WO2021017573A1 - 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计 - Google Patents

一种提高熔融沉积增材制造层间紧实性能的装置及结构设计 Download PDF

Info

Publication number
WO2021017573A1
WO2021017573A1 PCT/CN2020/089923 CN2020089923W WO2021017573A1 WO 2021017573 A1 WO2021017573 A1 WO 2021017573A1 CN 2020089923 W CN2020089923 W CN 2020089923W WO 2021017573 A1 WO2021017573 A1 WO 2021017573A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive manufacturing
improving
substrate
axis
fused deposition
Prior art date
Application number
PCT/CN2020/089923
Other languages
English (en)
French (fr)
Inventor
单忠德
孙启利
战丽
张群
Original Assignee
北京机科国创轻量化科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京机科国创轻量化科学研究院有限公司 filed Critical 北京机科国创轻量化科学研究院有限公司
Publication of WO2021017573A1 publication Critical patent/WO2021017573A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention relates to the technical field of additive manufacturing, in particular to a device and structural design for improving the compactness between layers of fused deposition additive manufacturing.
  • Additive manufacturing is an emerging manufacturing technology based on digital models that drives the nozzles to move in the X, Y, and Z directions through a three-dimensional motion mechanism, stacking materials layer by layer to produce physical objects.
  • This technology has a high degree of Cost intensive and process simplicity, fewer processing procedures, can meet the production requirements of small batches, individualized, and complex structural parts integrated forming, and has strong promotion and application value.
  • Fused deposition forming technology is the hotspot and focus of additive manufacturing research. It extrudes filamentous thermoplastic material from a heated nozzle and deposits the melt layer by layer according to a predetermined trajectory and rate, so as to realize the three-dimensional forming of composite materials.
  • FDM technology Compared with other 3D printing technologies, FDM technology has the advantages of a wide variety of printing materials, fast processing and forming speed, low processing cost, simple printer structure, and easy operation.
  • the composite material prepared by fused deposition technology has better mechanical properties in the X/Y direction, but the Z-direction interlayer mechanical properties are poor, and delamination is prone to occur when subjected to impact loads, which severely limits the The development of technology and the market application of formed products.
  • the existing methods to improve interlayer performance usually apply compaction treatment between layers to achieve effective bonding between layers.
  • the current compaction treatment method between large layers is mostly a pressing roller contact type, and the roller pressing device passes The roller rolls the stacked deposits, which makes the stacked deposits plastically deform under the action of pressure, which eliminates the material's looseness and uneven texture during the additive manufacturing process, and makes the internal organization of the processed parts more compact Solid, improve the mechanical performance of parts and product quality.
  • the purpose of the present invention is to develop a device and structure design to improve the compaction performance between layers of fused deposition additive manufacturing. Its advantage is that the composite material is impacted and compacted in all directions in a non-contact manner, and is not affected by space. Restriction, it solves the problems of sticky layer and difficult steering in the engineering application of the existing pressing roller device.
  • the present invention is achieved through the following technical solutions: including a workbench, a substrate set on the workbench, a print nozzle suspended and mounted above the substrate, and a three-dimensional motion mechanism set on the workbench, the three-dimensional motion
  • the mechanism can drive the substrate to move along the Y axis, and can drive the print nozzle to move along the X axis and the Z axis.
  • One side of the print nozzle is provided with a non-contact radial impact compaction device.
  • the print nozzle realizes three-dimensional movement under the control of the three-dimensional movement mechanism, and prints the composite material layer by layer on the substrate.
  • the non-contact compaction device applies radial impact to the composite material to achieve enhanced interlayer The effect of performance.
  • the compacting device is configured as an ultrasonic impact assembly
  • the ultrasonic impact assembly includes an ultrasonic impact generator installed on one side of the printing nozzle, and a transducer arranged inside the ultrasonic impact generator , A draft tube connected to the output end of the transducer, and an ultrasonic spray head fixedly connected at the port of the draft tube.
  • the ultrasonic impact assembly moves with the print nozzle and applies radial impact to the composite material.
  • the ultrasonic energy field is diffused at the interface, thereby changing the internal structure of the composite material. , Eliminate residual stress between layers, promote interface fusion, play a compaction effect, thereby improving the overall performance of the composite material.
  • the ultrasonic nozzle can be set to flared or close according to the printing path and the forming shape.
  • the flaring can increase the effective area of ultrasonic impact and improve the work efficiency, and the closing can play the role of gathering waves and energy, and enhance the compaction effect.
  • the compacting device is set as a high-pressure air source assembly
  • the high-pressure air source assembly includes a high-pressure air pump installed on the workbench, a high-pressure vertical installation installed on one side of the printing nozzle A nozzle, an air pipe connected between the high-pressure air pump and the high-pressure air flow nozzle, and a solenoid valve installed on the air pipe.
