WO2021017887A1 - 一种交流换流装置 - Google Patents

一种交流换流装置 Download PDF

Info

Publication number
WO2021017887A1
WO2021017887A1 PCT/CN2020/102529 CN2020102529W WO2021017887A1 WO 2021017887 A1 WO2021017887 A1 WO 2021017887A1 CN 2020102529 W CN2020102529 W CN 2020102529W WO 2021017887 A1 WO2021017887 A1 WO 2021017887A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
port
unit
output
input
Prior art date
Application number
PCT/CN2020/102529
Other languages
English (en)
French (fr)
Inventor
连建阳
谢晔源
王宇
杨晨
刘洪德
姜田贵
张中锋
祁琦
袁庆伟
朱铭炼
Original Assignee
南京南瑞继保工程技术有限公司
南京南瑞继保电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保工程技术有限公司, 南京南瑞继保电气有限公司 filed Critical 南京南瑞继保工程技术有限公司
Publication of WO2021017887A1 publication Critical patent/WO2021017887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to the technical field of high-power power electronics for power systems, and in particular to an AC converter device for power systems.
  • the unified power flow controller Unified Power Flow Controller UPFC
  • the unified power quality controller Unified Power Quality Conditione UPQC
  • other devices can effectively solve the above problems, but the core equipment of these devices generally uses flexible converter valves Back-to-back modular multilevel converters (Modular Multilevel Converter MMC), and the disadvantages of using this converter are the large number of components, the large area, and the high cost of use.
  • Modular Multilevel Converter MMC Modular Multilevel Converter
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide an AC converter device, which can select the most suitable connection mode according to the needs of different power grids, which can reliably isolate the faults of the two lines and achieve non-fault
  • the line provides fast power support for the faulty line, and because the use of back-to-back modular multilevel converters (Modular Multilevel Converter MMC) is avoided, the footprint and use cost of the device are reduced.
  • Modular Multilevel Converter MMC Modular Multilevel Converter
  • an AC converter device includes three four-port phase units, each of the four-port phase units includes a plurality of AC conversion modules, and each of the AC conversion modules includes two inputs Port and two output ports, the input ends of the multiple AC conversion modules are sequentially connected in series to form the first input port and the second input port of the four-port phase unit, and the output ends of the multiple AC conversion modules are sequentially connected in series The first output port and the second output port of the four-port phase unit.
  • the three four-port phase units are respectively used as phase A, phase B, and phase C.
  • Each of the four-port phase unit includes a first input port and a second output port. Two input ports, first output port, second output port, among which,
  • the three second input ports of the three four-port phase units are connected to each other, the three second output ports are connected to each other, and the three first input ports of the three four-port phase units are led out, respectively serving as the AC converter device A phase , B-phase, C-phase input terminals, three first output ports of three four-port phase units lead out, respectively as the output terminals of AC inverter device A-phase, B-phase, and C-phase; or
  • the second input port of the A-phase four-port phase unit is connected to the first input port of the B-phase four-port phase unit, and the second input port of the B-phase four-port phase unit is connected to the first input port of the C-phase four-port phase unit
  • the second input port of the C-phase four-port phase unit is connected to the first input port of the A-phase four-port phase unit
  • the second output port of the A-phase four-port phase unit is connected to the first output port of the B-phase four-port phase unit
  • the second output port of the B-phase four-port phase unit is connected to the first output port of the C-phase four-port phase unit
  • the second output port of the C-phase four-port phase unit is connected to the first output port of the A-phase four-port phase unit
  • the three first input ports of the three four-port phase units are led out as the input terminals of the A-phase, B-phase, and C-phase of the AC converter device, and the three first output ports of the three four-port phase units Lead
  • the three second input ports of the three four-port phase units are connected to each other, the second output port of the A-phase four-port phase unit is connected to the first output port of the B-phase four-port phase unit, and the B-phase four-port phase unit
  • the second output port is connected to the first output port of the C-phase four-port phase unit, and the second output port of the C-phase four-port phase unit is connected to the first output port of the A-phase four-port phase unit.
  • the three first input ports of the unit are led out as the input terminals of phase A, B, and C of the AC converter device, and the three first output ports of the three four-port phase units are led out as the AC commutation device.
  • the second input port of the A-phase four-port phase unit is connected to the first input port of the B-phase four-port phase unit, and the second input port of the B-phase four-port phase unit is connected to the first input port of the C-phase four-port phase unit,
  • the second input port of the C-phase four-port phase unit is connected to the first input port of the A-phase four-port phase unit, and the three second output ports of the three four-port phase units are connected to each other.
  • the three first input ports of the unit are led out as the input ends of the AC converter device A phase, B phase, and C phase; the three first output ports of the three four-port phase units are led out as the AC converter The output terminals of the A phase, B phase and C phase of the device.
  • connection modes in AC systems have different zero-sequence and negative-sequence impedances, and the characteristics of faults and the paths of harmonic currents are very different.
  • the AC converter device of the present invention adopts four optional connection modes. When two AC lines are interconnected, the most suitable connection mode can be matched according to the needs of different distribution networks, and the two lines can be reliably isolated. In addition, the non-faulty line can realize the rapid power support of the faulty line.
  • each of the AC conversion modules includes:
  • Input AC-DC conversion unit including two AC input terminals and two DC output terminals, used to convert sinusoidal AC voltage to DC voltage;
  • the output pulse unit including two DC input terminals and two AC pulse output terminals, is used to change the DC voltage into a square wave voltage whose frequency and pulse width can be adjusted in real time;
  • the two AC input ends of the input AC-DC conversion unit are used as input ends of the AC conversion module, the two DC output ends of the input AC-DC conversion unit are connected with the two DC input ends of the output pulse unit, and the The two output terminals of the output pulse unit are led out as the output terminals of the AC conversion module.
  • the input AC-DC conversion unit includes four fully-controlled power semiconductor devices and one capacitor.
  • the input AC-DC conversion unit includes four diodes and one capacitor.
  • the output pulse unit includes four fully-controlled power semiconductor devices.
  • the input AC-DC conversion unit of the AC converter device of the present invention uses a full-bridge rectifier unit, and the output pulse unit uses a full-bridge inverter unit, which makes the overall structure of the AC converter device simpler and more efficient, and is especially suitable for short cables Line or ungrounded system.
  • the input AC-DC conversion unit of the AC converter device of the present invention adopts a diode full-bridge rectifier unit, and the output pulse unit adopts a combination of a flyback unit and a full-bridge inverter unit. It has the advantages of simple structure, fewer components, and small equipment volume. , Especially suitable for energy unidirectional transmission applications.
  • the output pulse unit further includes a flyback unit, the flyback unit includes a fully-controlled power device, a flyback transformer, a diode, and a first capacitor; the fully-controlled power The device is connected to the primary side of the flyback transformer, the diode is connected to the secondary side of the flyback transformer, and the first capacitor is connected in parallel to the input end of the full-bridge inverter unit.
  • the output pulse unit further includes a one-way full-bridge LLC unit;
