WO2021017851A1 - 屏幕状态控制方法、装置、移动终端以及存储介质 - Google Patents

屏幕状态控制方法、装置、移动终端以及存储介质 Download PDF

Info

Publication number
WO2021017851A1
WO2021017851A1 PCT/CN2020/102329 CN2020102329W WO2021017851A1 WO 2021017851 A1 WO2021017851 A1 WO 2021017851A1 CN 2020102329 W CN2020102329 W CN 2020102329W WO 2021017851 A1 WO2021017851 A1 WO 2021017851A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
mobile terminal
frequency
state
signal
Prior art date
Application number
PCT/CN2020/102329
Other languages
English (en)
French (fr)
Inventor
范辉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021017851A1 publication Critical patent/WO2021017851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions

Definitions

  • the present application relates to the technical field of mobile terminals, and more specifically, to a screen state control method, device, mobile terminal, and storage medium.
  • this application proposes a screen state control method, device, mobile terminal and storage medium to solve the above problems.
  • an embodiment of the present application provides a screen state control method, which is applied to a mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the method includes: when the mobile terminal is in a call In the state, the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal returned by the ultrasonic signal after encountering an object is received by the ultrasonic receiver; the first attribute value of the ultrasonic signal in the transmission process is obtained, and Calculate the variance of the signal strength of the ultrasonic signal during transmission based on the first attribute value, and obtain the second attribute value of the ultrasonic signal during the transmission process, and calculate the value of the ultrasonic signal during transmission based on the second attribute value
  • the Doppler effect area difference in the process according to the variance of the signal strength and the Doppler effect area difference, determine the relative motion state of the mobile terminal and the object, and control the relative motion state according to the relative motion state
  • the display screen is on or off.
  • the embodiments of the present application provide a screen state control device, which is applied to a mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the device includes an ultrasonic signal transceiver module for When the mobile terminal is in a talking state, the ultrasonic signal sent by the ultrasonic transmitter and the ultrasonic signal returned by the ultrasonic signal after encountering an object are received by the ultrasonic receiver; the calculation module is used to obtain The first attribute value of the ultrasonic signal during transmission, and the variance of the signal strength of the ultrasonic signal during transmission is calculated based on the first attribute value, and the value of the ultrasonic signal during transmission is obtained And the second attribute value, and calculate the Doppler effect area difference of the ultrasonic signal in the transmission process based on the second attribute value; the state control module is used to calculate the Doppler effect area difference according to the variance of the signal strength and the Doppler effect. Leak effect area difference, determine the relative motion state of the mobile terminal and the object,
  • an embodiment of the present application provides a mobile terminal, including an ultrasonic transmitting device, an ultrasonic receiving device, a display screen, a memory, and a processor.
  • the ultrasonic transmitting device, the ultrasonic receiving device, the display screen, and the The memory and the memory are coupled to the processor, and the memory stores instructions, and the processor executes the above method when the instructions are executed by the processor.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores program code, and the program code can be invoked by a processor to execute the foregoing method.
  • Fig. 1 shows a schematic diagram of a propagation path of ultrasonic waves provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the change rule of doppler_dif when an object and a mobile terminal are relatively close, stationary, and far away according to an embodiment of the present application;
  • FIG. 3 shows a schematic diagram of the change rule of doppler_dif when the object and the mobile terminal are relatively close, shake, and move away according to an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a screen state control method provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of an ultrasonic wave sending, receiving, and data processing flow provided by an embodiment of the present application
  • FIG. 6 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application.
  • Fig. 7 shows a frequency spectrum diagram of audio data provided by an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a screen state control method provided by still another embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the change rule of doppler_dif and ultrasonic_amp_dif_var_log when the object and the mobile terminal are relatively close, stationary, and away according to an embodiment of the present application;
  • FIG. 11 shows a schematic diagram of the change rule of doppler_dif and ultrasonic_amp_dif_var_log in the process of relatively approaching, shaking, and moving away from an object and a mobile terminal according to an embodiment of the present application;
  • Fig. 12 shows a block diagram of a screen state control device provided by an embodiment of the present application.
  • FIG. 13 shows a block diagram of a mobile terminal used to execute the screen state control method according to the embodiment of the present application
  • Fig. 14 shows a storage unit for storing or carrying program codes for implementing the screen equipment control method according to the embodiment of the present application.
  • the mobile terminal transmits ultrasonic waves through the ultrasonic transmitter (such as earpieces, speakers, special ultrasonic transmitters, etc.). Part of the ultrasonic waves travels through the air directly to the ultrasonic receiver (pickup) (path 1 in Figure 1), and part of the ultrasonic waves travels through the air. After the object forms a reflection, it reaches the ultrasonic receiver (path 2 in Figure 1). What the ultrasonic receiver picks up is the superimposed signal of the direct sound and the reflected sound, which is converted into an audio signal by an A/D converter.
  • the audio data is processed by the algorithm to obtain the operating state of the object relative to the mobile terminal, and then guide the display screen of the mobile terminal to be in the on-screen state or the off-screen state.
  • the ultrasonic transmitter of the mobile terminal transmits scanning signals in the ultrasonic frequency band at intervals, and the ultrasonic receiver of the mobile terminal receives the reflected and direct ultrasonic signals.
  • the algorithm determines the relative distance between the object and the mobile terminal by comparing the time difference of receiving different ultrasonic signals. , The relative speed can also be calculated by the relative distance, and the relative motion state between the mobile terminal and the object can be further judged according to the relative distance and relative speed.
  • this method has poor anti-interference ability. When there is some ultrasonic noise interference in the environment, the recognition result will produce large errors.
  • the ultrasonic transmitter of the mobile terminal sends a continuous ultrasonic signal.
  • the receiver calculates the correlation index between the transmitted signal and the received signal to determine the phase difference between the ultrasonic wave and the ultrasonic receiver after reflection, and the object and movement are determined according to the phase difference.
  • the relative distance of the terminal, the relative speed can also be calculated through the relative distance, and the relative motion state of the mobile terminal and the object can be further judged according to the relative distance and relative speed.
  • this method has poor anti-interference ability. When there is some ultrasonic noise interference in the environment, the recognition result will produce large errors.
  • the different motion states of the object relative to the mobile terminal can cause the Doppler effect area difference doppler_dif to change regularly.
  • doppler_dif takes a larger positive value
  • doppler_dif takes a small negative value
  • doppler_dif takes a value close to 0.
  • the state of motion of the object relative to the mobile terminal can be determined by setting the positive and negative thresholds.
  • doppler_dif is greater than the reference 1threshold1, it is judged as the close state; when doppler_dif is less than the reference 2threshold2, it is judged as the away state; when doppler_dif is between threshold1 and threshold2, it is judged as the normal state.
  • the algorithm is judged to be in the close state, the display of the mobile terminal is controlled to be in the off-screen state; when the algorithm is judged to be in the away state, the display of the mobile terminal is controlled to be in the on-screen state; when the algorithm is judged to be the normal state, the screen state of the mobile terminal is controlled The state of one time remains unchanged.
  • doppler_dif when the object or mobile terminal is in a jitter state, doppler_dif will repeatedly change between a larger positive value and a smaller negative value in a short period of time (such as an error! The reference source is not found.), and the mobile terminal will There is a continuous splash screen problem.
  • the inventors have discovered through long-term research and proposed the screen state control method, device, mobile terminal, and storage medium provided by the embodiments of this application, by calculating the variance of the signal strength of the ultrasonic signal and the area difference of the Doppler effect
  • the control display screen is in the on-screen or off-screen state to improve the accuracy of detection and control.
  • the specific screen state control method will be described in detail in the subsequent embodiments.
  • FIG. 4 shows a schematic flowchart of a screen state control method provided by an embodiment of the present application.
  • the screen state control method is used to calculate the variance of the signal intensity of the ultrasonic signal and the Doppler effect area difference to control the display screen to be in the on-screen state or the off-screen state to improve the accuracy of detection control.
  • the screen state control method is applied to the screen state control device 200 shown in FIG. 12 and the mobile terminal 100 equipped with the screen state control device 200 (FIG. 13). The following will take a mobile terminal as an example to describe the specific process of this embodiment.
  • the mobile terminal applied in this embodiment may be a smart phone, a tablet computer, a wearable electronic device, etc., which is not limited here.
  • the mobile terminal may include an ultrasonic transmitting device, an ultrasonic receiving device, and a display screen.
  • the flow shown in FIG. 4 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S101 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an object through the ultrasonic receiver.
  • the mobile terminal includes both an ultrasonic transmitting device and an ultrasonic receiving device.
  • the ultrasonic transmitting device moves relative to the object, so the ultrasonic receiving device also moves relative to the object.
  • the wavelength of the object radiation changes due to the relative motion of the wave source (mobile terminal) and the observer (object).
  • the Doppler effect formula is as follows:
  • f' is the observed frequency
  • f is the original emission frequency of the emission source in the medium
  • v is the propagation speed of the wave in the medium
  • v 0 is the movement speed of the observer, if the observer approaches the emission source, it will be forward + number of operation symbol, otherwise it is - number
  • v s is the moving speed of the transmission source, if the object approaches the front of the viewer is an operation symbol - number, and vice versa for the + sign.
  • the mobile terminal can monitor the incoming or outgoing call of the mobile terminal in real time through the built-in monitoring module.
  • the mobile terminal detects that the mobile terminal is in the ringing start (CALL_STATE_RINGING) incoming call or dialing operation outgoing call, Whether the mobile terminal enters the call state is monitored.
  • the mobile terminal performs a dialing operation, it will send out a system broadcast, and the mobile terminal can use Broadcast Receiver to monitor.
  • monitoring whether the mobile terminal is in a call state can be monitoring whether the mobile terminal is in a call after an incoming or outgoing call Interface, where, when it is monitored that the mobile terminal is in a call (CALL_STATE_OFFHOOK), it can be determined that the mobile terminal is in a call state.
  • a fixed-frequency ultrasonic signal can be transmitted through the built-in ultrasonic transmitter of the mobile terminal. It can be understood that part of the ultrasonic signal sent by the ultrasonic transmitter is transmitted through the air. Directly reach the ultrasonic receiving device, the other part is transmitted through the air and reflected by the object before reaching the ultrasonic receiving device.
  • the ultrasonic receiving device picks up the superimposed signal of direct sound and reflected sound, which is converted into audio signal through A/D.
  • the object can include human faces, human bodies, etc.
  • a fixed-frequency ultrasonic signal is sent through the built-in earpiece, horn or special ultrasonic transmitter of the mobile terminal.
  • a part of the ultrasonic signal is transmitted through the air directly to the pickup, and the other part is transmitted through the air and reflected by the object.
  • the pickup is the superimposed signal of the direct sound and the reflected sound picked up by the pickup, which is converted into an audio signal by A/D.
  • the ultrasonic signal when the mobile terminal is in a call state, can be sent through the ultrasonic transmitter, and the ultrasonic signal returned after encountering the object through the ultrasonic receiver, or the ultrasonic signal received from the ultrasonic receiver
  • the signal directly sound and reflected sound extracts the ultrasonic signal (reflected sound) returned by the ultrasonic signal after encountering an object, which is not limited here.
  • Step S102 Obtain the first attribute value of the ultrasonic signal during transmission, and calculate the variance of the signal strength of the ultrasonic signal during the transmission process based on the first attribute value, and obtain the first attribute value of the ultrasonic signal during the transmission process. Two attribute values, and calculating the Doppler effect area difference of the ultrasonic signal in the transmission process based on the second attribute value.
  • the mobile terminal after the mobile terminal receives the ultrasonic signal through the ultrasonic receiving device, it can obtain the attribute value of the ultrasonic signal during the transmission process, and calculate the Doppler effect area of the ultrasonic signal during the transmission process based on the attribute value Difference and variance of signal strength.
  • the transmission process can include the ultrasonic signal sending process and the ultrasonic signal receiving process
  • the attribute value can include the transmission frequency, transmission amplitude, transmission time, etc. of the ultrasonic signal sent by the ultrasonic transmitter, and the ultrasonic received by the ultrasonic receiver The signal's frequency variation range, receiving amplitude, receiving time, etc.
  • the first attribute value of the ultrasonic signal during transmission can be obtained from the attribute value, and the variance of the signal strength of the ultrasonic signal during transmission can be calculated based on the first attribute value, where
  • the first attribute value may include the frequency of the ultrasonic signal received by the ultrasonic receiving device.
  • the second attribute value of the ultrasonic signal during transmission can be obtained from the attribute value, and the Doppler effect area difference of the ultrasonic signal during transmission can be calculated based on the second attribute value.
  • the second attribute value may include the fixed frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • Step S103 Determine the relative motion state of the mobile terminal and the object according to the variance of the signal strength and the Doppler effect area difference, and control the display screen to be in a bright screen state or according to the relative motion state. Information screen status.
  • the mobile terminal after the mobile terminal obtains the Doppler effect area difference and the variance of the signal strength, it can obtain the relative motion state of the mobile terminal and the object based on the Doppler effect area difference and the variance of the signal strength.
  • the relative motion state of the mobile terminal and the object controls the display screen to be in the on-screen state or in the off-screen state, thereby improving the accuracy and stability of the state control of the display screen when the mobile terminal is in a call state, effectively reducing the power consumption of the mobile terminal and reducing The radiation caused by the bright screen when the display is close to the human face.
  • the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver after encountering an object, and the ultrasonic signal is obtained
  • the first attribute value in the transmission process, and the variance of the signal strength of the ultrasonic signal in the transmission process is calculated based on the first attribute value, and the second attribute value of the ultrasonic signal in the transmission process is obtained, and based on the second attribute value
  • Calculate the Doppler effect area difference of the ultrasonic signal in the transmission process judge the relative motion state of the mobile terminal and the object according to the variance of the signal strength and the Doppler effect area difference, and control the display screen to be in the bright screen state according to the relative motion state Or rest screen state, so that by calculating the variance of the signal strength of the ultrasonic signal and the Doppler effect area difference, the display screen is controlled in the bright screen state or the rest screen state to improve the accuracy of detection control.
  • FIG. 6 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 6 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S201 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an object through the ultrasonic receiver.
  • step S201 For the specific description of step S201, please refer to step S101, which will not be repeated here.
  • Step S202 Obtain the first frequency and the second frequency of the ultrasonic signal received by the ultrasonic receiving device.
  • the relative motion state of the mobile terminal relative to the object is essentially the process in which the user picks up the mobile terminal to approach the human body or to move away from the human body when the user is using the mobile terminal.
  • the speed at which the user picks up the mobile terminal changes within a certain range, so that the frequency change of the ultrasonic signal received by the ultrasonic receiving device is also within a certain range, that is, the frequency range of the ultrasonic signal.