  • the high-pressure airflow nozzle moves together with the printing nozzle, and the high-pressure airflow exerts a radial impact on the composite material to achieve a non-contact compaction effect.
  • the three-dimensional motion mechanism includes a driving assembly (4) for driving the substrate (2) to move along the Y axis, and a driving device (5) for driving the printing nozzle (3) to move along the X axis and Z axis .
  • the drive assembly includes a first screw, a first guide rod and a first motor;
  • the base plate is threadedly connected with the first screw rod, the base plate is slidably connected with the first guide rod, and
  • the first motor drives the first screw to rotate, the substrate moves along the first guide rod;
  • the driving device includes a second screw rod symmetrically arranged and rotatably connected to the worktable, and a second motor for driving the second screw rod to rotate.
  • Two lifting plates are respectively screwed on the two second screw rods to print
  • the nozzle is connected to the two lifting plates through a third guide rod, and the print nozzle can slide along the third guide rod;
  • a second guide rod is fixed on the worktable, and the second guide rod is formed by passing through both the lifting plates Sliding connection;
  • the print nozzle is threadedly connected with a third screw rod parallel to the third guide rod, and both ends of the third screw rod are respectively connected to the lifting plate in rotation and driven to rotate by a third motor .
  • the second motor when the second motor starts, it drives the lifting plate to move vertically along the Z axis through the second screw; when the third motor starts, it drives the print nozzle to move along the X axis through the third screw. Horizontal movement.
  • the present invention is further provided as follows: a heating device is provided above the substrate.
  • the heating device pre-heats the formed resin to make the surface of the composite material present in a molten state, so as to achieve better bonding between the pre-printed composite material and the pre-heated molten composite material.
  • the heating device can be set as an infrared heating tube or a laser heater.
  • the present invention is further configured as follows: a powder spreading box extending along the X-axis is provided above the base plate, and two ends of the powder spreading box are fixed to the workbench by supporting feet, and a vibration motor is installed on the bottom surface of the powder spreading box. Connected with the governor, the heating device is installed on one side of the powder spreading box.
  • the governor controls the vibration frequency of the vibration motor, so that the powder in the powder spreading box is buried in the composite material layer quantitatively and evenly, so as to achieve the bridging and bonding effect of the third-phase structural material.
  • the printing nozzle realizes three-dimensional motion under the control of the three-dimensional motion mechanism, and prints the composite material layer by layer on the substrate.
  • the non-contact compaction device applies radial impact to the composite material to make the layer and layer Compared with the pressure roller device, the composite material is impacted and compacted in a non-contact manner in this application, which avoids sticking rollers, difficult steering, and low printing accuracy in the engineering application of the pressure roller.
  • the ultrasonic energy field is diffused at the interface, thereby changing the internal structure of the composite material, eliminating the residual stress between the layers, promoting the interface fusion, and achieving the purpose of compaction, thereby improving the overall performance of the composite material ;
  • the setting of the heating device is used to preheat the composite material, so that the layers of the composite material can be better combined to ensure the bonding performance between the printed layers.
  • Figure 1 is a schematic diagram of the overall structure of Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram showing the structure of an ultrasonic impact assembly
  • Figure 3 is a schematic structural view showing the positional relationship between the first screw rod, the first guide rod and the slider;
  • Figure 4 is a schematic diagram of the overall structure of Embodiment 2 of the present invention.
  • the printing nozzle 3 is provided with a three-dimensional movement mechanism on the worktable 1, which includes a driving assembly 4 for driving the substrate 2 to move along the Y axis, and a driving device 5 for driving the printing nozzle 3 to move along the X and Z axes, The two are combined to realize the three-dimensional movement of the print nozzle 3.
  • the X axis is the left and right direction
  • the Y axis is the front and back direction
  • the Z axis is the up and down direction.
  • a powder spreading box 7 extending along the X-axis direction, both ends of which are fixed on the workbench 1 by feet.
  • the powder spreading box 7 is in the shape of a rectangular groove and can be used to hold the third phase. material.
  • a vibrating motor is installed on the bottom surface of the powder spreading box 7, and the vibration frequency is controlled by a speed regulator.
  • the bottom surface of the powder spreading box 7 is a sieve hole to allow the third phase material to pass.
  • the governor controls the frequency of the vibration motor to control the continuous vibration of the powder spreading box, and bury the third phase material in the composite material quantitatively and evenly, thereby realizing the third phase structure
  • the bridging and bonding effect of the material plays a role in synergistically enhancing the interlayer performance.
  • a heating device 8 is installed on one side of the powder spreading box 7.
  • the heating device 8 is located above the substrate 2.
