WO2012152072A1 - 太阳能光伏三相微逆变器以及太阳能光伏发电系统 - Google Patents

太阳能光伏三相微逆变器以及太阳能光伏发电系统 Download PDF

Info

Publication number
WO2012152072A1
WO2012152072A1 PCT/CN2012/070065 CN2012070065W WO2012152072A1 WO 2012152072 A1 WO2012152072 A1 WO 2012152072A1 CN 2012070065 W CN2012070065 W CN 2012070065W WO 2012152072 A1 WO2012152072 A1 WO 2012152072A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit
photovoltaic
inverter
power
Prior art date
Application number
PCT/CN2012/070065
Other languages
English (en)
French (fr)
Inventor
罗宇浩
Original Assignee
浙江昱能光伏科技集成有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江昱能光伏科技集成有限公司 filed Critical 浙江昱能光伏科技集成有限公司
Publication of WO2012152072A1 publication Critical patent/WO2012152072A1/zh
Priority to US14/076,006 priority Critical patent/US9608447B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to the technical field of power converters for eliminating ripple power. Specifically, the present invention relates to a solar photovoltaic three-phase micro-inverter and a solar photovoltaic power generation system. Background technique
  • the DC power is converted by the inverter to a fixed frequency sinusoidal AC power for transmission to the grid or off-grid.
  • micro-inverters for solar photovoltaic systems have recently tended to use distributed micro-inverters (micro-inverters).
  • the micro-inverter provides maximum power point control for each DC PV module, resulting in maximum energy per DC PV module and improved overall solar PV system performance.
  • the micro-inverter can generate AC low-voltage output instead of the high DC voltage output of the central inverter system, which improves the safety and efficiency of the system.
  • the single phase inverter 200 can include a DC-DC conversion circuit 201 and a DC-AC conversion circuit 202.
  • the DC input terminal is provided with a storage capacitor 203 for reducing the ripple voltage.
  • FIG. 3 is a schematic diagram of the circuit structure of a single-phase inverter with a flyback full-bridge topology in the prior art.
  • the single-phase inverter 300 can include a DC-DC conversion circuit 401 and a DC-AC conversion circuit 302.
  • the DC-DC conversion circuit 301 is used for MPPT (Maximum Power Point Tracking) control and sine wave generation, and outputs a half sine wave.
  • the DC-DC conversion circuit 301 may include a storage capacitor 303, a current detecting element 304, a voltage detecting element 305, and a flyback circuit 306.
  • the flyback circuit 306 can in turn include a transformer T, a switch Q and a diode 1).
  • the main winding of the transformer T is connected in series with the switching transistor Q, and the secondary winding is connected in series with the diode D to the output.
  • the DC-AC conversion circuit 302 is an H-full bridge operating at a power frequency for inverting a half-cycle sine wave to form a complete sine wave, which can be a low-frequency low-power component such as a thyristor.
  • FIG. 1 is a waveform diagram of the DC end ripple power of a single-phase inverter in the prior art. As shown, the inverter produces an output power that is in phase with the AC grid energy, so the output energy oscillates between zero and peak output power.
  • the energy needs to be stored and released at twice the frequency.
  • a large capacitor is required.
  • the inverter uses a large-capacity electrolytic capacitor on the DC main line as a passive filter, but the electrolytic capacitor has various failure modes, especially the ripple current causes the internal self-heating of the capacitor to reduce the life.
  • Active filter circuits have been extensively studied to replace passive methods by providing a separate energy conversion circuit that provides another ripple that cancels out dual frequency ripple power, but this method requires complex circuitry and control methods.
  • the technical problem to be solved by the present invention is to provide a solar photovoltaic three-phase micro-inverter and a solar photovoltaic power generation system capable of eliminating the ripple power of the DC-side input end of the three-phase micro-inverter.
  • the present invention provides a solar photovoltaic three-phase micro-inverter, comprising: a DC terminal connected to three DC photovoltaic components for receiving DC power generated by the DC photovoltaic component;
  • Three single-phase inverter circuits wherein the DC input terminals are respectively connected to the three DC volt components through the DC terminal, and are respectively used for converting DC power generated by the DC photovoltaic component into AC power;
  • the AC terminal is respectively connected to the AC output end of the three single-phase inverter circuits and the three-phase AC power grid, and is used for outputting the AC power generated by the three single-phase inverter circuits to the grid;
  • each single-phase inverter circuit is connected in parallel with each other, and the AC output terminals thereof are respectively connected to one of the three phases of the three-phase AC power grid and the neutral line through the AC terminal.
  • the three-phase Cui inverter further includes:
  • a current detecting component connected in series with the three direct current photovoltaic components, for measuring an input current provided by the direct current photovoltaic component;
  • the voltage detecting component is connected between the DC input end of the one of the three single-phase inverter circuits and the ground, and is used for measuring an input voltage of the DC photovoltaic component.
  • the three DC photovoltaic components are independent of each other.
  • the three DC photovoltaic modules are first connected to each other in series and then connected to the DC terminal.
  • the single-phase inverter circuit includes:
  • a DC-DC conversion circuit connected to the DC terminal for performing maximum power point tracking control; a DC-AC conversion circuit respectively connected to the DC-DC conversion circuit and an AC terminal for performing sine wave Generated and connected to the grid.
  • the single-phase inverter circuit further includes: a DC detection circuit, an AC detection circuit, a control circuit, a communication circuit, a power supply circuit, and a grid connection circuit.
  • the three single-phase inverter circuits share a set of AC detection circuit, control circuit, communication circuit and power supply circuit.
  • the invention also provides a solar photovoltaic three-phase micro-inverter, comprising:
  • Three single-phase inverter circuits wherein the DC input terminals are respectively connected to the three DC volt components through the DC terminal, and are respectively used for converting DC power generated by the DC photovoltaic component into AC power;
  • the AC terminal is respectively connected to the AC output end of the three single-phase inverter circuits and the three-phase AC power grid, and is used for outputting the AC power generated by the three single-phase inverter circuits to the grid;
  • Each single-phase inverter circuit includes a DC-DC conversion circuit for performing maximum power point tracking control, and outputs of the DC-DC conversion circuit are connected in parallel with each other, and AC outputs of the three single-phase inverter circuits are respectively The terminals are respectively connected to one of the three phases of the three-phase AC power grid and the neutral line through the AC terminal.
  • each of the single-phase inverter circuits further includes a DC-AC conversion circuit respectively connected to the DC-DC conversion circuit and the AC terminal for performing sine wave generation and grid connection.
  • the three-phase Cui inverter further includes:
  • a current detecting component which is respectively connected in series with the three direct current photovoltaic components, for measuring an input current provided by the direct current photovoltaic component
  • a voltage detecting component is respectively connected to the DC input end and the ground end of the three single-phase inverter circuits For measuring the input voltage of the DC photovoltaic module.
  • the three DC photovoltaic components are independent of each other.
  • the single-phase inverter circuit further includes: a DC detection circuit, an AC detection circuit, a control circuit, a communication circuit, a power supply circuit, and a grid connection circuit.
  • the three single-phase inverter circuits share a set of AC detection circuit, control circuit, communication circuit and power supply circuit.
  • the present invention provides a solar photovoltaic power generation system including a plurality of solar photovoltaic three-phase micro-inverters, wherein the AC terminals of the plurality of three-phase Cui inverters are respectively connected to phases and zeros in the three-phase AC power grid Wire-to-phase connection, wherein each three-phase micro-inverter includes:
  • Three single-phase inverter circuits wherein the DC input terminals are respectively connected to the three DC volt components through the DC terminal, and are respectively used for converting DC power generated by the DC photovoltaic component into AC power;