  • the first frequency and the second frequency may be selected within the frequency range of the ultrasonic wave, where the first frequency may be greater than the second frequency, and the first frequency may be greater than the second frequency.
  • the first frequency can also be smaller than the second frequency, which is not limited here.
  • the first frequency and the second frequency are adjacent, that is, within the frequency range, the first frequency may be the next frequency of the second frequency or the previous frequency of the second frequency. frequency.
  • f′ is the frequency of the ultrasonic signal reflected by the object received by the ultrasonic receiving device.
  • f is the transmission frequency of the ultrasonic signal transmitted by the ultrasonic transmitter.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiver is [22420Hz, 22580Hz]
  • the maximum and minimum relative speeds between the mobile terminal and the object can be obtained based on historical data, etc., and the ultrasonic waves received by the ultrasonic receiving device can be obtained by reversely deducing the maximum relative speed, the minimum relative speed and the above formula.
  • the frequency range of the signal, and after acquiring the frequency range of the ultrasonic signal received by the ultrasonic receiving device, the first frequency and the second frequency are acquired.
  • Step S203 Obtain a first signal strength corresponding to the first frequency and a second signal strength corresponding to the second frequency.
  • FIG. 7 shows the audio data spectrogram provided by the embodiment of the present application.
  • the frequency spectrum is the abbreviation of frequency spectrum, which is the frequency distribution curve.
  • the discrete Fourier It is obtained by leaf transform.
  • Fig. 7 it is a spectrogram obtained by discrete Fourier transform of a piece of audio data. Each point on the abscissa corresponds to a real frequency value, and the ordinate represents the signal strength of the frequency.
  • Step S204 Based on the first signal strength and the second signal strength, obtain the variance of the signal strength of the ultrasonic signal in the transmission process.
  • calculation may be performed based on the first signal strength and the second signal strength to obtain the variance of the signal strength of the ultrasonic signal during transmission.
  • the first frequency is adjacent to the second frequency
  • the first signal strength is adjacent to the second signal strength
  • the ultrasonic intensity vector is formed by the adjacent first signal strength and the second signal strength
  • the signal intensity change vector is obtained by taking the absolute value of the difference between the ultrasonic intensity of two adjacent frames, and then the signal intensity change vector is calculated by the variance calculation formula to obtain the variance of the signal intensity of the ultrasonic signal in the transmission process, where, Variance represents the difference between each variable (observation value) and the overall mean, and the formula for calculating variance is ⁇ 2 is the population variance, X is the variable, ⁇ is the population mean, and N is the reciprocal of the population.
  • Step S205 Obtain the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • the mobile terminal can obtain the transmission frequency of the ultrasonic signal sent by its built-in ultrasonic transmitter and the frequency range of the ultrasonic signal received by its built-in ultrasonic receiver.
  • the transmission frequency of the ultrasonic signal transmitted by the ultrasonic transmission device may be a fixed frequency. Therefore, the mobile terminal may obtain the transmission frequency based on the set transmission parameters of the ultrasonic signal of the ultrasonic transmission device.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiving device is related to the relative movement relationship between the mobile terminal and the object. Therefore, the range of movement speed of most users in the process of using the mobile terminal can be obtained, and according to its movement The speed change range determines the frequency range of the ultrasonic signal received by the ultrasonic receiving device.
  • Step S206 Determine a frequency change interval based on the transmission frequency and the frequency range.
  • the frequency change interval may be determined based on the transmission frequency and frequency range.
  • the actual frequency f n and the amplitude-frequency vector The relationship between the nth data of X is as follows:
  • f s is the sampling rate
  • fftlen is the data length
  • X[n] represents the intensity of the actual frequency f n .
  • n1 is point_low
  • n2 is point_mid_low
  • n3 is point_mid
  • n4 is point_mid_up
  • n5 is point_up
  • ultrasonic 22500Hz
  • f_min_low 22494Hz
  • f_min_up 22506Hz
  • f_low 22420Hz
  • f_up 22580Hz
  • the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter is point_mid, and the corresponding signal strength is ultrasonic_amp.
  • the frequency range of the ultrasonic signal received by the ultrasonic receiver is point_low to point_up. Therefore, the The frequency range is from point_low to point_mid_low and point_min-up to point_up.
  • the first frequency change interval and the second frequency change interval may be determined based on the transmission frequency and the frequency range. For example, as shown in FIG. 7, the first frequency change interval is point_low to point_mid_low, and the second frequency change interval is point_min-up to point_up.
  • Step S207 Calculate the Doppler effect area difference during the transmission of the ultrasonic signal according to the frequency change interval and the intensity change curve corresponding to the frequency change interval.
  • the intensity change curve corresponding to the frequency change interval may be obtained based on the spectrogram, and based on the frequency change interval and the intensity change curve corresponding to the frequency change interval, the transmission of the ultrasonic signal is calculated.
  • the area of the Doppler effect in the process is poor.
  • the first intensity change curve corresponding to the first frequency change interval may be obtained based on the spectrogram, and based on the first frequency change interval and the first intensity change corresponding to the first frequency change interval Change curve, calculate the first area of the ultrasonic signal in the transmission process, and at the same time, after obtaining the second frequency change interval, the second intensity change curve corresponding to the second frequency change interval can be obtained based on the spectrogram, and based on the first area
  • the second frequency change interval and the second intensity change curve corresponding to the second frequency change interval are calculated, and the second area of the ultrasonic signal in the transmission process is calculated. Further, calculate the difference between the first area and the second area, for example, by subtracting the second area from the first area or subtracting the first area from the second area, to obtain the Doppler effect area of the ultrasonic signal in the transmission process difference.
  • the first frequency change interval is point_low to point_mid_low
  • X is the first intensity change curve corresponding to the first frequency change interval
  • the frequency points between point_low and point_mid_low can be Sum the data to get the first area sum_low:
  • the second frequency change interval is point_min-up to point_up
  • X is the second intensity change curve corresponding to the second frequency change interval
  • the Doppler effect area difference doppler_dif of the ultrasonic signal in the transmission process is obtained:
  • Step S208 Determine the relative movement relationship between the mobile terminal and the object according to the variance of the signal strength and the Doppler effect area difference.
  • step S208 please refer to step S103, which will not be repeated here.
  • Step S209 When the mobile terminal is relatively close to the object, control the display screen to be in the off-screen state.
  • the detection result indicates that the mobile terminal is relatively close to the object
  • it indicates that the relative motion relationship between the mobile terminal and the object is close motion that is, when the mobile terminal is in a call state, the mobile terminal is close to the user's
  • the ears can control the display screen of the mobile terminal in the off-screen state.
  • Step S210 When the mobile terminal is relatively far away from the object, control the display screen to be in a bright screen state.
  • the detection result indicates that the mobile terminal is relatively far away from the object
  • the user's ears can control the display screen of the mobile terminal to be in a bright screen state.
  • Step S211 When the mobile terminal and the object are relatively stationary, or the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal or the object is in a shaking state, control the display The screen remains unchanged from the previous state.
  • the relative static of the mobile terminal and the object may mean that both the mobile terminal and the object remain stationary, or the motion state of the mobile terminal and the object is the same.
  • the mobile terminal and the object have the same motion speed, same motion amplitude, and motion frequency. The same is not limited here.
  • the display screen can be controlled to maintain the previous state unchanged, that is, the mobile terminal During the call state, when the previous state of the display is on, keep the display in the on state unchanged, when the previous state of the display is in the off state, keep the display The screen remains unchanged.
  • the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal or the object is in a shaking state may include: the distance between the mobile terminal and the object remains relatively unchanged, the mobile terminal is in a stationary state, and the object is in a shaking state. Shaking state; the distance between the mobile terminal and the object remains relatively unchanged, the mobile terminal is in a shaking state and the object is in a static state; the distance between the mobile terminal and the object remains relatively unchanged, the mobile terminal is in a shaking state, and the object is in a shaking state .
  • the judgment result indicates that the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal and/or the object is in a shaking state
  • the mobile terminal and the object are in a normal shaking state.
  • the relative distance between objects remains unchanged, and the display can be controlled to maintain the state of the previous time. That is to say, when the mobile terminal is in the call state, when the display is on the state of the previous time, then Keep the display screen in the on-screen state unchanged. When the previous state of the display screen is the off-screen state, keep the display screen in the off-screen state unchanged.
  • this embodiment also calculates the ultrasonic wave based on the two signal strengths corresponding to the two frequencies of the ultrasonic signal received by the ultrasonic receiving device.
  • the variance of the signal strength of the signal is calculated based on the transmission frequency of the ultrasonic transmitter device and the frequency change interval of the ultrasonic receiver device to calculate the Doppler effect area difference to improve the accuracy of the calculation.
  • this embodiment also controls the display screen to be in a different state when the mobile terminal is relatively close to the object, relatively far away, relatively static, and shakes, so as to improve the accuracy and stability of the display control.
  • FIG. 8 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 8 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S301 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an object through the ultrasonic receiver.
  • Step S302 Obtain the first frequency and the second frequency of the ultrasonic signal received by the ultrasonic receiving device.
  • Step S303 Obtain the first signal strength corresponding to the first frequency and the second signal strength corresponding to the second frequency.
  • Step S304 Based on the first signal strength and the second signal strength, obtain the variance of the signal strength of the ultrasonic signal in the transmission process.
  • Step S305 Obtain the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • Step S306 Determine a frequency change interval based on the transmission frequency and the frequency range.
  • Step S307 Calculate the Doppler effect area difference during the transmission of the ultrasonic signal according to the frequency change interval and the intensity change curve corresponding to the frequency change interval.
  • step S301 to step S307 please refer to step S201 to step S207, which will not be repeated here.
  • Step S308 Obtain a target feature vector according to the variance of the signal strength and the Doppler effect area difference.
  • the target feature vector can be obtained based on the Doppler effect area difference and the variance of the signal strength, so as to obtain the mobile terminal and the object according to the target feature vector.
  • the relative motion relationship between the mobile terminal and the object, and the state of the display screen is controlled based on the relative motion relationship between the mobile terminal and the object.
  • the mobile terminal may perform logarithmic processing on the variance of the signal strength to obtain the first eigenvector corresponding to the variance of the signal strength, so as to make the variance of the signal strength more trendy. Clear and clear. Specifically, in this embodiment, it can be based on The variance of the signal strength is calculated to obtain the first feature vector, where ultrasonic_amp_dif_var_log is the first feature vector, ultrasonic_amp_dif_var is the variance of the signal strength, and ultrasonic_amp_dif_var_log_scale is the amplification factor. As a way, multiple adjacent ultrasonic_amp_dif_var_logs are combined into a vector ultrasonic_amp_dif_var_log, and the vector ultrasonic_amp_dif_var_log is used as the first feature vector.
  • the mobile terminal may process the Doppler effect area difference to obtain the second feature vector corresponding to the Doppler effect area difference.
  • the mobile terminal may process the Doppler effect area difference to obtain the second feature vector corresponding to the Doppler effect area difference.
  • multiple adjacent doppler_difs are combined into a vector doppler_dif, and the vector doppler_dif is used as the second feature vector.
  • the mobile terminal can obtain the target feature vector based on the first feature vector and the second feature vector.
  • Step S309 Input the target feature vector into a trained target classification model, the trained target classification model is used to obtain the change trend of the target feature vector, and output corresponding to the change trend for characterizing the State information of the relative motion state of the mobile terminal and the object.
  • the mobile terminal can input the target feature vector into a trained target classification model, where the trained target classification model is obtained through machine learning. Specifically, first collect Training data set, the attributes or characteristics of one type of data in the training data set are distinguished from another type of data, and then the neural network is trained and modeled by the collected training data set according to the preset algorithm, so as to summarize based on the training data set The rule is drawn, and the trained target classification model is obtained, where the trained target classification model may include a traditional SVM or a human-worker neural network, which is not limited here.
  • the training data set may include, for example, the target feature vector and state information, and the state information is used to indicate the on-screen state or the off-screen state of the control display screen.
  • the trained target classification model can be stored locally in the mobile terminal after pre-training is completed. Based on this, after acquiring the target feature vector, the mobile terminal can directly call the trained target classification model locally. For example, it can directly send an instruction to the trained target classification model to indicate that the trained target classification model is in the target
  • the storage area reads the target feature vector, or the mobile terminal can directly input the target feature vector into the trained target classification model stored locally, thereby effectively avoiding the reduction of the target feature vector input to the trained target classification model due to the influence of network factors.
  • Speed in order to improve the speed at which the trained target classification model obtains target feature vectors and improve user experience.
  • the trained target classification model can also be stored in a server communicating with the mobile terminal after pre-training is completed. Based on this, after the mobile terminal obtains the target feature vector, it can send an instruction through the network to the trained target classification model stored in the server to instruct the trained target classification model to read the target feature vector obtained by the mobile terminal through the network. Or the mobile terminal can send the target feature vector to the trained target classification model stored in the server through the network, so that by storing the trained target classification model in the server, the storage space of the mobile terminal is reduced and the need for The impact of the normal operation of the mobile terminal.
  • Step S310 Obtain the state information output by the trained target classification model.
  • the trained target classification model outputs corresponding state information based on the read target feature vector, and the mobile terminal obtains the state information output by the trained target classification model. It is understandable that if the trained target classification model is stored locally in the mobile terminal, the mobile terminal directly obtains the status information output by the trained target classification model; if the trained target classification model is stored in the server, the The mobile terminal can obtain the state information output by the trained target classification model from the server through the network.
  • Step S311 Control the display screen to be in the on-screen state or the off-screen state based on the state information.
  • the mobile terminal controls the display screen to be in the on-screen state or the off-screen state based on the status information output by the trained target classification model, thereby improving the recognition success rate of the mobile terminal in different scenarios and improving the brightness of the display screen.
  • the control accuracy and stability of the screen is a condition in which the display screen is in which the mobile terminal is in.
  • the screen state control method provided by another embodiment of the present application also calculates the ultrasonic wave based on two signal strengths corresponding to the two frequencies of the ultrasonic signal received by the ultrasonic receiving device.
  • the variance of the signal strength of the signal is calculated based on the transmission frequency of the ultrasonic transmitter device and the frequency change interval of the ultrasonic receiver device to calculate the Doppler effect area difference to improve the accuracy of the calculation.
