WO2021017256A1 - 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 - Google Patents
声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 Download PDFInfo
- Publication number
- WO2021017256A1 WO2021017256A1 PCT/CN2019/116283 CN2019116283W WO2021017256A1 WO 2021017256 A1 WO2021017256 A1 WO 2021017256A1 CN 2019116283 W CN2019116283 W CN 2019116283W WO 2021017256 A1 WO2021017256 A1 WO 2021017256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic pulse
- pulse valve
- valve
- sound
- microphones
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/02—Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
- B01D46/04—Cleaning filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
Definitions
- the invention relates to the field of dust removal equipment, in particular to a sound wave sensing intelligent electromagnetic pulse valve and an electromagnetic pulse valve abnormality detection method.
- the pulse cleaning system is the core part of the pulse bag filter, and the electromagnetic pulse valve is the key component that determines the performance of the pulse cleaning system.
- the electromagnetic pulse valve usually includes the valve body, the valve cover, the diaphragm, and the valve cover or valve.
- the pressure monitoring element on the body is used to monitor the working status of the electromagnetic pulse valve at all times, and the pressure monitoring element usually needs to be embedded in the valve cover or valve body, which is difficult to process, especially for the in-service but not installed working condition monitoring
- the electromagnetic pulse valve is more difficult to install; and the pressure monitoring element cannot quickly and accurately know the abnormal situation of the electromagnetic pulse valve.
- the purpose of the present invention is to provide a sound wave sensing intelligent electromagnetic pulse valve capable of monitoring the operating conditions of the electromagnetic pulse valve.
- a sound wave sensing intelligent electromagnetic pulse valve which includes a valve body, a valve cover fixedly mounted on the valve body, and a valve cover mounted on the valve body or
- the acoustic wave sensor on the valve cover includes a plurality of microphones that receive the acoustic waves generated when the electromagnetic pulse valve is blown. At least three of the microphones are arranged around the valve body or the valve cover.
- the electromagnetic pulse valve further includes a main control module connected to the acoustic wave sensor for comparing the time difference of the sound waves generated when the microphone receives the electromagnetic pulse valve injection, and a main control module for transmitting
- the comparison result is a wireless transmission module or a wired transmission module, and a power supply that supplies power to the acoustic wave sensor, main control module, wireless transmission module, or wired transmission module.
- the acoustic wave sensor is an array acoustic wave imaging sensor.
- the acoustic wave sensor, the main control module, the wireless transmission module or the power supply of the wired transmission module are integrated into an integrated module.
- the four reference microphones are coplanar and symmetrically arranged on the Around the valve body or bonnet.
- the present invention also provides an electromagnetic pulse valve abnormality detection method based on the above-mentioned acoustic wave sensing intelligent electromagnetic pulse valve.
- the microphones are coplanar and form a common surface.
- the detection method includes the following steps: taking the common surface as a reference surface and using the valve body
- the projection of the axis line of the on the datum plane is the datum point, and record the spatial coordinate range of each electromagnetic pulse valve.
- a multivariate equation can be established to solve the coordinate of the sound source position.
- the sound source coordinates can be used to locate the abnormal position of the electromagnetic pulse valve.
- Optimized set the intensity range of the sound wave received by the microphone to the intensity of the sound wave emitted when the electromagnetic pulse valve is abnormal to filter other noise.
- At least four of the microphones are symmetrically arranged around the valve body or the valve cover with the axis of the valve body as the center line.
- the two microphones (A, B) on the diagonal are located on the X axis, and the coordinates are points (a 0 ,0,0), (-a 0 ,0,0), and the other group is on the other diagonal
- the two microphones (C, D) on the line are located on the Y axis, and the coordinates are points (0, b 0 ,0), (0, -b 0 ,0), microphones A, B, C, and D receive
- the time of the sound wave is t 1 , t 2 , t 3 , t 4
- the coordinates of the sound source position E are set to (a, b, c), and the following equation can be obtained according to the position relationship of the points:
- ⁇ t 1 , ⁇ t 2 , and ⁇ t 3 are the difference between the time when B, C, and D receive the sound wave and the time when the sound wave is received at point A.
