WO2021016818A1 - 传输信息的方法、终端设备和网络设备 - Google Patents

传输信息的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021016818A1
WO2021016818A1 PCT/CN2019/098239 CN2019098239W WO2021016818A1 WO 2021016818 A1 WO2021016818 A1 WO 2021016818A1 CN 2019098239 W CN2019098239 W CN 2019098239W WO 2021016818 A1 WO2021016818 A1 WO 2021016818A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
dci
shared channel
transmission
uplink shared
Prior art date
Application number
PCT/CN2019/098239
Other languages
English (en)
French (fr)
Inventor
罗之虎
李军
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022506063A priority Critical patent/JP7336585B2/ja
Priority to KR1020227005893A priority patent/KR20220039760A/ko
Priority to PCT/CN2019/098239 priority patent/WO2021016818A1/zh
Priority to EP19939871.0A priority patent/EP4002944A4/en
Priority to CN201980098452.9A priority patent/CN114128387A/zh
Publication of WO2021016818A1 publication Critical patent/WO2021016818A1/zh
Priority to US17/587,517 priority patent/US20220150932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • This application relates to the field of communications, and more specifically, to methods, terminal devices, and network devices for transmitting information.
  • the Internet of Things is the "Internet of Things Connected", which extends the user end of the Internet to any object and object for information exchange and communication.
  • This communication method is also called machine type communications (MTC), and the communication node is called an MTC terminal.
  • MTC machine type communications
  • Typical IoT applications include possible applications including smart grids, smart agriculture, smart transportation, smart homes, and environmental detection. Since the Internet of Things needs to be applied in a variety of scenarios, such as from outdoor to indoor, from above ground to underground, many special requirements are put forward for the design of Internet of Things.
  • Coverage enhancement Many MTC applications are used in environments with poor coverage. For example, electricity meters and water meters are usually installed indoors or even basements and other places with poor wireless network signals. At this time, coverage enhancement technologies are needed to solve them.
  • MTC devices Support a large number of low-rate devices: The number of MTC devices is far greater than the number of devices for human-to-human communication, but the transmitted data packets are small and are not sensitive to delay.
  • MTC devices are powered by batteries. But at the same time, in many scenarios, MTC requires that it can be used for more than ten years without changing the battery. This requires MTC equipment to work with extremely low power consumption.
  • the 3rd Generation Partnership Project (3GPP) of the Mobile Communications Standards Organization passed a new research topic at the GERAN#62 plenary meeting to study the support of extremely low complexity and low complexity in cellular networks.
  • 3GPP 3rd Generation Partnership Project
  • HARQ process In Rel-14 Narrowband Internet of Things (NB-IoT), two hybrid automatic repeat request (HARQ) processes (hereinafter referred to as two HARQ) communication technologies are introduced, and two The HARQ process (HARQ process) is scheduled through two independent downlink control information (downlink control information, DCI).
  • DCI#1 schedules transport block (transport block, TB)#1, and TB#1 is carried on the narrowband physical downlink shared channel (narrowband physical downlink shared channel).
  • channel, NPDSCH)#1 narrowband physical downlink shared channel
  • DCI#2 schedules TB#2
  • TB#2 is carried on NPDSCH#2.
  • the typical two HARQ scheduling of uplink data transmission is shown in Figure 2.
  • DCI#2 schedules TB#2 and TB#2 is carried on NPUSCH#2.
  • NPUSCH narrowband physical uplink shared channel
  • A/N means acknowledgement (ACK)/negative acknowledgement (NACK).
  • the current protocol has not yet specified the transmission and monitoring scheme of the physical downlink control channel.
  • This application provides a method, terminal equipment, and network equipment for transmitting information, clarifies the transmission and monitoring solution of the physical downlink control channel in a scenario where one DCI schedules multiple TBs, and can realize the effective transmission and monitoring of the physical downlink control channel.
  • a method for transmitting information includes: a terminal device receives first downlink control information DCI sent by a network device, and the number of transmission blocks TB scheduled by the first DCI is N, where N is An integer greater than or equal to 1; the terminal device does not monitor the physical downlink control channel in the target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the method further includes: the terminal device receives N TBs scheduled by the first DCI from the network device, or the terminal device sends N TBs scheduled by the first DCI to the network device. TB.
  • the terminal device receives the first DCI sent by the network device, and the relationship between the number N of TBs scheduled by the first DCI and the first value can reflect whether the network device will continue to send DCI subsequently, so the terminal device can follow
  • the magnitude relationship between N and the first value determines the target time interval in which the physical downlink control channel does not need to be monitored, which can realize effective monitoring of the physical downlink control channel in a scenario where one DCI schedules multiple TBs.
  • the target time interval when N is equal to the first value, includes the time unit from the first time unit to the second time unit, and the first time unit is for The time unit at which the transmission of the physical downlink control channel carrying the first DCI ends, and the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, where the physical uplink shared channel or the physical The downlink shared channel is used to bear the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to bear the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • N is equal to the first value, it means that the network device will no longer send DCI in this scheduling. Therefore, from the end of the first DCI transmission to the uplink or downlink shared channel scheduled by the first DCI At the moment when the transmission starts, the terminal device can no longer monitor the physical downlink control channel, thereby reducing the power consumption of the terminal device.
  • the transmission duration of the physical uplink shared channel used to carry the N TBs scheduled by the first DCI is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the scheduling delay between DCI and the physical uplink shared channel is limited.
  • the maximum scheduling delay is 64ms.
  • physical uplink sharing is restricted.
  • the transmission time of the channel cannot exceed 256ms.
  • N is equal to the first value, it means that the network device will not send DCI again in this scheduling, so the above transmission conflicts will not occur, so the physical uplink sharing can be cancelled
  • the transmission time of the channel cannot exceed the limit of 256ms. In this way, one DCI is also used to schedule multiple TBs for large repetitive scenarios to increase the transmission rate.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink The M-th time unit before the start of the transmission of the shared channel or the physical downlink shared channel, the second time unit is the time unit at which the transmission of the physical uplink shared channel or the physical downlink shared channel starts, and the third time unit is used for After the time unit after the end of the transmission of the physical downlink control channel carrying the first DCI, the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, M Is an integer greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • N is less than the first value
  • the network device may continue to send DCI, and the terminal device does not monitor the physical downlink control channel for a period of time before the start of uplink or downlink shared channel transmission, that is to say , The terminal device still monitors the physical downlink control channel for a period of time after receiving the first DCI, which can reduce the probability of missing DCI.
  • the method further includes: the terminal device receives a second DCI sent by the network device, and schedules data from the terminal device for carrying the second DCI.
  • the duration of the time unit from the end of the transmission of the physical uplink shared channel of the TB to the beginning of the transmission of the physical uplink shared channel for carrying the TB scheduled by the first DCI is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length from the fourth time unit to the fifth time unit
  • the fourth time unit is the time unit used to start transmission of the physical uplink shared channel carrying the first TB of the N TBs
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the network device may continue to send DCI.
  • the transmission duration of the physical uplink shared channel still needs to be less than or equal to 256 ms in order to perform data transmission correctly.
  • the first value is a preset value; or the first value is configured by the network device.
  • the method before the terminal device receives the first DCI sent by the network device, the method further includes: the terminal device receives configuration information sent by the network device, where the configuration information is used for Activation scheduling enhancement.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the network device notifies the terminal device whether to activate the scheduling enhancement through configuration information, which can improve the flexibility of the scheduling.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the enhanced scheduling feature will introduce a new DCI format
  • the network equipment needs to target terminal equipment that supports the enhanced scheduling feature and terminal equipment that does not support the enhanced scheduling feature
  • Sending two formats of DCI to schedule the data will increase network resource overhead.
  • the terminal device needs to blindly detect the DCI in two formats, which will increase the complexity of blind detection. If it is restricted to use in the USS, the USS is a UE-specific search space, which can avoid the aforementioned problems of increased resource overhead on the network device side and increased complexity of blind detection on the terminal device side.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the present application provides a method for transmitting information.
  • the method includes: a network device sends first downlink control information DCI to a terminal device, and the number of transmission blocks TB scheduled by the first DCI is N, where N is greater than Or an integer equal to 1; the network device does not send DCI in the target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the method further includes: the network device sends N TBs scheduled by the first DCI to the terminal device, or the network device receives N TBs scheduled by the first DCI from the terminal device. TB.
  • the network device sends the first DCI to the terminal device, and determines the target time interval in which DCI does not need to be sent according to the relationship between the number N of TBs scheduled by the first DCI and the first value, so that the network device can Sending DCI or downlink data to other terminal devices in the target interval can realize effective transmission of the physical downlink control channel in the scenario where one DCI schedules multiple TBs, and improve resource utilization efficiency.
  • the target time interval when N is equal to the first value, includes the time unit from the first time unit to the second time unit, and the first time unit is for The time unit at which the transmission of the physical downlink control channel carrying the first DCI ends, and the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, where the physical uplink shared channel or the physical The downlink shared channel is used to bear the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to bear the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the network device when N is equal to the first value, from the time when the first DCI transmission ends to the time when the uplink or physical downlink shared channel transmission scheduled by the first DCI starts, the network device will not send DCI again, so that the terminal device The physical downlink control channel can no longer be monitored, thereby reducing the power consumption of the terminal device, and the network device can send DCI or downlink data to other terminal devices in the target interval, thereby improving resource utilization efficiency.
  • the transmission duration of the physical uplink shared channel used to carry the N TBs scheduled by the first DCI is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the scheduling delay between DCI and the physical uplink shared channel is limited.
  • the maximum scheduling delay is 64ms.
  • physical uplink sharing is restricted.
  • the transmission time of the channel cannot exceed 256ms.
  • N is equal to the first value, it means that the network device will not send DCI again in this scheduling, so the above transmission conflicts will not occur, so the physical uplink sharing can be cancelled
  • the transmission time of the channel cannot exceed the limit of 256ms. In this way, one DCI is also used to schedule multiple TBs for large repetitive scenarios to increase the transmission rate.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink The M-th time unit before the start of the transmission of the shared channel or the physical downlink shared channel, the second time unit is the time unit at which the transmission of the physical uplink shared channel or the physical downlink shared channel starts, and the third time unit is used for After the time unit after the end of the transmission of the physical downlink control channel carrying the first DCI, the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, M Is an integer greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • N when N is less than the first value, it means that the network device may continue to send DCI, and the network device may not send DCI for a period of time before the start of uplink or physical downlink shared channel transmission. Send DCI or downlink data to other terminal devices within the time interval to improve resource utilization efficiency. Network devices may still send DCI for a period of time after sending the first DCI. For terminal devices, for a period of time after receiving the first DCI Continue to monitor the physical downlink control channel to reduce the probability of missing DCI.
  • the method when N is less than the first value, the method further includes: the network device sends a second DCI to the terminal device, and the second DCI is used to carry the second DCI.
  • the length of the time unit from the end of the transmission of the physical uplink shared channel of the TB to the beginning of the transmission of the physical uplink shared channel for carrying the TB scheduled by the first DCI is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length from the fourth time unit to the fifth time unit
  • the fourth time unit is the time unit used to start transmission of the physical uplink shared channel carrying the first TB of the N TBs
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the network device may continue to send DCI.
  • the transmission duration of the physical uplink shared channel still needs to be less than or equal to 256 ms for correct data transmission.
  • the first value is a preset value; or the first value is configured by the network device.
  • the method before the network device sends the first DCI to the terminal device, the method further includes: the network device sends configuration information to the terminal device, and the configuration information is used to activate scheduling Enhanced.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the network device notifies the terminal device whether to activate the scheduling enhancement through configuration information, which can improve the flexibility of the scheduling.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the enhanced scheduling feature will introduce a new DCI format
  • the network equipment needs to target terminal equipment that supports the enhanced scheduling feature and terminal equipment that does not support the enhanced scheduling feature
  • Sending two formats of DCI to schedule the data will increase network resource overhead.
  • the terminal device needs to blindly detect the DCI in two formats, which will increase the complexity of blind detection. If it is restricted to use in the USS, the USS is a UE-specific search space, which can avoid the aforementioned problems of increased resource overhead on the network device side and increased complexity of blind detection on the terminal device side.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the present application provides a method for transmitting information.
  • the method includes: a network device determines first downlink control information DCI; the network device sends the first DCI to the terminal device, and the first The number of transmission blocks TB scheduled by DCI is N, the total transmission duration of the N physical uplink shared channels scheduled by the first DCI is determined according to the relationship between N and the first value, and the N physical uplink shared channels are used for Carry the N TBs scheduled by the first DCI, where N is an integer greater than or equal to 1.
  • the method further includes: the network device receives N TBs scheduled by the first DCI from the terminal device.
  • the scheduling delay between DCI and the physical uplink shared channel is limited.
  • the maximum scheduling delay is 64ms.
  • physical uplink sharing is restricted.
  • the transmission time of the channel cannot exceed 256ms.
  • the total transmission duration of the N physical uplink shared channels scheduled by the first DCI determined according to the magnitude relationship between N and the first value in the above technical solution provides a physical uplink sharing in a scenario where multiple TBs are scheduled by one DCI Channel transmission scheme.
  • the network device does not send DCI in a target time interval, and the target time interval is determined according to the magnitude relationship.
  • the network device determines the target time interval in which DCI does not need to be sent according to the relationship between the number N of TBs scheduled by the first DCI and the first value, and the terminal device also determines the target time interval for sending DCI according to the number N of TBs scheduled by the first DCI.
