WO2021017859A1 - 屏幕状态控制方法、装置、移动终端以及存储介质 - Google Patents

屏幕状态控制方法、装置、移动终端以及存储介质 Download PDF

Info

Publication number
WO2021017859A1
WO2021017859A1 PCT/CN2020/102358 CN2020102358W WO2021017859A1 WO 2021017859 A1 WO2021017859 A1 WO 2021017859A1 CN 2020102358 W CN2020102358 W CN 2020102358W WO 2021017859 A1 WO2021017859 A1 WO 2021017859A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
obstacle
state
doppler effect
ultrasonic signal
Prior art date
Application number
PCT/CN2020/102358
Other languages
English (en)
French (fr)
Inventor
林进全
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021017859A1 publication Critical patent/WO2021017859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions

Definitions

  • the present application relates to the technical field of mobile terminals, and more specifically, to a screen state control method, device, mobile terminal, and storage medium.
  • this application proposes a screen state control method, device, mobile terminal and storage medium to solve the above problems.
  • an embodiment of the present application provides a screen state control method, which is applied to a mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the method includes: when the mobile terminal is in a call In the state, the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal returned by the ultrasonic signal after encountering an obstacle is received through the ultrasonic receiver; the attribute value of the ultrasonic signal in the transmission process is obtained, and Calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process based on the attribute value; judge the difference according to the Doppler effect area difference and the Doppler effect area sum According to the relative motion state of the mobile terminal and the obstacle, the display screen is controlled to be in a bright screen state or a screen off state according to the relative motion state.
  • the embodiments of the present application provide a screen state control device, which is applied to a mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the device includes an ultrasonic signal transceiver module for When the mobile terminal is in a call state, the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal returned by the ultrasonic signal after encountering an obstacle is received by the ultrasonic receiver; the area calculation module is used to obtain The attribute value of the ultrasonic signal in the transmission process, and the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process are calculated based on the attribute value; the state control module is used to calculate the Doppler effect area The Doppler effect area difference and the Doppler effect area sum, determine the relative motion state of the mobile terminal and the obstacle, and control the display screen to be in a bright screen state or a non-screen state according to the relative motion state status.
  • an embodiment of the present application provides a mobile terminal, including a memory and a processor, the memory is coupled to the processor, and the memory stores instructions that are executed when the instructions are executed by the processor.
  • the processor executes the above method.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores program code, and the program code can be invoked by a processor to execute the foregoing method.
  • Fig. 1 shows a schematic diagram of a propagation path of ultrasonic waves provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the change rule of doppler_dif when the obstacle and the mobile terminal are relatively close, stationary, and far away according to an embodiment of the present application;
  • FIG. 3 shows a schematic diagram of the change rule of doppler_dif when the obstacle and the mobile terminal are relatively close, shake, and move away according to an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a screen state control method provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of an ultrasonic wave sending, receiving, and data processing flow provided by an embodiment of the present application
  • FIG. 6 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application.
  • Fig. 7 shows a frequency spectrum diagram of audio data provided by an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a screen state control method provided by still another embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of step S305 of the screen state control method shown in FIG. 8 of the present application.
  • FIG. 10 shows a schematic flowchart of a screen state control method according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the change rule of doppler_dif and dopper_sum_log when the obstacle and the mobile terminal are relatively close, stationary, and far away according to an embodiment of the application;
  • FIG. 12 shows a schematic diagram of the change rule of doppler_dif and doppler_sum_log when obstacles and mobile terminals are relatively approaching, shaking, and moving away according to an embodiment of the present application;
  • FIG. 13 shows a block diagram of a screen state control device provided by an embodiment of the present application.
  • FIG. 14 shows a block diagram of a mobile terminal used to execute the screen state control method according to the embodiment of the present application
  • Fig. 15 shows a storage unit for storing or carrying program codes for implementing the method for controlling the screen state according to the embodiment of the present application.
  • the mobile terminal transmits ultrasonic waves through the ultrasonic transmitter (such as earpieces, speakers, special ultrasonic transmitters, etc.). Part of the ultrasonic waves travels through the air directly to the ultrasonic receiver (pickup) (path 1 in Figure 1), and part of the ultrasonic waves travels through the air.
  • the obstacle forms a reflection and then reaches the ultrasonic receiver (path 2 in Figure 1). What the ultrasonic receiver picks up is the superimposed signal of the direct sound and the reflected sound, which is converted into an audio signal by an A/D converter.
  • the audio data is processed by the algorithm to obtain the operating state of the obstacle relative to the mobile terminal, and then guide the display screen of the mobile terminal to be in the on-screen state or the off-screen state.
  • the ultrasonic transmitting device of the mobile terminal transmits scanning signals in the ultrasonic frequency band at intervals, and the ultrasonic receiving device of the mobile terminal receives reflected and direct ultrasonic signals.
  • the algorithm determines the relative difference between the obstacle and the mobile terminal by comparing the time difference of receiving different ultrasonic signals. Distance, the relative speed can also be calculated through the relative distance, and the relative motion state between the mobile terminal and the obstacle can be further determined according to the relative distance and relative speed.
  • this method has poor anti-interference ability. When there is some ultrasonic noise interference in the environment, the recognition result will produce large errors.
  • the ultrasonic transmitting device of the mobile terminal sends continuous ultrasonic signals.
  • the receiving end determines the phase difference generated by the ultrasonic receiving device after reflection by calculating the correlation index between the transmitted signal and the received signal, and determines the obstacle and the phase difference according to the phase difference.
  • the relative distance of the mobile terminal, the relative speed can also be calculated through the relative distance, and the relative motion state of the mobile terminal and the obstacle can be further judged according to the relative distance and relative speed.
  • this method has poor anti-interference ability. When there is some ultrasonic noise interference in the environment, the recognition result will produce large errors.
  • doppler_dif takes a larger positive value; when the obstacle is at a certain speed When the speed is far away from the mobile terminal, doppler_dif takes a small negative value; when the obstacle and the mobile terminal are relatively stationary, doppler_dif takes a value close to 0.
  • the movement state of the obstacle relative to the mobile terminal can be determined by setting the positive and negative thresholds.
  • doppler_dif is greater than threshold1, it is judged as close state; when doppler_dif is smaller than threshold2, it is judged as away state; when doppler_dif is between threshold1 and threshold2, it is judged as normal state.
  • the algorithm is judged to be in the close state, the display of the mobile terminal is controlled to be in the off-screen state; when the algorithm is judged to be in the away state, the display of the mobile terminal is controlled to be in the on-screen state; when the algorithm is judged to be the normal state, the screen state of the mobile terminal is controlled The state of one time remains unchanged.
  • doppler_dif when an obstacle or a mobile terminal is in a jitter state, doppler_dif will repeatedly change between a larger positive value and a smaller negative value in a short period of time (such as an error! The reference source is not found.), at this time the mobile terminal There will be a continuous splash screen problem.
  • the inventor has discovered through long-term research and proposed the screen state control method, device, mobile terminal, and storage medium provided by the embodiments of the present application.
  • the Doppler effect area and the control display screen are in the on-screen state or the off-screen state to improve the accuracy of detection and control.
  • the specific screen state control method will be described in detail in the subsequent embodiments.
  • FIG. 4 shows a schematic flowchart of a screen state control method provided by an embodiment of the present application.
  • the screen state control method is used to calculate the Doppler effect area difference and the Doppler effect area of the ultrasonic signal in the transmission process and control the display screen to be in the on-screen state or the off-screen state to improve the accuracy of detection and control.
  • the screen state control method is applied to the screen state control device 200 shown in FIG. 13 and the mobile terminal 100 configured with the screen state control device 200 (FIG. 14). The following will take a mobile terminal as an example to describe the specific process of this embodiment.
  • the mobile terminal applied in this embodiment may be a smart phone, a tablet computer, a wearable electronic device, etc., which is not limited here.
  • the mobile terminal may include an ultrasonic transmitting device, an ultrasonic receiving device, and a display screen.
  • the flow shown in FIG. 4 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S101 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an obstacle through the ultrasonic receiver.
  • the mobile terminal includes both an ultrasonic transmitting device and an ultrasonic receiving device.
  • the ultrasonic transmitting device moves relative to the obstacle, so the ultrasonic receiving device also moves relative to the obstacle.
  • the wavelength of the object radiation changes due to the relative movement of the wave source (mobile terminal) and the observer (obstacle).
  • f' is the observed frequency
  • f is the original emission frequency of the emission source in the medium
  • v is the propagation speed of the wave in the medium
  • v 0 is the movement speed of the observer, if the observer approaches the emission source, it will be forward + number of operation symbol, otherwise it is - number
  • v s is the speed of movement of the transmission source, if the viewer is in front of the obstacle near the arithmetic sign is - number, and vice versa for the + sign.
  • the mobile terminal can monitor the incoming or outgoing call of the mobile terminal in real time through the built-in monitoring module.
  • the mobile terminal detects that the mobile terminal is in the ringing start (CALL_STATE_RINGING) incoming call or dialing operation outgoing call, Whether the mobile terminal enters the call state is monitored.
  • the mobile terminal performs a dialing operation, it will send out a system broadcast, and the mobile terminal can use Broadcast Receiver to monitor.
  • monitoring whether the mobile terminal is in a call state can be monitoring whether the mobile terminal is in a call after an incoming or outgoing call Interface, where, when it is monitored that the mobile terminal is in a call (CALL_STATE_OFFHOOK), it can be determined that the mobile terminal is in a call state.
  • a fixed-frequency ultrasonic signal can be transmitted through the built-in ultrasonic transmitter of the mobile terminal. It can be understood that part of the ultrasonic signal sent by the ultrasonic transmitter is transmitted through the air. Directly reach the ultrasonic receiving device, the other part is transmitted through the air and reflected by obstacles before reaching the ultrasonic receiving device. The ultrasonic receiving device picks up the superimposed signal of direct sound and reflected sound, which is converted into audio signal through A/D. Obstacles can include human faces, human bodies, and so on. For example, as shown in Figure 5, a fixed-frequency ultrasonic signal is sent through the built-in earpiece, horn or special ultrasonic transmitter of the mobile terminal.
  • a part of the ultrasonic signal travels through the air directly to the pickup, and the other part is transmitted through the air and reflected by obstacles. Reaching the pickup, what the pickup picks up is the superimposed signal of the direct sound and the reflected sound, which is converted into an audio signal by A/D.
  • the ultrasonic signal when the mobile terminal is in a call state, can be sent through the ultrasonic transmitter, and the ultrasonic signal returned by the ultrasonic receiver after encountering an obstacle, or the ultrasonic signal received from the ultrasonic receiver
  • the ultrasonic signal direct sound and reflected sound extracts the ultrasonic signal (reflected sound) returned after the ultrasonic signal encounters an obstacle, which is not limited here.
  • Step S102 Obtain the attribute value of the ultrasonic signal during the transmission process, and calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal during the transmission process based on the attribute value.
  • the mobile terminal after the mobile terminal receives the ultrasonic signal through the ultrasonic receiving device, it can obtain the attribute value of the ultrasonic signal during the transmission process, and calculate the Doppler effect of the ultrasonic signal during the transmission process based on the attribute value Area difference and Doppler effect area sum.
  • the transmission process can include the ultrasonic signal sending process and the ultrasonic signal receiving process
  • the attribute value can include the transmission frequency, transmission amplitude, transmission time, etc. of the ultrasonic signal sent by the ultrasonic transmitter, and the ultrasonic received by the ultrasonic receiver
  • the frequency variation range, receiving amplitude, and receiving time of the signal are not limited here.
  • Step S103 Determine the relative motion state of the mobile terminal and the obstacle according to the Doppler effect area difference and the Doppler effect area sum, and control the display screen to be bright according to the relative motion state. Screen status or rest screen status.
  • the mobile terminal after the mobile terminal obtains the Doppler effect area difference and the Doppler effect area sum, it can obtain the relative difference between the mobile terminal and the obstacle based on the Doppler effect area difference and the Doppler effect area sum.
  • Movement state, and according to the relative movement state of the mobile terminal and the obstacle, the display screen is controlled to be in the bright screen state or the screen state, thereby improving the accuracy and stability of the state control of the display screen when the mobile terminal is in a call state, and effectively reducing movement
  • the ultrasonic signal is sent through an ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver after encountering an obstacle to obtain the ultrasonic signal Attribute value in the transmission process, and calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process based on the attribute value, judge according to the Doppler effect area difference and the Doppler effect area sum
  • the display screen is controlled to be in the bright screen state or the screen state according to the relative motion state, so as to calculate the Doppler effect area difference and the Doppler effect area and control during the transmission of the ultrasonic signal
  • the display screen is in the on-screen state or the off-screen state to improve the accuracy of detection and control.
  • FIG. 6 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 6 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S201 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an obstacle through the ultrasonic receiver.
  • step S201 For the specific description of step S201, please refer to step S101, which will not be repeated here.
  • Step S202 Obtain the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • the relative motion state of the mobile terminal with respect to an obstacle is essentially the process in which the user picks up the mobile terminal to approach or move away from the human body when the user uses the mobile terminal.
  • the speed at which the user picks up the mobile terminal changes within a certain range, so that the frequency change of the ultrasonic signal received by the ultrasonic receiving device is also within a certain range, that is, the frequency range of the ultrasonic signal.
  • the mobile terminal can obtain the transmission frequency of the ultrasonic signal sent by its built-in ultrasonic transmitter and the frequency range of the ultrasonic signal received by its built-in ultrasonic receiver.
