控制系统的架构示意图;
图2为本申请实施例提供的踏板零位故障的示意图;
图3为本申请实施例提供的踏板故障诊断装置的结构示意图一;
图4为本申请实施例提供的踏板故障诊断方法的流程示意图;
图5为本申请实施例提供的踏板故障诊断装置的结构示意图二;
图6为本申请实施例提供的踏板故障诊断装置的结构示意图三。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种车载控制系统,例如整车控制系统、自动驾驶系统、智能驾驶系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调 其区别时,其所要表达的含义是一致的。
本申请实施例描述的车载控制系统的架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
图1为本申请实施例的踏板故障诊断方法所适用的车载控制系统的架构示意图。本申请实施例中部分场景以图1所示的车载控制系统为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他的车载控制系统,本申请实施例对此不作限定。
为便于理解本申请实施例,首先以图1中示出的车载控制系统为例详细说明适用于本申请实施例的车载控制系统。如图1所示,该车载控制系统包括:车载控制器101和各种车内传感器,如踏板位置传感器102、驾驶位视觉传感器103、驾驶座椅压力传感器104,以及动力子系统105、告警装置106。
其中,车载控制器101:即车辆控制中枢,用于监测并控制车辆,如加速、减速、转向,以及用于实现本申请提供的踏板故障诊断方法所涉及的处理功能。示例性地,车载控制器101根据传感器信息检测驾驶座椅是否有人、检测踏板零位电压,以及进行零位故障诊断和处理。需要说明的是,图1仅示出了一个车载控制器。而在实际车辆中,同一车辆可能设置有多个车载控制器,各控制器之间可以进行信息交互。
踏板位置传感器102:用于为车载控制器提供踏板实际位置的电压信号,反映驾驶员实际操作意图。其中,踏板实际位置包括:踏板被踩下时所处位置、踏板没有被踩下时所处位置。踏板没有被踩下时对应的电压即为实际零位电压等。
驾驶位视觉传感器103:通常位于驾驶位前方,可以为摄像头,用于检测驾驶位的实际图像,如驾驶座椅上是否有人。
驾驶座椅压力传感器104:用于检测驾驶座椅所承受的实际压力。
需要说明的是,当上述车载控制器101为多个时,上述各种传感器的检测结果也可以分别输入给不同的车载控制器中,以便实现不同的控制功能。
动力子系统105:可以包括发动机、变速箱等,根据车载控制器101输出的扭矩指令为车辆提供动力,如实现加速、减速、转向等操作,是故障处理措施的执行装置之一。
告警装置106:用于输出控制器得出的故障诊断结果,提示驾驶员车辆存在故障,是故障处理措施的另一个执行装置,可以包括如下一项或多项:扬声器、告警灯、显示器。例如可以通过扬声器播放故障告警语音。又例如,也可以在显示器上显示故障告警信息给驾驶员。
上述踏板故障可以包括如下两种故障:踏板零位偏移故障和踏板卡滞故障。前者适用于踏板老化偏移场景,后者适用于踏板卡滞场景。其中,踏板老化偏移场景是指,踏板在生命周期内,经过多次踩下放松操作后,部件发生磨损老化,导致踏板在不受力状态下,无法回到初始零位。踏板卡滞场景是指,由于脚坑处存在异物如地板垫等,导致踏板被压住,因而不能回到正常零位的场景。
示例性地,图2为本申请实施例提供的踏板零位故障的场景示意图。如图2所示,位置201表示车辆出厂下线时的踏板初始位置,即初始零位,位置202表示踏板老化时不受力情况下的位置,位置203表示踏板卡滞状态且没有被驾驶员踩下时的位置。
目前,车载控制器通常依据踏板被踩下时的电压与踏板初始零位电压之差的绝对值生成上述扭矩指令,动力子系统依据该扭矩指令控制车辆动作。然而,在上述两种故障场景下,会存在如下问题:踏板实际零位电压与初始零位电压之间的偏差较大,从而导致依据踏板被踩下时的电压与踏板初始零位电压之差的绝对值生成用于控制车辆动作的扭矩指令,不能准确反映驾驶员的实际操作意图,存在一定的行车风险。
应理解,图1仅为便于理解而示例的简化示意图,车载控制系统100还可以包括其他装置、部件、或子系统,如用于与其他车辆或移动网络通信的通信模块、定位导航模块等,图1中未予以画出。
图3为本申请实施例提供的一种踏板故障诊断装置的结构示意图。该踏板故障诊断装置可以是车载控制设备,也可以是应用于车载控制设备中的芯片或者其他具有车辆控制功能的部件。如图3所示,踏板故障诊断装置300可以包括处理器301,存储器302、输入/输出端口303。其中,处理器301与存储器302、输入/输出端口303耦合,如可以通过通信总线连接。
下面结合图3对踏板故障诊断装置300的各个构成部件进行具体的介绍:
处理器301是踏板故障诊断装置300的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器301是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器301可以通过运行或执行存储在存储器302内的软件程序,以及调用存储在存储器302内的数据,执行踏板故障诊断装置300的各种功能。