  • the AC terminal is respectively connected to the AC output end of the three single-phase inverter circuits and the three-phase AC power grid, and is used for outputting the AC power generated by the three single-phase inverter circuits to the grid;
  • each single-phase inverter circuit is connected in parallel with each other, and the AC output terminals thereof are respectively connected to one of the three phases of the three-phase AC power grid and the neutral line through the AC terminal.
  • the AC terminals of the plurality of three-phase micro-inverters are first connected to each other to form a three-phase micro-inverter string, and then connected to the three-phase AC power grid.
  • the plurality of three-phase micro-inverters are independent of each other, and their respective AC terminals are respectively connected to respective phases and neutral lines in the three-phase AC power grid.
  • the three-phase Cui inverter further includes:
  • a current detecting component connected in series with the three direct current photovoltaic components, for measuring an input current provided by the direct current photovoltaic component
  • a voltage detecting component is connected between the DC input end of the one of the three single-phase inverter circuits and the ground end for measuring an input voltage of the DC photovoltaic component.
  • the three DC photovoltaic components are independent of each other.
  • the three DC photovoltaic components are first connected to each other in series and then connected to the DC terminal.
  • the single-phase inverter circuit includes:
  • a DC-DC conversion circuit connected to the DC terminal for performing maximum power point tracking control; a DC-AC conversion circuit respectively connected to the DC-DC conversion circuit and an AC terminal for performing sine wave Generated and connected to the grid.
  • the single-phase inverter circuit further includes: a DC detection circuit, an AC detection circuit, a control circuit, a communication circuit, a power supply circuit, and a grid connection circuit.
  • the three single-phase inverter circuits share a set of AC detection circuit, control circuit, communication circuit and power supply circuit.
  • the invention also provides a solar photovoltaic power generation system, comprising a plurality of solar photovoltaic three-phase micro-inverters, wherein the AC terminals of the plurality of three-phase Cui inverters are respectively connected to phases and neutral phases in the three-phase AC power grid Connection, wherein each three-phase micro-inverter includes:
  • Three single-phase inverter circuits wherein the DC input terminals are respectively connected to the three DC volt components through the DC terminal, and are respectively used for converting DC power generated by the DC photovoltaic component into AC power;
  • the AC terminal is respectively connected to the AC output end of the three single-phase inverter circuits and the three-phase AC power grid, and is used for outputting the AC power generated by the three single-phase inverter circuits to the grid;
  • Each single-phase inverter circuit includes a DC-DC conversion circuit for performing maximum power point tracking control, and outputs of the DC-DC conversion circuit are connected in parallel with each other, and AC outputs of the three single-phase inverter circuits are respectively The terminals are respectively connected to one of the three phases of the three-phase AC power grid and the neutral line through the AC terminal.
  • each of the single-phase inverter circuits further includes a DC-AC conversion circuit respectively connected to the DC-DC conversion circuit and the AC terminal for performing sine wave generation and grid connection.
  • the AC terminals of the plurality of three-phase micro-inverters are first connected to each other to form a three-phase micro-inverter string, and then connected to the three-phase AC power grid.
  • the plurality of three-phase micro-inverters are independent of each other, and their respective AC terminals are respectively connected to respective phases and neutral lines in the three-phase AC power grid.
  • the three-phase Cui inverter further includes:
  • a current detecting component respectively connected in series with the three direct current photovoltaic components, for measuring an input current provided by the direct current photovoltaic component;
  • the voltage detecting component is respectively connected between the DC input end and the ground end of the three single-phase inverter circuits for measuring an input voltage of the DC photovoltaic component.
  • the three DC photovoltaic components are independent of each other.
  • the single-phase inverter circuit further includes: a DC detection circuit, an AC detection circuit, a control circuit, a communication circuit, a power supply circuit, and a grid connection circuit.
  • the three single-phase inverter circuits share a set of AC detection circuit, control circuit, communication circuit and power supply circuit.
  • the present invention has the following advantages:
  • the present invention connects the DC sides of the three single-phase inverter circuits in parallel, and the AC terminals are connected to the three-phase AC power grid and then incorporated into the three-phase AC power grid. Since the phases of the three-phase alternating current are different by 120. The sinusoidal waves have a ripple power of 120 at the DC input of each single-phase inverter circuit. . Therefore, the three ripple powers are added to zero, that is, the ripple power of the DC input terminals of the three single-phase inverter circuits is zero. Thus, the storage capacitance of the stored energy on the DC side of the single-phase inverter circuit can be eliminated. In principle, when the phase L1 charges the storage capacitor, the phases L2 and L3 discharge the storage capacitor, so the three-phase micro-inverter of the present invention can eliminate the ripple power of the DC-side input terminal. DRAWINGS
  • FIG. 1 is a waveform diagram of DC ripple power of a single-phase inverter in the prior art
  • FIG. 2 is a schematic structural diagram of a single-phase inverter in the prior art
  • FIG. 3 is a schematic diagram of a circuit structure of a single-phase inverter with a flyback full-bridge topology in the prior art
  • FIG. 4 is a schematic structural diagram of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the ripple power and the sum of the DC input ends of three single-phase inverter circuits of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to an embodiment of the present invention
  • FIG. 6 is a circuit diagram of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a solar photovoltaic three-phase micro-inverter without storage capacitor according to another embodiment of the present invention. Schematic diagram
  • FIG. 8 is a schematic structural diagram of a solar photovoltaic three-phase Cui inverter connected to a three-phase AC power grid according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a single-phase inverter circuit of a solar photovoltaic three-phase micro-inverter according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a circuit in which three single-phase inverter circuits of a solar photovoltaic three-phase micro-inverter share some circuits according to another embodiment of the present invention
  • FIG. 11 is a schematic structural view of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a solar photovoltaic power generation system including a plurality of the above three Cui inverters according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a solar photovoltaic power generation system including a plurality of the above three Cui inverters according to another embodiment of the present invention. detailed description
  • the solar photovoltaic three-phase Cui inverter 400 can include:
  • a DC terminal 401 is connected to three DC photovoltaic components DC 1 , DC 2 , DC 3 for receiving DC power generated by DC components DC 1 , DC 2 , DC 3 ;
  • the DC power generated by DC2 and DC3 is converted into AC power;
  • phase connection used to connect the alternating current generated by the three single-phase inverter circuits 402 to the grid
  • each single-phase inverter circuit 402 are connected in parallel with each other, and the AC output terminals thereof are respectively connected to one phase L1, L2 or L3 and the neutral line N of the three phases of the three-phase AC power grid 402 through the AC terminal 403. . Since the total power of the three phases is constant, the ripple power generated at the DC input is zero, so the storage The capacitor is eliminated.
  • FIG. 5 is a schematic diagram showing the ripple power and the sum of the DC input ends of three single-phase inverter circuits of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to an embodiment of the present invention.
  • three-phase Ll three-phase Ll
  • the three-phase Cui inverter 400 may further include: current detecting elements II, 12, and 13 connected in series with three DC photovoltaic modules DC1, DC2, and DC3, respectively. Used to separately measure the input current provided by the DC photovoltaic modules DC1, DC2, DC3;