  • the heating device 8 can be set as an infrared heating tube or a laser heater to preheat the composite material through thermal radiation energy. It can be better combined with each layer of the composite material, and the interlayer bonding performance of the composite material is improved.
  • a compacting device 6 is provided on one side of the printing nozzle 3, and the compacting device 6 is configured as an ultrasonic impact component.
  • the ultrasonic impact component includes an ultrasonic impact generator 61 installed on one side of the printing nozzle 3, and the ultrasonic impact generator 61
  • the input end of the transducer 67 is connected to the output end of the ultrasonic impact generator 61.
  • the ultrasonic impact emitted by the ultrasonic impact generator 61 can be transmitted to the ultrasonic nozzle 62 through the transducer 67 and the draft tube 68 to realize the composite material Ultrasonic shock.
  • the end of the ultrasonic nozzle 62 away from the ultrasonic impact generator 61 can be set as a flaring or a flaring.
  • the flaring can increase the coverage area of the ultrasonic impact and improve work efficiency.
  • the flaring can play a role of gathering waves and energy and enhance the compaction effect. Because the ultrasonic impact component uses the impact action of the ultrasonic impact energy to achieve radial compaction of the composite material, there is no space limitation and can achieve omni-directional impact compaction, which well solves the problems in the engineering application of the pressure roller.
  • the ultrasonic impact assembly moves with the printing nozzle 3, and applies non-contact radial impact to the composite material layers printed by the printing nozzle 3 on the substrate 2 to eliminate residual stress between layers and promote interface fusion. Play the compaction effect, thereby improving the overall performance of the composite material.
  • the drive assembly 4 includes a first screw 41, a first guide rod 42, and a first motor 43.
  • the middle position of the lower surface of the base plate 2 is integrally connected with a slider 21 extending in the X-axis direction.
  • the screw rod 41 extends along the Y-axis direction and is threadedly connected to the slider 21.
  • the worktable 1 is fixedly connected to the support plate 11 at the two ends of the first screw rod 41, and the first screw rod 41 passes through the two support plates 11 and Rotation connection;
  • the first motor 43 is installed on the workbench 1, its output shaft is fixedly connected to the end of the first screw 41, the first guide rod 42 is a pair, which are located on both sides of the first screw 41, And passing through the sliding block 21, the two ends of the first guide rod 42 are fixed on the worktable 1.
  • the motor When the motor is started, it drives the screw to rotate. At this time, the base plate 2 can move horizontally along the Y axis.
  • the driving device 5 includes second screw rods 51 vertically arranged on both sides of the substrate 2 along the X-axis direction.
  • One end of the second screw rod 51 passes through the worktable 1 and is rotatably connected to the worktable 1.
  • the lower surface corresponds to the end of the second screw 51 passing through the workbench 1 is respectively installed with a second motor 52, the output shaft of which is fixedly connected with the second screw 51, and the two second screw 51 are respectively screwed with lifting plates 53.
  • a vertically arranged second guide rod 54 is fixed on the workbench 1 at a position on the side of the second screw rod 51, which passes through the lifting plate 53, and when the second motor 52 starts, it passes through the second screw rod.
  • the lifting plate 53 is driven to move vertically along the Z axis.
  • a third guide rod 55 extending in the X-axis direction is fixed between the two lifting plates 53.
  • a moving block 56 is provided on the third guide rod 55, which can slide freely along the third guide rod 55.
  • the moving block 56 has threads.
  • the third screw rod 57 parallel to the third guide rod 55 is rotatably connected to the lifting plate 53 at both ends.
  • a third motor 58 is installed on the side of one of the lifting plates 53 away from the moving block 56.
  • One end of the three screw rod 57 is fixedly connected, and the printing nozzle 3 is fixedly installed on the moving block 56.
  • the third motor 58 When the third motor 58 is activated, it drives the printing nozzle 3 to move horizontally along the X axis along the moving block 56 through the third screw 57.
  • Infrared heating tube or laser heater preheats the composite material on the substrate to make it appear molten
  • Non-contact impact is applied to the composite material layer through ultrasonic impact to achieve the compaction effect between the composite material layer. Repeat the above process until the parts are printed.
  • the compacting device 6 is set as a high-pressure gas source assembly.
  • the high-pressure air source assembly includes a high-pressure air pump 63 installed on the workbench 1, a high-pressure nozzle 64 installed on the side of the printing nozzle 3 and arranged vertically, and an air pipe 65 connected between the high-pressure air pump 63 and the high-pressure nozzle 64.
  • a solenoid valve 66 is installed on the air pipe 65 for controlling the airflow.
  • the high-pressure nozzle 64 moves together with the printing nozzle 3, and exerts a radial impact on each layer of the composite material through the high-pressure airflow to achieve a non-contact compaction effect.
  • Infrared heating tube or laser heater preheats the composite material on the substrate to make it appear molten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明涉及增材制造的技术领域,尤其是涉及一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,包括工作台、设置在所述工作台上的基板、打印喷头、以及设置在工作台上的三维运动机构;三维运动机构可驱动基板沿Y轴运动,驱动打印喷头沿X轴和Z轴运动,打印喷头的一侧设有非接触式的径向冲击紧实装置,且于基板上方设有加热装置。本发明首先通过预热装置对已打印成形的复合材料加热,使之呈现熔融状态,其次通过打印喷头打印一层复合材料,接着通过冲击紧实装置对复合材料层间施加径向作用力。通过非接触的方式对复合材料进行全方位的冲击和压实,解决了现有的压辊装置工程化应用中的粘层和转向难问题,提高增材制造打印成形精度。

