WO2021017707A1 - 功率确定方法及终端设备 - Google Patents

功率确定方法及终端设备 Download PDF

Info

Publication number
WO2021017707A1
WO2021017707A1 PCT/CN2020/098247 CN2020098247W WO2021017707A1 WO 2021017707 A1 WO2021017707 A1 WO 2021017707A1 CN 2020098247 W CN2020098247 W CN 2020098247W WO 2021017707 A1 WO2021017707 A1 WO 2021017707A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
power value
terminal device
received power
ratio
Prior art date
Application number
PCT/CN2020/098247
Other languages
English (en)
French (fr)
Inventor
洪岳
谢宁宁
孙彦良
李一凡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022505535A priority Critical patent/JP7252410B2/ja
Priority to EP20848059.0A priority patent/EP4007364B1/en
Priority to KR1020227005885A priority patent/KR20220039759A/ko
Priority to ES20848059T priority patent/ES2955818T3/es
Publication of WO2021017707A1 publication Critical patent/WO2021017707A1/zh
Priority to US17/583,475 priority patent/US20220150767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a power determination method and terminal equipment.
  • the terminal equipment in order to ensure the quality of service transmission (for example, voice service transmission or data service transmission), the terminal equipment can select the camping cell based on the S quasi-measurement (that is, the selected reception level value of the camping cell Srxlev>0). stay.
  • the S quasi-measurement that is, the selected reception level value of the camping cell Srxlev>0.
  • the selected reception level value of a cell can be determined by measuring the reference signal received power (RSRP) of the cell and other parameters, and the RSRP of a cell is usually determined by measuring the received power of the cell in the terminal equipment.
  • the received power of all logical antenna ports of the reference signal is linearly averaged.
  • the determined RSRP of the cell may be quite different from the actual RSRP of the cell, which may lead to The terminal device determines a cell that meets the S criterion as a cell that does not satisfy the S criterion, and then the terminal device performs cell measurement and selection again. As a result, the terminal device cannot accurately select a cell to camp on.
  • the embodiments of the present disclosure provide a power determination method to solve the problem that the terminal device cannot accurately select a cell to camp on.
  • this application is implemented as follows:
  • embodiments of the present disclosure provide a power determination method, which is applied to a terminal device, and the method includes: obtaining M target ratios; and determining a target received power value according to the M target ratios.
  • the target received power value is the received power value of the target receiving antenna
  • each target ratio is the ratio of one target power value out of M target power values to the maximum target power value
  • the maximum target power value is M target powers
  • the maximum value among the values, the M target power values are the received power values of M logical antenna ports, the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device, and M is an integer greater than 1.
  • a terminal device which may include an acquisition module and a determination module.
  • the obtaining module is used to obtain M target ratios, each target ratio being the ratio of one of the M target power values to the maximum target power value, and the maximum target power value is among the M target power values
  • the maximum value, the M target power values are the received power values of M logical antenna ports, the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device, and M is an integer greater than 1;
  • the determining module is used for According to the M target ratios obtained by the obtaining module, the target received power value is determined, and the target received power value is the received power value of the target receiving antenna.
  • the embodiments of the present disclosure provide a terminal device.
  • the terminal device includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the steps of the power determination method in one aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium storing a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the power determination method in the first aspect are implemented.
  • M target ratios can be obtained (each target ratio is the ratio of one target power value among the M target power values to the maximum target power value, and the maximum target power value is among the M target power values
  • the M target power values are the received power values of the M logical antenna ports, and the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device); and the target is determined according to the M target ratios
  • the received power value (the target received power value is the received power value of the target receiving antenna).
  • each target ratio in the M target ratios is the ratio of a target power value to the maximum target power value, that is, each target ratio can indicate the closeness between each target power value and the maximum target power value Therefore, the status of each logical antenna port of the signal sender (for example, network device) can be determined according to the M target ratios.
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • FIG. 1 is one of the schematic diagrams of a power determination method provided by an embodiment of the disclosure
  • FIG. 2 is a second schematic diagram of a power determination method provided by an embodiment of the disclosure.
  • FIG. 3 is the third schematic diagram of a power determination method provided by an embodiment of the disclosure.
  • FIG. 4 is a fourth schematic diagram of a power determination method provided by an embodiment of the disclosure.
  • FIG. 5 is one of the schematic structural diagrams of a terminal device provided by an embodiment of the disclosure.
  • FIG. 6 is the second structural diagram of a terminal device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of hardware of a terminal device provided by an embodiment of the disclosure.
  • first and second in this document are used to distinguish different objects, rather than describing a specific order of objects.
  • first preset formula and the second preset formula are used to distinguish different preset formulas, but not to describe the specific sequence of the preset formulas.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the embodiments of the present disclosure provide a power determination method and terminal equipment, which can obtain M target ratios (each target ratio is the ratio of a target power value among the M target power values to the maximum target power value, and the maximum target power value Is the maximum value of the M target power values, the M target power values are the received power values of the M logical antenna ports, and the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device; and according to the M target ratios, determine the target received power value (the target received power value is the received power value of the target receiving antenna).
  • M target ratios is the ratio of a target power value among the M target power values to the maximum target power value, and the maximum target power value Is the maximum value of the M target power values
  • the M target power values are the received power values of the M logical antenna ports
  • the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device
  • each target ratio in the M target ratios is the ratio of a target power value to the maximum target power value, that is, each target ratio can indicate the closeness between each target power value and the maximum target power value Therefore, the status of each logical antenna port of the signal sender (for example, network device) can be determined according to the M target ratios.
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • the terminal device in the embodiment of the present disclosure may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant
  • the non-mobile terminal may be a personal computer (PC), a television (television, TV), a teller machine or a self-service machine, etc., which are not specifically limited in the embodiment of the present disclosure.
  • the execution subject of the power determination method provided in the embodiments of the present disclosure may be the above-mentioned terminal device, or may be a functional module and/or functional entity in the terminal device that can implement the power determination method, and the specifics may be determined according to actual usage requirements.
  • the embodiments of the present disclosure are not limited.
  • a terminal device is taken as an example to illustrate the power determination method provided in the embodiment of the present disclosure.
  • the terminal device when the terminal device is turned on, switched from the connected state to the idle state, or reenters the service area, the terminal device needs to select a certain cell to camp on.
  • the terminal device In the process of the terminal device selecting the cell to camp on, the terminal device needs to first obtain the received power value of the cell (that is, the received power value of the terminal device in the cell), and based on the S criterion, determine whether the cell meets the requirements of the received power value camping conditions, so as to determine whether to camp in the cell.
  • the terminal device can obtain the received power values of different receiving antennas of the terminal device, and determine the maximum received power value among these received power values as the received power value of the cell, and then the terminal device can pass the cell based on the S criterion.
  • the received power value determines whether the cell meets the camping condition. In the case that the cell meets the camping condition, the terminal device can select the cell to camp on, and in the case that the cell does not meet the camping condition, the terminal device can search for other cells to camp on again.
  • each target ratio in the M target ratios is the ratio of a target power value to the maximum target power value, that is, each target ratio can indicate the closeness between each target power value and the maximum target power value, so according to the The M target ratios can determine the status of each logical antenna port of the signal sender (for example, a network device).
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • an embodiment of the present disclosure provides a power determination method, and the method may include the following S201-S202.
  • the terminal device obtains M target ratios.