- the sound source can be calculated according to the above formula
- the coordinates of position E are (a, b, c).
- the present invention has the following advantages compared with the prior art: the present invention uses the acoustic wave sensor installed on the electromagnetic pulse valve to receive the sound wave emitted when the electromagnetic pulse valve is abnormal, and combines the time difference between the sound waves received by multiple microphones As well as the coordinates of each microphone, the position of the abnormal sound wave can be accurately calculated; acoustic wave sensors can also be installed on multiple electromagnetic pulse valves, and one of the electromagnetic pulse valves is selected as the reference pulse valve to establish a coordinate system.
- the pulse valve assists in verifying the sound source position of the sound wave emitted when the electromagnetic pulse valve is abnormal; it can also judge the opening and closing time of the electromagnetic pulse valve by the duration of the sound wave, and further judge the operating condition of the electromagnetic pulse valve, such as whether the electromagnetic pulse valve is leaking Or whether the spring rebounds in time and other specific issues.
- Figure 1 is a schematic structural diagram of a sound wave sensing intelligent electromagnetic pulse valve when the reference microphone has only one integrated module
- Figure 2 is a schematic diagram of the sound wave sensing smart bag filter when the reference microphone has only one integrated module
- Figure 3 is a schematic block diagram of the electronic control part of the acoustic wave sensing intelligent electromagnetic pulse valve
- Figure 4 is a schematic diagram of the relationship between the sound source position E and the coordinate system with reference points A, B, C, and D;
- Fig. 5 is a schematic diagram of the structure of the sound wave sensing intelligent electromagnetic pulse valve when the reference microphones are respectively around the valve body;
- Fig. 6 is a schematic diagram of the sound wave sensing smart bag filter when the reference microphones are around the valve body.
- the acoustic wave sensing intelligent electromagnetic pulse valve includes a valve body 1, a valve cover fixedly mounted on the valve body 1, a valve cover 2 mounted on the valve body 1 or the valve cover 2 Acoustic wave sensor, the acoustic wave sensor includes a plurality of microphones 3 that receive the sound waves generated when the electromagnetic pulse valve is blown. At least three of the microphones 3 are provided around the valve body 1 or the valve cover 2.
- the valve cover 2 and the valve body 1 are connected through a bolt assembly 5, the microphone 3 is connected to the bolt assembly 5 through a connecting rod 4, and the three microphones 3 are reference microphones 3.
- the electromagnetic pulse valve also includes a main control module connected to the acoustic wave sensor for comparing the time difference of the sound waves generated when the microphone 3 receives the electromagnetic pulse valve injection, a wireless transmission module or a wired transmission module for transmitting the comparison result of the main control module , And the power supply for the sound wave sensor, the main control module, and the wireless transmission module (wired transmission module).
- the power supply for the sound wave sensor, the main control module, the wireless transmission module or the wired transmission module is integrated into an integrated module 0, the sound wave
- the sensor is an array acoustic imaging sensor.
- the detection method includes the following steps: taking the common plane as the reference plane, and taking the projection of the valve body's axis line on the reference plane as the reference point, recording the spatial coordinate range of each electromagnetic pulse valve, according to the coordinates of the reference microphone And the coordinate of the sound source position establishes a multivariate equation, which can solve the coordinate of the sound source position, and the abnormal position of the electromagnetic pulse valve can be located according to the solved sound source coordinates.
- the intensity range of the sound wave received by the microphone to the intensity of the sound wave emitted when the electromagnetic pulse valve is abnormal to filter other noises.
- FIG. 4 there are four microphones symmetrically arranged around the valve body or the valve cover with the axis of the valve body as the center line.
- the two microphones (A, B) on the diagonal are located on the X axis, and the coordinates are points (a 0 ,0,0), (-a 0 ,0,0), and the other group is on the other diagonal
- the two microphones (C, D) on the line are located on the Y axis, and the coordinates are points (0, b 0 ,0), (0, -b 0 ,0), microphones A, B, C, and D receive
- the time of the sound wave is t 1 , t 2 , t 3 , t 4
- the coordinates of the sound source position E are set to (a, b, c), and the following equation can be obtained according to the position relationship of the points:
- V is the propagation speed of sound in the air
- ⁇ t 1 , ⁇ t 2 , and ⁇ t 3 are the difference between the time when B, C, and D receive the sound wave and the time when the sound wave is received at point A.