在具体的实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,踏板故障诊断装置300也可以包括多个处理器,例如图3中所示的处理器301和处理器304。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个车载控制设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储踏板故障诊断设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储踏板故障诊断设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储踏板故障诊断设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以独立存在,也可以和处理器301集成在一起。
其中,所述存储器302用于存储执行本申请方案的软件程序,并由处理器301来 控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
输入/输出端口303,用于接收来自上述各种传感器的检测结果,以及向动力子系统105发送扭矩指令,和/或,向告警装置106发送告警信息。
需要说明的是,图3中示出的踏板故障诊断装置300的结构并不构成对该踏板故障诊断装置的限定,实际的踏板故障诊断装置可以包括比图示更多或更少的部件,如用于与其他车辆或无线网络通信的通信模块、用于车辆位置定位和导航的定位导航模块,或者组合某些部件,或者不同的部件布置。
下面将结合图2和图4对本申请实施例提供的踏板故障诊断方法进行具体阐述。
图4为本申请实施例提供的踏板故障诊断方法的流程示意图。该踏板故障诊断方法可以适用于图1所示的车载控制系统中,检测如图2所示的两种踏板故障。
如图4所示,该踏板故障诊断方法包括如下步骤:
S401,检测驾驶座椅是否处于无人状态。
示例性地,上述检测驾驶座椅是否处于无人状态,可以包括如下一项或多项:检测驾驶座椅所在位置是否存在人脸信息;检测驾驶座椅所承受的压力是否小于压力阈值。
示例性地,参考图1,车载控制器101可以对驾驶位视觉传感器103采集的图像信息作人脸识别。若识别出人脸信息,则可以视为驾驶座椅处于有人状态,否则视为驾驶座椅处于无人状态。
示例性地,参考图1,车载控制器101可以判断驾驶座椅压力传感器104采集的压力值,也就是驾驶座椅所承受的压力是否大于压力阈值。若大于压力阈值,则可以视为驾驶座椅处于有人状态,否则视为驾驶座椅处于无人状态。其中,压力阈值可以根据实际情况设置,如可以根据成年人体重设置为45千克(kilogram,kg)或50kg。
上述判定驾驶座椅处于无人状态的两个条件也可以结合使用,以进一步提高判定结果的安全性。因此,可选地,若驾驶座椅所在位置未检测到人脸信息,且驾驶座椅所承受的压力小于压力阈值,则可确定驾驶座椅处于无人状态。
此外,还可以结合其他车内传感器的检测结果作判断。可选地,可以根据驾驶位视觉传感器103采集的图像和方向盘传感器(图1中未示出),如角度传感器的检测结果作联合判断。
S402,在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压。
参考图1,车载控制器101在判定驾驶座椅处于无人状态的情况下,接收踏板位置传感器102采集的该踏板的实际零位电压。可选地,在驾驶座椅处于无人状态下,可以连续采集多组踏板电压,倘若该多组踏板电压中的最大值与最小值之差的绝对值小于消抖电压阈值,则将该多组踏板电压的平均值作为实际零位电压(下文简称为第一消抖处理)。其中,消抖电压阈值可以根据实际情况设置,通常为一个较小值,如15毫伏(millivolt,mV)。
S403,根据实际零位电压确定踏板是否存在零位故障。
具体地,上述S403,根据实际零位电压确定踏板是否存在零位故障,可以包括如下步骤:
计算实际零位电压与初始零位电压之差的绝对值,以及根据该绝对值与电压阈值 的比较结果,确定踏板是否存在零位故障。
在一种可能的设计方法中,上述电压阈值可以包括第一电压阈值,上述零位故障可以包括踏板的卡滞故障。相应地,上述根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障,可以包括如下步骤:
若该绝对值大于或等于第一电压阈值,则确定踏板存在卡滞故障。其中,第一电压阈值可以根据实际情况设置,通常为一个较大值。例如,第一电压阈值可以为:踏板正常使用老化情况下,踏板未被踩下时所能达到的最大偏移位置所对应的电压值。实际应用中,不同厂商生产的踏板的第一电压阈值可通过耐久老化测试得到。
示例性地,参考图1和图2,第一电压阈值可以为踏板处于开度为1%时的位置时,踏板位置传感器102采集到的电压值。
进一步地,图4所示的踏板故障诊断方法还可以包括如下步骤:
输出提示信息。
其中,提示信息可以包括如下一种或多种形式:声音、文字、图像,用于提示驾驶员检查踏板所在空间是否存在异物。驾驶员可以依据提示信息检查并清除踏板所在空间存在的异物,以提高驾驶安全性。