  • each target ratio may be the ratio of one of the M target power values to the maximum target power value, and the maximum target power value may be the maximum value among the M target power values, and the M target power values It can be the received power value of M logical antenna ports, that is, each target power value is the received power value of a logical antenna port.
  • the M logical antenna ports can be the logical antenna ports of the target receiving antenna of the terminal device, and M is greater than An integer of 1.
  • the terminal device may have multiple receiving antennas (ie, physical antennas), each receiving antenna may include multiple logical antenna ports, and different logical antenna ports may transmit different signals.
  • each receiving antenna may include multiple logical antenna ports, and different logical antenna ports may transmit different signals.
  • the foregoing target receiving antenna may be any one of the multiple receiving antennas.
  • the received power value of the foregoing one logical antenna port may be the power value of the signal received by the logical antenna port.
  • the signal may be a reference signal of a cell measured by the terminal device.
  • the five target ratios are denoted as P ratio (1), P ratio (2), P ratio (3), P ratio (4), P ratio (5), where
  • S202 The terminal device determines the target received power value according to the M target ratios.
  • the above-mentioned target received power value is the received power value of the target receiving antenna.
  • the above-mentioned target received power value that is, the received power value of the target receiving antenna may be an RSRP value or a received signal strength indication (RSSI) value and any other possible reception
  • the power value can be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the terminal device may sequentially determine the magnitude of the M target ratios and the preset threshold, and all target ratios in the M target ratios are less than a certain value.
  • the terminal device can use the following first preset formula to determine the target received power value; in the case that any one of the M target ratios is greater than or equal to a certain threshold, the terminal device can use the following The second preset formula described above determines the target received power value.
  • the foregoing S202 may be specifically implemented by the following S202a-S202b.
  • the terminal device uses the first preset formula to determine the target received power value.
  • each target ratio in the M target ratios is a ratio of a target power value to a maximum target power value, that is, each target ratio can represent each target power value and the maximum target power value.
  • the closeness between the power values therefore, the state of each logical antenna port of the signal sender (for example, a network device) can be determined according to the M target ratios.
  • the terminal device can determine that all logical antenna ports of the sender are currently Non-closed (non-mute) state, that is, all logical antenna ports of the sender can transmit signals normally.
  • the terminal device can determine to send At least one logical antenna port among all the logical antenna ports of the sender is in a mute state, that is, at least one logical antenna port among all the logical antenna ports of the sender cannot transmit signals normally.
  • the foregoing preset threshold may be specifically determined according to actual use requirements, and the embodiment of the present disclosure does not limit it.
  • the foregoing first preset formula may be:
  • P is the target received power value
  • P(i) is the i-th target power value among the M target power values
  • M is the number of logical antenna ports on the target receiving antenna, 1 ⁇ i ⁇ M.
  • the terminal device may perform according to the above first preset Set the formula to calculate the target received power value of the above target receiving antenna as among them
  • the terminal device uses a second preset formula to determine the target received power value.
  • the foregoing second preset formula may be:
  • P is the target received power value
  • P ratio (i) is the ith target ratio among M target ratios
  • F i P ratio (1),...,P ratio (i),...P ratio (M)
  • P(i) is the i-th target power value among the M target power values
  • M is the number of signals received by the target receiving antenna, 1 ⁇ i ⁇ M.
  • the aforementioned F i (P ratio (1),...,P ratio (i),...P ratio (M)) is a conversion function, which can be used to convert M target ratios (1),...,P ratio (i),...P ratio (M) is converted into M weighting coefficients.
  • M target ratios P ratio (1),...,P ratio (i),...P ratio (M) are input at the same time, M weighting coefficients can be output at the same time.
  • each weighting coefficient is a decimal between 0 and 1.
  • the terminal device can The second preset formula is calculated to obtain the above target received power value
  • F 1 , F 2 , F 3 , F 4 , F 5 can be inputted by P ratio (1), P ratio (2), P ratio (3), P ratio (4), P ratio (5) at the same time It can be obtained from the above conversion function, and F 1 , F 2 , F 3 , F 4 , and F 5 are all decimals between 0 and 1.
  • each target ratio in the M target ratios is a ratio of a target power value to a maximum target power value, that is, each target ratio can represent the difference between each target power value and the maximum target power value.
  • the proximity therefore, the status of each logical antenna port of the signal sender (for example, network device) can be determined according to the M target ratios.
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • the terminal device may first obtain M target power values, and then obtain M target ratios according to the M target power values.
  • the power determination method provided by the embodiment of the present disclosure may further include the following S203, and the foregoing S201 may specifically The following S201a is implemented.
  • S203 The terminal device obtains M target power values.
  • the terminal device calculates the ratio of each of the M target power values to the maximum target power value to obtain M target ratios.
  • the terminal device can determine the maximum value of the M target power values, and then the terminal device can determine the maximum value of the M target power values and the M target power values.
  • the maximum value determines M target ratios, that is, the ratio of each target power value in the M target power values to the maximum value of the M target power values is calculated separately to obtain M target ratios. It can be understood that a target power value can correspond to a target ratio.
  • each target ratio in the M target ratios is a ratio of a target power value to a maximum target power value, that is, each target ratio can represent the difference between each target power value and the maximum target power value. Therefore, the status of each logical antenna port of the signal sender (such as a network device) can be determined according to the M target ratios, so that the target power value determined according to the target ratio has a higher accuracy.
  • the foregoing S203 may be specifically implemented by the following S203a-S203b.
  • the terminal device obtains M power average values.
  • each of the M power averages may be an average received power of one logical antenna port among the M logical antenna ports within the target range.
  • the average value of the received power of a logical antenna port within the target range can be understood as the average value of the received signal power of the logical antenna port within the target range.
  • the foregoing target range may be a target duration or a target bandwidth.
  • each of the M power averages may be the power average of the signal received by a logical antenna port within the target duration; or, each of the M power averages may be The average power of the signal received by a logical antenna port within the target bandwidth.
  • it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the aforementioned target duration may be any duration that meets actual use requirements, and may be specifically determined according to actual use requirements, which is not limited in the embodiments of the present disclosure.
  • the above-mentioned target bandwidth may be the system bandwidth, or any bandwidth in the system bandwidth that meets actual usage requirements, and can be specifically determined according to actual usage requirements, which is not limited in the embodiments of the present disclosure.
  • the target receiving antenna of the terminal device includes 5 logical antenna ports
  • the target duration is 0.01h (hour)
  • the power of the signal received by the 5 logical antenna ports of the target receiving antenna within 0.01h is recorded as : P total (1), P total (2), P total (3), P total (4), P total (5)
  • the terminal device can obtain 5 power average values, respectively P mean (1), P mean (2),P mean (3),P mean (4),P mean (5), where,
  • the terminal device uses M power average values as M target power values.
  • the terminal device may use the M power average values as the M target power values.
  • each target power value is the average power value of a logical antenna port of the target receiving antenna of the terminal device in the target duration or target bandwidth
  • the target power value obtained by the terminal device can accurately represent the logic
  • the magnitude of the power received by the antenna port makes the target ratio determined by the terminal device by the target power value more accurate.
  • the terminal device determines the received power value of each of the N receiving antennas, so as to obtain Multiple received power values. Moreover, after the terminal device determines the multiple received power values, the terminal device may determine whether the target cell meets the camping condition based on the S criterion according to the maximum received power value among the multiple received power values.
  • the power determination method provided by the embodiment of the present disclosure may further include the following S204.
  • the terminal device determines whether the target cell meets the camping condition based on the S criterion according to the maximum received power value among the multiple received power values.
  • the above-mentioned target cell is a cell measured by the terminal device, and the above-mentioned multiple received power values are received power values of multiple receiving antennas. That is, each of the multiple received power values is the received power value of one of the multiple received antennas.