  • the one-way full-bridge LLC unit includes a first full-bridge inverter subunit composed of four fully-controlled power semiconductor devices , A series resonant capacitor, a first series resonant inductor, a first transformer, a first rectifier unit composed of four diodes, and a second capacitor connected in parallel to the output terminal of the first rectifier unit;
  • a full-bridge inverter subunit has two input terminals and two output terminals. The output terminal is connected to the primary side of the first transformer via the series resonant capacitor and the first series resonant inductor.
  • the secondary side of a transformer is connected to the input terminal of the rectifier unit, and the output terminal of the rectifier unit is connected in parallel with the second capacitor and then connected to the input terminal of the full-bridge inverter unit.
  • the output pulse unit further includes a bidirectional full bridge CLLC unit;
  • the bidirectional full bridge CLLC unit includes a second full bridge inverter subunit composed of four fully controlled power semiconductor devices, and a The primary side series resonant capacitor, a secondary side series resonant capacitor, a second series resonant inductor, a second transformer, and a second rectifier unit composed of four fully-controlled power semiconductor devices; the second full bridge inverse
  • the transformer unit has two input terminals and two output terminals.
  • the output terminal of the second full-bridge inverter subunit is connected to the primary side of the second transformer via the primary side series resonant capacitor;
  • the secondary side of the transformer is connected to the input port of the second rectifier unit through the secondary side series resonant capacitor and the second series resonant inductor, and the output terminal of the second rectifier unit is connected in parallel with the third capacitor after connecting to the full
  • the input terminal of the bridge inverter unit is connected.
  • an input bypass switch and an output bypass switch are connected in parallel with the input end and the output end of the AC conversion module, respectively.
  • the plurality of AC conversion modules adopt the closest level-approaching modulation method to make the square wave voltage output by each AC conversion module sequentially superimpose to form a stepped sinusoidal voltage, or adopt a carrier phase shift modulation method to make each The square wave voltage output by the AC conversion module is sequentially superimposed to form a sinusoidal voltage.
  • the multiple AC conversion modules of the present invention output square wave voltages by adopting the closest level approaching or carrier phase shifting modulation mode, so that multiple square wave voltages can be superimposed into a quasi-sine voltage, and the switching frequency can be increased without increasing the switching frequency. Reducing the harmonic voltage of the output of the AC equipment is conducive to reducing the size of the filter or eliminating the need for the filter.
  • Figure 1 is the first connection mode of the AC converter device of the present invention
  • Figure 2 is a second connection mode of the AC converter device of the present invention.
  • Fig. 3 is a third connection mode of the AC converter device of the present invention.
  • Figure 4 is a fourth connection mode of the AC converter device of the present invention.
  • Figure 5 is a four-port phase unit of the AC converter device of the present invention.
  • Fig. 6 is the AC conversion module of the AC converter device of the present invention.
  • Fig. 7 is a first embodiment of the input AC-DC conversion unit of the AC converter device of the present invention.
  • Fig. 8 is a second embodiment of the input AC-DC conversion unit of the AC converter device of the present invention.
  • Fig. 9 is a first embodiment of the output pulse unit of the AC converter device of the present invention.
  • Fig. 10 is a second embodiment of the output pulse unit of the AC converter device of the present invention.
  • Figure 11 is a third embodiment of the output pulse unit of the AC converter device of the present invention.
  • Figure 12 is a fourth embodiment of the output pulse unit of the AC converter device of the present invention.
  • Fig. 13 is a schematic diagram of an application scenario of the AC converter device of the present invention.
  • Flyback unit 61, fully controlled power device, 62, flyback transformer, 63, diode, 64, first capacitor;
  • Two-way full bridge CLLC unit 81, second full bridge inverter subunit, 82, primary side series resonant capacitor, 83, second transformer, 84, secondary side series resonant capacitor, 85, second series resonant inductor, 86 , The second commutator unit, 87, the third capacitor.
  • connection mentioned in this application, unless otherwise clearly stipulated or limited, should be interpreted in a broad sense, and it may be directly connected or connected through an intermediary.
  • the directions or positions indicated by “up”, “down”, “front”, “rear”, “left”, “right”, “top”, “bottom”, etc. The relationship is based on the orientation or position relationship shown in the drawings, only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a restriction on this application.
  • the first input port of the AC converter device is labeled Z1
  • the second input port is labeled Z2
  • the first output port is labeled Z3.
  • the second output port is marked as Z3, but this marking and expression is not a limitation of this application.
  • an AC converter device 11 includes three four-port phase units 5, each of the four-port phase units 5 includes a plurality of AC conversion modules 4, and each of the AC conversion modules 4 Each includes two input ports and two output ports.
  • the input ends of the multiple AC conversion modules 4 are connected in series to form the first input port Z1 and the second input port Z2 of the four-port phase unit 5.
  • the output ends of the AC conversion module are sequentially connected in series to form the first output port Z3 and the second output port Z4 of the four-port phase unit.
  • the three four-port phase units are respectively used as phase A, phase B, and phase C.
  • the port-phase units all include a first input port, a second input port, a first output port, and a second output port, where:
  • the three second input ports Z2 of the three four-port phase units 5 are connected to each other, the three second output ports Z4 are connected to each other, and the three first input ports Z1 of the three four-port phase units are led out as AC converters.
  • the input terminals of phase A, phase B, and phase C of the current device are led out from the three first output ports Z3 of the three four-port phase units, which are respectively used as the output terminals of phase A, phase B, and phase C of the AC converter device.
  • an AC converter device 11 includes three four-port phase units 5, each of the four-port phase units 5 includes a plurality of AC conversion modules 4, and each of the AC conversion modules 4 Each includes two input ports and two output ports.
  • the input ends of the multiple AC conversion modules 4 are connected in series to form the first input port Z1 and the second input port Z2 of the four-port phase unit 5.
  • the output ends of the AC conversion module are sequentially connected in series to form the first output port Z3 and the second output port Z4 of the four-port phase unit.
  • the three four-port phase units are respectively used as phase A, phase B, and phase C.
  • the port-phase units all include a first input port, a second input port, a first output port, and a second output port, where:
  • the second input port Z2 of the A-phase four-port phase unit is connected to the first input port Z1 of the B-phase four-port phase unit, and the second input port Z2 of the B-phase four-port phase unit is connected to the first input of the C-phase four-port phase unit Port Z1 is connected, the second input port Z2 of the C-phase four-port phase unit is connected to the first input port Z1 of the A-phase four-port phase unit, and the second output port Z4 of the A-phase four-port phase unit is connected to the B-phase four-port phase unit
  • the first output port Z3 of the B-phase four-port phase unit is connected to the first output port Z3 of the C-phase four-port phase unit, and the second output port Z4 of the C-phase four-port phase unit is connected to the A phase
  • the first output port Z3 of the four-port phase unit is connected, and the three first input ports Z1 of the three four-port phase units are led out as the input terminals of the AC converter device A phase, B phase,
  • an AC converter device 11 includes three four-port phase units 5, each of the four-port phase units 5 includes a plurality of AC conversion modules 4, and each of the AC conversion modules 4 Each includes two input ports and two output ports.