- the sound source can be calculated according to the above formula
- the coordinates of position E are (a, b, c).
- Acoustic wave sensors can also be installed on multiple electromagnetic pulse valves, and one electromagnetic pulse valve is selected as the reference pulse valve to establish a coordinate system. Other electromagnetic pulse valves can be used to assist in verifying the sound source position of the sound waves emitted when the electromagnetic pulse valve is abnormal.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
Abstract
一种声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法,其包括阀体(1)、阀盖(2)、声波传感器,声波传感器包括至少三个麦克风(3),检测方法包括以下步骤:以公共面为基准面,以阀体(1)的轴心线在基准面上的投影为基准点,记录各电磁脉冲阀所在空间坐标范围,根据基准麦克风(3)的坐标以及声源位置的坐标建立多元方程,可解出声源位置的坐标,根据解出的声源坐标即可定位电磁脉冲阀异常位置,还能通过声波的持续时间判断电磁脉冲阀打开闭合的时间,进一步判断电磁脉冲阀的工况,如电磁脉冲阀是否有漏气或弹簧是否回弹及时等具体问题。
Description
本发明涉及除尘设备领域,特别涉及一种声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法。
脉冲清灰系统是脉冲袋式除尘器的核心部分,而电磁脉冲阀又是决定脉冲清灰系统性能的关键部件,电磁脉冲阀通常包括阀体、阀盖、膜片以及安装于阀盖或阀体上的压力监测元件,用于时刻监控电磁脉冲阀的工作状态,而压力监测元件通常需要嵌设于阀盖或阀体上,加工难度较大,尤其针对在役而未安装工况监测的电磁脉冲阀,加装难度更大;并且压力监测元件无法迅速而精确地获知电磁脉冲阀的异常情况。
发明内容
本发明的目的是提供一种能够监控电磁脉冲阀工况的声波感知智能电磁脉冲阀。
为达到上述效果,本发明所采用的方案是:一种声波感知智能电磁脉冲阀,其包括阀体、固定安装于所述阀体上的阀盖,它还包括安装于所述阀体或所述阀盖上的声波传感器,所述声波传感器包括多个接收电磁脉冲阀喷吹时产生的声波的麦克风,至少有三个所述麦克风设于所述阀体或所述阀盖的周围,这三个所述麦克风为基准麦克风,所述电磁脉冲阀还包括与所述声波传感器相连接的用于对比麦克风接收到电磁脉冲阀喷吹时产生的声波时间差的主控模块、用于传输主控模块对比结果无线传输模块或有线传输模块,以及向声波传感器、主控模块、无线传输模块或有线传输模块供电的电源。
优化的,所述声波传感器为阵列声波成像传感器。
优化的,所述声波传感器、所述主控模块、所述无线传输模块或所述有线传输模块供电的电源集成于一体形成集成模块。
进一步的,当同一个声波传感器的麦克风只有一个集成于集成模块上而另外三个通过连杆固定安装于连接阀体和阀盖的螺栓组件上时,四个基准麦克风共面且对称地设于阀体或阀盖四周。
本发明还提供了一种基于上述声波感知智能电磁脉冲阀的电磁脉冲阀异 常检测方法,所述麦克风共面并形成公共面,检测方法包括以下步骤:以该公共面为基准面,以阀体的轴心线在基准面上的投影为基准点,记录各电磁脉冲阀所在空间坐标范围,根据基准麦克风的坐标以及声源位置的坐标建立多元方程,可解出声源位置的坐标,根据解出的声源坐标即可定位电磁脉冲阀异常位置。
优化的,设定麦克风接受的声波的强度范围为电磁脉冲阀异常时发出的声波的强度以过滤其他杂音。
优化的,所述麦克风中至少有四个以所述阀体的轴心线为对称地设于所述阀体或所述阀盖的周围,四个麦克风的连线构成正方形,其中一组处于对角线上的两个麦克风(A、B)位于X轴上,且坐标分别为点(a
0,0,0)、(-a
0,0,0),另一组处于另一条对角线上的两个麦克风(C、D)位于Y轴上,且坐标分别为点(0,b
0,0)、(0,-b
0,0),麦克风A、B、C、D接收到声波的时间分别为t
1、t
2、t
3、t
4,设定声源位置E的坐标为(a、b、c),则可以根据个点位置关系得出以下方程式:
t
1=t
0
t
2=t
0+δt
1
t
3=t
0+δt
2
t
4=t
0+δt
3
其中V为声音在空气中的传播速度,δt
1、δt
2、δt
3为B、C、D接收到声波的时间与A点接收到声波的时间的差值,根据上述公式即可算的声源位置E的坐标为(a、b、c)。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明利用安装于电磁脉冲阀上的声波传感器,接收电磁脉冲阀异常时发出的声波,结合多个麦克风接收到声波的时间差以及各个麦克风的坐标,能精确计算出发出异常的声波的位置;还可在多个电磁脉冲阀上分别设置声波传感器,选取其 中一个电磁脉冲阀为基准脉冲阀,建立坐标系,可以通过其他电磁脉冲阀辅助验证电磁脉冲阀异常时发出的声波的声源位置;还能通过声波的持续时间判断电磁脉冲阀打开闭合的时间,进一步判断电磁脉冲阀的工况,如电磁脉冲阀是否有漏气或弹簧是否回弹及时等具体问题。
附图1为基准麦克风只有一个集成于集成模块上时声波感知智能电磁脉冲阀的结构示意图;
附图2为基准麦克风只有一个集成于集成模块上时声波感知智能袋式除尘器的结构简图;
附图3为声波感知智能电磁脉冲阀电控部分的原理框图;
附图4为声源位置E与带有A、B、C、D基准点的坐标系关系示意图;
附图5为基准麦克风分别于阀体四周时声波感知智能电磁脉冲阀的结构示意图;
附图6为基准麦克风分别于阀体四周时声波感知智能袋式除尘器的结构简图。
下面结合附图所示的实施例对本发明作进一步描述。
如图1、2、3所示,声波感知智能电磁脉冲阀包括阀体1、固定安装于所述阀体1上的阀盖2、安装于所述阀体1或所述阀盖2上的声波传感器,所述声波传感器包括多个接收电磁脉冲阀喷吹时产生的声波的麦克风3,至少有三个所述麦克风3设于所述阀体1或所述阀盖2的周围,在本实施例中,所述阀盖2与阀体1通过螺栓组件5相连接,所述麦克风3通过连杆4连接于所述螺栓组件5上,这三个所述麦克风3为基准麦克风3,所述电磁脉冲阀还包括与所述声波传感器相连接的用于对比麦克风3接收到电磁脉冲阀喷吹时产生的声波时间差的主控模块、用于传输主控模块对比结果无线传输模块或有线传输模块,以及向声波传感器、主控模块、无线传输模块(有线传输模块)供电的电源,声波传感器、主控模块、无线传输模块或有线传输模块供电的电源集成于一体形成集成模块0,所述声波传感器为阵列声波成像传感器。
当同一个声波传感器的麦克风全位于集成模块0上时,其安装方式如图5、6所示;当同一个声波传感器的麦克风只有一个集成于集成模块0上而另外三个通过连杆4固定安装于螺栓组件5上时,其安装方式如图1、2所示。
为便于计算,在本实施例中,基准麦克风设有四个,所述麦克风共面并形成公共面且对称地设于阀体或阀盖四周时,基于声波感知智能电磁脉冲阀的电磁脉冲阀异常检测方法,检测方法包括以下步骤:以该公共面为基准面,以阀体的轴心线在基准面上的投影为基准点,记录各电磁脉冲阀所在空间坐标范围,根据基准麦克风的坐标以及声源位置的坐标建立多元方程,可解出声源位置的坐标,根据解出的声源坐标即可定位电磁脉冲阀异常位置。设定麦克风接受的声波的强度范围为电磁脉冲阀异常时发出的声波的强度以过滤其他杂音。
如图4所示,麦克风中有四个以所述阀体的轴心线为对称地设于所述阀体或所述阀盖的周围,四个麦克风的连线构成正方形,其中一组处于对角线上的两个麦克风(A、B)位于X轴上,且坐标分别为点(a
0,0,0)、(-a
0,0,0),另一组处于另一条对角线上的两个麦克风(C、D)位于Y轴上,且坐标分别为点(0,b
0,0)、(0,-b
0,0),麦克风A、B、C、D接收到声波的时间分别为t
1、t
2、t
3、t
4,设定声源位置E的坐标为(a、b、c),则可以根据个点位置关系得出以下方程式:
t
1=t
0
t
2=t
0+δt
1
t
3=t
0+δt
2
t
4=t
0+δt
3
其中V为声音在空气中的传播速度,δt
1、δt
2、δt
3为B、C、D接收到声波的时间与A点接收到声波的时间的差值,根据上述公式即可算的声源位置E的坐标为(a、b、c)。还可在多个电磁脉冲阀上分别设置声波传感器,选取其中一个电磁脉冲阀为基准脉冲阀,建立坐标系,可以通过其他电磁脉冲阀辅助 验证电磁脉冲阀异常时发出的声波的声源位置。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
Claims (7)
- 一种声波感知智能电磁脉冲阀,其包括阀体、固定安装于所述阀体上的阀盖,其特征在于:它还包括安装于所述阀体或所述阀盖上的声波传感器,所述声波传感器包括多个接收电磁脉冲阀喷吹时产生的声波的麦克风,至少有三个所述麦克风设于所述阀体或所述阀盖的周围,这三个所述麦克风为基准麦克风,所述电磁脉冲阀还包括与所述声波传感器相连接的用于对比麦克风接收到电磁脉冲阀喷吹时产生的声波时间差的主控模块、用于传输主控模块对比结果无线传输模块或有线传输模块,以及向声波传感器、主控模块、无线传输模块或有线传输模块供电的电源。