  • the magnitude relationship of the first value determines the target time interval for monitoring DCI, so even if the terminal device does not monitor the physical downlink control channel in the target time interval, it will not miss the physical downlink control channel, which can realize one DCI scheduling multiple TBs The effective transmission and monitoring of the physical downlink control channel in the scenario.
  • the transmission duration is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • a DCI schedules multiple TBs
  • N is equal to the first value
  • the transmission time of the channel cannot exceed the limit of 256ms. In this way, one DCI is also used to schedule multiple TBs for large repetitive scenarios to increase the transmission rate.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is equal to the first value, includes the time unit from the first time unit to the second time unit, and the first time unit is for The time unit at which the transmission of the physical downlink control channel carrying the first DCI ends, and the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, where the physical uplink shared channel or the physical The downlink shared channel is used to bear the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to bear the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the network device when N is equal to the first value, from the time when the first DCI transmission ends to the time when the uplink or physical downlink shared channel transmission scheduled by the first DCI starts, the network device will not send DCI again, so that the terminal device The physical downlink control channel can no longer be monitored, and the power consumption of the terminal device can be reduced.
  • the method when N is less than the first value, the method further includes: the network device sends a second DCI to the terminal device, and the second DCI is used to carry the second DCI.
  • the length of the time unit from the end of the transmission of the physical uplink shared channel of the TB to the beginning of the transmission of the physical uplink shared channel for carrying the TB scheduled by the first DCI is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the network device may continue to send DCI.
  • the transmission duration of the physical uplink shared channel still needs to be less than or equal to 256 ms for correct data transmission.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink The M-th time unit before the start of the transmission of the shared channel or the physical downlink shared channel, the second time unit is the time unit at which the transmission of the physical uplink shared channel or the physical downlink shared channel starts, and the third time unit is used for After the time unit after the end of the transmission of the physical downlink control channel carrying the first DCI, the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, M Is an integer greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • N when N is less than the first value, it means that the network device may continue to send DCI, and the network device may not send DCI for a period of time before the start of uplink or physical downlink shared channel transmission. Send DCI or downlink data to other terminal devices within the time interval to improve resource utilization efficiency. Network devices may still send DCI for a period of time after sending the first DCI. For terminal devices, for a period of time after receiving the first DCI Continue to monitor the physical downlink control channel to reduce the probability of missing DCI.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the method before the network device sends the first DCI to the terminal device, the method further includes: the network device sends configuration information to the terminal device, and the configuration information is used to activate scheduling Enhanced.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the network device notifies the terminal device whether to activate the scheduling enhancement through configuration information, which can improve the flexibility of the scheduling.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the enhanced scheduling feature will introduce a new DCI format
  • the network equipment needs to target terminal equipment that supports the enhanced scheduling feature and terminal equipment that does not support the enhanced scheduling feature
  • Sending two formats of DCI to schedule the data will increase network resource overhead.
  • the terminal device needs to blindly detect the DCI in two formats, which will increase the complexity of blind detection. If it is restricted to use in the USS, the USS is a UE-specific search space, which can avoid the aforementioned problems of increased resource overhead on the network device side and increased complexity of blind detection on the terminal device side.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the present application provides a method for transmitting information.
  • the method includes: a terminal device receives first downlink control information DCI sent by a network device, and the number of transmission blocks TB scheduled by the first DCI is N, so The total transmission duration of the N physical uplink shared channels scheduled by the first DCI is determined according to the relationship between N and the first value.
  • the N physical uplink shared channels are used to carry the N TBs scheduled by the DCI, and N Is an integer greater than or equal to 1; the terminal device sends data to the network device according to the first DCI.
  • the method further includes: the terminal device sends the N TBs scheduled by the first DCI to the network device.
  • the scheduling delay between DCI and the physical uplink shared channel is limited.
  • the maximum scheduling delay is 64ms.
  • physical uplink sharing is restricted.
  • the transmission time of the channel cannot exceed 256ms.
  • the total transmission duration of the N physical uplink shared channels scheduled by the first DCI determined according to the magnitude relationship between N and the first value in the above technical solution provides a physical uplink sharing in a scenario where multiple TBs are scheduled by one DCI Channel transmission scheme.
  • the terminal device does not monitor the physical downlink control channel in a target time interval, and the target time interval is determined according to the magnitude relationship.
  • the terminal device receives the first DCI sent by the network device, and the relationship between the number N of TBs scheduled by the first DCI and the first value can reflect whether the network device will continue to send DCI subsequently, so the terminal device can follow
  • the relationship between the magnitude of N and the first value determines the target time interval in which the physical downlink control channel does not need to be monitored, and the effective method transmission and monitoring of the physical downlink control channel in a scenario where one DCI schedules multiple TBs can be realized.
  • the transmission duration is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the transmission duration of the physical uplink shared channel is restricted to not exceed 256 ms.
  • N is equal to the first value, it means that the network device will not send DCI again in this scheduling, so the above transmission conflicts will not occur, so the physical uplink sharing can be cancelled
  • the transmission time of the channel cannot exceed the limit of 256ms. In this way, one DCI is also used to schedule multiple TBs for large repetitive scenarios to increase the transmission rate.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is equal to the first value, includes the time unit from the first time unit to the second time unit, and the first time unit is for The time unit at which the transmission of the physical downlink control channel carrying the first DCI ends, and the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, where the physical uplink shared channel or the physical The downlink shared channel is used to bear the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to bear the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • N is equal to the first value, it means that the network device will no longer send DCI in this scheduling. Therefore, from the end of the first DCI transmission to the first DCI scheduled uplink or physical downlink sharing At the beginning of channel transmission, the terminal device can no longer monitor the physical downlink control channel, thereby reducing the power consumption of the terminal device.
  • the method further includes: the terminal device receives a second DCI sent by the network device, and schedules data from the terminal device for carrying the second DCI.
  • the duration of the time unit from the end of the transmission of the physical uplink shared channel of the TB to the beginning of the transmission of the physical uplink shared channel for carrying the TB scheduled by the first DCI is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the network device may continue to send DCI.
  • the transmission duration of the physical uplink shared channel still needs to be less than or equal to 256 ms in order to perform data transmission correctly.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink The M-th time unit before the start of the transmission of the shared channel or the physical downlink shared channel, the second time unit is the time unit at which the transmission of the physical uplink shared channel or the physical downlink shared channel starts, and the third time unit is used for After the time unit after the end of the transmission of the physical downlink control channel carrying the first DCI, the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, M Is an integer greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the network device may continue to send DCI, and the terminal device does not monitor the physical downlink control channel for a period of time before the start of uplink or downlink shared channel transmission, that is to say , The terminal device still monitors the physical downlink control channel for a period of time after receiving the first DCI, which can reduce the probability of missing DCI.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the method before the terminal device receives the first DCI sent by the network device, the method further includes: the terminal device receives configuration information sent by the network device, and the configuration information is used to activate Enhanced scheduling.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the network device notifies the terminal device whether to activate the scheduling enhancement through configuration information, which can improve the flexibility of the scheduling.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the enhanced scheduling feature will introduce a new DCI format
  • the network equipment needs to target terminal equipment that supports the enhanced scheduling feature and terminal equipment that does not support the enhanced scheduling feature
  • Sending two formats of DCI to schedule the data will increase network resource overhead.
  • the terminal device needs to blindly detect the DCI in two formats, which will increase the complexity of blind detection. If it is restricted to use in the USS, the USS is a UE-specific search space, which can avoid the aforementioned problems of increased resource overhead on the network device side and increased complexity of blind detection on the terminal device side.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the present application provides a terminal device, including a module for executing the first aspect or any one of the implementation manners of the first aspect.
  • the present application provides a network device, including a module for executing the second aspect or any one of the implementation manners of the second aspect.
  • the present application provides a network device, including a module for executing the third aspect or any one of the implementation manners of the third aspect.
  • this application provides a terminal device, including a module for executing the fourth aspect or any one of the implementation manners of the fourth aspect.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory to implement the first aspect or any one of the implementation manners of the first aspect Methods.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory to implement the second aspect or any one of the implementation modes of the second aspect Methods.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute the software program stored in the memory to implement the third aspect or any one of the implementation methods of the third aspect. The method described.
  • the present application provides a chip connected to a memory and used to read and execute a software program stored in the memory to implement the fourth aspect or any one of the implementation methods of the fourth aspect The method described.
  • this application provides a terminal device, including a transceiver, a processor, and a memory, for executing the method described in the first aspect or any one of the implementation manners of the first aspect.
  • the present application provides a network device, including a transceiver, a processor, and a memory, for executing the method described in the second aspect or any one of the implementation manners of the second aspect.
  • this application provides a network device, including a transceiver, a processor, and a memory, for executing the method described in the third aspect or any one of the implementation manners of the third aspect.
  • this application provides a terminal device, including a transceiver, a processor, and a memory, for executing the method described in the fourth aspect or any one of the implementation manners of the fourth aspect.
  • this application provides a computer-readable storage medium, including instructions, which when run on a terminal device, cause the terminal device to execute the method described in the first aspect or any one of the implementation manners of the first aspect.
  • this application provides a computer-readable storage medium, including instructions, which when run on a network device, cause the network device to execute the method described in the second aspect or any one of the implementation manners of the second aspect.
  • this application provides a computer-readable storage medium, including instructions, which when run on a network device, cause the terminal device to execute the method described in the third aspect or any one of the implementation manners of the third aspect.
  • this application provides a computer-readable storage medium, including instructions, which when run on a terminal device, cause the network device to execute the method described in the fourth aspect or any one of the implementation manners of the fourth aspect.
  • the present application provides a computer program product, which when running on a terminal device, causes the terminal device to execute the method described in the first aspect or any one of the implementation manners of the first aspect.
  • the present application provides a computer program product, which when running on a network device, causes the network device to execute the method described in the second aspect or any one of the implementation manners of the second aspect.
  • the present application provides a computer program product that, when running on a network device, causes the terminal device to execute the method described in the third aspect or any one of the implementation manners of the third aspect.
  • the present application provides a computer program product that, when running on a terminal device, causes the network device to execute the method described in the fourth aspect or any one of the implementation manners of the fourth aspect.
  • the present application provides a communication system that includes the terminal device described in the fifth aspect and the network device described in the sixth aspect, or the network device described in the seventh aspect and The terminal device described in the eighth aspect, or the terminal device described in the ninth aspect and the network device described in the tenth aspect, or the network device described in the eleventh aspect and the twelfth aspect described above Terminal equipment.
  • Figure 1 is a schematic diagram of downlink two HARQ scheduling.
  • Figure 2 is a schematic diagram of uplink two HARQ scheduling.
  • Figure 3 is a schematic diagram of another downlink two HARQ scheduling.
  • Figure 4 is a schematic diagram of another uplink two HARQ scheduling.
  • Fig. 5 is a schematic architecture diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • Figure 6 is a schematic diagram of the downlink two HARQ scheduling requirements.
  • FIG. 7 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of downlink scheduling timing requirements in an embodiment of the present application.
  • Figure 9 is a schematic diagram of uplink two HARQ scheduling requirements.
  • FIG. 10 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of uplink scheduling timing requirements according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new radio
  • eMTC enhanced machine type communication
  • LTE-M long term evolution machine type communication
  • LTE-MTC long term evolution machine type communication
  • the technical solutions of the embodiments of the present application can be applied to communication systems used in licensed frequency bands, such as LTE, 5G, NR, etc., and can also be applied to LTE, 5G, NR, etc., used in unlicensed frequency bands.
  • licensed frequency bands such as LTE, 5G, NR, etc.
  • LAA authorized spectrum assisted access
  • NR-based unlicensed carrier access NR-based access to unlicensed spectrum
  • Fig. 5 is a schematic architecture diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system 500 may include a network device 570 and terminal devices 510-560.
  • the terminal devices 510-560 are connected to the network device 570 in a wireless manner, and the network device 570 can send information to one or more of the terminal devices 510-560.
  • the terminal devices 540-560 also form a communication system, in which the terminal device 550 can send information to one or more of the terminal device 540 and the terminal device 560.
  • the terminal device can be a fixed location or movable.
  • FIG. 5 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 5.
  • the embodiment of the present application does not limit the number of network devices and terminal devices included in the mobile communication system.
  • a terminal device may also be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and so on.
  • the terminal equipment in the embodiments of this application can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, and can also be applied to virtual reality (VR) and augmented reality (AR). ), industrial control, self-driving, remote medical, smart grid, transportation safety, smart city, and smart home ) And other wireless terminals.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device may be a device for communicating with a terminal device, and the network device may be any device with a wireless transceiver function.
  • This equipment includes, but is not limited to: evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC) , Base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be 5G, such as NR , The gNB in the system, or the transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or the network node that constitutes the gNB or transmission
  • 5G
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the terminal device performs downlink transmission as an example.
  • the terminal device is in the subframe n+1 Monitor the narrowband physical downlink control channel (NPDCCH) in subframe n+k-3, and stop monitoring NPDCCH in subframe n+k-2 and subframe n+k-1, so that the terminal device can transmit narrowband Prepare for physical downlink shared channel (narrowband physical downlink shared channel, NPDSCH) or narrowband physical uplink shared channel (NPUSCH), where subframe n is the end subframe of DCI, and subframe n+k is the The initial subframe of the NPDSCH scheduled by the DCI.