  • the terminal device when the target receiving antenna of the terminal device is multiple receiving antennas, the terminal device can execute the power determination method provided in the embodiment of the present disclosure for each receiving antenna of the terminal device to determine the The received power value of each receiving antenna, so that multiple received power values can be obtained. Moreover, after the terminal device determines the multiple received power values, the terminal device may determine whether the target cell meets the camping condition based on the S criterion according to the maximum received power value among the multiple received power values. When the terminal device determines that the target cell meets the camping condition, the terminal device can initiate a network camping request in the target cell. In the case that the terminal device determines that the target cell does not meet the camping condition, the terminal device can search for other cells to camp again .
  • the terminal device can determine whether the target cell meets the camping condition based on the maximum received power value in the multiple receiving antennas and based on the S criterion, the judgment result is relatively accurate.
  • the power determination methods shown in the drawings of the above methods are all exemplified in conjunction with a drawing in the embodiments of the present disclosure.
  • the power determination methods shown in the figures of the above methods can also be implemented in combination with any other figures that can be combined as illustrated in the above embodiments, and will not be repeated here.
  • an embodiment of the present disclosure provides a terminal device 400.
  • the terminal device may include an acquiring module 401 and a determining module 402.
  • the obtaining module 401 may be used to obtain M target ratios, each target ratio being the ratio of one of the M target power values to the maximum target power value, and the maximum target power value is M target power values
  • the maximum value of the M target power values is the received power value of the M logical antenna ports, the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device, and M is an integer greater than 1;
  • the determining module 402 Can be used to determine the target received power value according to the M target ratios obtained by the obtaining module 401, where the target received power value is the received power value of the target receiving antenna.
  • the above-mentioned determining module 402 is specifically configured to determine the target received power value by using the first preset formula when all target ratios in the M target ratios are less than a preset threshold; Or, in the case that any one of the M target ratios is greater than or equal to the preset threshold, the second preset formula is used to determine the target received power value.
  • the foregoing first preset formula may be: Among them, P is the target received power value, P(i) is the i-th target power value among the M target power values, M is the number of signals received by the target receiving antenna, 1 ⁇ i ⁇ M.
  • the foregoing second preset formula may be: Among them, P is the target received power value, P ratio (i) is the ith target ratio among M target ratios, F i (P ratio (1),...,P ratio (i),...P ratio (M)) is the transfer function, P(i) is the i-th target power value among the M target power values, M is the number of signals received by the target receiving antenna, 1 ⁇ i ⁇ M.
  • the above-mentioned obtaining module 401 may also be used to obtain M target power values before obtaining the M target ratios; the above-mentioned obtaining module 401 is specifically used to calculate the M target power values.
  • the ratio of each target power value to the maximum target power value yields M target ratios.
  • the above-mentioned obtaining module 401 is specifically configured to obtain M power average values, and use the M power average values as M target power values, where each power average value may be M
  • the target receiving antenna can be any one of the multiple receiving antennas.
  • the terminal device also includes a sending module 403, which can be used to determine After the module 402 determines multiple received power values, it determines whether the target cell satisfies the camping condition based on the S criterion based on the maximum received power value among the multiple received power values.
  • the target cell is the cell measured by the terminal device.
  • the power value is the received power value of multiple receiving antennas.
  • the embodiment of the present disclosure provides a terminal device that can obtain M target ratios (each target ratio is the ratio of one of the M target power values to the maximum target power value, and the maximum target power value is The maximum value of the M target power values, the M target power values are the received power values of M logical antenna ports, and the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device; and according to the M Determine the target received power value (the target received power value is the received power value of the target receiving antenna).
  • each target ratio in the M target ratios is the ratio of a target power value to the maximum target power value, that is, each target ratio can indicate the closeness between each target power value and the maximum target power value Therefore, the status of each logical antenna port of the signal sender (for example, network device) can be determined according to the M target ratios.
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal device that implements various embodiments of the present disclosure.
  • the terminal device 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, and a memory 109 , The processor 110, and the power supply 111 and other components.
  • the structure of the terminal device shown in FIG. 7 does not constitute a limitation on the terminal device, and the terminal device may include more or fewer components than those shown in the figure, or a combination of certain components, or different components Layout.
  • terminal devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 110 may be used to obtain M target ratios, and determine the target received power value according to the M target ratios.
  • each target ratio is the ratio of one target power value among the M target power values to the maximum target power value
  • the maximum target power value is the maximum value among the M target power values
  • the M target power values are the terminal equipment Is the power value of the M signals received by the target receiving antenna
  • the target receiving power value is the receiving power value of the target receiving antenna.
  • the acquiring module 401 and the determining module 402 in the above-mentioned structural schematic diagram of the terminal device may be implemented by the above-mentioned processor 110.
  • the sending module 403 in the above-mentioned structural schematic diagram of the terminal device may be implemented by the above-mentioned radio frequency unit 101.
  • the embodiment of the present disclosure provides a terminal device that can obtain M target ratios (each target ratio is the ratio of one of the M target power values to the maximum target power value, and the maximum target power value is The maximum value of the M target power values, the M target power values are the received power values of M logical antenna ports, and the M logical antenna ports are the logical antenna ports of the target receiving antenna of the terminal device; and according to the M Determine the target received power value (the target received power value is the received power value of the target receiving antenna).
  • each target ratio in the M target ratios is the ratio of a target power value to the maximum target power value, that is, each target ratio can indicate the closeness between each target power value and the maximum target power value Therefore, the status of each logical antenna port of the signal sender (for example, network device) can be determined according to the M target ratios.
  • the embodiment of the present disclosure considers the status of each logical antenna port of the sender when determining the received power value of the target receiving antenna of the terminal device, the determined received power value of the target receiving antenna (that is, the aforementioned target received power Value) is closer to the actual received power value of the target receiving antenna, that is, the target received power value can accurately reflect the signal coverage strength of the cell measured by the terminal device, so that the terminal device can accurately determine whether the cell meets the camping condition, This ensures that the terminal device can accurately select the cell to camp on.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sounds. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processing unit 1041 is used to capture still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the terminal device 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and the display panel 1061 when the terminal device 100 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device with the terminal device 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal device 100 or can be used to connect to the terminal device 100 and external Transfer data between devices.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device, runs or executes the software programs and/or modules stored in the memory 109, and calls data stored in the memory 109 , Perform various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal device 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal device 100 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal device, including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is implemented when the processor 110 is executed.
  • a terminal device including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is implemented when the processor 110 is executed.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, each process of the foregoing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, I won’t repeat them here.
  • the computer-readable storage medium may include read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本公开实施例公开了一种功率确定方法及终端设备,该方案包括:获取M个目标比值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,最大目标功率值为M个目标功率值中的最大值,M个目标功率值为M个逻辑天线端口的接收功率值,M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口,M为大于1的整数;根据该M个目标比值,确定目标接收功率值,目标接收功率值为目标接收天线的接收功率值。