  • the transmission frequency of the ultrasonic signal transmitted by the ultrasonic transmission device may be a fixed frequency. Therefore, the mobile terminal may obtain the transmission frequency based on the set transmission parameters of the ultrasonic signal of the ultrasonic transmission device.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiving device is related to the relative movement relationship between the mobile terminal and the obstacle. Therefore, it can obtain the range of the movement speed of most users in the process of using the mobile terminal. The change range of the moving speed determines the frequency range of the ultrasonic signal received by the ultrasonic receiving device.
  • f′ is the frequency of the ultrasonic signal reflected by the obstacle received by the ultrasonic receiving device.
  • f is the transmission frequency of the ultrasonic signal transmitted by the ultrasonic transmitter.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiver is [22420Hz, 22580Hz]
  • the maximum relative speed and the minimum relative speed between the mobile terminal and the obstacle can be obtained based on historical data, etc., and the maximum relative speed, the minimum relative speed and the above formula can be used to reversely derive the data received by the ultrasonic receiver.
  • the frequency range of the ultrasonic signal can be obtained based on historical data, etc.
  • Step S203 Determine a frequency change interval based on the transmission frequency and the frequency range.
  • the frequency change interval may be determined based on the transmission frequency and frequency range.
  • Figure 7 shows an audio data spectrogram provided by an embodiment of the present application.
  • the frequency spectrum is the abbreviation of frequency spectrum, which is the distribution curve of frequency.
  • the discrete Fourier It is obtained by leaf transform.
  • Fig. 7 it is a spectrogram obtained by discrete Fourier transform of a piece of audio data. Each point on the abscissa corresponds to a real frequency value, and the ordinate represents the signal strength of the frequency.
  • the actual frequency f n and the n-th data of the amplitude-frequency vector X The relationship between is as follows:
  • f s is the sampling rate
  • fftlen is the data length
  • X[n] represents the intensity of the actual frequency f n .
  • the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter is point_mid, and the corresponding signal strength is ultrasonic_amp.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiver is point_low to point_up. Therefore, the The frequency range is from point_low to point_mid_low and point_min-up to point_up.
  • the first frequency change interval and the second frequency change interval may be determined based on the transmission frequency and the frequency range. For example, as shown in FIG. 7, the first frequency change interval is point_low to point_mid_low, and the second frequency change interval is point_min-up to point_up.
  • Step S204 Calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process of the ultrasonic signal according to the frequency change interval and the intensity change curve corresponding to the frequency change interval.
  • the intensity change curve corresponding to the frequency change interval may be obtained based on the spectrogram, and based on the frequency change interval and the intensity change curve corresponding to the frequency change interval, the transmission of the ultrasonic signal is calculated.
  • the Doppler effect area difference and the Doppler effect area sum in the process may be obtained based on the spectrogram, and based on the frequency change interval and the intensity change curve corresponding to the frequency change interval, the transmission of the ultrasonic signal is calculated.
  • the first intensity change curve corresponding to the first frequency change interval may be obtained based on the spectrogram, and based on the first frequency change interval and the first intensity change corresponding to the first frequency change interval Change curve, calculate the first area of the ultrasonic signal in the transmission process, and at the same time, after obtaining the second frequency change interval, the second intensity change curve corresponding to the second frequency change interval can be obtained based on the spectrogram, and based on the first area The second frequency change interval and the second intensity change curve corresponding to the second frequency change interval are calculated, and the second area of the ultrasonic signal in the transmission process is calculated.
  • calculate the difference between the first area and the second area for example, by subtracting the second area from the first area or subtracting the first area from the second area, to obtain the Doppler effect area of the ultrasonic signal in the transmission process Difference, calculate the sum of the first area and the second area, and obtain the Doppler effect area sum of the ultrasonic signal in the transmission process.
  • the first frequency change interval is point_low to point_mid_low
  • X is the first intensity change curve corresponding to the first frequency change interval
  • the frequency points between point_low and point_mid_low can be Sum the data to get the first area sum_low:
  • the second frequency change interval is point_min-up to point_up
  • X is the second intensity change curve corresponding to the second frequency change interval
  • the Doppler effect area difference doppler_dif of the ultrasonic signal in the transmission process is obtained:
  • the Doppler effect area and doppler_sum of the ultrasonic signal in the transmission process are obtained:
  • Step S205 Determine the relative motion relationship between the mobile terminal and the obstacle according to the Doppler effect area difference and the Doppler effect area sum.
  • step S205 For the specific description of step S205, please refer to step S103, which will not be repeated here.
  • Step S206 When the mobile terminal is relatively close to the obstacle, control the display screen to be in the off-screen state.
  • the detection result indicates that the mobile terminal is relatively close to the obstacle
  • it indicates that the relative motion relationship between the mobile terminal and the obstacle is close motion that is, when the mobile terminal is in a call state, the mobile terminal is close to
  • the user's ears can control the display screen of the mobile terminal in the off-screen state.
  • Step S207 When the mobile terminal is relatively far away from the obstacle, control the display screen to be in a bright screen state.
  • the detection result characterizes that the mobile terminal is relatively far away from the obstacle, it characterizes that the relative movement relationship between the mobile terminal and the obstacle is moving away from each other, that is, when the mobile terminal is in a call state, the mobile terminal The terminal is far away from the user's ear, that is, the display screen of the mobile terminal can be controlled to be in a bright screen state.
  • Step S208 When the mobile terminal and the obstacle are relatively stationary, or the distance between the mobile terminal and the obstacle remains relatively unchanged and the mobile terminal or the obstacle is in a shaking state, control The display screen remains unchanged from the previous state.
  • the mobile terminal and the obstacle are relatively static, which may mean that both the mobile terminal and the obstacle remain stationary, or the mobile terminal and the obstacle have the same motion state, for example, the mobile terminal and the obstacle have the same motion speed and motion amplitude.
  • the same, the same exercise frequency, etc., are not limited here.
  • the display screen can be controlled to maintain the previous state unchanged, that is, When the mobile terminal is in the call state, when the display is in the on-screen state in the previous state, the display is kept in the on-screen state, and when the display is in the off-screen state in the previous state, it is kept The display remains unchanged in the rest state.
  • the distance between the mobile terminal and the obstacle remains relatively unchanged and the mobile terminal or the obstacle is in a shaking state may include: the distance between the mobile terminal and the obstacle remains relatively unchanged, and the mobile terminal is in a stationary state And the obstacle is in a shaking state; the distance between the mobile terminal and the obstacle remains relatively unchanged, the mobile terminal is in a shaking state and the obstacle is in a static state; the distance between the mobile terminal and the obstacle remains relatively unchanged, and the mobile terminal is in a static state. Shaking state and obstacles in shaking state.
  • the display can be controlled to keep the previous state unchanged, that is, when the mobile terminal is in the call state, when the display is on the previous state In the state, keep the display screen in the on-screen state unchanged; when the display screen was in the off-screen state in the previous state, keep the display screen in the off-screen state unchanged.
  • the ultrasonic signal is sent through an ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver after encountering an obstacle, and the ultrasonic signal is acquired.
  • the transmission frequency of the ultrasonic signal sent by the transmitter, and the frequency range of the ultrasonic signal received by the ultrasonic receiver determine the frequency change interval based on the transmission frequency and frequency range, and calculate the ultrasonic wave based on the frequency change interval and the intensity change curve corresponding to the frequency change interval
  • the Doppler effect area difference and the Doppler effect area sum of the signal in the transmission process determine the relative motion relationship between the mobile terminal and the obstacle, when the mobile terminal and When the obstacle is relatively close, the control display screen is in the off-screen state. When the mobile terminal is relatively far away from the obstacle, the control display screen is in the bright-screen state.
  • this embodiment also calculates the Doppler effect area difference and the Doppler effect area sum based on the transmission frequency of the ultrasonic transmitter device and the frequency change interval of the ultrasonic receiver device to improve the calculation accuracy.
  • this embodiment also controls the display screen to be in different states when the mobile terminal is relatively close to the obstacle, relatively far away, relatively static, and shakes, so as to improve the accuracy and stability of the display screen control.
  • FIG. 8 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 8 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S301 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an obstacle through the ultrasonic receiver.
  • Step S302 Obtain the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • Step S303 Determine a frequency change interval based on the transmission frequency and the frequency range.
  • Step S304 According to the frequency change interval and the intensity change curve corresponding to the frequency change interval, calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process.
  • step S301-step S304 please refer to step S201-step S204, which will not be repeated here.
  • Step S305 Obtain a target feature vector according to the Doppler effect area difference and the Doppler effect area sum.
  • the target feature vector can be obtained based on the Doppler effect area difference and the Doppler effect area sum to obtain the target feature vector according to the target feature vector.
  • the relative movement relationship between the mobile terminal and the obstacle, and the state of the display screen is controlled based on the relative movement relationship between the mobile terminal and the obstacle.
  • FIG. 9 shows a schematic flowchart of step S305 of the screen state control method shown in FIG. 8 of the present application.
  • the following will elaborate on the process shown in FIG. 9, and the method may specifically include the following steps:
  • Step S3051 Based on The Doppler effect area sum is calculated to obtain a first feature vector, where dopper_sum_log is the first feature vector, doppler_sum is the Doppler effect area sum, and smooth_sum_scale is the magnification factor.
  • the mobile terminal may perform logarithmic processing on the Doppler effect area sum to obtain the first feature vector corresponding to the Doppler effect area sum, so that the Doppler effect area sum can be obtained.
  • the change trend of the Le effect area sum is clearer. Specifically, in this embodiment, it can be based on The Doppler effect area sum is calculated to obtain the first feature vector. As a way, multiple adjacent dopper_sum_logs are combined into a vector dopper_sum_log, and the vector dopper_sum_log is used as the first feature vector.
  • Step S3052 Use the Doppler effect area difference as a second feature vector.
  • the mobile terminal may process the Doppler effect area difference to obtain the second feature vector corresponding to the Doppler effect area difference.
  • the mobile terminal may process the Doppler effect area difference to obtain the second feature vector corresponding to the Doppler effect area difference.
  • multiple adjacent doppler_difs are combined into a vector doppler_dif, and the vector doppler_dif is used as the second feature vector.
  • Step S3053 Obtain the target feature vector based on the first feature vector and the second feature vector.
  • the mobile terminal can obtain the target feature vector based on the first feature vector and the second feature vector.
  • Step S306 Input the target feature vector into a trained target classification model, the trained target classification model is used to obtain the change trend of the target feature vector, and output corresponding to the change trend for characterizing the State information of the relative motion state of the mobile terminal and the obstacle.
  • the mobile terminal can input the target feature vector into a trained target classification model, where the trained target classification model is obtained through machine learning. Specifically, first collect Training data set, the attributes or characteristics of one type of data in the training data set are distinguished from another type of data, and then the neural network is trained and modeled by the collected training data set according to the preset algorithm, so as to summarize based on the training data set The rule is drawn, and the trained target classification model is obtained, where the trained target classification model may include a traditional SVM or a human-worker neural network, which is not limited here.
  • the training data set may include, for example, the target feature vector and state information, and the state information is used to indicate the on-screen state or the off-screen state of the control display screen.
  • the trained target classification model can be stored locally in the mobile terminal after pre-training is completed. Based on this, after acquiring the target feature vector, the mobile terminal can directly call the trained target classification model locally. For example, it can directly send an instruction to the trained target classification model to indicate that the trained target classification model is in the target
  • the storage area reads the target feature vector, or the mobile terminal can directly input the target feature vector into the trained target classification model stored locally, thereby effectively avoiding the reduction of the target feature vector input to the trained target classification model due to the influence of network factors.
  • Speed in order to improve the speed at which the trained target classification model obtains target feature vectors and improve user experience.
  • the trained target classification model can also be stored in a server communicating with the mobile terminal after pre-training is completed. Based on this, after the mobile terminal obtains the target feature vector, it can send an instruction through the network to the trained target classification model stored in the server to instruct the trained target classification model to read the target feature vector obtained by the mobile terminal through the network. Or the mobile terminal can send the target feature vector to the trained target classification model stored in the server through the network, so that by storing the trained target classification model in the server, the storage space of the mobile terminal is reduced and the need for The impact of the normal operation of the mobile terminal.
  • Step S307 Obtain the status information output by the trained target classification model.
  • the trained target classification model outputs corresponding state information based on the read target feature vector, and the mobile terminal obtains the state information output by the trained target classification model. It is understandable that if the trained target classification model is stored locally in the mobile terminal, the mobile terminal directly obtains the status information output by the trained target classification model; if the trained target classification model is stored in the server, the The mobile terminal can obtain the state information output by the trained target classification model from the server through the network.
  • Step S308 Control the display screen to be in the on-screen state or the off-screen state based on the state information.
  • the mobile terminal controls the display screen to be in the on-screen state or the off-screen state based on the status information output by the trained target classification model, thereby improving the recognition success rate of the mobile terminal in different scenarios and improving the brightness of the display screen.
  • the control accuracy and stability of the screen is a condition in which the display screen is in which the mobile terminal is in.
  • the ultrasonic signal is sent through an ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver after encountering an obstacle, and the ultrasonic signal is obtained.