示例性地,上述输出提示信息可以在重新检测到驾驶座椅处于有人状态时通过车载扬声器、提示灯光、显示器等输出设备输出,也可以在检测到卡滞故障时立即输出,还可以在车载控制器与驾驶员手持终端,如手机之间存在信号连接时,将提示信息发送到驾驶员手持终端上。本申请实施例对于提示信息的具体输出方式,以及接收该提示信息的设备或装置,不做任何限定。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:
将踏板按零开度处理。其中,零开度处理为:当检测到踏板被踩下时的电压小于或等于卡滞故障对应的实际零位电压,则将踏板按开度为零进行处理,也就是按照踏板没有被踩下时处理,以确保驾驶安全。
容易理解,当检测到驾驶位无人时踏板被踩下的电压V1大于卡滞故障对应的实际零位电压,则将此电压V1作为处理基准,如基于驾驶位有人时,即踏板被踩下的电压与电压V1之差的绝对值作为控制器中的零位电压的设定值,以产生用于控制车辆动作的扭矩指令。示例性地,如图2所示,踏板发生卡滞故障时的实际零位电压为踏板处于位置203时踏板传感器采集的零位电压V1。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:
控制车辆进入限速模式。其中,限速模式为:控制车辆的速度小于或等于第一安全速度阈值,以确保驾驶安全。其中,第一安全速度阈值可以根据安全驾驶的经验值确定,如可以设置为60千米每小时(kilo-meter per hour,km/h)或80mk/h。
需要说明的是,上述输出提示信息、将踏板按零开度处理,以及控制车辆进入限速模式可以只执行其中部分选项,如只输出提示信息,也可以执行全部选项,本申请实施例对此不作限定。
在另一种可能的设计方法中,上述电压阈值包括第一电压阈值和第二电压阈值,且第一电压阈值大于第二电压阈值;上述零位故障可以包括踏板的零位偏移故障。其中,第二电压阈值可以为踏板零位偏移的最小修正单位,通常可以由车辆厂商在设计、 生产车辆时,根据车辆踏板的最小可调扭矩对应的踏板行程确定,其主要作用是为了避免频繁地进行零位修正而影响承载控制器的使用寿命,如EEPROM的写入次数是有限的,频繁写入可能会使EEPROM的使用寿命,进而影响车载控制器的寿命。
相应地,上述S403,根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障,可以包括如下步骤:
若该绝对值小于第一电压阈值,且该绝对值大于或等于第二电压阈值,则确定踏板存在零位偏移故障。
容易理解,当检测到驾驶位无人时踏板被踩下的电压V2大于零位偏移故障对应的实际零位电压,则将此电压V2作为处理基准,如基于驾驶位有人时,即踏板被踩下的电压与电压V2之差的绝对值作为控制器中的零位电压的设定值,以产生用于控制车辆动作的扭矩指令。
示例性地,如图2所示,踏板发生卡滞故障时的实际零位电压为踏板处于位置202时踏板传感器采集的零位电压V2。
为了进一步提高采集的实际零位电压的安全性,避免虚警或误报,还可以在确定踏板为疑似零位漂移故障时,再执行一轮消抖处理(第二消抖处理)。具体地,可以包括如下步骤:将零位偏移的疑似故障标志位置1,并设置一个消抖累加器,当再次检测到疑似零位偏移故障时,消抖累加器加1。然后,当消抖累加器的计数值大于或等于消抖阈值时,也就是疑似零位偏移故障的发生次数大于或等于消抖阈值时,则判断发生了零位偏移故障。其中,疑似零位偏移故障判断过程中使用的实际零位电压,可以是上述S401中经过第一消抖处理所得到的实际零位电压。容易理解,倘若在预设检测周期内,消抖累加器的计数值未达到消抖阈值次数,则返回执行S401,或者结束本轮检测。其中,预设检测周期可以大于或等于车载控制系统的最小检测时长确定,如最小检测时长为1秒(second,s),预设检测周期可以为1s,或者略微大于预设检测周期,如1.2s。
此外,第二消抖处理还可以包括如下步骤:当检测到不满足疑似零位偏移故障的判决条件,也就是第一消抖处理过程中检测到的多组踏板电压中的最大值与最小值之差的绝对值大于或等于消抖电压阈值时,则结束本轮故障检测,或者重新执行S401,且将消抖累加器清0。
或者,可选地,上述踏板故障诊断方法还可以包括如下步骤:
将实际零位电压确定为控制器中零位电压的设定值。其中,控制器中零位电压的设定值用于计算踏板的开度大小,生成用于控制车辆动作的扭矩指令,以提高车辆控制的安全性。
进一步地,上述实际零位电压可以为多个。相应地,上述将实际零位电压确定为控制器中零位电压的设定值,可以包括如下步骤:
将多个实际零位电压中的最大值确定为控制器零位电压的设定值,以进一步提高车辆控制的安全性。
本申请实施例提供的踏板故障诊断方法,能够检测驾驶座椅上是否有人,并采集踏板在驾驶座椅处于无人状态下的实际零位电压,也就是采集踏板没有被踩下时的实际零位电压,并根据该实际零位电压确定踏板是否存在零位故障,如零位偏移故障或 卡滞故障,然后可以基于上述实际零位电压控制车辆,如将车载控制器中的零位电压的设定值更新为上述采集到的实际零位电压,可以解决基于驾驶操作或统计数据间接推断踏板是否存在零位故障的过程中,由于不能准确推断踏板是否被踩下,导致将踏板被踩下时采集到的实际零位电压更新为车载控制器中的零位电压的设定值,从而导致车载控制器发出的控制指令,如扭矩指令不能反映车辆实际工况,进而导致车辆控制的安全性较差的问题,能够提高提高车辆控制的安全性,降低行车风险。