  • this embodiment also obtains the relative motion state of the mobile terminal and the object through the trained target classification model and controls the state of the display screen, so as to improve the accuracy and stability of the display screen control through the machine model.
  • FIG. 9 shows a schematic flowchart of a screen state control method provided by another embodiment of the present application. This method is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitter, an ultrasonic receiver, and a display screen.
  • the flow shown in FIG. 9 will be described in detail below.
  • the screen state control method may specifically include the following steps:
  • Step S401 When the mobile terminal is in a call state, send an ultrasonic signal through the ultrasonic transmitter, and receive an ultrasonic signal returned by the ultrasonic signal after encountering an object through the ultrasonic receiver.
  • Step S402 Obtain the first frequency and the second frequency of the ultrasonic signal received by the ultrasonic receiving device.
  • Step S403 Obtain the first signal strength corresponding to the first frequency and the second signal strength corresponding to the second frequency.
  • Step S404 Based on the first signal strength and the second signal strength, obtain the variance of the signal strength of the ultrasonic signal in the transmission process.
  • Step S405 Obtain the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • Step S406 Determine a frequency change interval based on the sending frequency and the frequency range.
  • Step S407 According to the frequency change interval and the intensity change curve corresponding to the frequency change interval, calculate the Doppler effect area difference during the transmission of the ultrasonic signal.
  • Step S408 Based on The variance of the signal strength is calculated to obtain a first feature vector, where ultrasonic_amp_dif_var_log is the first feature vector, ultrasonic_amp_dif_var is the variance of the signal strength, and ultrasonic_amp_dif_var_log_scale is the amplification factor.
  • Step S409 Use the Doppler effect area difference as a second feature vector.
  • step S401 to step S409 please refer to step S301 to step S308, which will not be repeated here.
  • Step S410 When the first feature vector and the second feature vector both satisfy the first condition, it is determined that the mobile terminal is relatively close to the object, and the first condition is a positive value and changes from small to large.
  • the first feature vector is ultrasonic_amp_dif_var_log
  • the second feature vector is doppler_dif. It can be known from Figures 10 and 11 that when the mobile terminal is relatively close to the object, the first feature vector ultrasonic_amp_dif_var_log and the second feature vector doppler_dif are both determined by The smaller positive value gradually rises to the larger positive value. Therefore, when the first feature vector ultrasonic_amp_dif_var_log and the second feature vector doppler_dif both satisfy the first condition (positive value and from small to large), it can be determined that the mobile terminal is relatively close to the object, and the target feature vector can be marked as close state.
  • Step S411 When the first feature vector satisfies a second condition and the second feature vector satisfies a third condition, it is determined that the mobile terminal is relatively far away from the object, and the second condition is a positive value and is increased If it becomes smaller, the third condition is negative and becomes larger.
  • Step S412 When the first feature vector does not satisfy the first condition and the second condition and the second feature vector does not satisfy the first condition and the third condition, determine the mobile terminal It is relatively stationary with the object, or the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal or the object is in a shaking state.
  • the target feature vector can be marked as a normal state.
  • Step S413 Control the display screen to be in the on-screen state or the off-screen state according to the relative motion state.
  • step S413 For the specific description of step S413, please refer to step S103, which will not be repeated here.
  • this embodiment also calculates ultrasonic waves based on the two signal intensities corresponding to the two frequencies of the ultrasonic signals received by the ultrasonic receiving device.
  • the variance of the signal strength of the signal is calculated based on the transmission frequency of the ultrasonic transmitter device and the frequency change interval of the ultrasonic receiver device to calculate the Doppler effect area difference to improve the accuracy of the calculation.
  • this embodiment also controls the display screen to be in the on-screen state or the off-screen state according to whether the first feature vector satisfies the first condition and the second condition, and whether the second feature vector satisfies the first condition and the third condition, to improve control The accuracy and stability.
  • FIG. 12 shows a block diagram of a screen state control apparatus 200 provided by an embodiment of the present application.
  • the screen state control device 200 is applied to the above-mentioned mobile terminal.
  • the mobile terminal includes an ultrasonic transmitting device, an ultrasonic receiving device and a display screen.
  • the above-mentioned screen state control device 200 includes an ultrasonic signal transceiving module 210, a computing module 220, and a state control module 230. among them:
  • the ultrasonic signal transceiving module 210 is used to transmit the ultrasonic signal through the ultrasonic transmitting device when the mobile terminal is in a call state, and to receive the ultrasonic signal returned by the ultrasonic signal after encountering an object through the ultrasonic receiving device .
  • the calculation module 220 is configured to obtain the first attribute value of the ultrasonic signal during transmission, calculate the variance of the signal strength of the ultrasonic signal during transmission based on the first attribute value, and obtain the And the second attribute value of the ultrasonic signal during transmission, and the Doppler effect area difference of the ultrasonic signal during transmission is calculated based on the second attribute value. Further, the calculation module 220 includes: a receiving frequency obtaining submodule, a signal strength obtaining submodule, and a signal strength variance obtaining submodule, wherein:
  • the receiving frequency acquisition sub-module is used to acquire the first frequency and the second frequency of the ultrasonic signal received by the ultrasonic receiving device.
  • the signal strength acquisition sub-module is configured to acquire the first signal strength corresponding to the first frequency and the second signal strength corresponding to the second frequency.
  • the signal strength variance obtaining sub-module is configured to obtain the variance of the signal strength of the ultrasonic signal during transmission based on the first signal strength and the second signal strength. Further, the signal strength variance obtaining submodule includes: a signal strength variation vector obtaining unit and a signal strength variance obtaining unit, wherein:
  • ultrasonic_amp_dif is the signal strength change vector
  • ultrasonic_amp[n] is the result
  • the first signal strength, ultrasonic_amp[n-1] is the second signal strength.
  • the unit of obtaining the variance of the signal strength is used based on The signal intensity change vector is calculated to obtain the variance of the signal intensity of the ultrasonic signal in the transmission process, where: ultrasonic_amp_dif_var is the variance of the signal intensity, and N is the length of the signal intensity variation vector.
  • calculation module 220 further includes: a frequency acquisition submodule, a frequency change interval determination submodule, and an area difference calculation submodule, wherein:
  • the frequency acquisition sub-module is used to acquire the transmission frequency of the ultrasonic signal sent by the ultrasonic transmitter and the frequency range of the ultrasonic signal received by the ultrasonic receiver.
  • the frequency change interval determination sub-module is configured to determine the frequency change interval based on the transmission frequency and the frequency range. Further, the frequency change interval determination submodule includes: a frequency change interval determination unit, wherein:
  • the frequency change interval determining unit is configured to determine a first frequency change interval and a second frequency change interval based on the transmission frequency and the frequency range.
  • the area difference calculation sub-module is configured to calculate the Doppler effect area difference of the ultrasonic signal in the transmission process of the ultrasonic signal according to the frequency change interval and the intensity change curve corresponding to the frequency change interval. Further, the area difference calculation sub-module includes: a first area calculation unit, a second area calculation unit, and an area difference calculation unit, wherein:
  • the first area calculation unit is configured to calculate the first area according to the first frequency change interval and the first intensity change curve corresponding to the first frequency change interval.
  • the second area calculation unit is configured to calculate and obtain a second area according to the second frequency change interval and a second intensity change curve corresponding to the second frequency change interval.
  • the area difference calculation unit is configured to calculate the difference between the first area and the second area, and obtain the Doppler effect area difference during the transmission of the ultrasonic signal.
  • the state control module 230 is configured to determine the relative motion state of the mobile terminal and the object according to the variance of the signal strength and the Doppler effect area difference, and control the display screen to be in position according to the relative motion state. Bright screen state or rest screen state. Further, the state control module 230 includes: a relative motion relationship judgment sub-module, a screen rest state control sub-module, a bright screen state control sub-module, and a state maintenance sub-module, wherein:
  • the relative motion relationship determination sub-module is configured to determine the relative motion relationship between the mobile terminal and the object according to the variance of the signal strength and the Doppler effect area difference.
  • the screen rest state control sub-module is used to control the display screen to be in the screen rest state when the mobile terminal is relatively close to the object.
  • the bright screen state control sub-module is used to control the display screen to be in a bright screen state when the mobile terminal is relatively far away from the object.
  • the state maintaining sub-module is used for when the mobile terminal and the object are relatively stationary, or the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal or the object is in a shaking state, Control the display screen to keep the previous state unchanged.
  • the state control module 230 further includes: a target feature vector obtaining submodule, a target feature vector input submodule, a state information obtaining submodule, and a state control submodule, wherein:
  • the target feature vector obtaining submodule is configured to obtain a target feature vector according to the variance of the signal strength and the Doppler effect area difference. Further, the target feature vector obtaining submodule includes: a first feature vector obtaining unit, a second feature vector obtaining unit, and a target feature vector obtaining unit, wherein:
  • the first feature vector obtaining unit is used based on The variance of the signal strength is calculated to obtain a first feature vector, where ultrasonic_amp_dif_var_log is the first feature vector, ultrasonic_amp_dif_var is the variance of the signal strength, and ultrasonic_amp_dif_var_log_scale is the amplification factor.
  • the second feature vector obtaining unit is configured to use the Doppler effect area difference as the second feature vector.
  • the target feature vector obtaining unit is configured to obtain the target feature vector based on the first feature vector and the second feature vector. Further.
  • the target feature vector obtaining unit includes: a target feature vector obtaining subunit, wherein:
  • the feature vector, ultrasonic_amp_dif_var_log is the first feature vector, and doppler_dif is the second feature vector.
  • the target feature vector input sub-module is used to input the target feature vector into a trained target classification model, the trained target classification model is used to obtain the change trend of the target feature vector, and the output corresponds to the change trend
  • the state information used to characterize the relative motion state of the mobile terminal and the object.
  • the status information acquisition sub-module is used to acquire the status information output by the trained target classification model.
  • the state control sub-module is used to control the display screen to be in the on-screen state or the off-screen state based on the state information.
  • the state control module 230 further includes: a first determining sub-module, a second determining sub-module, and a third determining sub-module, wherein:
  • the first determining submodule is configured to determine that the mobile terminal is relatively close to the object when the first feature vector and the second feature vector both satisfy a first condition, and the first condition is a positive value and From small to large.
  • the second determining submodule is configured to determine that the mobile terminal is relatively far away from the object when the first feature vector satisfies a second condition and the second feature vector satisfies a third condition, and the second condition is A positive value changes from large to small, and the third condition is a negative value and changes from small to large.
  • the third determining sub-module is configured to: when the first feature vector does not satisfy the first condition and the second condition and the second feature vector does not satisfy the first condition and the third condition, It is determined that the mobile terminal and the object are relatively stationary, or the distance between the mobile terminal and the object remains relatively unchanged and the mobile terminal or the object is in a shaking state.
  • the coupling between the modules may be electrical, mechanical or other forms of coupling.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 13 shows a structural block diagram of a mobile terminal 100 provided by an embodiment of the present application.
  • the mobile terminal 100 may be an electronic device capable of running application programs, such as a smart phone, a tablet computer, or an e-book.
  • the mobile terminal 100 in this application may include one or more of the following components: a processor 110, a memory 120, a display screen 130, an ultrasonic transmitter 140, an ultrasonic receiver 150, and one or more application programs, of which one or more applications
  • the program may be stored in the memory 120 and configured to be executed by one or more processors 110, and the one or more programs are configured to execute the methods described in the foregoing method embodiments.
  • the processor 110 may include one or more processing cores.
  • the processor 110 uses various interfaces and lines to connect various parts of the entire mobile terminal 100, and executes by running or executing instructions, programs, code sets, or instruction sets stored in the memory 120, and calling data stored in the memory 120.
  • the processor 110 may use at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 110 may be integrated with one or a combination of a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), and a modem.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CPU mainly processes the operating system, user interface, and application programs
  • the GPU is used for rendering and drawing of display content
  • the modem is used for processing wireless communication. It can be understood that the above-mentioned modem may not be integrated into the processor 110, but may be implemented by a communication chip alone.
  • the memory 120 may include random access memory (RAM) or read-only memory (Read-Only Memory).
  • the memory 120 may be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 120 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing the operating system and instructions for implementing at least one function (such as touch function, sound playback function, image playback function, etc.) , Instructions for implementing the following method embodiments, etc.
  • the data storage area can also store data (such as phone book, audio and video data, chat record data) created by the terminal 100 during use.
  • the display screen 130 is used to display information input by the user, information provided to the user, and various graphical user interfaces of the mobile terminal 100. These graphical user interfaces can be composed of graphics, text, icons, numbers, videos, and any combination thereof.
  • the display screen 130 may be a liquid crystal display (LCD) or an organic light-emitting diode (OLED), which is not limited herein.
  • FIG. 14 shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable medium 300 stores program code, and the program code can be invoked by a processor to execute the method described in the foregoing method embodiment.
  • the computer-readable storage medium 300 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 300 includes a non-transitory computer-readable storage medium.
  • the computer-readable storage medium 300 has a storage space for the program code 310 for executing any method steps in the above methods. These program codes can be read out from or written into one or more computer program products.
  • the program code 310 may be compressed in an appropriate form, for example.
  • the screen state control method, device, mobile terminal, and storage medium provided by the embodiments of this application, when the mobile terminal is in a call state, the ultrasonic signal is sent through the ultrasonic transmitter, and the ultrasonic signal is received by the ultrasonic receiver.
  • the ultrasonic signal in the transmission process of the ultrasonic signal returned after arriving at the object and calculate the variance of the signal strength of the ultrasonic signal in the transmission process based on the first attribute value, and obtain the ultrasonic signal in the transmission process Calculate the Doppler effect area difference of the ultrasonic signal in the transmission process based on the second attribute value, and judge the relative motion state of the mobile terminal and the object based on the variance of the signal strength and the Doppler effect area difference , According to the relative motion state to control the display screen to be in the bright screen state or the rest screen state, so as to control the display screen to be in the bright screen state or the rest screen state by calculating the variance of the signal strength of the ultrasonic signal and the Doppler effect area difference to improve the detection control The accuracy rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

