WO2021015272A1 - Heat exchanger and air conditioning device - Google Patents

Heat exchanger and air conditioning device Download PDF

Info

Publication number
WO2021015272A1
WO2021015272A1 PCT/JP2020/028552 JP2020028552W WO2021015272A1 WO 2021015272 A1 WO2021015272 A1 WO 2021015272A1 JP 2020028552 W JP2020028552 W JP 2020028552W WO 2021015272 A1 WO2021015272 A1 WO 2021015272A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
evaporation
heat exchange
unit
heat
Prior art date
Application number
PCT/JP2020/028552
Other languages
French (fr)
Japanese (ja)
Inventor
功 畔柳
小原 公和
剛史 細野
達博 鈴木
川野 茂
康太 萩原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020054811A external-priority patent/JP7413875B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021015272A1 publication Critical patent/WO2021015272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • This disclosure relates to heat exchangers and air conditioners.
  • the evaporation part is arranged above the heat dissipation part and a water guiding flow path for guiding the condensed water generated in the evaporation part to the heat dissipation part is provided (see, for example, Patent Document 1).
  • the aim is to improve the cooling efficiency of cooling the refrigerant in the heat dissipation part by applying condensed water to the heat dissipation part and vaporizing the condensed water in the heat dissipation part to remove the heat of vaporization from the refrigerant.
  • Patent Document 1 does not describe how to apply the condensed water generated in the evaporation part to the heat dissipation part in the air conditioner. For example, if the condensed water is allowed to flow down to the upper tank of the heat radiating portion, the condensed water may flow to the leeward side along the upper tank of the heat radiating portion.
  • the condensed water is not vaporized in the heat radiating part and flows to the leeward side of the heat radiating part as it is. Therefore, there is a high possibility that a sufficient cooling effect of the refrigerant cannot be obtained in the heat radiating portion.
  • the present disclosure provides a heat exchanger provided with an evaporation unit and a heat dissipation unit, the heat exchanger in which the condensed water generated in the evaporation unit is used to improve the cooling effect of the refrigerant in the heat dissipation unit, and an air conditioner.
  • a heat exchanger provided with an evaporation unit and a heat dissipation unit, the heat exchanger in which the condensed water generated in the evaporation unit is used to improve the cooling effect of the refrigerant in the heat dissipation unit, and an air conditioner.
  • a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant. It is provided on the upper side with respect to the heat radiating section, and includes an evaporating section which absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
  • the condensed water generated from the evaporation part by the heat exchange of the evaporation part is guided to the wind side of the first air flow in the heat exchange core in the heat dissipation part, and this guided condensed water is applied to the heat exchange core to change from the high pressure refrigerant to the condensed water. It dissipates heat and vaporizes condensed water.
  • the high-pressure refrigerant can be cooled by using the condensed water. This makes it possible to provide a heat exchanger in which the condensed water generated in the evaporation section is used to improve the cooling effect of the refrigerant in the heat dissipation section.
  • FIG. 5 is a cross-sectional view showing a cross section of III-III of FIG. 2 in the first embodiment, and is an excerpt of a third plate on one side of a side plate portion on one side. It is the arrow view of FIG. 2 in the IV direction in 1st Embodiment, and is the figure which showed the 2nd plate of the other side of the other side plate part by the alternate long and short dash line.
  • the second plate member arranged on the other side in the stacking direction is viewed as an arrow in the direction indicated by the arrow V in FIG. It is a visual view.
  • the first plate member arranged on one side in the stacking direction is an arrow viewed in the direction indicated by the arrow IV in FIG. It is a visual view.
  • it is the cross-sectional view which showed the cross section of VII-VII of FIG. 2, and is the figure which shows typically the refrigerant flow in a condensed part by an arrow.
  • FIG. 15 is the figure which showed the structure of the water storage part, the drain pipe, and the condensation part.
  • It is a refrigerant circuit diagram which showed the refrigerating cycle circuit which has the heat exchanger of 2nd Embodiment, and is the figure which corresponds to FIG.
  • It is sectional drawing which shows typically the schematic structure of the heat exchanger in 2nd Embodiment, and is the figure which corresponds to FIG.
  • FIG. 18 is an arrow view in the XIX direction of FIG. 18, showing a side plate portion on one side of the second embodiment.
  • It is sectional drawing which showed the XX-XX cross section of FIG. 18 in 2nd Embodiment, and is the figure which showed the other side side plate part of 2nd Embodiment.
  • FIG. 18 is the first communication hole of the condensing plate portion on the other side and the second communication plate portion of the evaporation plate portion on the other side of the second plate member of FIG. It is a figure which showed the structure which the communication hole is not provided.
  • FIG. 22 shows the cross section of XXIV-XXIV of FIG. 18, and is the first communication hole of the other side condensing plate portion and the first of the other side evaporation plate portion of the second plate member of FIG. It is a figure which showed the structure which the communication hole is not provided.