Description

一种提高熔融沉积增材制造层间紧实性能的装置及结构设计
本申请要求于2019年07月30日提交中国专利局、申请号为201910694833.5、发明名称为“一种提高熔融沉积增材制造层间紧实性能的装置及结构设计”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及增材制造的技术领域,尤其是涉及一种提高熔融沉积增材制造层间紧实性能的装置及结构设计。
背景技术
增材制造(又称3D打印)是以数字模型为基础,通过三维运动机构带动喷头在X、Y、Z方向运动,将材料逐层堆积制造出实体物品的新兴制造技术,该技术具有高度的成本集约性和工艺简便性,加工工序少,能够满足小批量、个性化、复杂结构零件一体化成形的生产要求,具有较强的推广应用价值。熔融沉积成形技术是增材制造研究的热点和重点,它是将丝状的热塑性材料从加热的喷头挤出,按照预定的轨迹和速率进行熔体逐层沉积,从而实现复合材料立体成形。相比于其他3D打印技术,FDM技术具有打印材料种类丰富、加工成型速度快、加工成本低、打印机结构简单、便于操作等优势。然而,通过熔融沉积技术制备的复合材料,在X/Y方向力学性能较好,但是,Z向层间力学性能较差,在受到冲击载荷作用时,容易出现分层现象,这严重限制了该技术的发展和成形产品的市场化应用。
目前,现有提高层间性能的方式通常在层间施加压实处理,以实现层间的有效粘结,但是目前大多层间压实处理的方式多为压辊接触式,该辊压装置通过辊轮对层叠堆积物实现辊压,在压力的作用下使得层叠堆积物产生塑性变形,消除了材料在增材制造过程中产生的疏松和质地不均匀等缺陷,使加工零件的内部组织更加紧密坚实,提高了零件的机械性能和产品质量。
但是这种辊压接触式压实方式存在以下缺点:
1、复合材料在压辊碾压过程中,表面熔融的树脂会附着在压辊表面,影响加工质量和打印成形精度;
2、压辊在使用的过程中,受压辊机械结构的限制,只能实现一维轧制且存在转向困难等弊端。
发明内容
本发明的目的是研制出一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其优点是通过非接触的方式对复合材料进行全方位的冲击和压实,不受空间的限制,很好的解决了现有的压辊装置工程化应用中的粘层和转向难问题。
本发明通过以下技术方案得以实现的:包括工作台、设置在所述工作台上的基板、悬挂安装在所述基板上方的打印喷头、以及设置在工作台上的三维运动机构,所述三维运动机构可驱动基板沿Y轴运动,可驱动打印喷头沿X轴和Z轴运动,所述打印喷头的一侧设有非接触式径向冲击紧实装置。
通过上述技术方案,打印喷头在三维运动机构的控制下实现三维运动,并将复合材料一层层的打印成形在基板上,通过非接触紧实装置对复合材料施加径向冲击,达到增强层间性能的效果。
本发明进一步设置为:所述紧实装置设置为超声冲击组件,所述超声冲击组件包括安装在所述打印喷头一侧的超声冲击发生器、设置在所述超声冲击发生器内部的换能器、连接在所述换能器输出端的导流管、以及固接在所述导流管端口处的超声喷头。
通过上述技术方案,打印成形过程中,超声冲击组件随打印喷头一同运动,并且对复合材料施加径向冲击,借助超声冲击能量使超声能场在界面发生扩散作用,进而改变复合材料层间内部组织,消除层间残余应力,促使界面融合,起到压实的功效,从而提高复合材料整体性能的目的。
本发明进一步设置为:所述超声喷头可根据打印路径和成形形状设置为扩口或收口。
通过上述技术方案,扩口可增加超声冲击的作用面积,提高工作效率,收口可起到聚波聚能的作用,增强压实效果。
本发明进一步设置为:所述紧实装置设置为高压气源组件,所述高压气源组件包括安装在所述工作台上的高压气泵、安装在所述打印喷头一侧且竖直设 置的高压喷头、以及连接在所述高压气泵与所述高压气流喷头之间的输气管、以及安装在所述输气管上的电磁阀。
通过上述技术方案,打印喷头打印过程中,高压气流喷头随打印喷头一同运动,并且通过高压气流对复合材料施加径向冲击,实现非接触式的压实效果。
本发明进一步设置为:所述三维运动机构包括用于驱动基板(2)沿Y轴运动的驱动组件(4)、以及驱动打印喷头(3)沿X轴和Z轴运动的驱动装置(5)。
本发明进一步设置为:所述驱动组件包括第一丝杆、第一导向杆和第一电机;所述基板与所述第一丝杆螺纹连接,所述基板与第一导向杆滑动连接,所述第一电机驱动第一丝杆转动时,基板沿第一导向杆运动;
所述驱动装置包括对称设置且与工作台转动连接的第二丝杆、用于驱动第二丝杆转动的第二电机,两根所述第二丝杆上分别螺纹连接有两升降板,打印喷头通过第三导向杆与两所述升降板连接,打印喷头能够沿第三导向杆滑动;所述工作台上固接有第二导向杆,所述第二导向杆穿过升降板二者形成滑动连接;所述打印喷头上螺纹连接有与所述第三导向杆平行的第三丝杆,所述第三丝杆的两端分别与所述升降板转动连接且通过第三电机驱动其转动。
通过上述技术方案,当第二电机启动时,其通过第二丝杠带动升降板沿Z轴竖直运动;当第三电机启动时,其通过第三丝杆带动打印喷头随移动块沿X轴水平运动。
本发明进一步设置为:所述基板上方设有加热装置。
通过上述技术方案,加热装置对以成形的树脂进行预热处理,使复合材料表面呈现熔融状态,实现预打印复合材料与预热熔融复合材料更好粘结。
本发明进一步设置为:所述加热装置可设置为红外加热管或者激光加热器。
本发明进一步设置为:所述基板上方设有沿X轴方向延伸的铺粉盒,其两端通过支脚固定在所述工作台,所述铺粉盒的底面安装有振动电机,所述振动电机与调速器连接,所述加热装置安装于铺粉盒的一侧。
通过上述技术方案,调速器控制振动电机振动频率,从而将铺粉盒内的粉料定量、均匀地埋入复合材料层内,从而实现第三相结构材料的桥联粘结作用。
综上所述,本发明的有益技术效果为:
1、工作时,打印喷头在三维运动机构的控制下实现三维运动,并将复合材料一层层的打印成形在基板上,非接触紧实装置对复合材料施加径向冲击,使层与层之间能够更好的结合,相比压辊装置,本申请中非接触的方式对复合材料进行全方位的冲击和压实,避免了压辊工程化应用中粘辊、转向难以及打印精度低的弊端;
2、借助超声冲击能量使超声能场在界面发生扩散作用,进而改变复合材料层间内部组织,消除层间残余应力,促使界面融合,起到压实的功效,从而提高复合材料整体性能的目的;
3、加热装置的设置,用于对复合材料进行预热,以便于复合材料各层之间能够更好的结合,保证打印成形层间粘结性能。
附图说明
图1是本发明中实施例1的整体结构示意图;
图2是体现超声冲击组件的结构示意图;
图3是体现第一丝杆、第一导向杆与滑块之间位置关系的结构示意图;