  • the voltage detecting component V is connected between the DC input terminal of any one of the three single-phase inverter circuits 402 and the ground terminal for measuring the input voltages of the DC photovoltaic components DC1, DC2, and DC3.
  • FIG. 6 is a circuit diagram of a solar photovoltaic three-phase micro-inverter without storage capacitors in accordance with one embodiment of the present invention.
  • the input current provided by each DC PV module DC1, DC2, DC3 is detected by the current detecting components II, 12 and 13; the voltages of the three channels are the same, and are uniformly detected by the voltage detecting component V, and each DC photovoltaic component DC 1.
  • the output power of DC2 and DC3 is obtained by multiplying the current by the voltage for performance and fault monitoring of each component.
  • the three DC photovoltaic modules DC1, DC2, DC3 can be independent of each other, and each is connected to the DC terminal 401 of the three-phase micro-inverter 400.
  • FIG. 7 is a schematic structural diagram of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to another embodiment of the present invention.
  • three DC photovoltaic modules DC1, DC2, DC3 may be connected in series with each other and then connected together with the DC terminal 401 of the three-phase micro-inverter 400.
  • the DC terminal 401 is connected to the DC input terminals of the three single-phase inverter circuits 402.
  • the input current provided by the component strings of three DC photovoltaic modules DC1, DC2, DC3 is detected by the current detecting component I; the total voltage of the component string is detected by the voltage detecting component V, and the output power of the component string is multiplied by the current Pressure acquisition, for component string performance and fault monitoring.
  • FIG. 8 is a schematic structural diagram of a solar photovoltaic three-phase Cui inverter connected to a three-phase AC power grid according to an embodiment of the present invention. As shown, the three single phase inverter circuits 402 produce a crossover that matches the voltage of the three phase AC grid 405.
  • the single-phase inverter circuit 402 can include:
  • a DC-DC conversion circuit 4021 is connected to the DC terminal 401 for performing maximum power point tracking control
  • the DC-AC conversion circuit 4022 is connected to the DC-DC conversion circuit 4021 and the AC terminal 403, respectively, for performing sine wave generation and grid connection.
  • the single phase inverter circuit 402 may further include other circuits.
  • FIG. 9 is a schematic diagram showing the specific structure of a single-phase inverter circuit of a solar photovoltaic three-phase micro-inverter according to an embodiment of the present invention.
  • the single-phase inverter circuit 402 can further include: a DC detection circuit 4023, an AC detection circuit 4024, a control circuit 4025, a communication circuit 4026, a power supply circuit 4024, and a grid-connected circuit 4028.
  • the single-phase inverter circuit 402 may also include other necessary components known to those skilled in the art, and is not limited to the above-described circuit configuration.
  • Fig. 10 is a schematic diagram showing the sharing of some circuits by three single-phase inverter circuits of a solar photovoltaic three-phase micro-inverter according to another embodiment of the present invention.
  • three single-phase inverter circuits 402 can share a set of AC detection circuit 4024, control circuit 4025, communication circuit 4026, and power supply circuit 4027.
  • Such a three-phase micro-inverter 1000 can save two sets of shared circuits, which reduces the production cost and improves the reliability of the three-phase micro-inverter 1000.
  • FIG. 11 is a schematic structural diagram of a solar photovoltaic three-phase micro-inverter without a storage capacitor according to another embodiment of the present invention. As shown, the solar photovoltaic three-phase Cui inverter 1100 can include:
  • a DC terminal 401 is connected to three DC photovoltaic components DC 1 , DC 2 , DC 3 for receiving DC power generated by DC components DC 1 , DC 2 , DC 3 ;
  • the DC power generated by DC2 and DC3 is converted into AC power;
  • the AC terminal 403 is respectively connected to the AC output end of the three single-phase inverter circuits 402 and the three-phase AC power grid 405 for outputting the AC power generated by the three single-phase inverter circuits 402 to the grid;
  • Each single-phase inverter circuit 402 includes a DC-DC conversion circuit 4021 for performing maximum power point tracking ( ⁇ ) control, and outputs of the DC-DC conversion circuit 4021 are connected in parallel with each other, and three single-phase inverter circuits 402 are connected.
  • the AC output terminals are respectively connected to one of the three phases of the three-phase AC grid 405, L1, L2 or L3, and the neutral line N through the AC terminal 403. Since the total power of the three phases is constant, the ripple power generated at the DC input is zero, so the storage capacitor is eliminated.
  • each single-phase inverter circuit 402 may further include a DC-AC conversion circuit 4022 connected to the DC-DC conversion circuit 4021 and the AC terminal 403 for performing sine wave generation and grid connection.
  • the three components are respectively connected to the DC terminal 401 of the three-phase micro-inverter 1100, and the current and voltage are independently detected, and each control obtains a maximum power point, so that each component outputs the maximum power.
  • the data for each component is independent and can be used for performance and fault monitoring of each component.
  • the three-phase Cui inverter 1100 may further include: current detecting elements II, 12 and 13 respectively connected in series with three DC photovoltaic components DC 1 , DC 2 , DC 3 , Used to measure the input current provided by DC PV modules DC1, DC2, DC3;
  • the voltage detecting elements VI, V2 and V3 are respectively connected between the DC input terminals of the three single-phase inverter circuits 402 and the ground, and are used for measuring the input voltages of the DC photovoltaic modules DC1, DC2, and DC3.
  • DC1, DC2, and DC3 between the three DC photovoltaic modules can be independent of each other, and are each connected to the DC terminal 401 of the three-phase micro-inverter 1100.
  • the single-phase inverter circuit 402 in this embodiment may also include other circuits.
  • the single-phase inverter circuit 402 may further include: a DC detection circuit 4023, an AC detection circuit 4024, a control circuit 4025, a communication circuit 4026, a power supply circuit 4024, and a grid-connected circuit 4028.
  • the single-phase inverter circuit 402 may also include other necessary components known to those skilled in the art, and is not limited to the above-described circuit configuration.
  • the three single-phase inverter circuits 402 in this embodiment may share some circuits.
  • the three single-phase inverter circuits 402 can also share a set of AC detection circuit 4024, control circuit 4025, communication circuit 4026, and power supply circuit 4027.
  • the solar photovoltaic power generation system 1200 can include a plurality of solar photovoltaic three-phase micro-inverters 1202 as described above, and the plurality of three-phase micro-inverters 1202 are independent of each other, and their respective exchanges.
  • the terminals are respectively connected to the respective phases L1, L2 or L3 and the neutral line N in the three-phase AC grid 1205.
  • FIG. 13 is a schematic structural diagram of a solar photovoltaic power generation system including a plurality of the above three Cui inverters according to another embodiment of the present invention.
  • the solar photovoltaic power generation system 1200 can include any one of the solar photovoltaic three-phase Cui inverters 1202 as described above, and the AC terminals of the plurality of three-phase Cui inverters 1202 are first connected to each other to form The three micro-inverter strings are connected to the phases L1, L2 or L3 and the neutral N in the three-phase AC grid 1205.
  • the present invention connects the DC sides of the three single-phase inverter circuits in parallel, and the AC terminals are connected to the three-phase AC power grid and then incorporated into the three-phase AC power grid. Since the phases of the three-phase alternating current are different by 120. The sinusoidal waves have a ripple power of 120 at the DC input of each single-phase inverter circuit. . Therefore, the three ripple powers are added to zero, that is, the ripple power of the DC input terminals of the three single-phase inverter circuits is zero. Thus, the storage capacitance of the stored energy on the DC side of the single-phase inverter circuit can be eliminated. In principle, when the phase L1 charges the storage capacitor, the phases L2 and L3 discharge the storage capacitor, so the three-phase micro-inverter of the present invention can eliminate the ripple power of the DC-side input terminal.