  • the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter, and the frequency range of the ultrasonic signal received by the ultrasonic receiver determine the frequency change interval based on the transmission frequency and frequency range, and calculate according to the frequency change interval and the intensity change curve corresponding to the frequency change interval
  • the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process, according to the Doppler effect area difference and the Doppler effect area and the target feature vector are obtained, and the target feature vector is input into the trained target classification
  • the model obtains the state information output by the trained target classification model, and controls the display screen to be in the on-screen state or the off-screen state based on the state information. Compared with the screen state control method shown in FIG.
  • this embodiment also calculates the Doppler effect area difference and the Doppler effect area sum based on the transmission frequency of the ultrasonic transmitter device and the frequency change interval of the ultrasonic receiver device to improve the calculation accuracy.
  • this embodiment also acquires the relative motion state of the mobile terminal and the obstacle through the trained target classification model and controls the state of the display screen, so as to improve the accuracy and stability of the display screen control through the machine model.
  • FIG. 10 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 10 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S401 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an obstacle through the ultrasonic receiver.
  • Step S402 Obtain the attribute value of the ultrasonic signal during the transmission process, and calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal during the transmission process based on the attribute value.
  • step S401-step S402 please refer to step S101-step S102, which will not be repeated here.
  • Step S403 Based on The Doppler effect area sum is calculated to obtain a first feature vector, where dopper_sum_log is the first feature vector, doppler_sum is the Doppler effect area sum, and smooth_sum_scale is the magnification factor.
  • Step S404 Use the Doppler effect area difference as a second feature vector.
  • step S403 to step S404 please refer to step S3051 to step S3052, which will not be repeated here.
  • Step S405 When the first feature vector and the second feature vector both satisfy the first condition, it is determined that the mobile terminal is relatively close to the obstacle, and the first condition is a positive value and changes from small to large .
  • the first feature vector is doppler_sum_log
  • the second feature vector is doppler_dif. It can be seen from Figures 11 and 12 that when the mobile terminal is relatively close to the obstacle, the first feature vector doppler_sum_log and the second feature vector doppler_dif are both Gradually increase from a small positive value to a larger positive value. Therefore, when the first feature vector dopper_sum_log and the second feature vector doppler_dif both satisfy the first condition (positive value and from small to large), it can be determined that the mobile terminal is relatively close to the obstacle, and the target feature vector can be marked In the close state.
  • Step S406 When the first feature vector satisfies the second condition and the second feature vector satisfies the third condition, it is determined that the mobile terminal is relatively far away from the obstacle, and the second condition is a positive value and is determined by Large becomes smaller, and the third condition is negative and becomes larger from small.
  • Step S407 When the first feature vector does not satisfy the first condition and the second condition and the second feature vector does not satisfy the first condition and the third condition, determine the mobile terminal It is relatively stationary with the obstacle, or the distance between the mobile terminal and the obstacle remains relatively unchanged and the mobile terminal or the obstacle is in a shaking state.
  • the target feature vector can be marked as a normal state.
  • Step S408 Control the display screen to be in the on-screen state or the off-screen state according to the relative motion state.
  • step S408 please refer to step S103, which will not be repeated here.
  • the ultrasonic signal is sent through an ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver after encountering an obstacle, and the ultrasonic signal is acquired.
  • the attribute value of the signal in the transmission process, and the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process are calculated based on the attribute value, based on Calculate the Doppler effect area sum to obtain the first feature vector, and use the Doppler effect area difference as the second feature vector.
  • the display screen is controlled to be in a bright screen state or a message according to the relative motion state. Screen status. Compared with the screen state control method shown in FIG.
  • this embodiment also controls the display screen to be in position according to whether the first feature vector satisfies the first condition and the second condition, and whether the second feature vector satisfies the first condition and the third condition. Bright screen state or rest screen state to improve the accuracy and stability of control.
  • FIG. 13 shows a block diagram of a screen state control apparatus 200 provided by an embodiment of the present application.
  • the screen state control device 200 is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the screen state control device 200 includes an ultrasonic signal transceiver module 210, an area calculation module 220, and a state control module. 230, of which:
  • the ultrasonic signal transceiving module 210 is used to send an ultrasonic signal through the ultrasonic transmitting device when the mobile terminal is in a call state, and to receive the ultrasonic signal returned by the ultrasonic signal after encountering an obstacle through the ultrasonic receiving device .
  • the area calculation module 220 is configured to obtain the attribute value of the ultrasonic signal during the transmission process, and calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal during the transmission process based on the attribute value. Further, the area calculation module 220 includes: a frequency acquisition submodule, a frequency change interval determination submodule, and an area calculation submodule, wherein:
  • the frequency acquisition sub-module is used to acquire the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • the frequency change interval determination sub-module is configured to determine the frequency change interval based on the transmission frequency and the frequency range. Further, the frequency change interval determination submodule includes: a frequency change interval determination unit, wherein:
  • the frequency change interval determining unit is configured to determine a first frequency change interval and a second frequency change interval based on the transmission frequency and the frequency range.
  • the area calculation sub-module is used to calculate the Doppler effect area difference and the Doppler effect of the ultrasonic signal in the transmission process according to the frequency change interval and the intensity change curve corresponding to the frequency change interval Area and. Further, the area calculation submodule includes: a first area calculation unit, a second area calculation unit, a Doppler effect area difference obtaining unit, and a Doppler effect sum obtaining unit, wherein:
  • the first area calculation unit is configured to calculate the first area according to the first frequency change interval and the first intensity change curve corresponding to the first frequency change interval.
  • the second area calculation unit is configured to calculate and obtain a second area according to the second frequency change interval and a second intensity change curve corresponding to the second frequency change interval.
  • the Doppler effect area difference obtaining unit is used to calculate the difference between the first area and the second area, and obtain the Doppler effect area difference during the transmission of the ultrasonic signal.
  • the Doppler effect area sum obtaining unit is configured to calculate the sum of the first area and the second area, and obtain the Doppler effect area sum of the ultrasonic signal in the transmission process.
  • the state control module 230 is configured to determine the relative motion state of the mobile terminal and the obstacle according to the Doppler effect area difference and the Doppler effect area sum, and control the relative motion state according to the relative motion state.
  • the display screen is on or off.
  • the state control module 230 includes: a relative motion relationship judgment sub-module, a screen rest state control sub-module, a bright screen state control sub-module, and a state maintenance sub-module, wherein:
  • the relative motion relationship determination sub-module is configured to determine the relative motion relationship between the mobile terminal and the obstacle based on the Doppler effect area difference and the Doppler effect area sum.
  • the screen rest state control submodule is used to control the display screen to be in the rest screen state when the mobile terminal is relatively close to the obstacle.
  • the bright screen state control sub-module is used to control the display screen to be in a bright screen state when the mobile terminal is relatively far away from the obstacle.
  • the state maintaining sub-module is used for when the mobile terminal and the obstacle are relatively stationary, or the distance between the mobile terminal and the obstacle remains relatively unchanged and the mobile terminal or the obstacle is in jitter In the state, the display screen is controlled to keep the previous state unchanged.
  • the state control module 230 further includes: a target feature vector obtaining submodule, a target feature vector input submodule, a state information obtaining submodule, and a state control submodule, wherein:
  • the target feature vector obtaining submodule is used to obtain a target feature vector according to the Doppler effect area difference and the Doppler effect area sum. Further, the target feature vector obtaining sub-module includes: a first feature vector obtaining unit, a second feature vector obtaining unit, and a target feature vector obtaining unit, wherein:
  • the first feature vector obtaining unit is used based on The Doppler effect area sum is calculated to obtain a first feature vector, where dopper_sum_log is the first feature vector, doppler_sum is the Doppler effect area sum, and smooth_sum_scale is the magnification factor.
  • the second feature vector obtaining unit is configured to use the Doppler effect area difference as the second feature vector.
  • the target feature vector obtaining unit is configured to obtain the target feature vector based on the first feature vector and the second feature vector. Further, the target feature vector obtaining unit includes: a target feature vector obtaining subunit, wherein:
  • the feature vector, dopper_sum_log is the first feature vector, and doppler_dif is the second feature vector.
  • the target feature vector input sub-module is used to input the target feature vector into a trained target classification model, the trained target classification model is used to obtain the change trend of the target feature vector, and the output corresponds to the change trend
  • the state information used to characterize the relative motion state of the mobile terminal and the obstacle.
  • the status information acquisition sub-module is used to acquire the status information output by the trained target classification model.
  • the state control sub-module is used to control the display screen to be in the on-screen state or the off-screen state based on the state information.
  • the state control module 230 further includes: a first determining sub-module, a second determining sub-module, and a third determining sub-module, wherein:
  • the first determining submodule is configured to determine that the mobile terminal is relatively close to the obstacle when the first feature vector and the second feature vector both satisfy a first condition, and the first condition is a positive value And from small to large.
  • the second determining sub-module is configured to determine that the mobile terminal is relatively far away from the obstacle when the first feature vector satisfies a second condition and the second feature vector satisfies a third condition, and the second condition Is a positive value and changes from large to small, and the third condition is a negative value and changes from small to large.
  • the third determining sub-module is configured to: when the first feature vector does not satisfy the first condition and the second condition and the second feature vector does not satisfy the first condition and the third condition, It is determined that the mobile terminal and the obstacle are relatively stationary, or the distance between the mobile terminal and the obstacle remains relatively unchanged and the mobile terminal or the obstacle is in a shaking state.
  • the coupling between the modules may be electrical, mechanical or other forms of coupling.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 14 shows a structural block diagram of a mobile terminal 100 provided by an embodiment of the present application.
  • the mobile terminal 100 may be an electronic device capable of running application programs, such as a smart phone, a tablet computer, or an e-book.
  • the mobile terminal 100 in this application may include one or more of the following components: a processor 110, a memory 120, a display screen 130, an ultrasonic transmitter 140, an ultrasonic receiver 150, and one or more application programs, of which one or more applications
  • the program may be stored in the memory 120 and configured to be executed by one or more processors 110, and the one or more programs are configured to execute the methods described in the foregoing method embodiments.
  • the processor 110 may include one or more processing cores.
  • the processor 110 uses various interfaces and lines to connect various parts of the entire mobile terminal 100, and executes by running or executing instructions, programs, code sets, or instruction sets stored in the memory 120, and calling data stored in the memory 120.
  • the processor 110 may use at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 110 may be integrated with one or a combination of a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), and a modem.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CPU mainly processes the operating system, user interface, and application programs
  • the GPU is used for rendering and drawing of display content
  • the modem is used for processing wireless communication. It can be understood that the above-mentioned modem may not be integrated into the processor 110, but may be implemented by a communication chip alone.
  • the memory 120 may include random access memory (RAM) or read-only memory (Read-Only Memory).
  • the memory 120 may be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 120 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing the operating system and instructions for implementing at least one function (such as touch function, sound playback function, image playback function, etc.) , Instructions for implementing the following method embodiments, etc.
  • the data storage area can also store data (such as phone book, audio and video data, chat record data) created by the terminal 100 during use.
  • the display screen 130 is used to display information input by the user, information provided to the user, and various graphical user interfaces of the mobile terminal 100. These graphical user interfaces can be composed of graphics, text, icons, numbers, videos, and any combination thereof.
  • the display screen 130 may be a liquid crystal display (LCD) or an organic light-emitting diode (OLED), which is not limited herein.
  • FIG. 15 shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable medium 300 stores program code, and the program code can be invoked by a processor to execute the method described in the foregoing method embodiment.
  • the computer-readable storage medium 300 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 300 includes a non-transitory computer-readable storage medium.
  • the computer-readable storage medium 300 has a storage space for the program code 310 for executing any method steps in the above methods. These program codes can be read out from or written into one or more computer program products.
  • the program code 310 may be compressed in an appropriate form, for example.
  • the screen state control method, device, mobile terminal, and storage medium provided by the embodiments of this application, when the mobile terminal is in a call state, the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver.
  • the ultrasonic signal returned after reaching the obstacle obtain the attribute value of the ultrasonic signal in the transmission process, and calculate the Doppler effect area difference and the Doppler effect area sum of the ultrasonic signal in the transmission process based on the attribute value, according to Doppler
  • the difference in effect area and the sum of Doppler effect area are used to determine the relative motion state of the mobile terminal and the obstacle.
  • the display screen is controlled to be in the bright screen state or the off screen state, thereby calculating the Doppler of the ultrasonic signal in the transmission process.
  • the area difference between the Lehr effect and the Doppler effect and the control display screen are in the bright screen state or the off screen state to improve the accuracy of detection and control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本申请公开了一种屏幕状态控制方法、装置、移动终端以及存储介质。当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取超声波信号在传输过程中的属性值,并基于属性值计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,根据多普勒效应面积差和多普勒效应面积和,判断移动终端与障碍物的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态。本申请通过计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。

