WO2021018056A1 - 射频拉远单元上行误码率的获取方法及装置 - Google Patents

射频拉远单元上行误码率的获取方法及装置 Download PDF

Info

Publication number
WO2021018056A1
WO2021018056A1 PCT/CN2020/104641 CN2020104641W WO2021018056A1 WO 2021018056 A1 WO2021018056 A1 WO 2021018056A1 CN 2020104641 W CN2020104641 W CN 2020104641W WO 2021018056 A1 WO2021018056 A1 WO 2021018056A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband
uplink
module
remote radio
radio unit
Prior art date
Application number
PCT/CN2020/104641
Other languages
English (en)
French (fr)
Inventor
曲玉周
熊林江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/630,949 priority Critical patent/US20220294530A1/en
Priority to EP20846255.6A priority patent/EP4007343A4/en
Publication of WO2021018056A1 publication Critical patent/WO2021018056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0847Transmission error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method and device for acquiring an uplink bit error rate of a remote radio unit.
  • FIG. 1 is a schematic diagram of the test connection of the uplink index of the remote radio unit in the prior art.
  • the vector signal generator synchronizes the clock to the baseband unit through the clock synchronization signal provided by the baseband unit;
  • the frame synchronization signal provided by the baseband unit generates the uplink radio frequency air interface signal required by the radio remote unit, and sends this signal to the antenna port of the radio remote unit.
  • the radio remote unit converts the radio frequency signal into baseband data and transmits it to the baseband unit through the optical port.
  • the baseband unit solves the uplink index according to the agreement.
  • the remote radio unit recovers the system clock of the baseband unit through the optical port, and synchronizes to the system clock of the baseband unit through the internal phase-locked loop.
  • This is the current universal test method for the uplink indicators of the remote radio unit.
  • the clock and frame frequency of the vector signal generator need to be synchronized to Baseband unit.
  • the uplink indicator of the remote radio unit is generally obtained through the uplink bit error rate. Therefore, the obtaining of the uplink indicator can be converted to the uplink bit error rate.
  • the embodiments of the present disclosure provide a method and device for obtaining the uplink bit error rate of a remote radio unit, so as to at least solve the problem of complicated steps in the process of obtaining the uplink bit error rate of the remote radio unit and cannot be decoupled from the baseband unit in the related art .
  • a method for acquiring an uplink bit error rate of a remote radio unit which includes: a vector signal generator recovers baseband data from a received uplink baseband optical signal, wherein the uplink baseband The optical signal comes from the remote radio unit; the baseband data is de-channel encoded to obtain the decoded pseudo-noise PN sequence; the decoded pseudo-noise PN sequence is combined with the PN sequence locally transmitted by the vector signal generator By comparison, the uplink bit error rate of the remote radio unit is obtained.
  • a device for acquiring an uplink bit error rate of a remote radio unit which is applied to the vector signal generator, and includes: a recovery module configured to obtain an uplink baseband optical signal from The baseband data is recovered from the baseband data, where the uplink baseband optical signal comes from the remote radio unit; the decoding module is configured to de-channel encode the baseband data to obtain the decoded pseudo-noise PN sequence; the comparison module is configured to The decoded pseudo-noise PN sequence is compared with the PN sequence locally transmitted by the vector signal generator to obtain the uplink bit error rate of the remote radio unit.
  • a vector signal generator including: an uplink processing module configured to recover baseband data from the received uplink baseband optical signal, wherein The uplink baseband optical signal comes from the remote radio unit; the baseband data is de-channel encoded to obtain the decoded pseudo-noise PN sequence; the decoded pseudo-noise PN sequence is locally transmitted by the vector signal generator The PN sequence is compared to obtain the uplink bit error rate of the remote radio unit.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • Fig. 1 is a schematic diagram of a test connection according to the uplink index of a remote radio unit in the prior art
  • FIG. 2 is a hardware structural block diagram of a mobile terminal of an optional method for acquiring an uplink bit error rate of a remote radio unit according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an optional method for sending an access request according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an optional uplink index test connection of a remote radio unit according to an embodiment of the present disclosure
  • FIG. 5 is a configuration flowchart of an optional uplink indicator test of a remote radio unit according to an embodiment of the present disclosure
  • Fig. 6 is a structural block diagram of an optional device for acquiring an uplink bit error rate of a remote radio unit according to an embodiment of the present disclosure
  • Fig. 7 is a structural block diagram of an optional vector signal generator according to an embodiment of the present disclosure.
  • FIG. 8 is a test connection diagram and internal hardware block diagram of an optional vector signal generator according to an embodiment of the present disclosure
  • Fig. 9 is an optional uplink decoding software processing flowchart of an embodiment of the present disclosure.
  • Fig. 10 is an optional sensitivity test flowchart according to an embodiment of the present disclosure.
  • FIG. 2 is a hardware structural block diagram of a mobile terminal of a method for acquiring an uplink bit error rate of a remote radio unit according to an embodiment of the present disclosure.
  • the mobile terminal 10 may include one or more (only one is shown in FIG. 2) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) And a memory 104 configured to store data.
  • the above-mentioned mobile terminal may also include a transmission device 106 and an input/output device 108 configured as a communication function.
  • a transmission device 106 and an input/output device 108 configured as a communication function.
  • the structure shown in FIG. 2 is only for illustration, and it does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 2 or have a different configuration from that shown in FIG. 2.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the method for obtaining scheduling throughput in the embodiments of the present disclosure.
  • the processor 102 runs the computer programs stored in the memory 104 , So as to perform various functional applications and data processing, that is, to achieve the above methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • Fig. 3 is a flowchart of a method for acquiring an uplink bit error rate of a remote radio unit in an embodiment of the present disclosure. As shown in Fig. 3, the method includes:
  • Step S301 the vector signal generator recovers baseband data from the received uplink baseband optical signal, where the uplink baseband optical signal comes from the remote radio unit;
  • Step S303 De-channel coding the baseband data to obtain a decoded pseudo-noise PN sequence
  • Step S305 Compare the decoded pseudo-noise PN sequence with the PN sequence locally transmitted by the vector signal generator to obtain the uplink bit error rate of the remote radio unit.
  • the data recovery and de-channel coding of the uplink baseband optical signal are performed on the side of the vector signal generator, which solves the cumbersome process of obtaining the uplink bit error rate of the radio remote unit in the prior art and cannot be compared with the baseband unit.
  • the problem of decoupling makes the uplink index test environment of the remote radio unit simple and easy to set up.
  • the uplink indicators of the remote radio unit can be tested independently, and the testing of each uplink indicator can be attributed to the remote radio unit.