Description

太阳能光伏三相微逆变器以及太阳能光伏发电系统 技术领域
本发明涉及电源变换器消除紋波功率的技术领域, 具体来说, 本发明涉及一 种太阳能光伏三相微逆变器以及一种太阳能光伏发电系统。 背景技术
很多可再生能源产生直流电, 例如太阳能光伏和化学电池。 直流电通过逆变 器转换为固定频率的正弦交流电, 传输给电网或者离网使用。
太阳能光伏发电系统的逆变器最近趋向于采用分布式的微型逆变器 (微逆变 器)。 微型逆变器对每个直流光伏组件提供最大功率点控制, 从而使每个直流光伏 组件产生最大的能量, 提高整个太阳能光伏发电系统的性能。 另夕卜, 微型逆变器还 能产生交流低压输出, 而不是中心式逆变器系统的高直流电压输出,提高了系统的 安全性和工作效率。
图 2为现有技术中的一个单相逆变器的结构示意图。 如图所示, 该单相逆变 器 200可以包括直流-直流转换电路 201和直流-交流转换电路 202。 其直流输入端 设置有存储电容 203 , 用以减小紋波电压。
图 3 为现有技术中的一个反激全桥拓朴的单相逆变器的电路结构示意图。 如 图所示, 该单相逆变器 300可以包括直流-直流转换电路 401和直流-交流转换电路 302。 其中, 直流-直流转换电路 301用于进行 MPPT (最大功率点跟踪)控制和正 弦波产生, 输出半正弦波。 该直流-直流转换电路 301 可以包括存储电容 303 , 电 流检测元件 304, 电压检测元件 305和反激电路 306。 反激电路 306又可以包括变 压器 T, 开关管 Q和二极管1)。 变压器 T的主边线圈与开关管 Q串联, 副边线圈 与二极管 D 串联到输出。 这里以单路反激为例, 两路或多路地交错反激也可以使 用。 而直流-交流转换电路 302为工作在工频的 H全桥,用于将半周期正弦波反相, 形成完整的正弦波, 其可以采用低频低功耗元件, 例如晶闸管等。
单相逆变器的一个基本特性是: 电源和负载间的能量传输包括平均能量和双 倍频率的紋波。逆变器希望从直流电源获取没有紋波的直流电, 然后将平均能量和 紋波能量传给输出负载,这样就要求逆变器里有能量存储单元来处理紋波能量。 图 1为现有技术中的一个单相逆变器的直流端紋波功率的波形示意图。 如图所示, 逆 变器产生和交流电网能量同相的输出功率,所以输出能量在零和峰值输出功率之间 震荡。 在逆变器的输出功率为零时, 光伏组件的电流不流过逆变器, 所以给存储电 容充电; 在逆变器的输出功率为峰值时, 存储电容放电补充光伏组件的功率, 使峰 值达到平均值的两倍。所以,存储电容的充放电形成了光伏组件提供的直流电之上 附加的交流成分, 叫做紋波功率。
为管理双倍频率的紋波功率, 能量需要被在两倍的频率存储和释放。 为避免 能量交换造成大的电压紋波, 需要使用大的电容。通常逆变器采用在直流主线的大 容量电解电容作为被动滤波器,但电解电容有多种失效模式,特别是紋波电流造成 电容内部自热, 减少寿命。 主动滤波电路被广泛研究来替代被动方法, 通过分开的 能量变换电路来提供另一个紋波,该紋波抵消掉双频率紋波功率,但该方法需要复 杂的电路和控制方法。
所以, 需要能筒单地消除光伏并网逆变器中直流侧紋波功率。 发明内容
本发明所要解决的技术问题是提供一种太阳能光伏三相微逆变器以及一种太 阳能光伏发电系统, 能够筒单地消除三相微逆变器直流侧输入端的紋波功率。
为解决上述技术问题, 本发明提供一种太阳能光伏三相微逆变器, 包括: 直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生的 直流电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流光 伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电;
交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相连 接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路的直流输入端彼此并联, 并且其交流输出端通过所 述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
可选地, 所述三相崔逆变器还包括:
电流检测元件, 与所述三个直流光伏组件相串联, 用于测量所述直流光伏组 件提供的输入电流; 电压检测元件, 跨接于所述三个单相逆变电路中任一个的直流输入端与接地 端之间, 用于测量所述直流光伏组件的输入电压。
可选地 , 所述三个直流光伏组件之间彼此互相独立。
可选地, 所述三个直流光伏组件先彼此互相串联, 然后与所述直流端子相连 接。
可选地, 所述单相逆变电路包括:
直流-直流转换电路, 与所述直流端子相连接,用于进行最大功率点跟踪控制; 直流-交流转换电路, 分别与所述直流-直流转换电路和交流端子相连接, 用于 进行正弦波的产生和并网。
可选地, 所述单相逆变电路还包括: 直流检测电路、 交流检测电路、 控制电 路、 通信电路、 电源电路和并网电路。
可选地, 所述三个单相逆变电路共用一套交流检测电路、 控制电路、 通信电 路和电源电路。
本发明还提供一种太阳能光伏三相微逆变器, 包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生的 直流电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流光 伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电;
交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相连 接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路包括直流-直流转换电路, 用于进行最大功率点跟踪 控制, 所述直流 -直流转换电路的输出端彼此并联, 所述三个单相逆变电路的交流 输出端通过所述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
可选地, 所述每个单相逆变电路还包括直流-交流转换电路, 分别与所述直流- 直流转换电路和交流端子相连接, 用于进行正弦波的产生和并网。
可选地, 所述三相崔逆变器还包括:
电流检测元件, 分别与所述三个直流光伏组件相串联, 用于测量所述直流光 伏组件提供的输入电流;
电压检测元件, 分别跨接于所述三个单相逆变电路的直流输入端与接地端之 间, 用于测量所述直流光伏组件的输入电压。
可选地 , 所述三个直流光伏组件之间彼此互相独立。
可选地, 所述单相逆变电路还包括: 直流检测电路、 交流检测电路、 控制电 路、 通信电路、 电源电路和并网电路。
可选地, 所述三个单相逆变电路共用一套交流检测电路、 控制电路、 通信电 路和电源电路。
相应地, 本发明提供一种太阳能光伏发电系统, 包括多个太阳能光伏三相微 逆变器,所述多个三相崔逆变器的交流端子分别与三相交流电网中的各相和零线相 连接, 其中, 每个三相微逆变器包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生的 直流电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流光 伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电;
交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相连 接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路的直流输入端彼此并联, 并且其交流输出端通过所 述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