Description

屏幕状态控制方法、装置、移动终端以及存储介质
相关申请的交叉引用
本申请要求于2019年07月31日提交的申请号为CN201910701467.1的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本申请涉及移动终端技术领域,更具体地,涉及一种屏幕状态控制方法、装置、移动终端以及存储介质。
背景技术
随着移动终端的全面屏设计的流行,为了节省移动终端的顶部空间,已经有更多厂家在移动终端上采用超声波接近检测方案来代替传统的红外接近检测方案。
发明内容
鉴于上述问题,本申请提出了一种屏幕状态控制方法、装置、移动终端以及存储介质,以解决上述问题。
第一方面,本申请实施例提供了一种屏幕状态控制方法,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述方法包括:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号;获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和;根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
第二方面,本申请实施例提供了一种屏幕状态控制装置,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述装置包括:超声波信号收发模块,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号;面积计算模块,用于获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和;状态控制模块,用于根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
第三方面,本申请实施例提供了一种移动终端,包括存储器和处理器,所述存储器耦接到所述处理器,所述存储器存储指令,当所述指令由所述处理器执行时所述处理器执行上述方法。
第四方面,本申请实施例提供了一种计算机可读取存储介质,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行上述方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了本申请实施例提供的超声波的传播路径的示意图;
图2示出了本申请实施例提供的障碍物和移动终端在相对接近、静止、远离过程中的doppler_dif的变化规律示意图;
图3示出了本申请实施例提供的障碍物和移动终端在相对接近、抖动、远离过程中的doppler_dif的变化规律示意图;
图4示出了本申请一个实施例提供的屏幕状态控制方法的流程示意图;
图5示出了本申请实施例提供的超声波发送、接收和数据处理流程示意图;
图6示出了本申请又一个实施例提供的屏幕状态控制方法的流程示意图;
图7示出了本申请实施例提供的音频数据频谱图;
图8示出了本申请再一个实施例提供的屏幕状态控制方法的流程示意图;
图9示出了本申请的图8所示的屏幕状态控制方法的步骤S305的流程示意图;
图10示出了本申请另一个实施例提供的屏幕状态控制方法的流程示意图;
图11示出了本申请实施例提供的障碍物和移动终端在相对接近、静止、远离过程中的 doppler_dif和dopper_sum_log的变化规律示意图;
图12示出了本申请实施例提供的障碍物和移动终端在相对接近、抖动、远离过程中的doppler_dif和dopper_sum_log的变化规律示意图;
图13示出了本申请实施例提供的屏幕状态控制装置的模块框图;
图14示出了本申请实施例用于执行根据本申请实施例的屏幕状态控制方法的移动终端的框图;
图15示出了本申请实施例的用于保存或者携带实现根据本申请实施例的屏幕状态控制方法的程序代码的存储单元。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
随着移动终端的全面屏设计的流行,为了节省移动终端的顶部空间,已经有更多厂家在移动终端上采用超声波接近监测方案来替代传统的红外接近检测方案。移动终端通过超射波发送装置(如听筒、喇叭、专用超声波发射器等)发射超声波,一部分超声波通过空气传播直达超声波接收装置(拾音器)(如图1的路径1),一部分超声波通过空气传播与障碍物形成反射后再到达超声波接收装置(如图1的路径2)。超声波接收装置拾取到的是直达声和反射声的叠加信号,经过A/D转换器转化为音频信号。通过算法处理音频数据得到障碍物相对移动终端的运行状态,进而指导移动终端的显示屏处于亮屏状态或息屏状态。
发明人经过研究发现,移动终端通过超声波实现障碍物与移动终端的相对运动状态的识别可以包括如下方法:
(一)时间差方法
移动终端的超声波发送装置间隔发射超声频段的扫描信号,移动终端的超声波接收装置接收到反射和直达的超声波信号,算法通过对比接收到不同超声波信号的时间差来确定障碍物与移动终端之间的相对距离,通过相对距离也可以计算出相对速度,根据相对距离和相对速度可以进一步判断移动终端和障碍物之间的相对运动状态。但是该方法的抗干扰能力差,当环境中存在一些超声波噪声干扰时,识别结果会产生较大误差。
(二)相位差方法
移动终端的超声波发送装置发送连续的超声波信号,接收端通过计算发送信号和接收信号之间的相关性指标,确定超声波经过反射后达到超声波接收装置产生的相位差,根据相位差来确定障碍物与移动终端的相对距离,通过相对距离也可以计算出相对速度,根据相对距离和相对速度可以进一步判断移动终端和障碍物的相对运动状态。但是该方法的抗干扰能力差,当环境中存在一些超声波噪声干扰时,识别结果会产生较大误差。
(三)以多普勒效应面积差为音频特征的方法
通过对超声波发送频率以上和以下的频率范围内的频谱强度求差,得到多普勒效应面积差:
doppler_dif=sum_up-sum_low
如图2所示,障碍物相对于移动终端不同的运动状态可以引起doppler_dif有规律的变化,当障碍物以一定的速度接近移动终端时,doppler_dif取得较大的正值;当障碍物以一定的速度远离移动终端时,doppler_dif取得较小的负值;当障碍物与移动终端相对静止时,doppler_dif取得接近0的值。
进一步地,可以通过设置正负阈值来确定障碍物相对移动终端的运动状态。当doppler_dif大于threshold1时,判断为close状态;当doppler_dif小于threshold2时,判断为away状态;当doppler_dif介于threshold1和threshold2之间时,判断为normal状态。算法判断为close状态时,控制移动终端的显示屏处于息屏状态;算法判断为away状态时,控制移动终端的显示屏处于亮屏状态;算法判断为normal状态时,控制移动终端屏幕状态保持上一次的状态不变。但是该方法在障碍物或移动终端处于抖动状态时,doppler_dif会在短时间内在较大的正值和较小的负值之间反复变化(如错误!未找到引用源。),此时移动终端会出现连续的闪屏问题。
针对上述问题,发明人经过长期的研究发现,并提出了本申请实施例提供的屏幕状态控制方法、装置、移动终端以及存储介质,通过计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。其中,具体的屏幕状态控制方法在后续的实施例中进行详细的说明。
请参阅图4,图4示出了本申请一个实施例提供的屏幕状态控制方法的流程示意图。所述屏幕 状态控制方法用于通过计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。在具体的实施例中,所述屏幕状态控制方法应用于如图13所示的屏幕状态控制装置200以及配置有所述屏幕状态控制装置200的移动终端100(图14)。下面将以移动终端为例,说明本实施例的具体流程,当然,可以理解的,本实施例所应用的移动终端可以为智能手机、平板电脑、穿戴式电子设备等,在此不做限定。其中,在本实施例中,该移动终端可以包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图4所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S101:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号。
在本实施例中,移动终端同时包括超声波发送装置和超声波接收装置。在超声波发送装置相对障碍物运动的过程中,其实质是移动终端相对障碍物运动,从而超声波接收装置也相对障碍物运动。根据多普勒效应,物体辐射的波长因为波源(移动终端)和观测者(障碍物)的相对运动而产生变化,多普勒效应公式如下:
Figure PCTCN2020102358-appb-000001
其中,f'为观察到的频率、f为发射源于该介质中的原始发射频率、v为波在该介质中的传播速度、v 0为观察者移动速度,若观察者接近发射源则前方运算符号为+号,反之则为-号;v s为发射源移动速度,若障碍物接近观察者则前方运算符号为-号,反之则为+号。由多普勒效应公式可知,当发射源与观察者相对接近时,观察者接收到的信号频率会变大;当发射源与观察者相对远离时,观察者接收到的信号频率会变小;当发射源与观察者相对静止时,观察者接收到信号频率与发射源一致。
在本实施例中,移动终端可以通过内置的监听模块对所述移动终端的来电或去电进行实时监听,当监听到移动终端处于响铃开始(CALL_STATE_RINGING)来电时或拨打操作去电时,对所述移动终端是否进入通话状态进行监听。其中,在移动终端进行拨打操作去电时,会发出系统广播,移动终端可以使用Broadcast Receiver来监听,另外,监听移动终端是否处于通话状态可以为监听移动终端在来电或去电后是否处于通话中的界面,其中,当监听到所述移动终端处于通话中(CALL_STATE_OFFHOOK)时,可以确定移动终端处于通话状态。
在一些实施方式中,当监听到移动终端处于通话状态时,可以通过移动终端内置的超声波发送装置发送固定频率的超声波信号,可以理解的是,超声波发送装置发送的超声波信号中的一部分通过空气传播直达超声波接收装置,另一部分通过空气传播与障碍物形成反射后再达到超声波接收装置,超声波接收装置拾取到的是直达声和反射声的叠加信号,经过A/D转换为音频信号,其中,该障碍物可以包括人脸、人体等。例如,如图5所示,通过移动终端内置的听筒、喇叭或者专用超声波发射器发送固定频率的超声波信号,超声波信号的一部分通过空气传播直达拾音器,另一部分通过空气传播与障碍物形成反射后再达到拾音器,拾音器拾取到的是直达声和反射声的叠加信号,经过A/D转换为音频信号。
在本实施例中,当移动终端处于通话状态时,可以通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,或者从超声波接收装置接收到的超声波信号(直达声和反射声)中提取超声波信号在遇到障碍物后返回的超声波信号(反射声),在此不做限定。
步骤S102:获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和。
在一些实施方式中,当移动终端通过超声波接收装置接收到超声波信号后,可以获取该超声波信号在传输过程中的属性值,并基于该属性值计算该超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和。其中,传输过程中可以包括超声波信号发送的过程以及超声波信号接收的过程,该属性值可以包括超声波发送装置发送的超声波信号的发送频率、发送幅值、发送时间等,超声波接收装置所接收的超声波信号的频率变化范围、接收幅值、接收时间等,在此不做限定。
步骤S103:根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
在一些实施方式中,移动终端在获取多普勒效应面积差和多普勒效应面积和后,可以基于该多普勒效应面积差和多普勒效应面积和,获取移动终端与障碍物的相对运动状态,并根据移动终端与障碍物的相对运动状态控制显示屏处于亮屏状态或息屏状态,从而提升显示屏在移动终端处于通话 状态下的状态控制的准确率和稳定性,有效降低移动终端的功耗以及降低显示屏在靠近人脸时处于亮屏状态对人脸造成的辐射。
本申请一个实施例提供的屏幕状态控制方法,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取超声波信号在传输过程中的属性值,并基于属性值计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,根据多普勒效应面积差和多普勒效应面积和,判断移动终端与障碍物的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态,从而通过计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。
请参阅图6,图6示出了本申请又一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图6所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S201:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号。
其中,步骤S201的具体描述请参阅步骤S101,在此不再赘述。
步骤S202:获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
在本实施例中,在移动终端处于通话状态时,移动终端相对障碍物的相对运动状态,其实质为用户在使用移动终端的过程中,用户拿起移动终端靠近人体或远离人体的过程,考虑到用户拿起移动终端的速度在一定范围内变化,从而使超声波接收装置接收到的超声波信号的频率变化也相应在一定的范围内,即超声波信号的频率范围。