  • the bit error rate test can be added to the uplink indicators of the remote radio unit.
  • the above step S301 can be implemented by the following steps: the vector signal generator recovers the baseband data from the received uplink baseband optical signal including: the vector signal generator receives the radio frequency through the optical port module The uplink baseband optical signal sent by the remote unit converts the baseband optical signal into an electrical signal; the parallel data is recovered from the electrical signal through the serial-parallel conversion module; the baseband data is recovered from the parallel data through the optical port data analysis module.
  • step S303 can be implemented by the following steps: marking the frame header of the baseband data, and performing de-channel coding on the baseband data marked with the frame header to obtain the decoded PN sequence.
  • the frame header of the baseband data is marked, and the baseband data of the marked frame header is de-channel encoded to obtain the decoded pseudo-noise PN sequence.
  • This can be achieved by the following steps: through the synchronization search module Find the frame header of the baseband data and mark it; send the baseband data marked with the frame header to the baseband decoding module; use the baseband decoding module to deframe, extract the data channel and decode the channel coding according to the frame header to obtain the decoded PN sequence .
  • the method further includes: adjusting the radio frequency signal sent to the remote radio unit according to the uplink bit error rate of the remote radio unit; and according to the adjusted radio frequency signal Obtain the uplink bit error rate of the corresponding remote radio unit; when the uplink bit error rate of the remote radio unit reaches a preset threshold, obtain the uplink indicator of the remote radio unit.
  • the RF signal input to the remote RF unit is automatically changed to obtain multiple bit error rates to perform uplink index testing (for example, when testing sensitivity, reduce the vector signal generator sent to the remote RF unit RF power, until the bit error rate exceeds the range, the sensitivity index of the remote radio unit is obtained at this time)
  • the method further includes: the vector signal generator generates baseband data of the communication protocol to be tested according to the received communication protocol to be tested; digitally uploading the baseband data of the communication protocol to be tested Frequency conversion processing, and the processed baseband data of the communication protocol under test is converted into analog signals; it is modulated and amplified by the radio frequency module into a radio frequency air interface signal that meets the requirements of the communication protocol; the radio frequency air interface signal is sent to the remote radio unit through the radio frequency cable The antenna port.
  • the method further includes: the vector signal generator appends a local clock to the serial data, and sends it to the remote radio unit through an optical port module.
  • the WCDMA uplink sensitivity test in the 2.1G frequency band is taken as an example to describe the hardware design, technical solutions, and implementation steps in detail with reference to the drawings.
  • the method and device are also suitable for remote radio unit equipment of other frequency bands and other standards.
  • the sensitivity test environment is set up as shown in Fig. 4, and the software test process of this embodiment is shown in Fig. 5.
  • Fig. 4 is a schematic diagram of the uplink indicator test connection diagram of the remote radio unit according to an embodiment of the present disclosure
  • Fig. 5 is a configuration flowchart of the uplink indicator test of the remote radio unit according to an embodiment of the present disclosure. As shown in Figure 5:
  • A. Set the signal source to send uplink data according to the WCDMA protocol: set the radio frequency point to 1930, the scrambling code to 0, and the transmit power to -80dBm.
  • the signal source optical port receives the uplink data uploaded by the remote radio unit, and the signal source parses the optical port data according to the CPRI protocol and separates the uplink data to be tested.
  • G Decode the transmission layer according to the WCDMA protocol, including de-interleaving, de-rate matching, de-convolutional code, and de-CRC.
  • the embodiment of the present disclosure also provides a device for acquiring the uplink bit error rate of a remote radio unit.
  • the device is used to implement the foregoing method embodiments and optional implementations for obtaining the uplink bit error rate of the remote radio unit. The description will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 6 is a structural block diagram of a device for acquiring an uplink bit error rate of a remote radio unit according to an embodiment of the present disclosure. As shown in Fig. 6, the device is applied to the vector signal generator and includes:
  • the recovery module 60 is configured to recover baseband data from the received uplink baseband optical signal, where the uplink baseband optical signal comes from the remote radio unit;
  • the decoding module 62 is configured to perform de-channel coding on the baseband data to obtain a decoded pseudo-noise PN sequence
  • the comparison module 64 is configured to compare the decoded pseudo-noise PN sequence with the PN sequence locally transmitted by the vector signal generator to obtain the uplink bit error rate of the remote radio unit.
  • the recovery module 60 recovers baseband data from the received uplink baseband optical signal, where the uplink baseband optical signal comes from the remote radio unit; the decoding module 62 de-channel encodes the baseband data to obtain the decoded pseudo noise PN sequence; the comparison module 64 compares the decoded pseudo-noise PN sequence with the PN sequence locally transmitted by the vector signal generator to obtain the uplink bit error rate of the remote radio unit.
  • the recovery module 60 includes: a receiving unit configured to receive an uplink baseband optical signal sent by a remote radio unit through an optical port module; a conversion unit configured to convert a baseband optical signal into electrical Signal; the first recovery unit is set to recover the electrical signal to parallel data through the serial-to-parallel conversion module; the second recovery unit is set to recover the baseband data from the parallel data through the optical port data analysis module.
  • the decoding module 62 includes: a marking unit configured to mark the frame header of the baseband data; and a decoding unit configured to de-channel encode the baseband data marked with the frame header to obtain the decoded PN sequence.
  • the marking unit is further configured to: find and mark the frame header of the baseband data through the synchronization search module, and send the baseband data of the marked frame header to the baseband decoding module; It is set to perform deframing, data channel extraction and de-channel coding according to the frame header through the baseband decoding module to obtain the decoded PN sequence.
  • the device further includes: an adjustment module configured to adjust the radio frequency signal sent to the radio remote unit according to the uplink bit error rate of the radio remote unit;
  • the first acquisition module is configured to adjust the radio frequency signal according to the adjusted radio frequency signal Obtain the uplink bit error rate of the corresponding remote radio unit;
  • the second obtaining module is configured to obtain the uplink index of the remote radio unit when the uplink bit error rate of the remote radio unit reaches a preset threshold.
  • the RF signal input to the remote RF unit is automatically changed to obtain multiple bit error rates to perform uplink index testing (for example, when testing sensitivity, reduce the vector signal generator sent to the remote RF unit RF power, until the bit error rate exceeds the range, the sensitivity index of the remote radio unit is obtained at this time).
