WO2021016895A1 - 数据传输方法、装置及存储介质 - Google Patents

数据传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2021016895A1
WO2021016895A1 PCT/CN2019/098464 CN2019098464W WO2021016895A1 WO 2021016895 A1 WO2021016895 A1 WO 2021016895A1 CN 2019098464 W CN2019098464 W CN 2019098464W WO 2021016895 A1 WO2021016895 A1 WO 2021016895A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
length
dci
bitmap
length dci
Prior art date
Application number
PCT/CN2019/098464
Other languages
English (en)
French (fr)
Inventor
朱亚军
洪伟
李俊丽
李勇
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to CN201980001622.7A priority Critical patent/CN110574332B/zh
Priority to PCT/CN2019/098464 priority patent/WO2021016895A1/zh
Priority to US17/631,425 priority patent/US20220286233A1/en
Publication of WO2021016895A1 publication Critical patent/WO2021016895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • This application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to data transmission methods, devices, and storage media.
  • configuration authorization In the 5G New Radio (NR, New Radio) system, configuration authorization (CG, Configured Grant) is used to configure resources for periodic services; in the new radio-based unlicensed access (NR-U, New Radio Based Unlicensed Access) that uses configuration authorization
  • CG Configured Grant
  • NR-U New Radio Based Unlicensed Access
  • the initial transmission is transmitted on the configured authorized resources in a non-scheduled manner, and the retransmission is scheduled on dedicated resources using uplink grant (UL grant, UpLink grant).
  • UL grant UpLink grant
  • the embodiments of the present disclosure provide a data transmission method, device and storage medium.
  • a data transmission method wherein the method includes:
  • DCI Downlink Control Information
  • the DCI with a fixed length includes a detection parameter of the DCI with a variable length.
  • the method further includes:
  • the variable-length DCI is sent according to the detection parameter.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • the first hybrid automatic repeat request bitmap is used to indicate the feedback information of the transmission block in at least one hybrid automatic repeat request process, and one of the hybrid automatic repeat request
  • the automatic retransmission request process transmits one transmission block
  • the first hybrid automatic repeat request bitmap is used to indicate feedback information of at least one code block group of at least one transmission block.
  • the method further includes:
  • variable-length DCI is used to indicate the feedback information of at least one code block group in the transmission block that is not successfully received.
  • variable-length DCI used to indicate feedback information of at least one code block group in the unsuccessfully received transport block includes:
  • variable-length DCI is in the form of a bitmap, indicating feedback information of at least one code block group in the unsuccessfully received transmission block.
  • the method further includes:
  • variable-length DCI includes: a second hybrid automatic repeat request bitmap
  • the second hybrid automatic repeat request bitmap is used to indicate the feedback information of the remaining part of the code block group except the feedback information indicated by the first hybrid automatic repeat request bitmap.
  • the method further includes
  • the length of the variable-length DCI is determined according to the length of the information contained in the variable-length DCI.
  • the detection parameters of the variable-length DCI include at least one of the following:
  • a parameter used to indicate length information of the variable-length DCI is
  • a data transmission method wherein the method includes:
  • the method further includes:
  • the variable-length DCI is received according to the detection parameter.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • bitmap flag bit is the first value, retransmit at least one unsuccessfully received transmission block in the hybrid automatic repeat request process according to the first hybrid automatic repeat request bitmap;
  • bitmap flag bit is the second value
  • at least one code block group of the at least one transmission block that is not successfully received is retransmitted according to the first hybrid automatic repeat request bitmap.
  • the method further includes:
  • the unsuccessfully received code block is retransmitted according to the feedback information of at least one code block group in the unsuccessfully received transport block indicated by the variable-length DCI group.
  • bitmap flag bit when the bitmap flag bit is the first value, according to the feedback information of at least one code block group in the unsuccessfully received transport block indicated by the variable-length DCI, Retransmit unsuccessfully received code block groups, including:
  • At least one code block group in the unsuccessfully received transmission block indicated by the variable-length DCI in the form of a bitmap is retransmitted.
  • the code block group is the code block group.
  • the method further includes:
  • bitmap flag is the second value
  • the bitmap flag is the second value
  • the method further includes at least one of the following:
  • a data transmission device wherein the device includes:
  • the sending module is configured to send a fixed-length downlink control information DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the sending module further includes:
  • the sending submodule is configured to send the variable-length DCI according to the detection parameter when the detection parameter indicates that the variable-length DCI is sent.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • the first hybrid automatic repeat request bitmap is used to indicate the feedback information of the transmission block in at least one hybrid automatic repeat request process, and one of the hybrid automatic repeat request
  • the automatic retransmission request process transmits one transmission block
  • the first hybrid automatic repeat request bitmap is used to indicate feedback information of at least one code block group of at least one transmission block.
  • variable-length DCI is used to indicate feedback information of at least one code block group in the transmission block that is not successfully received.
  • variable-length DCI is in the form of a bitmap, indicating feedback information of at least one code block group in the unsuccessfully received transmission block.
  • variable-length DCI when the bitmap flag bit has a second value, includes: a second hybrid automatic repeat request bitmap;
  • the second hybrid automatic repeat request bitmap is used to indicate the feedback information of the remaining part of the code block group except the feedback information indicated by the first hybrid automatic repeat request bitmap.
  • the device further includes: a determining module configured to determine the length of the variable-length DCI according to the length of the information contained in the variable-length DCI.
  • the detection parameters of the variable-length DCI include at least one of the following:
  • a parameter used to indicate length information of the variable-length DCI is
  • a data transmission device wherein the device includes:
  • the receiving module is configured to receive a fixed-length downlink control information DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the receiving module further includes:
  • the receiving submodule is configured to receive the variable-length DCI according to the detection parameter when the detection parameter indicates that the variable-length DCI is sent.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • the device also includes:
  • the first retransmission module is configured to, when the bitmap flag bit is the first value, retransmit at least one unsuccessful reception in the hybrid automatic repeat request process according to the first hybrid automatic repeat request bitmap Transfer block
  • bitmap flag bit is the second value
  • at least one code block group of the at least one transmission block that is not successfully received is retransmitted according to the first hybrid automatic repeat request bitmap.
  • the device further includes:
  • the second retransmission module is configured to, when the bitmap flag bit is the first value, according to the feedback information of at least one code block group in the unsuccessfully received transport block indicated by the variable-length DCI, Retransmit the unsuccessfully received code block group.
  • the second retransmission module includes:
  • the retransmission submodule is configured to, when the bitmap flag bit is the first value, retransmit the unsuccessfully received feedback information according to the feedback information of the at least one code block group indicated by the variable-length DCI in the form of a bitmap The code block group.
  • the device further includes:
  • the third retransmission module is configured to retransmit the second hybrid automatic repeat request bitmap according to the second hybrid automatic repeat request bitmap included in the variable-length DCI when the bitmap flag bit has the second value.
  • the unsuccessfully received code block group indicated by the retransmission request bitmap is configured to retransmit the second hybrid automatic repeat request bitmap according to the second hybrid automatic repeat request bitmap included in the variable-length DCI when the bitmap flag bit has the second value.
  • the device further includes at least one of the following:
  • the first determining module is configured to determine the frequency domain resource for receiving the variable-length DCI according to the detection parameter of the variable-length DCI;
  • the second determining module is configured to determine the time domain resource for receiving the variable-length DCI according to the detection parameter of the variable-length DCI;
  • the third determining module is configured to determine the length information of the variable-length DCI according to the detection parameter of the variable-length DCI.
  • a data transmission device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the The steps of the data transmission method described in the first aspect or the second aspect are executed when the program is executed.
  • a storage medium on which an executable program is stored, wherein when the executable program is executed by a processor, the data transmission method described in the first aspect or the second aspect is implemented step
  • the data transmission method, device, and storage medium provided by the embodiments of the present disclosure transmit fixed-length DCI, where the fixed-length DCI includes variable-length DCI detection parameters.
  • the fixed-length DCI can reduce the complexity of blind detection at the receiving end and improve the efficiency of receiving fixed-length DCI; on the other hand, the detection parameters can provide indications and resource information for receiving variable-length DCI, improving reception
  • the convenience of variable-length DCI reduces the difficulty of variable-length DCI blind inspection and reduces excessive power consumption due to blind inspection.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a retransmission scenario of multiple HARQ processes according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing another retransmission scenario of multiple HARQ processes according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing another scenario of retransmission of multiple HARQ processes according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart showing a data transmission method according to an exemplary embodiment
  • Fig. 6 is a schematic diagram showing a DCI format according to an exemplary embodiment
  • Fig. 7 is a schematic diagram showing another DCI format according to an exemplary embodiment
  • Fig. 8 is a schematic diagram showing another DCI format according to an exemplary embodiment
  • Fig. 9 is a schematic diagram showing still another DCI format according to an exemplary embodiment
  • Fig. 10 is a schematic flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 11 is a block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 12 is a block diagram showing another data transmission device according to an exemplary embodiment
  • Fig. 13 is a block diagram showing a device for data transmission according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 11 can be an IoT terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device external to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized and distributed architecture in the 5G system.
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • E2E (End to End, end-to-end) connections may also be established between the terminals 11.
  • V2X vehicle-to-everything
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian, vehicle-to-person
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), policy and charging rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the execution subject involved in the embodiments of the present disclosure includes but is not limited to: a terminal or a base station in a wireless communication system.
  • An application scenario of the embodiment of the present disclosure is that in the NR-U technology that uses configuration authorization, the initial transmission is transmitted on the configuration authorization resource in a non-scheduled manner, and the retransmission is scheduled on a dedicated resource using UL grant.
  • Manner 1 Using multiple UL grants to schedule multiple different HARQ processes to retransmit on dedicated scheduling resources.
  • the user equipment (UE) transmits a total of 5 HARQ processes on the configured authorized resources, if there is a code block group (CBG, Code Block Group) transmission error in each process, use the UL grant
  • the allocated dedicated scheduling resources support retransmission, that is, the 5G base station (gNB) uses 5 UL grants to schedule the UE to allocate dedicated resources for the physical uplink data channel (PUSCH, Physical Uplink Shared Channel) to retransmit unsuccessfully received data.