本申请公开了一种屏幕状态控制方法、装置、移动终端以及存储介质。当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到物体后返回的超声波信号,获取超声波信号在传输的过程中的第一属性值,并基于第一属性值计算信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于第二属性值计算多普勒效应面积差,根据信号强度的方差和多普勒效应面积差,判断移动终端与物体的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态。本申请通过计算超声波信号的信号强度的方差和多普勒效应面积差控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。

Description

屏幕状态控制方法、装置、移动终端以及存储介质
相关申请的交叉引用
本申请要求于2019年07月31日提交的申请号为CN201910701478.X的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本申请涉及移动终端技术领域,更具体地,涉及一种屏幕状态控制方法、装置、移动终端以及存储介质。
背景技术
随着移动终端的全面屏设计的流行,为了节省移动终端的顶部空间已经有更多厂家在移动终端上采用超声波接近检测方案来代替传统的红外接近检测方案。
发明内容
鉴于上述问题,本申请提出了一种屏幕状态控制方法、装置、移动终端以及存储介质,以解决上述问题。
第一方面,本申请实施例提供了一种屏幕状态控制方法,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述方法包括:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号;获取超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算超声波信号在传输的过程中的信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于所述第二属性值计算超声波信号在传输的过程中的多普勒效应面积差;根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
第二方面,本申请实施例提供了一种屏幕状态控制装置,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述装置包括:超声波信号收发模块,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送的超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号;计算模块,用于获取所述超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算所述超声波信号在传输的过程中的信号强度的方差,以及获取所述超声波信号在传输的过程中的和第二属性值,并基于所述第二属性值计算所述超声波信号在传输的过程中的多普勒效应面积差;状态控制模块,用于根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
第三方面,本申请实施例提供了一种移动终端,包括超声波发送装置、超声波接收装置、显示屏、存储器以及处理器,所述超声波发送装置、所述超声波接收装置、所述显示屏以及所述存储器和存储器耦接到所述处理器,所述存储器存储指令,当所述指令由所述处理器执行时所述处理器执行上述方法。
第四方面,本申请实施例提供了一种计算机可读取存储介质,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行上述方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了本申请实施例提供的超声波的传播路径的示意图;
图2示出了本申请实施例提供的物体和移动终端在相对接近、静止、远离过程中的doppler_dif的变化规律示意图;
图3示出了本申请实施例提供的物体和移动终端在相对接近、抖动、远离过程中的doppler_dif的变化规律示意图;
图4示出了本申请一个实施例提供的屏幕状态控制方法的流程示意图;
图5示出了本申请实施例提供的超声波发送、接收和数据处理流程示意图;
图6示出了本申请又一个实施例提供的屏幕状态控制方法的流程示意图;
图7示出了本申请实施例提供的音频数据频谱图;
图8示出了本申请再一个实施例提供的屏幕状态控制方法的流程示意图;
图9示出了本申请另一个实施例提供的屏幕状态控制方法的流程示意图;
图10示出了本申请实施例提供的物体和移动终端在相对接近、静止、远离过程中的doppler_dif和ultrasonic_amp_dif_var_log的变化规律示意图;
图11示出了本申请实施例提供的物体和移动终端在相对接近、抖动、远离过程中的doppler_dif和ultrasonic_amp_dif_var_log的变化规律示意图;
图12示出了本申请实施例提供的屏幕状态控制装置的模块框图;
图13示出了本申请实施例用于执行根据本申请实施例的屏幕状态控制方法的移动终端的框图;
图14示出了本申请实施例的用于保存或者携带实现根据本申请实施例的屏幕装备控制方法的程序代码的存储单元。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
随着移动终端的全面屏设计的流行,为了节省移动终端的顶部空间,已经有更多厂家在移动终端上采用超声波接近监测方案来替代传统的红外接近检测方案。移动终端通过超射波发送装置(如听筒、喇叭、专用超声波发射器等)发射超声波,一部分超声波通过空气传播直达超声波接收装置(拾音器)(如图1的路径1),一部分超声波通过空气传播与物体形成反射后再到达超声波接收装置(如图1的路径2)。超声波接收装置拾取到的是直达声和反射声的叠加信号,经过A/D转换器转化为音频信号。通过算法处理音频数据得到物体相对移动终端的运行状态,进而指导移动终端的显示屏处于亮屏状态或息屏状态。
发明人经过研究发现,移动终端通过超声波实现物体与移动终端的相对运动状态的识别可以包括如下方法:
(一)时间差方法
移动终端的超声波发送装置间隔发射超声频段的扫描信号,移动终端的超声波接收装置接收到反射和直达的超声波信号,算法通过对比接收到不同超声波信号的时间差来确定物体与移动终端之间的相对距离,通过相对距离也可以计算出相对速度,根据相对距离和相对速度可以进一步判断移动终端和物体之间的相对运动状态。但是该方法的抗干扰能力差,当环境中存在一些超声波噪声干扰时,识别结果会产生较大误差。
(二)相位差方法
移动终端的超声波发送装置发送连续的超声波信号,接收端通过计算发送信号和接收信号之间的相关性指标,确定超声波经过反射后达到超声波接收装置产生的相位差,根据相位差来确定物体与移动终端的相对距离,通过相对距离也可以计算出相对速度,根据相对距离和相对速度可以进一步判断移动终端和物体的相对运动状态。但是该方法的抗干扰能力差,当环境中存在一些超声波噪声干扰时,识别结果会产生较大误差。
(三)以多普勒效应面积差为音频特征的方法
通过对超声波发送频率以上和以下的频率范围内的频谱强度求差,得到多普勒效应面积差:
doppler_dif=sum_up-sum_low
如图2所示,物体相对于移动终端不同的运动状态可以引起多普勒效应面积差doppler_dif有规律的变化,当物体以一定的速度接近移动终端时,doppler_dif取得较大的正值;当物体以一定的速度远离移动终端时,doppler_dif取得较小的负值;当物体与移动终端相对静止时,doppler_dif取得接近0的值。
进一步地,可以通过设置正负阈值来确定物体相对移动终端的运动状态。当doppler_dif大于参考1threshold1时,判断为close状态;当doppler_dif小于参考2threshold2时,判断为away状态;当doppler_dif介于threshold1和threshold2之间时,判断为normal状态。算法判断为close状态时,控制移动终端的显示屏处于息屏状态;算法判断为away状态时,控制移动终端的显示屏处于亮屏状态;算法判断为normal状态时,控制移动终端屏幕状态保持上一次的状态不变。但是该方法在物体或移动终端处于抖动状态时,doppler_dif会在短时间内在较大的正值和较小的负值之间反复变化(如错误!未找到引用源。),此时移动终端会出现连续的闪屏问题。
针对上述问题,发明人经过长期的研究发现,并提出了本申请实施例提供的屏幕状态控制方法、装置、移动终端以及存储介质,通过计算超声波信号的信号强度的方差和多普勒效应面积差控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。其中,具体的屏幕状态控制方法在后续的实施例中进行详细的说明。
请参阅图4,图4示出了本申请一个实施例提供的屏幕状态控制方法的流程示意图。所述屏幕状态控制方法用于计算超声波信号的信号强度的方差和多普勒效应面积差控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。在具体的实施例中,所述屏幕状态控制方法应用于如图12所示的屏幕状态控制装置200以及配置有所述屏幕状态控制装置200的移动终端100(图13)。下面将以移动终端为例,说明本实施例的具体流程,当然,可以理解的,本实施例所应用的移动终端可以为智能手机、平板电脑、穿戴式电子设备等,在此不做限定。其中,在本实施例中,该移动终端可以包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图4所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S101:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号。
在本实施例中,移动终端同时包括超声波发送装置和超声波接收装置。在超声波发送装置相对物体运动的过程中,其实质是移动终端相对物体运动,从而超声波接收装置也相对物体运动。根据多普勒效应,物体辐射的波长因为波源(移动终端)和观测者(物体)的相对运动而产生变化,多普勒效应公式如下:
Figure PCTCN2020102329-appb-000001
其中,f'为观察到的频率、f为发射源于该介质中的原始发射频率、v为波在该介质中的传播速度、v 0为观察者移动速度,若观察者接近发射源则前方运算符号为+号,反之则为-号;v s为发射源移动速度,若物体接近观察者则前方运算符号为-号,反之则为+号。由多普勒效应公式可知,当发射源与观察者相对接近时,观察者接收到的信号频率会变大;当发射源与观察者相对远离时,观察者接收到的信号频率会变小;当发射源与观察者相对静止时,观察者接收到信号频率与发射源一致。
在本实施例中,移动终端可以通过内置的监听模块对所述移动终端的来电或去电进行实时监听,当监听到移动终端处于响铃开始(CALL_STATE_RINGING)来电时或拨打操作去电时,对所述移动终端是否进入通话状态进行监听。其中,在移动终端进行拨打操作去电时,会发出系统广播,移动终端可以使用Broadcast Receiver来监听,另外,监听移动终端是否处于通话状态可以为监听移动终端在来电或去电后是否处于通话中的界面,其中,当监听到所述移动终端处于通话中(CALL_STATE_OFFHOOK)时,可以确定移动终端处于通话状态。
在一些实施方式中,当监听到移动终端处于通话状态时,可以通过移动终端内置的超声波发送装置发送固定频率的超声波信号,可以理解的是,超声波发送装置发送的超声波信号中的一部分通过空气传播直达超声波接收装置,另一部分通过空气传播与物体形成反射后再达到超声波接收装置,超声波接收装置拾取到的是直达声和反射声的叠加信号,经过A/D转换为音频信号,其中,该物体可以包括人脸、人体等。例如,如图5所示,通过移动终端内置的听筒、喇叭或者专用超声波发射器发送固定频率的超声波信号,超声波信号的一部分通过空气传播直达拾音器,另一部分通过空气传播与物体形成反射后再达到拾音器,拾音器拾取到的是直达声和反射声的叠加信号,经过A/D转换为音频信号。
在本实施例中,当移动终端处于通话状态时,可以通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到物体后返回的超声波信号,或者从超声波接收装置接收到的超声波信号(直达声和反射声)中提取超声波信号在遇到物体后返回的超声波信号(反射声),在此不做限定。
步骤S102:获取超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算超声波信号在传输的过程中的信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于所述第二属性值计算超声波信号在传输的过程中的多普勒效应面积差。
在一些实施方式中,当移动终端通过超声波接收装置接收到超声波信号后,可以获取该超声波信号在传输过程中的属性值,并基于属性值计算该超声波信号在传输过程中的多普勒效应面积差和信号强度的方差。其中,传输过程中可以包括超声波信号发送的过程以及超声波信号接收的过程,该属性值可以包括超声波发送装置发送的超声波信号的发送频率、发送幅值、发送时间等,超声波接收装置所接收的超声波信号的频率变化范围、接收幅值、接收时间等。
具体地,在本实施例中,可以从属性值中获取超声波信号在传输的过程中的第一属性值,并基于该第一属性值计算超声波信号在传输的过程中的信号强度的方差,其中,该第一属性值可以包括超声波接收装置接收到的超声波信号的频率。
具体地,在本实施例中,可以从属性值中获取超声波信号在传输的过程中的第二属性值,并基于该第二属性值计算超声波信号在传输的过程中的多普勒效应面积差,其中,该第二属性值可以包括超声波发送装置发送的超声波信号的固定频率以及超声波接收装置接收到的超声波信号的频率范围。
步骤S103:根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
在一些实施方式中,移动终端在获取多普勒效应面积差和信号强度的方差后,可以基于该多普勒效应面积差和信号强度的方差,获取移动终端与物体的相对运动状态,并根据移动终端与物体的相对运动状态控制显示屏处于亮屏状态或息屏状态,从而提升显示屏在移动终端处于通话状态下的状态控制的准确率和稳定性,有效降低移动终端的功耗以及降低显示屏在靠近人脸时处于亮屏状态对人脸造成的辐射。
本申请一个实施例提供的屏幕状态控制方法,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到物体后返回的超声波信号,获取超声波信号在传输的过程中的第一属性值,并基于第一属性值计算超声波信号在传输过程中的信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于第二属性值计算超声波信号在传输的过程中的多普勒效应面积差,根据信号强度的方差和多普勒效应面积差,判断移动终端与物体的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态,从而通过计算超声波信号的信号强度的方差和多普勒效应面积差控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。
请参阅图6,图6示出了本申请又一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图6所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S201:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号。