  • FIG. 22 shows the cross section of XXIV-XXIV of FIG. 18, and is the first communication hole of the other side condensing plate portion and the first of the other side evaporation plate portion of the second plate member of FIG.
  • FIG. 5 is a schematic diagram schematically showing an evaporation unit, a water storage unit, a drain pipe, a condensing unit, and a distributor in the heat exchanger in the third embodiment.
  • the third embodiment it is an arrow view in the direction of XXVI of FIG. 25, and is a schematic view schematically showing a drain pipe, a condensing part, and a distributor.
  • It is a perspective view which shows typically the state which disassembled the condensing part and a distributor in 3rd Embodiment.
  • FIG. 21 in 4th Embodiment is the figure which showed the one-side condensing plate part and one-side evaporation plate part excerpted.
  • FIG. 21 in 4th Embodiment
  • FIG. 5 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a fifth embodiment as viewed from above in the vertical direction. It is a figure which showed the structure of the blower unit of 5th Embodiment. It is sectional drawing which showed the cross section of XXXI-XXXI of FIG. 29, and is the figure which showed the arrangement relation of the heat exchanger and the duct of 5th Embodiment. 6 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a sixth embodiment as viewed from above in the vertical direction. It is sectional drawing which showed the sectional view of XXXIII-XXXIII of FIG.
  • FIG. 5 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a seventh embodiment as viewed from above in the vertical direction. It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 8th Embodiment. It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 9th Embodiment. It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of the tenth embodiment. It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 11th Embodiment.
  • the heat exchanger 10 of the present embodiment constitutes a part of the refrigeration cycle circuit 12 in which the refrigerant circulates. That is, in the refrigeration cycle circuit 12, the refrigerant compressed by the compressor 14 included in the refrigeration cycle circuit 12 flows into the heat exchanger 10, and the refrigerant flowing into the heat exchanger 10 flows through the heat exchanger 10. Then, it is sucked into the compressor 14.
  • the heat exchanger 10 exchanges heat between the air flowing into the air-conditioned space where cooling or heating is performed and the refrigerant. For example, when the air-conditioned space is cooled, the heat exchanger 10 cools the air flowing to the air-conditioned space with a refrigerant. Further, when the air-conditioned space is heated, the heat exchanger 10 heats the air flowing to the air-conditioned space with a refrigerant.
  • the heat exchanger 10 of the present embodiment is configured by brazing and joining a plurality of constituent members made of a metal such as an aluminum alloy to each other.
  • the heat exchanger 10 of the present embodiment includes a condensing unit 20 as a heat radiating unit, an evaporation unit 22, an internal heat exchange unit 28, one side plate portion 30, the other side plate portion 32, and a tubular inlet. It includes a pipe 34 and a tubular outlet pipe 36.
  • the heat exchanger 10 includes a water guide plate 50 as a second water guide for guiding the condensed water to the upper side of the outer cylinder 281.
  • the one-side side plate portion 30 and the other-side side plate portion 32 form a substantially plate shape with a predetermined stacking direction Ds as a thickness direction and a vertical direction Dg as a longitudinal direction. There is.
  • the stacking direction Ds is a direction intersecting the vertical direction Dg, strictly speaking, a direction orthogonal to the vertical direction Dg.
  • FIG. 2 shows a cross section of II-II of FIG.
  • the direction orthogonal to both the stacking direction Ds and the vertical direction Dg is referred to as the heat exchanger width direction Dw.
  • the one side plate portion 30 is arranged at one end of the heat exchanger 10 in the stacking direction Ds, and the other side plate portion 32 is arranged at the other end of the heat exchanger 10 in the stacking direction Ds.
  • the condensing portion 20, the evaporating portion 22, and the internal heat exchange portion 28 are arranged between the one side side plate portion 30 and the other side side plate portion 32 in the stacking direction Ds. That is, the one-side side plate portion 30 is arranged on one side of the stacking direction Ds with respect to the condensing portion 20, the evaporating portion 22, and the internal heat exchange portion 28, and the other side side plate portion 32 is the condensing portion 20, the evaporating portion, and the evaporating portion.
  • the one side side plate portion 30 and the other side side plate portion 32 have a condensing portion 20, an evaporation portion 22, and an internal heat exchange portion 28 between the one side side plate portion 30 and the other side side plate portion 32.
  • the water guide plate 50 is sandwiched between them.
  • the condensing portion 20 has a laminated structure in which a plurality of condensed constituent portions 201 having the laminating direction Ds in the thickness direction and the vertical direction Dg in the longitudinal direction are laminated in the laminating direction Ds. That is, the condensing unit 20 has a plurality of condensed components 201, and the plurality of condensed components 201 are laminated in the stacking direction Ds and joined to each other.
  • one side condensing tank space 201a, the other side condensing tank space 201b, and the condensing flow path 201c (that is, high-pressure refrigerant), respectively.
  • An internal space consisting of a flow path) is formed.
  • the one-side condensing tank space 201a, the other-side condensing tank space 201b, and the condensing flow path 201c are spaces through which the refrigerant flows.