在一些实施方式中,移动终端可以获取其内置的超声波发送装置发送的超声波信号的发送频率,以及获取其内置的超声波接收装置接收的超声波信号的频率范围。其中,该超声波发送装置发送的超声波信号的发送频率可以是固定频率,因此,移动终端可以基于已设定的超声波发送装置的超声波信号的发送参数获取该发送频率。另外,该超声波接收装置接收的超声波信号的频率范围和移动终端与障碍物的相对运动关系相关,因此,可以获取大多数用户在使用移动终端的过程中,其运动速度的变化范围,并根据其运动速度的变化范围确定超声波接收装置接收的超声波信号的频率范围。
具体地,基于多普勒效应公式可知,f'为超声波接收装置接收到的障碍物反射的超声波信号的频率。f为超声波发送装置发送的超声波信号的发送频率。v为声音在空气中的传播速度,取340m/s。假设移动终端是静止的,则v s=0。如果障碍物相对终端的运动速度为v 01,则多普勒效应公式中障碍物的移动速度为v 0=2v 01。假设超声波发送装置发送的超声波信号的发送频率为ultrasonic=22500Hz,超声波接收装置接收的超声波信号的频率范围为[22420Hz,22580Hz],则根据多普勒效应能够识别到的障碍物与移动终端最大相对速度为:
Figure PCTCN2020102358-appb-000002
若进行傅里叶变换(fast Fourier Transform,DFT)的数据长度为fftlen=8192,音频数据采样
率为fs=48kHz,则DFT结果的频率分辨率为:
Figure PCTCN2020102358-appb-000003
则由式
Figure PCTCN2020102358-appb-000004
和式
Figure PCTCN2020102358-appb-000005
则能够识别到的障碍物与移动终端最小相对速度为:
Figure PCTCN2020102358-appb-000006
因此,在本实施例中,可以基于历史数据等获取移动终端与障碍物的最大相对速度和最小相对速度,并通过最大相对速度、最小相对速度以及上述公式反向推导获取该超声波接收装置接收的超声波信号的频率范围。
步骤S203:基于所述发送频率和所述频率范围确定频率变化区间。
在一些实施方式中,在获取超声波发送装置发送的超声波信号的发送频率以及超声波接收装置接收到的超声波信号的频率范围后,可以基于该发送频率和频率范围确定频率变化区间。例如,如图7所示,图7示出了本申请实施例提供的音频数据频谱图,频谱为频率谱的简称,是频率的分布曲线,对于离散的音频数据采样点,可以通过离散傅里叶变换获得,于图7中,其为一段音频数据经过离散傅里叶变换得到的频谱图,横坐标的每个点各自对应一个现实中的频率值,纵坐标代表该频率的信号强度。
在一些实施方式中,特征提取模块每次使用长度fftlen=8192的数据模块做DFT变换,得到相应的幅频向量X如图7所示,实际频率f n与幅频向量X的第n个数据之间的关系如下:
Figure PCTCN2020102358-appb-000007
其中,f s为采样率,fftlen为数据长度。则X[n]代表实际频率f n的强度。
假设算法中考虑的关键频率有ultrasonic=22500Hz、f_min_low=22494Hz、f_min_up=22506Hz、f_low=22420Hz、f_up=22580Hz,则考虑的关键频率在幅频向量中的序号为:
Figure PCTCN2020102358-appb-000008
Figure PCTCN2020102358-appb-000009
Figure PCTCN2020102358-appb-000010
Figure PCTCN2020102358-appb-000011
Figure PCTCN2020102358-appb-000012
如图7所示,该超声波发送装置发送的超声波信号的发送频率为point_mid,其对应的信号强度为ultrasonic_amp,该超声波接收装置接收到的超声波信号的频率范围为point_low到point_up,因此,可以确定该频率变化区间为point_low到point_mid_low以及point_min-up到point_up。
在一些实施方式中,基于发送频率和频率范围可以确定第一频率变化区间和第二频率变化区间。例如,如图7所示,该第一频率变化区间为point_low到point_mid_low,第二频率变化区间为point_min-up到point_up。
步骤S204:根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输过程中的所述多普勒效应面积差和所述多普勒效应面积和。
在一些实施方式中,在获取频率变化区间后,可以基于频谱图获取该频率变化区间对应的强度变化曲线,并基于该频率变化区间和频率变化区间对应的强度变化曲线,计算该超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和。具体地,在获取第一频率变化区间后,可以基于频谱图获取该第一频率变化区间对应的第一强度变化曲线,并基于该第一频率变化区间和第一频率变化区间对应的第一强度变化曲线,计算该超声波信号在传输过程中的第一面积,同时,在获取第二频率变化区间后,可以基于频谱图获取该第二频率变化区间对应的第二强度变化曲线,并基于该第二频率变化区间和第二频率变化区间对应的第二强度变化曲线,计算该超声波信号在传输过程中的第二面积。进一步地,计算第一面积和第二面积之差,例如,通过第一面积减去第二面积或者通过第二面积减去第一面积,获得该超声波信号在传输过程中的多普勒效应面积差,计算第一面积和第二面积之和,获得该超声波信号在传输过程中的多普勒效应面积和。
例如,在图7所示的频谱图中,该第一频率变化区间为point_low到point_mid_low,X为该第一频率变化区间对应的第一强度变化曲线,则可以对point_low到point_mid_low之间的频点 数据求和,得到第一面积sum_low:
Figure PCTCN2020102358-appb-000013
该第二频率变化区间为point_min-up到point_up,X为该第二频率变化区间对应的第二强度变化曲线,则可以对point_min-up到point_up之间的频点数据求和,得到第二面积sum_up:
Figure PCTCN2020102358-appb-000014
根据第一面积sum_low和第二面积sum_up,获得该超声波信号在传输过程中的多普勒效应面积差doppler_dif:
doppler_dif=sum_up-sum_sum
根据第一面积sum_low和第二面积sum_up,获得该超声波信号在传输过程中的多普勒效应面积和doppler_sum:
doppler_sum=sum_low+sum_up
步骤S205:根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动关系。
其中,步骤S205的具体描述请参阅步骤S103,在此不再赘述。
步骤S206:当所述移动终端与所述障碍物相对靠近时,控制所述显示屏处于息屏状态。
在一些实施方式中,当检测结果表征该移动终端与障碍物相对靠近时,表征移动终端与障碍物的相对运动关系为靠近运动,也就是说,当移动终端处于通话状态时,该移动终端贴近用户的耳朵,即可以控制移动终端的显示屏处于息屏状态。
步骤S207:当所述移动终端与所述障碍物相对远离时,控制所述显示屏处于亮屏状态。
在一些实施方式中,当检测结果表征该移动终端与障碍物相对远离时,表征该移动终端与障碍物的相对运动关系为相背运动,也就是说,当移动终端处于通话状态时,该移动终端远离用户的耳朵,即可以控制移动终端的显示屏处于亮屏状态。
步骤S208:当所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态时,控制所述显示屏保持前一次的状态不变。
在一些实施方式中,移动终端与障碍物相对静止可以为移动终端和障碍物均保持静止,或者该移动终端与障碍物的运动状态相同,例如,移动终端与障碍物的运动速度相同、运动幅度相同、运动频率相同等,在此不做限定。在本实施例中,当判断结果表征该移动终端与障碍物相对静止时,表征该移动终端与障碍物的相对运动关系不变,可以控制显示屏保持前一次的状态不变,也就是说,移动终端处于通话状态的过程中,当显示屏在前一次的状态为亮屏状态时,则保持显示屏处于亮屏状态不变,当显示屏在前一次的状态为息屏状态时,则保持显示屏处于息屏状态不变。
在一些实施方式中,移动终端与障碍物之间的距离相对保持不变且移动终端或障碍物处于抖动状态可以包括:移动终端与障碍物之间的距离相对保持不变、移动终端处于静止状态且障碍物处于抖动状态;移动终端与障碍物之间的距离相对保持不变、移动终端处于抖动状态且障碍物处于静止状态;移动终端与障碍物之间的距离相对保持不变、移动终端处于抖动状态且障碍物处于抖动状态。在本实施例中,当判断结果表征该移动终端与障碍物之间的距离相对保持不变且移动终端和/或障碍物处于抖动状态时,表征移动终端或障碍物是处于正常的抖动状态,移动终端与障碍物之间的相对距离保持不变,可以控制显示屏保持前一次的状态不变,也就是说,移动终端处于通话状态的过程中,当显示屏在前一次的状态为亮屏状态时,则保持显示屏处于亮屏状态不变,当显示屏在前一次的状态为息屏状态时,则保持显示屏处于息屏状态不变。
本申请又一个实施例提供的屏幕状态控制方法,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取超声波发送装置发送的超声波信号的发送频率,以及该超声波接收装置接收的超声波信号的频率范围,基于发送频率和频率范围确定频率变化区间,根据频率变化区间和频率变化区间对应的强度变化曲线,计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,根据多普勒效应面积差和多普勒效应面积和,判断移动终端与障碍物的相对运动关系,当移动终端与障碍物相对靠近时,控制显示屏处于息屏状态,当移动终端与障碍物相对远离时,控制显示屏处于亮屏状态,当移动终端与障碍物相对静止,或移动终端与障碍物之间的距离相对保持不变且移动终端与障碍物处于抖动状态时,控制显示屏保持前一次的状态不变。相较于图4所示的屏幕状态控制方法,本实施例还基于超声波发送装置的发送频率和超声波接收装置的频率变化区间计算多普勒效应面积差和 多普勒效应面积和,提升计算的准确性。另外,本实施例还在移动终端与障碍物相对靠近、相对远离、相对静止且抖动时控制显示屏处于不同的状态,提升显示屏控制的准确率和稳定性。
请参阅图8,图8示出了本申请再一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图8所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S301:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号。
步骤S302:获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
步骤S303:基于所述发送频率和所述频率范围确定频率变化区间。
步骤S304:根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输过程中的所述多普勒效应面积差和所述多普勒效应面积和。
其中,步骤S301-步骤S304的具体描述请参阅步骤S201-步骤S204,在此不再赘述。
步骤S305:根据所述多普勒效应面积差和所述多普勒效应面积和,获得目标特征向量。
在本实施例中,在获得多普勒效应面积差和多普勒效应面积和后,可以基于该多普勒效应面积差和多普勒效应面积和获得目标特征向量,以根据目标特征向量获得移动终端与障碍物的相对运动关系,以及基于移动终端与障碍物的相对运动关系对显示屏的状态进行控制。
请参阅图9,图9示出了本申请的图8所示的屏幕状态控制方法的步骤S305的流程示意图。下面将针对图9所示的流程进行详细的阐述,所述方法具体可以包括以下步骤:
步骤S3051:基于
Figure PCTCN2020102358-appb-000015
对所述多普勒效应面积和进行计算,获得第一特征向量,其中,dopper_sum_log为所述第一特征向量,dopper_sum为所述多普勒效应面积和,smooth_sum_scale为放大因子。
在一些实施方式中,移动终端在获得多普勒效应面积和后,可以对多普勒效应面积和进行对数处理,获得与多普勒效应面积和对应的第一特征向量,以使多普勒效应面积和的变化趋势更加清晰明了。具体地,在本实施例中,可以基于
Figure PCTCN2020102358-appb-000016
对多普勒效应面积和进行计算,以获得第一特征向量,作为一种方式,将多个相邻的dopper_sum_log组合成向量dopper_sum_log,将向量dopper_sum_log作为第一特征向量。
步骤S3052:将所述多普勒效应面积差作为第二特征向量。
在一些实施方式中,移动终端在获得多普勒效应面积差后,可以对多普勒效应面积差进行处理,获得与多普勒效应面积差对应的第二特征向量。作为一种方式,将多个相邻的doppler_dif组合成向量doppler_dif,将向量doppler_dif作为第二特征向量。
步骤S3053:基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量。
在本实施例中,移动终端在获取第一特征向量和第二特征向量后,可以基于该第一特征向量和第二特征向量获得目标特征向量。在一些实施方式中,可以基于ferture_vector=[doppler_sum_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得目标特征向量,其中,ferture_vector为所述目标特征向量,dopper_sum_log为所述第一特征向量,doppler_dif为所述第二特征向量。
步骤S306:将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述障碍物的相对运动状态的状态信息。