可选地, 所述多个三相微逆变器的交流端子先彼此相连接, 形成三相微逆变 器串, 再与所述三相交流电网相连接。
可选地, 所述多个三相微逆变器之间彼此独立, 其各自的交流端子分别与所 述三相交流电网中的各相和零线相连接。
可选地, 所述三相崔逆变器还包括:
电流检测元件, 与所述三个直流光伏组件相串联, 用于测量所述直流光伏组 件提供的输入电流;
电压检测元件, 跨接于所述三个单相逆变电路中任一个的直流输入端与接地 端之间, 用于测量所述直流光伏组件的输入电压。
可选地 , 所述三个直流光伏组件之间彼此互相独立。
可选地, 所述三个直流光伏组件先彼此互相串联, 然后与所述直流端子相连 接。 可选地, 所述单相逆变电路包括:
直流-直流转换电路, 与所述直流端子相连接,用于进行最大功率点跟踪控制; 直流-交流转换电路, 分别与所述直流-直流转换电路和交流端子相连接, 用于 进行正弦波的产生和并网。
可选地, 所述单相逆变电路还包括: 直流检测电路、 交流检测电路、 控制电 路、 通信电路、 电源电路和并网电路。
可选地, 所述三个单相逆变电路共用一套交流检测电路、 控制电路、 通信电 路和电源电路。
本发明还提供一种太阳能光伏发电系统, 包括多个太阳能光伏三相微逆变器, 所述多个三相崔逆变器的交流端子分别与三相交流电网中的各相和零线相连接,其 中, 每个三相微逆变器包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生的 直流电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流光 伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电;
交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相连 接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路包括直流-直流转换电路, 用于进行最大功率点跟踪 控制, 所述直流-直流转换电路的输出端彼此并联, 所述三个单相逆变电路的交流 输出端通过所述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
可选地, 所述每个单相逆变电路还包括直流-交流转换电路, 分别与所述直流- 直流转换电路和交流端子相连接, 用于进行正弦波的产生和并网。
可选地, 所述多个三相微逆变器的交流端子先彼此相连接, 形成三相微逆变 器串, 再与所述三相交流电网相连接。
可选地, 所述多个三相微逆变器之间彼此独立, 其各自的交流端子分别与所 述三相交流电网中的各相和零线相连接。
可选地, 所述三相崔逆变器还包括:
电流检测元件, 分别与所述三个直流光伏组件相串联, 用于测量所述直流光 伏组件提供的输入电流; 电压检测元件, 分别跨接于所述三个单相逆变电路的直流输入端与接地端之 间, 用于测量所述直流光伏组件的输入电压。
可选地 , 所述三个直流光伏组件之间彼此互相独立。
可选地, 所述单相逆变电路还包括: 直流检测电路、 交流检测电路、 控制电 路、 通信电路、 电源电路和并网电路。
可选地, 所述三个单相逆变电路共用一套交流检测电路、 控制电路、 通信电 路和电源电路。
与现有技术相比, 本发明具有以下优点:
本发明将三个单相逆变电路的直流侧并联在一起, 交流端子连接三相交流电 缆后并入三相交流电网。 由于三相交流电的各相为相差 120。的正弦波, 它们在各 个单相逆变电路的直流输入端的紋波功率也是相差 120。。 于是, 三个紋波功率相 加后为零, 即三个单相逆变电路的直流输入端的紋波功率为零。 这样, 单相逆变电 路直流侧的存储能量的存储电容就可以被消除。 在原理上相当于当相 L1给存储电 容充电时, 相 L2和 L3给存储电容放电, 所以本发明的三相微逆变器能够筒单地 消除了直流侧输入端的紋波功率。 附图说明
本发明的上述的以及其他的特征、 性质和优势将通过下面结合附图和实施例 的描述而变得更加明显, 其中:
图 1为现有技术中的一个单相逆变器的直流端紋波功率的波形示意图; 图 2为现有技术中的一个单相逆变器的结构示意图;
图 3为现有技术中的一个反激全桥拓朴的单相逆变器的电路结构示意图; 图 4为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的结构示 意图;
图 5 为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的三个单 相逆变电路的直流输入端的紋波功率及其总和的曲线示意图;
图 6为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的电路示 意图;
图 7为本发明另一个实施例的无存储电容的太阳能光伏三相微逆变器的结构 示意图;
图 8为本发明一个实施例的太阳能光伏三相崔逆变器与三相交流电网相连接 的结构示意图;
图 9为本发明一个实施例的太阳能光伏三相微逆变器的一个单相逆变电路的 具体结构示意图;
图 10为本发明另一个实施例的太阳能光伏三相微逆变器的三个单相逆变电路 共用一些电路的示意图;
图 11为本发明另一个实施例的无存储电容的太阳能光伏三相微逆变器的结构 示意图;
图 12为本发明一个实施例的包括多个上述三项崔逆变器的太阳能光伏发电系 统的结构示意图;
图 13为本发明另一个实施例的包括多个上述三项崔逆变器的太阳能光伏发电 系统的结构示意图。 具体实施方式
下面结合具体实施例和附图对本发明作进一步说明, 但不应以此限制本发明 的保护范围。
图 4为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的结构示 意图。 如图所示, 该太阳能光伏三相崔逆变器 400可以包括:
直流端子 401 , 与三个直流光伏组件 DC 1、 DC2、 DC3相连接, 用于接收直 流光伏组件 DC 1、 DC2、 DC3产生的直流电;
三个单相逆变电路 402, 例如三个单相反激逆变电路, 其直流输入端分别通过 直流端子 401与三个直流光伏组件 DC1、 DC2、 DC3相连接, 用于分别将直流光 伏组件 DC1、 DC2、 DC3产生的直流电转换为交流电;
交流端子 403, 分别与三个单相逆变电路 402 的交流输出端和三相交流电网
405相连接, 用于将三个单相逆变电路 402产生的交流电并网输出;
其中, 每个单相逆变电路 402的直流输入端彼此并联, 并且其交流输出端通 过交流端子 403分别与三相交流电网 402三相中的一相 Ll、 L2或 L3以及零线 N 相连接。 由于三相的总功率为常数, 在直流输入端产生的紋波功率为零, 所以存储 电容被消除了。
图 5 为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的三个单 相逆变电路的直流输入端的紋波功率及其总和的曲线示意图。 详细来说, 三相 Ll、
L2和 L3的紋波功率 pr(Ll)、 pr(L2)、 pr(L3)的计算公式为:
pr(Ll)=p。cos(2cot)
2 1 4兀
pr(L2)^oc0s2(cot-T)^poc0s(2cot-T) pr(L3)^0c0s2(cot- )^oc0s(2cot- )^poc0s(2cot-|) 那么, 三相 LI、 L2和 L3的紋波功率总和 pr(total)可以得到:
4·兀 271
pr (Total)=pr (L 1 )+pr (L2)+pr (L3)=p。cos(2cot)+p。cos(2cot-― )+pocos(2rot-― )=0 所以, 当三相微逆变器 400 的三路直流输入被并联连接时, 总的紋波功率 pr(total)为零。
继续如图 4所示, 在本实施例中 , 该三相崔逆变器 400可以还包括: 电流检测元件 II、 12和 13, 分别与三个直流光伏组件 DC 1、 DC2、 DC3相串 联, 用于分别测量直流光伏组件 DC1、 DC2、 DC3提供的输入电流;