  • the input ends of the multiple AC conversion modules 4 are connected in series to form the first input port Z1 and the second input port Z2 of the four-port phase unit 5.
  • the output ends of the AC conversion module are sequentially connected in series to form the first output port Z3 and the second output port Z4 of the four-port phase unit.
  • the three four-port phase units are respectively used as phase A, phase B, and phase C.
  • the port-phase units all include a first input port, a second input port, a first output port, and a second output port, where:
  • the three second input ports Z2 of the three four-port phase units are connected to each other, the second output port Z4 of the A-phase four-port phase unit is connected to the first output port Z3 of the B-phase four-port phase unit, and the B-phase four-port
  • the second output port Z4 of the phase unit is connected to the first output port Z3 of the C-phase four-port phase unit, and the second output port Z4 of the C-phase four-port phase unit is connected to the first output port Z3 of the A-phase four-port phase unit
  • the three first input ports Z1 of the three four-port phase units are led out and used as the input terminals of the A-phase, B-phase, and C-phase of the AC converter device, and the three first outputs of the three four-port phase units
  • the port Z3 is led out and used as the output terminals of phase A, phase B, and phase C of the AC converter device.
  • an AC converter device 11 includes three four-port phase units 5, each of the four-port phase units 5 includes a plurality of AC conversion modules 4, and each of the AC conversion modules 4 Each includes two input ports and two output ports.
  • the input ends of the multiple AC conversion modules 4 are connected in series to form the first input port Z1 and the second input port Z2 of the four-port phase unit 5.
  • the output ends of the AC conversion module are sequentially connected in series to form the first output port Z3 and the second output port Z4 of the four-port phase unit.
  • the three four-port phase units are respectively used as phase A, phase B, and phase C.
  • the port-phase units all include a first input port, a second input port, a first output port, and a second output port, where:
  • the second input port Z2 of the A-phase four-port phase unit is connected to the first input port of the B-phase four-port phase unit to Z1, and the second input port Z2 of the B-phase four-port phase unit is connected to the first input of the C-phase four-port phase unit Port Z1 is connected, the second input port Z2 of the C-phase four-port phase unit is connected to the first input port Z1 of the A-phase four-port phase unit, and the three second output ports Z4 of the three four-port phase units are connected to each other,
  • the three first input ports Z1 of the three four-port phase units are led out as the input terminals of the A-phase, B-phase, and C-phase of the AC converter device; the three first outputs of the three four-port phase units
  • the port Z3 is led out and used as the output terminals of phase A, phase B, and phase C of the AC converter device.
  • the AC converter device of the present invention adopts the connection modes of the four optional embodiments mentioned above.
  • the most suitable connection mode can be matched according to the needs of different distribution networks, which can be reliably isolated.
  • the failure of the two lines can also realize the rapid power support of the non-faulty line to the faulty line.
  • each of the AC conversion modules 4 in the foregoing embodiments includes:
  • Input AC-DC conversion unit 1 including two AC input terminals and two DC output terminals, for converting sinusoidal AC voltage into DC voltage
  • the output pulse unit 2 including two DC input terminals and two AC pulse output terminals, is used to change the DC voltage into a square wave voltage whose frequency and pulse width can be adjusted in real time;
  • the two AC input terminals of the input AC-DC conversion unit 1 are used as the input terminals of the AC conversion module 4, the two DC output terminals of the input AC-DC conversion unit 1 and the two DC input terminals of the output pulse unit 2 Connected, the two output terminals of the output pulse unit 2 are led out as the output terminals of the AC conversion module 4.
  • the input end and the output end of the AC conversion module 4 are connected in parallel with an input end bypass switch 41 and an output end bypass switch 42 respectively.
  • the input AC-DC conversion unit 1 in the foregoing embodiments includes four fully-controlled power semiconductor devices and one capacitor.
  • the input AC-DC conversion unit 1 in the foregoing embodiments includes four diodes and one capacitor.
  • the output pulse unit 2 includes four fully-controlled power semiconductor devices.
  • the input AC-DC conversion unit 1 of the AC converter device of the present invention uses a full-bridge rectifier unit, and the output pulse unit 2 uses a full-bridge inverter unit, which makes the overall structure of the AC converter device simpler and more efficient, and is particularly suitable for Short cable lines or ungrounded systems.
  • the output pulse unit 2 in the foregoing embodiments further includes a flyback unit 6, which includes a fully-controlled power device 61, a flyback transformer 62, a diode 63 and a first A capacitor 64; the fully-controlled power device 61 is connected to the primary side of the flyback transformer 62, the diode 63 is connected to the secondary side of the flyback transformer 62, and the first capacitor 64 is connected in parallel with the full bridge
  • the input terminal of the inverter unit 21 is connected.
  • the input AC-DC conversion unit of the AC converter device of the present invention adopts a diode full-bridge rectifier unit, and the output pulse unit adopts a combination of a flyback unit and a full-bridge inverter unit. It has the advantages of simple structure, fewer components, and small equipment volume. , Especially suitable for energy unidirectional transmission applications.
  • the output pulse unit 2 in the foregoing embodiments further includes a one-way full-bridge LLC unit 7; the one-way full-bridge LLC unit 7 includes a fourth full-control power semiconductor device.
  • the first full-bridge inverter subunit 71 has two input ends and two output ends, and the output ends are connected to the first series connection via the series resonance capacitor 72
  • the resonant inductor 73 is connected to the primary side of the first transformer 74, the secondary side of the first transformer 74 is connected to the input terminal of the rectifier unit 75, and the output terminal of the rectifier unit 75 is connected in parallel with the second capacitor 76 Connected to the input terminal of the full
  • the output pulse unit 2 in the foregoing embodiments further includes a bidirectional full-bridge CLLC unit 8;
  • the bidirectional full-bridge CLLC unit 8 includes a second full-bridge composed of four fully-controlled power semiconductor devices.
  • the second full-bridge inverter sub-unit 81 has two input terminals and two output terminals, the output terminal of the second full-bridge inverter sub-unit 81 through the primary side series resonance capacitor 82 is connected to the primary side of the second transformer 83;
  • the secondary side of the second transformer 83 is connected to the input port of the second rectifier unit 86 via the secondary side series resonant capacitor 84 and the second series resonant inductor 85
  • the plurality of AC conversion modules adopt the nearest level approximation modulation method to sequentially superimpose the square wave voltage output by each AC conversion module to form a stepped sinusoidal voltage, or adopt a carrier phase shift modulation method
  • the square wave voltage output by each AC conversion module is sequentially superimposed to form a sinusoidal voltage.
  • FIG. 13 it is an application scenario of the AC converter device of the present invention applied to a DC distribution network.
  • the input end of the AC converter device is connected to the bus bus via the starting circuit, the parallel transformer, and the parallel side inlet switch.
  • the output end of the AC converter device is serially connected to the line through the thyristor bypass switch and the series transformer.
  • this application is a unified power quality controller (Unified Power Quality Conditionor UPQC), which can suppress harmonics injected into the grid during steady-state operation. In the event of a voltage sag, improve the quality of the power supply voltage.
  • Unified Power Quality Conditionor UPQC Unified Power Quality Conditionor