  • PUSCH Physical Uplink Shared Channel
  • Method 2 In order to solve the problem of excessive DCI overhead that may be caused by the first method, a new UL grant format is introduced, and a single UL grant is used to schedule multiple HARQ processes to retransmit on the configured authorized resources.
  • a new UL grant format is introduced, and a single UL grant is used to schedule multiple HARQ processes to retransmit on the configured authorized resources.
  • the gNB uses a single UL Grant schedules the UE to allocate dedicated resources for PUSCH to retransmit unsuccessfully received data.
  • the base station since the base station only sends a single UL grant to indicate the CBG retransmission with a CBG transmission error in the HARQ process, the signaling overhead caused by multiple UL grants is reduced.
  • FIG. 4 A typical scenario is shown in Figure 4.
  • the UE transmits a total of 16 HARQ processes on the configured authorized resources and each process transmits 8 CBGs, if there are CBG transmission errors in each process; at this time, for all
  • the HARQ process including CBG-level A/N, will cause a very large UL grant overhead, making it difficult to include all feedback in one DCI, and because the length of the DCI needs to change according to the number of retransmitted CBGs, blind detection at the UE side Increased complexity.
  • this exemplary embodiment provides a data transmission method.
  • the data transmission method can be applied to the sending end of wireless communication.
  • the method includes:
  • Step 101 Send a fixed-length DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the HARQ feedback information for each HARQ process can be set in a fixed-length DCI; it can also be set in a variable-length DCI.
  • the HARQ feedback information may be A/N feedback information at the transport block level or A/N feedback information at the code block group level.
  • the A/N feedback information at the transport block level can be a bitmap indicating the reception of transport blocks in each HARQ process;
  • the A/N feedback information at the code block group level can be a bitmap indicating the transmission in each HARQ process The reception of the code block group in the block.
  • the number of bits contained in the fixed-length DCI is fixed, and the number of bits contained in the variable-length DCI is dynamic.
  • the length of the variable-length DCI dynamically changes with the length of the information contained.
  • the fixed-length DCI and variable-length DCI can be transmitted by the transmitting end such as the base station, and the fixed-length DCI and variable-length DCI can be received by the receiving end such as the terminal.
  • the fixed-length DCI may carry uplink and downlink resource allocation information, power control information, and so on.
  • the fixed-length DCI may carry HARQ feedback information, which is used to indicate the reception of data in the HARQ process.
  • the detection parameter of the variable-length DCI may be transmission resource information indicating the variable-length DCI, and the receiving end may receive the variable-length DCI according to the transmission resource information.
  • a fixed-length DCI can reduce the complexity of blind detection at the receiving end, and improve the efficiency of receiving a fixed-length DCI; on the other hand, the detection parameters can provide indication and resource information for the receiving end to receive variable-length DCI, improving the reception
  • the convenience of variable-length DCI reduces the difficulty of variable-length DCI blind inspection and reduces excessive power consumption due to blind inspection.
  • the method further includes: when the detection parameter indicates that the variable-length DCI is sent, sending the variable-length DCI according to the detection parameter; or, when the detection parameter The parameter indicates that when the variable-length DCI is not sent, the variable-length DCI is not sent.
  • the detection parameter may include one or more identification bits.
  • the detection parameter includes an identification bit used to indicate whether a variable-length DCI needs to be sent.
  • the detection parameter may also use the content contained in the detection parameter to indicate whether there is a variable-length DCI to be sent. For example, when the detection parameter does not indicate any transmission resource information, it indicates that no variable-length DCI needs to be sent; when the detection parameter indicates that there is transmission resource information, it indicates that there is a variable-length DCI that needs to be sent.
  • the receiving end After receiving the fixed-length DCI, the receiving end can determine whether there is a variable-length DCI to receive according to the detection parameters. If there is a variable-length DCI to be received, the variable-length DCI is received according to the transmission resource indicated by the detection parameter.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, wherein when the bitmap flag bit has a first value, the first hybrid The automatic repeat request bitmap is used to indicate the feedback information of the transmission block in at least one hybrid automatic repeat request process, where one of the hybrid automatic repeat request processes transmits one transmission block; when the bitmap flag bit When the value is the second value, the first hybrid automatic repeat request bitmap is used to indicate feedback information of at least one code block group of at least one transmission block.
  • the first hybrid automatic repeat request bitmap uses the form of a bitmap to send HARQ feedback information to the receiving end.
  • the HARQ bitmap represents the first hybrid automatic repeat request bitmap;
  • Flag TB represents the bitmap flag bit, and Flag TB can occupy one bit.
  • Two different values are used to respectively indicate the content in the first hybrid automatic repeat request bitmap. For example, when Flag TB is "0", it means that the current HARQ feedback is TB level, and the first hybrid automatic repeat request bitmap indicates the feedback information of the transport block in the HARQ process.
  • Flag TB When Flag TB is "1", it means that the current HARQ feedback is CBG level, and the first hybrid automatic repeat request bitmap indicates the feedback information of the code block group in the HARQ process transmission block.
  • the feedback information may be A/N feedback information for a transport block or code block group.
  • the HARQ bitmap can occupy 16 bits.
  • the HARQ bitmap indicates the A/N feedback information of each transport block in the transmission request process shown in Figure 4, where "1" can indicate that the corresponding transport block is successfully received , "0" can indicate that the corresponding transmission block was not successfully received.
  • the receiving end retransmits the unsuccessfully received transport block to the sending end according to the A/N feedback information of the transport block indicated by the HARQ bitmap.
  • Flag TB is "0", and the HARQ bitmap uses "1" to indicate that the transmission blocks in each HARQ process are successfully received.
  • the HARQ bitmap indicates the A/N feedback information of the code block group in each transmission block in the transmission request process shown in Figure 4, where "1" can indicate the corresponding The code block group is successfully received, "0" can indicate that the corresponding code block group is not successfully received. Due to the limitation of the number of bits of the HARQ bitmap, for example, the 16-bit HARQ bitmap can only indicate the A/N feedback information of the code block groups in the two transport blocks.
  • the receiving end retransmits the code block group in the unsuccessfully received transport block to the sending end, or retransmits the code block group containing the unsuccessful reception to the sending end.
  • the transport block of the code block group is a code block group that has been received from the sending end.
  • Using a fixed-length DCI to send HARQ feedback information can reduce the complexity of blind detection at the receiving end, improve the reception efficiency of a fixed-length DCI, and further improve the retransmission efficiency of the configuration authorization.
  • the method further includes: when the bitmap flag has a first value, the variable-length DCI is used to indicate at least one code block in the transmission block that has not been successfully received Feedback from the group.
  • the first hybrid automatic repeat request bitmap indicates feedback information of at least one transmission block in the HARQ process.
  • variable-length DCI can be used to indicate feedback information of code block groups in the unsuccessfully received transport blocks.
  • the first hybrid automatic repeat request bitmap can be used to implement the A/N information feedback at the transport block level, and the variable-length DCI can be used to implement the A/N information feedback at the code block group level.
  • the receiving end After receiving the fixed-length DCI, the receiving end can determine whether there is a variable-length DCI to receive according to the detection parameters. If there is a variable-length DCI to be received, the variable-length DCI is received according to the receiving resource indicated by the detection parameter. The receiving end can retransmit the unsuccessfully received transport block indicated by the first hybrid automatic repeat request bitmap, or retransmit the unsuccessfully received code block group indicated by the variable-length DCI
  • variable-length DCI can be used to indicate the feedback information of the code block group in the unsuccessfully received transport block.
  • the receiving end may retransmit the code block group in the unsuccessfully received transport block indicated by the variable-length DCI.
  • fixed-length DCI can reduce the complexity of blind detection at the receiving end, improve the reception efficiency of fixed-length DCI, and improve the retransmission efficiency of configuration authorization
  • variable-length DCI extends the length of the HARQ feedback information that can be carried, and the variable-length DCI can carry different types of HARQ feedback information from the fixed-length DCI to meet different feedback information requirements. Furthermore, transmitting HARQ feedback information through two DCIs can control the size of DCI signaling and reduce signaling overhead.
  • variable-length DCI is used to indicate feedback information of at least one code block group in the unsuccessfully received transmission block, including: the variable-length DCI is in the form of a bitmap, Indicate feedback information of at least one code block group in the transmission block that was not successfully received.
  • the feedback information of the code block group can be indicated in the form of a bitmap.
  • a "1" in the bitmap is used to indicate that the code block group is successful, and "0" indicates that the code block group is not successfully received.
  • the reception status of each code block group can be explicitly fed back, which improves the visibility of HARQ feedback information.
  • the method further includes: when the bitmap flag bit has a second value, the variable-length DCI includes: a second hybrid automatic repeat request bitmap; wherein, the first The second hybrid automatic repeat request bitmap is used to indicate the feedback information of the remaining part of the code block group except the feedback information indicated by the first hybrid automatic repeat request bitmap.
  • the second hybrid automatic repeat request bitmap is used to indicate that the first hybrid automatic repeat request bitmap does not indicate the feedback information of the code block group.
  • the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap are jointly used for the feedback information of the indicated code block group to implement feedback information at the code block group level.
  • the receiving end may retransmit the unsuccessfully received code block group indicated by the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap.
  • the HARQ bitmap shown in FIG. 9 and the second hybrid automatic repeat request bitmap included in the variable-length DCI together indicate the A/N feedback information of the code block group in each transmission block of the HARQ process shown in FIG. 4, wherein, the HARQ bitmap indicates the A/N feedback information of the code block groups in the two transport blocks, and the second hybrid automatic repeat request bitmap indicates the A/N feedback information of the code block groups in the remaining 14 transport blocks.
  • the receiving end can retransmit the HARQ bitmap and the variable-length DCI including the second hybrid automatic repeat request bitmap common indication of the HARQ process codes in each transmission block A/N feedback information of the block group.
  • the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap jointly indicate the unsuccessfully received code block group, which extends the length of the feedback information and can provide complete code block group feedback information.
  • the method further includes: determining the length of the variable-length DCI according to the length of the information contained in the variable-length DCI.