图4是本发明中实施例2的整体结构示意图。
图中,1、工作台;11、支撑板;2、基板;21、滑块;3、打印喷头;4、驱动组件;41、第一丝杆;42、第一导向杆;43、第一电机;5、驱动装置;51、第二丝杆;52、第二电机;53、升降板;54、第二导向杆;55、第三导向杆;56、移动块;57、第三丝杆;58、第三电机;6、紧实装置;61、超声冲击发生器;62、超声喷头;63、高压气泵;64、高压喷头;65、输气管;66、电磁阀;67、换能器;68、导流管;7、铺粉盒;8、加热装置。
具体实施方式
实施例1:
参照图1,为本发明公开的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,包括工作台1、设置在工作台1上的基板2、以及悬挂安装在基板2上方的打印喷头3,工作台1上设有三维运动机构,其包括用于驱动基板2沿Y轴运动的驱动组件4、以及用于驱动打印喷头3沿X轴和Z轴运动 的驱动装置5,两者结合,实现打印喷头3的三维运动,此处需要说明的是,X轴为左右方向;Y轴为前后方向;Z轴为上下方向。
参照图1,基板2的上方设有沿X轴方向延伸的铺粉盒7,其两端通过支脚固定在工作台1上,铺粉盒7呈矩形槽状,能够用于盛放第三相材料。铺粉盒7的底面安装有振动电机,其通过调速器进行振动频率控制,铺粉盒7的底面为筛孔,允许第三相材料通过。当基板2从铺粉盒7的下方通过时,调速器控制振动电机频率,从而控制铺粉盒不断振动,将第三相材料定量、均匀地埋入复合材料内,从而实现第三相结构材料的桥联粘结作用,起到协同增强层间性能的作用。
铺粉盒7的一侧安装有加热装置8,加热装置8位于基板2的上方,加热装置8可设置为红外加热管或者激光加热器,通过热辐射能量对复合材料进行预热,以便复合材料与复合材料各层之间能够更好的结合,改善了复合材料层间粘结性能。
打印喷头3的一侧设有紧实装置6,紧实装置6设置为超声冲击组件,超声冲击组件包括安装在打印喷头3一侧的超声冲击发生器61、设置在所述超声冲击发生器61内部的换能器67、连接在所述换能器67输出端的导流管68、以及固接在所述导流管68的发射口处的超声喷头62。换能器67输入端与超声冲击发生器61的输出端相连,超声冲击发生器61发出的超声冲击能够通过换能器67和导流管68,传导至超声喷头62处并实现对复合材料的超声冲击。超声喷头62远离超声冲击发生器61的一端可设置为扩口或收口,扩口可增加超声冲击的覆盖面积,提高工作效率,收口可起到聚波聚能的作用,增强压实效果。由于超声冲击组件借用超声冲击能量的冲击作用实现对复合材料的径向压实,没有空间的限制,能够实现全方位冲击压实,很好的解决了压辊工程化应用中的难题。
打印喷头3在打印过程中,超声冲击组件随打印喷头3一同运动,并对打印喷头3打印于基板2上的复合材料层间施加非接触径向冲击,消除层间残余应力,促使界面融合,起到压实的功效,从而提高复合材料整体性能的目的。
参照图1和图3,驱动组件4包括第一丝杆41、第一导向杆42和第一电机43,基板2下表面的中间位置一体连接有沿X轴方向延伸的滑块21,第一 丝杆41沿Y轴方向延伸并且与滑块21螺纹连接,工作台1上位于第一丝杆41两端的位置分别固接有支撑板11,第一丝杆41穿过两支撑板11且与其转动连接;第一电机43安装在工作台1上,其输出轴与第一丝杆41的端部固定连接,第一导向杆42为一对,其分别位于第一丝杆41的两侧,并且穿过滑块21,第一导向杆42的两端固定在工作台1上,电机启动时,其带动螺杆转动,此时,基板2可沿Y轴水平运动。
参照图1,驱动装置5包括分别竖直设置在基板2沿X轴方向两侧的第二丝杆51,第二丝杆51的一端穿过工作台1并且与工作台1转动连接,工作台1下表面对应第二丝杆51穿过工作台1的一端分别安装有第二电机52,其输出轴与第二丝杆51固定连接,两根第二丝杆51上分别螺纹连接有升降板53,工作台1上位于第二丝杆51一侧的位置固接有竖直设置的第二导向杆54,其穿过升降板53,当第二电机52启动时,其通过第二丝杠带动升降板53沿Z轴竖直运动。
两升降板53之间固接有沿X轴方向延伸的第三导向杆55,第三导向杆55上设有移动块56,其可沿第三导向杆55自由滑动,移动块56上螺纹有与第三导向杆55平行的第三丝杆57,其两端分别与升降板53转动连接,在其中一升降板53远离移动块56的一侧安装有第三电机58,其输出轴与第三丝杆57的一端固定连接,打印喷头3固定安装在移动块56上,当第三电机58启动时,其通过第三丝杆57带动打印喷头3随移动块56沿X轴水平运动。
参照图1,工作过程:
(1)红外加热管或者激光加热器对基板上的复合材料进行预热,使之呈现熔融状态;
(2)打印出熔融态的树脂基复合材料与底层已预热熔融态的树脂基复合材料叠加成形,或者,铺粉盒经过振动作用,使盒内粉料定量、均匀的落粉于复合材料层间并与预热的树脂形成良好的浸润与融合,并再打印一层复合材料与之形成叠层;
(3)通过超声冲击对复合材料层间施加非接触式冲击,实现复合材料层间压实效果。不断重复上述过程直至完成零件的打印。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明 的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。
实施例2:
参照图4,为本发明公开的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,与实施例1的不同之处在于紧实装置6,其设置为高压气源组件,高压气源组件包括安装在工作台1上的高压气泵63、安装在打印喷头3一侧且竖直设置的高压喷头64、以及连接在高压气泵63与高压喷头64之间的输气管65,输气管65上安装有电磁阀66,用于控制气流的大小。
打印喷头3在喷料的过程中,高压喷头64随打印喷头3一同运动,并且通过高压气流对复合材料各层施加径向冲击,实现非接触式的压实效果。
工作过程:
(1)红外加热管或者激光加热器对基板上的复合材料进行预热,使之呈现熔融状态;
(2)打印出熔融态的树脂基复合材料与底层已预热熔融态的树脂基复合材料叠加成形,或者,铺粉盒经过振动作用,使盒内粉料定量、均匀的落粉于复合材料层间并与预热的树脂形成良好的浸润与融合,并再打印一层复合材料与之形成叠层;
(3)通过高压气源组件对复合材料层间施加非接触式冲击,实现复合材料层间压实效果。不断重复上述过程直至完成零件的打印。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (8)