  • the embodiments of the present disclosure also provide a vector signal generator, which is used to implement the above-mentioned method embodiments and optional implementations for obtaining the uplink bit error rate of the remote radio unit, and is also used to carry the above-mentioned remote radio A device for obtaining the bit error rate of the unit uplink.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 7 is a structural block diagram of a vector signal generator according to an embodiment of the present disclosure. As shown in Fig. 7, the device is applied to the vector signal generator and includes:
  • the uplink processing module 70 is configured to: recover baseband data from the received uplink baseband optical signal, where the uplink baseband optical signal comes from the remote radio unit; de-channel coding the baseband data to obtain the decoded pseudo-noise PN sequence ; Compare the decoded pseudo-noise PN sequence with the PN sequence locally transmitted by the vector signal generator to obtain the uplink bit error rate of the remote radio unit.
  • the uplink processing module 70 includes: an optical port module configured to receive the uplink baseband optical signal sent by the remote radio unit and convert the baseband optical signal into an electrical signal; a serial-parallel conversion module , Set to restore the electrical signal to parallel data; optical port data analysis module, set to restore the baseband data from the parallel data.
  • the uplink processing module includes: a synchronization module configured to mark the frame header of the baseband data; a baseband decoding module configured to de-channel-encode the baseband data marked with the frame header to obtain the decoded PN sequence.
  • the synchronization module is further configured to find and mark the frame header of the baseband data through the synchronization search module, and send the baseband data marked with the frame header to the baseband decoding module; baseband decoding module It is also set to perform deframing, data channel extraction and de-channel coding according to the frame header to obtain a decoded PN sequence.
  • the uplink processing module 70 is further configured to: adjust the radio frequency signal sent to the radio remote unit according to the uplink error rate of the radio remote unit; obtain the uplink error of the corresponding radio remote unit according to the adjusted radio frequency signal.
  • Code rate When the uplink bit error rate of the remote radio unit reaches a preset threshold, the uplink index of the remote radio unit is obtained.
  • the RF signal input to the remote RF unit is automatically changed to obtain multiple bit error rates to perform uplink index testing (for example, when testing sensitivity, reduce the vector signal generator sent to the remote RF unit RF power, until the bit error rate exceeds the range, the sensitivity index of the remote radio unit is obtained at this time).
  • the vector signal generator further includes: a control module configured to receive the communication protocol under test and send it to the baseband module; the baseband module configured to generate the baseband of the communication protocol under test Data; an up-conversion module, configured to perform digital up-conversion processing on the baseband data of the communication protocol under test; digital-analog conversion module, configured to convert the processed baseband data of the communication protocol under test into analog signals; radio frequency The module is configured to modulate and amplify the analog signal to obtain a radio frequency air interface signal that meets the requirements of the communication protocol, and send the radio frequency air interface signal to the antenna port of the remote radio unit.
  • a control module configured to receive the communication protocol under test and send it to the baseband module
  • the baseband module configured to generate the baseband of the communication protocol under test Data
  • an up-conversion module configured to perform digital up-conversion processing on the baseband data of the communication protocol under test
  • digital-analog conversion module configured to convert the processed baseband data of the communication protocol under test into analog signals
  • radio frequency The module
  • the vector signal generator further includes: a display module configured to display the test result of the uplink index after obtaining the bit error rate.
  • the vector signal generator provided by the embodiments of the present disclosure includes, in addition to the vector signal generation module included in the general vector signal generator, it also includes optical interface circuits, various communication protocol decoding circuits, and optical port encoding and decoding protocols, and various communications
  • the protocol's upstream index analysis algorithm can independently test the upstream index of the remote radio unit, and solve the problem that it cannot be decoupled from the baseband unit when doing the upstream index test of the remote radio unit.
  • the use of this vector signal generator for the uplink index test of the remote radio unit eliminates the need for a baseband unit.
  • Fig. 8 is a test connection diagram and internal hardware block diagram of the vector signal generator of an embodiment of the present disclosure.
  • an optional implementation of the embodiments of the present disclosure adds the parts contained in the dashed box: a clock module, an uplink processing module, wherein the uplink processing module includes: optical port module, serial-to-parallel conversion Module, optical port data analysis module, synchronization module, baseband decoding module.
  • the clock module generates the clock required by the entire system, and provides clock synchronization and frame synchronization between the vector signal generation module and the upstream processing module.
  • the external synchronization cable in Figure 1 is no longer needed; the upstream processing module uploads the upstream baseband of the radio remote unit Data is processed and tested.
  • the vector signal generator of the example of the present disclosure informs the local baseband module of the communication protocol to be tested input by the man-machine input module through the control module, and generates baseband data of the communication protocol to be tested. After digital up-conversion by the up-conversion module, the data is sent The analog signal is generated by the digital-to-analog conversion module, and then modulated and amplified by the radio frequency module into a radio frequency air interface signal of the frequency required by the protocol, and sent to the antenna port of the remote radio unit through the radio frequency cable.
  • the vector signal generator is connected to the remote radio unit through an optical port, receives the uplink baseband optical signal of the remote radio unit, and converts the optical signal into an electrical signal through the optical port circuit.
  • the parallel data is recovered by the serial-parallel conversion module.
  • the port data analysis module recovers the baseband data.
  • the frame header is found, and the baseband data marked with the frame header is sent to the baseband decoding module.
  • the baseband decoding module the frame header is deframed and the data channel is extracted.
  • the channel code is decoded, and finally compared with the locally transmitted PN (Pseudo-noise) sequence and the bit error rate is calculated, the uplink indicator test result is displayed through the display module, and the uplink indicator test of the remote radio unit is completed.
  • PN Pulseudo-noise
  • the vector signal generator attaches the local system clock to the serial data in the serial-to-parallel conversion module, and sends it to the remote radio unit through the optical port module port, so that the remote radio unit can complete the clock synchronization function through the optical port. Add a synchronization line in addition.
  • Fig. 9 is a flowchart of uplink decoding software processing in an embodiment of the present disclosure.
  • the vector signal generator receives the optical port data sent by the remote radio unit through the optical port, and decodes the required baseband data through the RRU optical port protocol analysis module, and the baseband data of the remote radio unit is coarsened. Synchronization and fine synchronization to obtain the frame header of the baseband data, the deframing module deframes the frame structure according to the frame header, and then extracts the data channel, decodes the channel code to obtain the PN sequence, and compares with the local PN sequence to calculate the bit error rate, and then complete Testing of upside indicators.
  • Figure 10 is a sensitivity test flow chart according to an embodiment of the present disclosure.
  • the vector signal generator receives the uplink optical signal sent by the remote radio unit, it undergoes RRU optical port protocol analysis, coarse synchronization, and fine synchronization.