  • NPDSCH narrowband physical downlink shared channel
  • NPUSCH narrowband physical uplink shared channel
  • the uplink transmission by the terminal equipment is similar to the downlink transmission, which is not repeated here.
  • the current protocol has not yet specified the transmission and monitoring scheme of the physical downlink control channel.
  • this application provides a method for transmitting data, clarifies the transmission and monitoring scheme of the physical downlink control channel in a scenario where one DCI schedules multiple TBs, and can realize the effective transmission and monitoring of the physical downlink control channel.
  • FIG. 7 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • the method in FIG. 7 can be applied to the terminal equipment and network equipment in the wireless communication system shown in FIG. 5.
  • terminal devices and network devices are taken as examples of execution bodies for description. It should be understood that the execution bodies may also be chips applied to terminal devices and chips applied to network devices. The embodiments of this application will not make specific descriptions. limited.
  • the method in FIG. 7 includes at least part of the following content.
  • the network device sends the first DCI to the terminal device, and the terminal device receives the first DCI sent by the network device, where the number of TBs scheduled by the first DCI is N, and N is an integer greater than or equal to 1.
  • the network device does not send DCI within the target time interval, and the terminal device does not monitor the physical downlink control channel (not required to monitor NPDCCH) within the target time interval.
  • the physical downlink control channel can also be a candidate for a physical downlink control channel.
  • 720 can be expressed as that the network device does not send DCI during the target time interval, and the terminal device does not monitor the physical downlink control channel candidate during the target time interval. The comparison of application examples is not limited.
  • the terminal device and the network device may determine the target time interval according to the relationship between the number N of TBs scheduled by the first DCI and the first value.
  • the first value is represented by X in the following.
  • X may be the maximum number of TBs that one DCI supports for scheduling.
  • X may be the number of HARQ processes configured by the network device for the terminal device.
  • X can be a preset value, for example, embodied in the protocol or agreed; X can also be determined by the network device and configured to the terminal device, for example, the network device can be indicated through RRC signaling, MAC signaling, or DCI .
  • the value of X is one of ⁇ 1, 2, 4, 8 ⁇ , or the value of X is one of ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the terminal device and the network device can no longer transmit other TBs. Therefore, from the end of the first DCI transmission to the NPUSCH or NPDSCH scheduled by the first DCI transmission At the beginning, the network device may no longer send DCI to the terminal device, and the terminal device may not continue to monitor the physical downlink control channel.
  • the target time interval may include a time unit from a first time unit to a second time unit, where the first time unit is the time unit used to carry the physical downlink control channel transmission of the first DCI to end, and the second time unit The unit is a time unit at which transmission of a physical uplink shared channel or a physical downlink shared channel starts, wherein the physical uplink shared channel or the physical downlink shared channel is used to carry the first TB scheduled by the first DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • subframe n is the ending subframe of DCI
  • subframe n+k is the starting subframe of the NPDSCH scheduled by the DCI
  • the first time unit is Subframe n
  • the second time unit is subframe n+k
  • the target time period is the subframe between subframe n and subframe n+k: subframe n+1 to subframe n+k-1, that is, the target
  • the time period includes subframe n+1, subframe n+k-1, and one or more subframes between subframe n+1 and subframe n+k-1.
  • the target time interval includes the time unit from the first time unit to the second time unit, where the first time unit is the physical unit used to carry the first DCI The first time unit after the time unit when the downlink control channel transmission ends, and the second time unit is the first time unit before the time unit when the physical uplink shared channel or the physical downlink shared channel transmission starts, wherein the physical uplink shared channel Or the physical downlink shared channel is used to carry the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • the target time interval includes the first time unit, the second time unit, and one or more time units in between.
  • the first time unit is subframe n+1
  • the second time unit is subframe n+k-1
  • the target time period is subframe n+1 To subframe n+k-1, that is, the target time period includes subframe n+1, subframe n+k-1, and one or more subframes between subframe n+1 and subframe n+k-1.
  • the start time of the target time interval is the DCI end time
  • the end time of the target time interval is the NPDSCH start time.
  • the above physical uplink shared channel or the physical downlink shared channel may also carry other TBs, which is not specifically limited in the embodiment of the present application.
  • the physical uplink shared channel or the physical downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • N ⁇ X that is, the number of TBs scheduled by the first DCI is less than the preset HARQ process number, or the number of TBs scheduled by the first DCI is less than the maximum number of TBs scheduled by the DCI, or the first DCI
  • the number of scheduled TBs is less than the first value.
  • the terminal device and the network device may transmit other TBs. Therefore, after the first DCI transmission is completed, the network device may send other DCIs to the terminal device, and the terminal device also Need to continue to monitor the physical downlink control channel.
  • the target time interval includes the time unit from the third time unit to the second time unit, where the third time unit is the M-th time unit before the start of the physical uplink shared channel or the physical downlink shared channel transmission, and the second The time unit is the time unit at which the transmission of the physical uplink shared channel or the physical downlink shared channel starts, where the third time unit is after the time unit used to carry the physical downlink control channel transmission of the first DCI, and the physical uplink shared channel
  • the channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is an integer greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the third time unit is subframe n+k-3
  • the second time unit is subframe n+k
  • the target time period is subframe Frame n+k-2 to subframe n+k-1, that is, the target time period includes subframe n+k-2 and subframe n+k-1.
  • the above technical solution can also be expressed as: when N ⁇ X, the target time interval includes the time unit from the third time unit to the second time unit, where the third time unit is the physical uplink shared channel or the physical downlink shared The Mth time unit before the start of channel transmission, the second time unit is the time unit before the time unit at which the physical uplink shared channel or the physical downlink shared channel transmission starts, and the third time unit is used to carry the first time unit.
  • the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is greater than or equal to 1. The integer.
  • the target time interval includes the third time unit, the second time unit, and one or more time units in between.
  • the Mth time unit before the start of the physical uplink shared channel or physical downlink shared channel transmission can be understood as the Mth time unit counted forward from the physical uplink shared channel or physical downlink shared channel transmission start time unit.
  • the time unit closest to the transmission start time unit of the physical uplink shared channel or the physical downlink shared channel is the first time unit before the transmission start time unit of the physical uplink shared channel or the physical downlink shared channel Time units.
  • the aforementioned physical uplink shared channel or physical downlink shared channel may be scheduled by the first DCI or other DCI, which is not specifically limited in the embodiment of the present application.
  • the aforementioned physical uplink shared channel or physical downlink shared channel is used to carry the first TB scheduled by the first DCI.
  • time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point, etc., which is not specifically limited in the embodiment of the present application.
  • the method shown in FIG. 7 further includes 730.
  • the network device sends the N TBs scheduled by the first DCI to the terminal device, and the terminal device receives the N TBs scheduled by the first DCI from the network device;
  • the terminal device sends the N TBs scheduled by the first DCI to the network device, and the network device receives the N TBs scheduled by the first DCI from the terminal device.
  • the network device sends the N TBs scheduled by the first DCI to the terminal device.
  • the first DCI received by the terminal device includes the scheduling information of the N TBs, and the terminal device The N TBs are received according to the scheduling information.
  • the first DCI received by the terminal equipment includes the scheduling information of the N TBs, and the terminal equipment sends the N TBs scheduled by the first DCI to the network equipment according to the scheduling information. Accordingly, the network The device receives the N TBs sent by the terminal device.
  • the embodiment of the present application does not limit when the network device determines the target time interval.
  • the network device may determine the target time interval before sending the first DCI, after sending the first DCI, or while sending the first DCI.
  • the network device Before sending the first DCI to the terminal device, the network device determines the first DCI, including determining the number of TBs scheduled by the first DCI. For example, the network device determines the number of TBs scheduled by the first DCI according to the amount of data to be transmitted.
  • the network device may also send configuration information to the terminal device.
  • the configuration information instructs the terminal device to activate scheduling enhancement.
  • the scheduling enhancement feature is activated.
  • scheduling enhancement means that one DCI can schedule at least 2 TBs.
  • scheduling enhancement can also be expressed as "multi-TB scheduling", “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs", etc.
  • the enhanced scheduling feature will introduce a new DCI format
  • the network device needs to target terminal equipment that supports the enhanced scheduling feature
  • the terminal device needs to blindly detect the DCI in two formats, which will increase the complexity of blind detection.
  • the scheduling enhancement is restricted to a UE-specific search space (UE-specific search space, USS)
  • UE-specific search space, USS UE-specific search space
  • the above-mentioned problems of increased resource overhead on the network device side and increased complexity of blind detection on the terminal device side can be avoided. That is to say, in a scheduling enhancement scenario, the search space corresponding to DCI may be USS.
  • the value of the scheduling delay between DCI and the physical uplink shared channel is limited, and the maximum scheduling delay is 64ms.
  • the transmission duration of the physical uplink shared channel is restricted to not exceed 256ms.
  • the end subframe of the NPUSCH transmission scheduled by the second DCI shall not be later than subframe n+k+255, that is, the start time of the NPUSCH transmission scheduled by the first DCI to the second DCI scheduling
  • the duration between the end moments of NPUSCH transmission shall not exceed 256 milliseconds (ms).
  • the scheduling delay can be redesigned. You can increase the maximum scheduling delay or change the meaning of the scheduling delay, such as the scheduling delay indicator It is the length of time between the end of DCI transmission and the start of transmission of the downlink shared channel or uplink shared channel carrying the first TB scheduled by the DCI, which can avoid transmission conflicts between DCI and the physical uplink shared channel. Different schemes.
  • the network device and the terminal device may determine the total transmission duration of the physical uplink shared channel carrying N TBs according to the relationship between the number N of TBs scheduled by the first DCI and the first value.
  • the embodiment of this application does not specifically limit the format of the involved physical uplink shared channel, for example, it may be NPUSCH format 1 (NPUSCH format 1), NPUSCH format 2 (NPUSCH format 2), etc.
  • FIG. 10 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • the network device determines the first DCI, including determining the number N of TBs scheduled by the first DCI.
  • the network device may determine the number of TBs scheduled by the first DCI according to the amount of data to be transmitted and/or remaining transmission resources.
  • the network device sends the first DCI to the terminal device, the terminal device receives the first DCI sent by the network device, the number of TBs scheduled by the first DCI, N, and the total number of N physical uplink shared channels scheduled by the first DCI
  • the transmission duration is determined according to the magnitude relationship between N and the first value.
  • the N physical uplink shared channels are used to carry the N TBs scheduled by the first DCI, and N is an integer greater than or equal to 1.
  • the foregoing transmission duration is the duration from the fourth time unit to the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs
  • the fifth time unit The time unit is the time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the start time unit used to carry the physical uplink shared channel transmission of the TB scheduled by the first DCI is subframe n+k
  • the end time unit used to carry the physical uplink shared channel transmission of the TB scheduled by the second DCI is Sub-frame n+k+m
  • the above-mentioned transmission duration is (m+1) sub-frames.
  • the two NPUSCHs scheduled by the first DCI are in subframe n+k to subframe n+ Transmission within the duration of k+359, the total transmission time is equal to 360ms and greater than 256ms.
  • N ⁇ X it means that the network device may continue to send DCI, and the transmission duration of the physical uplink shared channel still needs to be less than or equal to 256ms in order to perform data transmission correctly. That is, when the network device sends the second DCI to the terminal device outside the target time period, the time unit used to carry the physical uplink shared channel transmission of the TB scheduled by the second DCI ends to the time unit used to carry the first DCI schedule.
  • the terminal device sends the N TBs scheduled by the first DCI to the network device, and the network device receives the N TBs scheduled by the first DCI from the terminal device.
  • the first DCI received by the terminal device includes scheduling information of the N TBs, and the terminal device sends the N TBs scheduled by the first DCI to the network device according to the scheduling information.
  • the network device receives the N TBs sent by the terminal device.
  • the device embodiments of the present application will be described below with reference to FIGS. 12 to 19. It should be understood that the device embodiments of the present application and the method embodiments of the present application correspond to each other, and similar descriptions may refer to the method embodiments. It is worth noting that the device embodiment can be used in conjunction with the above-mentioned method embodiment or used alone.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1200 shown in FIG. 12 may correspond to the above terminal device.
  • the terminal device 1200 includes a transceiver module 1210 and a processing module 1230.
  • the transceiver module 1210 is configured to receive the first downlink control information DCI sent by the network device.
  • the number of transmission blocks TB scheduled by the first DCI is N, and N is an integer greater than or equal to 1.
  • the processing module 1230 is configured to control the transceiver module 1210 not to monitor the physical downlink control channel in a target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the transceiving module 1210 is further configured to receive the N TBs scheduled by the first DCI from the network device; or to send the N TBs scheduled by the first DCI to the network device.
  • the target time interval when N is equal to the first value, includes a time unit from a first time unit to a second time unit, and the first time unit is used to carry the first time unit.
  • the time unit at which the transmission of the physical downlink control channel of the DCI ends, the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, wherein the physical uplink shared channel or the physical downlink shared channel is used for Carry the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the transmission duration of the physical uplink shared channel used to carry the N TBs scheduled by the first DCI is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit, and the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink shared channel or a physical downlink
  • the second time unit is the time unit at which the physical uplink shared channel or the physical downlink shared channel transmission starts
  • the third time unit is used to carry the first
  • the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is greater than or equal to 2.