- 根据权利要求1所述的声波感知智能电磁脉冲阀,其特征在于:所述声波传感器为阵列声波成像传感器。
- 根据权利要求1所述的声波感知智能电磁脉冲阀,其特征在于:所述声波传感器、所述主控模块、所述无线传输模块或所述有线传输模块供电的电源集成于一体形成集成模块。
- 根据权利要求3所述的声波感知智能电磁脉冲阀,其特征在于:当同一个声波传感器的麦克风只有一个集成于集成模块上而另外三个通过连杆固定安装于连接阀体和阀盖的螺栓组件上时,四个基准麦克风共面且对称地设于阀体或阀盖四周。
- 一种基于权利要求1或2所述的声波感知智能电磁脉冲阀的电磁脉冲阀异常,其特征在于,所述麦克风共面并形成公共面,检测方法包括以下步骤:以该公共面为基准面,以阀体的轴心线在基准面上的投影为基准点,记录各电磁脉冲阀所在空间坐标范围,根据基准麦克风的坐标以及声源位置的坐标建立多元方程,可解出声源位置的坐标,根据解出的声源坐标即可定位电磁脉冲阀异常位置。
- 根据权利要求5所述的电磁脉冲阀异常检测方法,其特征在于:设定麦克风接受的声波的强度范围为电磁脉冲阀异常时发出的声波的强度以过滤其他杂音。
- 根据权利要求6所述的电磁脉冲阀异常检测方法,其特征在于:所述麦克风中至少有四个以所述阀体的轴心线为对称地设于所述阀体或所述阀盖的周围,四个麦克风的连线构成正方形,其中一组处于对角线上的两个麦克风(A、B)位于X轴上,且坐标分别为点(a 0,0,0)、(-a 0,0,0),另一组处于另一条对角线上的两个麦克风(C、D)位于Y轴上,且坐标分别为点(0, b 0,0)、(0,-b 0,0),麦克风A、B、C、D接收到声波的时间分别为t 1、t 2、t 3、t 4,设定声源位置E的坐标为(a、b、c),则可以根据个点位置关系得出以下方程式:t 1=t 0t 2=t 0+δt 1t 3=t 0+δt 2t 4=t 0+δt 3其中V为声音在空气中的传播速度,δt 1、δt 2、δt 3为B、C、D接收到声波的时间与A点接收到声波的时间的差值,根据上述公式即可算的声源位置E的坐标为(a、b、c)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910703587.5A CN110339641A (zh) | 2019-07-31 | 2019-07-31 | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 |
CN201910703587.5 | 2019-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021017256A1 true WO2021017256A1 (zh) | 2021-02-04 |
Family
ID=68183531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/116283 WO2021017256A1 (zh) | 2019-07-31 | 2019-11-07 | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110339641A (zh) |
WO (1) | WO2021017256A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110360366A (zh) * | 2019-07-31 | 2019-10-22 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀及工况判断方法 |
CN110339641A (zh) * | 2019-07-31 | 2019-10-18 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 |
CN111337242B (zh) * | 2020-05-20 | 2020-09-11 | 天津美腾科技股份有限公司 | 喷吹设备检测方法及物料分选系统 |
CN113230773B (zh) * | 2021-06-22 | 2023-12-26 | 上海袋式除尘配件有限公司 | 一种电磁脉冲阀故障的智能检测系统及其检测方法 |