  • Decompress the physical layer of the obtained baseband data including descrambling and despreading, and then de-transmit the layer, including de-interleaving, de-rate matching, deconvolutional code, and de-CRC, to get the decoded PN sequence, and the decoded PN
  • the sequence is compared with the local PN of the vector signal generator to obtain the bit error rate and judge whether the bit error rate is within the set range. If not, the software automatically adjusts the transmit power, and the uplink optical signal re-sent by the remote radio unit. End the sensitivity test process.
  • an optional sensitivity test process of the embodiment of the present disclosure includes the following steps:
  • S1 Set the signal source to send uplink data according to the WCDMA protocol: set the transmit radio frequency to 1930, the scrambling code to 0, and the transmit power to -80dBm.
  • the signal source optical port receives the uplink data uploaded by the remote radio unit, and the signal source parses the optical port data according to the CPRI protocol, and separates the uplink data to be tested.
  • S5 Perform physical layer demodulation according to the WCDMA protocol, including descrambling and despreading.
  • S6 Decompose the transport layer according to the WCDMA protocol, including deinterleaving, de-rate matching, deconvolutional code, and CRC.
  • the transmit power is within the set range. If the calculated error rate result is within the set range, reduce the transmit power and cycle the B-H process. If the error rate exceeds the set range, the last transmit power is the uplink sensitivity of the remote radio unit. So far the sensitivity test is completed.
  • the present disclosure provides a vector signal generator for independently testing the uplink indicators of a remote radio unit, including: 1. An optical port codec circuit and an uplink baseband decoder circuit that communicate with the optical port of the radio remote unit, including optical port circuits, serial ports Parallel conversion (serializer/deserializer) circuit, synchronization circuit and decoding circuit, etc.; 2. Optical port protocol codec software for communicating with the remote radio unit, and for testing the uplink radio remote unit supporting each communication protocol Uplink index, this vector signal generator is designed with uplink coding and decoding software modules of each communication protocol, which is convenient to interpret the uplink data of each communication protocol and calculate the bit error rate.
  • the embodiments of the present disclosure also provide a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the foregoing method embodiments when running.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • the embodiments of the present disclosure also provide an electronic device, including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute the steps in any of the above method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • modules or steps of the present disclosure can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本公开实施例提供了一种射频拉远单元上行误码率的获取方法及装置,所述方法包括:矢量信号发生器从接收到的上行基带光信号中恢复出基带数据,其中,上行基带光信号来自射频拉远单元;对基带数据进行解信道编码,得到解码后的伪噪声PN序列;将解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到射频拉远单元的上行误码率。解决了现有技术中射频拉远单元上行误码率的获取过程步骤繁琐且不能与基带单元解耦的问题。

Description

射频拉远单元上行误码率的获取方法及装置 技术领域
本公开涉及通信技术领域,具体而言,涉及一种射频拉远单元上行误码率的获取方法及装置。
背景技术
现有的射频拉远单元的上行指标测试,需要用到矢量信号发生器、基带单元。图1是根据现有技术中射频拉远单元的上行指标测试连接示意图,如图1所示,矢量信号发生器通过基带单元提供的时钟同步信号,将时钟同步到基带单元;矢量信号发生器根据基带单元提供的帧同步信号产生射频拉远单元需要的上行射频空口信号,将此信号发送给射频拉远单元天线口,射频拉远单元将射频信号转换为基带数据,通过光口传输给基带单元,基带单元根据协议解上行指标。另外射频拉远单元通过光口恢复出基带单元的系统时钟,通过内部的锁相环同步到基带单元的系统时钟。这是目前通用的射频拉远单元上行指标测试方法,采用上述方法每次测试射频拉远单元的上行指标都需要另外搭建基带单元测试环境,另外需要将矢量信号发生器的时钟和帧频同步到基带单元。射频拉远单元的上行指标一般是通过上行误码率来获取,因此,上行指标的获取可以转换为上行误码率的获取。采用此种矢量信号发生器测试射频拉远单元的上行误码率,搭建测试环境繁琐,耗时较长,并且不能将射频拉远单元上行误码率的获取方法和基带单元解耦。