  • variable-length DCI can be adjusted according to the information contained in the DCI, such as the length of the A/N feedback information of the code block group. In this way, variable-length DCI can adapt to the A/N feedback information of code block groups of different lengths.
  • the detection parameters of the variable-length DCI include at least one of the following: a parameter used to indicate frequency domain resources occupied by the variable-length DCI transmission; and a parameter used to indicate the variable-length DCI The parameter of the time domain resource occupied by the DCI transmission; the parameter used to indicate the length information of the variable-length DCI.
  • the sending end determines the resource for sending the variable-length DCI, it uses the detection parameter to indicate the transmission resource, and then puts it in the fixed-length DCI and sends it to the receiving end.
  • the receiving end determines the transmission resource of the variable-length DCI according to the detection parameters, and receives the variable-length DCI.
  • fixed-length DCI can reduce the complexity of blind detection at the receiving end and improve the retransmission efficiency of configuration authorization; on the other hand, variable-length DCI It can carry different types of HARQ feedback information and adapt to HARQ feedback information of different lengths.
  • the HARQ feedback information is transmitted in two stages to reduce the size of DCI signaling.
  • this exemplary embodiment provides a data transmission method.
  • the data transmission method can be applied to the receiving end of wireless communication.
  • the method includes:
  • Step 201 Receive a fixed-length DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the HARQ feedback information for each HARQ process can be set in a fixed-length DCI; it can also be set in a variable-length DCI.
  • the HARQ feedback information may be A/N feedback information at the transport block level or A/N feedback information at the code block group level.
  • the A/N feedback information at the transport block level can be a bitmap indicating the reception of transport blocks in each HARQ process;
  • the A/N feedback information at the code block group level can be a bitmap indicating the transmission in each HARQ process The reception of the code block group in the block.
  • the number of bits contained in the fixed-length DCI is fixed, and the number of bits contained in the variable-length DCI is dynamic.
  • the length of the variable-length DCI dynamically changes with the length of the information contained.
  • the fixed-length DCI and variable-length DCI can be transmitted by the transmitting end such as the base station, and the fixed-length DCI and variable-length DCI can be received by the receiving end such as the terminal.
  • the fixed-length DCI may carry uplink and downlink resource allocation information, power control information, and so on.
  • the fixed-length DCI may carry HARQ feedback information, which is used to indicate the reception of data in the HARQ process.
  • the detection parameter of the variable-length DCI may be transmission resource information indicating the variable-length DCI, and the receiving end may receive the variable-length DCI according to the transmission resource information.
  • a fixed-length DCI can reduce the complexity of blind detection at the receiving end, and improve the efficiency of receiving a fixed-length DCI; on the other hand, the detection parameters can provide indication and resource information for the receiving end to receive variable-length DCI, improving the reception The convenience of variable length DCI.
  • the method further includes: when the detection parameter indicates that the variable-length DCI is sent, receiving the variable-length DCI according to the detection parameter; or, when the detection parameter The parameter indicates that when the variable-length DCI is not sent, the variable-length DCI is not received.
  • the detection parameter may include one or more identification bits.
  • the detection parameter includes an identification bit used to indicate whether a variable-length DCI needs to be sent.
  • the detection parameter may also use the content contained in the detection parameter to indicate whether there is a variable-length DCI to be sent. For example, when the detection parameter does not indicate any transmission resource information, it indicates that no variable-length DCI needs to be sent; when the detection parameter indicates that there is transmission resource information, it indicates that there is a variable-length DCI that needs to be sent.
  • the receiving end After receiving the fixed-length DCI, the receiving end can determine whether there is a variable-length DCI to receive according to the detection parameters. If there is a variable-length DCI to be received, the variable-length DCI is received according to the transmission resource indicated by the detection parameter.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, wherein, when the bitmap flag bit has a first value, according to the first value A hybrid automatic repeat request bitmap to retransmit at least one transmission block that was not successfully received in the hybrid automatic repeat request process; when the bitmap flag is the second value, the first hybrid automatic repeat Request a bitmap, and retransmit at least one code block group of at least one transmission block that was not successfully received.
  • the first hybrid automatic repeat request bitmap uses the form of a bitmap to send HARQ feedback information to the receiving end.
  • the HARQ bitmap represents the first hybrid automatic repeat request bitmap; Flag TB represents the bitmap flag bit, and Flag TB can occupy one bit. Two different values are used to respectively indicate the content in the first hybrid automatic repeat request bitmap. For example, when Flag TB is "0", it means that the current HARQ feedback is TB level, and the first hybrid automatic repeat request bitmap indicates the feedback information of the transport block in the HARQ process. When Flag TB is "1", it means that the current HARQ feedback is CBG level, and the first hybrid automatic repeat request bitmap indicates the feedback information of the code block group in the HARQ process transmission block. The feedback information may be A/N feedback information for a transport block or code block group.
  • the HARQ bitmap can occupy 16 bits.
  • the HARQ bitmap indicates the A/N feedback information of each transport block in the transmission request process shown in Figure 4, where "1" can indicate that the corresponding transport block is successfully received , "0" can indicate that the corresponding transmission block was not successfully received.
  • the receiving end retransmits the unsuccessfully received transport block to the sending end according to the A/N feedback information of the transport block indicated by the HARQ bitmap.
  • Flag TB is "0", and the HARQ bitmap uses "1" to indicate that the transmission blocks in each HARQ process are successfully received.
  • the HARQ bitmap indicates the A/N feedback information of the code block group in each transmission block in the transmission request process shown in Figure 4, where "1" can indicate the corresponding The code block group is successfully received, "0" can indicate that the corresponding code block group is not successfully received. Due to the limitation of the number of bits of the HARQ bitmap, for example, the 16-bit HARQ bitmap can only indicate the A/N feedback information of the code block groups in the two transport blocks.
  • the receiving end retransmits the code block group in the unsuccessfully received transport block to the sending end, or retransmits the code block group containing the unsuccessful reception to the sending end.
  • the transport block of the code block group is a code block group that has been received from the sending end.
  • Using a fixed-length DCI to send HARQ feedback information can reduce the complexity of blind detection at the receiving end, improve the reception efficiency of a fixed-length DCI, and further improve the retransmission efficiency of the configuration authorization.
  • the method further includes: when the bitmap flag bit has a first value, at least one code block group in the unsuccessfully received transport block indicated by the variable-length DCI The feedback information is retransmitted to the code block group that was not successfully received.
  • the first hybrid automatic repeat request bitmap indicates the feedback information of the transmission block in at least one HARQ process.
  • variable-length DCI can be used to indicate feedback information of code block groups in the unsuccessfully received transport blocks.
  • the first hybrid automatic repeat request bitmap can be used to implement the A/N information feedback at the transport block level, and the variable-length DCI can be used to implement the A/N information feedback at the code block group level.
  • the receiving end After receiving the fixed-length DCI, the receiving end can determine whether there is a variable-length DCI to receive according to the detection parameters. If there is a variable-length DCI to be received, the variable-length DCI is received according to the receiving resource indicated by the detection parameter. The receiving end can retransmit the unsuccessfully received transport block indicated by the first hybrid automatic repeat request bitmap, or retransmit the unsuccessfully received code block group indicated by the variable-length DCI
  • the HARQ bitmap indicates the A/N feedback information of each transport block in the transmission request process shown in Figure 4, where "0" can indicate that the corresponding transport block is unsuccessful
  • a variable-length DCI can be used to indicate the feedback information of the code block group in the unsuccessfully received transport block. The receiving end may retransmit the code block group in the unsuccessfully received transport block indicated by the variable-length DCI.
  • fixed-length DCI can reduce the complexity of blind detection at the receiving end, improve the reception efficiency of fixed-length DCI, and improve the retransmission efficiency of configuration authorization
  • variable-length DCI extends the length of the HARQ feedback information that can be carried, and the variable-length DCI can carry different types of HARQ feedback information from the fixed-length DCI to meet different feedback information requirements. Furthermore, transmitting HARQ feedback information through two DCIs can control the size of DCI signaling and reduce signaling overhead.
  • Retransmitting the unsuccessfully received code block group includes: when the bitmap flag bit is the first value, the feedback information of at least one code block group indicated in the form of a bitmap according to the variable-length DCI, retransmitting The code block group that was not successfully received is transmitted.
  • the feedback information of the code block group can be indicated in the form of a bitmap.
  • a "1" in the bitmap is used to indicate that the code block group is successful, and "0" indicates that the code block group is not successfully received.
  • the reception status of each code block group can be explicitly fed back, which improves the visibility of HARQ feedback information.
  • the method further includes: when the bitmap flag has a second value, retransmitting the second hybrid automatic repeat request bitmap included in the variable-length DCI The unsuccessfully received code block group indicated by the second hybrid automatic repeat request bitmap.
  • the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap are jointly used for the feedback information of the indicated code block group to implement feedback information at the code block group level.
  • the receiving end may retransmit the unsuccessfully received code block group indicated by the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap.
  • the unsuccessfully received code block group indicated by the second hybrid automatic repeat request bitmap is among the unsuccessfully received code blocks except for the unsuccessful reception indicated by the first hybrid automatic repeat request bitmap The code block group other than the code block group.
  • the HARQ bitmap shown in FIG. 9 and the second hybrid automatic repeat request bitmap included in the variable-length DCI together indicate the A/N feedback information of the code block group in each transmission block of the HARQ process shown in FIG. 4, wherein, the HARQ bitmap indicates the A/N feedback information of the code block groups in the two transport blocks, and the second hybrid automatic repeat request bitmap indicates the A/N feedback information of the code block groups in the remaining 14 transport blocks.
  • the receiving end can retransmit the HARQ bitmap and the variable-length DCI including the second hybrid automatic repeat request bitmap common indication of the HARQ process codes in each transmission block A/N feedback information of the block group.
  • the method further includes: determining the length of the variable-length DCI according to the length of the information contained in the variable-length DCI.
  • variable-length DCI can be adjusted according to the information contained in the DCI, such as the length of the A/N feedback information of the code block group. In this way, variable-length DCI can adapt to the A/N feedback information of code block groups of different lengths.