Abstract

一种交流换流装置(11),包括三个四端口相单元(5),所述四端口相单元(5)包括多个交流变换模块(4),所述多个交流变换模块(4)的输入端依次串联构成所述四端口相单元(5)的第一输入端口和第二输入端口,所述多个交流变换模块(4)的输出端依次串联构成四端口相单元(5)的第一输出端口和第二输出端口,所述三个四端口相单元(5)分别作为交流换流装置(11)中A相、B相、C相中的一相,所述三个四端口相单元(5)的连接方式包括四种。所述交流换流装置(11)通过采用四种可选的连接方式实现两个交流线路的互联,根据不同电网的需求,可匹配最合适的连接方式,既能可靠隔离两条线路的故障,又能实现非故障线路对故障线路的快速功率支撑。

Description

一种交流换流装置 技术领域
本发明涉及电力系统的大功率电力电子技术领域,尤其涉及一种用于电力系统的交流换流装置。
背景技术
随着用户对用电需求、电能质量及供电可靠性等要求的不断提高,传统的供电网络越来越难以满足用户的供电需求。现有的供配电网络其中一条线路过负荷或者故障时,经常导致较大范围的停电。比如,以杭州G20保供电项目为例,为隔绝电网供电电能波动或故障,而影响到保供电项目供电,采用全容量自主发电机主供,三回电网电源备供的方案。但此方案自主发电机供电投资高,效益比低,且备供电源线路将一直处于空闲状态,是对供电电源点或线路缆道紧张地区的一种极大的资源浪费,也是对电源及线路设备的一种浪费。
现有技术中统一潮流控制器(Unified Power Flow Controller UPFC)、统一电能质量控制器(Unified Power Quality Conditione UPQC)等装置可以有效的解决上述问题,但是这些装置的核心设备柔性换流阀一般都采用背靠背模块化多电平换流器(Modular Multilevel Converter MMC),而使用该换流器存在的缺陷是元器件数量多、占地面积大,且使用成本高。
背景技术部分的内容仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本发明的目的在于克服现有技术中的不足,提供了一种交流换流装置,可根据不同电网的需求选择最合适的连接方式,既能可靠隔离两条线路的故障,又能实现非故障线路对故障线路的快速功率支撑,而且因为避免了背靠背模块化多电平换流器(Modular Multilevel Converter MMC)的使用,减少了装置的占地面积和使用成本。
根据本发明的一个方面,一种交流换流装置,包括三个四端口相单元,每个所述四端口相单元均包括多个交流变换模块,每个所述交流变换模块均包括两个输入端口和两个输出端口,所述多个交流变换模块的输入端依次串联构成所述四端口相单元的第一输入端口和第二输入端口,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口和第二输出端口,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
所述三个四端口相单元的三个第二输入端口相互连接,三个第二输出端口相互连接,三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端,三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端;或
A相四端口相单元的第二输入端口与B相四端口相单元的第一输入端口连接,B相四端口相单元的第二输入端口与C相四端口相单元的第一输入端口连接,C相四端口相单元的第二输入端口与A相四端口相单元的第一输入端口连接,A相四端口相单元的第二输出端口与B相四端口相单元的第一输出端口连接,B相四端口相单元的第二输出端口与C相四端口相单元的第一输出端口连接,C相四端口相单元的第二输出端口与A相四端口相单元的第一输出端口连 接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端,所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端;或
所述三个四端口相单元的三个第二输入端口相互连接,A相四端口相单元的第二输出端口与B相四端口相单元的第一输出端口连接,B相四端口相单元的第二输出端口与C相四端口相单元的第一输出端口连接,C相四端口相单元的第二输出端口与A相四端口相单元的第一输出端口连接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端,所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端;或
A相四端口相单元的第二输入端口与B相四端口相单元的第一输入端口连接,B相四端口相单元的第二输入端口与C相四端口相单元的第一输入端口连接,C相四端口相单元的第二输入端口与A相四端口相单元的第一输入端口连接,所述三个四端口相单元的三个第二输出端口相互连接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端;所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端。
交流系统中不同连接方式,其零序和负序阻抗不同,故障特征及谐波电流的通路差别很大。本发明所述交流换流装置通过采用四种可选的连接方式,在实现两个交流线路互联时,可根据不同配电网的需求,匹配最合适的连接方式,既能可靠隔离两条线路的故障,又能实现非故障线路对故障线路的快速功率支撑。
根据本发明的一个方面,所述每个交流变换模块均包括:
输入交直变换单元,包括两个交流输入端和两个直流输出端,用于将正弦交流电压变换为直流电压;
输出脉冲单元,包括两个直流输入端和两个交流脉冲输出端,用于将直流电压变化为频率和脉宽均可以实时调节的方波电压;
其中,所述输入交直变换单元的两个交流输入端作为交流变换模块的输入端,所述输入交直变换单元的两个直流输出端与所述输出脉冲单元的两个直流输入端连接,所述输出脉冲单元的两个输出端引出,作为交流变换模块的输出端。
根据本发明的一个方面,所述输入交直变换单元包括四个全控型功率半导体器件和一个电容。
根据本发明的一个方面,所述输入交直变换单元包括四个二极管和一个电容的。
根据本发明的一个方面,所述输出脉冲单元包括四个全控型功率半导体器件。
本发明所述交流换流装置的输入交直变换单元采用全桥整流单元,输出脉冲单元采用全桥逆变单元,使所述交流换流装置整体结构更加简单、效率更高,特别适用于短电缆线路或者不接地系统。
本发明所述交流换流装置的输入交直变换单元采用二极管全桥整流单元,输出脉冲单元采用反激单元和全桥逆变单元组合的方式,具有结构简单,元器件少,设备体积小等优点,特别适用于能量单向传输应用场合。