其中,步骤S201的具体描述请参阅步骤S101,在此不再赘述。
步骤S202:获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率。
在本实施例中,在移动终端处于通话状态时,移动终端相对物体的相对运动状态,其实质为用户在使用移动终端的过程中,用户拿起移动终端靠近人体或远离人体的过程,考虑到用户拿起移动终端的速度在一定范围内变化,从而使超声波接收装置接收到的超声波信号的频率变化也相应在一定的范围内,即超声波信号的频率范围。在一些实施方式中,在获取超声波接收装置接收到的超声波信号的频率范围后,可以在超声波的频率范围内选取第一频率和第二频率,其中,该第一频率可以大于第二频率,第一频率也可以小于第二频率,在此不做限定。可选地,在本实施例中,该第一频率和第二频率相邻,也就是说,在频率范围内,该第一频率可以为第二频率的下一频率或第二频率的上一频率。
具体地,基于多普勒效应公式可知,f'为超声波接收装置接收到的物体反射的超声波信号的频率。f为超声波发送装置发送的超声波信号的发送频率。v为声音在空气中的传播速度,取340m/s。假设移动终端是静止的,则v s=0。如果物体相对终端的运动速度为v 01,则多普勒效应公式中物体的移动速度为v 0=2v 01。假设超声波发送装置发送的超声波信号的发送频率为ultrasonic=22500Hz,超声波接收装置接收的超声波信号的频率范围为[22420Hz,22580Hz],则根据多普勒效应能够识别到的物体与移动终端最大相对速度为:
Figure PCTCN2020102329-appb-000002
若进行傅里叶变换(fast Fourier Transform,DFT)的数据长度为fftlen=8192,音频数据采样率为fs=48kHz,则DFT结果的频率分辨率为:
Figure PCTCN2020102329-appb-000003
则由式
Figure PCTCN2020102329-appb-000004
和式
Figure PCTCN2020102329-appb-000005
则能够识别到的物体与移动终端最小相对速度为:
Figure PCTCN2020102329-appb-000006
因此,在本实施例中,可以基于历史数据等获取移动终端与物体的最大相对速度和最小相对速度,并通过最大相对速度、最小相对速度以及上述公式反向推导获取该超声波接收装置接收的超声波信号的频率范围,以及在获取超声波接收装置接收的超声波信号的频率范围后,获取第一频率和第二频率。
步骤S203:获取所述第一频率对应的第一信号强度和所述第二频率对应的第二信号强度。
其中,如图7所示,图7示出了本申请实施例提供的音频数据频谱图,频谱为频率谱的简称,是频率的分布曲线,对于离散的音频数据采样点,可以通过离散傅里叶变换获得,于图7中,其为一段音频数据经过离散傅里叶变换得到的频谱图,横坐标的每个点各自对应一个现实中的频率值,纵坐标代表该频率的信号强度。因此,在本实施例中,作为第一种方式,在获取第一频率和第二频率后,可以对第一频率进行傅里叶变换获得该第一频率对应的第一信号强度,以及对第二频率进行傅里叶变换获得第二频率对应的第二信号强度。作为第二种方式,在超声波接收装置接收到超声波信号后,对接收到的每一帧超声波信号的频率均进行傅里叶变换获得各帧超声波信号的频率对应的信号强度,并从中选取第一频率对应的第一信号强度和第二频率对应的第二信号强度。
步骤S204:基于所述第一信号强度和所述第二信号强度,获得超声波信号在传输的过程中的信号强度的方差。
在一些实施方式中,在获取第一信号强度和第二信号强度后,可以基于第一信号强度和第二信号强度进行计算,获得超声波信号在传输过程中的信号强度的方差。可选地,在本实施例中,第一频率与第二频率相邻,第一信号强度与第二信号强度相邻,通过相邻的第一信号强度和第二信号强度组成超声波强度向量,对相邻两帧的超声波强度做差后取绝对值可以获得信号强度变化向量,再通过方差计算公式对信号强度变化向量进行计算,获得超声波信号在传输的过程中的信号强度的方差,其中,方差表示每一个变量(观察值)与总体均数之间的差异,方差计算公式为
Figure PCTCN2020102329-appb-000007
σ 2为总体方差,X为变量,μ为总体均值,N为总体倒数。
具体地,先基于ultrasonic_amp_dif=abs(ultrasonic_amp[n]-ultrasonic_amp[n-1])对第一信号强度和第二信号强度进行计算,获得信号强度变化向量,其中,相邻的ultrasonic_amp_dif组成所述信号强度变化向量,ultrasonic_amp[n]为所述第一信号强度,ultrasonic_amp[n-1]为所述第二信号强度。然后,基于
Figure PCTCN2020102329-appb-000008
对所述信号强度变化向量进行计算,获得所述超声波信号在传输的过程中的信号强度的方差,其中,
Figure PCTCN2020102329-appb-000009
ultrasonic_amp_dif_var为所述信号强度的方差,N为所述信号强度变化向量的长度。
步骤S205:获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
在一些实施方式中,移动终端可以获取其内置的超声波发送装置发送的超声波信号的发送频率,以及获取其内置的超声波接收装置接收的超声波信号的频率范围。其中,该超声波发送装置发送的超声波信号的发送频率可以是固定频率,因此,移动终端可以基于已设定的超声波发送装置的超声波信号的发送参数获取该发送频率。另外,该超声波接收装置接收的超声波信号的频率范围和移动终端与物体的相对运动关系相关,因此,可以获取大多数用户在使用移动终端的过程中,其运动速度的变化范围,并根据其运动速度的变化范围确定超声波接收装置接收的超声波信号的频率范围。
步骤S206:基于所述发送频率和所述频率范围确定频率变化区间。
在一些实施方式中,在获取超声波发送装置发送的超声波信号的发送频率以及超声波接收装置接收到的超声波信号的频率范围后,可以基于该发送频率和频率范围确定频率变化区间。请再参阅图7,在一些实施方式中,特征提取模块每次使用长度fftlen=8192的数据模块做DFT变换,得到 相应的幅频向量X如图7所示,实际频率f n与幅频向量X的第n个数据之间的关系如下:
Figure PCTCN2020102329-appb-000010
其中,f s为采样率,fftlen为数据长度。则X[n]代表实际频率f n的强度。
假设算法中考虑的关键频率有n1、n2、n3、n4以及n5,n1为point_low,n2为point_mid_low,n3为point_mid,n4为point_mid_up,n5为point_up,ultrasonic=22500Hz、f_min_low=22494Hz、f_min_up=22506Hz、f_low=22420Hz、f_up=22580Hz,则考虑的关键频率在幅频向量中的序号为:
Figure PCTCN2020102329-appb-000011
Figure PCTCN2020102329-appb-000012
Figure PCTCN2020102329-appb-000013
Figure PCTCN2020102329-appb-000014
Figure PCTCN2020102329-appb-000015
如图7所示,该超声波发送装置发送的超声波信号的发送频率为point_mid,其对应的信号强度为ultrasonic_amp,该超声波接收装置接收到的超声波信号的频率范围为point_low到point_up,因此,可以确定该频率变化区间为point_low到point_mid_low以及point_min-up到point_up。
在一些实施方式中,基于发送频率和频率范围可以确定第一频率变化区间和第二频率变化区间。例如,如图7所示,该第一频率变化区间为point_low到point_mid_low,第二频率变化区间为point_min-up到point_up。
步骤S207:根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差。
在一些实施方式中,在获取频率变化区间后,可以基于频谱图获取该频率变化区间对应的强度变化曲线,并基于该频率变化区间和频率变化区间对应的强度变化曲线,计算该超声波信号在传输过程中的多普勒效应面积差。具体地,在获取第一频率变化区间后,可以基于频谱图获取该第一频率变化区间对应的第一强度变化曲线,并基于该第一频率变化区间和第一频率变化区间对应的第一强度变化曲线,计算该超声波信号在传输过程中的第一面积,同时,在获取第二频率变化区间后,可以基于频谱图获取该第二频率变化区间对应的第二强度变化曲线,并基于该第二频率变化区间和第二频率变化区间对应的第二强度变化曲线,计算该超声波信号在传输过程中的第二面积。进一步地,计算第一面积和第二面积之差,例如,通过第一面积减去第二面积或者通过第二面积减去第一面积,获得该超声波信号在传输过程中的多普勒效应面积差。
例如,在图7所示的频谱图中,该第一频率变化区间为point_low到point_mid_low,X为该第一频率变化区间对应的第一强度变化曲线,则可以对point_low到point_mid_low之间的频点数据求和,得到第一面积sum_low:
Figure PCTCN2020102329-appb-000016
该第二频率变化区间为point_min-up到point_up,X为该第二频率变化区间对应的第二强度变化曲线,则可以对point_min-up到point_up之间的频点数据求和,得到第二面积sum_up:
Figure PCTCN2020102329-appb-000017
根据第一面积sum_low和第二面积sum_up,获得该超声波信号在传输过程中的多普勒效应面积差doppler_dif:
doppler_dif=sum_up-sum_sum
步骤S208:根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动关系。
其中,步骤S208的具体描述请参阅步骤S103,在此不再赘述。
步骤S209:当所述移动终端与所述物体相对靠近时,控制所述显示屏处于息屏状态。
在一些实施方式中,当检测结果表征该移动终端与物体相对靠近时,表征移动终端与物体的相对运动关系为靠近运动,也就是说,当移动终端处于通话状态时,该移动终端贴近用户的耳朵,即可以控制移动终端的显示屏处于息屏状态。
步骤S210:当所述移动终端与所述物体相对远离时,控制所述显示屏处于亮屏状态。
在一些实施方式中,当检测结果表征该移动终端与物体相对远离时,表征该移动终端与物体的相对运动关系为相背运动,也就是说,当移动终端处于通话状态时,该移动终端远离用户的耳朵,即可以控制移动终端的显示屏处于亮屏状态。
步骤S211:当所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态时,控制所述显示屏保持前一次的状态不变。
在一些实施方式中,移动终端与物体相对静止可以为移动终端和物体均保持静止,或者该移动终端与物体的运动状态相同,例如,移动终端与物体的运动速度相同、运动幅度相同、运动频率相同等,在此不做限定。在本实施例中,当判断结果表征该移动终端与物体相对静止时,表征该移动终端与物体的相对运动关系不变,可以控制显示屏保持前一次的状态不变,也就是说,移动终端处于通话状态的过程中,当显示屏在前一次的状态为亮屏状态时,则保持显示屏处于亮屏状态不变,当显示屏在前一次的状态为息屏状态时,则保持显示屏处于息屏状态不变。
在一些实施方式中,移动终端与物体之间的距离相对保持不变且移动终端或物体处于抖动状态可以包括:移动终端与物体之间的距离相对保持不变、移动终端处于静止状态且物体处于抖动状态;移动终端与物体之间的距离相对保持不变、移动终端处于抖动状态且物体处于静止状态;移动终端与物体之间的距离相对保持不变、移动终端处于抖动状态且物体处于抖动状态。在本实施例中,当判断结果表征该移动终端与物体之间的距离相对保持不变且移动终端和/或物体处于抖动状态时,表征移动终端或物体是处于正常的抖动状态,移动终端与物体之间的相对距离保持不变,可以控制显示屏保持前一次的状态不变,也就是说,移动终端处于通话状态的过程中,当显示屏在前一次的状态为亮屏状态时,则保持显示屏处于亮屏状态不变,当显示屏在前一次的状态为息屏状态时,则保持显示屏处于息屏状态不变。
本申请又一个实施例提供的屏幕状态控制方法,相较于图4所示的屏幕状态控制方法,本实施例还基于超声波接收装置接收的超声波信号的两个频率对应的两个信号强度计算超声波信号的信号强度的方差,并基于超声波发送装置的发送频率和超声波接收装置的频率变化区间计算多普勒效应面积差,提升计算的准确性。另外,本实施例还在移动终端与物体相对靠近、相对远离、相对静止且抖动时控制显示屏处于不同的状态,提升显示屏控制的准确率和稳定性。
请参阅图8,图8示出了本申请再一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图8所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S301:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号。
步骤S302:获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率。
步骤S303:获取所述第一频率对应的第一信号强度和所述第二频率对应的第二信号强度。
步骤S304:基于所述第一信号强度和所述第二信号强度,获得超声波信号在传输的过程中的信号强度的方差。
步骤S305:获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
步骤S306:基于所述发送频率和所述频率范围确定频率变化区间。
步骤S307:根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差。
其中,步骤S301-步骤S307的具体描述请参阅步骤S201-步骤S207,在此不再赘述。
步骤S308:根据所述信号强度的方差和所述多普勒效应面积差,获得目标特征向量。
在本实施例中,在获得多普勒效应面积差和信号强度的方差后,可以基于该多普勒效应面积差和信号强度的方差获得目标特征向量,以根据目标特征向量获得移动终端与物体的相对运动关系,以及基于移动终端与物体的相对运动关系对显示屏的状态进行控制。
在一些实施方式中,移动终端在获得信号强度的方差后,可以对信号强度的方差进行对数处理,获得与信号强度的方差对应的第一特征向量,以使信号强度的方差的变化趋势更加清晰明了。具体地,在本实施例中,可以基于
Figure PCTCN2020102329-appb-000018
对信号强度的方差进行计算,以获得第一特征向量,其中,ultrasonic_amp_dif_var_log为所述第一特征向量,ultrasonic_amp_dif_var为所述信号强度的方差,ultrasonic_amp_dif_var_log_scale为放大因子。作为一种方式,将多个相邻的ultrasonic_amp_dif_var_log组合成向量ultrasonic_amp_dif_var_log,将向量ultrasonic_amp_dif_var_log作为第一特征向量。
在一些实施方式中,移动终端在获得多普勒效应面积差后,可以对多普勒效应面积差进行处理,获得与多普勒效应面积差对应的第二特征向量。作为一种方式,将多个相邻的doppler_dif组合成向量doppler_dif,将向量doppler_dif作为第二特征向量。