  • One side condensing tank space 201a is connected to one end of the condensing flow path 201c, and the other side condensing tank space 201b is connected to the other end of the condensing flow path 201c.
  • the condensing flow path 201c extends, for example, along a corrugated path that reciprocates a plurality of times in the vertical direction Dg. In the present embodiment, the condensing flow path 201c extends along a corrugated path that reciprocates three times in the vertical direction Dg.
  • the condensing flow path 201c is arranged above the one-sided condensing tank space 201a and the other-side condensing tank space 201b in the vertical direction Dg. Further, the one-sided condensing tank space 201a is arranged on one side of the heat exchanger width direction Dw with respect to the other-side condensing tank space 201b.
  • At least one side condensing tank space 201a or the other side condensing tank space 201b communicates with each other between the condensing components 201 adjacent to each other.
  • the refrigerant compressed and discharged by the compressor 14 flows into the condensing section 20 through the inlet pipe 34 as shown by arrows Fi and F1a, and the refrigerant flows into the condensing flow path of each condensing component 201. It flows to 201c. Then, the condensing unit 20 exchanges heat between the air around the condensing unit 20 and the refrigerant flowing in the condensing flow path 201c, thereby dissipating heat from the refrigerant and condensing the refrigerant.
  • the arrows F2a, F2b, and F2c in FIG. 7 indicate the refrigerant flow in the plurality of one-sided condensing tank spaces 201a adjacent to each other in the stacking direction Ds and connected to each other.
  • arrows F3a and F3b each indicate a refrigerant flow in a plurality of other side condensing tank spaces 201b adjacent to each other in the stacking direction Ds and connected to each other.
  • arrows F4a to F4h each indicate a refrigerant flow in the condensation flow path 201c.
  • the evaporation unit 22 has a laminated structure in which a plurality of evaporation components 221 having the lamination direction Ds in the thickness direction and the vertical direction Dg in the longitudinal direction are laminated in the lamination direction Ds. That is, the evaporation component 22 has a plurality of evaporation components 221 and the plurality of evaporation components 221 are laminated in the stacking direction Ds and joined to each other.
  • one side evaporation tank space 221a, the other side evaporation tank space 221b and the evaporation flow path 221c (that is, low pressure refrigerant).
  • An internal space consisting of a flow path) is formed.
  • the one-side evaporation tank space 221a, the other-side evaporation tank space 221b, and the evaporation flow path 221c are spaces through which the refrigerant flows.
  • the one-side evaporation tank space 221a is connected to one end of the evaporation flow path 221c, and the other side evaporation tank space 221b is connected to the other end of the evaporation flow path 221c.
  • the evaporation flow path 221c extends, for example, along a corrugated path that reciprocates a plurality of times in the vertical direction Dg. In the present embodiment, the evaporation flow path 221c extends along a corrugated path that reciprocates twice in the vertical direction Dg.
  • the evaporation flow path 221c is formed so that the flow path cross-sectional area is larger than that of the condensation flow path 201c.
  • the evaporation flow path 221c is arranged below the one-side evaporation tank space 221a and the other-side evaporation tank space 221b in the vertical direction Dg. Further, the one-side evaporation tank space 221a is arranged on one side of the heat exchanger width direction Dw with respect to the other-side evaporation tank space 221b.
  • At least one side evaporation tank space 221a or the other side evaporation tank space 221b communicate with each other between the evaporation components 221 adjacent to each other.
  • the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg in the order of the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20.
  • the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg from the upper side in the order of description. That is, the internal heat exchange unit 28 is arranged so as to overlap the evaporation unit 22 on the lower side.
  • the condensing unit 20 is arranged so as to overlap the evaporation unit 22 and the internal heat exchange unit 28 on the lower side.
  • the refrigerant flowing out of the condensing section 20 passes through the internal heat exchange section 28 and the throttle section 321e included in the other side plate section 32 in the order of description thereof, and is decompressed by the throttle section 321e (that is, the decompression section). Flows into the evaporation unit 22.
  • the refrigerant flow from the condensing portion 20 to the evaporating portion 22 is represented by, for example, arrows F1b to F1f in FIG.
  • the arrows F5a and F5b in FIG. 8 indicate the refrigerant flow in the plurality of one-sided evaporation tank spaces 221a adjacent to each other in the stacking direction Ds and connected to each other. Further, the arrows F6a and F6b each indicate the refrigerant flow in the plurality of other side evaporation tank spaces 221b adjacent to each other in the stacking direction Ds and connected to each other. Further, arrows F7a to F7g each indicate a refrigerant flow in the evaporation flow path 221c.
  • the one-side side plate portion 30 has a one-sided first plate 301, a one-sided second plate 302, and a one-sided third plate 303, which are plate-shaped members.
  • the one-side side plate portion 30 is configured such that the one-side first plate 301, the one-side second plate 302, and the one-side third plate 303 are laminated and joined to each other.
  • the one-sided first plate 301, the one-sided second plate 302, and the one-sided third plate 303 are arranged in the order of the one-sided first plate 301, the one-sided second plate 302, and the one-sided third plate 303 in the stacking direction Ds. It is stacked from one side to the other.