Description

功率确定方法及终端设备
相关申请的交叉引用
本公开主张在2019年07月30日提交国家知识产权局、申请号为201910696356.6、申请名称为“一种功率确定方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种功率确定方法及终端设备。
背景技术
在移动通信系统中,为了保证业务传输(例如语音业务传输或数据业务传输)质量,终端设备可以基于S准测(即驻留小区的选择接收电平值Srxlev>0),选择驻留小区驻留。
目前,一个小区的选择接收电平值可以通过测量该小区的参考信号接收功率(Reference Signal Received Power,RSRP)及其他参数确定,且一个小区的RSRP通常是通过对终端设备中接收到该小区的参考信号的所有逻辑天线端口的接收功率进行线性平均得到的。
然而,上述方式中,由于一个小区的RSRP是通过对多个逻辑天线端口的接收功率进行线性平均得到的,因此可能使得确定的该小区的RSRP和该小区的实际RSRP相差较大,从而可能导致终端设备将满足S准则的小区确定为不满足S准则的小区,进而终端设备重新进行小区测量和选择。如此,导致终端设备无法准确地选择驻留小区。
发明内容
本公开实施例提供一种功率确定方法,以解决终端设备无法准确地选择驻留小区的问题。为了解决上述技术问题,本申请是这样实现的:
第一方面,本公开实施例提供了一种功率确定方法,该方法应用于终端设备,该方法包括:获取M个目标比值;并根据该M个目标比值,确定目标接收功率值。其中,该目标接收功率值为目标接收天线的接收功率值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口,M为大于1的整数。
第二方面,本公开实施例提供了一种终端设备,该终端设备可以包括获取模块和确定模块。其中,获取模块,用于获取M个目标比值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口,M为大于1的整数;确定模块,用于根据获取模块获取的M个目标比值,确定目标接收功率值,该目标接收功率 值为目标接收天线的接收功率值。
第三方面,本公开实施例提供一种终端设备,该终端设备包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现如上述第一方面中的功率确定方法的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现如上述第一方面中的功率确定方法的步骤。
在本公开实施例中,可以获取M个目标比值(每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口);并根据该M个目标比值,确定目标接收功率值(该目标接收功率值为目标接收天线的接收功率值)。通过该方案,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
附图说明
图1为本公开实施例提供的一种功率确定方法的示意图之一;
图2为本公开实施例提供的一种功率确定方法的示意图之二;
图3为本公开实施例提供的一种功率确定方法的示意图之三;
图4为本公开实施例提供的一种功率确定方法的示意图之四;
图5为本公开实施例提供的终端设备的结构示意图之一;
图6为本公开实施例提供的终端设备的结构示意图之二;
图7为本公开实施例提供的终端设备的硬件示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中的术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本文中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一预设公式和第二预设公式等是用于区别不同的预设公式,而不是用 于描述预设公式的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个元件是指两个或者两个以上的元件等。
本公开实施例提供一种功率确定方法及终端设备,可以获取M个目标比值(每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口);并根据该M个目标比值,确定目标接收功率值(该目标接收功率值为目标接收天线的接收功率值)。通过该方案,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
本公开实施例中的终端设备可以为移动终端,也可以为非移动终端。示例性的,移动终端可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动终端可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本公开实施例不作具体限定。
本公开实施例提供的功率确定方法的执行主体可以为上述的终端设备,也可以为该终端设备中能够实现该功率确定方法的功能模块和/或功能实体,具体的可以根据实际使用需求确定,本公开实施例不作限定。下面以终端设备为例,对本公开实施例提供的功率确定方法进行示例性的说明。
本公开实施例中,在终端设备开机、从连接态转到空闲态或者重新进入服务区的情况下,终端设备需要选择某个小区驻留。在终端设备选择驻留小区的过程中,终端设备需要先获取小区的接收功率值(即终端设备在该小区中的接收功率值),并基于S准则,通过该接收功率值判断该小区是否满足驻留条件,从而再确定是否驻留到该小区。具体的,终端设备可以获取终端设备的不同接收天线的接收功率值,并将这些接收功率值中的最大接收功率值确定为该小区的接收功率值,然后终端设备可以基于S准则,通过该小区的接收功率值判断该小区是否满足驻留条件。在该小区满足驻留条件的情况下,终端设备可以选择该小区驻留,在该小区不满足驻留条件的情况下,终端设备可以重新搜索其他小区驻留。由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目 标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
下面结合各个附图对本公开实施例提供的功率确定方法进行示例性的说明。
如图1所示,本公开实施例提供一种功率确定方法,该方法可以包括下述的S201-S202。
S201、终端设备获取M个目标比值。
其中,每个目标比值可以为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值可以为M个目标功率值中的最大值,该M个目标功率值可以为M个逻辑天线端口的接收功率值,即每个目标功率值为一个逻辑天线端口的接收功率值,该M个逻辑天线端口可以为终端设备的目标接收天线的逻辑天线端口,M为大于1的整数。
本公开实施例中,终端设备可以有多个接收天线(即物理天线),每个接收天线可以包括多个逻辑天线端口,不同的逻辑天线端口可以传输不同的信号。
可选地,本公开实施例中,上述目标接收天线可以为多个接收天线中的任意一个接收天线。
可选地,本公开实施例中,上述一个逻辑天线端口的接收功率值可以为该逻辑天线端口接收到的信号的功率值。其中,该信号可以为终端设备所测量的小区的参考信号。
示例性的,假设终端设备的目标接收天线包括5个逻辑天线端口(即M=5),且该5个逻辑天线端口的接收功率值分别记为P(1),P(2),P(3),P(4),P(5),以及P(1)为这5个逻辑天线端口的接收功率值中的最大值,那么终端设备可以根据这5个逻辑天线端口的接收功率值获取5个目标比值,分别记为P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5),其中,
Figure PCTCN2020098247-appb-000001
S202、终端设备根据M个目标比值,确定目标接收功率值。
其中,上述目标接收功率值即为目标接收天线的接收功率值。
可选地,本公开实施例中,上述目标接收功率值,即目标接收天线的接收功率值可以为RSRP值,也可以为接收信号强度指示(received signal strength indication,RSSI)值等任意可能的接收功率值,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,在终端设备获取M个目标比值之后,终端设备可以依次判断M个目标比值与预设阈值的大小,在M个目标比值中的全部目标比值均小于某个阈值的情况下,终端设备可以采用下述的第一预设公式,确定目标接收功率值;在M个目标比值中的任意一个目标比值大于或等于某个阈值的情况下,终端设备可以采用下述的第二预 设公式,确定目标接收功率值。