CN115144311A (zh) * | 2022-06-24 | 2022-10-04 | 合肥中亚环保科技有限公司 | 一种袋式除尘器系统的在线监测系统及其方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4998960B2 (ja) * | 2009-07-29 | 2012-08-15 | 飛島建設株式会社 | 音あるいは振動発生箇所検出装置 |
CN105445697A (zh) * | 2016-01-05 | 2016-03-30 | 西安成峰科技有限公司 | 一种低成本低功耗的声源定向方法 |
KR101645135B1 (ko) * | 2015-05-20 | 2016-08-03 | 단국대학교 산학협력단 | 마이크로폰 어레이와 좌표변환 기법을 이용하는 음원 추적 방법 및 시스템 |
CN106197881A (zh) * | 2016-06-24 | 2016-12-07 | 成都信息工程大学 | 一种阀门泄漏监测的无线声学成像装置 |
CN106404366A (zh) * | 2016-08-31 | 2017-02-15 | 苏州协昌环保科技股份有限公司 | 电磁脉冲阀检测方法及检测系统 |
CN206930413U (zh) * | 2017-05-12 | 2018-01-26 | 福建宁德核电有限公司 | 一种阀门内漏声波检测装置 |
CN108680901A (zh) * | 2018-04-13 | 2018-10-19 | 南京信息工程大学 | 一种新型的声源方位定位方法 |
CN110339641A (zh) * | 2019-07-31 | 2019-10-18 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 |
CN110360366A (zh) * | 2019-07-31 | 2019-10-22 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀及工况判断方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240533A (ja) * | 1991-01-25 | 1992-08-27 | Asahi Chem Ind Co Ltd | ボイラ等内のチューブ漏洩検出装置 |
CN202075062U (zh) * | 2011-04-13 | 2011-12-14 | 沈阳航空航天大学 | 基于声波传感器的炉膛温度场与炉管泄漏一体化检测装置 |
DE102017100956B4 (de) * | 2017-01-18 | 2022-08-25 | Samson Aktiengesellschaft | Diagnosesystem und Verfahren zum Kontrollieren der Funktionsfähigkeit eines Stellgeräts zum Beeinflussen einer Prozessmediumströmung einer prozesstechnischen Anlage sowie Stellgerät |
CN107390176A (zh) * | 2017-06-15 | 2017-11-24 | 重庆锐纳达自动化技术有限公司 | 一种声源定位导航装置 |
CN107906374A (zh) * | 2017-11-15 | 2018-04-13 | 北京科创三思科技发展有限公司 | 一种阀门内漏检测装置及系统 |
-
2019
- 2019-07-31 CN CN201910703587.5A patent/CN110339641A/zh active Pending
- 2019-11-07 WO PCT/CN2019/116283 patent/WO2021017256A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4998960B2 (ja) * | 2009-07-29 | 2012-08-15 | 飛島建設株式会社 | 音あるいは振動発生箇所検出装置 |
KR101645135B1 (ko) * | 2015-05-20 | 2016-08-03 | 단국대학교 산학협력단 | 마이크로폰 어레이와 좌표변환 기법을 이용하는 음원 추적 방법 및 시스템 |
CN105445697A (zh) * | 2016-01-05 | 2016-03-30 | 西安成峰科技有限公司 | 一种低成本低功耗的声源定向方法 |
CN106197881A (zh) * | 2016-06-24 | 2016-12-07 | 成都信息工程大学 | 一种阀门泄漏监测的无线声学成像装置 |
CN106404366A (zh) * | 2016-08-31 | 2017-02-15 | 苏州协昌环保科技股份有限公司 | 电磁脉冲阀检测方法及检测系统 |