  • the condensing portion 20 and the evaporating portion 22 are fixed to the one side side plate portion 30, respectively. Specifically, the condensing portion 20 and the evaporating portion 22 are joined in parallel to the other side of the first plate 301 on one side in the stacking direction Ds. That is, the plurality of condensation constituents 201 and the plurality of evaporation constituents 221 are respectively laminated on the other side of the stacking direction Ds with respect to the one side plate portion 30.
  • the other side side plate portion 32 has a plate-shaped member, the other side first plate 321 and the other side second plate 322, and the other side first plate 321 and the other side second plate 322 are laminated. It is composed of being joined to each other.
  • the other side first plate 321 and the other side second plate 322 are laminated from one side to the other side in the stacking direction Ds in the order of the other side first plate 321 and the other side second plate 322.
  • the condensing portion 20 and the evaporating portion 22 are fixed to the other side plate portion 32, respectively. Specifically, the condensing portion 20 and the evaporating portion 22 are joined in parallel to one side of the other side first plate 321 in the stacking direction Ds. That is, the plurality of condensation constituents 201 and the plurality of evaporation constituents 221 are respectively laminated on one side of the stacking direction Ds with respect to the other side plate portion 32.
  • the internal heat exchange section 28 flows out from the refrigerant flowing out from the condensing section 20 (that is, the condensing flow path 201c) and from the evaporating section 22 (that is, the evaporation flow path 221c).
  • the heat is exchanged with the refrigerant. That is, the internal heat exchange unit 28 transfers heat from the high-pressure refrigerant that has passed through the condensing unit 20 to the low-pressure refrigerant that has passed through the evaporation unit 22.
  • the internal heat exchange portion 28 has a double-tube structure extending in the stacking direction Ds, and has a tubular outer cylinder portion 281 and a tubular inner cylinder inserted into the outer cylinder portion 281. It has a portion 282.
  • the internal heat exchange section 28 is arranged side by side with the condensing section 20 and the evaporation section 22 between the first plate 301 on one side and the first plate 321 on the other side, and the first plate 301 on one side and the first plate on the other side thereof. It is joined to 321 respectively.
  • the outer cylinder portion 281 has a plurality of outer cylinder constituent portions 281a and 281b.
  • the outer cylinder portion 281 has a tubular shape formed so as to extend in the stacking direction Ds by connecting the plurality of outer cylinder constituent portions 281a and 281b in series in the stacking direction Ds and joining them to each other.
  • the outer cylinder portion 281 includes a plurality of first outer cylinder constituent portions 281a and a plurality of second outer cylinder constituent portions 281b having a shape different from that of the first outer cylinder constituent portion 281a. It has as cylinder constituent parts 281a and 281b.
  • first outer cylinder constituent portion 281a that is, the first and second internal heat exchange portion forming portions
  • second outer cylinder constituent portion 281b that is, the second and fourth internal heat exchange portion forming portions
  • the second outer cylinder constituent portion 281b has a shape symmetrical to the stacking direction Ds with respect to the first outer cylinder constituent portion 281a.
  • the plurality of first outer cylinder constituent portions 281a and the plurality of second outer cylinder constituent portions 281b are alternately connected in series in the stacking direction Ds and brazed to each other. In this way, the outer tubular portion 281 is configured.
  • the outer tubular portion 281 has an upper outer surface 283 formed toward the upper side of the outer surface in the vertical direction Dg (that is, the ventilation flow path 22a). I have.
  • the outer cylinder portion 281 is an upper portion of the upper outer surface 283, and heat exchangers the condensed water flowing along the water guide plate 50 and the condensed water dropped from the ventilation flow path 22a (that is, the second air flow path). It serves as a first water conveyance portion that leads to one side of Dw in the width direction.
  • the inner cylinder portion 282 is composed of a pipe member formed so as to extend in the stacking direction Ds. As shown in FIGS. 2 and 10, one end of the inner tubular portion 282 is inserted into a through hole 302a for one end formed in the second plate 302 on one side, and the second through hole 302a on one side is used for the through hole 302a for one end. It is brazed to the plate 302. Further, as shown in FIGS. 2 and 9, the other end of the inner cylinder portion 282 is inserted into the other end through hole 321a formed in the other side first plate 321 and the other end through hole 321a. It is brazed and joined to the side first plate 321.
  • the internal heat exchange section 28 has two flow paths extending in the stacking direction Ds, specifically, an outer flow path 28a through which the refrigerant flowing out from the evaporation section 22 flows, and a condensing section 20.
  • An inner flow path 28b through which the refrigerant flowing out of the water flows is formed.
  • the outer flow path 28a is arranged inside the outer cylinder portion 281, and the inner flow path 28b is arranged inside the outer flow path 28a with the cylinder wall of the inner cylinder portion 282 interposed therebetween. There is. Therefore, in the internal heat exchange unit 28, the refrigerant flowing in the outer flow path 28a and the refrigerant flowing in the inner flow path 28b exchange heat with each other via the cylinder wall of the inner cylinder portion 282.