在一些实施方式中,移动终端在获得目标特征向量后,可以将该目标特征向量输入已训练的目标分类模型,其中,该已训练的目标分类模型是通过机器学习获得的,具体地,首先采集训练数据集,训练数据集中的一类数据的属性或特征区别于另一类数据,然后通过将采集的训练数据集按照预设的算法对神经网络进行训练建模,从而基于该训练数据集总结出规律,得到已训练的目标分类模型,其中,该已训练的目标分类模型可以包括传统的SVM,也可以包括人工人神经网络,在此不做限定。于本实施例中,训练数据集例如可以包括目标特征向量和状态信息,该状态信息用于指示控制显示屏的亮屏状态或息屏状态。
可以理解的,该已训练的目标分类模型可以预先训练完成后存储在移动终端本地。基于此,移动终端在获取目标特征向量后,可以直接在本地调用该已训练的目标分类模型,例如,可以直接发送指令至已训练的目标分类模型,以指示该已训练的目标分类模型在目标存储区域读取该目标特征向量,或者移动终端可以直接将目标特征向量输入存储在本地的已训练的目标分类模型,从而有效避免由于网络因素的影响降 低目标特征向量输入已训练的目标分类模型的速度,以提升已训练的目标分类模型获取目标特征向量的速度,提升用户体验。
另外,该已训练的目标分类模型也可以预先训练完成后存储在与移动终端通信连接的服务器。基于此,移动终端在获得目标特征向量后,可以通过网络发送指令至存储在服务器的已训练的目标分类模型,以指示该已训练的目标分类模型通过网络读取移动终端获取的目标特征向量,或者移动终端可以通过网络将目标特征向量发送至存储在服务器的已训练的目标分类模型,从而通过将已训练的目标分类模型存储在服务器的方式,减少对移动终端的存储空间的占用,降低对移动终端正常运行的影响。
步骤S307:获取所述已训练的目标分类模型输出的所述状态信息。
在一些实施方式中,已训练的目标分类模型基于读取的目标特征向量输出相应的状态信息,则所述移动终端获取该已训练的目标分类模型输出的该状态信息。可以理解的,若该已训练的目标分类模型存储在移动终端本地,则该移动终端直接获取该已训练的目标分类模型输出的状态信息;若该已训练的目标分类模型存储在服务器,则该移动终端可以通过网络从服务器获取该已训练的目标分类模型输出的状态信息。
步骤S308:基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
在一些实施方式中,移动终端基于已训练的目标分类模型输出的状态信息,控制显示屏处于亮屏状态或息屏状态,从而提高移动终端在不同场景下的识别成功率,提高显示屏的亮屏的控制准确率和稳定性。
本申请再一个实施例提供的屏幕状态控制方法,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取该超声波发送装置发送的超声波信号的发送频率,以及该超声波接收装置接收的超声波信号的频率范围,基于发送频率和频率范围确定频率变化区间,根据频率变化区间和频率变化区间对应的强度变化曲线,计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,根据多普勒效应面积差和多普勒效应面积和获得目标特征向量,将目标特征向量输入已训练的目标分类模型,获取已训练的目标分类模型输出的状态信息,基于该状态信息控制显示屏处于亮屏状态或息屏状态。相较于图4所示的屏幕状态控制方法,本实施例还基于超声波发送装置的发送频率和超声波接收装置的频率变化区间计算多普勒效应面积差和多普勒效应面积和,提升计算的准确性。另外,本实施例还通过已训练的目标分类模型对移动终端与障碍物的相对运动状态进行获取并对显示屏的状态进行控制,以通过机器模型提升显示屏控制的准确率和稳定性。
请参阅图10,图10示出了本申请另一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图10所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S401:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号。
步骤S402:获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和。
其中,步骤S401-步骤S402的具体描述请参阅步骤S101-步骤S102,在此不再赘述。
步骤S403:基于
Figure PCTCN2020102358-appb-000017
对所述多普勒效应面积和进行计算,获得第一特征向量,其中,dopper_sum_log为所述第一特征向量,dopper_sum为所述多普勒效应面积和,smooth_sum_scale为放大因子。
步骤S404:将所述多普勒效应面积差作为第二特征向量。
其中,步骤S403-步骤S404的具体描述请参阅步骤S3051-步骤S3052,在此不再赘述。
步骤S405:当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述障碍物相对靠近,所述第一条件为正值且由小变大。
其中,该第一特征向量为dopper_sum_log,第二特征向量为doppler_dif,由图11和图12可以知道,在移动终端与障碍物相对靠近的过程中,第一特征向量dopper_sum_log和第二特征向量doppler_dif均由较小的正值逐步上升至较大的正值。因此,当该第一特征向量dopper_sum_log和第二特征向量doppler_dif均满足第一条件(正值且由小变大)时,可以确定该移动终端与障碍物相对靠近,此时可以将目标特征向量标记为close状态。
步骤S406:当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述障碍物相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大。
由图11和图12可以知道,在移动终端与障碍物相对远离的过程中,第一特征向量dopper_sum_log由较大的正值下降至较小的正值,第二特征向量doppler_dif由较小的负值逐步上升至0附近。因此,当第一特征向量dopper_sum_log满足第二条件(正值且由大变小)且第二特征向量doppler_dif满 足第三条件(负值且由小变大)时,可以确定该移动终端与障碍物相对远离,此时可以将目标特征向量标记为away状态。
步骤S407:当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态。
由图11和图12可以知道,移动终端与障碍物相对静止,或者移动终端与障碍物之间的距离相对保持不变且移动终端或障碍物处于抖动状态时,该第一特征向量dopper_sum_log和第二特征向量doppler_dif均不会同时出现移动终端和障碍物相对靠近或移动终端和障碍物相对远离过程中的变化趋势。因此,当第一特征向量dopper_sum_log不满足第一条件(正值且由小变大)和第二条件(正值且由大变小),以及第二特征向量doppler_dif不满足第一条件(正值且由小变大)和第三条件(负值且由小变大)时,可以确定该移动终端与障碍物相对静止,或者该移动终端与障碍物之间的距离相对保持不变且移动终端与障碍物处于抖动状态,此时,可以将目标特征向量标记为normal状态。
步骤S408:根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
其中,步骤S408的具体描述请参阅步骤S103,在此不再赘述。
本申请另一个实施例提供的屏幕状态控制方法,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取超声波信号在传输过程中的属性值,并基于该属性值计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,基于
Figure PCTCN2020102358-appb-000018
对多普勒效应面积和进行计算,获得第一特征向量,将多普勒效应面积差作为第二特征向量,当第一特征向量和第二特征向量均满足第一条件时,确定移动终端与障碍物相对靠近,该第一条件为正值且由小变大,当第一特征向量满足第二条件且第二特征向量满足第三条件时,确定移动终端与障碍物相对远离,该第二条件为正值且由大变小,第三条件为负值且由小变大,当第一特征向量不满足第一条件和第二条件且第二特征向量不满足第一条件和第三条件时,确定移动终端与所述障碍物相对静止,或移动终端与障碍物之间的距离相对保持不变且移动终端或障碍物处于抖动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态。相较于图4所示的屏幕状态控制方法,本实施例还根据第一特征向量是否满足第一条件和第二条件,以及第二特征向量是否满足第一条件和第三条件控制显示屏处于亮屏状态或息屏状态,以提升控制的准确率和稳定性。
请参阅图13,图13示出了本申请实施例提供的屏幕状态控制装置200的模块框图。该屏幕状态控制装置200应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述屏幕状态控制装置200包括:超声波信号收发模块210、面积计算模块220以及状态控制模块230,其中:
超声波信号收发模块210,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号。
面积计算模块220,用于获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和。进一步地,所述面积计算模块220包括:频率获取子模块、频率变化区间确定子模块以及面积计算子模块,其中:
频率获取子模块,用于获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
频率变化区间确定子模块,用于基于所述发送频率和所述频率范围确定频率变化区间。进一步地,所述频率变化区间确定子模块包括:频率变化区间确定单元,其中:
频率变化区间确定单元,用于基于所述发送频率和所述频率范围确定第一频率变化区间以及第二频率变化区间。
面积计算子模块,用于根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输过程中的所述多普勒效应面积差和所述多普勒效应面积和。进一步地,所述面积计算子模块包括:第一面积计算单元、第二面积计算单元、多普勒效应面积差获得单元以及多普勒效应和获得单元,其中:
第一面积计算单元,用于根据所述第一频率变化区间和所述第一频率变化区间对应的第一强度变化曲线,计算获得第一面积。
第二面积计算单元,用于根据所述第二频率变化区间和所述第二频率变化区间对应的第二强度变化曲线,计算获得第二面积。
多普勒效应面积差获得单元,用于计算所述第一面积和所述第二面积之差,获得所述超声波信号在传 输过程中的所述多普勒效应面积差。
多普勒效应面积和获得单元,用于计算所述第一面积和所述第二面积之和,获得所述超声波信号在传输过程中的所述多普勒效应面积和。
状态控制模块230,用于根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。进一步地,所述状态控制模块230包括:相对运动关系判断子模块、息屏状态控制子模块、亮屏状态控制子模块以及状态保持子模块,其中:
相对运动关系判断子模块,用于根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动关系。
息屏状态控制子模块,用于当所述移动终端与所述障碍物相对靠近时,控制所述显示屏处于息屏状态。
亮屏状态控制子模块,用于当所述移动终端与所述障碍物相对远离时,控制所述显示屏处于亮屏状态。
状态保持子模块,用于当所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态时,控制所述显示屏保持前一次的状态不变。
进一步地,所述状态控制模块230还包括:目标特征向量获得子模块、目标特征向量输入子模块、状态信息获取子模块以及状态控制子模块,其中:
目标特征向量获得子模块,用于根据所述多普勒效应面积差和所述多普勒效应面积和,获得目标特征向量。进一步地,所述目标特征向量获得子模块,包括:第一特征向量获得单元、第二特征向量获得单元以及目标特征向量获得单元,其中:
第一特征向量获得单元,用于基于
Figure PCTCN2020102358-appb-000019
对所述多普勒效应面积和进行计算,获得第一特征向量,其中,dopper_sum_log为所述第一特征向量,dopper_sum为所述多普勒效应面积和,smooth_sum_scale为放大因子。
第二特征向量获得单元,用于将所述多普勒效应面积差作为第二特征向量。
目标特征向量获得单元,用于基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量。进一步地,所述目标特征向量获得单元包括:目标特征向量获得子单元,其中:
目标特征向量获得子单元,用于基于ferture_vector=[doppler_sum_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得所述目标特征向量,其中,ferture_vector为所述目标特征向量,dopper_sum_log为所述第一特征向量,doppler_dif为所述第二特征向量。
目标特征向量输入子模块,用于将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述障碍物的相对运动状态的状态信息。
状态信息获取子模块,用于获取所述已训练的目标分类模型输出的所述状态信息。
状态控制子模块,用于基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
进一步地,所述状态控制模块230还包括:第一确定子模块、第二确定子模块以及第三确定子模块,其中:
第一确定子模块,用于当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述障碍物相对靠近,所述第一条件为正值且由小变大。
第二确定子模块,用于当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述障碍物相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大。