  • the first hybrid automatic repeat request bitmap and the second hybrid automatic repeat request bitmap jointly indicate the unsuccessfully received code block group, which extends the length of the feedback information and can provide complete code block group feedback information.
  • the method further includes at least one of the following: determining a frequency domain resource for receiving the variable-length DCI according to the detection parameter of the variable-length DCI; according to the variable-length DCI Determine the time domain resource for receiving the variable-length DCI; determine the length information of the variable-length DCI according to the detection parameter of the variable-length DCI.
  • the sending end determines the resource for sending the variable-length DCI, it uses the detection parameter to indicate the transmission resource, and then puts it in the fixed-length DCI and sends it to the receiving end.
  • the receiving end determines the transmission resource of the variable-length DCI according to the detection parameters, and receives the variable-length DCI.
  • fixed-length DCI can reduce the complexity of blind detection at the receiving end and improve the retransmission efficiency of configuration authorization; on the other hand, variable-length DCI It can carry different types of HARQ feedback information and adapt to HARQ feedback information of different lengths.
  • the HARQ feedback information is transmitted in two stages to reduce the size of DCI signaling.
  • the control information related to the retransmission is stored in the fixed-length DCI.
  • the receiving end detects only the fixed-length DCI during blind detection, and further determines the time-frequency of the variable-length DCI based on the control information in the fixed-length DCI Resource location and CBG A/N and other information.
  • the base station sets the corresponding indicator bit to indicate which level of HARQ feedback to perform and the corresponding feedback content according to the CBG reception of each process.
  • the terminal After receiving the fixed-length DCI, the terminal judges which level of feedback the current HARQ bitmap is based on according to the Flag TB indication, and judges the variable-length DCI time-frequency resource location and other information according to the parameter set index indication, and further The feedback content is retransmitted based on CBG.
  • the first scenario that may occur is: CBG transmission errors are present in the HARQ process (1-16), and the corresponding DCI feedback indication and content are shown in Figure 9.
  • the TB( 1-16) When there are CBG transmission errors in the process, set Flag TB to 1 to indicate that the CBG A/N information is stored in the HARQ bitmap, and the corresponding CBG A/N is stored in the corresponding feedback resource according to the process number.
  • the receiving end only detects fixed-length DCI during blind detection.
  • Flag TB it is known that the HARQ bitmap is based on the CBG level.
  • the CBG A/N corresponding to process 1-2 is obtained.
  • the parameter index value can be judged. Variable-length DCI time-frequency resources, and read its CBG A/N information, and finally retransmit the wrongly transmitted CBG on the configured authorized resources
  • the second scenario that may appear is: CBG transmission errors in the HARQ process (2, 5, 9, 10, 11, 13, 15), and all CBG transmissions in the other HARQ processes are correct, then The corresponding DCI feedback indication and content are shown in Figure 7.
  • the TB process received by the base station is only (2, 5, 9, 10, 11, 13, 15) CBG transmission errors in the process, and CBG transmission of other TBs is correct
  • the flag TB is set to 0, it means that the TB A/N information is stored in the HARQ bitmap, and the process number of the transmission error is stored in the variable-length feedback resource in turn.
  • the receiving end is in blind detection , Only detect fixed-length DCI, know that the HARQ bitmap is based on TB level according to Flag TB is 0, get the A/N corresponding to 16 processes according to the HARQ bitmap, judge the time-frequency resource of variable-length DCI according to the parameter index value, and Read the CBG A/N information corresponding to the wrong TB, and finally retransmit the wrong CBG on the configured authorized resources.
  • the second possible scenario is: there is no CBG transmission error in the HARQ process (1-16), that is, all HARQ processes are transmitted correctly, then the corresponding DCI feedback indication and content are shown in Figure 8.
  • set Flag TB to 0 to indicate that TB A/N information is stored in the HARQ bitmap, and set the parameter index value to not indicate any time-frequency The default value of the resource.
  • the receiver only detects fixed DCI during blind detection. According to Flag TB of 0, it knows that the HARQ bitmap is based on the TB level. According to the HARQ bitmap, the TB A corresponding to 16 processes is obtained, and the parameter index value is at this time It does not indicate any variable-length DCI time-frequency resources, and all processes do not need to retransmit at this time.
  • the difference and effect of the present invention are mainly reflected in the information carried by the new type of DCI, and two-stage DCI feedback is adopted.
  • Mechanisms When the original solution needs to schedule multiple wrong CBG retransmissions, it may cause excessive UL grant overhead and increase the complexity of blind detection at the UE; when multiple wrong CBG retransmissions need to be scheduled, the proposed solution of the present invention may cause the DCI to carry
  • the clear indication information enables the UE to determine the current feedback level, the time-frequency resource location of variable-length DCI and the CBG reception of each process according to the indication.
  • the UE can perform CBG-based retransmission according to the CBG A/N situation, and because The fixed-length DCI can be matched with the variable-length DCI in length, thus greatly reducing the complexity of blind detection at the UE.
  • FIG. 11 is a schematic diagram of the composition structure of the data transmission device 100 provided by the embodiment of the present invention; as shown in FIG. 11, the device 100 includes:
  • the sending module 110 is configured to send a fixed-length downlink control information DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the sending module 110 further includes:
  • the sending submodule 111 is configured to send the variable-length DCI according to the detection parameter when the detection parameter indicates that the variable-length DCI is sent;
  • variable-length DCI is not sent.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • the first hybrid automatic repeat request bitmap is used to indicate the feedback information of the transmission block in at least one hybrid automatic repeat request process, and one of the hybrid automatic repeat request
  • the automatic retransmission request process transmits one transmission block
  • the first hybrid automatic repeat request bitmap is used to indicate feedback information of at least one code block group of at least one transmission block.
  • variable-length DCI is used to indicate feedback information of at least one code block group in the transmission block that is not successfully received.
  • variable-length DCI is in the form of a bitmap, indicating feedback information of at least one code block group in the unsuccessfully received transmission block.
  • variable-length DCI when the bitmap flag bit has a second value, includes: a second hybrid automatic repeat request bitmap;
  • the second hybrid automatic repeat request bitmap is used to indicate the feedback information of the remaining part of the code block group except the feedback information indicated by the first hybrid automatic repeat request bitmap.
  • the apparatus 100 further includes:
  • the determining module 120 is configured to determine the length of the variable-length DCI according to the length of the information contained in the variable-length DCI.
  • the detection parameters of the variable-length DCI include at least one of the following:
  • a parameter used to indicate length information of the variable-length DCI is
  • FIG. 12 is a schematic diagram of the structure of the data transmission device 200 provided by the embodiment of the present invention; as shown in FIG. 12, the device 200 includes:
  • the receiving module 210 is configured to receive a fixed-length downlink control information DCI, where the fixed-length DCI includes a variable-length DCI detection parameter.
  • the receiving module 210 further includes:
  • the receiving submodule 211 is configured to receive the variable-length DCI according to the detection parameter when the detection parameter indicates that the variable-length DCI is sent;
  • variable-length DCI is not received.
  • the fixed-length DCI further includes: a first hybrid automatic repeat request bitmap and a bitmap flag bit, where:
  • the device 200 further includes:
  • the first retransmission module 220 is configured to, when the bitmap flag bit is the first value, retransmit at least one hybrid automatic repeat request process that was not successfully received according to the first hybrid automatic repeat request bitmap Transmission block;
  • bitmap flag bit is the second value
  • at least one code block group of the at least one transmission block that is not successfully received is retransmitted according to the first hybrid automatic repeat request bitmap.
  • the apparatus 200 further includes:
  • the second retransmission module 230 is configured to, when the bitmap flag bit is the first value, according to the feedback information of at least one code block group in the unsuccessfully received transport block indicated by the variable-length DCI , Retransmit the unsuccessfully received code block group.
  • the second retransmission module 230 includes:
  • the retransmission submodule 231 is configured to, when the bitmap flag bit is the first value, according to the feedback information of at least one code block group indicated by the variable-length DCI in the form of a bitmap, the retransmission is not successfully received ⁇ said code block group.
  • the apparatus 200 further includes:
  • the third retransmission module 240 is configured to retransmit the second hybrid according to the second hybrid automatic repeat request bitmap included in the variable-length DCI when the bitmap flag has the second value.
  • the apparatus 200 further includes at least one of the following:
  • the first determining module 250 is configured to determine the frequency domain resource for receiving the variable-length DCI according to the detection parameter of the variable-length DCI;
  • the second determining module 260 is configured to determine a time domain resource for receiving the variable-length DCI according to the detection parameter of the variable-length DCI;
  • the third determining module 270 is configured to determine the length information of the variable-length DCI according to the detection parameter of the variable-length DCI:
  • the sending module 110, the determining module 120, and the receiving module 210, etc. may be implemented by one or more central processing units (CPU, Central Processing Unit), graphics processing units (GPU, Graphics Processing Unit), and baseband processors.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components are implemented to execute the foregoing methods.