示例性的,本公开实施例中,结合上述图1,如图2所示,上述S202具体可以通过下述的S202a-S202b实现。
S202a、在M个目标比值中的全部目标比值均小于预设阈值的情况下,终端设备采用第一预设公式,确定目标接收功率值。
需要说明的是,本公开实施例中,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。进而,在M个目标比值中的全部目标比值均小于预设阈值的情况下,可以理解为每个目标功率值与最大目标功率值比较接近,则终端设备可以确定发送方当前所有逻辑天线端口处于非关闭(非mute)状态,即发送方当前所有逻辑天线端口都可以正常传输信号。或者在M个目标比值中的至少一个目标比值小于或等于预设阈值的情况下,可以理解为M个比较比值中至少有一个目标比值与最大目标功率值相差较大,则终端设备可以确定发送方的所有逻辑天线端口中至少一个逻辑天线端口处于关闭(mute)状态,即发送方的所有逻辑天线端口中至少一个逻辑天线端口无法正常传输信号。
可选地,本公开实施例中,上述预设阈值具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,上述第一预设公式可以为:
Figure PCTCN2020098247-appb-000002
其中,P为目标接收功率值,P(i)为M个目标功率值中的第i个目标功率值,M为目标接收天线上的逻辑天线端口的数量,1≤i≤M。
示例性的,以上述S201中举例的数据为例,假设5个目标比值分别记为P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5);在P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5)均小于预设阈值的情况下,则终端设备可以根据上述第一预设公式,计算得到上述目标接收天线的目标接收功率值为
Figure PCTCN2020098247-appb-000003
其中
Figure PCTCN2020098247-appb-000004
S202b、在M个目标比值中的至少一个目标比值大于或等于预设阈值的情况下,终端设备采用第二预设公式,确定目标接收功率值。
可选地,本公开实施例中,上述第二预设公式可以为:
Figure PCTCN2020098247-appb-000005
其中,P为目标接收功率值,P ratio(i)为M个目标比值中的第i个目标比值,F i(P ratio(1),...,P ratio(i),...P ratio(M))为转换函数,P(i)为M个目标功率值中的第i个目标功率值,M为目标接收天线接收到的信号的数量,1≤i≤M。
本公开实施例中,上述F i(P ratio(1),...,P ratio(i),...P ratio(M))为转换函数,其可以用于将M个目标比值P ratio(1),...,P ratio(i),...P ratio(M)转换为M个加权系数。例如,同时输入M个目标比值P ratio(1),...,P ratio(i),...P ratio(M),可以同时输出M个加权系数。其中,每个加权系数均为0至1之间的小数。
示例性的,以上述S201中举例的数据为例,假设5个目标比值分别记为P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5),那么,若P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5)中至少一个大于或等于预设阈值,则终端设备可以根据上述第二预设公式,计算得到上述目标接收功率值
Figure PCTCN2020098247-appb-000006
其中,F 1,F 2,F 3,F 4,F 5可以通过将P ratio(1),P ratio(2),P ratio(3),P ratio(4),P ratio(5)同时输入到上述转换函数中得到,且F 1,F 2,F 3,F 4,F 5均为0至1之间的小数。
本公开实施例中,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
可选地,本公开实施例中,终端设备在获取M个目标比值之前,可以先获取M个目标功率值,然后根据M个目标功率值,得到M个目标比值。
示例性的,本公开实施例中,结合上述图1,如图3所示,在上述S201之前,本公开实施例提供的功率确定方法还可以包括下述的S203,并且,上述S201具体可以通过下述的S201a实现。
S203、终端设备获取M个目标功率值。
本公开实施例中,对上述目标功率值的描述具体可以参照上述S201中对M个目标功率值的相关描述,为避免重复,此处不再赘述。
S201a、终端设备计算M个目标功率值中的每个目标功率值与最大目标功率值的比值,得到M个目标比值。
本公开实施例中,在终端设备获取到M个目标功率值之后,终端设备可以确定M个目标功率值中的最大值,然后终端设备可以根据M个目标功率值和M个目标功率值中的最大值确定M个目标比值,即分别计算M个目标功率值中的每个目标功率值和M个目标功率值中的最大值的比值,得到M个目标比值。可以理解,一个目标功率值可以对应一个目标比值。
本公开实施例中,对上述目标比值的其他描述具体可以参照上述S201中对目标比值 的相关描述,为避免重复,此处不再赘述。
本公开实施例中,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态,从而根据该目标比值确定的目标功率值准确度较高。
可选地,本公开实施例中,上述S203具体可以通过下述的S203a-S203b实现。
S203a、终端设备获取M个功率平均值。
其中,M个功率平均值中的每个功率平均值可以为M个逻辑天线端口中的一个逻辑天线端口在目标范围内的接收功率平均值。具体的,一个逻辑天线端口在目标范围内的接收功率平均值可以理解为该逻辑天线端口在目标范围内的接收到的信号的功率平均值。
可选地,本公开实施例中,上述目标范围可以为目标时长或目标带宽。具体的,M个功率平均值中的每个功率平均值可以为一个逻辑天线端口在目标时长内接收到的信号的功率平均值;或者,M个功率平均值中的每个功率平均值可以为一个逻辑天线端口在目标带宽内接收到的信号的功率平均值。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,上述目标时长可以为满足实际使用需求的任意时长,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选地,本公开实施例中,上述目标带宽可以为系统带宽,也可以为系统带宽中满足实际使用需求的任意带宽,具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,假设终端设备的目标接收天线包括5个逻辑天线端口,目标时长为0.01h(小时),且目标接收天线的5个逻辑天线端口在0.01h内接收到的信号的功率分别记为:P total(1),P total(2),P total(3),P total(4),P total(5),则终端设备可以获取5个功率平均值,分别为P mean(1),P mean(2),P mean(3),P mean(4),P mean(5),其中,
Figure PCTCN2020098247-appb-000007
Figure PCTCN2020098247-appb-000008
S203b、终端设备将M个功率平均值作为M个目标功率值。
本公开实施例中,在终端设备获取到M个功率平均值之后,终端设备可以将M个功率平均值作为M个目标功率值。
示例性的,以上述S203a和上述S201中的数据为例,在终端设备获取到5个功率平均值P mean(1),P mean(2),P mean(3),P mean(4),P mean(5)之后,终端设备可以将P mean(1)作为P(1),将P mean(2)作为P(2),将P mean(3)作为P(3),将P mean(4)作为P(4),将P mean(5)作为P(5),即
Figure PCTCN2020098247-appb-000009
Figure PCTCN2020098247-appb-000010
本公开实施例中,由于每个目标功率值分别是终端设备目标接收天线的一个逻辑天线端口在目标时长或目标带宽内的功率平均值,因此终端设备获取的目标功率值能够准确的表示该逻辑天线端口接收到的功率大小,从而使得终端设备通过该目标功率值确定的目标比值的准确度较高。