此外,本申请实施例提供的踏板故障诊断方法,可以基于现有车载传感器检测踏板是否存在上述零位故障,并不需要增加额外的传感器,如在踏板所在空间增加摄像头来检测踏板是否被异物卡住,不会增加车辆成本。
以上结合图2和图4详细说明了本申请实施例提供的踏板故障诊断方法。以下结合图5-图6详细说明本申请实施例提供的踏板故障诊断装置。
图5是本申请实施例提供的踏板故障诊断装置的结构示意图二。该踏板故障诊断装置可适用于图1所示出的踏板故障诊断系统中,执行图4所示的踏板故障诊断方法。为了便于说明,图5仅示出了该踏板故障诊断装置的主要部件。
如图5所示,踏板故障诊断装置500包括:处理模块501、检测模块502和采集模块503。
其中,检测模块502,用于检测驾驶座椅是否处于无人状态。
采集模块503,用于在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压。
处理模块501,用于根据实际零位电压确定踏板是否存在零位故障。
可选地,上述检测模块502,还用于检测驾驶座椅所在位置是否存在人脸信息,和/或,检测驾驶座椅所承受的压力是否小于压力阈值。
示例性地,若检测模块502未检测到驾驶座椅所在位置存在人脸信息,和/或,检测到驾驶座椅所承受的压力小于压力阈值,则处理模块501可以确定驾驶座椅处于无人状态。
具体地,上述处理模块501,还用于计算实际零位电压与初始零位电压之差的绝对值,以及根据绝对值与电压阈值的比较结果,确定踏板是否存在零位故障。
在一种可能的设计中,上述电压阈值可以包括第一电压阈值;零位故障可以包括踏板的卡滞故障。相应地,上述处理模块501,还用于若绝对值大于或等于第一电压阈值,则确定踏板存在卡滞故障。
图6是本申请实施例提供的踏板故障诊断装置的结构示意图三。可选地,结合图5,如图6所示,踏板故障诊断装置500还可以包括:输出模块504。其中,输出模块504,用于输出提示信息。其中,提示信息可以包括声音、文字、图像等,用于提示驾驶员检查踏板所在空间是否存在异物。
或者,可选地,上述处理模块501,还用于将踏板按零开度处理。其中,零开度处理为:当检测到踏板被踩下时的电压小于或等于卡滞故障对应的实际零位电压,则将踏板按开度为零进行处理。
或者,可选地,上述处理模块501,还用于控制车辆进入限速模式。其中,限速模式为:控制车辆的速度小于或等于第一安全速度阈值。
在另一种可能的设计中,上述电压阈值可以包括第一电压阈值和第二电压阈值, 且第一电压阈值大于第二电压阈值;上述零位故障可以包括踏板的零位偏移故障。相应地,上述处理模块501,还用于若绝对值小于第一电压阈值,且绝对值大于或等于第二电压阈值,则确定踏板存在零位偏移故障。
或者,可选地,上述处理模块501,还用于将实际零位电压确定为控制器中零位电压的设定值。其中,控制器中零位电压的设定值用于计算踏板的开度大小。
进一步地,上述实际零位电压可以为多个。相应地,上述处理模块501,还用于将多个实际零位电压中的最大值确定为控制器零位电压的设定值。
可选地,踏板故障诊断装置500还可以包括存储模块(图5或图6中未示出),该存储模块存储有程序或指令。当处理模块501执行该程序或指令时,使得图5或图6所示的踏板故障诊断装置500可以执行上述方法实施例所述的踏板故障诊断方法。
需要说明的是,踏板故障诊断装置500可以是车载控制器,也可以是设置于该车载控制器内部的芯片或芯片系统,还可以是设置有该车载控制器的车辆,本申请对此不做限定。
图5或图6所示的踏板故障诊断装置500的技术效果可以参考上述方法实施例所述的踏板故障诊断方法的技术效果,此处不再赘述。
本申请实施例提供一种芯片系统。该芯片系统包括处理器和输入/输出端口,该处理器用于实现如上述方法实施例所述的踏板故障诊断方法中所涉及的处理功能,该输入/输出端口用于实现上述方法实施例所述的踏板故障诊断方法中所涉及的收发功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现上述方法实施例所涉及的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
该芯片系统的技术效果可以参考上述方法实施例所述的踏板故障诊断方法的技术效果,此处不再赘述。
本申请实施例提供一种车载控制器。该车载控制器可以包括上述踏板故障诊断装置,或者上述芯片系统。
本申请实施例提供一种车载控制系统。该车载控制系统可以包括上述车载控制器。
本申请实施例提供一种车辆。该车辆可以包括上述车载控制系统。
本申请实施例提供一种可读存储介质。该可读存储介质包括程序或指令,当程序或指令在计算机上运行时,使得该计算机执行上述方法实施例所述的踏板故障诊断方法。
本申请实施例提供一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述方法实施例所述的踏板故障诊断方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或踏板故障诊断连接可以是通过一些接口,装置或单元的间接耦合或踏板故障诊断连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种踏板故障诊断方法,其特征在于,包括:
    检测驾驶座椅是否处于无人状态;
    在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压;
    根据所述实际零位电压确定所述踏板是否存在零位故障。
  2. 根据权利要求1所述的踏板故障诊断方法,其特征在于,检测所述驾驶座椅是否处于无人状态,包括如下一项或多项:
    未检测到所述驾驶座椅所在位置存在人脸信息;
    检测到所述驾驶座椅所承受的压力小于压力阈值。
  3. 根据权利要求1或2所述的踏板故障诊断方法,其特征在于,所述根据所述实际零位电压确定所述踏板是否存在零位故障,包括:
    计算所述实际零位电压与初始零位电压之差的绝对值;
    根据所述绝对值与电压阈值的比较结果,确定所述踏板是否存在所述零位故障。
  4. 根据权利要求3所述的踏板故障诊断方法,其特征在于,所述电压阈值包括第一电压阈值;所述零位故障包括所述踏板的卡滞故障;
    所述根据所述绝对值与电压阈值的比较结果,确定所述踏板是否存在所述零位故障,包括:
    若所述绝对值大于或等于所述第一电压阈值,则确定所述踏板存在所述卡滞故障。
  5. 根据权利要求4所述的踏板故障诊断方法,其特征在于,所述踏板故障诊断方法还包括:
    输出提示信息;其中,所述提示信息用于提示检查所述踏板所在空间是否存在异物。
  6. 根据权利要求4或5所述的踏板故障诊断方法,其特征在于,所述踏板故障诊断方法还包括:
    将所述踏板按零开度处理;其中,所述零开度处理为:当检测到所述踏板被踩下时的电压小于或等于所述卡滞故障对应的实际零位电压,则将所述踏板按开度为零进行处理。
  7. 根据权利要求4-6中任一项所述的踏板故障诊断方法,其特征在于,所述踏板故障诊断方法还包括:
    控制车辆进入限速模式;其中,所述限速模式为:控制车辆的速度小于或等于第一安全速度阈值。
  8. 根据权利要求3所述的踏板故障诊断方法,其特征在于,所述电压阈值包括第一电压阈值和第二电压阈值,且所述第一电压阈值大于所述第二电压阈值;所述零位故障包括所述踏板的零位偏移故障;
    所述根据所述绝对值与电压阈值的比较结果,确定所述踏板是否存在所述零位故障,包括:
    若所述绝对值小于所述第一电压阈值,且所述绝对值大于或等于所述第二电压阈值,则确定所述踏板存在所述零位偏移故障。
  9. 根据权利要求8所述的踏板故障诊断方法,其特征在于,所述踏板故障诊断方 法还包括:
    将所述实际零位电压确定为控制器中零位电压的设定值;其中,所述控制器中零位电压的设定值用于计算所述踏板的开度大小。
  10. 根据权利要求9所述的踏板故障诊断方法,其特征在于,所述实际零位电压为多个;
    所述将所述实际零位电压确定为控制器中零位电压的设定值,包括:
    将多个所述实际零位电压中的最大值确定为所述控制器零位电压的设定值。
  11. 一种踏板故障诊断装置,其特征在于,包括:检测模块、采集模块和处理模块;其中,
    所述检测模块,用于检测驾驶座椅是否处于无人状态;
    所述采集模块,用于在驾驶座椅处于无人状态的情况下,采集踏板的实际零位电压;
    所述处理模块,用于根据所述实际零位电压确定所述踏板是否存在零位故障。
  12. 根据权利要求11所述的踏板故障诊断装置,其特征在于,
    所述检测模块,还用于未检测到所述驾驶座椅所在位置存在人脸信息;
    所述检测模块,还用于检测到所述驾驶座椅所承受的压力小于压力阈值。
  13. 根据权利要求11或12所述的踏板故障诊断装置,其特征在于,
    所述处理模块,还用于计算所述实际零位电压与初始零位电压之差的绝对值;
    所述处理模块,还用于根据所述绝对值与电压阈值的比较结果,确定所述踏板是否存在所述零位故障。
  14. 根据权利要求13所述的踏板故障诊断装置,其特征在于,所述电压阈值包括第一电压阈值;所述零位故障包括所述踏板的卡滞故障;
    所述处理模块,还用于若所述绝对值大于或等于所述第一电压阈值,则确定所述踏板存在所述卡滞故障。
  15. 根据权利要求14所述的踏板故障诊断装置,其特征在于,所述踏板故障诊断装置还包括:输出模块;其中,
    所述输出模块,用于输出提示信息;其中,所述提示信息用于提示检查所述踏板所在空间是否存在异物。
  16. 根据权利要求14或15所述的踏板故障诊断装置,其特征在于,
    所述处理模块,还用于将所述踏板按零开度处理;其中,所述零开度处理为:当检测到所述踏板被踩下时的电压小于或等于所述卡滞故障对应的实际零位电压,则将所述踏板按开度为零进行处理。
  17. 根据权利要求14-16中任一项所述的踏板故障诊断装置,其特征在于,
    所述处理模块,还用于控制车辆进入限速模式;其中,所述限速模式为:控制车辆的速度小于或等于第一安全速度阈值。
  18. 根据权利要求13所述的踏板故障诊断装置,其特征在于,所述电压阈值包括第一电压阈值和第二电压阈值,且所述第一电压阈值大于所述第二电压阈值;所述零位故障包括所述踏板的零位偏移故障;
    所述处理模块,还用于若所述绝对值小于所述第一电压阈值,且所述绝对值大于或等于所述第二电压阈值,则确定所述踏板存在所述零位偏移故障。