在本实施例中,移动终端在获取第一特征向量和第二特征向量后,可以基于该第一特征向量和第二特征向量获得目标特征向量。在一些实施方式中,可以基于ferture_vector=[ultrasonic_amp_dif_var_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得目标特征向量,其中,ferture_vector为所述目标特征向量,ultrasonic_amp_dif_var_log为所述第一特征向量,doppler_dif为所述第二特征向量。
步骤S309:将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述物体的相对运动状态的状态信息。
在一些实施方式中,移动终端在获得目标特征向量后,可以将该目标特征向量输入已训练的目标分类模型,其中,该已训练的目标分类模型是通过机器学习获得的,具体地,首先采集训练数据集,训练数据集中的一类数据的属性或特征区别于另一类数据,然后通过将采集的训练数据集按照预设的算法对神经网络进行训练建模,从而基于该训练数据集总结出规律,得到已训练的目标分类模型,其中,该已训练的目标分类模型可以包括传统的SVM,也可以包括人工人神经网络,在此不做限定。于本实施例中,训练数据集例如可以包括目标特征向量和状态信息,该状态信息用于指示控制显示屏的亮屏状态或息屏状态。
可以理解的,该已训练的目标分类模型可以预先训练完成后存储在移动终端本地。基于此,移动终端在获取目标特征向量后,可以直接在本地调用该已训练的目标分类模型,例如,可以直接发送指令至已训练的目标分类模型,以指示该已训练的目标分类模型在目标存储区域读取该目标特征向量,或者移动终端可以直接将目标特征向量输入存储在本地的已训练的目标分类模型,从而有效避免由于网络因素的影响降低目标特征向量输入已训练的目标分类模型的速度,以提升已训练的目标分类模型获取目标特征向量的速度,提升用户体验。
另外,该已训练的目标分类模型也可以预先训练完成后存储在与移动终端通信连接的服务器。基于此,移动终端在获得目标特征向量后,可以通过网络发送指令至存储在服务器的已训练的目标分类模型,以指示该已训练的目标分类模型通过网络读取移动终端获取的目标特征向量,或者移动终端可以通过网络将目标特征向量发送至存储在服务器的已训练的目标分类模型,从而通过将已训练的目标分类模型存储在服务器的方式,减少对移动终端的存储空间的占用,降低对移动终端正常运行的影响。
步骤S310:获取所述已训练的目标分类模型输出的所述状态信息。
在一些实施方式中,已训练的目标分类模型基于读取的目标特征向量输出相应的状态信息,则所述移动终端获取该已训练的目标分类模型输出的该状态信息。可以理解的,若该已训练的目标分类模型存储在移动终端本地,则该移动终端直接获取该已训练的目标分类模型输出的状态信息;若该已训练的目标分类模型存储在服务器,则该移动终端可以通过网络从服务器获取该已训练的目标分类模型输出的状态信息。
步骤S311:基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
在一些实施方式中,移动终端基于已训练的目标分类模型输出的状态信息,控制显示屏处于亮屏状态或息屏状态,从而提高移动终端在不同场景下的识别成功率,提高显示屏的亮屏的控制准确率和稳定性。
本申请再一个实施例提供的屏幕状态控制方法,相较于图4所示的屏幕状态控制方法,本实施例还基于超声波接收装置接收的超声波信号的两个频率对应的两个信号强度计算超声波信号的信号强度的方差,并基于超声波发送装置的发送频率和超声波接收装置的频率变化区间计算多普勒效应 面积差,提升计算的准确性。另外,本实施例还通过已训练的目标分类模型对移动终端与物体的相对运动状态进行获取并对显示屏的状态进行控制,以通过机器模型提升显示屏控制的准确率和稳定性。
请参阅图9,图9示出了本申请另一个实施例提供的屏幕状态控制方法的流程示意图。该方法应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,下面将针对图9所示的流程进行详细的阐述,所述屏幕状态控制方法具体可以包括以下步骤:
步骤S401:当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号。
步骤S402:获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率。
步骤S403:获取所述第一频率对应的第一信号强度和所述第二频率对应的第二信号强度。
步骤S404:基于所述第一信号强度和所述第二信号强度,获得超声波信号在传输的过程中的信号强度的方差。
步骤S405:获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
步骤S406:基于所述发送频率和所述频率范围确定频率变化区间。
步骤S407:根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差。
步骤S408:基于
Figure PCTCN2020102329-appb-000019
对所述信号强度的方差进行计算,获得第一特征向量,其中,ultrasonic_amp_dif_var_log为所述第一特征向量,ultrasonic_amp_dif_var为所述信号强度的方差,ultrasonic_amp_dif_var_log_scale为放大因子。
步骤S409:将所述多普勒效应面积差作为第二特征向量。
其中,步骤S401-步骤S409的具体描述请参阅步骤S301-步骤S308,在此不再赘述。
步骤S410:当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述物体相对靠近,所述第一条件为正值且由小变大。
其中,该第一特征向量为ultrasonic_amp_dif_var_log,第二特征向量为doppler_dif,由图10和图11可以知道,在移动终端与物体相对靠近的过程中,第一特征向量ultrasonic_amp_dif_var_log和第二特征向量doppler_dif均由较小的正值逐步上升至较大的正值。因此,当该第一特征向量ultrasonic_amp_dif_var_log和第二特征向量doppler_dif均满足第一条件(正值且由小变大)时,可以确定该移动终端与物体相对靠近,此时可以将目标特征向量标记为close状态。
步骤S411:当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述物体相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大。
由图10和图11可以知道,在移动终端与物体相对远离的过程中,第一特征向量ultrasonic_amp_dif_var_log由较大的正值下降至较小的正值,第二特征向量doppler_dif由较小的负值逐步上升至0附近。因此,当第一特征向量ultrasonic_amp_dif_var_log满足第二条件(正值且由大变小)且第二特征向量doppler_dif满足第三条件(负值且由小变大)时,可以确定该移动终端与物体相对远离,此时可以将目标特征向量标记为away状态。
步骤S412:当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态。
由图10和图11可以知道,移动终端与物体相对静止,或者移动终端与物体之间的距离相对保持不变且移动终端或物体处于抖动状态时,该第一特征向量ultrasonic_amp_dif_var_log和第二特征向量doppler_dif均不会同时出现移动终端和物体相对靠近或移动终端和物体相对远离过程中的变化趋势。因此,当第一特征向量ultrasonic_amp_dif_var_log不满足第一条件(正值且由小变大)和第二条件(正值且由大变小),以及第二特征向量doppler_dif不满足第一条件(正值且由小变大)和第三条件(负值且由小变大)时,可以确定该移动终端与物体相对静止,或者该移动终端与物体之间的距离相对保持不变且移动终端与物体处于抖动状态,此时,可以将目标特征向量标记为normal状态。
步骤S413:根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
其中,步骤S413的具体描述请参阅步骤S103,在此不再赘述。
本申请另一个实施例提供的屏幕状态控制方法,相较于图4所示的屏幕状态控制方法,本实施例还基于超声波接收装置接收的超声波信号的两个频率对应的两个信号强度计算超声波信号的信号强度的方差,并基于超声波发送装置的发送频率和超声波接收装置的频率变化区间计算多普勒效应面积差,提升计算的准确性。另外,本实施例还根据第一特征向量是否满足第一条件和第二条件,以及第二特征向量是否满足第一条件和第三条件控制显示屏处于亮屏状态或息屏状态,以提升控制的准确率和稳定性。
请参阅图12,图12示出了本申请实施例提供的屏幕状态控制装置200的模块框图。该屏幕状态控制装置200应用于上述移动终端,该移动终端包括超声波发送装置、超声波接收装置以及显示屏,上述屏幕状态控制装置200包括:超声波信号收发模块210、计算模块220以及状态控制模块230,其中:
超声波信号收发模块210,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送的超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号。
计算模块220,用于获取所述超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算所述超声波信号在传输的过程中的信号强度的方差,以及获取所述超声波信号在传输的过程中的和第二属性值,并基于所述第二属性值计算所述超声波信号在传输的过程中的多普勒效应面积差。进一步地,所述计算模块220包括:接收频率获取子模块、信号强度获取子模块以及信号强度的方差获得子模块,其中:
接收频率获取子模块,用于获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率。
信号强度获取子模块,用于获取所述第一频率对应的第一信号强度和所述第二频率对应的第二信号强度。
信号强度的方差获得子模块,用于基于所述第一信号强度和所述第二信号强度,获得超声波信号在传输的过程中的信号强度的方差。进一步地,所述信号强度的方差获得子模块包括:信号强度变化向量获得单元和信号强度的方差获得单元,其中:
信号强度变化向量获得单元,用于基于ultrasonic_amp_dif=abs(ultrasonic_amp[n]-ultrasonic_amp[n-1]),获得信号强度变化向量,其中,ultrasonic_amp_dif为所述信号强度变化向量,ultrasonic_amp[n]为所述第一信号强度,ultrasonic_amp[n-1]为所述第二信号强度。
信号强度的方差获得单元,用于基于
Figure PCTCN2020102329-appb-000020
对所述信号强度变化向量进行计算,获得所述超声波信号在传输的过程中的信号强度的方差,其中,
Figure PCTCN2020102329-appb-000021
ultrasonic_amp_dif_var为所述信号强度的方差,N为所述信号强度变化向量的长度。
进一步地,所述计算模块220还包括:频率获取子模块、频率变化区间确定子模块以及面积差计算子模块,其中:
频率获取子模块,用于获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信号的频率范围。
频率变化区间确定子模块,用于基于所述发送频率和所述频率范围确定频率变化区间。进一步地,所述频率变化区间确定子模块包括:频率变化区间确定单元,其中:
频率变化区间确定单元,用于基于所述发送频率和所述频率范围确定第一频率变化区间以及第二频率变化区间。
面积差计算子模块,用于根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差。进一步地,所述面积差计算子模块包括:第一面积计算单元、第二面积计算单元以及面积差计算单元,其中:
第一面积计算单元,用于根据所述第一频率变化区间和所述第一频率变化区间对应的第一强度变化曲线,计算获得第一面积。
第二面积计算单元,用于根据所述第二频率变化区间和所述第二频率变化区间对应的第二强度变化曲线,计算获得第二面积。
面积差计算单元,用于计算所述第一面积和所述第二面积之差,获得所述超声波信号在传输的过程中的所述多普勒效应面积差。
状态控制模块230,用于根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。进一步地,所述状态控制模块230包括:相对运动关系判断子模块、息屏状态控制子模块、亮屏状态控制子模块以及状态保持子模块,其中:
相对运动关系判断子模块,用于根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动关系。
息屏状态控制子模块,用于当所述移动终端与所述物体相对靠近时,控制所述显示屏处于息屏状态。
亮屏状态控制子模块,用于当所述移动终端与所述物体相对远离时,控制所述显示屏处于亮屏状态。
状态保持子模块,用于当所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态时,控制所述显示屏保持前一次的状态不变。
进一步地,所述状态控制模块230还包括:目标特征向量获得子模块、目标特征向量输入子模块、状态信息获取子模块以及状态控制子模块,其中:
目标特征向量获得子模块,用于根据所述信号强度的方差和所述多普勒效应面积差,获得目标特征向量。进一步地,所述目标特征向量获得子模块包括:第一特征向量获得单元、第二特征向量获得单元以及目标特征向量获得单元,其中:
第一特征向量获得单元,用于基于
Figure PCTCN2020102329-appb-000022
对所述信号强度的方差进行计算,获得第一特征向量,其中,ultrasonic_amp_dif_var_log为所述第一特征向量,ultrasonic_amp_dif_var为所述信号强度的方差,ultrasonic_amp_dif_var_log_scale为放大因子。
第二特征向量获得单元,用于将所述多普勒效应面积差作为第二特征向量。
目标特征向量获得单元,用于基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量。进一步地。所述目标特征向量获得单元包括:目标特征向量获得子单元,其中:
目标特征向量获得子单元,用于基于ferture_vector=[ultrasonic_amp_dif_var_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得所述目标特征向量,其中,ferture_vector为所述目标特征向量,ultrasonic_amp_dif_var_log为所述第一特征向量,doppler_dif为所述第二特征向量。
目标特征向量输入子模块,用于将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述物体的相对运动状态的状态信息。
状态信息获取子模块,用于获取所述已训练的目标分类模型输出的所述状态信息。
状态控制子模块,用于基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
进一步地,所述状态控制模块230还包括:第一确定子模块、第二确定子模块以及第三确定子模块,其中:
第一确定子模块,用于当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述物体相对靠近,所述第一条件为正值且由小变大。
第二确定子模块,用于当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述物体相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大。