  1. 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:包括工作台(1)、设置在所述工作台(1)上的基板(2)、打印喷头(3)、以及设置在工作台(1)上的三维运动机构,所述三维运动机构可驱动基板(2)沿Y轴运动,可驱动打印喷头(3)沿X轴和Z轴运动,所述打印喷头(3)的一侧设有非接触式径向冲击紧实装置(6)。
  2. 根据权利要求1所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述紧实装置(6)设置为超声冲击组件,所述超声冲击组件包括安装在所述打印喷头(3)一侧的超声冲击发生器(61)、设置在所述超声冲击发生器(61)内部的换能器(67)、连接在所述换能器(67)输出端的导流管(68)、以及固接在所述导流管(68)的端口处的超声喷头(62)。
  3. 根据权利要求2所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述超声喷头(62)根据打印路径和成形形状可设置为扩口或收口。
  4. 根据权利要求1所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述紧实装置(6)设置为高压气源组件,所述高压气源组件包括安装在所述工作台(1)上的高压气泵(63)、安装在所述打印喷头(3)一侧的高压喷头(64)、连接在所述高压气泵(63)与所述高压喷头(64)之间的输气管(65)、以及安装在所述输气管(65)上的电磁阀(66)。
  5. 根据权利要求1所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述三维运动机构包括用于驱动基板(2)沿Y轴运动的驱动组件(4)、以及驱动打印喷头(3)沿X轴和Z轴运动的驱动装置(5)。
  6. 根据权利要求1所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述基板(2)上方设有加热装置(8)。
  7. 根据权利要求6所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述加热装置(8)可设置为红外加热管或者激光加热器。
  8. 根据权利要求7所述的一种提高熔融沉积增材制造层间紧实性能的装置及结构设计,其特征在于:所述基板(2)上方设有铺粉盒(7),其两端固定在所述工作台(1),所述铺粉盒(7)的底面安装有振动电机,所述振动电机与调速器电连接,所述加热装置(8)安装于铺粉盒(7)的一侧。
PCT/CN2020/089923 2019-07-30 2020-05-13 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计 WO2021017573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910694833.5 2019-07-30
CN201910694833.5A CN110722791A (zh) 2019-07-30 2019-07-30 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计