  • the water guide plate 50 is a second water guide portion arranged between the one side side plate portion 30 and the other side side plate portion 32.
  • the water guide plate 50 is arranged below the plurality of ventilation flow paths 22a.
  • the water guide plate 50 is arranged on the other side of the heat exchanger width direction Dw (that is, the leeward side of the air flow in the ventilation flow path 22a) with respect to the outer cylinder portion 281 of the internal heat exchange portion 28.
  • the water guide plate 50 is arranged so that its thickness direction intersects the vertical direction Dg.
  • the upper surface of the water guide plate 50 is arranged so as to face the ventilation flow path 22a.
  • One side of the upper surface of the water guide plate 50 in the heat exchanger width direction Dw is located at the same portion in the vertical direction Dg as the other side of the heat exchanger width direction Dw of the upper outer surface 283 of the outer cylinder portion 281.
  • the water guide plate 50 is formed in an inclined shape so that its upper surface advances in the vertical direction Dg toward the other side in the heat exchanger width direction Dw.
  • the water guide plate 50 of the present embodiment plays a role of guiding the condensed water dropped from the plurality of ventilation flow paths 22a to the upper outer surface 283.
  • the through hole 321b for the inlet and the through hole 321c for the exit are formed in the first plate 321 on the other side.
  • a diaphragm hole 321d that functions as an orifice hole is also formed in the first plate 321 on the other side. That is, the other side side plate portion 32 has a portion of the other side first plate 321 in which the throttle hole 321d is formed as the throttle portion 321e.
  • the throttle hole 321d is an orifice.
  • An inlet pipe 34 is inserted into the inlet through hole 321b, and the inlet pipe 34 is brazed to the other side first plate 321 at the inlet through hole 321b. As a result, the inlet pipe 34 is connected to the condensing portion 20 so as to communicate with the condensing portion 20.
  • An outlet pipe 36 is inserted into the outlet through hole 321c, and the outlet pipe 36 is brazed to the other side first plate 321 at the outlet through hole 321c. As a result, the outlet pipe 36 is connected to the internal heat exchange section 28 so as to communicate with the outer flow path 28a of the internal heat exchange section 28.
  • the other side second plate 322 is brazed and joined to the other side first plate 321 on the other side in the stacking direction Ds.
  • the other side relay flow path 32a is formed between the other side first plate 321 and the other side relay flow path 32a.
  • the other side relay flow path 32a extends in the vertical direction Dg, and is provided between the inner flow path 28b of the internal heat exchange portion 28 and the throttle hole 321d in the refrigerant flow. That is, the other side relay flow path 32a is a flow path connecting the refrigerant outlet side of the inner flow path 28b and the refrigerant inlet side of the throttle hole 321d.
  • the inlet position evaporation component 222 located at the other end of the stacking direction Ds among the plurality of evaporation components 221 has the evaporation section 22 from the throttle hole 321d as the throttle flow path.
  • An evaporation unit inlet 222a for allowing the refrigerant to flow into the inside is provided.
  • the evaporation unit inlet 222a is included in the one-side evaporation tank space 221a of the inlet position evaporation component 222.
  • the throttle hole 321d of the other side plate portion 32 is connected to the evaporation portion inlet 222a.
  • the hole diameter of the throttle portion 321e of the other side plate portion 32 is set so as to cause a predetermined depressurizing action on the refrigerant passing through the throttle hole 321d. That is, the throttle hole 321d is a fixed throttle that throttles the flow of the refrigerant, and functions as a decompression unit that decompresses the refrigerant flowing out from the condensing unit 20 and then flows it to the evaporation unit 22. Since the internal heat exchange section 28 is provided in the present embodiment, more specifically, the throttle hole 321d of the throttle section 321e flows out of the condensing section 20 and flows out from the condensing section 20 to the inner flow path 28b of the internal heat exchange section 28 and the other. The refrigerant that has passed through the side relay flow path 32a flows in.
  • a through hole 301b for a condensing portion and a through hole 301c for gas-liquid separation are formed in the first plate 301 on one side of the one-side side plate portion 30.
  • the through hole 301b for the condensing portion is located below the through hole 301c for gas-liquid separation.
  • the through hole 302b for the condensing portion and the through hole 302c for gas-liquid separation are formed in the second plate 302 on one side.
  • the through hole 302b for the condensing portion is located below the through hole 302a for one end and the through hole 302c for gas-liquid separation, and is arranged so as to be concentric with the through hole 301b for the condensing portion of the first plate 301 on one side. Has been done.
  • the one-side third plate 303 has a flow path cover portion 303a and a gas-liquid separation cover portion 303c arranged above the flow path cover portion 303a. ing.
  • the outlet position of the plurality of condensed components 201 located at one end of the stacking direction Ds is the outlet of the condensed section in which the refrigerant flows out from the inside of the condensed section 20.
  • 202a is provided.