电压检测元件 V, 跨接于三个单相逆变电路 402中任一个的直流输入端与接 地端之间, 用于测量直流光伏组件 DC1、 DC2、 DC3的输入电压。
图 6为本发明一个实施例的无存储电容的太阳能光伏三相微逆变器的电路示 意图。 如图所示, 每个直流光伏组件 DC1、 DC2、 DC3提供的输入电流被电流检 测元件 II、 12和 13检测; 三路的电压相同, 被电压检测元件 V统一检测, 每个直 流光伏组件 DC 1、 DC2、 DC3 的输出功率由电流乘以电压获得, 用于每个组件的 性能和故障监测。
在本实施例中, 三个直流光伏组件 DC1、 DC2、 DC3之间可以彼此互相独立, 各自与三相微逆变器 400的直流端子 401相连接。
而图 7为本发明另一个实施例的无存储电容的太阳能光伏三相微逆变器的结 构示意图。 如图所示, 在该太阳能光伏三相崔逆变器 700 中, 三个直流光伏组件 DC1、 DC2、 DC3可以先彼此互相串联, 然后一起与三相微逆变器 400的直流端子 401相连接。 该直流端子 401与三个的单相逆变电路 402的直流输入端相连接。 三 个直流光伏组件 DC1、 DC2、 DC3组成的组件串提供的输入电流被电流检测元件 I 检测; 组件串的总电压被电压检测元件 V检测, 组件串的输出功率由电流乘以电 压获得, 用于组件串的性能和故障监测。
图 8为本发明一个实施例的太阳能光伏三相崔逆变器与三相交流电网相连接 的结构示意图。如图所示,三个单相逆变电路 402产生与三相交流电网 405电压相 位匹配的交 ϋ电。
回到图 4和图 7, 在本发明中, 单相逆变电路 402可以包括:
直流-直流转换电路 4021 , 与直流端子 401相连接, 用于进行最大功率点跟踪 控制;
直流-交流转换电路 4022, 分别与直流-直流转换电路 4021和交流端子 403相 连接, 用于进行正弦波的产生和并网。
另夕卜, 单相逆变电路 402可以还包括其他电路。 图 9为本发明一个实施例的 太阳能光伏三相微逆变器的一个单相逆变电路的具体结构示意图。如图所示,该单 相逆变电路 402可以还包括: 直流检测电路 4023、 交流检测电路 4024、 控制电路 4025、 通信电路 4026、 电源电路 4024和并网电路 4028。
当然, 在本发明中, 单相逆变电路 402还可以包括其他必要的、 被本领域技 术人员所公知的组成部分, 而并不限于采用上述的电路结构。
图 10为本发明另一个实施例的太阳能光伏三相微逆变器的三个单相逆变电路 共用一些电路的示意图。 如图所示, 在该三相微逆变器 1000中, 三个单相逆变电 路 402可以共用一套交流检测电路 4024、控制电路 4025、通信电路 4026和电源电 路 4027。 如此一个三相微逆变器 1000可以节省两套共用电路, 既降低了生产成本 又提高了三相微逆变器 1000的可靠性。
图 11为本发明另一个实施例的无存储电容的太阳能光伏三相微逆变器的结构 示意图。 如图所示, 该太阳能光伏三相崔逆变器 1100可以包括:
直流端子 401 , 与三个直流光伏组件 DC 1、 DC2、 DC3相连接, 用于接收直 流光伏组件 DC 1、 DC2、 DC3产生的直流电;
三个单相逆变电路 402, 例如三个单相反激逆变电路, 其直流输入端分别通过 直流端子 401与三个直流光伏组件 DC1、 DC2、 DC3相连接, 用于分别将直流光 伏组件 DC1、 DC2、 DC3产生的直流电转换为交流电;
交流端子 403, 分别与三个单相逆变电路 402 的交流输出端和三相交流电网 405相连接, 用于将三个单相逆变电路 402产生的交流电并网输出; 其中, 每个单相逆变电路 402包括直流-直流转换电路 4021 , 用于进行最大功 率点跟踪 ( ΜΡΡΤ )控制, 直流-直流转换电路 4021的输出端彼此并联, 三个单相 逆变电路 402的交流输出端通过交流端子 403分别与三相交流电网 405三相 Ll、 L2或 L3中的一相以及零线 N相连接。 由于三相的总功率为常数, 在直流输入端 产生的紋波功率为零, 所以存储电容被消除了。
在本实施例中, 每个单相逆变电路 402可以还包括直流-交流转换电路 4022, 分别与直流-直流转换电路 4021和交流端子 403相连接,用于进行正弦波的产生和 并网。
由于三路直流-直流转换电路 4021的输出被并联, 这样紋波功率在直流 -直流 转换电路 4021的输出端被消除, 而三路的直流输入保持独立。 三个组件分别与三 相微逆变器 1100的直流端子 401连接, 电流和电压被独立检测, 并各自控制获得 最大功率点, 使每个组件输出最大功率。 每个组件的数据独立, 可用于每个组件的 性能和故障监测。
继续如图 11所示, 在本实施例中, 该三相崔逆变器 1100可以还包括: 电流检测元件 II、 12和 13, 分别与三个直流光伏组件 DC 1、 DC2、 DC3相串 联, 用于测量直流光伏组件 DC1、 DC2、 DC3提供的输入电流;
电压检测元件 VI、 V2和 V3 , 分别跨接于所述三个单相逆变电路 402的直流 输入端与接地端之间, 用于测量直流光伏组件 DC1、 DC2、 DC3的输入电压。
在本实施例中, 三个直流光伏组件之间 DC1、 DC2、 DC3可以彼此互相独立, 各自与三相微逆变器 1100的直流端子 401相连接。
类似地, 本实施例中的单相逆变电路 402也可以还包括其他电路。 参考图 9 所示,该单相逆变电路 402也可以还包括:直流检测电路 4023、交流检测电路 4024、 控制电路 4025、 通信电路 4026、 电源电路 4024和并网电路 4028。
当然, 在本发明中, 单相逆变电路 402还可以包括其他必要的、 被本领域技 术人员所公知的组成部分, 而并不限于采用上述的电路结构。
类似地, 本实施例中的三个单相逆变电路 402也可以共用一些电路。 参考图 10 所示, 三个单相逆变电路 402 也可以共用一套交流检测电路 4024、 控制电路 4025、 通信电路 4026和电源电路 4027。
图 12为本发明一个实施例的包括多个上述三项微逆变器的太阳能光伏发电系 统的结构示意图。 如图所示, 该太阳能光伏发电系统 1200可以包括多个如上所述 的任意一种太阳能光伏三相微逆变器 1202,多个三相微逆变器 1202之间彼此独立, 其各自的交流端子分别与三相交流电网 1205中的各相 Ll、 L2或 L3和零线 N相 连接。
图 13为本发明另一个实施例的包括多个上述三项崔逆变器的太阳能光伏发电 系统的结构示意图。 如图所示, 该太阳能光伏发电系统 1200可以包括多个如上所 述的任意一种太阳能光伏三相崔逆变器 1202, 多个三相崔逆变器 1202的交流端子 先彼此相连接, 形成三项微逆变器串, 再与三相交流电网 1205 中的各相 Ll、 L2 或 L3和零线 N相连接。
本发明将三个单相逆变电路的直流侧并联在一起, 交流端子连接三相交流电 缆后并入三相交流电网。 由于三相交流电的各相为相差 120。的正弦波, 它们在各 个单相逆变电路的直流输入端的紋波功率也是相差 120。。 于是, 三个紋波功率相 加后为零, 即三个单相逆变电路的直流输入端的紋波功率为零。 这样, 单相逆变电 路直流侧的存储能量的存储电容就可以被消除。 在原理上相当于当相 L1给存储电 容充电时, 相 L2和 L3给存储电容放电, 所以本发明的三相微逆变器能够筒单地 消除了直流侧输入端的紋波功率。
本发明虽然以较佳实施例公开如上, 但其并不是用来限定本发明, 任何本领 域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改, 因此 本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims

权 利 要 求
1、 一种太阳能光伏三相微逆变器, 包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生 的直 ¾ϊ电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流 光伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电; 交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相 连接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路的直流输入端彼此并联, 并且其交流输出端通过 所述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
2、 根据权利要求 1所述的三相微逆变器, 其特征在于, 还包括: 电流检测元件, 与所述三个直流光伏组件相串联, 用于测量所述直流光伏 组件提供的输入电流;
电压检测元件, 跨接于所述三个单相逆变电路中任一个的直流输入端与接 地端之间, 用于测量所述直流光伏组件的输入电压。
3、 根据权利要求 2所述的三相微逆变器, 其特征在于, 所述三个直流光伏 组件之间彼此互相独立。
4、 根据权利要求 2所述的三相微逆变器, 其特征在于, 所述三个直流光伏 组件先彼此互相串联, 然后与所述直流端子相连接。
5、 根据权利要求 3或 4所述的三相微逆变器, 其特征在于, 所述单相逆变 电路包括:
直流-直流转换电路, 与所述直流端子相连接, 用于进行最大功率点跟踪控 制;
直流-交流转换电路, 分别与所述直流-直流转换电路和交流端子相连接, 用于进行正弦波的产生和并网。
6、 根据权利要求 5所述的三相微逆变器, 其特征在于, 所述单相逆变电路 还包括: 直流检测电路、 交流检测电路、 控制电路、 通信电路、 电源电路和并 网电路。
7、 根据权利要求 6所述的三相微逆变器, 其特征在于, 所述三个单相逆变 电路共用一套交流检测电路、 控制电路、 通信电路和电源电路。
8、 一种太阳能光伏三相微逆变器, 包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生 的直 ¾ϊ电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流 光伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电; 交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相 连接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中,每个单相逆变电路包括直流-直流转换电路, 用于进行最大功率点跟 踪控制, 所述直流-直流转换电路的输出端彼此并联, 所述三个单相逆变电路的 交流输出端通过所述交流端子分别与所述三相交流电网三相中的一相以及零 线相连接。
9、 根据权利要求 8所述的三相微逆变器, 其特征在于, 所述每个单相逆变 电路还包括直流-交流转换电路, 分别与所述直流-直流转换电路和交流端子相 连接, 用于进行正弦波的产生和并网。
10、 根据权利要求 9所述的三相微逆变器, 其特征在于, 还包括: 电流检测元件, 分别与所述三个直流光伏组件相串联, 用于测量所述直流 光伏组件提供的输入电流;
电压检测元件, 分别跨接于所述三个单相逆变电路的直流输入端与接地端 之间, 用于测量所述直流光伏组件的输入电压。
1 1、 根据权利要求 10所述的三相微逆变器, 其特征在于, 所述三个直流光 伏组件之间彼此互相独立。
12、 根据权利要求 1 1所述的三相微逆变器, 其特征在于, 所述单相逆变电 路还包括: 直流检测电路、 交流检测电路、 控制电路、 通信电路、 电源电路和 并网电路。
13、 根据权利要求 12所述的三相微逆变器, 其特征在于, 所述三个单相逆 变电路共用一套交流检测电路、 控制电路、 通信电路和电源电路。
14、 一种太阳能光伏发电系统, 包括多个太阳能光伏三相微逆变器, 所述 多个三相微逆变器的交流端子分别与三相交流电网中的各相和零线相连接, 其 中, 每个三相微逆变器包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生 的直 ¾ϊ电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流 光伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电; 交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相 连接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中, 每个单相逆变电路的直流输入端彼此并联, 并且其交流输出端通过 所述交流端子分别与所述三相交流电网三相中的一相以及零线相连接。
15、 根据权利要求 14所述的太阳能光伏发电系统, 其特征在于, 所述多个 三相微逆变器的交流端子先彼此相连接, 形成三相微逆变器串, 再与所述三相 交流电网相连接。
16、 根据权利要求 14所述的太阳能光伏发电系统, 其特征在于, 所述多个 三相微逆变器之间彼此独立, 其各自的交流端子分别与所述三相交流电网中的 各相和零线相连接。
17、 根据权利要求 15或 16所述的太阳能光伏发电系统, 其特征在于, 所述 三相微逆变器还包括:
电流检测元件, 与所述三个直流光伏组件相串联, 用于测量所述直流光伏 组件提供的输入电流;
电压检测元件, 跨接于所述三个单相逆变电路中任一个的直流输入端与接 地端之间, 用于测量所述直流光伏组件的输入电压。
18、 根据权利要求 17所述的太阳能光伏发电系统, 其特征在于, 所述三个 直流光伏组件之间彼此互相独立。
19、 根据权利要求 17所述的太阳能光伏发电系统, 其特征在于, 所述三个 直流光伏组件先彼此互相串联, 然后与所述直流端子相连接。
20、 根据权利要求 18或 19所述的太阳能光伏发电系统, 其特征在于, 所述 单相逆变电路包括:
直流-直流转换电路, 与所述直流端子相连接, 用于进行最大功率点跟踪控 制;
直流-交流转换电路, 分别与所述直流-直流转换电路和交流端子相连接, 用于进行正弦波的产生和并网。
21、 根据权利要求 20所述的太阳能光伏发电系统, 其特征在于, 所述单相 逆变电路还包括: 直流检测电路、 交流检测电路、 控制电路、 通信电路、 电源 电路和并网电路。
22、 根据权利要求 21所述的太阳能光伏发电系统, 其特征在于, 所述三个 单相逆变电路共用一套交流检测电路、 控制电路、 通信电路和电源电路。
23、 一种太阳能光伏发电系统, 包括多个太阳能光伏三相微逆变器, 所述 多个三相微逆变器的交流端子分别与三相交流电网中的各相和零线相连接, 其 中, 每个三相微逆变器包括:
直流端子, 与三个直流光伏组件相连接, 用于接收所述直流光伏组件产生 的直 ¾ϊ电;
三个单相逆变电路, 其直流输入端分别通过所述直流端子与所述三个直流 光伏组件相连接, 用于分别将所述直流光伏组件产生的直流电转换为交流电; 交流端子, 分别与所述三个单相逆变电路的交流输出端和三相交流电网相 连接, 用于将所述三个单相逆变电路产生的交流电并网输出;
其中,每个单相逆变电路包括直流-直流转换电路, 用于进行最大功率点跟 踪控制, 所述直流-直流转换电路的输出端彼此并联, 所述三个单相逆变电路的 交流输出端通过所述交流端子分别与所述三相交流电网三相中的一相以及零 线相连接。
24、 根据权利要求 23所述的太阳能光伏发电系统, 其特征在于, 所述每个 单相逆变电路还包括直流-交流转换电路, 分别与所述直流-直流转换电路和交 流端子相连接, 用于进行正弦波的产生和并网。
25、 根据权利要求 24所述的太阳能光伏发电系统, 其特征在于, 所述多个 三相微逆变器的交流端子先彼此相连接, 形成三相微逆变器串, 再与所述三相 交流电网相连接。
26、 根据权利要求 24所述的太阳能光伏发电系统, 其特征在于, 所述多个 三相微逆变器之间彼此独立, 其各自的交流端子分别与所述三相交流电网中的 各相和零线相连接。
27、 根据权利要求 25或 26所述的太阳能光伏发电系统, 其特征在于, 所述 三相微逆变器还包括: 电流检测元件, 分别与所述三个直流光伏组件相串联, 用于测量所述直流 光伏组件提供的输入电流;
电压检测元件, 分别跨接于所述三个单相逆变电路的直流输入端与接地端 之间, 用于测量所述直流光伏组件的输入电压。
28、 根据权利要求 27所述的太阳能光伏发电系统, 其特征在于, 所述三个 直流光伏组件之间彼此互相独立。
29、 根据权利要求 28所述的太阳能光伏发电系统, 其特征在于, 所述单相 逆变电路还包括: 直流检测电路、 交流检测电路、 控制电路、 通信电路、 电源 电路和并网电路。
30、 根据权利要求 29所述的太阳能光伏发电系统, 其特征在于, 所述三个 单相逆变电路共用一套交流检测电路、 控制电路、 通信电路和电源电路。
PCT/CN2012/070065 2011-05-11 2012-01-05 太阳能光伏三相微逆变器以及太阳能光伏发电系统 WO2012152072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/076,006 US9608447B2 (en) 2011-05-11 2013-11-08 Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101224928A CN102185507B (zh) 2011-05-11 2011-05-11 太阳能光伏三相微逆变器以及太阳能光伏发电系统
CN201110122492.8 2011-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/076,006 Continuation US9608447B2 (en) 2011-05-11 2013-11-08 Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system