  • M is greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the transceiving module 1210 is further configured to: receive the second DCI sent by the network device, and from the physical uplink share used to carry the TB scheduled by the second DCI
  • the duration from the time unit when the channel transmission ends to the time unit when the physical uplink shared channel transmission for carrying the TB scheduled by the first DCI starts is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the transceiver module 1210 is further configured to receive configuration information sent by the network device, where the configuration information is used to activate scheduling enhancement.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the transceiver module 1210 may be implemented by a transceiver.
  • the processing module 1230 may be implemented by a processor. The specific functions and beneficial effects of the transceiver module 1210 and the processing module 1230 can be referred to the method shown in FIG. 7, which will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1300 shown in FIG. 13 may correspond to the above network device.
  • the network device 1300 includes a transceiver module 1320 and a processing module 1330.
  • the transceiver module 1320 is configured to send the first downlink control information DCI to a terminal device, where the number of transmission blocks TB scheduled by the first DCI is N, where N is an integer greater than or equal to 1.
  • the processing module 1330 is configured to control the transceiver module 1320 not to send DCI within a target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the transceiver module 1320 is further configured to send the N TBs scheduled by the first DCI to the terminal device; or, to receive the N TBs scheduled by the first DCI from the terminal device.
  • the target time interval when N is equal to the first value, includes a time unit from a first time unit to a second time unit, and the first time unit is used to carry the first time unit.
  • the time unit at which the transmission of the physical downlink control channel of the DCI ends, the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, wherein the physical uplink shared channel or the physical downlink shared channel is used for Carry the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the transmission duration of the physical uplink shared channel used to carry the N TBs scheduled by the first DCI is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit, and the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink shared channel or a physical downlink
  • the second time unit is the time unit at which the physical uplink shared channel or the physical downlink shared channel transmission starts
  • the third time unit is used to carry the first
  • the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is greater than or equal to 2.
  • M is greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the transceiver module 1320 is further configured to: send a second DCI to the terminal device from the physical uplink shared channel used to carry the TB scheduled by the second DCI.
  • the duration from the time unit when the transmission ends to the time unit when the transmission of the physical uplink shared channel carrying the TB scheduled by the first DCI starts is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs.
  • the transmission duration includes the fourth time unit and the fifth time unit.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the transceiver module 1320 is further configured to send configuration information to the terminal device, where the configuration information is used to activate scheduling enhancement.
  • the scheduling enhancement can also be expressed as “multi-TB scheduling”, “one DCI schedules multiple TBs”, “one DCI schedules multiple downlink TBs” or “one DCI schedules multiple uplink TBs”, etc.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the transceiver module 1320 may be implemented by a transceiver.
  • the processing module 1330 may be implemented by a processor. The specific functions and beneficial effects of the transceiver module 1320 and the processing module 1330 can be referred to the method shown in FIG.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • the terminal device 1400 shown in FIG. 14 may correspond to the above terminal device.
  • the terminal device 1400 includes a receiving module 1410 and a sending module 1420.
  • the receiving module 1410 is configured to receive the first downlink control information DCI sent by a network device, the number of transmission blocks TB scheduled by the first DCI is N, and the total transmission of N physical uplink shared channels scheduled by the first DCI The duration is determined according to the magnitude relationship between N and the first value.
  • the N physical uplink shared channels are used to carry the N TBs scheduled by the DCI, and N is an integer greater than or equal to 1.
  • the sending module 1420 is configured to send the N TBs scheduled by the first DCI to the network device.
  • the terminal device does not monitor the physical downlink control channel in a target time interval, and the target time interval is determined according to the magnitude relationship.
  • the transmission duration is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit, and the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is equal to the first value, includes a time unit from a first time unit to a second time unit, and the first time unit is used to carry the first time unit.
  • the time unit at which the transmission of the physical downlink control channel of the DCI ends, the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, wherein the physical uplink shared channel or the physical downlink shared channel is used for Carry the first TB scheduled by the first DCI, or the uplink shared channel or the downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the receiving module 1410 is further configured to receive the second DCI sent by the network device, from the physical uplink shared channel used to carry the TB scheduled by the second DCI
  • the duration from the time unit when the transmission ends to the time unit when the transmission of the physical uplink shared channel carrying the TB scheduled by the first DCI starts is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit
  • the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink shared channel or a physical downlink
  • the second time unit is the time unit at which the physical uplink shared channel or the physical downlink shared channel transmission starts
  • the third time unit is used to carry the first
  • the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is greater than or equal to 2.
  • M is greater than or equal to 2.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the receiving module 1410 is further configured to receive configuration information sent by the network device, where the configuration information is used to activate scheduling enhancement.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the receiving module 1410 and the sending module 1420 may be implemented by a transceiver.
  • the specific functions and beneficial effects of the receiving module 1410 and the sending module 1420 can be referred to the method shown in FIG. 10, which will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • the network device 1500 shown in FIG. 15 may correspond to the above network device.
  • the network device 1500 includes a sending module 1520 and a processing module 1530.
  • the processing module 1530 is configured to determine the first downlink control information DCI.
  • the sending module 1520 is configured to send the first DCI to the terminal device, the number of transmission blocks TB scheduled by the first DCI, N, and the total transmission duration of the N physical uplink shared channels scheduled by the first DCI is Determined according to the magnitude relationship between N and the first value, the N physical uplink shared channels are used to carry the N TBs scheduled by the first DCI, and N is an integer greater than or equal to 1.
  • the network device 1500 further includes a receiving module 1510, configured to send the N TBs scheduled by the first DCI from the terminal device.
  • the network device does not send DCI in a target time interval, and the target time interval is determined according to the magnitude relationship.
  • the transmission duration is greater than 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit, and the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the transmission duration of the physical uplink shared channel may not be limited by 256 ms. Therefore, the physical uplink shared channel used to carry the N TBs scheduled by the first DCI according to the actual situation
  • the transmission time can be greater than, equal to or less than 256ms.
  • the target time interval when N is equal to the first value, includes a time unit from a first time unit to a second time unit, and the first time unit is used to carry the first time unit.
  • the time unit at which the transmission of the physical downlink control channel of the DCI ends, the second time unit is the time unit at which transmission of the physical uplink shared channel or the physical downlink shared channel starts, wherein the physical uplink shared channel or the physical downlink shared channel is used for Carry the first TB scheduled by the first DCI.
  • the uplink shared channel or the downlink shared channel is used to carry the N TBs scheduled by the DCI.
  • the target time interval does not include the first time unit and the second time unit, but includes one or more time units between the first time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the sending module 1520 is further configured to send a second DCI to the terminal device for carrying the physical uplink shared channel transmission of the TB scheduled by the second DCI.
  • the time unit from the time unit to the time unit used to carry the physical uplink shared channel transmission of the TB scheduled by the first DCI is less than or equal to 256 milliseconds.
  • the foregoing transmission time length is the time length between the fourth time unit and the fifth time unit, and the fourth time unit is the time unit used to carry the physical uplink shared channel transmission of the first TB among the N TBs.
  • the fifth time unit is a time unit used to end the transmission of the physical uplink shared channel carrying the last TB of the N TBs. At this time, the transmission duration includes the fourth time unit and the fifth time unit.
  • the target time interval when N is less than the first value, includes a time unit from a third time unit to a second time unit, and the third time unit is a physical uplink shared channel or a physical downlink
  • the second time unit is the time unit at which the physical uplink shared channel or the physical downlink shared channel transmission starts
  • the third time unit is used to carry the first
  • the physical uplink shared channel or the physical downlink shared channel is transmitted after the physical downlink control channel used to carry the first DCI transmission, and M is greater than or equal to 2. Integer.
  • the target time interval does not include the third time unit and the second time unit, but one or more time units between the third time unit and the second time unit.
  • the above-mentioned time unit may be a super frame, a frame, a half frame, a subframe, a time slot, a symbol, or a sampling point.
  • the maximum value is a preset value; or the maximum value is determined by the network device.
  • the sending module 1520 is further configured to send configuration information to the terminal device, where the configuration information is used to activate scheduling enhancement.
  • the search space corresponding to the first DCI is a search space USS specific to the terminal device.
  • the first value is the maximum value of the number of TBs that one DCI supports for scheduling.
  • the receiving module 1510 and the sending module 1520 may be implemented by a transceiver.
  • the processing module 1530 may be implemented by a processor. The specific functions and beneficial effects of the receiving module 1510, the sending module 1520, and the processing module 1530 can be referred to the method shown in FIG. 10, which will not be repeated here.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • the terminal device 1600 may include a transceiver 1610, a processor 1620, and a memory 1630.
  • FIG 16. Only one memory and processor are shown in Figure 16. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or integrated with the processor, which is not limited in the embodiment of the present application.
  • the transceiver 1610, the processor 1620, and the memory 1630 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the transceiver 1610 is configured to receive the first downlink control information DCI sent by the network device, and the number of transmission blocks TB scheduled by the first DCI is N, and N is an integer greater than or equal to 1.
  • the processor 1620 is configured to control the transceiver 1610 not to monitor the physical downlink control channel in a target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the transceiver 1610 is further configured to receive the N TBs scheduled by the first DCI from the network device, or the transceiver 1610 is further configured to send the N TBs scheduled by the first DCI to the network device.
  • terminal device 1600 For the specific working process and beneficial effects of the terminal device 1600, refer to the description in the embodiment shown in FIG. 7, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • the network device 1700 may include a transceiver 1710, a processor 1720, and a memory 1730.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the transceiver 1710, the processor 1720, and the memory 1730 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the transceiver 1710 is configured to send the first downlink control information DCI to a terminal device, and the number of transmission blocks TB scheduled by the first DCI is N, where N is an integer greater than or equal to 1.
  • the processor 1720 is configured to control the transceiver 1710 not to send DCI within a target time interval, and the target time interval is determined according to the magnitude relationship between N and the first value.
  • the transceiver 1710 is further configured to send the N TBs scheduled by the first DCI to the terminal device. Or the transceiver 1710 is further configured to receive N TBs scheduled by the first DCI from the terminal device.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • the terminal device 1800 may include a transceiver 1810, a processor 1820, and a memory 1830.
  • FIG. 18 Only one memory and processor are shown in Figure 18. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the transceiver 1810, the processor 1820, and the memory 1830 communicate with each other through internal connection paths to transfer control and/or data signals.
  • the transceiver 1810 is configured to receive the first downlink control information DCI sent by the network device, the number of transport blocks TB scheduled by the first DCI is N, and the number of N physical uplink shared channels scheduled by the first DCI The total transmission duration is determined according to the relationship between N and the first value.
  • the N physical uplink shared channels are used to carry the N TBs scheduled by the DCI, and N is an integer greater than or equal to 1;
  • the network device sends the N TBs scheduled by the first DCI.
  • FIG. 19 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • the network device 1900 may include a transceiver 1910, a processor 1920, and a memory 1930.
  • FIG. 19 Only one memory and processor are shown in FIG. 19. In actual network equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the transceiver 1910, the processor 1920, and the memory 1930 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1920 is configured to determine the first downlink control information DCI.
  • the transceiver 1910 is configured to send the first DCI to the terminal device, the number of transmission blocks TB scheduled by the first DCI is N, and the total transmission duration of the N physical uplink shared channels scheduled by the first DCI is Determined according to the relationship between N and the first value, the N physical uplink shared channels are used to carry the N TBs scheduled by the first DCI, and N is an integer greater than or equal to 1; Receiving N TBs scheduled by the first DCI.
  • the transceiver in each embodiment of the present application may also be referred to as a transceiver unit, transceiver, transceiver, and so on.
  • the processor may also be called a processing unit, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver as the sending unit, that is, the transceiver includes the receiving unit and the sending unit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the memory described in each embodiment of the present application is used to store computer instructions and parameters required for the operation of the processor.
  • the processor described in each embodiment of the present application may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor described in each embodiment of the present application may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (field programmable gate array). , FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory, or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • pre-set and pre-configured can be pre-stored in the device (for example, including terminal devices and network devices), corresponding codes, tables or other forms that can be used to indicate related This application does not limit the specific implementation method.
  • system and “network” in this application are often used interchangeably herein.