  • the condensing portion outlet 202a is included in the one-sided condensing tank space 201a of the outlet position condensing component 202.
  • the through hole 301b for the condensing portion of the first plate 301 on one side and the through hole 302b for the condensing portion of the second plate 302 on the one side are connected to the outlet 202a of the condensing portion.
  • the one-side third plate 303 is brazed to one side of the stacking direction Ds with respect to the one-side second plate 302, whereby the flow path cover portion 303a of the one-side third plate 303 is unilaterally first.
  • a one-sided relay flow path 30a is formed between the two plates 302.
  • the one-side relay flow path 30a extends in the vertical direction Dg, and is provided between the through hole 302b for the condensing portion of the one-side second plate 302 and the inner flow path 28b of the internal heat exchange portion 28 in the refrigerant flow.
  • the one-side relay flow path 30a is a flow path connecting the condensing part outlet 202a of the condensing part 20 and the refrigerant inlet side of the inner flow path 28b. Due to such a flow path configuration of the refrigerant, the throttle hole 321d of the other side plate portion 32 is provided between the condensing portion outlet 202a and the evaporation portion inlet 222a in the refrigerant flow.
  • the gas-liquid separation through hole 301c of the first plate 301 on one side is composed of a penetration portion 301d on one side, a penetration portion 301e on the other side, and a connecting portion 301f.
  • the one-side penetrating portion 301d and the other-side penetrating portion 301e are formed so as to extend in the vertical direction Dg.
  • the other side penetrating portion 301e is arranged on the other side opposite to one side in the heat exchanger width direction Dw, slightly away from the one side penetrating portion 301d with respect to the one side penetrating portion 301d.
  • the connecting portion 301f is arranged between the one-side penetrating portion 301d and the other-side penetrating portion 301e, and connects the upper end portion of the one-side penetrating portion 301d and the upper end portion of the other-side penetrating portion 301e.
  • the evaporation unit 22 is provided with an evaporation unit outlet 22b that allows the refrigerant to flow out from the inside of the evaporation unit 22.
  • the evaporation portion outlet 22b is an opening hole opened in the stacking direction Ds.
  • the gas-liquid separation through hole 301c is formed so that the other side through hole 301e of the gas-liquid separation through hole 301c exclusively overlaps one side of the stacking direction Ds with respect to the evaporation part outlet 22b.
  • the gas-liquid separation through hole 302c of the second plate 302 on one side is formed so as to extend in the vertical direction Dg.
  • the gas-liquid separation through hole 302c is arranged so as to overlap the other side penetrating portion 301e of the one side first plate 301.
  • the gas-liquid separation through hole 302c of the second plate 302 on one side is arranged away from the one side through portion 301d of the first plate 301 on one side toward the other side in the heat exchanger width direction Dw. Has been done.
  • the gas-liquid separation cover portion 303c of the third plate 303 on one side has a shape recessed to one side in the stacking direction Ds, and is inside the cover between the second plate 302 on one side. It forms the space 303d.
  • the cover inner space 303d is a space connected to the gas-liquid separation through hole 302c of the second plate 302 on one side.
  • the second gas-liquid separation component 302d in which the through hole 302c is formed constitutes the gas-liquid separation unit 26. That is, the one-side side plate portion 30 has a gas-liquid separation portion 26. Refrigerant flows into the gas-liquid separation unit 26 from the evaporation unit 22 as shown by arrows F8 (see FIGS. 2 and 8).
  • the gas-liquid separation unit 26 functions as an accumulator that separates the gas-liquid of the refrigerant flowing in from the evaporation unit 22.
  • the gas-liquid separation unit 26 is formed in the gas-liquid separation unit 26 while allowing the gas-phase refrigerant out of the gas-liquid separated refrigerants to flow out from the gas-liquid separation unit 26 to the outer flow path 28a of the internal heat exchange unit 28.
  • the liquid phase refrigerant is stored in the liquid storage space 26a.
  • the liquid storage space 26a includes the gas-liquid separation through hole 302c of the one-side first plate 301, the other-side penetration portion 301e, and the one-side second plate 302, and the inside of the cover. It is composed of space 303d.
  • FIGS. 2, 10, 10 and 11 the state in which the liquid phase refrigerant is accumulated in the lower part of the liquid storage space 26a is shown by hatching.
  • the inner tubular portion 282 of the internal heat exchange portion 28 is inserted through the one-side penetrating portion 301d of the one-sided first plate 301 and then reaches the one-side through hole 302a of the one-sided second plate 302. Then, the one-side penetrating portion 301d of the one-sided first plate 301 communicates with the outer flow path 28a of the internal heat exchange portion 28 at the lower portion thereof. Therefore, the one-side penetrating portion 301d and the connecting portion 301f of the one-side first plate 301 function as a refrigerant lead-out flow path that guides the gas phase refrigerant from the liquid storage space 26a to the outer flow path 28a as shown by arrows F9a and F9b. ..
  • each of the plurality of condensing components 201 has a pair of plate-shaped condensing plate portions 201d and 201h, respectively.