第三确定子模块,用于当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,模块相互之间的耦合可以是电性,机械或其它形式的耦合。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参阅图14,其示出了本申请实施例提供的一种移动终端100的结构框图。该移动终端100可以是智能手机、平板电脑、电子书等能够运行应用程序的电子设备。本申请中的移动终端100可以包括一个或多个如下部件:处理器110、存储器120、显示屏130、超声波发送装置140、超声波 接收装置150以及一个或多个应用程序,其中一个或多个应用程序可以被存储在存储器120中并被配置为由一个或多个处理器110执行,一个或多个程序配置用于执行如前述方法实施例所描述的方法。
其中,处理器110可以包括一个或者多个处理核。处理器110利用各种接口和线路连接整个移动终端100内的各个部分,通过运行或执行存储在存储器120内的指令、程序、代码集或指令集,以及调用存储在存储器120内的数据,执行移动终端100的各种功能和处理数据。可选地,处理器110可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器110可集成中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器110中,单独通过一块通信芯片进行实现。
存储器120可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器120可用于存储指令、程序、代码、代码集或指令集。存储器120可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储终端100在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。
显示屏130用于显示由用户输入的信息、提供给用户的信息以及所述移动终端100的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、数字、视频和其任意组合来构成,在一个实例中,该显示屏130可以为液晶显示器(Liquid Crystal Display,LCD),也可以为有机发光二极管(Organic Light-Emitting Diode,OLED),在此不做限定。
请参阅图15,其示出了本申请实施例提供的一种计算机可读存储介质的结构框图。该计算机可读介质300中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。
计算机可读存储介质300可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读存储介质300包括非易失性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读存储介质300具有执行上述方法中的任何方法步骤的程序代码310的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码310可以例如以适当形式进行压缩。
综上所述,本申请实施例提供的屏幕状态控制方法、装置、移动终端以及存储介质,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到障碍物后返回的超声波信号,获取超声波信号在传输过程中的属性值,并基于属性值计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,根据多普勒效应面积差和多普勒效应面积和,判断移动终端与障碍物的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态,从而通过计算超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种屏幕状态控制方法,其特征在于,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述方法包括:
    当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号;
    获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和;
    根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态,包括:
    根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动关系;
    当所述移动终端与所述障碍物相对靠近时,控制所述显示屏处于息屏状态;
    当所述移动终端与所述障碍物相对远离时,控制所述显示屏处于亮屏状态;
    当所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态时,控制所述显示屏保持前一次的状态不变。
  3. 根据权利要求2所述的方法,其特征在于,所述当所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态时,控制所述显示屏保持前一次的状态不变,包括:
    当所述移动终端与所述障碍物均保持静止时,确定所述移动终端与所述障碍物相对静止;
    控制所述显示屏保持前一次的状态不变。
  4. 根据权利要求2所述的方法,其特征在于,所述当所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态时,控制所述显示屏保持前一次的状态不变,包括:
    当所述移动终端与所述障碍物的运动状态相同时,确定所述移动终端与所述障碍物相对静止;
    控制所述显示屏保持前一次的状态不变。
  5. 根据权利要求4所述的方法,其特征在于,所述当所述移动终端与所述障碍物的运动状态相同时,确定所述移动终端与所述障碍物相对静止,包括:
    当所述移动终端与所述障碍物的运动速度相同、运动幅度相同以及运动频率相同时,确定所述移动终端和所述障碍物的运动状态相同;
    当所述移动终端和所述障碍物的运动状态相同时,确定所述移动终端与所述障碍物相对静止。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述当所述移动终端与所述障碍物相对靠近时,控制所述显示屏处于息屏状态,包括:
    当所述移动终端与所述障碍物相对靠近时,确定所述移动终端贴近用户的耳朵,并控制所述移动终端的显示屏处于息屏状态。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述当所述移动终端与所述障碍物相对靠近时,控制所述显示屏处于息屏状态,包括:
    当所述移动终端与所述障碍物相对远离时,确定所述移动终端远离用户的耳朵,并控制所述移动终端的显示屏处于亮屏状态。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态,包括:
    根据所述多普勒效应面积差和所述多普勒效应面积和,获得目标特征向量;
    将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述障碍物的相对运动状态的状态信息;
    获取所述已训练的目标分类模型输出的所述状态信息;
    基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述多普勒效应面积差和所述多普勒效应面积和,获得目标特征向量,包括:
    基于
    Figure PCTCN2020102358-appb-100001
    对所述多普勒效应面积和进行计算,获得第一特征向量,其中,dopper_sum_log为所述第一特征向量,dopper_sum为所述多普勒效应面积和,smooth_sum_scale为放大因子;
    将所述多普勒效应面积差作为第二特征向量;
    基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量,包括:
    基于ferture_vector=[doppler_sum_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得所述目标特征向量,其中,ferture_vector为所述目标特征向量,dopper_sum_log为所述第一特征向量,doppler_dif为所述第二特征向量。
  11. 根据权利要求9或10所述的方法,其特征在于,所述根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动关系,包括:
    当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述障碍物相对靠近,所述第一条件为正值且由小变大;
    当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述障碍物相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大;
    当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述障碍物相对静止,或所述移动终端与所述障碍物之间的距离相对保持不变且所述移动终端或所述障碍物处于抖动状态。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和,包括:
    获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围;
    基于所述发送频率和所述频率范围确定频率变化区间;
    根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输过程中的所述多普勒效应面积差和所述多普勒效应面积和。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述发送频率和所述频率范围确定频率变化区间,包括:
    基于所述发送频率和所述频率范围确定第一频率变化区间以及第二频率变化区间;
    所述根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输过程中的所述多普勒效应面积差和所述多普勒效应面积和,包括:
    根据所述第一频率变化区间和所述第一频率变化区间对应的第一强度变化曲线,计算获得第一面积;
    根据所述第二频率变化区间和所述第二频率变化区间对应的第二强度变化曲线,计算获得第二面积;
    计算所述第一面积和所述第二面积之差,获得所述超声波信号在传输过程中的所述多普勒效应面积差;
    计算所述第一面积和所述第二面积之和,获得所述超声波信号在传输过程中的所述多普勒效应面积和。
  14. 根据权利要求12或13所述的方法,其特征在于,所述获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围,包括:
    获取所述超声波发送装置发送的超声波信号的发送频率;
    获取所述移动终端与所述障碍物的最大相对速度和最小相对速度;
    基于所述最大相对速度和所述最小相对速度,获取所述超声波接收装置接收的超声波信号的频率范围。
  15. 根据权利要求14所述的方法,其特征在于,所述获取所述移动终端与所述障碍物的最大相对速度和最小相对速度,包括:
    获取所述移动终端与所述障碍物的历史相对速度;
    基于所述历史相对速度,获取所述移动终端与所述障碍物的最大相对速度和最小相对速度。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述获取所述超声波发送装置发送的超声 波信号的发送频率,包括:
    基于已设定的所述超声波发送装置的超声波信号的发送参数,获取所述超声波发送装置发送的超声波信号的发送频率。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号之前,还包括:
    对所述移动终端的来电或去电进行实时监听;
    当监听到所述移动终端处于响铃开始来电或拨打去电时,对所述移动终端的通话状态进行监听。
  18. 一种屏幕状态控制装置,其特征在于,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述装置包括:
    超声波信号收发模块,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到障碍物后返回的超声波信号;
    面积计算模块,用于获取所述超声波信号在传输过程中的属性值,并基于所述属性值计算所述超声波信号在传输过程中的多普勒效应面积差和多普勒效应面积和;
    状态控制模块,用于根据所述多普勒效应面积差和所述多普勒效应面积和,判断所述移动终端与所述障碍物的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
  19. 一种移动终端,其特征在于,包括存储器和处理器,所述存储器耦接到所述处理器,所述存储器存储指令,当所述指令由所述处理器执行时所述处理器执行如权利要求1-17任一项所述的方法。
  20. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-17任一项所述的方法。
PCT/CN2020/102358 2019-07-31 2020-07-16 屏幕状态控制方法、装置、移动终端以及存储介质 WO2021017859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910701467.1 2019-07-31
CN201910701467.1A CN110519448B (zh) 2019-07-31 2019-07-31 屏幕状态控制方法、装置、移动终端以及存储介质