  • the term “and/or” in this application is merely an association relationship that describes associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute the implementation process of the embodiments of this application. Any restrictions.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD)
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法、终端设备和网络设备,在本申请的技术方案中,根据DCI调度的TB的数量与第一数值的大小关系,确定不监听物理下行控制信道或者不发送DCI的目标时间区间,明确一个DCI调度多个TB的场景中的物理下行控制信道的发送和监听方案,能够实现物理下行控制信道有效地发送和监听。

Description

传输信息的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及传输信息的方法、终端设备和网络设备。
背景技术
物联网(Internet of things,IoT)是“物物相连的互联网”,它将互联网的用户端扩展到了任何物品与物品之间,进行信息交换和通信。该通信方式也称为机器间通信(machine type communications,MTC),通信的节点称为MTC终端。典型的物联网应用包括可能的应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。由于物联网需要应用在多种场景中比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。
覆盖增强:许多的MTC应用在覆盖较差的环境下,比如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,这个时候需要覆盖增强的技术来解决。
支持大量低速率设备:MTC设备的数量要远远大于人与人通信的设备数量,但是传输的数据包很小,并且对延时并不敏感。
非常低的成本:许多MTC应用要求能够以非常低的成本获得并使用MTC设备,从而能够大规模部署。
低能量消耗:在大多数情况下,MTC设备是通过电池来供电的。但是同时在很多场景下,MTC又要求能够使用十年以上而不需要更换电池。这就要求MTC设备能够以极低的电力消耗来工作。
为了满足这些特殊需求,移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在GERAN#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在无线接入网络(radio access network,RAN)#69次会议上立项为NB-IOT课题。
在Rel-14窄带物联网(narrow band Internet of thing,NB-IoT)引入了两个混合自动重传请求(hybrid automatic repeat request,HARQ)进程(以下简称two HARQ)的通信技术,,并且2个HARQ进程(HARQ process)是通过两个独立的下行控制信息(downlink control information,DCI)进行调度的。下行数据传输的two HARQ典型的调度如图1所示,在图1中,DCI#1调度传输块(transport block,TB)#1,TB#1承载于窄带物理下行共享信道(narrowband physical downlink shared channel,NPDSCH)#1上,DCI#2调度TB#2,TB#2承载于NPDSCH#2上。上行数据传输的two HARQ典型的调度如图2所示,在图2中,DCI#1调度TB#1,TB#1承载于窄带物理上行共享信道(narrowband physical uplink shared channel,NPUSCH)#1上,DCI#2调度TB#2,TB#2承载于NPUSCH#2上。图1和图2中的后缀名中“#1”,“#2”分别表示两个HARQ进程,“A/N”表示确认 (acknowledgement,ACK)/否定确认(negative acknowledgement,NACK)。
在Rel-16NB-IoT引入调度增强特性,允许使用一个DCI调度多个TB,意味着可以使用一个DCI调度多个HARQ进程。以two HARQ为例,使用一个DCI调度两个HARQ进程的如图3和图4所示,一个DCI同时调度两个NPDSCH或两个NPUSCH。其中,后缀名中“#1”,“#2”分别表示两个HARQ进程,“A/N”表示ACK/NACK。相比Rel-14使用一个DCI调度一个HARQ进程,可以节省DCI资源开销。
但是对于一个DCI调度多个TB场景,目前的协议中尚未规定物理下行控制信道的发送和监听方案。
发明内容
本申请提供传输信息的方法、终端设备和网络设备,明确一个DCI调度多个TB的场景中的物理下行控制信道的发送和监听方案,能够实现物理下行控制信道有效地发送和监听。
第一方面,提供了一种传输信息的方法,所述方法包括:终端设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,N为大于或者等于1的整数;所述终端设备在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据N与第一数值的大小关系确定的。
可选地,所述方法还包括:所述终端设备从所述网络设备接收所述第一DCI调度的N个TB,或者所述终端设备向所述网络设备发送所述第一DCI调度的N个TB。
在上述技术方案中,终端设备接收网络设备发送的第一DCI,而第一DCI调度的TB的数量N与第一数值的大小关系可以体现网络设备后续是否会继续发送DCI,因而终端设备可以根据N与第一数值的大小关系确定不需要监听物理下行控制信道的目标时间区间,能够实现一个DCI调度多个TB的场景中的物理下行控制信道的有效监听。
在一种可能的实现方式中,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此,从第一DCI传输结束的时刻到第一DCI调度的上行或者下行共享信道传输开始的时刻,终端设备可以不再监听物理下行控制信道,进而可以降低终端设备的功耗。
在一种可能的实现方式中,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元, 此时,传输时长包括第四时间单元和第五时间单元。
在Rel-14NB-IoT中DCI到物理上行共享信道之间的调度时延的数值有限,调度时延最大值为64ms,为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制,这样,对于大重复场景也采用一个DCI调度多个TB的方案,提升传输速率。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
在一种可能的实现方式中,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N小于第一数值时,意味着网络设备有可能会继续发送DCI,终端设备在上行或者下行共享信道传输开始之前的一段时间内不监听物理下行控制信道,也就是说,终端设备在接收到第一DCI之后的一段时间内仍监听物理下行控制信道,可以降低遗漏DCI的概率。
在一种可能的实现方式中,当N小于所述第一数值时,所述方法还包括:所述终端设备接收所述网络设备发送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
可选地,上述传输时长为从第四时间单元到第五时间单元的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在一个DCI调度多个TB的场景中,当N小于第一数值时,意味着网络设备有可能会继续再发送DCI。当终端设备继第一DCI之后又收到了第二DCI,那么为了防止DCI与物理上行共享信道之间发生传输冲突,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。
在一种可能的实现方式中,所述第一数值为预设值;或者所述第一数值是由所述网络设备配置的。
在一种可能的实现方式中,在所述终端设备接收网络设备发送的第一DCI之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于激活调 度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
在上述技术方案中,网络设备通过配置信息通知终端设备是否激活调度增强,可以提高调度的灵活性。
在一种可能的实现方式中,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
考虑到调度增强特性会引入新的DCI格式,如果在CSS中使用,对于网络设备来说,为了传输相同的数据,网络设备需要针对支持调度增强特性的终端设备和不支持调度增强特性的终端设备发送两种格式的DCI,来调度该数据,会增加网络资源开销。对于终端设备来说,终端设备需要盲检测两种格式的DCI,会增加盲检测复杂度。如果限制在USS中使用,USS是UE特定的搜索空间,可以避免上述网络设备侧资源开销增加和终端设备侧盲检测复杂度增加的问题。
在一种可能的实现方式中,所述第一数值为一个DCI支持调度的TB的数量的最大值。
第二方面,本申请提供一种传输信息的方法,所述方法包括:网络设备向终端设备发送第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量N,N为大于或者等于1的整数;所述网络设备在目标时间区间内不发送DCI,所述目标时间区间是根据N与第一数值的大小关系确定的。
可选地,所述方法还包括:所述网络设备向所述终端设备发送所述第一DCI调度的N个TB,或者所述网络设备从所述终端设备接收所述第一DCI调度的N个TB。
在上述技术方案中,网络设备向终端设备发送第一DCI,并且根据第一DCI调度的TB的数量N与第一数值的大小关系确定不需要发送DCI的目标时间区间,这样网络设备可以在该目标区间向其它终端设备发送DCI或者下行数据,能够实现一个DCI调度多个TB的场景中的物理下行控制信道的有效发送,提高资源利用效率。
在一种可能的实现方式中,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N等于第一数值时,从第一DCI传输结束的时刻到第一DCI调度的上行或者物理下行共享信道传输开始的时刻,网络设备不会再发送DCI,这样终端设备可以不再监听物理下行控制信道,进而可以降低终端设备的功耗,网络设备可以在该目标区间向其它终端设备发送DCI或者下行数据,提高资源利用效率。
在一种可能的实现方式中,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单 元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在Rel-14NB-IoT中DCI到物理上行共享信道之间的调度时延的数值有限,调度时延最大值为64ms,为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制,这样,对于大重复场景也采用一个DCI调度多个TB的方案,提升传输速率。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
在一种可能的实现方式中,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N小于第一数值时,意味着网络设备有可能会继续发送DCI,网络设备在上行或者物理下行共享信道传输开始之前的一段时间内不发送DCI,网络设备可以在该时间区间内向其它终端设备发送DCI或者下行数据,提高资源利用效率,网络设备在发送第一DCI之后的一段时间内仍可能会发送DCI,对于终端设备,在接收到第一DCI之后的一段时间内继续监听物理下行控制信道,这样可以降低遗漏DCI的概率。
在一种可能的实现方式中,当N小于所述第一数值时,所述方法还包括:所述网络设备向所述终端设备发送第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
可选地,上述传输时长为从第四时间单元到第五时间单元的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在一个DCI调度多个TB的场景中,当N小于第一数值时,意味着网络设备有可能会继续再发送DCI。当网络设备继第一DCI之后又发送了第二DCI,那么为了防止DCI与物理上行共享信道之间发生传输冲突,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。
在一种可能的实现方式中,所述第一数值为预设值;或者所述第一数值是由所述网络 设备配置的。
在一种可能的实现方式中,在所述网络设备向终端设备发送第一DCI之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于激活调度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
在上述技术方案中,网络设备通过配置信息通知终端设备是否激活调度增强,可以提高调度的灵活性。
在一种可能的实现方式中,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
考虑到调度增强特性会引入新的DCI格式,如果在CSS中使用,对于网络设备来说,为了传输相同的数据,网络设备需要针对支持调度增强特性的终端设备和不支持调度增强特性的终端设备发送两种格式的DCI,来调度该数据,会增加网络资源开销。对于终端设备来说,终端设备需要盲检测两种格式的DCI,会增加盲检测复杂度。如果限制在USS中使用,USS是UE特定的搜索空间,可以避免上述网络设备侧资源开销增加和终端设备侧盲检测复杂度增加的问题。
在一种可能的实现方式中,所述第一数值为一个DCI支持调度的TB的数量的最大值。
第三方面,本申请提供一种传输信息的方法,所述方法包括:网络设备确定第一下行控制信息DCI;所述网络设备向所述终端设备发送所述第一DCI,所述第一DCI调度的传输块TB的数量N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述第一DCI调度的N个TB,N为大于或者等于1的整数。
可选地,所述方法还包括:所述网络设备从所述终端设备接收所述第一DCI调度的N个TB。
在Rel-14NB-IoT中DCI到物理上行共享信道之间的调度时延的数值有限,调度时延最大值为64ms,为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制;当N小于第一数值时,意味着网络设备有可能会继续再发送DCI,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。因此,上述技术方案中根据N与第一数值的大小关系确定的第一DCI调度的N个物理上行共享信道的总传输时长,提供了一种一个DCI调度多个TB的场景下的物理上行共享信道的传输方案。
在一种可能的实现方式中,所述网络设备在目标时间区间内不发送DCI,所述目标时间区间是根据所述大小关系确定的。
在上述技术方案中,网络设备根据第一DCI调度的TB的数量N与第一数值的大小关系确定不需要发送DCI的目标时间区间,而终端设备同样根据第一DCI调度的TB的数量N与第一数值的大小关系确定不需要监听DCI的目标时间区间,这样即使终端设备在目标时间区间内不监听物理下行控制信道,也不会漏检物理下行控制信道,能够实现一个DCI调度多个TB的场景中的物理下行控制信道的有效发送和监听。
在一种可能的实现方式中,当N等于所述第一数值时,所述传输时长大于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制,这样,对于大重复场景也采用一个DCI调度多个TB的方案,提升传输速率。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。在一种可能的实现方式中,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N等于第一数值时,从第一DCI传输结束的时刻到第一DCI调度的上行或者物理下行共享信道传输开始的时刻,网络设备不会再发送DCI,这样终端设备可以不再监听物理下行控制信道,进而可以降低终端设备的功耗。
在一种可能的实现方式中,当N小于所述第一数值时,所述方法还包括:所述网络设备向所述终端设备发送第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在一个DCI调度多个TB的场景中,当N小于第一数值时,意味着网络设备有可能会继续再发送DCI。当网络设备继第一DCI之后又发送了第二DCI,那么为了防止DCI与物理上行共享信道之间发生传输冲突,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。
在一种可能的实现方式中,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述 第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N小于第一数值时,意味着网络设备有可能会继续发送DCI,网络设备在上行或者物理下行共享信道传输开始之前的一段时间内不发送DCI,网络设备可以在该时间区间内向其它终端设备发送DCI或者下行数据,提高资源利用效率,网络设备在发送第一DCI之后的一段时间内仍可能会发送DCI,对于终端设备,在接收到第一DCI之后的一段时间内继续监听物理下行控制信道,这样可以降低遗漏DCI的概率。
在一种可能的实现方式中,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
在一种可能的实现方式中,在所述网络设备向终端设备发送第一DCI之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于激活调度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
在上述技术方案中,网络设备通过配置信息通知终端设备是否激活调度增强,可以提高调度的灵活性。
在一种可能的实现方式中,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
考虑到调度增强特性会引入新的DCI格式,如果在CSS中使用,对于网络设备来说,为了传输相同的数据,网络设备需要针对支持调度增强特性的终端设备和不支持调度增强特性的终端设备发送两种格式的DCI,来调度该数据,会增加网络资源开销。对于终端设备来说,终端设备需要盲检测两种格式的DCI,会增加盲检测复杂度。如果限制在USS中使用,USS是UE特定的搜索空间,可以避免上述网络设备侧资源开销增加和终端设备侧盲检测复杂度增加的问题。
在一种可能的实现方式中,所述第一数值为一个DCI支持调度的TB的数量的最大值。
第四方面,本申请提供一种传输信息的方法,所述方法包括:终端设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述DCI调度的N个TB,N为大于或者等于1的整数;所述终端设备根据所述第一DCI,向所述网络设备发送数据。
可选地,所述方法还包括:所述终端设备向所述网络设备发送所述第一DCI调度的N个TB。