根据本发明的一个方面,所述输出脉冲单元还包括反激单元,所述反激单 元包括一个全控型功率器件、一个反激变压器、一个二极管和一个第一电容;所述全控型功率器件接在所述反激变压器的原边,所述二极管连接在所述反激变压器的副边,且并联所述第一电容后与所述全桥逆变单元的输入端连接。
根据本发明的一个方面,所述输出脉冲单元还包括单向全桥LLC单元;所述单向全桥LLC单元包括一个由四个全控型功率半导体器件组成的第一全桥逆变子单元、一个串联谐振电容、一个第一串联谐振电感、一个第一变压器、一个由四个二极管组成的第一整流子单元和一个并联于所述第一整流子单元输出端的第二电容;所述第一全桥逆变子单元有两个输入端和两个输出端,所述输出端经所述串联谐振电容和所述第一串联谐振电感与所述第一变压器的原边连接,所述第一变压器的副边连接所述整流子单元的输入端,所述整流子单元的输出端并联第二电容后与所述全桥逆变单元的输入端连接。
根据本发明的一个方面,所述输出脉冲单元还包括双向全桥CLLC单元;所述双向全桥CLLC单元包括一个由四个全控型功率半导体器件组成的第二全桥逆变子单元、一个原边串联谐振电容、一个副边串联谐振电容、一个第二串联谐振电感、一个第二变压器和一个由四个全控型功率半导体器件组成的第二整流子单元;所述第二全桥逆变子单元有两个输入端和两个输出端,所述第二全桥逆变子单元的输出端经所述原边串联谐振电容与所述第二变压器的原边连接;所述第二变压器的副边经副边串联谐振电容和所述第二串联谐振电感与所述第二整流子单元的输入端口连接,所述第二整流子单元的输出端并联第三电容后与所述全桥逆变单元的输入端连接。
根据本发明的一个方面,所述交流变换模块的输入端和输出端分别并联一个输入端旁路开关和一个输出端旁路开关。
根据本发明的一个方面,所述多个交流变换模块采用最近电平逼近的调制方式使各交流变换模块输出的方波电压依次叠加构成阶梯形正弦电压,或采用载波移相的调制方式使各交流变换模块输出的方波电压依次叠加构成正弦电压。
本发明所述多个交流变换模块通过采用最近电平逼近或载波移相的调制方式输出方波电压,使多个方波电压可叠加成准正弦电压,可以在不提高开关频率的情况下,减少交流设备的输出的谐波电压,有利于减小滤波器的体积或者可省掉滤波器。
附图说明
图1为本发明所述交流换流装置的第一种连接方式;
图2为本发明所述交流换流装置的第二种连接方式;
图3为本发明所述交流换流装置的第三种连接方式;
图4为本发明所述交流换流装置的第四种连接方式;
图5为本发明所述交流换流装置的四端口相单元;
图6为本发明所述交流换流装置的交流变换模块;
图7为本发明所述交流换流装置的输入交直变换单元的第一实施例;
图8为本发明所述交流换流装置的输入交直变换单元的第二实施例;
图9为本发明所述交流换流装置的输出脉冲单元的第一实施例;
图10为本发明所述交流换流装置的输出脉冲单元的第二实施例;
图11为本发明所述交流换流装置的输出脉冲单元的第三实施例;
图12为本发明所述交流换流装置的输出脉冲单元的第四实施例;
图13为本发明所述交流换流装置的一个应用场景示意图。
图中标号名称:
1、输入交直变换单元;
2、输出脉冲单元,21、全桥逆变单元;
11、交流换流装置;
4、交流变换模块,41、输入端旁路开关,42、输出端旁路开关;
5、四端口相单元;
6、反激单元,61、全控功率器件,62、反激变压器,63、二极管,64、第一电容;
7、单向全桥LLC单元,71、第一全桥逆变子单元,72、串联谐振电容,73、第一串联谐振电感,74、第一变压器,75、第一整流子单元,76、第二电容;
8、双向全桥CLLC单元,81、第二全桥逆变子单元,82、原边串联谐振电容,83、第二变压器,84、副边串联谐振电容,85、第二串联谐振电感,86、第二整流子单元,87、第三电容。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案,及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅为说明之目的,而不是对本发明的限制。
本申请中所述的“连接”,除非另有明确的规定或限定,应作广义理解,可以是直接相连,也可以是通过中间媒介相连。在本申请的描述中,需要理解的是,“上”、“下”、“前”、“后”、“左”、“右”、“顶端”、“底端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下列实施例中为了方便对所述交流换流装置各端口的描述,将所述交流换流装置的第一输入端口标记为Z1,第二输入端口标记为Z2,第一输出端口标记为Z3,第二输出端口标记为Z3,但该标记和表述并非是对本申请的限制。
实施例1
如图1、5所示,一种交流换流装置11,包括三个四端口相单元5,每个所述四端口相单元5包括多个交流变换模块4,每个所述交流变换模块4均包括两个输入端口和两个输出端口,所述多个交流变换模块4的输入端依次串联构成所述四端口相单元5的第一输入端口Z1和第二输入端口Z2,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口Z3和第二输出端口Z4,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
所述三个四端口相单元5的三个第二输入端口Z2相互连接,三个第二输出端口Z4相互连接,三个四端口相单元的三个第一输入端口Z1引出,分别作为交流换流装置A相、B相、C相的输入端,三个四端口相单元的三个第一输出端口Z3引出,分别作为交流换流装置A相、B相、C相的输出端。
实施例2
如图2、5所示,一种交流换流装置11,包括三个四端口相单元5,每个所述四端口相单元5包括多个交流变换模块4,每个所述交流变换模块4均包括两个输入端口和两个输出端口,所述多个交流变换模块4的输入端依次串联构成所述四端口相单元5的第一输入端口Z1和第二输入端口Z2,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口Z3和第二输出端口 Z4,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
A相四端口相单元的第二输入端口Z2与B相四端口相单元的第一输入端口Z1连接,B相四端口相单元的第二输入端口Z2与C相四端口相单元的第一输入端口Z1连接,C相四端口相单元的第二输入端口Z2与A相四端口相单元的第一输入端口Z1连接,A相四端口相单元的第二输出端口Z4与B相四端口相单元的第一输出端口Z3连接,B相四端口相单元的第二输出端口Z4与C相四端口相单元的第一输出端口Z3连接,C相四端口相单元的第二输出端口Z4与A相四端口相单元的第一输出端口Z3连接,所述三个四端口相单元的三个第一输入端口Z1引出,分别作为交流换流装置A相、B相、C相的输入端,所述三个四端口相单元的三个第一输出端口Z3引出,分别作为交流换流装置A相、B相、C相的输出端。