针对相关技术中,射频拉远单元上行误码率的获取过程步骤繁琐且不能与基带单元解耦的问题,目前尚未有合理的解决办法。
发明内容
本公开实施例提供了一种射频拉远单元上行误码率的获取方法及装置,以至少解决相关技术中射频拉远单元上行误码率的获取过程步骤繁琐 且不能与基带单元解耦的问题。
根据本公开的一个实施例,提供了一种射频拉远单元上行误码率的获取方法,包括:矢量信号发生器从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
根据本公开的另一个实施例,还提供了一种射频拉远单元上行误码率的获取装置,应用于所述矢量信号发生器,包括:恢复模块,设置为从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;解码模块,设置为对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;对比模块,设置为将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
根据本公开的另一个实施例,还提供了一种矢量信号发生器,包括:上行处理模块,所述上行处理模块设置为:从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
根据本公开的另一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的另一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据现有技术中射频拉远单元的上行指标测试连接示意图;
图2是本公开实施例的一种可选的射频拉远单元上行误码率的获取方法的移动终端的硬件结构框图;
图3是本公开实施例的一种可选的接入请求的发送方法的流程图;
图4是根据本公开实施例的一种可选的射频拉远单元的上行指标测试连接示意图;
图5是根据本公开实施例的一种可选的射频拉远单元的上行指标测试的配置流程图;
图6是根据本公开实施例的一种可选的射频拉远单元上行误码率的获取装置的结构框图;
图7是根据本公开实施例的一种可选的矢量信号发生器的结构框图;
图8是本公开实施例的一种可选的矢量信号发生器的测试连接图以及内部硬件框图;
图9是本公开实施例的一种可选的上行解码软件处理流程图;
图10是根据本公开实施例的一种可选的灵敏度测试流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的接入请求的发送方法实施例可以在移动终 端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本公开实施例的一种射频拉远单元上行误码率的获取方法的移动终端的硬件结构框图。如图2所示,移动终端10可以包括一个或多个(图2中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,可选地,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的调度吞吐量的获取方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
本公开实施例提供了一种射频拉远单元上行误码率的获取方法。图3是本公开实施例中射频拉远单元上行误码率的获取方法的流程图,如图3所示,该方法包括:
步骤S301,矢量信号发生器从接收到的上行基带光信号中恢复出基带数据,其中,上行基带光信号来自射频拉远单元;
步骤S303,对基带数据进行解信道编码,得到解码后的伪噪声PN序列;
步骤S305,将解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到射频拉远单元的上行误码率。
通过上述方法,将上行基带光信号的数据恢复、解信道编码都放在矢量信号发生器侧执行,解决了现有技术中射频拉远单元上行误码率的获取过程步骤繁琐且不能与基带单元解耦的问题,使得射频拉远单元的上行指标测试环境简单,环境搭建简便快捷。
需要说明的是,本发明实施例通过在矢量信号发生器通过增加了相应的软硬件模块,可以独立的测试射频拉远单元的上行指标,其中各个上行指标的测试都可以归结于射频拉远单元的误码率的测试。
根据本公开实施例的一个可选实施方式,上述步骤S301可以通过以下步骤实现:矢量信号发生器从接收到的上行基带光信号中恢复出基带数据包括:矢量信号发生器通过光口模块接收射频拉远单元发送的上行基带光信号,并将基带光信号转换成电信号;通过串并转换模块将电信号恢复出并行数据;通过光口数据解析模块从并行数据中恢复出基带数据。
根据本公开实施例的一个可选实施方式,上述步骤S303可以通过以下步骤实现:标记基带数据的帧头,并将标记帧头的基带数据进行解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,标记基带数据的帧头,并将标记帧头的基带数据进行解信道编码,得到解码后的伪噪声PN序列可以通过以下步骤实现:通过同步搜索模块找出基带数据的帧头并进行标记;将标记帧头的基带数据发送到基带解码模块内;通过基带解码模块根据帧头进行解帧、数据信道提取以及解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,上述步骤S305可以通过以 下步骤实现包括:将解码后PN序列的码数与矢量信号发生器本地发射的PN序列比对,得到传输过程中的误码数,将误码数和总码数代入以下公式获得射频拉远单元的上行误码率:误码率=传输中的误码/所传输的总码数*100%。
可选地,得到射频拉远单元的上行误码率之后,所述方法还包括:根据射频拉远单元的上行误码率,调整发送给射频拉远单元的射频信号;根据调整后的射频信号获取对应的射频拉远单元的上行误码率;当射频拉远单元的上行误码率达到预设阈值时,获取射频拉远单元的上行指标。
根据本次得到的误码率,自动改变输入给射频拉远单元的射频信号得到多个误码率从而进行上行指标测试(譬如测试灵敏度时,减小矢量信号发生器发送给射频拉远单元的射频功率,直到误码率超出范围,此时得到射频拉远单元的灵敏度指标)
根据本公开实施例的一个可选实施方式,所述方法还包括:矢量信号发生器根据接收到的待测通信协议,产生待测通信协议的基带数据;对待测通信协议的基带数据进行数字上变频处理,并将处理后的待测通信协议的基带数据转换成模拟信号;经过射频模块调制、放大成符合通信协议要求的射频空口信号;通过射频线缆将射频空口信号发送到射频拉远单元的天线口。
根据本公开实施例的一个可选实施方式,所述方法还包括:所述矢量信号发生器将本地的时钟附加在串行数据中,通过光口模块发送给所述射频拉远单元。
本实施例以2.1G频段的WCDMA上行灵敏度测试为例结合附图对硬件设计、技术方案以及实施步骤进行详细说明。该方法和装置也同样适合其他频段和其他制式的射频拉远单元设备。如图4所示搭建灵敏度测试环境,该实施例的软件测试流程如图5所示。图4是根据本公开实施例的射频拉远单元的上行指标测试连接示意图,图5是根据本公开实施例的射频拉远单元的上行指标测试的配置流程图。如图5所示:
A、按照WCDMA协议设置信号源发送上行数据:设置发射频点为1930,扰码为0,设置发射功率为-80dBm。
B、设置信号源光口速率为1.2288G。打开WCDMA灵敏度测试界面,设置中心频点为1930,扰码为0。
C、信号源光口接收到射频拉远单元上传的上行数据,信号源对光口数据按照CPRI协议进行解析,将所要测试的上行数据分离出来。
D、对上行数据进行粗同步,找出大概的帧头位置。
E、在粗同步基础上,对上行数据进行精同步,找到帧头的确切位置。
F、按照WCDMA协议进行物理层解调,包含解扰,解扩。
G、根据WCDMA协议解传输层,包含解交织、解速率匹配、解卷积码、解CRC等。
H、与本地发射的PN码序列对比,并且计算误码率。
I、若计算的误码率结果在设定的范围内,减小发射功率,循环B-H过程,若误码率超出设定范围,则上一次的发射功率即为射频拉远单元设备的上行灵敏度。至此灵敏度测试完毕。
本实施例提供的测试射频拉远单元上行指标的方法,在做射频拉远单元的上行指标测试时不再需要再另外搭建基带单元测试环境以及连接同步线缆,只需要一台矢量信号发生器和待测射频拉远单元设备即可,测试环境简单,环境搭建简便快捷。
本公开实施例中还提供了一种射频拉远单元上行误码率的获取装置,该装置用于实现上述射频拉远单元上行误码率的获取方法实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本公开实施例的射频拉远单元上行误码率的获取装置的结构框图,如图6所示,该装置应用于所述矢量信号发生器,包括:
恢复模块60,设置为从接收到的上行基带光信号中恢复出基带数据,其中,上行基带光信号来自射频拉远单元;
解码模块62,设置为对基带数据进行解信道编码,得到解码后的伪噪声PN序列;