  • Fig. 13 is a block diagram showing a device 3000 for data transmission according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of these data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and the keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000 and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开实施例是关于数据传输方法、装置及存储介质。发送固定长度的下行控制信息(DCI),其中,所述固定长度的DCI包含可变长度的DCI的检测参数。

Description

数据传输方法、装置及存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及数据传输方法、装置及存储介质。
背景技术
随着第五代(5G,5th Generation)移动通信网络技术各类业务需求的不断增加,频谱资源短缺成为移动通信网络面临的越来越严峻的现实,使用授权频谱已经无法满足业务需求的增长。因此,需要在非授权频段上部署移动网络。
5G新空口(NR,New Radio)系统中采用配置授权(CG,Configured Grant)为周期性业务配置资源;在采用配置授权的基于新空口非授权接入(NR-U,New Radio Based Unlicensed Access)技术中,初传采用非调度的方式在配置授权资源上传输,而重传采用上行授权(UL grant,UpLink grant)在专用资源上调度。而相关技术使得UL grant调度的信令开销过大。
发明内容
有鉴于此,本公开实施例提供了一种数据传输方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,其中,所述方法包括:
发送固定长度的下行控制信息(DCI,Downlink Control Information),其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,所述方法还包括:
当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参 数,发送所述可变长度的DCI。
在一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;
当所述位图标志位为第二取值时,所述第一混合自动重传请求位图,用于指示至少一个所述传输块的至少一个码块组的反馈信息。
在一个实施例中,所述方法还包括:
当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息,包括:
所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,所述方法还包括:
当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;
其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
在一个实施例中,所述方法还包括
根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
在一个实施例中,所述可变长度的DCI的检测参数,包括以下至少之一:
用于指示所述可变长度的DCI发送所占用频域资源的参数;
用于指示所述可变长度的DCI发送所占用时域资源的参数;
用于指示所述可变长度的DCI的长度信息的参数。
根据本公开实施例的第二方面,提供一种数据传输方法,其中,所述方法包括:
接收固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,所述方法还包括:
当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI。
在一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成功接收的传输块;
当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
在一个实施例中,所述方法还包括:
当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
在一个实施例中,所述当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组,包括:
当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的所述未成功接收的传输块中至少一个码块组的,重传未成功接 收的所述码块组。
在一个实施例中,所述方法还包括:
当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
在一个实施例中,所述方法还包括至少以下之一:
根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;
根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;
根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息。
根据本公开实施例的第三方面,提供一种数据传输装置,其中,所述装置包括:
发送模块,配置为发送固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,所述发送模块还包括:
发送子模块,配置为当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,发送所述可变长度的DCI。
在一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;
当所述位图标志位为第二取值时,所述第一混合自动重传请求位图, 用于指示至少一个所述传输块的至少一个码块组的反馈信息。
在一个实施例中,当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;
其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
在一个实施例中,所述装置还包括:确定模块,配置为根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
在一个实施例中,所述可变长度的DCI的检测参数,包括以下至少之一:
用于指示发送所述可变长度的DCI发送所占用频域资源的参数;
用于指示发送所述可变长度的DCI发送所占用时域资源的参数;
用于指示所述可变长度的DCI的长度信息的参数。
根据本公开实施例的第四方面,提供一种数据传输装置,其中,所述装置包括:
接收模块,配置为接收固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,所述接收模块还包括:
接收子模块,配置为当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI。
在一个实施例中,所述固定长度DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
所述装置还包括:
第一重传模块,配置为当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成功接收的传输块;
当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
在一个实施例中,所述装置还包括:
第二重传模块,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
在一个实施例中,所述第二重传模块,包括:
重传子模块,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的至少一个码块组的反馈信息,重传未成功接收的所述码块组。
在一个实施例中,所述装置还包括:
第三重传模块,配置为当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
在一个实施例中,所述装置还包括以下至少之一:
第一确定模块,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;
第二确定模块,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;
第三确定模块,配置为根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息。
根据本公开实施例的第五方面,提供一种数据传输装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行第一方面或第二方面所述数据传输方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现第一方面或第二方面所述数据传输方法的步骤
本公开实施例提供的数据传输方法、装置及存储介质,发送固定长度的DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。如此,一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高接收固定长度的DCI的效率;另一方面,检测参数可以为接收可变长度的DCI提供指示和资源信息,提高接收可变长度的DCI的便捷程度,降低可变长度的DCI盲检难度,减少了因盲检导致的过多功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种多个HARQ进程重传场景示意图
图3是根据一示例性实施例示出的另一种多个HARQ进程重传场景示意图;
图4是根据一示例性实施例示出的又一种多个HARQ进程重传场景示意图;
图5是根据一示例性实施例示出的一种数据传输方法的流程示意图;
图6是根据一示例性实施例示出的一种DCI格式示意图;
图7是根据一示例性实施例示出的另一种DCI格式示意图;
图8是根据一示例性实施例示出的又一种DCI格式示意图;
图9是根据一示例性实施例示出的再一种DCI格式示意图;
图10是根据一示例性实施例示出的一种数据传输方法的流程示意图;
图11是根据一示例性实施例示出的一种数据传输装置的框图;
图12是根据一示例性实施例示出的另一种数据传输装置的框图;
图13是根据一示例性实施例示出的一种用于数据传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时” 或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基 站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实 施例不做限定。
本公开实施例涉及的执行主体包括但不限于:无线通信系统中的终端或基站。
本公开实施例的一种应用场景为,在采用配置授权的NR-U技术中,初传采用非调度的方式在配置授权资源上传输,而重传采用UL grant在专用资源上调度。针对重传资源分配有两种方式:
方式1,采用多个UL grant分别调度多个不同的HARQ进程在专用调度资源上重传。如图2所示,当用户设备(UE)在配置授权资源上总共传输了5个HARQ进程时,若每个进程中均有码块组(CBG,Code Block Group)传输错误,使用由UL grant分配的专用调度资源支持重传,即5G基站(gNB)使用5个UL grant调度UE为物理上行数据信道(PUSCH,Physical Uplink Shared Channel)分配专用资源重传未成功接收的数据。这时由于基站发送多个UL grant,用于指示HARQ进程中未成功接收的CBG及重传资源,从而导致信令开销过大。
方式2:为了解决采用第1种方式可能带来的DCI开销过大的问题,引入了一种新的UL grant格式,采用单个UL grant调度多个HARQ进程在配置授权资源上重传。如图3所示,当UE在配置授权资源上总共传输了5个HARQ进程时,若每个进程中均有CBG传输错误,使用UL grant指示在配置授权资源上重传,即gNB使用单个UL grant调度UE为PUSCH分配专用资源重传未成功接收的数据。这时由于基站仅发送单个UL grant以指示HARQ进程中有CBG传输错误的CBG重传,从而减小多次发送UL grant带来的信令开销。
但是,如果在NR-U CG中直接采用第2种方式,当需要包含所有HARQ进程的CBG级确认/非确认(A/N,ACK/NACK)反馈信息以支持基于CBG的重传时,会使单个UL grant信令开销过大。
典型的场景如图4所示,当UE在配置授权资源上总共传输了16个HARQ进程,每个进程传输8个CBG时,若每个进程中均有CBG传输错误;这时,对于所有的HARQ进程,包括CBG级A/N会使UL grant的开销非常大,进而难以将所有反馈包括在一个DCI中,并且由于DCI的长度需要根据重传CBG数量的变化而变化,导致UE端盲检复杂度增加。
如图5所示,本示例性实施例提供一种数据传输方法,数据传输方法可以应用于无线通信的发送端中,所述方法包括:
步骤101:发送固定长度的DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
这里,对于各HARQ进程的HARQ反馈信息可以设置于固定长度的DCI中;还可以设置在可变长度的DCI中。HARQ反馈信息可以是传输块级的A/N反馈信息或码块组级的A/N反馈信息。其中,传输块级的A/N反馈信息可以是用位图指示各HARQ进程中的传输块的接收情况;码块组级的A/N反馈信息可以是用位图指示各HARQ进程中的传输块中码块组的接收情况。
固定长度的DCI所包含的比特数固定,可变长度的DCI包含的比特数是动态的。可变长度的DCI的长度跟随包含的信息长度动态变化。
可以通过基站等发送端发送固定长度的DCI以及可变长度的DCI,由终端等接收端接收固定长度的DCI以及可变长度的DCI。
固定长度的DCI可以携带有上下行资源分配信息、功率控制信息等。
在一些实施例中,固定长度的DCI可以携带有HARQ反馈信息,用于指示HARQ进程中数据的接收情况。
可变长度的DCI的检测参数可以是指示可变长度的DCI的传输资源信息,接收端可以根据传输资源信息接收可变长度的DCI。
一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高采用固 定长度的DCI接收效率;另一方面,检测参数可以为接收端接收可变长度的DCI提供指示和资源信息,提高接收可变长度的DCI的便捷程度,降低可变长度的DCI盲检难度,减少了因盲检导致的过多功耗。