第三确定子模块,用于当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,模块相互之间的耦合可以是电性,机械或其它形式的耦合。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参阅图13,其示出了本申请实施例提供的一种移动终端100的结构框图。该移动终端100可以是智能手机、平板电脑、电子书等能够运行应用程序的电子设备。本申请中的移动终端100可 以包括一个或多个如下部件:处理器110、存储器120、显示屏130、超声波发送装置140、超声波接收装置150以及一个或多个应用程序,其中一个或多个应用程序可以被存储在存储器120中并被配置为由一个或多个处理器110执行,一个或多个程序配置用于执行如前述方法实施例所描述的方法。
其中,处理器110可以包括一个或者多个处理核。处理器110利用各种接口和线路连接整个移动终端100内的各个部分,通过运行或执行存储在存储器120内的指令、程序、代码集或指令集,以及调用存储在存储器120内的数据,执行移动终端100的各种功能和处理数据。可选地,处理器110可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器110可集成中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器110中,单独通过一块通信芯片进行实现。
存储器120可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器120可用于存储指令、程序、代码、代码集或指令集。存储器120可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储终端100在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。
显示屏130用于显示由用户输入的信息、提供给用户的信息以及所述移动终端100的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、数字、视频和其任意组合来构成,在一个实例中,该显示屏130可以为液晶显示器(Liquid Crystal Display,LCD),也可以为有机发光二极管(Organic Light-Emitting Diode,OLED),在此不做限定。
请参阅图14,其示出了本申请实施例提供的一种计算机可读存储介质的结构框图。该计算机可读介质300中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。
计算机可读存储介质300可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读存储介质300包括非易失性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读存储介质300具有执行上述方法中的任何方法步骤的程序代码310的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码310可以例如以适当形式进行压缩。
综上所述,本申请实施例提供的屏幕状态控制方法、装置、移动终端以及存储介质,当移动终端处于通话状态时,通过超声波发送装置发送超声波信号,并通过超声波接收装置接收超声波信号在遇到物体后返回的超声波信号,获取超声波信号在传输的过程中的第一属性值,并基于第一属性值计算超声波信号在传输过程中的信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于第二属性值计算超声波信号在传输的过程中的多普勒效应面积差,根据信号强度的方差和多普勒效应面积差,判断移动终端与物体的相对运动状态,根据相对运动状态控制显示屏处于亮屏状态或息屏状态,从而通过计算超声波信号的信号强度的方差和多普勒效应面积差控制显示屏处于亮屏状态或息屏状态,以提升检测控制的准确率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种屏幕状态控制方法,其特征在于,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述方法包括:
    当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号;
    获取超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算超声波信号在传输的过程中的信号强度的方差,以及获取超声波信号在传输的过程中的第二属性值,并基于所述第二属性值计算超声波信号在传输的过程中的多普勒效应面积差;
    根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态,包括:
    根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动关系;
    当所述移动终端与所述物体相对靠近时,控制所述显示屏处于息屏状态;
    当所述移动终端与所述物体相对远离时,控制所述显示屏处于亮屏状态;
    当所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态时,控制所述显示屏保持前一次的状态不变。
  3. 根据权利要求2所述的方法,其特征在于,所述当所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态时,控制所述显示屏保持前一次的状态不变,包括:
    当所述移动终端与所述物体均保持静止时,确定所述移动终端与所述物体相对静止;
    控制所述显示屏保持前一次的状态不变。
  4. 根据权利要求2所述的方法,其特征在于,所述当所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态时,控制所述显示屏保持前一次的状态不变,包括:
    当所述移动终端与所述物体的运动状态相同时,确定所述移动终端与所述物体相对静止;
    控制所述显示屏保持前一次的状态不变。
  5. 根据权利要求4所述的方法,其特征在于,所述当所述移动终端与所述物体的运动状态相同时,确定所述移动终端与所述物体相对静止,包括:
    当所述移动终端与所述物体的运动速度相同、运动幅度相同以及运动频率相同时,确定所述移动终端和所述物体的运动状态相同;
    当所述移动终端和所述物体的运动状态相同时,确定所述移动终端与所述物体相对静止。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态,包括:
    根据所述信号强度的方差和所述多普勒效应面积差,获得目标特征向量;
    将所述目标特征向量输入已训练的目标分类模型,所述已训练的目标分类模型用于获取所述目标特征向量的变化趋势,输出与所述变化趋势对应的用于表征所述移动终端与所述物体的相对运动状态的状态信息;
    获取所述已训练的目标分类模型输出的所述状态信息;
    基于所述状态信息控制所述显示屏处于亮屏状态或息屏状态。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述信号强度的方差和所述多普勒效应面积差,获得目标特征向量,包括:
    基于
    Figure PCTCN2020102329-appb-100001
    对所述信号强度的方差进行计算,获得第一特征向量,其中,ultrasonic_amp_dif_var_log为所述第一特征向量,ultrasonic_amp_dif_var为所述信号强度的方差,ultrasonic_amp_dif_var_log_scale为放大因子;
    将所述多普勒效应面积差作为第二特征向量;
    基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述第一特征向量和所述第二特征向量,获得所述目标特征向量,包括:
    基于ferture_vector=[ultrasonic_amp_dif_var_log T doppler_dif T] T对所述第一特征向量和所述第二特征向量进行计算,获得所述目标特征向量,其中,ferture_vector为所述目标特征向量,ultrasonic_amp_dif_var_log为所述第一特征向量,doppler_dif为所述第二特征向量。
  9. 根据权利要求7或8所述的方法,其特征在于,所述根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动关系,包括:
    当所述第一特征向量和所述第二特征向量均满足第一条件时,确定所述移动终端与所述物体相对靠近,所述第一条件为正值且由小变大;
    当所述第一特征向量满足第二条件且所述第二特征向量满足第三条件时,确定所述移动终端与所述物体相对远离,所述第二条件为正值且由大变小,所述第三条件为负值且由小变大;
    当所述第一特征向量不满足所述第一条件和所述第二条件且所述第二特征向量不满足所述第一条件和所述第三条件时,确定所述移动终端与所述物体相对静止,或所述移动终端与所述物体之间的距离相对保持不变且所述移动终端或所述物体处于抖动状态。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述获取超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算超声波信号在传输的过程中的信号强度的方差,包括:
    获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率;
    获取所述第一频率对应的第一信号强度和所述第二频率对应的第二信号强度;
    基于所述第一信号强度和所述第二信号强度,获得超声波信号在传输的过程中的信号强度的方差。
  11. 根据权利要求10所述的方法,其特征在于,所述基于所述第一信号强度和所述第二信号强度,获得所述超声波信号在传输的过程中的信号强度的方差,包括:
    基于ultrasonic_amp_dif=abs(ultrasonic_amp[n]-ultrasonic_amp[n-1]),获得信号强度变化向量,其中,ultrasonic_amp_dif为所述信号强度变化向量,ultrasonic_amp[n]为所述第一信号强度,ultrasonic_amp[n-1]为所述第二信号强度;
    基于
    Figure PCTCN2020102329-appb-100002
    对所述信号强度变化向量进行计算,获得所述超声波信号在传输的过程中的信号强度的方差,其中,
    Figure PCTCN2020102329-appb-100003
    ultrasonic_amp_dif_var为所述信号强度的方差,N为所述信号强度变化向量的长度。
  12. 根据权利要求10或11所述的方法,其特征在于,所述获取所述超声波接收装置接收到的超声波信号的第一频率和第二频率,包括:
    获取所述移动终端与所述物体的最大相对速度和最小相对速度;
    基于所述最大相对速度和所述最小相对速度,获取所述超声波接收装置接收到的超声波信号的频率范围;
    基于所述频率范围,获取所述第一频率和所述第二频率。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述频率范围,获取所述第一频率和所述第二频率,包括:
    从所述频率范围内选取所述第一频率和所述第二频率,其中,所述第一频率和所述第二频率相邻。
  14. 根据权利要求12或13所述的方法,其特征在于,所述获取所述移动终端与所述物体的最大相对速度和最小相对速度,包括:
    获取所述移动终端与所述物体的历史相对速度;
    基于所述历史相对速度,获取所述移动终端与所述物体的最大相对速度和最小相对速度。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述获取所述超声波信号在传输的过程中的和第二属性值,并基于所述第二属性值计算所述超声波信号在传输的过程中的多普勒效应面积差,包括:
    获取所述超声波发送装置发送的超声波信号的发送频率,以及所述超声波接收装置接收的超声波信 号的频率范围;
    基于所述发送频率和所述频率范围确定频率变化区间;
    根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差。
  16. 根据权利要求15所述的方法,其特征在于,所述基于所述发送频率和所述频率范围确定频率变化区间,包括:
    基于所述发送频率和所述频率范围确定第一频率变化区间以及第二频率变化区间;
    所述根据所述频率变化区间和所述频率变化区间对应的强度变化曲线,计算所述超声波信号在传输的过程中的所述多普勒效应面积差,包括:
    根据所述第一频率变化区间和所述第一频率变化区间对应的第一强度变化曲线,计算获得第一面积;
    根据所述第二频率变化区间和所述第二频率变化区间对应的第二强度变化曲线,计算获得第二面积;
    计算所述第一面积和所述第二面积之差,获得所述超声波信号在传输的过程中的所述多普勒效应面积差。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述当所述移动终端处于通话状态时,通过所述超声波发送装置发送超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号之前,还包括:
    对所述移动终端的来电或去电进行实时监听;
    当监听到所述移动终端处于响铃开始来电或拨打去电时,对所述移动终端的通话状态进行监听。
  18. 一种屏幕状态控制装置,其特征在于,应用于移动终端,所述移动终端包括超声波发送装置、超声波接收装置以及显示屏,所述装置包括:
    超声波信号收发模块,用于当所述移动终端处于通话状态时,通过所述超声波发送装置发送的超声波信号,并通过所述超声波接收装置接收所述超声波信号在遇到物体后返回的超声波信号;
    计算模块,用于获取所述超声波信号在传输的过程中的第一属性值,并基于所述第一属性值计算所述超声波信号在传输的过程中的信号强度的方差,以及获取所述超声波信号在传输的过程中的和第二属性值,并基于所述第二属性值计算所述超声波信号在传输的过程中的多普勒效应面积差;
    状态控制模块,用于根据所述信号强度的方差和所述多普勒效应面积差,判断所述移动终端与所述物体的相对运动状态,根据所述相对运动状态控制所述显示屏处于亮屏状态或息屏状态。
  19. 一种移动终端,其特征在于,包括超声波发送装置、超声波接收装置、显示屏、存储器以及处理器,所述超声波发送装置、所述超声波接收装置、所述显示屏以及所述存储器和存储器耦接到所述处理器,所述存储器存储指令,当所述指令由所述处理器执行时所述处理器执行如权利要求1-17任一项所述的方法。
  20. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-17任一项所述的方法。
PCT/CN2020/102329 2019-07-31 2020-07-16 屏幕状态控制方法、装置、移动终端以及存储介质 WO2021017851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910701478.X 2019-07-31
CN201910701478.XA CN110493459B (zh) 2019-07-31 2019-07-31 屏幕状态控制方法、装置、移动终端以及存储介质