在Rel-14NB-IoT中DCI到物理上行共享信道之间的调度时延的数值有限,调度时延最大值为64ms,为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制;当N小于第一数 值时,意味着网络设备有可能会继续再发送DCI,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。因此,上述技术方案中根据N与第一数值的大小关系确定的第一DCI调度的N个物理上行共享信道的总传输时长,提供了一种一个DCI调度多个TB的场景下的物理上行共享信道的传输方案。
在一种可能的实现方式中,所述终端设备在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据所述大小关系确定的。
在上述技术方案中,终端设备接收网络设备发送的第一DCI,而第一DCI调度的TB的数量N与第一数值的大小关系可以体现网络设备后续是否会继续发送DCI,因而终端设备可以根据N与第一数值的大小关系确定不需要监听物理下行控制信道的目标时间区间,能够实现一个DCI调度多个TB的场景中的物理下行控制信道的有效法发送和监听。
在一种可能的实现方式中,当N等于所述第一数值时,所述传输时长大于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在Rel-14中为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。在一个DCI调度多个TB的场景中,当N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制,这样,对于大重复场景也采用一个DCI调度多个TB的方案,提升传输速率。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
在一种可能的实现方式中,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N等于第一数值时,意味着在本次调度中网络设备不会再发送DCI,因此,从第一DCI传输结束的时刻到第一DCI调度的上行或者物理下行共享信道传输开始的时刻,终端设备可以不再监听物理下行控制信道,进而可以降低终端设备的功耗。
在一种可能的实现方式中,当N小于所述第一数值时,所述方法还包括:所述终端设备接收所述网络设备发送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单 元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
在一个DCI调度多个TB的场景中,当N小于第一数值时,意味着网络设备有可能会继续再发送DCI。当终端设备继第一DCI之后又收到了第二DCI,那么为了防止DCI与物理上行共享信道之间发生传输冲突,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。
在一种可能的实现方式中,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
在上述技术方案中,在N小于第一数值时,意味着网络设备有可能会继续发送DCI,终端设备在上行或者下行共享信道传输开始之前的一段时间内不监听物理下行控制信道,也就是说,终端设备在接收到第一DCI之后的一段时间内仍监听物理下行控制信道,可以降低遗漏DCI的概率。在一种可能的实现方式中,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
在一种可能的实现方式中,在所述终端设备接收网络设备发送第一DCI之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于激活调度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
在上述技术方案中,网络设备通过配置信息通知终端设备是否激活调度增强,可以提高调度的灵活性。
在一种可能的实现方式中,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
考虑到调度增强特性会引入新的DCI格式,如果在CSS中使用,对于网络设备来说,为了传输相同的数据,网络设备需要针对支持调度增强特性的终端设备和不支持调度增强特性的终端设备发送两种格式的DCI,来调度该数据,会增加网络资源开销。对于终端设备来说,终端设备需要盲检测两种格式的DCI,会增加盲检测复杂度。如果限制在USS中使用,USS是UE特定的搜索空间,可以避免上述网络设备侧资源开销增加和终端设备侧盲检测复杂度增加的问题。
在一种可能的实现方式中,所述第一数值为一个DCI支持调度的TB的数量的最大值。
第五方面,本申请提供了一种终端设备,包括用于执行第一方面或第一方面任意一种实现方式中的模块。
第六方面,本申请提供了一种网络设备,包括用于执行第二方面或第二方面任意一种实现方式中的模块。
第七方面,本申请提供了一种网络设备,包括用于执行第三方面或第三方面任意一种实现方式中的模块。
第八方面,本申请提供了一种终端设备,包括用于执行第四方面或第四方面任意一种实现方式中的模块。
第九方面,本申请提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第一方面或第一方面任意一种实现方式所述的方法。
第十方面,本申请提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第二方面或第二方面任意一种实现方式所述的方法。
第十一方面,本申请提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第三方面或第三方面任意一种实现方式所述的方法。
第十二方面,本申请提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第四方面或第四方面任意一种实现方式所述的方法。
第十三方面,本申请提供了一种终端设备,包括收发器、处理器和存储器,用于执行第一方面或第一方面任意一种实现方式所述的方法。
第十四方面,本申请提供了一种网络设备,包括收发器、处理器和存储器,用于执行第二方面或第二方面任意一种实现方式所述的方法。
第十五方面,本申请提供了一种网络设备,包括收发器、处理器和存储器,用于执行第三方面或第三方面任意一种实现方式所述的方法。
第十六方面,本申请提供了一种终端设备,包括收发器、处理器和存储器,用于执行第四方面或第四方面任意一种实现方式所述的方法。
第十七方面,本申请提供了一种计算机可读存储介质,包括指令,当其在终端设备上运行时,使得终端设备执行第一方面或第一方面任意一种实现方式所述的方法。
第十八方面,本申请提供了一种计算机可读存储介质,包括指令,当其在网络设备上运行时,使得网络设备执行第二方面或第二方面任意一种实现方式所述的方法。
第十九方面,本申请提供了一种计算机可读存储介质,包括指令,当其在网络设备上运行时,使得终端设备执行第三方面或第三方面任意一种实现方式所述的方法。
第二十方面,本申请提供了一种计算机可读存储介质,包括指令,当其在终端设备上运行时,使得网络设备执行第四方面或第四方面任意一种实现方式所述的方法。
第二十一方面,本申请提供了一种计算机程序产品,当其在终端设备上运行时,使得终端设备执行第一方面或第一方面任意一种实现方式所述的方法。
第二十二方面,本申请提供了一种计算机程序产品,当其在网络设备上运行时,使得网络设备执行第二方面或第二方面任意一种实现方式所述的方法。
第二十三方面,本申请提供了一种计算机程序产品,当其在网络设备上运行时,使得终端设备执行第三方面或第三方面任意一种实现方式所述的方法。
第二十四方面,本申请提供了一种计算机程序产品,当其在终端设备上运行时,使得网络设备执行第四方面或第四方面任意一种实现方式所述的方法。
第二十五方面,本申请提供一种通信系统,所述通信系统包括上述第五方面所述的终 端设备和上述第六方面所述的网络设备,或者上述第七方面所述的网络设备和上述第八方面所述的终端设备,或者上述第九方面所述的终端设备和上述第十方面所述的网络设备,或者上述第十一方面所述的网络设备和上述第十二方面所述的终端设备。
附图说明
图1是下行two HARQ调度的示意图。
图2是上行two HARQ调度的示意图。
图3是另一下行two HARQ调度的示意图。
图4是另一上行two HARQ调度的示意图。
图5是可以应用本申请实施例的一种无线通信系统的示意性架构图。
图6是下行two HARQ调度时序要求的示意图。
图7是本申请实施例的信息传输的方法的示意性流程图。
图8是本申请实施例的下行调度时序要求的示意图。
图9是上行two HARQ调度时序要求的示意图。
图10是本申请另一实施例提供的传输信息的方法的示意性流程图。
图11是本申请实施例的上行调度时序要求的示意图。
图12是本申请实施例提供的终端设备的示意性结构图。
图13是本申请实施例提供的网络设备的示意性结构图。
图14是本申请另一实施例提供的终端设备的示意性结构图。
图15是本申请另一实施例提供的网络设备的示意性结构图。
图16是本申请另一实施例提供的终端设备的示意性结构图。
图17是本申请另一实施例提供的网络设备的示意性结构图。
图18是本申请另一实施例提供的终端设备的示意性结构图。
图19是本申请另一实施例提供的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,只要该通信系统中存在实体可以发送信息,该通信系统也存在其它实体可以接收信息即可。例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、NB-IoT系统、增强型机器类通信(enhanced machine type communication,eMTC)系统、长期演进机器类通信(long term evolution machine type communication,LTE-M或者LTE-MTC)系统等。可以理解地,本申请实施例的技术方案既可以应用于在授权频段使用的通信系统,例 如,LTE、5G、NR等,也可以应用于在非授权频段中使用的LTE、5G、NR等,例如,授权频谱辅助接入(licensed assisted access,LAA)或者基于NR的非授权载波接入(NR-based access to unlicensed spectrum)。
图5是可以应用本申请实施例的一种无线通信系统的示意性架构图。如图5所示,该无线通信系统500可以包括网络设备570和终端设备510-560。终端设备510-560通过无线的方式与网络设备570相连,网络设备570可以发送信息给终端设备510-560中的一个或多个终端设备。此外,终端设备540-560也组成一个通信系统,在该通信系统中,终端设备550可以发送信息给终端设备540和终端设备560中的一个或多个终端设备。终端设备可以是固定位置的,也可以是可移动的。图5只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图5中未画出。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
在无线通信系统500中,终端设备也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在无线通信系统500中,网络设备可以是用于与终端设备通信的设备,该网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可 以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。应理解,在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
在NB-IoT系统中,对于配置了two HARQ的终端设备,在一个DCI调度一个TB的场景下,以终端设备进行下行传输为例,如图6所示,终端设备在从子帧n+1到子帧n+k-3监听窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH),在子帧n+k-2和子帧n+k-1不再监听NPDCCH,以便终端设备为传输窄带物理下行共享信道(narrowband physical downlink shared channel,NPDSCH)或者窄带物理上行共享信道(narrowband physical uplink shared channel,NPUSCH)做准备,其中,子帧n为DCI的结束子帧,子帧n+k为该DCI调度的NPDSCH的起始子帧,此外终端设备进行上行传输与下行传输类似,在此不再赘述。但是对于Rel-16NB-IoT引入调度增强特性,即一个DCI调度多个TB场景,目前的协议中尚未规定物理下行控制信道的发送和监听方案。
针对上述问题,本申请提供了用于传输数据的方法,明确一个DCI调度多个TB的场景中的物理下行控制信道的发送和监听方案,能够实现物理下行控制信道有效地发送和监听。
图7是本申请实施例的信息传输的方法的示意性流程图。图7中的方法可以用于图5所示的无线通信系统中的终端设备和网络设备。在本申请的实施例中,以终端设备和网络设备作为执行主体为例进行说明,应理解,执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片,本申请实施例不作具体限定。图7中的方法包括以下内容的至少部分内容。
在710中,网络设备向终端设备发送第一DCI,终端设备接收网络设备发送的第一DCI,其中第一DCI调度的TB的数量为N,N为大于或者等于1的整数。
在720中,网络设备在目标时间区间内不发送DCI,终端设备在目标时间区间内不监听物理下行控制信道(not required to monitor NPDCCH)。可以理解地,物理下行控制信道也可以是物理下行控制信道候选,此时720可以表述为网络设备在目标时间区间内不发送DCI,终端设备在目标时间区间内不监听物理下行控制信道候选,本申请实施例对比不做限定。
终端设备和网络设备可以根据第一DCI调度的TB的数量N和第一数值的大小关系,确定目标时间区间。为了方便描述,下文中第一数值用X表示。
本申请实施例对X的具体取值不作具体限定。作为一个示例,X可以是终端设备和网络设备约定好的任意数值,例如,X=1、2、3、4、5、6、7或8等,可选地,X为大于或者等于2的整数。作为另一个示例,X可以为一个DCI支持调度的TB的数量的最大值。作为又一个示例,X可以为网络设备为终端设备配置的HARQ进程的数量。
可选地,X可以为预设值,例如在协议中体现或者约定;X也可以为网络设备确定并配置给终端设备的,例如,网络设备可以通过RRC信令、MAC信令或DCI等指示。例如,X的取值为{1,2,4,8}中的一个值,或者X的取值为{1,2,3,4,5,6,7,8}中的一个值。
当N=X时,即第一DCI调度的TB的数量已经达到预设的HARQ进程的数量,或者第一DCI调度的TB的数量已经达到该DCI支持调度的TB的数量的最大值,或者第一DCI调度的TB的数量已经达到第一数值,此时终端设备和网络设备之间不能再进行其他TB的传输,因此从第一DCI传输结束的时刻到第一DCI调度的NPUSCH或者NPDSCH的传输开始的时刻,网络设备可以不再向终端设备发送DCI,终端设备也可以不继续监听物理下行控制信道。
具体地,目标时间区间可以包括从第一时间单元到第二时间单元之间的时间单元,其中第一时间单元为用于承载第一DCI的物理下行控制信道传输结束的时间单元,第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。例如,以终端设备进行下行传输为例,如图8所示,其中子帧n为DCI的结束子帧,子帧n+k为该DCI调度的NPDSCH的起始子帧,第一时间单元为子帧n,第二时间单元为子帧n+k,目标时间段为在子帧n和子帧n+k之间的子帧:子帧n+1到子帧n+k-1,即目标时间段包括子帧n+1、子帧n+k-1以及子帧n+1和子帧n+k-1之间的一个或者多个子帧。
或者,上述技术方案还可以表述为:当N=X时,目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,其中第一时间单元为用于承载第一DCI的物理下行控制信道传输结束的时间单元之后的第一个时间单元,第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元之前的第一个时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间包括第一时间单元、第二时间单元以及两者之间的一个或者多个时间单元。例如,以终端设备进行下行传输为例,如图8所示,第一时间单元为子帧n+1,第二时间单元为子帧n+k-1,目标时间段为子帧n+1到子帧n+k-1,即目标时间段包括子帧n+1,子帧n+k-1以及子帧n+1和子帧n+k-1之间的一个或者多个子帧。
或者,上述技术方案又可以表述为:当N=X时,目标时间区间的起始时刻为用于承载所述第一DCI的物理下行控制信道传输结束的时刻,所述目标时间区间的结束时刻为物理上行共享信道或者物理下行共享信道传输开始的时刻,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。例如,以终端设备进行下行传输为例,如图8所示,目标时间区间的起始时刻为DCI结束时间,目标时间区间的结束时刻为NPDSCH起始时间。
应理解,上述物理上行共享信道或所述物理下行共享信道除了承载第一DCI调度的第一个TB,还可以承载其他的TB,本申请实施例不作具体限定。例如,物理上行共享信道或物理下行共享信道用于承载DCI调度的N个TB。
当N<X时,即第一DCI调度的TB的数量小于预设的HARQ进程的数量,或者第一DCI调度的TB的数量小于该DCI支持调度的TB的数量的最大值,或者第一DCI调度的TB的数量小于第一数值,此时终端设备和网络设备之间有可能进行其他TB的传输,因 此第一DCI传输结束后,网络设备可能会向终端设备发送其他DCI,而终端设备也需继续监听物理下行控制信道。
具体地,目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,其中第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。例如,以终端设备进行下行传输为例,如图8所示,M=3,第三时间单元为子帧n+k-3,第二时间单元为子帧n+k,目标时间段为子帧n+k-2到子帧n+k-1,即目标时间段包括子帧n+k-2和子帧n+k-1。
或者,上述技术方案还可以表述为:在N<X时,目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,其中第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元的前一个时间单元,其中,第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于1的整数。此时目标时间区间包括第三时间单元、第二时间单元以及两者之间的一个或者多个时间单元。例如,以终端设备进行下行传输为例,如图8所示,M=2,第三时间单元为子帧n+k-2,第二时间单元为子帧n+k-1,目标时间段为子帧n+k-2到子帧n+k-1,即目标时间段包括子帧n+k-2和子帧n+k-1。
应理解,上述物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元可以理解为从物理上行共享信道或者物理下行共享信道传输开始时间单元向前数第M个时间单元,在物理上行共享信道或者物理下行共享信道传输开始时间单元之前,距离物理上行共享信道或者物理下行共享信道传输开始时间单元最近的时间单元为物理上行共享信道或者物理下行共享信道传输开始时间单元之前的第一个时间单元。