可选地,本公开实施例中,在终端设备包括多个接收天线(例如N个接收天线)的情况下,终端设备确定N个接收天线中的每个接收天线的接收功率值,从而可以得到多个接收功率值。并且,在终端设备确定多个接收功率值之后,终端设备可以根据多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件。
示例性的,本公开实施例中,结合上述图1,如图4所示,在上述S202之后,本公开实施例提供的功率确定方法还可以包括下述的S204。
S204、在终端设备确定多个接收功率值之后,终端设备根据多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件。
其中,上述目标小区为终端设备所测量的小区,上述多个接收功率值为多个接收天线的接收功率值。即多个接收功率值中的每个接收功率值为多个接收天线中的一个接收天线的接收功率值。
本公开实施例中,在终端设备的目标接收天线为多个接收天线时,终端设备可以针对终端设备的每个接收天线分别执行本公开实施例中提供的功率确定方法,确定多个接收天线中每个接收天线的接收功率值,从而可以得到多个接收功率值。并且,在终端设备确定多个接收功率值之后,终端设备可以根据多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件。在终端设备判断目标小区满足驻留条件的情况下,终端设备可以在该目标小区发起驻网请求,在终端设备判断目标小区不满足驻留条件的情况下,终端设备可以再次搜索其他小区驻留。
本公开实施例中,由于终端设备是根据多个接收天线中的最大接收功率值,基于S准则能够来判断目标小区是否满足驻留条件的,从而该判断结果比较准确。
需要说明的是,本公开实施例中,上述各个方法附图所示的功率确定方法均是以结合本公开实施例中的一个附图为例示例性的说明的。具体实现时,上述各个方法附图所示的功率确定方法还可以结合上述实施例中示意的其它可以结合的任意附图实现,此处不再赘述。
如图5所示,本公开实施例提供一种终端设备400,该终端设备可以包括获取模块401和确定模块402。其中,获取模块401,可以用于获取M个目标比值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口,M为大于1的整数;确定模块402,可以用于根据获取模块401获取的M个目标比值,确定目标接收功率值,该目标接收功率值为该目标接收天线的接收功率值。
可选地,本公开实施例中,上述确定模块402,具体用于在M个目标比值中的全部目标比值均小于预设阈值的情况下,采用第一预设公式,确定目标接收功率值;或 者,在M个目标比值中的任意一个目标比值大于或等于预设阈值的情况下,采用第二预设公式,确定目标接收功率值。
可选地,本公开实施例中,上述第一预设公式可以为:
Figure PCTCN2020098247-appb-000011
其中,P为目标接收功率值,P(i)为M个目标功率值中的第i个目标功率值,M为目标接收天线接收到的信号的数量,1≤i≤M。
可选地,本公开实施例中,上述第二预设公式可以为:
Figure PCTCN2020098247-appb-000012
其中,P为目标接收功率值,P ratio(i)为M个目标比值中的第i个目标比值,F i(P ratio(1),...,P ratio(i),...P ratio(M))为转换函数,P(i)为M个目标功率值中的第i个目标功率值,M为目标接收天线接收到的信号的数量,1≤i≤M。
可选地,本公开实施例中,上述获取模块401,还可以用于在获取M个目标比值之前,获取M个目标功率值;上述获取模块401,具体用于计算M个目标功率值中的每个目标功率值与最大目标功率值的比值,得到M个目标比值。
可选地,本公开实施例中,上述获取模块401,具体用于获取M个功率平均值,并将M个功率平均值作为M个目标功率值,其中,每个功率平均值可以为M个逻辑天线端口的一个逻辑天线端口在目标范围内的接收功率平均值,该目标范围可以为目标时长或目标带宽。
可选地,结合图5,如图6所示,本公开实施例中,目标接收天线可以为多个接收天线中的任意一个接收天线,该终端设备还包括发送模块403,可以用于在确定模块402确定多个接收功率值之后,根据多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件,该目标小区为终端设备所测量的小区,该多个接收功率值为多个接收天线的接收功率值。
本公开实施例提供一种终端设备,该终端设备可以获取M个目标比值(每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口);并根据该M个目标比值,确定目标接收功率值(该目标接收功率值为目标接收天线的接收功率值)。通过该方案,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
图7为实现本公开各个实施例的一种终端设备的硬件结构示意图。如图7所示,该终端设备100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图7中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器110,可以用于获取M个目标比值,并根据该M个目标比值,确定目标接收功率值。其中,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,M个目标功率值为终端设备的目标接收天线接收到的M个信号的功率值,目标接收功率值为目标接收天线的接收功率值。
可以理解,本公开实施例中,上述终端设备的结构示意图(例如上述图5)中的获取模块401和确定模块402可以通过上述处理器110实现。上述终端设备的结构示意图(例如上述图6)中的发送模块403可以通过上述射频单元101实现。
本公开实施例提供一种终端设备,该终端设备可以获取M个目标比值(每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,该最大目标功率值为M个目标功率值中的最大值,该M个目标功率值为M个逻辑天线端口的接收功率值,该M个逻辑天线端口为终端设备的目标接收天线的逻辑天线端口);并根据该M个目标比值,确定目标接收功率值(该目标接收功率值为目标接收天线的接收功率值)。通过该方案,由于M个目标比值中的每个目标比值为一个目标功率值与最大目标功率值的比值,即每个目标比值可以表示每个目标功率值与最大目标功率值之间的接近程度,因此根据该M个目标比值可以确定信号发送方(例如网络设备)的各个逻辑天线端口的状态。如此,由于本公开实施例在确定终端设备的目标接收天线的接收功率值时考虑了发送方的各个逻辑天线端口的状态,因此可以使得确定的目标接收天线的接收功率值(即上述目标接收功率值)更加接近目标接收天线的实际接收功率值,即该目标接收功率值能够准确地反映终端设备所测量的小区的信号覆盖强度,从而使得终端设备可以准确地判断该小区是否满足驻留条件,进而保证终端设备可以准确地选择驻留小区。
应理解的是,本公开实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(graphics processing unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图7中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端设备100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力 等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),可选地,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备100包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端设备,包括处理器110,存储器109,存储在存储器109上并可在处理器110上运行的计算机程序,该计算机程序被处理器110执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,该计算机可读存储介质可以包括只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形 式,均属于本申请的保护之内。