Publications (1)

Publication Number Publication Date
WO2012152072A1 true WO2012152072A1 (zh) 2012-11-15

Family

ID=44571596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070065 WO2012152072A1 (zh) 2011-05-11 2012-01-05 太阳能光伏三相微逆变器以及太阳能光伏发电系统

Country Status (3)

Country Link
US (1) US9608447B2 (zh)
CN (1) CN102185507B (zh)
WO (1) WO2012152072A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186552A (zh) * 2015-07-15 2015-12-23 天津伟力盛世节能科技股份有限公司 一种三相正弦波光伏逆变器
CN105244884A (zh) * 2015-11-02 2016-01-13 贵州大学 一种柔性接入智能家居接口

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185507B (zh) * 2011-05-11 2013-10-30 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统
US20160063413A1 (en) * 2014-08-28 2016-03-03 OneRoof Energy, Inc. Solar electrical system optimizer
US10097108B2 (en) 2014-12-16 2018-10-09 Abb Schweiz Ag Energy panel arrangement power dissipation
JP2018506946A (ja) 2015-01-28 2018-03-08 エービービー シュヴァイツ アクチェンゲゼルシャフト エネルギーパネル装置のシャットダウン
CN107454992B (zh) 2015-02-22 2020-01-14 Abb瑞士股份有限公司 光伏串反极性检测
US10263430B2 (en) * 2015-08-14 2019-04-16 Solarcity Corporation Multi-phase inverter power control systems in an energy generation system
CN105549631A (zh) * 2015-12-25 2016-05-04 苏州聚晟太阳能科技股份有限公司 一种跟踪控制与逆变汇流一体机装置及太阳跟踪方法
US11611220B2 (en) * 2015-12-31 2023-03-21 Present Power Systems, Llc Systems and methods for connecting energy sources to power distribution network
CN106300991A (zh) * 2016-09-26 2017-01-04 武汉承光博德光电科技有限公司 消除直流输入端纹波的单相逆变器及太阳能光伏发电系统
US11309714B2 (en) 2016-11-02 2022-04-19 Tesla, Inc. Micro-batteries for energy generation systems
CN107492911B (zh) * 2017-10-20 2021-04-13 阳光电源股份有限公司 一种级联逆变系统
CN112491254B (zh) * 2020-11-19 2023-07-07 深圳市中科源电子有限公司 一种降低输入工频纹波的方法
CN115333133B (zh) * 2022-10-14 2023-02-28 锦浪科技股份有限公司 一种储能系统控制方法、装置及储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200994112Y (zh) * 2006-12-18 2007-12-19 新疆新能源股份有限公司 三相光伏并网逆变器
CN101651436A (zh) * 2009-09-16 2010-02-17 合肥阳光电源有限公司 一种高精度最大功率点跟踪方法
US20100236612A1 (en) * 2009-02-20 2010-09-23 Sayed Ali Khajehoddin Inverter for a Distributed Power Generator
CN102185507A (zh) * 2011-05-11 2011-09-14 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统
CN202026248U (zh) * 2011-05-11 2011-11-02 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308780A (ja) * 1992-04-30 1993-11-19 Toshiba Corp 分散形電源システム
US7663268B2 (en) * 2006-08-30 2010-02-16 The Regents of the University of Cailfornia Converters for high power applications
US7855473B2 (en) * 2008-03-11 2010-12-21 Enphase Energy, Inc. Apparatus for phase rotation for a three-phase AC circuit
CN201194333Y (zh) * 2008-03-17 2009-02-11 北京能高自动化技术有限公司 太阳能光伏并网系统
EP2219276B1 (de) * 2009-02-11 2015-12-02 SMA Solar Technology AG Photovoltaikanlage zur dreiphasigen Einspeisung in ein elektrisches Energieversorgungsnetz
CN102044988A (zh) * 2009-10-22 2011-05-04 群光电能科技股份有限公司 分散执行最大功率追踪的太阳能发电系统及其太阳能电池
CN102122897B (zh) * 2011-02-23 2013-04-17 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统
CN102255536B (zh) * 2011-07-18 2013-06-05 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器系统及提高其转换效率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200994112Y (zh) * 2006-12-18 2007-12-19 新疆新能源股份有限公司 三相光伏并网逆变器
US20100236612A1 (en) * 2009-02-20 2010-09-23 Sayed Ali Khajehoddin Inverter for a Distributed Power Generator
CN101651436A (zh) * 2009-09-16 2010-02-17 合肥阳光电源有限公司 一种高精度最大功率点跟踪方法
CN102185507A (zh) * 2011-05-11 2011-09-14 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统
CN202026248U (zh) * 2011-05-11 2011-11-02 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器以及太阳能光伏发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186552A (zh) * 2015-07-15 2015-12-23 天津伟力盛世节能科技股份有限公司 一种三相正弦波光伏逆变器
CN105244884A (zh) * 2015-11-02 2016-01-13 贵州大学 一种柔性接入智能家居接口

Also Published As

Publication number Publication date
US20140062198A1 (en) 2014-03-06
US9608447B2 (en) 2017-03-28
CN102185507B (zh) 2013-10-30
CN102185507A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012152072A1 (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
Tao et al. Multiport converters for hybrid power sources
US9502991B2 (en) Hybrid converter and wind power generating system
WO2019136577A1 (zh) 多绕组同时/分时供电电流型单级多输入高频环节逆变器
US9190920B2 (en) H-bridge micro inverter grid-connected device
TWI458235B (zh) 風力發電系統及其功率電路和變流器結構
US10804816B2 (en) Method and apparatus for three port line frequency energy storage
JP2015510748A (ja) 別途のdcソースを有する積層電圧源インバータ
CN102097966A (zh) 级联型兆瓦级光伏并网逆变器
US9379641B2 (en) Energy recovery circuit for distributed power converters in solar cells
WO2012113271A1 (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
CN103915856A (zh) 一种基站并网-充电光伏微逆变器系统及其控制方法
CN103986344A (zh) 单位功率因数单级ac-dc变换器的控制系统及控制方法
CN102629836B (zh) 一种新的两级式交流光伏模块
Liu et al. Reliable transformerless battery energy storage systems based on cascade dual‐boost/buck converters
CN102738825A (zh) 基于模块化多电平变流器的新型光伏并网系统
Itoh et al. Experimental verification of single-phase inverter with power decoupling function using boost-up chopper
Gaafar et al. Multi‐input transformer‐less four‐wire microinverter with distributed MPPT for PV systems
CN108539782A (zh) 一种光伏发电系统
CN108023497B (zh) 串联同时供电正激周波变换型单级多输入高频环节逆变器
Vekhande et al. Module integrated DC-DC converter for integration of photovoltaic source with DC micro-grid
CN202026248U (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
Bilakanti et al. Single stage soft-switching tri-port converter for integrating renewable source and storage with grid through galvanic isolation
Palanisamy et al. A hybrid output multiport converter for standalone loads and photovoltaic array integration
Testa et al. Active voltage ripple compensation in PV Systems for domestic uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782387

Country of ref document: EP

Kind code of ref document: A1