还应理解,上述物理上行共享信道或者物理下行共享信道可以是第一DCI调度的,也可以是其他DCI调度的,本申请实施例不作具体限定。可选地,上述物理上行共享信道或物理下行共享信道用于承载第一DCI调度的第一个TB。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等,本申请实施例不作具体限定。
可选地,图7所示的方法还包括730,在730中,网络设备向终端设备发送该第一DCI调度的N个TB,终端设备从网络设备接收该第一DCI调度的N个TB;或者终端设备向网络设备发送该第一DCI调度的N个TB,网络设备从终端设备接收该第一DCI调度的N个TB。具体地,对于下行传输,网络设备向终端设备发送该第一DCI调度的N个TB,相应地,步骤710中,终端设备接收到的第一DCI中包括该N个TB的调度信息,终端设备根据该调度信息接收该N个TB。对于上行传输,步骤710中,终端设备接收到的第一DCI中包括该N个TB的调度信息,终端设备根据该调度信息向网络设备发送该第一DCI 调度的N个TB,相应地,网络设备接收该终端设备发送的该N个TB。
本申请实施例对于网络设备何时确定目标时间区间不作限定,例如,网络设备可以在发送第一DCI之前、发送第一DCI之后或者在发送第一DCI的同时确定目标时间区间。
在向终端设备发送第一DCI之前,网络设备确定第一DCI,包括确定第一DCI调度的TB的数量。例如,网络设备根据需要传输的数据的数据量,确定第一DCI调度的TB的数量。
在一些实施例中,在所述终端设备接收网络设备发送的第一DCI之前,网络设备还可以向终端设备发送配置信息,通过所述配置信息指示终端设备激活调度增强,终端设备在接收到所述配置信息后,激活调度增强特性。应理解,调度增强表示一个DCI可以调度至少2个TB。在一些场合,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
考虑到调度增强特性会引入新的DCI格式,如果在公共搜索空间(common search space,CSS)中使用,对于网络设备来说,为了传输相同的数据,网络设备需要针对支持调度增强特性的终端设备和不支持调度增强特性的终端设备发送两种格式的DCI,来调度该数据,会增加网络资源开销。对于终端设备来说,终端设备需要盲检测两种格式的DCI,会增加盲检测复杂度。如果将调度增强限制在UE特定的搜索空间(UE-specific search space,USS)中使用,可以避免上述网络设备侧资源开销增加和终端设备侧盲检测复杂度增加的问题。也就是说,在调度增强场景下,DCI对应的搜索空间可以为USS。
在Rel-14NB-IoT中,对于配置了two HARQ的场景,DCI到物理上行共享信道之间的调度时延的数值有限,调度时延最大值为64ms,为了防止DCI与物理上行共享信道之间发生传输冲突,因此限制物理上行共享信道的传输时长不能超256ms。如图9所示,第二DCI调度的NPUSCH的传输的结束子帧不得晚于子帧n+k+255,也就是说,第一DCI调度的NPUSCH的传输的起始时刻到第二DCI调度的NPUSCH的传输的结束时刻之间的时长不得超过256毫秒(ms)。对于一个DCI调度多个TB的场景,由于一个DCI可以调度多个TB,调度时延可以重新设计,可以通过增加调度时延的最大值,或者改变调度时延的含义,比如调度时延指示的是DCI传输结束时间到承载该DCI调度的第一个TB的下行共享信道或者上行共享信道传输开始时间之间的时长,可避免DCI与物理上行共享信道之间发生传输冲突,所以可以采用与上述方案不同的方案。
同样,网络设备和终端设备可以根据第一DCI调度的TB的数量N与第一数值的大小关系,确定用于承载N个TB的物理上行共享信道的总传输时长。
本申请实施例对涉及的物理上行共享信道的格式不作具体限定,例如可以为NPUSCH格式1(NPUSCH format 1)、NPUSCH格式2(NPUSCH format 2)等。
图10是本申请另一实施例提供的传输信息的方法的示意性流程图。
在1010中,网络设备确定第一DCI,包括确定第一DCI调度的TB的数量N。
可选地,网络设备可以根据需要传输的数据量和/或剩余传输资源,确定第一DCI调度的TB的数量。
在1020中,网络设备向终端设备发送第一DCI,终端设备接收网络设备发送的第一DCI,所述第一DCI调度的TB的数量N,第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所 述第一DCI调度的N个TB,N为大于或者等于1的整数。
可选地,上述传输时长为从第四时间单元到第五时间单元的时长,第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。例如,用于承载第一DCI调度的TB的物理上行共享信道传输的开始时间单元为子帧n+k,用于承载所述第二DCI调度的TB的物理上行共享信道传输的结束时间单元为子帧n+k+m,上述传输时长为(m+1)个子帧。
当N=X时,意味着在本次调度中网络设备不会再发送DCI,因此不会发生上述传输冲突的情况,因此可以取消物理上行共享信道的传输时长不能超256ms的限制。也就是说,当N=X时,物理上行共享信道的传输时长可以不受256ms的限制,针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。例如,以X=2为例,如图11所示,当N=2时,网络设备不会再发送第二DCI,第一DCI调度的2个NPUSCH在子帧n+k到子帧n+k+359的时长内传输,总传输时等于360ms,大于256ms。
当N<X时,意味着网络设备有可能会继续再发送DCI,物理上行共享信道的传输时长仍需小于或者等于256ms,以便正确进行数据传输。也就是说,当网络设备在目标时间段之外向终端设备发送第二DCI时,用于承载第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。例如,以X=2为例,如图11所示,当N=1时,网络设备发送第二DCI,第一DCI调度的NPUSCH和第二DCI调度的NPUSCH的总传输时长小于或者等于256ms,即在子帧n+k到子帧n+k+255的时长内传输。
在1030中,终端设备向网络设备发送该第一DCI调度的N个TB,网络设备从终端设备接收该第一DCI调度的N个TB。具体地,在1020中,终端设备接收到的第一DCI中包括该N个TB的调度信息,终端设备根据该调度信息向网络设备发送该第一DCI调度的N个TB。相应地,网络设备接收该终端设备发送的该N个TB。
可以理解地,图7所示的方法与图10所示的方法可以单独实施,也可以结合起来实施,本申请实施例不作具体限定。
下面结合图12至图19对本申请的装置实施例进行描述。应理解,本申请的装置实施例与本申请的方法实施例相互对应,类似的描述可以参照方法实施例。值得注意的是,装置实施例可以与上述用于方法实施例配合使用,也可以单独使用。
图12是本申请实施例提供的终端设备的示意性结构图。图12所示的终端设备1200可以对应于上文的终端设备,如图12所示,终端设备1200包括收发模块1210和处理模块1230。
收发模块1210,用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,N为大于或者等于1的整数。
处理模块1230,用于控制所述收发模块1210在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据N与第一数值的大小关系确定的。
可选地,所述收发模块1210还用于从所述网络设备接收所述第一DCI调度的N个TB;或者用于向所述网络设备发送所述第一DCI调度的N个TB。
可选地,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
可选地,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,当N小于所述第一数值时,所述收发模块1210还用于:接收所述网络设备发送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可选地,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
可选地,在所述终端设备接收网络设备发送的第一DCI之前,所述收发模块1210还用于接收所述网络设备发送的配置信息,所述配置信息用于激活调度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
可选地,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
可选地,所述第一数值为一个DCI支持调度的TB的数量的最大值。
收发模块1210可以由收发器实现。处理模块1230可以由处理器实现。收发模块1210和处理模块1230的具体功能和有益效果可以参见图7所示的方法,在此就不再赘述。
图13是本申请实施例提供的网络设备的示意性结构图。图13所示的网络设备1300可以对应于上文的网络设备,如图13所示,网络设备1300包括收发模块1320和处理模块1330。
收发模块1320,用于向终端设备发送第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量N,N为大于或者等于1的整数。
处理模块1330,用于控制所述收发模块1320在目标时间区间内不发送DCI,所述目标时间区间是根据N与第一数值的大小关系确定的。
所述收发模块1320还用于向所述终端设备发送所述第一DCI调度的N个TB;或者,用于从所述终端设备接收所述第一DCI调度的N个TB。
可选地,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可选地,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
可选地,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。可选地,当N小于所述第一数值时,所述收发模块1320还用于:向所述终端设备发送第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所 述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可选地,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
可选地,在所述网络设备向终端设备发送第一DCI之前,所述收发模块1320还用于向所述终端设备发送配置信息,所述配置信息用于激活调度增强。
应理解,调度增强也可以表述为“多TB调度”、“一个DCI调度多个TB”、“一个DCI调度多个下行TB”或“一个DCI调度多个上行TB”等。
可选地,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
可选地,所述第一数值为一个DCI支持调度的TB的数量的最大值。
收发模块1320可以由收发器实现。处理模块1330可以由处理器实现。收发模块1320和处理模块1330的具体功能和有益效果可以参见图7所示的方法,在此就不再赘述。
图14是本申请另一实施例提供的终端设备的示意性结构图。图14所示的终端设备1400可以对应于上文的终端设备,如图14所示,终端设备1400包括接收模块1410和发送模块1420。
接收模块1410,用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述DCI调度的N个TB,N为大于或者等于1的整数。
发送模块1420,用于向所述网络设备发送所述第一DCI调度的N个TB。
可选地,所述终端设备在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据所述大小关系确定的。
可选地,当N等于所述第一数值时,所述传输时长大于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
可选地,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,当N小于所述第一数值时,所述接收模块1410还用于接收所述网络设备发 送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可选地,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
可选地,在所述终端设备接收网络设备发送第一DCI之前,所述接收模块1410还用于接收所述网络设备发送的配置信息,所述配置信息用于激活调度增强。
可选地,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
可选地,所述第一数值为一个DCI支持调度的TB的数量的最大值。
接收模块1410和发送模块1420可以由收发器实现。接收模块1410和发送模块1420的具体功能和有益效果可以参见图10所示的方法,在此就不再赘述。
图15是本申请另一实施例提供的网络设备的示意性结构图。图15所示的网络设备1500可以对应于上文的网络设备,如图15所示,网络设备1500包括发送模块1520和处理模块1530。
处理模块1530,用于确定第一下行控制信息DCI。
发送模块1520,用于向所述终端设备发送所述第一DCI,所述第一DCI调度的传输块TB的数量N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述第一DCI调度的N个TB,N为大于或者等于1的整数。
可选地,网络设备1500还包括接收模块1510,用于从所述终端设备发送所述第一DCI调度的N个TB。
可选地,所述网络设备在目标时间区间内不发送DCI,所述目标时间区间是根据所述大小关系确定的。
可选地,当N等于所述第一数值时,所述传输时长大于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可以理解地,当N等于所述第一数值时,物理上行共享信道的传输时长可以不受256ms的限制,因此针对实际情况用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长可以大于、等于或者小于256ms。
可选地,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。,或者,所述上行共享信道或所述下行共享信道用于承载所述DCI调度的N个TB。此时目标时间区间不包括第一时间单元和第二时间单元,而是包括第一时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,当N小于所述第一数值时,所述发送模块1520还用于向所述终端设备发送第二DCI,用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。可选地,上述传输时长为第四时间单元到第五时间单元之间的时长,所述第四时间单元为用于承载N个TB中第一个TB的物理上行共享信道传输开始的时间单元,所述第五时间单元为用于承载N个TB中最后一个TB的物理上行共享信道传输结束的时间单元,此时,传输时长包括第四时间单元和第五时间单元。
可选地,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。此时目标时间区间不包括第三时间单元和第二时间单元,而是第三时间单元与第二时间单元之间的一个或者多个时间单元。
可以理解地,上述的时间单元可以是超帧、帧、半帧、子帧、时隙、符号或采样点等。
可选地,所述最大值为预设值;或者所述最大值是由所述网络设备确定的。
可选地,在所述网络设备向终端设备发送第一DCI之前,所述发送模块1520还用于向所述终端设备发送配置信息,所述配置信息用于激活调度增强。
可选地,所述第一DCI对应的搜索空间为终端设备特定的搜索空间USS。
可选地,所述第一数值为一个DCI支持调度的TB的数量的最大值。
接收模块1510和发送模块1520可以由收发器实现。处理模块1530可以由处理器实现。接收模块1510、发送模块1520和处理模块1530的具体功能和有益效果可以参见图10所示的方法,在此就不再赘述。
图16是本申请另一实施例提供的终端设备的示意性结构图。如图16所示,终端设备1600可以包括收发器1610、处理器1620、存储器1630。
图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可 以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
收发器1610、处理器1620、存储器1630之间通过内部连接通路互相通信,传递控制和/或数据信号。
具体地,收发器1610用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,N为大于或者等于1的整数。
处理器1620,用于控制所述收发器1610在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据N与第一数值的大小关系确定的。
收发器1610还用于从所述网络设备接收所述第一DCI调度的N个TB,或者,收发器1610还用于向所述网络设备发送所述第一DCI调度的N个TB。
终端设备1600的具体工作过程和有益效果可以参见图7所示实施例中的描述,在此不再赘述。
图17是本申请另一实施例提供的网络设备的示意性结构图。如图17所示,网络设备1700可以包括收发器1710、处理器1720、存储器1730。
图17中仅示出了一个存储器和处理器。在实际的网络设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
收发器1710、处理器1720、存储器1730之间通过内部连接通路互相通信,传递控制和/或数据信号。
具体地,收发器1710,用于向终端设备发送第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量N,N为大于或者等于1的整数。
处理器1720,用于控制所述收发器1710在目标时间区间内不发送DCI,所述目标时间区间是根据N与第一数值的大小关系确定的。
收发器1710还用于向所述终端设备发送所述第一DCI调度的N个TB。或者收发器1710还用于从所述终端设备接收所述第一DCI调度的N个TB。
网络设备1700的具体工作过程和有益效果可以参见图7所示实施例中的描述,在此不再赘述。
图18是本申请另一实施例提供的终端设备的示意性结构图。如图18所示,终端设备1800可以包括收发器1810、处理器1820、存储器1830。
图18中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
收发器1810、处理器1820、存储器1830之间通过内部连接通路互相通信,传递控制和/或数据信号。
具体地,收发器1810用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述DCI调度的N个TB,N为大于或者等于1的整数;用于向所述网络设备发送所述第一DCI调度的N个TB。
终端设备1800的具体工作过程和有益效果可以参见图10所示实施例中的描述,在此 不再赘述。
图19是本申请另一实施例提供的网络设备的示意性结构图。如图19所示,网络设备1900可以包括收发器1910、处理器1920、存储器1930。
图19中仅示出了一个存储器和处理器。在实际的网络设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
收发器1910、处理器1920、存储器1930之间通过内部连接通路互相通信,传递控制和/或数据信号。
具体地,处理器1920,用于确定第一下行控制信息DCI。