  19. 根据权利要求18所述的踏板故障诊断装置,其特征在于,
    所述处理模块,还用于将所述实际零位电压确定为控制器中零位电压的设定值;其中,所述控制器中零位电压的设定值用于计算所述踏板的开度大小。
  20. 根据权利要求19所述的踏板故障诊断装置,其特征在于,所述实际零位电压为多个;
    所述处理模块,还用于将多个所述实际零位电压中的最大值确定为所述控制器零位电压的设定值。
  21. 一种踏板故障诊断装置,其特征在于,所述踏板故障诊断装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述踏板故障诊断装置执行如权利要求1-10中任一项所述的踏板故障诊断方法。
  22. 一种芯片系统,其特征在于,所述芯片系统包括处理器和输入/输出端口,所述处理器用于实现如权利要求1-10中任一项所涉及的处理功能,所述输入/输出端口用于实现如权利要求1-10中任一项所涉及的收发功能。
  23. 一种车载控制器,其特征在于,所述车载控制器包括如权利要求11-21中任一项所述的踏板故障诊断装置,或者包括如权利要求22所述的芯片系统。
  24. 一种车载控制系统,其特征在于,所述车载控制系统包括如权利要求23所述的车载控制器。
  25. 一种车辆,其特征在于,所述车辆包括如权利要求24所述的车载控制系统。
  26. 一种可读存储介质,其特征在于,所述可读存储介质包括程序或指令,当所述程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-10中任一项所述的踏板故障诊断方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-10中任一项所述的踏板故障诊断方法。
PCT/CN2020/104654 2019-07-26 2020-07-24 踏板故障诊断方法及装置 WO2021018062A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20847666.3A EP3995378A4 (en) 2019-07-26 2020-07-24 PEDAL FAILURE DIAGNOSTIC METHOD AND DEVICE
US17/583,588 US20220144293A1 (en) 2019-07-26 2022-01-25 Pedal fault diagnosis method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910680263.4A CN112298070A (zh) 2019-07-26 2019-07-26 踏板故障诊断方法及装置
CN201910680263.4 2019-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/583,588 Continuation US20220144293A1 (en) 2019-07-26 2022-01-25 Pedal fault diagnosis method and apparatus

Publications (1)

Publication Number Publication Date
WO2021018062A1 true WO2021018062A1 (zh) 2021-02-04

Family

ID=74230202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104654 WO2021018062A1 (zh) 2019-07-26 2020-07-24 踏板故障诊断方法及装置

Country Status (4)

Country Link
US (1) US20220144293A1 (zh)
EP (1) EP3995378A4 (zh)
CN (1) CN112298070A (zh)
WO (1) WO2021018062A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977059A (zh) * 2021-02-26 2021-06-18 三一汽车制造有限公司 踏板的失效处理方法、装置、车辆、可读存储介质
CN117022211A (zh) * 2023-10-10 2023-11-10 金琥新能源汽车(成都)有限公司 一种防抱死驻车方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122959A1 (zh) * 2021-12-28 2023-07-06 宁德时代新能源科技股份有限公司 一种油门踏板的开度计算方法、装置、整车控制器和车辆
CN114506211B (zh) * 2022-01-28 2023-05-23 重庆长安新能源汽车科技有限公司 一种加速踏板零开度自学习方法、装置及汽车