实施例3
如图3、5所示,一种交流换流装置11,包括三个四端口相单元5,每个所述四端口相单元5包括多个交流变换模块4,每个所述交流变换模块4均包括两个输入端口和两个输出端口,所述多个交流变换模块4的输入端依次串联构成所述四端口相单元5的第一输入端口Z1和第二输入端口Z2,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口Z3和第二输出端口Z4,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
所述三个四端口相单元的三个第二输入端口Z2相互连接,A相四端口相单元的第二输出端口Z4与B相四端口相单元的第一输出端口Z3连接,B相四端 口相单元的第二输出端口Z4与C相四端口相单元的第一输出端口Z3连接,C相四端口相单元的第二输出端口Z4与A相四端口相单元的第一输出端口Z3连接,所述三个四端口相单元的三个第一输入端口Z1引出,分别作为交流换流装置A相、B相、C相的输入端,所述三个四端口相单元的三个第一输出端口Z3引出,分别作为交流换流装置A相、B相、C相的输出端。
实施例4
如图4、5所示,一种交流换流装置11,包括三个四端口相单元5,每个所述四端口相单元5包括多个交流变换模块4,每个所述交流变换模块4均包括两个输入端口和两个输出端口,所述多个交流变换模块4的输入端依次串联构成所述四端口相单元5的第一输入端口Z1和第二输入端口Z2,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口Z3和第二输出端口Z4,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
A相四端口相单元的第二输入端口Z2与B相四端口相单元的第一输入端口连接Z1,B相四端口相单元的第二输入端口Z2与C相四端口相单元的第一输入端口Z1连接,C相四端口相单元的第二输入端口Z2与A相四端口相单元的第一输入端口Z1连接,所述三个四端口相单元的三个第二输出端口Z4相互连接,所述三个四端口相单元的三个第一输入端口Z1引出,分别作为交流换流装置A相、B相、C相的输入端;所述三个四端口相单元的三个第一输出端口Z3引出,分别作为交流换流装置A相、B相、C相的输出端。
本发明所述交流换流装置通过采用上述四种可选实施例的连接方式,在实现两个交流线路互联时,可根据不同配电网的需求,匹配最合适的连接方式, 既能可靠隔离两条线路的故障,又能实现非故障线路对故障线路的快速功率支撑。
如图6所示,上述各实施例中每个所述交流变换模块4均包括:
输入交直变换单元1,包括两个交流输入端和两个直流输出端,用于将正弦交流电压变换为直流电压;
输出脉冲单元2,包括两个直流输入端和两个交流脉冲输出端,用于将直流电压变化为频率和脉宽均可以实时调节的方波电压;
其中,所述输入交直变换单元1的两个交流输入端作为交流变换模块4的输入端,所述输入交直变换单元1的两个直流输出端与所述输出脉冲单元2的两个直流输入端连接,所述输出脉冲单元2的两个输出端引出,作为交流变换模块4的输出端。
如图6所示,进一步的,所述交流变换模块4的输入端和输出端分别并联一个输入端旁路开关41和一个输出端旁路开关42。
如图7所示,上述各实施例中所述输入交直变换单元1包括四个全控型功率半导体器件和一个电容。
如图8所示,上述各实施例中所述输入交直变换单元1包括四个二极管和一个电容的。
如图9所示,所述输出脉冲单元2包括四个全控型功率半导体器件。
本发明所述交流换流装置的输入交直变换单元1采用全桥整流单元,输出脉冲单元2采用全桥逆变单元,使所述交流换流装置整体结构更加简单、效率更高,特别适用于短电缆线路或者不接地系统。
如图10所示,上述各实施例中所述输出脉冲单元2还包括反激单元6,所 述反激单元包括一个全控型功率器件61、一个反激变压器62、一个二极管63和一个第一电容64;所述全控型功率器件61接在所述反激变压器62的原边,所述二极管63连接在所述反激变压器62的副边,且并联第一电容64后与全桥逆变单元21的输入端连接。
本发明所述交流换流装置的输入交直变换单元采用二极管全桥整流单元,输出脉冲单元采用反激单元和全桥逆变单元组合的方式,具有结构简单,元器件少,设备体积小等优点,特别适用于能量单向传输应用场合。
如图11所示,上述各实施例中所述输出脉冲单元2还包括单向全桥LLC单元7;所述单向全桥LLC单元7包括一个由四个全控型功率半导体器件组成的第一全桥逆变子单元71、一个串联谐振电容72、一个第一串联谐振电感73、一个第一变压器74、一个由四个二极管组成的第一整流子单元75和一个并联于所述第一整流子单元75输出端的第二电容76;所述第一全桥逆变子单元71有两个输入端和两个输出端,所述输出端经所述串联谐振电容72和所述第一串联谐振电感73与所述第一变压器74的原边连接,所述第一变压器74的副边连接所述整流子单元75的输入端,所述整流子单元75的输出端并联第二电容76后与所述全桥逆变单元21的输入端连接。
如图12所示,上述各实施例中所述输出脉冲单元2还包括双向全桥CLLC单元8;所述双向全桥CLLC单元8包括一个由四个全控型功率半导体器件组成的第二全桥逆变子单元81、一个原边串联谐振电容82、一个副边串联谐振电容84、一个第二串联谐振电感85、一个第二变压器83和一个由四个全控型功率半导体器件组成的第二整流子单元86;所述第二全桥逆变子单元81有两个输入端和两个输出端,所述第二全桥逆变子单元81的输出端经所述原边串联谐振电容 82与所述第二变压器83的原边连接;所述第二变压器83的副边经副边串联谐振电容84和所述第二串联谐振电感85与所述第二整流子单元86的输入端口连接,所述第二整流子单元86的输出端并联第三电容87后与所述全桥逆变单元21的输入端连接。
上述各实施例中,进一步的,所述多个交流变换模块采用最近电平逼近的调制方式使各交流变换模块输出的方波电压依次叠加构成阶梯形正弦电压,或采用载波移相的调制方式使各交流变换模块输出的方波电压依次叠加构成正弦电压。
如图13所示,为本发明所述交流换流装置应用于直流配电网场合的一个应用场景。所述交流换流装置的输入端经启动电路、并联变压器、并联侧进线开关接入母线bus。所述交流换流装置的输出端经晶闸管旁路开关和串联变压器串进线路。如图13所示,该应用为统一电能质量控制器(Unified Power Quality Conditionor UPQC),在稳态运行时,可以抑制注入电网的谐波。在发生电压暂降时,提高供电电压质量。
上述实施例仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举,而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