Publications (1)

Publication Number Publication Date
WO2021017851A1 true WO2021017851A1 (zh) 2021-02-04

Family

ID=68548934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102329 WO2021017851A1 (zh) 2019-07-31 2020-07-16 屏幕状态控制方法、装置、移动终端以及存储介质

Country Status (2)

Country Link
CN (1) CN110493459B (zh)
WO (1) WO2021017851A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493459B (zh) * 2019-07-31 2021-03-12 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质
CN114513573A (zh) * 2020-11-16 2022-05-17 深圳市万普拉斯科技有限公司 一种屏幕控制方法、装置、电子设备及存储介质
CN113055534A (zh) * 2021-03-29 2021-06-29 北京有竹居网络技术有限公司 终端控制的方法及装置、终端和非暂时性存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055412A (zh) * 2017-12-29 2018-05-18 努比亚技术有限公司 控制移动终端的方法、移动终端及计算机可读存储介质
CN108196778A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108234767A (zh) * 2017-12-29 2018-06-29 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108566479A (zh) * 2017-12-29 2018-09-21 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN110058243A (zh) * 2019-04-28 2019-07-26 深圳市广懋创新科技有限公司 一种终端设备
CN110493459A (zh) * 2019-07-31 2019-11-22 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质
CN110865710A (zh) * 2019-11-19 2020-03-06 Oppo(重庆)智能科技有限公司 终端控制方法、装置、移动终端及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171429A1 (en) * 2004-01-16 2005-08-04 Mathew Prakash P. Method and system for very high frame rates in ultrasound B-Mode imaging
US8462109B2 (en) * 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
US8312392B2 (en) * 2009-10-02 2012-11-13 Qualcomm Incorporated User interface gestures and methods for providing file sharing functionality
JP5984244B2 (ja) * 2012-01-16 2016-09-06 東芝メディカルシステムズ株式会社 超音波診断装置、超音波診断装置制御プログラム、および医用画像表示方法
CN103309618A (zh) * 2013-07-02 2013-09-18 姜洪明 移动操作系统
JP2015159934A (ja) * 2014-02-27 2015-09-07 セイコーエプソン株式会社 超音波計測装置及び超音波計測方法
JP6518130B2 (ja) * 2015-05-20 2019-05-22 株式会社日立製作所 超音波診断装置
KR102531117B1 (ko) * 2015-10-07 2023-05-10 삼성메디슨 주식회사 대상체를 나타내는 영상을 디스플레이하는 방법 및 장치.
CN109218538A (zh) * 2018-11-29 2019-01-15 努比亚技术有限公司 移动终端屏幕控制方法、移动终端及计算机可读存储介质
CN109709561B (zh) * 2018-12-29 2022-05-27 努比亚技术有限公司 测距方法、终端和计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055412A (zh) * 2017-12-29 2018-05-18 努比亚技术有限公司 控制移动终端的方法、移动终端及计算机可读存储介质
CN108196778A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108234767A (zh) * 2017-12-29 2018-06-29 努比亚技术有限公司 屏幕状态的控制方法、移动终端及计算机可读存储介质
CN108566479A (zh) * 2017-12-29 2018-09-21 努比亚技术有限公司 屏幕状态控制方法、移动终端及计算机可读存储介质
CN110058243A (zh) * 2019-04-28 2019-07-26 深圳市广懋创新科技有限公司 一种终端设备
CN110493459A (zh) * 2019-07-31 2019-11-22 Oppo广东移动通信有限公司 屏幕状态控制方法、装置、移动终端以及存储介质
CN110865710A (zh) * 2019-11-19 2020-03-06 Oppo(重庆)智能科技有限公司 终端控制方法、装置、移动终端及存储介质

Also Published As

Publication number Publication date
CN110493459A (zh) 2019-11-22
CN110493459B (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2021017859A1 (zh) 屏幕状态控制方法、装置、移动终端以及存储介质
WO2021017851A1 (zh) 屏幕状态控制方法、装置、移动终端以及存储介质
WO2021017950A1 (zh) 超声波处理方法、装置、电子设备及计算机可读介质
CN110335620B (zh) 一种噪声抑制方法、装置和移动终端
WO2021017860A1 (zh) 信息处理方法、装置、电子设备及存储介质
US20210217433A1 (en) Voice processing method and apparatus, and device
CN111554321B (zh) 降噪模型训练方法、装置、电子设备及存储介质
WO2021017943A1 (zh) 超声波处理方法、装置、电子设备及计算机可读介质
WO2021017947A1 (zh) 终端控制方法、装置、移动终端及存储介质
WO2021017855A1 (zh) 响铃处理方法、装置、移动终端以及存储介质
CN107765251B (zh) 距离检测方法和终端设备
WO2021017927A1 (zh) 设备控制方法、装置、电子设备及存储介质
CN111524498A (zh) 滤波方法、装置及电子设备
WO2023005383A1 (zh) 一种音频处理方法及电子设备
CN110865710A (zh) 终端控制方法、装置、移动终端及存储介质
US20230333205A1 (en) Sound source positioning method and apparatus
CN111477243A (zh) 音频信号处理方法及电子设备
CN111182118A (zh) 一种音量调节方法及电子设备
CN107544803B (zh) 基于超声波的亮灭屏控制方法、装置及可读存储介质
CN113517935B (zh) 超声波校准方法、装置、移动终端及存储介质
WO2021052187A1 (zh) 基于超声波的丢帧处理方法、装置、移动终端及存储介质
CN115312036A (zh) 模型训练数据的筛选方法、装置、电子设备及存储介质
CN113160790A (zh) 回声消除方法、装置、电子设备及存储介质
WO2020102943A1 (zh) 手势识别模型的生成方法、装置、存储介质及电子设备
CN111107225B (zh) 一种交互通信方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846220

Country of ref document: EP

Kind code of ref document: A1