Publications (1)

Publication Number Publication Date
WO2021017573A1 true WO2021017573A1 (zh) 2021-02-04

Family

ID=69217732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089923 WO2021017573A1 (zh) 2019-07-30 2020-05-13 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计

Country Status (2)

Country Link
CN (1) CN110722791A (zh)
WO (1) WO2021017573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247110A1 (en) * 2020-06-01 2021-12-09 Raytheon Company Heating fixtures for 5-axis printing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722791A (zh) * 2019-07-30 2020-01-24 北京机科国创轻量化科学研究院有限公司 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计
CN111975925A (zh) * 2020-08-14 2020-11-24 北京机科国创轻量化科学研究院有限公司 一种宽幅石膏基浮雕装饰材料3d打印设备与方法
CN112706253B (zh) * 2020-12-17 2023-02-28 江苏集萃复合材料装备研究所有限公司 水泥3d打印材料试验装置及其使用方法
CN113370522A (zh) * 2021-06-03 2021-09-10 大连海事大学 一种基于粒料螺杆挤出机的大型3d打印装置及其工作方法
CN114851547A (zh) * 2022-04-15 2022-08-05 南京航空航天大学 一种3d打印装置及方法
CN115625342A (zh) * 2022-11-11 2023-01-20 江南大学 一种宽幅连续熔流铺造3d打印制造装置及方法
CN115972579A (zh) * 2023-01-09 2023-04-18 南京航空航天大学 一种用于纤维增材制造的带有随行超声滚压的打印机构