CN206930413U (zh) * | 2017-05-12 | 2018-01-26 | 福建宁德核电有限公司 | 一种阀门内漏声波检测装置 |
CN108680901A (zh) * | 2018-04-13 | 2018-10-19 | 南京信息工程大学 | 一种新型的声源方位定位方法 |
CN110339641A (zh) * | 2019-07-31 | 2019-10-18 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 |
CN110360366A (zh) * | 2019-07-31 | 2019-10-22 | 苏州协昌环保科技股份有限公司 | 声波感知智能电磁脉冲阀及工况判断方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110339641A (zh) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021017256A1 (zh) | 声波感知智能电磁脉冲阀以及电磁脉冲阀异常检测方法 | |
US8122905B2 (en) | Method and arrangement for diagnosis of a final control element | |
WO2021017257A1 (zh) | 声波感知智能电磁脉冲阀及工况判断方法 | |
KR101710772B1 (ko) | 누설 검출 장치 및 이를 구비하는 유체 제어기 | |
KR20150103037A (ko) | 음향 유체 밸브 조정 | |
US6839613B2 (en) | Remote tuning for gas turbines | |
CN110161278A (zh) | 移动设备与机房巡检机器人 | |
CN110703150A (zh) | 基于声振耦合信号的变压器内部故障检测与定位方法 | |
CN110346700A (zh) | 变压器放油阀式局放监测与定位系统用复合传感器 | |
JP2006266767A (ja) | 配管網の流体リーク監視装置 | |
RU2389057C2 (ru) | Технологическое соединение для диагностики технологического процесса | |
CN108644965A (zh) | 一种空调及中央空调用分布式主动降噪方法 | |
CN106093848A (zh) | 声音定向方法及装置 | |
CN106471366A (zh) | 耦合剂以及耦合剂、换能器和结构部件的组合单元 | |
CN209705399U (zh) | 有线自感知智能电磁脉冲阀 | |
CN116259301A (zh) | 一种半耦合式的主动降噪方法及系统 | |
JP3571949B2 (ja) | 移動体に設けられた機器の異常を診断するための診断装置 | |
US20210247268A1 (en) | Valve diagnosis apparatus, valve apparatus, and valve diagnosis method | |
KR101654791B1 (ko) | 산업설비의 결함감지를 위한 음향진동 복합 센싱유닛 및 이를 이용한 고압배관의 결함진단시스템 | |
CN211117884U (zh) | 声波感知智能电磁脉冲阀 | |
US7644617B2 (en) | Device and method for acoustic source localization in a sound measurement testbed | |
Schuhmacher | Techniques for measuring the vibro-acoustic transfer function | |
CN104501937A (zh) | 一种整车状态下动力总成辐射噪声测试方法 | |
KR102292869B1 (ko) | 능동형 반사음 차폐 장치 | |
CN110837085B (zh) | 一种用于水底目标判别的波动指数计算方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19939913 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19939913 Country of ref document: EP Kind code of ref document: A1 |