Publications (1)

Publication Number Publication Date
WO2021017859A1 true WO2021017859A1 (zh) 2021-02-04

Family

ID=68623766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102358 WO2021017859A1 (zh) 2019-07-31 2020-07-16 屏幕状态控制方法、装置、移动终端以及存储介质

Country Status (2)

Country Link
CN (1) CN110519448B (zh)
WO (1) WO2021017859A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117036831A (zh) * 2023-10-09 2023-11-10 视睿(杭州)信息科技有限公司 一种基于时序特征建模闪屏检测方法、系统及介质
WO2024037460A1 (zh) * 2022-08-16 2024-02-22 华为技术有限公司 屏幕显示控制方法、介质和电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519448B (zh) * 2019-07-31 2021-03-02 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质
CN113395389B (zh) * 2020-03-13 2022-12-02 北京小米移动软件有限公司 一种防止屏幕误触的方法、装置及存储介质
CN114513573A (zh) * 2020-11-16 2022-05-17 深圳市万普拉斯科技有限公司 一种屏幕控制方法、装置、电子设备及存储介质
CN113411451B (zh) * 2021-06-30 2023-04-28 联想(北京)有限公司 一种信息处理方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052163A1 (ko) * 2015-09-21 2017-03-30 김학충 휴대용 단말기의 화면제어방법 및 해당 방법이 적용된 휴대용 단말기
CN108184023A (zh) * 2017-12-29 2018-06-19 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN108196778A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108566479A (zh) * 2017-12-29 2018-09-21 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN110519448A (zh) * 2019-07-31 2019-11-29 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10432778B2 (en) * 2016-12-20 2019-10-01 Elliptic Laboratories As Portable communications devices
CN107872585B (zh) * 2017-11-30 2021-05-21 努比亚技术有限公司 屏幕开关状态的控制方法、终端及计算机可读存储介质
CN108055412B (zh) * 2017-12-29 2021-07-23 努比亚技术有限公司 控制移动终端的方法、移动终端及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052163A1 (ko) * 2015-09-21 2017-03-30 김학충 휴대용 단말기의 화면제어방법 및 해당 방법이 적용된 휴대용 단말기
CN108184023A (zh) * 2017-12-29 2018-06-19 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN108196778A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108566479A (zh) * 2017-12-29 2018-09-21 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN110519448A (zh) * 2019-07-31 2019-11-29 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037460A1 (zh) * 2022-08-16 2024-02-22 华为技术有限公司 屏幕显示控制方法、介质和电子设备
CN117036831A (zh) * 2023-10-09 2023-11-10 视睿(杭州)信息科技有限公司 一种基于时序特征建模闪屏检测方法、系统及介质
CN117036831B (zh) * 2023-10-09 2024-03-22 视睿(杭州)信息科技有限公司 一种基于时序特征建模闪屏检测方法、系统及介质

Also Published As

Publication number Publication date
CN110519448A (zh) 2019-11-29
CN110519448B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2021017859A1 (zh) 屏幕状态控制方法、装置、移动终端以及存储介质
WO2021017950A1 (zh) 超声波处理方法、装置、电子设备及计算机可读介质
WO2021017851A1 (zh) 屏幕状态控制方法、装置、移动终端以及存储介质
US20210217433A1 (en) Voice processing method and apparatus, and device
WO2021017860A1 (zh) 信息处理方法、装置、电子设备及存储介质
WO2021017947A1 (zh) 终端控制方法、装置、移动终端及存储介质
CN111554321B (zh) 降噪模型训练方法、装置、电子设备及存储介质
WO2021017943A1 (zh) 超声波处理方法、装置、电子设备及计算机可读介质
WO2021017855A1 (zh) 响铃处理方法、装置、移动终端以及存储介质
WO2018133874A1 (zh) 一种发送报警消息的方法和装置
CN107765251B (zh) 距离检测方法和终端设备
WO2021017927A1 (zh) 设备控制方法、装置、电子设备及存储介质
EP4236108A1 (en) Signal transmission method and apparatus, and terminal device, smart device, and electronic device
CN110769186A (zh) 一种视频通话方法、第一电子设备及第二电子设备
CN110865710A (zh) 终端控制方法、装置、移动终端及存储介质
CN114943242A (zh) 事件检测方法及装置、电子设备、存储介质
CN111182118B (zh) 一种音量调节方法及电子设备
CN109921959A (zh) 一种参数调整方法及通信设备
CN111026263B (zh) 一种音频播放方法及电子设备
CN109769175B (zh) 一种音频处理方法和电子设备
CN108900706B (zh) 一种通话语音调整方法及移动终端
CN108008808B (zh) 运行参数的调整方法和移动终端
CN107544803B (zh) 基于超声波的亮灭屏控制方法、装置及可读存储介质
WO2021052187A1 (zh) 基于超声波的丢帧处理方法、装置、移动终端及存储介质
CN113517935B (zh) 超声波校准方法、装置、移动终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848511

Country of ref document: EP

Kind code of ref document: A1