Claims (16)

  1. 一种功率确定方法,应用于终端设备,所述方法包括:
    获取M个目标比值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,所述最大目标功率值为所述M个目标功率值中的最大值,所述M个目标功率值为M个逻辑天线端口的接收功率值,所述M个逻辑天线端口为所述终端设备的目标接收天线的逻辑天线端口,M为大于1的整数;
    根据所述M个目标比值,确定目标接收功率值,所述目标接收功率值为所述目标接收天线的接收功率值。
  2. 根据权利要求1所述的方法,其中,所述根据所述M个目标比值,确定目标接收功率值,包括:
    在所述M个目标比值中的全部目标比值均小于预设阈值的情况下,采用第一预设公式,确定所述目标接收功率值;
    或者,
    在所述M个目标比值中的至少一个目标比值大于或等于预设阈值的情况下,采用第二预设公式,确定所述目标接收功率值。
  3. 根据权利要求2所述的方法,其中,所述第一预设公式为:
    Figure PCTCN2020098247-appb-100001
    其中,P为所述目标接收功率值,P(i)为所述M个目标功率值中的第i个目标功率值,M为所述目标接收天线上的逻辑天线端口的数量,1≤i≤M。
  4. 根据权利要求2或3所述的方法,其中,所述第二预设公式为:
    Figure PCTCN2020098247-appb-100002
    其中,P为所述目标接收功率值,P ratio(i)为所述M个目标比值中的第i个目标比值,F i(P ratio(1),...,P ratio(i),...P ratio(M))为转换函数,P(i)为所述M个目标功率值中的第i个目标功率值,M为所述目标接收天线上的逻辑天线端口的数量,1≤i≤M。
  5. 根据权利要求1所述的方法,其中,所述获取M个目标比值之前,所述方法还包括:
    获取所述M个目标功率值;
    所述获取M个目标比值,包括:
    计算所述M个目标功率值中的每个目标功率值与所述最大目标功率值的比值,得到所述M个目标比值。
  6. 根据权利要求5所述的方法,其中,所述获取所述M个目标功率值,包括:
    获取M个功率平均值,每个功率平均值为所述M个逻辑天线端口中的一个逻辑天线端口在目标范围内的接收功率平均值,所述目标范围为目标时长或目标带宽;
    将所述M个功率平均值作为所述M个目标功率值。
  7. 根据权利要求1所述的方法,其中,所述目标接收天线为多个接收天线中的任意一个接收天线,所述方法还包括:
    在确定多个接收功率值之后,根据所述多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件,所述目标小区为所述终端设备所测量的小区,所述多个接收功率值为所述多个接收天线的接收功率值。
  8. 一种终端设备,所述终端设备包括获取模块和确定模块;
    所述获取模块,用于获取M个目标比值,每个目标比值为M个目标功率值中的一个目标功率值与最大目标功率值的比值,所述最大目标功率值为所述M个目标功率值中的最大值,所述M个目标功率值为M个逻辑天线端口的接收功率值,所述M个逻辑天线端口为所述终端设备的目标接收天线的逻辑天线端口,M为大于1的整数;
    所述确定模块,用于根据所述获取模块获取的所述M个目标比值,确定目标接收功率值,所述目标接收功率值为所述目标接收天线的接收功率值。
  9. 根据权利要求8所述的终端设备,其中,
    所述确定模块,具体用于在所述M个目标比值中的全部目标比值均小于预设阈值的情况下,采用第一预设公式,确定所述目标接收功率值;
    或者,
    在所述M个目标比值中的至少一个目标比值大于或等于预设阈值的情况下,采用第二预设公式,确定所述目标接收功率值。
  10. 根据权利要求9所述的终端设备,其中,所述第一预设公式为:
    Figure PCTCN2020098247-appb-100003
    其中,P为所述目标接收功率值,P(i)为所述M个目标功率值中的第i个目标功率值,M为所述目标接收天线接收到的信号的数量,1≤i≤M。
  11. 根据权利要求10所述的终端设备,其中,所述第二预设公式为:
    Figure PCTCN2020098247-appb-100004
    其中,P为所述目标接收功率值,P ratio(i)为所述M个目标比值中的第i个目标比值,F i(P ratio(1),...,P ratio(i),...P ratio(M))为转换函数,P(i)为所述M个目标功率值中的第i个目标功率值,M为所述目标接收天线接收到的信号的数量,1≤i≤M。
  12. 根据权利要求8所述的终端设备,其中,
    所述获取模块,还用于在获取所述M个目标比值之前,获取所述M个目标功率值;
    所述获取模块,具体用于计算所述M个目标功率值中的每个目标功率值与所述最大目标功率值的比值,得到所述M个目标比值。
  13. 根据权利要求12所述的终端设备,其中,
    所述获取模块,具体用于获取M个功率平均值,并将所述M个功率平均值作为所述M个目标功率值,每个功率平均值为所述M个逻辑天线端口中的一个逻辑天线 端口在目标范围内的接收功率平均值,所述目标范围为目标时长或目标带宽。
  14. 根据权利要求8所述的终端设备,其中,所述目标接收天线为多个接收天线中的任意一个接收天线,所述终端设备还包括发送模块;
    所述发送模块,用于在所述确定模块确定多个接收功率值之后,根据所述多个接收功率值中的最大接收功率值,基于S准则判断目标小区是否满足驻留条件,所述目标小区为所述终端设备所测量的小区,所述多个接收功率值为所述多个接收天线的接收功率值。
  15. 一种终端设备,所述终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的功率确定方法的步骤。
  16. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的功率确定方法的步骤。
PCT/CN2020/098247 2019-07-30 2020-06-24 功率确定方法及终端设备 WO2021017707A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022505535A JP7252410B2 (ja) 2019-07-30 2020-06-24 パワー決定方法及び端末機器
EP20848059.0A EP4007364B1 (en) 2019-07-30 2020-06-24 Power determining method and terminal device
KR1020227005885A KR20220039759A (ko) 2019-07-30 2020-06-24 전력 결정 방법 및 단말 장비
ES20848059T ES2955818T3 (es) 2019-07-30 2020-06-24 Método y dispositivo terminal de determinación de potencia
US17/583,475 US20220150767A1 (en) 2019-07-30 2022-01-25 Power determining method and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910696356.6A CN110493831B (zh) 2019-07-30 2019-07-30 一种功率确定方法及终端设备
CN201910696356.6 2019-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/583,475 Continuation US20220150767A1 (en) 2019-07-30 2022-01-25 Power determining method and terminal device