对比模块64,设置为将解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到射频拉远单元的上行误码率。
通过上述装置,恢复模块60从接收到的上行基带光信号中恢复出基带数据,其中,上行基带光信号来自射频拉远单元;解码模块62对基带数据进行解信道编码,得到解码后的伪噪声PN序列;对比模块64将解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到射频拉远单元的上行误码率。解决了现有技术中射频拉远单元的上行指标测试,搭建测试环境繁琐,耗时较长,并且不能将射频拉远单元的上行指标测试和基带单元解耦的问题,使得射频拉远单元的上行指标测试环境简单,环境搭建简便快捷。
根据本公开实施例的一个可选实施方式,恢复模块60包括:接收单元,设置为通过光口模块接收射频拉远单元发送的上行基带光信号;转换单元,设置为将基带光信号转换成电信号;第一恢复单元,设置为通过串并转换模块将电信号恢复出并行数据;第二恢复单元,设置为通过光口数据解析模块从并行数据中恢复出基带数据。
根据本公开实施例的一个可选实施方式,解码模块62包括:标记单元,设置为标记基带数据的帧头;解码单元,设置为将标记帧头的基带数据进行解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,标记单元还设置为:通过同步搜索模块找出基带数据的帧头并进行标记,将标记帧头的基带数据发送到基带解码模块内;解码单元还设置为,通过基带解码模块根据帧头进行 解帧、数据信道提取以及解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,对比模块64包括:比对单元,设置为将解码后PN序列的码数与矢量信号发生器本地发射的PN序列比对,得到传输过程中的误码数,将误码数和总码数代入以下公式获得射频拉远单元的上行误码率:误码率=传输中的误码/所传输的总码数*100%。
可选地,所述装置还包括:调整模块,设置为根据射频拉远单元的上行误码率,调整发送给射频拉远单元的射频信号;第一获取模块,设置为根据调整后的射频信号获取对应的射频拉远单元的上行误码率;第二获取模块,设置为当射频拉远单元的上行误码率达到预设阈值时,获取射频拉远单元的上行指标。
根据本次得到的误码率,自动改变输入给射频拉远单元的射频信号得到多个误码率从而进行上行指标测试(譬如测试灵敏度时,减小矢量信号发生器发送给射频拉远单元的射频功率,直到误码率超出范围,此时得到射频拉远单元的灵敏度指标)。
本公开实施例中还提供了一种矢量信号发生器,该矢量信号发生器用于实现上述射频拉远单元上行误码率的获取方法实施例及可选实施方式,也用于承载上述射频拉远单元上行误码率的获取装置。已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本公开实施例的矢量信号发生器的结构框图,如图7所示,该装置应用于所述矢量信号发生器,包括:
上行处理模块70,设置为:从接收到的上行基带光信号中恢复出基带数据,其中,上行基带光信号来自射频拉远单元;对基带数据进行解信道编码,得到解码后的伪噪声PN序列;将解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到射频拉远单元的上行误码 率。
根据本公开实施例的一个可选实施方式,上行处理模块70包括:光口模块,设置为接收射频拉远单元发送的上行基带光信号,并将基带光信号转换成电信号;串并转换模块,设置为将电信号恢复出并行数据;光口数据解析模块,设置为从并行数据中恢复出基带数据。
根据本公开实施例的一个可选实施方式,上行处理模块包括:同步模块,设置为标记基带数据的帧头;基带解码模块,设置为将标记帧头的基带数据进行解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,同步模块还设置为,通过同步搜索模块找出基带数据的帧头并进行标记,将标记帧头的基带数据发送到基带解码模块内;基带解码模块还设置为,根据帧头进行解帧、数据信道提取以及解信道编码,得到解码后的PN序列。
根据本公开实施例的一个可选实施方式,上行处理模块70还设置为:将解码后PN序列的码数与矢量信号发生器本地发射的PN序列比对,得到传输过程中的误码数,将误码数和总码数代入以下公式获得射频拉远单元的上行误码率:误码率=传输中的误码/所传输的总码数*100%。
可选地,上行处理模块70还设置为:根据射频拉远单元的上行误码率,调整发送给射频拉远单元的射频信号;根据调整后的射频信号获取对应的射频拉远单元的上行误码率;当射频拉远单元的上行误码率达到预设阈值时,获取射频拉远单元的上行指标。
根据本次得到的误码率,自动改变输入给射频拉远单元的射频信号得到多个误码率从而进行上行指标测试(譬如测试灵敏度时,减小矢量信号发生器发送给射频拉远单元的射频功率,直到误码率超出范围,此时得到射频拉远单元的灵敏度指标)。
根据本公开实施例的一个可选实施方式,矢量信号发生器还包括:控制模块,设置为接收待测通信协议,并发送给基带模块;基带模块,设置为产生所述待测通信协议的基带数据;上变频模块,设置为对所述待测通 信协议的基带数据进行数字上变频处理;数模转换模块,设置为将处理后的所述待测通信协议的基带数据转换成模拟信号;射频模块,设置为对所述模拟信号进行调制、放大,得到符合所述通信协议要求的射频空口信号,并将所述射频空口信号发送到所述射频拉远单元的天线口。
根据本公开实施例的一个可选实施方式,矢量信号发生器还包括:显示模块,设置为在获得误码率后显示上行指标的测试结果。
本公开实施例提供的矢量信号发生器,它包含除通用的矢量信号发生器所包含的矢量信号产生模块外,还包含光接口电路、各通信协议解码电路,以及光口编解码协议、各通信协议的上行指标解析算法,可以独立的对射频拉远单元进行上行指标测试,解决在做射频拉远单元上行指标测试时不能与基带单元解耦的问题。采用此种矢量信号发生器进行射频拉远单元的上行指标测试,不再需要基带单元。
图8是本公开实施例的矢量信号发生器的测试连接图以及内部硬件框图。相比其他的矢量信号发生器,本公开实施例的一种可选实施方式中增加了虚线框内包含部分:时钟模块、上行处理模块,其中,上行处理模块包括:光口模块、串并转换模块、光口数据解析模块、同步模块、基带解码模块。时钟模块产生整个系统所需的时钟,并且提供矢量信号产生模块和上行处理模块的时钟同步和帧同步,不再需要图1的外部同步线缆;上行处理模块对射频拉远单元上传的上行基带数据进行处理、测试。
本公开实例的矢量信号发生器将人机输入模块输入的待测通信协议通过控制模块通知到本地基带模块,产生待测通信协议的基带数据,经上变频模块进行数字上变频后,将数据送到数模转换模块生成模拟信号,再经过射频模块调制、放大成协议要求频率的射频空口信号,通过射频线缆送到射频拉远单元的天线口。另外矢量信号发生器通过光口与射频拉远单元相连,接收射频拉远单元的上行基带光信号,经过光口电路将光信号变成电信号,由串并转换模块恢复出并行数据,经过光口数据解析模块恢复出基带数据,经同步搜索模块后找出帧头,并将标记帧头的基带数据送到 基带解码模块内,在基带解码模块内根据帧头解帧,做数据信道提取,解信道编码,最后与本地发射的PN(Pseudo-noise)序列作对比并计算误码率,通过显示模块将上行指标测试结果显示出来,完成射频拉远单元上行指标的测试。另外矢量信号发生器将本地系统时钟在串并转换模块内附加在串行数据中,通过光口模块口发送给射频拉远单元,以便于射频拉远单元通过光口完成时钟同步功能,不需要在另外加同步线。
图9是本公开实施例的上行解码软件处理流程图。如图9所示,矢量信号发生器通过光口接收射频拉远单元送过来的光口数据,经RRU光口协议解析模块解出所需的基带数据,将射频拉远单元的基带数据进行粗同步与精同步得到基带数据的帧头,解帧模块根据帧头解帧结构,然后做数据信道的提取,解信道编码得到PN序列,与本地的PN序列对比计算出误码率,即可完成上行指标的测试。
图10是根据本公开实施例的灵敏度测试流程图,如图10所示,矢量信号发生器收到射频拉远单元发送的上行光信号后,经过RRU光口协议解析、粗同步、细同步后,对得到的基带数据进行解物理层,包括解扰和解扩,然后解传输层,包括解交织、解速率匹配、解卷积码、解CRC,得到解码后的PN序列,将解码后的PN序列与矢量信号发生器本地的PN对比,得到误码率,判断误码率是否在设定范围内,若不在,软件自动调整发射功率,射频拉远单元重新发送的上行光信号,若在,结束灵敏度测试流程。结合图5和图10,本公开实施例的一种可选的灵敏度测试流程包括以下步骤:
S1,按照WCDMA协议设置信号源发送上行数据:设置发射频点为1930,扰码为0,设置发射功率为-80dBm。
S2,设置信号源光口速率为1.2288G。打开WCDMA灵敏度测试界面,设置中心频点为1930,扰码为0。