CN115220422B (zh) * 2022-06-02 2024-01-02 广州汽车集团股份有限公司 电压检测方法、装置、车辆以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084705A1 (en) * 2001-11-08 2003-05-08 Weijia Cui Method for synchronizing the zero position of pedal position sensors
CN104632444A (zh) * 2013-11-07 2015-05-20 北汽福田汽车股份有限公司 加速踏板传感信号的修正方法及装置
CN105691404A (zh) * 2014-11-28 2016-06-22 上海汽车集团股份有限公司 车辆加速踏板零点位置诊断方法及装置
WO2016202335A1 (de) * 2015-06-16 2016-12-22 Continental Automotive Gmbh Fahrpedal für die steuerung einer antriebsmaschine eines kraftfahrzeugs mit verstellbarer nullpunktposition
DE102015214351A1 (de) * 2015-07-29 2017-02-02 Continental Automotive Gmbh Verfahren zum Betrieb eines Kraftfahrzeugs mit einer haptischen Signalisierung an den Fahrer
CN107462423A (zh) * 2016-06-06 2017-12-12 上海汽车集团股份有限公司 制动踏板位置检测的方法及装置
CN108839559A (zh) * 2018-06-21 2018-11-20 北京新能源汽车股份有限公司 一种加速踏板零点位置自适应学习方法、装置及车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685491B2 (ja) * 2005-03-31 2011-05-18 日立オートモティブシステムズ株式会社 ペダル装置
CN104276106B (zh) * 2013-07-03 2017-03-22 上海汽车集团股份有限公司 用于混合动力/纯电动车辆的加速踏板零点值故障诊断方法
CN105934725B (zh) * 2014-01-27 2017-07-04 本田技研工业株式会社 操作构件的操作量检测装置以及具备该操作构件的操作量检测装置的电子驻车制动控制单元
CN107487280B (zh) * 2016-07-06 2019-09-20 宝沃汽车(中国)有限公司 整车控制器、车辆控制系统、车辆和踏板信号的补偿方法
CN106337751B (zh) * 2016-08-25 2019-06-04 北京新能源汽车股份有限公司 加速踏板零点位置自适应学习方法和装置
US10581906B2 (en) * 2016-09-28 2020-03-03 Intel Corporation Security system for electronic equipment
CN108819713B (zh) * 2018-04-24 2021-06-18 上海伊控动力系统有限公司 用于纯电动物流车的加速踏板开度零点调整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084705A1 (en) * 2001-11-08 2003-05-08 Weijia Cui Method for synchronizing the zero position of pedal position sensors
CN104632444A (zh) * 2013-11-07 2015-05-20 北汽福田汽车股份有限公司 加速踏板传感信号的修正方法及装置
CN105691404A (zh) * 2014-11-28 2016-06-22 上海汽车集团股份有限公司 车辆加速踏板零点位置诊断方法及装置
WO2016202335A1 (de) * 2015-06-16 2016-12-22 Continental Automotive Gmbh Fahrpedal für die steuerung einer antriebsmaschine eines kraftfahrzeugs mit verstellbarer nullpunktposition
DE102015214351A1 (de) * 2015-07-29 2017-02-02 Continental Automotive Gmbh Verfahren zum Betrieb eines Kraftfahrzeugs mit einer haptischen Signalisierung an den Fahrer
CN107462423A (zh) * 2016-06-06 2017-12-12 上海汽车集团股份有限公司 制动踏板位置检测的方法及装置
CN108839559A (zh) * 2018-06-21 2018-11-20 北京新能源汽车股份有限公司 一种加速踏板零点位置自适应学习方法、装置及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995378A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977059A (zh) * 2021-02-26 2021-06-18 三一汽车制造有限公司 踏板的失效处理方法、装置、车辆、可读存储介质