Publications (1)

Publication Number Publication Date
WO2021017707A1 true WO2021017707A1 (zh) 2021-02-04

Family

ID=68548802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098247 WO2021017707A1 (zh) 2019-07-30 2020-06-24 功率确定方法及终端设备

Country Status (7)

Country Link
US (1) US20220150767A1 (zh)
EP (1) EP4007364B1 (zh)
JP (1) JP7252410B2 (zh)
KR (1) KR20220039759A (zh)
CN (1) CN110493831B (zh)
ES (1) ES2955818T3 (zh)
WO (1) WO2021017707A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493831B (zh) * 2019-07-30 2021-09-28 维沃移动通信有限公司 一种功率确定方法及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086293A1 (en) * 2012-09-27 2014-03-27 Ntt Docomo, Inc. Receiver and method of reception quality measurement used in wireless network
CN104185202A (zh) * 2013-05-24 2014-12-03 普天信息技术研究院有限公司 参考信号接收功率的确定方法
CN108934059A (zh) * 2017-05-27 2018-12-04 深圳市金立通信设备有限公司 免授权频段驻留小区的选择方法及相关设备
CN110493831A (zh) * 2019-07-30 2019-11-22 维沃移动通信有限公司 一种功率确定方法及终端设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340160B2 (en) * 2008-02-28 2012-12-25 Nokia Corporation Dynamic combining threshold for a rake receiver
EP2858402B1 (en) * 2012-06-04 2019-08-07 Huawei Technologies Co., Ltd. Signal received power measurement method, terminal, base station and system
CN105075321B (zh) 2013-01-14 2018-11-09 Lg 电子株式会社 在无线通信系统中发送信道状态信息的方法及用户设备
KR20150134328A (ko) * 2013-03-25 2015-12-01 엘지전자 주식회사 하향링크 무선 신호를 수신하기 위한 방법 및 이를 위한 장치
EP2787662B1 (en) * 2013-04-05 2018-02-28 Telefonaktiebolaget LM Ericsson (publ) Antenna port detection
JP6234726B2 (ja) * 2013-07-29 2017-11-22 株式会社Nttドコモ 基地局、ユーザ端末及び無線通信方法
CN104467938B (zh) * 2014-11-20 2018-06-22 京信通信系统(中国)有限公司 选择分集接收合并模式的方法和系统
CN105992265B (zh) * 2015-01-30 2019-09-17 电信科学技术研究院 一种小区测量方法及终端
WO2016163842A1 (ko) 2015-04-10 2016-10-13 엘지전자 (주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
US10374839B2 (en) 2015-08-13 2019-08-06 Lg Electronics Inc. Operation method of user equipment in relation to CSI-RS in wireless communication system and apparatus supporting the same
US10455530B2 (en) 2015-09-03 2019-10-22 Lg Electronics Inc. Method for transmitting and receiving synchronization signal in wireless communication system and apparatus therefor
CN106941681B (zh) * 2016-01-04 2020-03-31 中兴通讯股份有限公司 一种确定天线极化类型的方法、装置及基站
CN108282202B (zh) * 2017-01-06 2021-09-14 华为技术有限公司 一种功率配置方法及相关设备
US10334456B2 (en) 2017-07-06 2019-06-25 Futurewei Technologies, Inc. Optimizing cellular networks using deep learning
US10594382B2 (en) * 2018-01-02 2020-03-17 Apple Inc. Phase tracking reference signal (PT-RS) power boosting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086293A1 (en) * 2012-09-27 2014-03-27 Ntt Docomo, Inc. Receiver and method of reception quality measurement used in wireless network
CN104185202A (zh) * 2013-05-24 2014-12-03 普天信息技术研究院有限公司 参考信号接收功率的确定方法
CN108934059A (zh) * 2017-05-27 2018-12-04 深圳市金立通信设备有限公司 免授权频段驻留小区的选择方法及相关设备
CN110493831A (zh) * 2019-07-30 2019-11-22 维沃移动通信有限公司 一种功率确定方法及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "LC-MTC UE RSRP/RSRQ measurement requirements", 3GPP DRAFT; R4-71AH-0025 LC-MTC UE RSRP RSRQ REQUIREMENTS V1.0, vol. RAN WG4, 18 June 2016 (2016-06-18), Beijing, P.R. China, pages 1 - 3, XP050826448 *
See also references of EP4007364A4 *

Also Published As

Publication number Publication date
KR20220039759A (ko) 2022-03-29
ES2955818T3 (es) 2023-12-07
EP4007364A4 (en) 2022-09-21
JP2022544046A (ja) 2022-10-17
EP4007364B1 (en) 2023-08-09
EP4007364A1 (en) 2022-06-01
CN110493831A (zh) 2019-11-22
US20220150767A1 (en) 2022-05-12
CN110493831B (zh) 2021-09-28
JP7252410B2 (ja) 2023-04-04

Similar Documents

Publication Publication Date Title
US11848773B2 (en) Transmit antenna switching method and terminal device
US20200257433A1 (en) Display method and mobile terminal
WO2021023061A1 (zh) 准共址qcl信息确定方法、配置方法及相关设备
CN108494030B (zh) 一种无线充电方法、终端及发射端设备
WO2020253382A1 (zh) 信息显示方法及终端设备
CN111328119B (zh) 一种语音业务处理方法及电子设备
CN110399000B (zh) 一种移动终端及其温控方法
WO2021185254A1 (zh) 内容共享方法及电子设备
CN109195191B (zh) 一种小区重选控制方法及终端
WO2021147911A1 (zh) 移动终端、拍摄模式的检测方法及存储介质
CN110730017A (zh) 一种射频装置及其控制方法、终端设备
CN111432071B (zh) 通话控制方法及电子设备
WO2020156119A1 (zh) 应用程序界面调整方法及移动终端
US20220110036A1 (en) Random access method and terminal
CN110099434B (zh) 一种功率调整方法、终端设备及计算机可读存储介质
US11375497B2 (en) Power configuration method and terminal
CN109041190B (zh) 一种功率控制方法和终端
CN108307075B (zh) 一种来电处理方法及移动终端
WO2021104265A1 (zh) 电子设备及对焦方法
WO2021017785A1 (zh) 数据传输方法及终端设备
WO2021017707A1 (zh) 功率确定方法及终端设备
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2020211613A1 (zh) 显示方法及终端设备
CN109450508B (zh) 天线确定方法、装置及移动终端
CN109309758B (zh) 一种音频处理装置、终端设备及信号处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005885

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020848059

Country of ref document: EP

Effective date: 20220228