S3,信号源光口接收到射频拉远单元上传的上行数据,信号源对光口数据按照CPRI协议进行解析,将所要测试的上行数据分离出来。
S4,对上行数据进行粗同步,找出大概的帧头位置。
S4,在粗同步基础上,对上行数据进行精同步,找到帧头的确切位置。
S5,按照WCDMA协议进行物理层解调,包含解扰,解扩。
S6,根据WCDMA协议解传输层,包含解交织、解速率匹配、解卷积码、解CRC等。
S7,与本地发射的PN码序列对比,并且计算误码率。
若计算的误码率结果在设定的范围内,减小发射功率,循环B-H过程,若误码率超出设定范围,则上一次的发射功率即为射频拉远单元设备的上行灵敏度。至此灵敏度测试完毕。
本公开提供了一种独立测试射频拉远单元上行指标的矢量信号发生器,包括:1,与射频拉远单元光口通信的光口编解码电路和上行基带解码电路,包含光口电路、串并转换(串行器/解串器)电路、同步电路以及解码电路等;2,与射频拉远单元通信的光口协议编解码软件,以及为了测试支持各通信协议的上行射频拉远单元的上行指标,本矢量信号发生器设计有各通信协议的上行编解码软件模块,便于解各通信协议上行数据并计算误码率。
本公开的实施例中还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述 任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的可选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种射频拉远单元上行误码率的获取方法,包括:
    矢量信号发生器从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;
    对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;
    将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
  2. 根据权利要求1所述的方法,其中,矢量信号发生器从接收到的上行基带光信号中恢复出基带数据包括:
    所述矢量信号发生器通过光口模块接收所述射频拉远单元发送的上行基带光信号,并将所述基带光信号转换成电信号;
    通过串并转换模块将所述电信号恢复出并行数据;
    通过光口数据解析模块从所述并行数据中恢复出所述基带数据。
  3. 根据权利要求1所述的方法,其中,对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列包括:
    标记所述基带数据的帧头,并将标记帧头的所述基带数据进行解信道编码,得到解码后的PN序列。
  4. 根据权利要求3所述的方法,其中,标记所述基带数据的帧头,并将标记帧头的所述基带数据进行解信道编码,得到解码后的伪噪声PN序列包括:
    通过同步搜索模块找出所述基带数据的帧头并进行标记;
    将标记帧头的所述基带数据发送到基带解码模块内;
    通过所述基带解码模块根据所述帧头进行解帧、数据信道提取以及解信道编码,得到所述解码后的PN序列。
  5. 根据权利要求1所述的方法,其中,将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率包括:
    将所述解码后PN序列与所述矢量信号发生器本地发射的PN序列对比,得到传输过程中的误码数,将所述误码数和总码数代入以下公式获得所述射频拉远单元的上行误码率:
    误码率=传输中的误码数/所传输的总码数*100%。
  6. 根据权利要求5所述的方法,其中,得到所述射频拉远单元的上行误码率之后,所述方法还包括:
    根据所述射频拉远单元的上行误码率,调整发送给所述射频拉远单元的射频信号;
    根据调整后的所述射频信号获取对应的所述射频拉远单元的上行误码率;
    当所述射频拉远单元的上行误码率达到预设阈值时,获取所述射频拉远单元的上行指标。
  7. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    根据接收到的待测通信协议,产生所述待测通信协议的基带数据;
    对所述待测通信协议的基带数据进行数字上变频处理,并将处理后的所述待测通信协议的基带数据转换成模拟信号;
    经过射频模块调制、放大成符合所述通信协议要求的射频空口信号;
    通过射频线缆将所述射频空口信号发送到所述射频拉远单元的天线口。
  8. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    所述矢量信号发生器将本地的时钟附加在串行数据中,通过光口模块发送给所述射频拉远单元。
  9. 一种射频拉远单元上行误码率的获取装置,应用于矢量发生器,包括:
    恢复模块,设置为从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;
    解码模块,设置为对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;
    对比模块,设置为将所述解码后的伪噪声PN序列与矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
  10. 一种矢量信号发生器,包括:上行处理模块,其中,所述上行处理模块设置为:
    从接收到的上行基带光信号中恢复出基带数据,其中,所述上行基带光信号来自射频拉远单元;
    对所述基带数据进行解信道编码,得到解码后的伪噪声PN序列;
    将所述解码后的伪噪声PN序列与所述矢量信号发生器本地发射的PN序列进行对比,得到所述射频拉远单元的上行误码率。
  11. 根据权利要求10所述的矢量信号发生器,其中,所述上行处理模块包括:
    光口模块,设置为接收所述射频拉远单元发送的上行基带光信号,并将所述基带光信号转换成电信号;
    串并转换模块,设置为将所述电信号恢复出并行数据;
    光口数据解析模块,设置为从所述并行数据中恢复出所述基带数据。
  12. 根据权利要求10所述的矢量信号发生器,其中,所述上行处理模块包括:
    同步模块,设置为标记所述基带数据的帧头;
    基带解码模块,设置为将标记帧头的所述基带数据进行解信道编码,得到解码后的PN序列。
  13. 根据权利要求12所述的矢量信号发生器,其中,
    所述同步模块还设置为,通过同步搜索模块找出所述基带数据的帧头并进行标记,将标记帧头的所述基带数据发送到基带解码模块内;
    所述基带解码模块还设置为,根据所述帧头进行解帧、数据信道提取以及解信道编码,得到所述解码后的PN序列。
  14. 根据权利要求10至13任一项所述的矢量信号发生器,其中,所述矢量信号发生器还包括:
    控制模块,设置为接收待测通信协议,并发送给基带模块;
    基带模块,设置为产生所述待测通信协议的基带数据;
    上变频模块,设置为对所述待测通信协议的基带数据进行数字上变频处理;
    数模转换模块,设置为将处理后的所述待测通信协议的基带数据转换成模拟信号;
    射频模块,设置为对所述模拟信号进行调制、放大,得到符合所述通信协议要求的射频空口信号,并将所述射频空口信号发送到所述射频拉远单元的天线口。
  15. 根据权利要求10至13任一项所述的矢量信号发生器,其中,所述矢量信号发生器还包括:
    显示模块,设置为在获得误码率后显示上行指标的测试结果。
  16. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
  17. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2020/104641 2019-07-29 2020-07-24 射频拉远单元上行误码率的获取方法及装置 WO2021018056A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/630,949 US20220294530A1 (en) 2019-07-29 2020-07-24 Method and apparatus for acquiring uplink bit error rate of radio remote unit
EP20846255.6A EP4007343A4 (en) 2019-07-29 2020-07-24 METHOD AND APPARATUS FOR ACQUIRING UPLINK BINARY ERROR RATE OF A REMOTE RADIO UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910690825.3A CN112312422A (zh) 2019-07-29 2019-07-29 射频拉远单元上行误码率的获取方法及装置