  1. 一种交流换流装置,包括三个四端口相单元,每个所述四端口相单元均包括多个交流变换模块,每个所述交流变换模块均包括两个输入端口和两个输出端口,所述多个交流变换模块的输入端依次串联构成所述四端口相单元的第一输入端口和第二输入端口,所述多个交流变换模块的输出端依次串联构成四端口相单元的第一输出端口和第二输出端口,所述三个四端口相单元分别作为A相、B相、C相,每个所述四端口相单元均包括第一输入端口、第二输入端口、第一输出端口、第二输出端口,其中,
    所述三个四端口相单元的三个第二输入端口相互连接,三个第二输出端口相互连接,三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端口,三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端口;或
    A相四端口相单元的第二输入端口与B相四端口相单元的第一输入端口连接,B相四端口相单元的第二输入端口与C相四端口相单元的第一输入端口连接,C相四端口相单元的第二输入端口与A相四端口相单元的第一输入端口连接,A相四端口相单元的第二输出端口与B相四端口相单元的第一输出端口连接,B相四端口相单元的第二输出端口与C相四端口相单元的第一输出端口连接,C相四端口相单元的第二输出端口与A相四端口相单元的第一输出端口连接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端口,所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端口;或
    所述三个四端口相单元的三个第二输入端口相互连接,A相四端口相单元 的第二输出端口与B相四端口相单元的第一输出端口连接,B相四端口相单元的第二输出端口与C相四端口相单元的第一输出端口连接,C相四端口相单元的第二输出端口与A相四端口相单元的第一输出端口连接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端口,所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端口;或
    A相四端口相单元的第二输入端口与B相四端口相单元的第一输入端口连接,B相四端口相单元的第二输入端口与C相四端口相单元的第一输入端口连接,C相四端口相单元的第二输入端口与A相四端口相单元的第一输入端口连接,所述三个四端口相单元的三个第二输出端口相互连接,所述三个四端口相单元的三个第一输入端口引出,分别作为交流换流装置A相、B相、C相的输入端口;所述三个四端口相单元的三个第一输出端口引出,分别作为交流换流装置A相、B相、C相的输出端口。
  2. 根据权利要求1所述的交流换流装置,其特征在于,每个所述交流变换模块均包括:
    输入交直变换单元,包括两个交流输入端和两个直流输出端,用于将正弦交流电压变换为直流电压;
    输出脉冲单元,包括两个直流输入端和两个交流脉冲输出端,用于将直流电压变化为频率和脉宽均可以实时调节的方波电压;
    其中,所述输入交直变换单元的两个交流输入端作为交流变换模块的输入端,所述输入交直变换单元的两个直流输出端与所述输出脉冲单元的两个直流输入端连接,所述输出脉冲单元的两个输出端引出,作为交流变换模块的输出端。
  3. 根据权利要求2所述的交流换流装置,其特征在于,所述输入交直变换单元包括四个全控型功率半导体器件和一个电容。
  4. 根据权利要求2所述的交流装置,其特征在于,所述输入交直变换单元包括四个二极管和一个电容的。
  5. 根据权利要求2所述的交流装置,其特征在于,所述输出脉冲单元包括四个全控型功率半导体器件。
  6. 根据权利要求5所述的交流换流装置,其特征在于,所述输出脉冲单元还包括反激单元,所述反激单元包括一个全控型功率器件、一个反激变压器、一个二极管和一个第一电容;所述全控型功率器件接在所述反激变压器的原边,所述二极管连接在所述反激变压器的副边,且并联所述第一电容后与所述全桥逆变单元的输入端连接。
  7. 根据权利要求5或6所述的交流换流装置,其特征在于,所述输出脉冲单元还包括单向全桥LLC单元;所述单向全桥LLC单元包括一个由四个全控型功率半导体器件组成的第一全桥逆变子单元、一个串联谐振电容、一个第一串联谐振电感、一个第一变压器、一个由四个二极管组成的第一整流子单元和一个并联于所述第一整流子单元输出端的第二电容;所述第一全桥逆变子单元有两个输入端和两个输出端,所述输出端经所述串联谐振电容和所述第一串联谐振电感与所述第一变压器的原边连接,所述第一变压器的副边连接所述整流子单元的输入端,所述整流子单元的输出端并联第二电容后与所述全桥逆变单元的输入端连接。
  8. 根据权利要求5或6所述的交流换流装置,其特征在于,所述输出脉冲单元还包括双向全桥CLLC单元;所述双向全桥CLLC单元包括一个由四个全 控型功率半导体器件组成的第二全桥逆变子单元、一个原边串联谐振电容、一个副边串联谐振电容、一个第二串联谐振电感、一个第二变压器和一个由四个全控型功率半导体器件组成的第二整流子单元;所述第二全桥逆变子单元有两个输入端和两个输出端,所述第二全桥逆变子单元的输出端经所述原边串联谐振电容与所述第二变压器的原边连接;所述第二变压器的副边经副边串联谐振电容和所述第二串联谐振电感与所述第二整流子单元的输入端口连接,所述第二整流子单元的输出端并联第三电容后与所述全桥逆变单元的输入端连接。
  9. 根据权利要求1或2所述的交流换流装置,其特征在于,所述交流变换模块的输入端和输出端分别并联一个输入端旁路开关和一个输出端旁路开关。
  10. 根据权利要求1或2所述的交流换流装置,其特征在于,所述多个交流变换模块采用最近电平逼近的调制方式使各交流变换模块输出的方波电压依次叠加构成阶梯形正弦电压,或采用载波移相的调制方式使各交流变换模块输出的方波电压依次叠加构成正弦电压。
PCT/CN2020/102529 2019-07-29 2020-07-17 一种交流换流装置 WO2021017887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910690650.6 2019-07-29
CN201910690650.6A CN110474552A (zh) 2019-07-29 2019-07-29 一种交流换流装置