在一个实施例中,所述方法还包括:当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,发送所述可变长度的DCI;或者,当所述检测参数表明无所述可变长度的DCI发送时,不发送所述可变长度的DCI。
检测参数中可以包括一个或多个标识位,例如,检测参数包括用于指示是否有可变长度的DCI需要发送的标识位。检测参数也可以采用检测参数本身包含的内容指示是否有可变长度的DCI需要发送。例如,当检测参数未指示任何传输资源信息时,表明没有可变长度的DCI需要发送;当检测参数存指示有传输资源信息时,表明存在可变长度的DCI需要发送。
接收端在接收到固定长度的DCI后,可以根据检测参数确定是否有可变长度的DCI需要接收。如果有可变长度的DCI需要接收,则根据检测参数指示的传输资源接收可变长度的DCI。
一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;当所述位图标志位为第二取值时,所述第一混合自动重传请求位图,用于指示至少一个所述传输块的至少一个码块组的反馈信息。
这里,第一混合自动重传请求位图采用位图的形式向接收端发送HARQ反馈信息。如图6所示的固定长度的DCI和可变长度的DCI结构示意图中,HARQ位图表示第一混合自动重传请求位图;Flag TB表示位图标志位,Flag TB可以占用一个比特位,用两个不同的值分别指示第一混合自 动重传请求位图中的内容。例如,当Flag TB为“0”时,表示当前的HARQ反馈为TB级,第一混合自动重传请求位图指示HARQ进程中传输块的反馈信息。当Flag TB为“1”时,表示当前的HARQ反馈为CBG级,第一混合自动重传请求位图指示HARQ进程传输块中码块组的反馈信息。反馈信息可以是针对传输块或码块组的A/N反馈信息。其中HARQ位图可以占用16个比特位。
如图7所示,Flag TB为“0”时,HARQ位图指示图4所示的传请求进程中各传输块的A/N反馈信息,其中,“1”可以表示对应的传输块接收成功,“0”可以表示对应的传输块未成功接收。接收端根据HARQ位图指示的传输块的A/N反馈信息,向发送端重传未成功接收的传输块。
如图8所示的一个实施例中,Flag TB为“0”,HARQ位图用“1”指示各HARQ进程中的传输块都被接收成功。
如图9所示,Flag TB为“1”时,HARQ位图指示图4所示的传请求进程各传输块中的码块组的A/N反馈信息,其中,“1”可以表示对应的码块组接收成功,“0”可以表示对应的码块组未成功接收。由于HARQ位图位数限制,例如16为的HARQ位图只能指示两个传输块中的码块组的A/N反馈信息。接收端根据HARQ位图指示的传输块中的码块组A/N反馈信息,向发送端重传未成功接收的传输块中的码块组,也可以向发送端重传包含未成功接收的码块组的传输块。
采用固定长度的DCI发送HARQ反馈信息,能降低接收端的盲检复杂程度,提高采用固定长度的DCI接收效率,进而提高配置授权的重传效率。
在一个实施例中,所述方法还包括:当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
当所述位图标志位为第一取值时,第一混合自动重传请求位图指示至 少一个HARQ进程中传输块的反馈信息。对于未成功接收的传输块,可以用可变长度的DCI指示未成功接收的传输块中码块组的反馈信息。如此,可以用第一混合自动重传请求位图实现传输块级的A/N信息反馈,用可变长度的DCI实现码块组级的A/N信息反馈。
接收端在接收到固定长度的DCI后,可以根据检测参数确定是否有可变长度的DCI需要接收。如果有可变长度的DCI需要接收,则根据检测参数指示的接收资源接收可变长度的DCI。接收端可以重传第一混合自动重传请求位图指示的未成功接收的传输块,或者重传可变长度的DCI指示的未成功接收的码块组
如图7所示,Flag TB为“0”时,HARQ位图指示图4所示的传请求进程中各传输块的A/N反馈信息,其中,“0”可以表示对应的传输块未成功接收,可以用可变长度的DCI指示未成功接收的传输块中码块组的反馈信息。接收端可以重传可变长度的DCI指示的未成功接收的传输块中码块组。
采用固定长度的DCI和可变长度的DCI结合进行HARQ反馈信息,一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高采用固定长度的DCI接收效率,进而提高配置授权的重传效率;另一方面,可变长度的DCI扩展了可携带HARQ反馈信息的长度,可变长度的DCI可以携带与固定长度的DCI不同类型的HARQ反馈信息,适应不同反馈信息需求。更进一步,通过两个DCI传输HARQ反馈信息,可以控制DCI信令尺寸,减小信令开销。
在一个实施例中,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息,包括:所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
这里,码块组的反馈信息可以采用位图的形式进行指示,如用位图中的“1”表示码块组成功,“0”表示码块组未成功接收。采用位图的形式,可以显性地反馈每个码块组的接收情况,提高HARQ反馈信息直观程度。
在一个实施例中,所述方法还包括:当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
所述第二混合自动重传请求位图,用于指示所述第一混合自动重传请求位图未指示码块组的反馈信息。
这里,第一混合自动重传请求位图和第二混合自动重传请求位图共同用于指示的码块组的反馈信息,实现码块组级的反馈信息。
接收端可以重传第一混合自动重传请求位图和第二混合自动重传请求位图共同指示的未成功接收的码块组。
如图9所示HARQ位图和可变长度的DCI所包含第二混合自动重传请求位图,共同指示图4所示的HARQ进程各传输块中的码块组的A/N反馈信息,其中,HARQ位图指示两个传输块中的码块组的A/N反馈信息,第二混合自动重传请求位图指示剩余的14个传输块中的码块组的A/N反馈信息。接收端接收到固定长度的DCI和可变长度的DCI后,可以重传HARQ位图和可变长度的DCI所包含第二混合自动重传请求位图公共指示的HARQ进程各传输块中的码块组的A/N反馈信息。
第一混合自动重传请求位图和第二混合自动重传请求位图共同指示未成功接收的码块组,扩展了反馈信息的长度,能提供完整的码块组反馈信息。
在一个实施例中,所述方法还包括:根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
这里,可变长度的DCI的长度可以根据DCI中包含的信息,如码块组的A/N反馈信息的长度,进行调整。如此,可变长度的DCI可以适应不同长度的码块组的A/N反馈信息。
在一个实施例中,所述可变长度的DCI的检测参数,包括以下至少之一:用于指示所述可变长度的DCI发送所占用频域资源的参数;用于指示所述可变长度的DCI发送所占用时域资源的参数;用于指示所述可变长度的DCI的长度信息的参数。
发送端确定用于发送可变长度的DCI的资源后,用检测参数指示该传输资源,然后放到固定长度的DCI中发送给接收端。接收端接收到固定长度的DCI后,根据检测参数确定可变长度的DCI的传输资源,接收可变长度的DCI。
采用固定长度的DCI和可变长度的DCI结合进行HARQ反馈信息,一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高配置授权的重传效率;另一方面,可变长度的DCI可以携带不同种类的HARQ反馈信息,适应不同长度的HARQ反馈信息。通过两个阶段传输HARQ反馈信息,减小DCI信令尺寸。
如图10所示,本示例性实施例提供一种数据传输方法,数据传输方法可以应用于无线通信的接收端中,所述方法包括:
步骤201:接收固定长度的DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
这里,对于各HARQ进程的HARQ反馈信息可以设置于固定长度的DCI中;还可以设置在可变长度的DCI中。HARQ反馈信息可以是传输块级的A/N反馈信息或码块组级的A/N反馈信息。其中,传输块级的A/N反馈信息可以是用位图指示各HARQ进程中的传输块的接收情况;码块组级的A/N反馈信息可以是用位图指示各HARQ进程中的传输块中码块组的接 收情况。
固定长度的DCI所包含的比特数固定,可变长度的DCI包含的比特数是动态的。可变长度的DCI的长度跟随包含的信息长度动态变化。
可以通过基站等发送端发送固定长度的DCI以及可变长度的DCI,由终端等接收端接收固定长度的DCI以及可变长度的DCI。
固定长度的DCI可以携带有上下行资源分配信息、功率控制信息等。
在一些实施例中,固定长度的DCI可以携带有HARQ反馈信息,用于指示HARQ进程中数据的接收情况。
可变长度的DCI的检测参数可以是指示可变长度的DCI的传输资源信息,接收端可以根据传输资源信息接收可变长度的DCI。
一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高采用固定长度的DCI接收效率;另一方面,检测参数可以为接收端接收可变长度的DCI提供指示和资源信息,提高接收可变长度的DCI的便捷程度。
在一个实施例中,所述方法还包括:当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI;或者,当所述检测参数表明无所述可变长度的DCI发送时,不接收所述可变长度的DCI。
检测参数中可以包括一个或多个标识位,例如,检测参数包括用于指示是否有可变长度的DCI需要发送的标识位。检测参数也可以采用检测参数本身包含的内容指示是否有可变长度的DCI需要发送。例如,当检测参数未指示任何传输资源信息时,表明没有可变长度的DCI需要发送;当检测参数存指示有传输资源信息时,表明存在可变长度的DCI需要发送。
接收端在接收到固定长度的DCI后,可以根据检测参数确定是否有可变长度的DCI需要接收。如果有可变长度的DCI需要接收,则根据检测参数指示的传输资源接收可变长度的DCI。
在一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成功接收的传输块;当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
这里,第一混合自动重传请求位图采用位图的形式向接收端发送HARQ反馈信息。
如图6所示的固定长度的DCI和可变长度的DCI结构示意图中,HARQ位图表示第一混合自动重传请求位图;Flag TB表示位图标志位,Flag TB可以占用一个比特位,用两个不同的值分别指示第一混合自动重传请求位图中的内容。例如,当Flag TB为“0”时,表示当前的HARQ反馈为TB级,第一混合自动重传请求位图指示HARQ进程中传输块的反馈信息。当Flag TB为“1”时,表示当前的HARQ反馈为CBG级,第一混合自动重传请求位图指示HARQ进程传输块中码块组的反馈信息。反馈信息可以是针对传输块或码块组的A/N反馈信息。其中HARQ位图可以占用16个比特位。
如图7所示,Flag TB为“0”时,HARQ位图指示图4所示的传请求进程中各传输块的A/N反馈信息,其中,“1”可以表示对应的传输块接收成功,“0”可以表示对应的传输块未成功接收。接收端根据HARQ位图指示的传输块的A/N反馈信息,向发送端重传未成功接收的传输块。
如图8所示的一个实施例中,Flag TB为“0”,HARQ位图用“1”指示各HARQ进程中的传输块都被接收成功。
如图9所示,Flag TB为“1”时,HARQ位图指示图4所示的传请求进程各传输块中的码块组的A/N反馈信息,其中,“1”可以表示对应的码 块组接收成功,“0”可以表示对应的码块组未成功接收。由于HARQ位图位数限制,例如16为的HARQ位图只能指示两个传输块中的码块组的A/N反馈信息。接收端根据HARQ位图指示的传输块中的码块组A/N反馈信息,向发送端重传未成功接收的传输块中的码块组,也可以向发送端重传包含未成功接收的码块组的传输块。
采用固定长度的DCI发送HARQ反馈信息,能降低接收端的盲检复杂程度,提高采用固定长度的DCI接收效率,进而提高配置授权的重传效率。
在一个实施例中,所述方法还包括:当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
当位图标志位为第一取值时,第一混合自动重传请求位图指示至少一个HARQ进程中传输块的反馈信息。对于未成功接收的传输块,可以用可变长度的DCI指示未成功接收的传输块中码块组的反馈信息。如此,可以用第一混合自动重传请求位图实现传输块级的A/N信息反馈,用可变长度的DCI实现码块组级的A/N信息反馈。
接收端在接收到固定长度的DCI后,可以根据检测参数确定是否有可变长度的DCI需要接收。如果有可变长度的DCI需要接收,则根据检测参数指示的接收资源接收可变长度的DCI。接收端可以重传第一混合自动重传请求位图指示的未成功接收的传输块,或者重传可变长度的DCI指示的未成功接收的码块组
如图7所示,Flag TB为“0”时,HARQ位图指示图4所示的传请求进程中各传输块的A/N反馈信息,其中,“0”可以表示对应的传输块未成功接收,可以用可变长度的DCI指示未成功接收的传输块中码块组的反馈信息。接收端可以重传可变长度的DCI指示的未成功接收的传输块中码块组。
采用固定长度的DCI和可变长度的DCI结合进行HARQ反馈信息,一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高采用固定长度的DCI接收效率,进而提高配置授权的重传效率;另一方面,可变长度的DCI扩展了可携带HARQ反馈信息的长度,可变长度的DCI可以携带与固定长度的DCI不同类型的HARQ反馈信息,适应不同反馈信息需求。更进一步,通过两个DCI传输HARQ反馈信息,可以控制DCI信令尺寸,减小信令开销。
在一个实施例中,所述当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组,包括:当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的至少一个码块组的反馈信息,重传未成功接收的所述码块组。
这里,码块组的反馈信息可以采用位图的形式进行指示,如用位图中的“1”表示码块组成功,“0”表示码块组未成功接收。采用位图的形式,可以显性地反馈每个码块组的接收情况,提高HARQ反馈信息直观程度。
在一个实施例中,所述方法还包括:当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
这里,第一混合自动重传请求位图和第二混合自动重传请求位图共同用于指示的码块组的反馈信息,实现码块组级的反馈信息。
接收端可以重传第一混合自动重传请求位图和第二混合自动重传请求位图共同指示的未成功接收的码块组。这里,所述第二混合自动重传请求位图所指示的未成功接收的码块组,是未成功接收的码组块中,除了第一混合自动重传请求位图所指示的未成功接收的码块组以外的码块组。
如图9所示HARQ位图和可变长度的DCI所包含第二混合自动重传请 求位图,共同指示图4所示的HARQ进程各传输块中的码块组的A/N反馈信息,其中,HARQ位图指示两个传输块中的码块组的A/N反馈信息,第二混合自动重传请求位图指示剩余的14个传输块中的码块组的A/N反馈信息。接收端接收到固定长度的DCI和可变长度的DCI后,可以重传HARQ位图和可变长度的DCI所包含第二混合自动重传请求位图公共指示的HARQ进程各传输块中的码块组的A/N反馈信息。