收发器1910,用于向所述终端设备发送所述第一DCI,所述第一DCI调度的传输块TB的数量N,所述第一DCI调度的N个物理上行共享信道的总传输时长是根据N与第一数值的大小关系确定的,所述N个物理上行共享信道用于承载所述第一DCI调度的N个TB,N为大于或者等于1的整数;用于从所述终端设备接收所述第一DCI调度的N个TB。
网络设备1900的具体工作过程和有益效果可以参见图10所示实施例中的描述,在此不再赘述。
本申请各实施例该的收发器也可以称为收发单元、收发机、收发装置等。处理器也可以称为处理单元,处理单板,处理模块、处理装置等。可选的,可以将收发器中用于实现接收功能的器件视为接收单元,将收发器中用于实现发送功能的器件视为发送单元,即收发器包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
本申请各实施例所述的存储器用于存储处理器运行所需的计算机指令和参数。
本申请各实施例所述的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。本申请各实施例所述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
需要注意的是,本申请实施例中的“第一”、“第二”以及“第三”仅为了区分,不应对本申请构成任何限定。
还需要注意的是,本申请实施例中,“预先设定”、“预先配置”可以通过在设备(例 如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还需要注意的是,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种传输信息的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,N为大于或者等于1的整数;
    所述终端设备在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据N与第一数值的大小关系确定的。
  2. 根据权利要求1所述的方法,其特征在于,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。
  3. 根据权利要求1或2所述的方法,其特征在于,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
  4. 根据权利要求1所述的方法,其特征在于,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。
  5. 根据权利要求1或4所述的方法,其特征在于,当N小于所述第一数值时,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一数值为一个DCI支持调度的TB的数量的最大值。
  7. 一种传输信息的方法,其特征在于,包括:
    网络设备向终端设备发送第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量N,N为大于或者等于1的整数;
    所述网络设备在目标时间区间内不发送DCI,所述目标时间区间是根据N与第一数值的大小关系确定的。
  8. 根据权利要求7所述的方法,其特征在于,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。
  9. 根据权利要求7或8所述的方法,其特征在于,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
  10. 根据权利要求7所述的方法,其特征在于,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。
  11. 根据权利要求7或10所述的方法,其特征在于,当N小于所述第一数值时,所述方法还包括:
    所述网络设备向所述终端设备发送第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述第一数值为一个DCI支持调度的TB的数量的最大值。
  13. 一种终端设备,其特征在于,包括:
    收发模块,用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量为N,N为大于或者等于1的整数;
    处理模块,用于控制所述收发模块在目标时间区间内不监听物理下行控制信道,所述目标时间区间是根据N与第一数值的大小关系确定的。
  14. 根据权利要求13所述的终端设备,其特征在于,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。
  15. 根据权利要求13或14所述的终端设备,其特征在于,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
  16. 根据权利要求13所述的终端设备,其特征在于,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。
  17. 根据权利要求13或16所述的终端设备,其特征在于,当N小于所述第一数值时,所述收发模块还用于:
    接收所述网络设备发送的第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传 输开始的时间单元的时长小于或者等于256毫秒。
  18. 根据权利要求13至17中任一项所述的终端设备,其特征在于,所述第一数值为一个DCI支持调度的TB的数量的最大值。
  19. 一种网络设备,其特征在于,包括:
    收发模块,用于向终端设备发送第一下行控制信息DCI,所述第一DCI调度的传输块TB的数量N,N为大于或者等于1的整数;
    处理模块,用于控制所述收发模块在目标时间区间内不发送DCI,所述目标时间区间是根据N与第一数值的大小关系确定的。
  20. 根据权利要求19所述的网络设备,其特征在于,当N等于所述第一数值时,所述目标时间区间包括从第一时间单元到第二时间单元之间的时间单元,所述第一时间单元为用于承载所述第一DCI的物理下行控制信道传输结束的时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中所述物理上行共享信道或所述物理下行共享信道用于承载所述第一DCI调度的第一个TB。
  21. 根据权利要求19或20所述的网络设备,其特征在于,当N等于所述第一数值时,用于承载所述第一DCI调度的N个TB的物理上行共享信道的传输时长大于256毫秒。
  22. 根据权利要求19所述的网络设备,其特征在于,在N小于所述第一数值时,所述目标时间区间包括从第三时间单元到第二时间单元之间的时间单元,所述第三时间单元为物理上行共享信道或者物理下行共享信道传输开始之前的第M个时间单元,所述第二时间单元为物理上行共享信道或者物理下行共享信道传输开始的时间单元,其中,所述第三时间单元在用于承载所述第一DCI的物理下行控制信道传输结束的时间单元之后,所述物理上行共享信道或所述物理下行共享信道在用于承载所述第一DCI传输的物理下行控制信道之后传输,M为大于或者等于2的整数。
  23. 根据权利要求19或22所述的网络设备,其特征在于,当N小于所述第一数值时,所述收发模块还用于:
    向所述终端设备发送第二DCI,从用于承载所述第二DCI调度的TB的物理上行共享信道传输结束的时间单元到用于承载所述第一DCI调度的TB的物理上行共享信道传输开始的时间单元的时长小于或者等于256毫秒。
  24. 根据权利要求19至23中任一项所述的网络设备,其特征在于,所述第一数值为一个DCI支持调度的TB的数量的最大值。
PCT/CN2019/098239 2019-07-29 2019-07-29 传输信息的方法、终端设备和网络设备 WO2021016818A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022506063A JP7336585B2 (ja) 2019-07-29 2019-07-29 情報伝送方法、端末デバイス及びネットワークデバイス
KR1020227005893A KR20220039760A (ko) 2019-07-29 2019-07-29 정보 송신 방법, 단말 디바이스, 및 네트워크 디바이스
PCT/CN2019/098239 WO2021016818A1 (zh) 2019-07-29 2019-07-29 传输信息的方法、终端设备和网络设备
EP19939871.0A EP4002944A4 (en) 2019-07-29 2019-07-29 METHOD OF TRANSMISSION OF INFORMATION, TERMINAL DEVICE AND NETWORK DEVICE
CN201980098452.9A CN114128387A (zh) 2019-07-29 2019-07-29 传输信息的方法、终端设备和网络设备
US17/587,517 US20220150932A1 (en) 2019-07-29 2022-01-28 Information Transmission Method, Terminal Device, and Network Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098239 WO2021016818A1 (zh) 2019-07-29 2019-07-29 传输信息的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/587,517 Continuation US20220150932A1 (en) 2019-07-29 2022-01-28 Information Transmission Method, Terminal Device, and Network Device

Publications (1)

Publication Number Publication Date
WO2021016818A1 true WO2021016818A1 (zh) 2021-02-04

Family

ID=74228397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098239 WO2021016818A1 (zh) 2019-07-29 2019-07-29 传输信息的方法、终端设备和网络设备

Country Status (6)

Country Link
US (1) US20220150932A1 (zh)
EP (1) EP4002944A4 (zh)
JP (1) JP7336585B2 (zh)
KR (1) KR20220039760A (zh)
CN (1) CN114128387A (zh)
WO (1) WO2021016818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245503A1 (zh) * 2022-06-22 2023-12-28 北京小米移动软件有限公司 一种监听方法、发送方法、装置、设备以及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
CN103139819A (zh) * 2009-08-28 2013-06-05 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
CN105992378A (zh) * 2015-02-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的载波聚合中的pdcch方法和装置
US20170359746A1 (en) * 2014-12-09 2017-12-14 Lg Electronics Inc. Method for terminal for reporting channel status information in wireless communication system supporting carrier aggregation, and apparatus for the method
CN108781199A (zh) * 2016-03-07 2018-11-09 三星电子株式会社 无线通信系统中用于多种服务中的控制信令的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10334554B2 (en) * 2015-03-06 2019-06-25 Lg Electronics Inc. Reference signal reception method in wireless communication system, and device for same
WO2018204491A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Method and apparatus for improving hybrid automatic repeat request (harq) feedback performance of enhanced mobile broadband (embb) when impacted by low latency traffic
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
US20220070897A1 (en) * 2019-02-15 2022-03-03 Lg Electronics Inc. Downlink signal transmission/reception method for multiple transport block scheduling, and device therefor
US11229022B2 (en) * 2019-03-26 2022-01-18 Samsung Electronics Co., Ltd. Determination of physical downlink control channel (PDCCH) assignment in power saving mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139819A (zh) * 2009-08-28 2013-06-05 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
US20170359746A1 (en) * 2014-12-09 2017-12-14 Lg Electronics Inc. Method for terminal for reporting channel status information in wireless communication system supporting carrier aggregation, and apparatus for the method
CN105992378A (zh) * 2015-02-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的载波聚合中的pdcch方法和装置
CN108781199A (zh) * 2016-03-07 2018-11-09 三星电子株式会社 无线通信系统中用于多种服务中的控制信令的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245503A1 (zh) * 2022-06-22 2023-12-28 北京小米移动软件有限公司 一种监听方法、发送方法、装置、设备以及可读存储介质

Also Published As

Publication number Publication date
US20220150932A1 (en) 2022-05-12
JP7336585B2 (ja) 2023-08-31
KR20220039760A (ko) 2022-03-29
EP4002944A1 (en) 2022-05-25
EP4002944A4 (en) 2022-10-12
JP2022542306A (ja) 2022-09-30
CN114128387A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP2018514163A (ja) Lc−mtcデバイスに対するアップリンク制御メッセージ間の衝突を防止するための方法および装置
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
US11729819B2 (en) Method and device for determining contention window
WO2021031202A1 (zh) 数据传输的方法和装置
EP4181594A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
US11683130B2 (en) Method and device for transmitting feedback information
WO2019192500A1 (zh) 通信方法和通信装置
US20230412319A1 (en) Wireless communication method, terminal device and network device
WO2021016818A1 (zh) 传输信息的方法、终端设备和网络设备
WO2020088275A1 (zh) 数据传输方法和装置
US20220368505A1 (en) Data feedback method and apparatus
WO2022057175A1 (zh) 一种通信方法和装置
WO2020097920A1 (zh) 参数重配的方法和装置
WO2021022422A1 (en) Transmission of high layer ack/nack
WO2019192002A1 (zh) 信息传输方法、终端设备和网络设备
WO2019157639A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
US20230363053A1 (en) Method for sidelink communication, terminal device, non-transitory computer-readable storage medium
US20230224908A1 (en) Method for repeatedly transmitting control channel, terminal device, and network device
WO2024032322A1 (zh) 信号传输方法与装置
WO2023051313A1 (zh) 通信的方法和装置
CN113383591B (zh) 一种通信方法及装置
US20240023076A1 (en) Method for channel estimation, terminal device, and network device
US20230353292A1 (en) Wireless communication method and device
WO2021072608A1 (zh) 最小时间单元偏移的通知方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005893

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019939871

Country of ref document: EP

Effective date: 20220216