CN117022211A (zh) * 2023-10-10 2023-11-10 金琥新能源汽车(成都)有限公司 一种防抱死驻车方法、装置、设备及存储介质
CN117022211B (zh) * 2023-10-10 2023-12-12 金琥新能源汽车(成都)有限公司 一种防抱死驻车方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112298070A (zh) 2021-02-02
US20220144293A1 (en) 2022-05-12
EP3995378A4 (en) 2022-08-31
EP3995378A1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2021018062A1 (zh) 踏板故障诊断方法及装置
US20200269876A1 (en) Autonomous driving control device and method for autonomous driving control of vehicles
US10991177B2 (en) Method for processing vehicle fault, apparatus, device, and storage medium
CN110570538B (zh) 智能驾驶汽车中黑匣子数据的管理方法、装置和设备
US11398944B2 (en) Vehicle fault handling method, apparatus, device and storage medium
JP4155198B2 (ja) 車両の制御システムの異常検知装置
US20190108160A1 (en) Vehicle Control System Verification Device, Vehicle Control System, and Vehicle Control System Verification Method
US11829128B2 (en) Perception system diagnosis using predicted sensor data and perception results
KR101558383B1 (ko) 차량의 스마트 센서 또는 액추에이터의 고장 진단 방법
KR101802858B1 (ko) 자동차용 통합데이터 처리 제어 시스템 및 방법
KR102145944B1 (ko) 통합 전자제어장치의 비상 제동 모드 제공 장치, 방법 및 컴퓨터 판독 가능한 기록 매체
WO2021208235A1 (zh) 无人驾驶交通工具及其制动系统的安全检测方法
US10839619B2 (en) Electronic control unit and method for connection authentication
WO2023005638A1 (zh) 辅助驾驶方法、装置、设备及存储介质
US20160305389A1 (en) Vehicle control device
JP6918873B2 (ja) 車両運行状態監視方法、装置、及び機器
CN110356399A (zh) 一种动力系统扭矩监控的方法和装置
US11866057B2 (en) Garage mode control unit, control system and control method
CN110816443B (zh) 车辆监测方法、装置以及无人驾驶车辆
JP5223512B2 (ja) 車両用異常解析システム、車両用異常解析方法、及び車両用故障解析装置
US10740204B2 (en) Method and apparatus for monitoring memory and for displaying use in electronic control device
CN108860099B (zh) 一种工程机械设备的电子刹车系统
US20240051578A1 (en) Apparatus for controlling a vehicle and method thereof
US20230401979A1 (en) Driving diagnostic device, driving diagnostic system, machine learning device and generation method of learned model
US20230174085A1 (en) Driving diagnosis device, driving diagnosis method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847666

Country of ref document: EP

Effective date: 20220207