所述方法还包括:根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
这里,可变长度的DCI的长度可以根据DCI中包含的信息,如码块组的A/N反馈信息的长度,进行调整。如此,可变长度的DCI可以适应不同长度的码块组的A/N反馈信息。
第一混合自动重传请求位图和第二混合自动重传请求位图共同指示未成功接收的码块组,扩展了反馈信息的长度,能提供完整的码块组反馈信息。
在一个实施例中,所述方法还包括至少以下之一:根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息。
发送端确定用于发送可变长度的DCI的资源后,用检测参数指示该传输资源,然后放到固定长度的DCI中发送给接收端。接收端接收到固定长度的DCI后,根据检测参数确定可变长度的DCI的传输资源,接收可变长度的DCI。
采用固定长度的DCI和可变长度的DCI结合进行HARQ反馈信息,一方面,固定长度的DCI能降低接收端的盲检复杂程度,提高配置授权的重 传效率;另一方面,可变长度的DCI可以携带不同种类的HARQ反馈信息,适应不同长度的HARQ反馈信息。通过两个阶段传输HARQ反馈信息,减小DCI信令尺寸。
以下结合上述任意实施例提供一个具体示例:
为了解决使用单个UL grant调度多个错误CBG重传可能导致的DCI开销过大及UE端盲检复杂度增加问题,提出设计一种新型的DCI。如图6所示,与重传相关的控制信息存放在固定长DCI中,接收端在盲检时,只检测固定长DCI,并根据固定长DCI中控制信息进一步判断可变长DCI的时频资源位置及CBG A/N等信息。
针对所提方案,基站侧和终端侧所做的改动如下:
基站端:基站端根据对各进程的CBG的接收情况,设置相应指示位指示进行哪种级别的HARQ反馈及其对应的反馈内容。
终端:终端接收到固定长DCI后,根据Flag TB指示判断当前HARQ位图中是基于哪种级别的反馈,并根据参数集索引指示判断可变长DCI的时频资源位置等信息,并进一步根据其反馈内容进行基于CBG的重传。
对于图4场景其可能出现的第一种场景为:HARQ进程(1-16)中均有CBG传输错误,那么其对应的DCI反馈指示及内容如图9所示,在基站接收到的TB(1-16)进程中均有CBG传输错误时,设置Flag TB为1表示HARQ位图中存放CBG A/N信息,并按进程号依次将其对应的CBG A/N存放在对应的反馈资源中,接收端在盲检时,只检测固定长DCI,根据Flag TB为1知道HARQ位图是基于CBG级,根据HARQ位图得到1-2进程对应的CBG A/N,根据参数索引值判断可变长DCI的时频资源,并读取其CBG A/N信息,最终将传输错误的CBG在配置授权资源上进行重传
对于图4场景其可能出现的第二种场景为:HARQ进程(2,5,9,10,11,13,15)中均有CBG传输错误,其余HARQ进程中的所有CBG传输 正确,那么其对应的DCI反馈指示及内容如图7所示,在基站接收到的TB进程仅(2,5,9,10,11,13,15)进程中的CBG传输错误,其他TB的CBG均传输正确时,设置Flag TB为0表示HARQ位图中存放TB A/N信息,并将传输错误的进程号依次将其对应的CBG A/N存放在可变长反馈资源中,接收端在盲检时,只检测固定长DCI,根据Flag TB为0知道HARQ位图是基于TB级,根据HARQ位图得到16个进程对应的A/N,根据参数索引值判断可变长DCI的时频资源,并读取错误TB对应的CBG A/N信息,最终将传输错误的CBG在配置授权资源上进行重传。
对于图4场景其可能出现的第二种场景为:HARQ进程(1-16)中均没有CBG传输错误,即所有HARQ进程均传输正确,那么其对应的DCI反馈指示及内容如图8所示,在基站接收到的TB(1-16)进程中所有TB均传输正确时,设置Flag TB为0指示HARQ位图中存放TB A/N信息,并将参数索引值设置为不指示任何时频资源的默认值,接收端在盲检时,只检测固定DCI,根据Flag TB为0知道HARQ位图是基于TB级,根据HARQ位图得到16个进程对应的TB A,并且此时参数索引值不指示任何可变长DCI的时频资源,此时所有进程均不需要重传。
与图4所示的使用单个UL grant调度多HARQ进程在CG资源上进行重传的方案相比,本发明的区别与作用主要体现在新型DCI所携带的信息上,并且采用了两阶段DCI反馈的机制。原方案在需要调度多个错误CBG重传时,可能导致UL grant开销过大及UE端盲检复杂度增加问题;本发明所提方案在需要调度多个错误CBG重传时,由于DCI携带了明确的指示信息使UE能根据指示判断出当前反馈的级别,可变长DCI的时频资源位置及各进程的CBG接收情况,UE可以根据CBG A/N情况进行基于CBG的重传,并且由于可以将固定长DCI与可变长DCI进行长度匹配,因此极大地减低了UE端的盲检复杂度。
本发明实施例还提供了一种数据传输装置,应用于无线通信的发送端,图11为本发明实施例提供的数据传输装置100的组成结构示意图;如图11所示,装置100包括:
发送模块110,配置为发送固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,如图11所示,所述发送模块110还包括:
发送子模块111,配置为当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,发送所述可变长度的DCI;
或者,
当所述检测参数表明无所述可变长度的DCI发送时,不发送所述可变长度的DCI。
在一个实施例中,所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;
当所述位图标志位为第二取值时,所述第一混合自动重传请求位图,用于指示至少一个所述传输块的至少一个码块组的反馈信息。
在一个实施例中,当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
在一个实施例中,当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;
其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自 动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
在一个实施例中,如图11所示,所述装置100还包括:
确定模块120,配置为根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
在一个实施例中,所述可变长度的DCI的检测参数,包括以下至少之一:
用于指示发送所述可变长度的DCI发送所占用频域资源的参数;
用于指示发送所述可变长度的DCI发送所占用时域资源的参数;
用于指示所述可变长度的DCI的长度信息的参数。
本发明实施例还提供了一种数据传输装置,应用于无线通信的接收端,图12为本发明实施例提供的数据传输装置200的组成结构示意图;如图12所示,装置200包括:
接收模块210,配置为接收固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
在一个实施例中,如图12所示,所述接收模块210还包括:
接收子模块211,配置为当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI;
或者,
当所述检测参数表明无所述可变长度的DCI发送时,不接收所述可变长度的DCI。
在一个实施例中,所述固定长度DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
如图12所示,所述装置200还包括:
第一重传模块220,配置为当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成 功接收的传输块;
当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
在一个实施例中,如图12所示,所述装置200还包括:
第二重传模块230,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
在一个实施例中,如图12所示,所述第二重传模块230,包括:
重传子模块231,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的至少一个码块组的反馈信息,重传未成功接收的所述码块组。
在一个实施例中,如图12所示,所述装置200还包括:
第三重传模块240,配置为当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
在一个实施例中,如图12所示,所述装置200还包括以下至少之一:
第一确定模块250,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;
第二确定模块260,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;
第三确定模块270,配置为根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息:
在示例性实施例中,发送模块110、确定模块120和接收模块210等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、 应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图13是根据一示例性实施例示出的一种用于数据传输的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户 与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例 的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种数据传输方法,其中,所述方法包括:
    发送固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,发送所述可变长度的DCI。
  3. 根据权利要求2所述的方法,其中,
    所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
    当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;
    当所述位图标志位为第二取值时,所述第一混合自动重传请求位图,用于指示至少一个所述传输块的至少一个码块组的反馈信息。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
  5. 根据权利要求4所述的方法,其中,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息,包括:
    所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
  6. 根据权利要求3所述的方法,其中,所述方法还包括:
    当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;
    其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
  7. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括
    根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
  8. 根据权利要求1至6任一项所述的方法,其中,所述可变长度的DCI的检测参数,包括以下至少之一:
    用于指示所述可变长度的DCI发送所占用频域资源的参数;
    用于指示所述可变长度的DCI发送所占用时域资源的参数;
    用于指示所述可变长度的DCI的长度信息的参数。
  9. 一种数据传输方法,其中,所述方法包括:
    接收固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI。
  11. 根据权利要求10所述的方法,其中,
    所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
    当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成功接收的传输块;
    当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所 述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
  13. 根据权利要求12所述的方法,其中,所述当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组,包括:
    当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的所述码块组。
  14. 根据权利要求11所述的方法,其中,所述方法还包括:
    当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
  15. 根据权利要求9至14任一项所述的方法,其中,
    所述方法还包括至少以下之一:
    根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;
    根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;
    根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息。
  16. 一种数据传输装置,其中,所述装置包括:
    发送模块,配置为发送固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
  17. 根据权利要求16所述的装置,其中,所述发送模块还包括:
    发送子模块,配置为当所述检测参数表明有所述可变长度的DCI发送 时,根据所述检测参数,发送所述可变长度的DCI。
  18. 根据权利要求17所述的装置,其中,
    所述固定长度的DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
    当所述位图标志位为第一取值时,所述第一混合自动重传请求位图,用于指示至少一个混合自动重传请求进程中传输块的反馈信息,其中,一个所述混合自动重传请求进程传输一个所述传输块;
    当所述位图标志位为第二取值时,所述第一混合自动重传请求位图,用于指示至少一个所述传输块的至少一个码块组的反馈信息。
  19. 根据权利要求18所述的装置,其中,