CN201910690825.3 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021018056A1 true WO2021018056A1 (zh) 2021-02-04

Family

ID=74230199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104641 WO2021018056A1 (zh) 2019-07-29 2020-07-24 射频拉远单元上行误码率的获取方法及装置

Country Status (4)

Country Link
US (1) US20220294530A1 (zh)
EP (1) EP4007343A4 (zh)
CN (1) CN112312422A (zh)
WO (1) WO2021018056A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562825A (zh) * 2009-06-08 2009-10-21 武汉虹信通信技术有限责任公司 Rru设备上行误码率的测试方法
CN109831251A (zh) * 2018-12-29 2019-05-31 武汉光谷互连科技有限公司 基于动态资源分配算法的误码率获取方法及设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479248B2 (ja) * 1999-12-17 2003-12-15 日本電気株式会社 Atm伝送試験装置
US7570614B2 (en) * 2001-01-25 2009-08-04 Bandspeed, Inc. Approach for managing communications channels based on performance
CA2524819C (en) * 2004-12-13 2011-01-25 Telcordia Technologies, Inc. Spectrally phase encoded optical code division multiple access system
US20070025738A1 (en) * 2005-07-28 2007-02-01 Artimi Inc. Communications systems and methods
WO2007079611A1 (fr) * 2006-01-12 2007-07-19 Zte Corporation Unité radio distante et système de réseautage en boucle associé
CN101466114A (zh) * 2007-12-21 2009-06-24 大唐移动通信设备有限公司 无线基站上下行通路的测试方法和测试系统
CN102148789A (zh) * 2010-02-08 2011-08-10 清华大学 多载波调制信号的接收方法和装置
CN102098698A (zh) * 2010-12-02 2011-06-15 上海电机学院 一种误码率测试方法及系统
CN102655653B (zh) * 2011-03-02 2015-10-21 鼎桥通信技术有限公司 Td-scdma基带链路环回检测方法及基站
CN102761380B (zh) * 2011-04-29 2014-12-31 中国移动通信集团公司 链路损耗值的确定方法及射频拉远单元
CN102158241B (zh) * 2011-05-16 2014-01-08 湖南大学 无源超高频射频识别系统的通信误码率测试方法和装置
CN102857303B (zh) * 2011-06-28 2016-06-15 中兴通讯股份有限公司 一种射频拉远单元测试信号生成的方法及装置
CN102571239B (zh) * 2012-01-13 2016-12-21 中兴通讯股份有限公司 一种射频指标的测试系统
CN103906222B (zh) * 2012-12-27 2018-09-25 中兴通讯股份有限公司 一种上行链路数据同步方法、系统及设备
CN105162530A (zh) * 2015-06-25 2015-12-16 深圳市国电科技通信有限公司 一种微功率无线通信模块硬件性能检测系统
US9967820B2 (en) * 2016-06-29 2018-05-08 Intel Corporation Wake up radio device, circuit configuration, and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562825A (zh) * 2009-06-08 2009-10-21 武汉虹信通信技术有限责任公司 Rru设备上行误码率的测试方法
CN109831251A (zh) * 2018-12-29 2019-05-31 武汉光谷互连科技有限公司 基于动态资源分配算法的误码率获取方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007343A4 *

Also Published As

Publication number Publication date
US20220294530A1 (en) 2022-09-15
EP4007343A1 (en) 2022-06-01
EP4007343A4 (en) 2022-10-12
CN112312422A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN102037662B (zh) 基站收发机系统中的信号压缩
CN102790999B (zh) 一种数据压缩、传输、接收及解压缩方法及相应装置
JP2004040802A (ja) 移動通信基地局システム
EP3242418B1 (en) Wireless fronthaul passive optical network (pon) system, optical network device and method
JP6603816B2 (ja) 近端装置と遠端装置との間でフレームデータ伝送を行う方法及び装置
CN102291398B (zh) 无线通讯系统中数据压缩与解压缩方法、装置及系统
US9059970B1 (en) Method of compressing and decompressing I/Q sample data in cloud radio access network
KR20070069731A (ko) 광대역 무선 통신 시스템의 기지국에서 디지털 장치와 원격알에프 장치간의 통신 장치 및 방법
KR20100032299A (ko) 무선 통신 시스템에서 프로토콜 헤더 구성 방법 및 그 장치
US11050510B2 (en) Polar code transmission method and apparatus
US20180054214A1 (en) Communication method and communication system
JP2018515956A5 (zh)
CN104618058A (zh) 基于ldpc编码的中速率逐帧可变调制器
CN109728877A (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2021018056A1 (zh) 射频拉远单元上行误码率的获取方法及装置
CN108811071B (zh) 传输信号的方法和装置
CN110071739B (zh) 一种基于跳频、gmsk和ds的通信系统及方法
WO2018001357A1 (zh) 一种信息发送、接收方法及设备
US9485688B1 (en) Method and apparatus for controlling error and identifying bursts in a data compression system
WO2020029802A1 (zh) 一种无线通信方法、装置及计算机可读存储介质
CN111385524A (zh) 模拟高清摄像机高速长距离数据传输的实现方法及系统
WO2024103298A1 (zh) 数据传输的方法和装置
CN107852641B (zh) 一种传输标识符的方法和站点
JP2016163267A (ja) 無線基地局装置、基地局システム及びベースバンドユニット
WO2023155651A1 (zh) 基于极化码的编码方法和编码装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846255

Country of ref document: EP

Effective date: 20220224