  • the pair of condensing plate portions 201d and 201h are laminated in the stacking direction Ds.
  • the plurality of condensing components 201 are provided with each other so that the pair of condensing plate portions 201d and 201h form the condensing flow path 201c and the condensing tank spaces 201a and 201b between the pair of condensing plate portions 201d and 201h, respectively. It is composed by being joined.
  • the pair of condensing plate portions 201d and 201h are the one-side condensing plate portion 201d and the other-side condensing plate portion 201h arranged on the other side of the stacking direction Ds with respect to the one-side condensing plate portion 201d. Is.
  • one of the pair of condensing plate portions 201d and 201h, one side condensing plate portion 201d, is a first condensing tank forming portion recessed to one side in the stacking direction Ds. It has a 201e, a second condensation tank forming portion 201f, and a condensing flow path forming portion 201g.
  • the other side condensing plate portion 201h which is the other of the pair of condensing plate portions 201d and 201h, condenses with the first condensing tank forming portion 201i and the second condensing tank forming portion 201j recessed toward the other side in the stacking direction Ds. It has a flow path forming portion 201k.
  • the one-side condensed tank space 201a is formed between both of the first condensed tank forming portions 201e and 201i, and the other side condensed tank space 201b is formed between both the second condensed tank forming portions 201f and 201j. ing. Further, the condensed flow path 201c is formed between both condensed flow path forming portions 201g and 201k.
  • the width of the first condensing tank forming portion 201e and the width of the second condensing tank forming portion 201f are the same in the stacking direction Ds, which is larger than the width of the condensing flow path forming portion 201g. Is also getting bigger.
  • the width of the first condensing tank forming portion 201i and the width of the second condensing tank forming portion 201j are the same in the stacking direction Ds, and the condensing flow path forming portion 201k It is larger than the width of.
  • the first condensing tank forming portions 201e and 201i are joined to each other and the second condensing tank forming portions 201f and 201j are also joined to each other between the condensing constituent portions 201 adjacent to each other in the condensing portion 20. There is.
  • the ventilation flow path 20a (that is, the first air flow) through which the air flow (that is, the first air flow) passes between the condensate flow path forming portions 201g and 201k. 1 air flow path) is formed.
  • the condensing portion 20 is provided with a plurality of ventilation flow paths 20a. Therefore, the condensing portion 20 is provided with a plurality of pairs of condensing flow path forming portions 201g and 201k.
  • the plurality of pairs of condensing flow path forming portions 201g and 201k, and the plurality of condensing portion fins 203 form a condensing portion heat exchange core 230 that exchanges heat between the air flow and the refrigerant in the condensing portion 20.
  • a plurality of the ventilation flow paths 20a are formed side by side in the stacking direction Ds, and the plurality of ventilation flow paths 20a are condensed, which are corrugated fins brazed to the outside of the condensation flow path forming portions 201g and 201k, respectively.
  • the part fin 203 is arranged. Then, the condensing portion fin 203 promotes heat exchange between the air passing through the ventilation flow path 20a and the refrigerant in the condensing portion 20.
  • the condensed components 201 located at one end and the other end of the stacking direction Ds are located between them.
  • the shape is different from that of the condensed component 201.
  • the condensing component 201 located at the end on one side thereof is composed of a condensing plate portion 201h on the other side and a portion 301h of the first plate 301 on the one side facing the condensing plate portion 201h on the other side.
  • the condensing component 201 located at the other end is composed of one side condensing plate portion 201d and a portion 321f of the other side first plate 321 facing the one side condensing plate portion 201d.
  • the first condensing tank forming portion 201e is formed with the first communication hole 201m penetrating in the stacking direction Ds, and the second condensing tank forming portion 201m is formed.
  • a second communication hole 201n penetrating in the stacking direction Ds is formed in 201f.
  • the first condensing tank forming portion 201i is formed with the first communication hole 201o penetrating in the stacking direction Ds
  • the second condensing tank forming portion 201j is formed with the stacking direction Ds.
  • a second communication hole 201p is formed through the hole.
  • the condensing tank space 201a on one side of each of the condensing components 201 adjacent to each other communicates with each other by arranging the first communication holes 201m and 201o so as to overlap each other. Further, the condensing tank space 201b on the other side of the condensing component 201 adjacent to each other communicates with each other by arranging the second communication holes 201n and 201p so as to overlap each other.
  • the plurality of condensing components 201 are not provided with any of the first communication holes 201m and 201o and the second communication holes 201n and 201p.
  • a plurality of condensed constituent groups 204a to 204d having one or more condensed constituents 201 are configured.
  • the plurality of condensed constituent groups 204a to 204d the first condensed constituent group 204a, the second condensed constituent group 204b, the third condensed constituent group 204c, and the fourth condensed constituent group 204d are used. It is configured.
  • the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are arranged in the order of description from the other side in the stacking direction Ds. They are arranged side by side. Then, in the refrigerant flow of the condensing unit 20, the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are on the upstream side in the order of description. It is connected in series from to the downstream side.