    当所述位图标志位为第一取值时,所述可变长度的DCI,用于指示未成功接收的所述传输块中至少一个码块组的反馈信息。
  20. 根据权利要求19所述的装置,其中,
    所述可变长度的DCI采用位图的形式,指示所述未成功接收的所述传输块中至少一个码块组的反馈信息。
  21. 根据权利要求18所述的装置,其中,
    当所述位图标志位为第二取值时,所述可变长度的DCI包含:第二混合自动重传请求位图;
    其中,所述第二混合自动重传请求位图,用于指示除所述第一混合自动重传请求位图所指示反馈信息之外的剩余部分的码块组的反馈信息。
  22. 根据权利要求16至21任一项所述的装置,其中,所述装置还包括:确定模块,配置为根据所述可变长度的DCI中包含的信息的长度,确定所述可变长度的DCI的长度。
  23. 根据权利要求16至21任一项所述的装置,其中,所述可变长度的DCI的检测参数,包括以下至少之一:
    用于指示发送所述可变长度的DCI发送所占用频域资源的参数;
    用于指示发送所述可变长度的DCI发送所占用时域资源的参数;
    用于指示所述可变长度的DCI的长度信息的参数。
  24. 一种数据传输装置,其中,所述装置包括:
    接收模块,配置为接收固定长度的下行控制信息DCI,其中,所述固定长度的DCI包含可变长度的DCI的检测参数。
  25. 根据权利要求24所述的装置,其中,所述接收模块还包括:
    接收子模块,配置为当所述检测参数表明有所述可变长度的DCI发送时,根据所述检测参数,接收所述可变长度的DCI。
  26. 根据权利要求25所述的装置,其中,
    所述固定长度DCI还包含:第一混合自动重传请求位图和位图标志位,其中,
    所述装置还包括:
    第一重传模块,配置为当所述位图标志位为第一取值时,根据所述第一混合自动重传请求位图,重传至少一个混合自动重传请求进程中未成功接收的传输块;
    当所述位图标志位为第二取值时,根据所述第一混合自动重传请求位图,重传未成功接收的至少一个所述传输块的至少一个码块组。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    第二重传模块,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI指示的所述未成功接收的传输块中至少一个码块组的反馈信息,重传未成功接收的码块组。
  28. 根据权利要求27所述的装置,其中,所述第二重传模块,包括:
    重传子模块,配置为当所述位图标志位为第一取值时,根据所述可变长度的DCI采用位图形式指示的所述未成功接收的传输块中至少一个码块 组的反馈信息,重传未成功接收的所述码块组。
  29. 根据权利要求26所述的装置,其中,所述装置还包括:
    第三重传模块,配置为当所述位图标志位为第二取值时,根据所述可变长度的DCI所包含第二混合自动重传请求位图,重传所述第二混合自动重传请求位图所指示的未成功接收的码块组。
  30. 根据权利要求24至29任一项所述的装置,其中,所述装置还包括以下至少之一:
    第一确定模块,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的频域资源;
    第二确定模块,配置为根据所述可变长度的DCI的检测参数,确定接收所述可变长度的DCI的时域资源;
    第三确定模块,配置为根据所述可变长度的DCI的检测参数,确定所述可变长度的DCI的长度信息。
  31. 一种数据传输装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至8或10至15任一项所述数据传输方法的步骤。
  32. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至8或10至15任一项所述数据传输方法的步骤。
PCT/CN2019/098464 2019-07-30 2019-07-30 数据传输方法、装置及存储介质 WO2021016895A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980001622.7A CN110574332B (zh) 2019-07-30 2019-07-30 数据传输方法、装置及存储介质
PCT/CN2019/098464 WO2021016895A1 (zh) 2019-07-30 2019-07-30 数据传输方法、装置及存储介质
US17/631,425 US20220286233A1 (en) 2019-07-30 2019-07-30 Data transmission method and device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098464 WO2021016895A1 (zh) 2019-07-30 2019-07-30 数据传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021016895A1 true WO2021016895A1 (zh) 2021-02-04

Family

ID=68786114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098464 WO2021016895A1 (zh) 2019-07-30 2019-07-30 数据传输方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20220286233A1 (zh)
CN (1) CN110574332B (zh)
WO (1) WO2021016895A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518413A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种通信方法、装置及系统
CN117377097A (zh) * 2020-08-04 2024-01-09 Oppo广东移动通信有限公司 信息传输方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201932A1 (en) * 2016-01-07 2017-07-13 Electronics And Telecommunications Research Institute Method and apparatus for transmitting downlink response to uplink transmission, and method and apparatus for transmitting synchronization signal
CN108668369A (zh) * 2018-04-10 2018-10-16 华为技术有限公司 下行控制信息的传输方法、设备及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082059B2 (ja) * 2016-08-31 2022-06-07 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN108631951B (zh) * 2017-03-24 2023-11-21 华为技术有限公司 重传处理方法和设备
US11336397B2 (en) * 2017-05-05 2022-05-17 Beijing Xiaomi Mobile Software Co., Ltd. HARQ feedback method and apparatus, device, and computer readable storage medium
CN109088707B (zh) * 2017-06-14 2021-06-04 中国移动通信有限公司研究院 分级控制信道的传输方法、检测方法、装置及设备
CN109152004B (zh) * 2017-06-15 2023-07-28 中国移动通信有限公司研究院 微时隙指示及确定方法、通信设备及计算机存储介质
CN107483160A (zh) * 2017-08-17 2017-12-15 深圳市金立通信设备有限公司 一种重传反馈方法、基站、终端及计算机可读介质
CN109699054B (zh) * 2017-10-24 2020-11-06 华为技术有限公司 一种检测下行控制信息的方法、终端设备和网络设备
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources
CN108401486A (zh) * 2017-11-17 2018-08-14 北京小米移动软件有限公司 混合自动重传请求反馈指示、反馈方法及装置和基站
US10880895B2 (en) * 2018-05-27 2020-12-29 Brian Gordaychik Variable length downlink control information formats for next generation radio technologies
CN109075923B (zh) * 2018-07-25 2022-01-25 北京小米移动软件有限公司 传输harq反馈信息的方法、终端及基站
WO2020092941A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Channel occupancy time indication for nr based unlicensed operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201932A1 (en) * 2016-01-07 2017-07-13 Electronics And Telecommunications Research Institute Method and apparatus for transmitting downlink response to uplink transmission, and method and apparatus for transmitting synchronization signal
CN108668369A (zh) * 2018-04-10 2018-10-16 华为技术有限公司 下行控制信息的传输方法、设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC: "CBG-based (re)-transmission", 3GPP DRAFT; R1-1716257 (R15 NR WI AI 6333 CBG-BASED (RE)TRANSMISSION), vol. RAN WG1, 21 September 2017 (2017-09-21), Nagoya, Japan, pages 1 - 5, XP051329855 *
QUALCOMM ,HUAWEI, HISILICON ,ZTE , SONY , MEDIATEK: "WF on 2-Stage DCI for NR", 3GPP DRAFT; R1-1701478 WF ON 2-STAGE DCI FOR NR, 20 January 2017 (2017-01-20), Spokane, USA, pages 1 - 3, XP051222474 *

Also Published As

Publication number Publication date
CN110574332B (zh) 2022-08-19
CN110574332A (zh) 2019-12-13
US20220286233A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021088009A1 (zh) 反馈方法、反馈装置及存储介质
US12052766B2 (en) Method for determining contention window, and communication device and storage medium
US20220278774A1 (en) Data transmission method and apparatus, communication device and storage medium
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2020223973A1 (zh) 混合自动重传请求反馈的传输方法、装置及存储介质
WO2021087682A1 (zh) 下行控制信息dci下发方法及装置、通信设备及存储介质
WO2021088010A1 (zh) 反馈方法、反馈装置及存储介质
WO2021051323A1 (zh) 混合自动重传请求反馈方法、装置和通信设备
WO2020243887A1 (zh) 混合自动重传请求反馈的传输方法、装置及存储介质
EP4075699A1 (en) Harq-ack information transmission method and apparatus, and communication device
WO2021022517A1 (zh) Harq反馈增强的方法及装置、通信设备及存储介质
WO2021016895A1 (zh) 数据传输方法、装置及存储介质
CN110809868B (zh) Harq反馈传输方法及装置、通信设备及存储介质
CN111201825B (zh) 传输块配置参数传输方法、装置、通信设备及存储介质
CN112823485B (zh) 上行控制信息处理方法及装置、通信设备及存储介质
CN110945948A (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2021164034A1 (zh) 上行传输的处理方法、装置、通信设备及存储介质
WO2021087766A1 (zh) 混合自动重传请求应答传输方法及装置、设备及介质
WO2021184272A1 (zh) 数据传输方法、装置、通信设备及存储介质
CN110546970B (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2021087688A1 (zh) 数据传输方法、装置及存储介质
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
US20230171759A1 (en) Data transmission scheduling mehtod and apparatus, communicaiton device and storage medium
WO2021097682A1 (zh) Harq-ack反馈方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939335

Country of ref document: EP

Kind code of ref document: A1