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106738891A (zh) * 2017-03-01 2017-05-31 机械科学研究总院先进制造技术研究中心 一种层间增强的连续纤维复合材料增材制造方法
CN106735967A (zh) * 2016-11-21 2017-05-31 湘潭大学 一种超声振动辅助电弧增材制造控形控性的方法
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN107244072A (zh) * 2017-07-28 2017-10-13 李桂伟 超声熔融复合沉积增材制造装置及方法
CN107552798A (zh) * 2017-08-31 2018-01-09 孙振淋 一种提高3d打印或电弧增材成形零件强度的方法
CN108176857A (zh) * 2018-03-05 2018-06-19 广东工业大学 一种金属3d打印复合制造方法及其装置
CN108189386A (zh) * 2017-12-15 2018-06-22 北京机科国创轻量化科学研究院有限公司 一种纤维增强树脂基复合材料三维打印成形方法
WO2019010586A1 (en) * 2017-07-14 2019-01-17 8098549 Canada Inc. SYSTEM AND METHOD FOR ADDITIVE MANUFACTURING
CN109501241A (zh) * 2018-11-05 2019-03-22 北京工业大学 立体视觉监视的高强度多方向fdm 3d打印方法
CN109590470A (zh) * 2018-12-20 2019-04-09 西安增材制造国家研究院有限公司 一种多能场增材制造成形系统
CN109623100A (zh) * 2019-01-14 2019-04-16 南京航空航天大学 一种电弧增材与电辅助超声冲击强化复合制造方法和装置
CN109703014A (zh) * 2019-02-27 2019-05-03 共享智能铸造产业创新中心有限公司 一种应用于3d打印机的双悬挂铺粉装置及其铺粉方法
US20190202116A1 (en) * 2017-12-29 2019-07-04 University Of Louisville Research Foundation, Inc. Acoustic energy enabled property isotropy in extrusion-based 3d printed materials
CN110722791A (zh) * 2019-07-30 2020-01-24 北京机科国创轻量化科学研究院有限公司 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193505A1 (en) * 2013-05-31 2014-12-04 United Technologies Corporation Continuous fiber-reinforced component fabrication
CN104772462B (zh) * 2015-03-19 2016-08-24 南京邮电大学 一种基于激光熔融的打印喷头装置
CN105252000B (zh) * 2015-10-08 2017-09-19 湖南顶立科技有限公司 一种超高压惰性气体保护下金属粉末增材制造方法
US10137631B2 (en) * 2015-10-26 2018-11-27 Toyota Motor Engineering & Manufacturing North America, Inc. Device, system, and method for fused deposition modeling
CN106965421B (zh) * 2017-04-29 2020-10-20 南京钛陶智能系统有限责任公司 一种三维打印方法
CN107199338A (zh) * 2017-05-02 2017-09-26 武汉理工大学 一种3d打印喷头
CN107139453A (zh) * 2017-06-22 2017-09-08 北京科田高新技术有限公司 一种熔融沉积3d打印机喷头系统
CN109332690B (zh) * 2018-10-24 2022-09-06 中国科学院宁波材料技术与工程研究所 一种金属3d打印方法和装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735967A (zh) * 2016-11-21 2017-05-31 湘潭大学 一种超声振动辅助电弧增材制造控形控性的方法
CN106738891A (zh) * 2017-03-01 2017-05-31 机械科学研究总院先进制造技术研究中心 一种层间增强的连续纤维复合材料增材制造方法
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
WO2019010586A1 (en) * 2017-07-14 2019-01-17 8098549 Canada Inc. SYSTEM AND METHOD FOR ADDITIVE MANUFACTURING
CN107244072A (zh) * 2017-07-28 2017-10-13 李桂伟 超声熔融复合沉积增材制造装置及方法
CN107552798A (zh) * 2017-08-31 2018-01-09 孙振淋 一种提高3d打印或电弧增材成形零件强度的方法
CN108189386A (zh) * 2017-12-15 2018-06-22 北京机科国创轻量化科学研究院有限公司 一种纤维增强树脂基复合材料三维打印成形方法
US20190202116A1 (en) * 2017-12-29 2019-07-04 University Of Louisville Research Foundation, Inc. Acoustic energy enabled property isotropy in extrusion-based 3d printed materials
CN108176857A (zh) * 2018-03-05 2018-06-19 广东工业大学 一种金属3d打印复合制造方法及其装置
CN109501241A (zh) * 2018-11-05 2019-03-22 北京工业大学 立体视觉监视的高强度多方向fdm 3d打印方法
CN109590470A (zh) * 2018-12-20 2019-04-09 西安增材制造国家研究院有限公司 一种多能场增材制造成形系统
CN109623100A (zh) * 2019-01-14 2019-04-16 南京航空航天大学 一种电弧增材与电辅助超声冲击强化复合制造方法和装置
CN109703014A (zh) * 2019-02-27 2019-05-03 共享智能铸造产业创新中心有限公司 一种应用于3d打印机的双悬挂铺粉装置及其铺粉方法
CN110722791A (zh) * 2019-07-30 2020-01-24 北京机科国创轻量化科学研究院有限公司 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247110A1 (en) * 2020-06-01 2021-12-09 Raytheon Company Heating fixtures for 5-axis printing
US11331857B2 (en) 2020-06-01 2022-05-17 Raytheon Company Heating fixtures for 5-axis printing

Also Published As

Publication number Publication date
CN110722791A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2021017573A1 (zh) 一种提高熔融沉积增材制造层间紧实性能的装置及结构设计
JP6946319B2 (ja) 製造方法及び製造装置
CN106634208A (zh) 光固化喷射纳米墨水实现复合材料3d打印方法及打印机
TWI615267B (zh) 雙噴頭組件及其適用之三維列印裝置
US20180004192A1 (en) Recoating Unit, Recoating Method, Device and Method for Additive Manufacturing of a Three-Dimensional Object
CN106113509B (zh) 多向超声微滴喷射光固化增材制造装置及方法
CN107984754A (zh) 一种多喷头压紧式3d打印机及其打印方法
JP2021503398A (ja) 三次元物体の製造のための方法および装置
JP2000336403A (ja) 三次元形状造形物の製造方法
CN107244072A (zh) 超声熔融复合沉积增材制造装置及方法
CN109514857B (zh) 双喷头组件及其适用的三维打印装置
CN105459399B (zh) 一种3d打印机的双层打印喷头
CN111482602B (zh) 防堵塞喷头的基于光固化剂喷射的3d打印装置及方法
KR102067538B1 (ko) 세척 모듈을 포함하는 3d 프린팅 장치 및 3d 프린팅 방법
WO2018076655A1 (zh) 卫生用品复合用的超声波焊接装置
CN106607971A (zh) 连续式压机
CN107283829A (zh) 一种紫外点光源的高精度选区激光烧结方法及装置
CN203637190U (zh) 一种可控式静电纺丝三维打印装置
CN106003712B (zh) 一种用于増材制造的辊压装置
KR102093689B1 (ko) 3d 프린터의 분말 공급 장치
CN214927107U (zh) 一种免支撑fdm型3d打印设备
CN113733554A (zh) 一种微波与红外辐射复合成形高分子零件的方法与装置
CN107199705A (zh) 一种抗扰动的高精度台式3d打印机
JP2010201560A (ja) 球状構造体の製造方法及び装置
CN111605187A (zh) 超声波层压3d打印设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847439

Country of ref document: EP

Kind code of ref document: A1