Publications (1)

Publication Number Publication Date
WO2021017887A1 true WO2021017887A1 (zh) 2021-02-04

Family

ID=68509108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102529 WO2021017887A1 (zh) 2019-07-29 2020-07-17 一种交流换流装置

Country Status (2)

Country Link
CN (1) CN110474552A (zh)
WO (1) WO2021017887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474552A (zh) * 2019-07-29 2019-11-19 南京南瑞继保工程技术有限公司 一种交流换流装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621254A (zh) * 2009-08-06 2010-01-06 东南大学 应用在配电网的电力电子变压器
CN101795080A (zh) * 2010-03-03 2010-08-04 中国科学院电工研究所 一种配电用三相电力电子变压器
CN201584899U (zh) * 2009-08-06 2010-09-15 东南大学 一种电力电子变压器的拓扑结构
US20140217827A1 (en) * 2013-02-01 2014-08-07 3L Power Llc Apparatus for and method of operation of a power inverter system
CN104993494A (zh) * 2015-05-22 2015-10-21 国网河南省电力公司电力科学研究院 一种基于四象限电力电子变流器的电机模拟装置及方法
CN110474552A (zh) * 2019-07-29 2019-11-19 南京南瑞继保工程技术有限公司 一种交流换流装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621254A (zh) * 2009-08-06 2010-01-06 东南大学 应用在配电网的电力电子变压器
CN201584899U (zh) * 2009-08-06 2010-09-15 东南大学 一种电力电子变压器的拓扑结构
CN101795080A (zh) * 2010-03-03 2010-08-04 中国科学院电工研究所 一种配电用三相电力电子变压器
US20140217827A1 (en) * 2013-02-01 2014-08-07 3L Power Llc Apparatus for and method of operation of a power inverter system
CN104993494A (zh) * 2015-05-22 2015-10-21 国网河南省电力公司电力科学研究院 一种基于四象限电力电子变流器的电机模拟装置及方法
CN110474552A (zh) * 2019-07-29 2019-11-19 南京南瑞继保工程技术有限公司 一种交流换流装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIGANG GAO, LEI DONG, YONGDONG LI, ZEDONG ZHENG: "Research on Back to Back Cascaded H-Bridge Converter Based on High Frequency Transformer", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 28, no. 6, 26 June 2013 (2013-06-26), pages 133 - 138, XP055776122, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.2013.06.021 *

Also Published As

Publication number Publication date
CN110474552A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US9502991B2 (en) Hybrid converter and wind power generating system
WO2019136577A1 (zh) 多绕组同时/分时供电电流型单级多输入高频环节逆变器
WO2021027046A1 (zh) 具备交直流故障不间断运行能力的固态变压器及控制方法
CN103441691B (zh) 一种谐振型电力电子变流器及变流器装置
WO2017084120A1 (zh) 单向直流-直流自耦变压器及其高低压侧故障隔离方法
CN102624258B (zh) 一种非隔离对称型自耦式18脉波整流电源系统
WO2021047058A1 (zh) 一种远程输电变流站及输电系统
WO2012152072A1 (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
EP3637611B1 (en) Voltage-type single-stage multi-input high frequency link inverter having built-in parallel time-sharing selection switches
WO2021147514A1 (zh) 模块化多电平交流-直流变换系统
CN110311381A (zh) 一种可穿越直流故障的交直流混合电网电力电子变压器
CN106208715A (zh) 一种分布式电源高压直流接入系统及其控制方法
CN103269178A (zh) 单级式隔离型三相双向ac/dc变换器及其控制方法
WO2020169018A1 (zh) 一种多直流端口换流器及控制方法
CN103066871A (zh) 大功率级联式二极管h桥单位功率因数整流器
CN109742780A (zh) 基于模块化多电平变换器的相间分布式储能系统
CN108306324B (zh) 模块化集中式储能系统
CN104638688B (zh) 一种单相不间断电源电路和三相不间断电源电路
CN102904420A (zh) 多端口变流器
CN113890122A (zh) 面向办公居住园区用的交直流多端口配电系统
WO2021017887A1 (zh) 一种交流换流装置
CN202435113U (zh) 逆变器辅助电源取电电路
TWM408678U (en) Photovoltaic powered system
CN106100361A (zh) 一种交直流变换电路及电力电子变压器
CN113346764A (zh) 一种基于高频磁耦合模块的中压变流器拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848335

Country of ref document: EP

Kind code of ref document: A1