  • the plurality of condensation flow paths 201c are connected in parallel in the refrigerant flow.
  • the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b Is not provided with the first communication hole 201o.
  • the second communication hole 201n is not provided in the one-sided condensing plate portion 201d located at one end of the stacking direction Ds in the second condensing component group 204b.
  • the first communication hole 201o is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the fourth condensing component group 204d.
  • the other side condensing plate portion 201h in which the second communication hole 201p is provided but the first communication hole 201o is not provided is shown in FIG.
  • each of the plurality of evaporation components 221 has a pair of plate-shaped evaporation plate portions 221d and 221h.
  • the pair of evaporation plate portions 221d and 221h are laminated in the stacking direction Ds.
  • the plurality of evaporation components 221 are provided with each other so that the pair of evaporation plates 221d and 221h form the evaporation flow path 221c and the evaporation tank spaces 221a and 221b between the pair of evaporation plates 221d and 221h, respectively. It is composed by being joined.
  • the pair of evaporation plate portions 221d and 221h are the one-side evaporation plate portion 221d and the other-side evaporation plate portion 221h arranged on the other side of the stacking direction Ds with respect to the one-side evaporation plate portion 221d. Is.
  • one of the pair of evaporation plate portions 221d and 221h, one side evaporation plate portion 221d, is a first evaporation tank forming portion recessed to one side in the stacking direction Ds. It has 221e, a second evaporation tank forming portion 221f, and an evaporation channel forming portion 221g.
  • the other side evaporation plate part 221h which is the other of the pair of evaporation plate parts 221d and 221h, evaporates with the first evaporation tank forming part 221i and the second evaporation tank forming part 221j recessed toward the other side in the stacking direction Ds. It has a flow path forming portion 221k.
  • the one-side evaporation tank space 221a is formed between the two first evaporation tank forming portions 221e and 221i, and the other side evaporation tank space 221b is formed between both the second evaporation tank forming portions 221f and 221j. ing. Further, the evaporation channel 221c is formed between both evaporation channel forming portions 221g and 221k.
  • the width of the first evaporation tank forming portion 221e and the width of the second evaporation tank forming portion 221f are the same in the stacking direction Ds, and the evaporation flow path forming portion 221g (that is, that is). It is larger than the width of the first and third low-pressure refrigerant flow path forming portions). Further, the widths of the evaporation tank forming portions 221e and 221f in the stacking direction Ds are the same as the widths of the condensing tank forming portions 201e and 201f of the one-side condensing plate portion 201d.
  • the width of the first evaporation tank forming portion 221i and the width of the second evaporation tank forming portion 221j are the same in the stacking direction Ds. It is larger than the width of the evaporation channel forming portion 221k (that is, the second and fourth low pressure refrigerant channel forming portions). Further, the widths of the evaporation tank forming portions 221i and 221j in the stacking direction Ds are the same as the widths of the condensing tank forming portions 201i and 201j of the condensing plate portion 201h on the other side.
  • the first evaporation tank forming portions 221e and 221i are joined to each other, and the second evaporation tank forming portions 221f and 221j are also joined to each other between the evaporation constituent parts 221 adjacent to each other. There is.
  • a ventilation flow path 22a through which air passes is formed between the evaporation flow path forming portions 221g and 221k.
  • the evaporation section 22 is provided with a plurality of ventilation flow paths 22a.
  • a plurality of the ventilation flow paths 22a are formed side by side in the stacking direction Ds, and each of the plurality of ventilation flow paths 22a (that is, the second air flow path) is brazed to the outside of the evaporation flow path forming portions 221g and 221k.
  • the evaporation part fin 223, which is a brazed corrugated fin, is arranged. Then, the evaporation section fin 223 promotes heat exchange between the air flow passing through the ventilation flow path 22a (that is, the second air flow) and the refrigerant in the evaporation section 22.
  • the evaporation component 221 located at the other end of the stacking direction Ds among the plurality of evaporation components 221 has a different shape from the other evaporation components 221.
  • the evaporation component 221 located at the other end is composed of a one-side evaporation plate portion 221d and a portion 321g of the other-side first plate 321 facing the one-side evaporation plate portion 221d. There is.
  • the first evaporation tank forming portion 221e is formed with a first communication hole 221m penetrating in the stacking direction Ds to form a second evaporation tank.
  • a second communication hole 221n penetrating in the stacking direction Ds is formed in the portion 221f.
  • the first evaporation tank forming portion 221i is formed with the first communication hole 221o penetrating in the stacking direction Ds
  • the second evaporation tank forming portion 221j is formed with the stacking direction Ds.
  • a second communication hole 221p is formed through the hole.
  • the evaporation tank space 221a on one side of each of the evaporation components 221 adjacent to each other communicates with each other by arranging the first communication holes 221m and 221o so as to overlap each other. Further, the evaporation tank space 221b on the other side of each of the evaporation components 221 adjacent to each other communicates with each other by arranging the second communication holes 221n and 221p so as to overlap each other.
  • the plurality of evaporation components 221 are not provided with any of the first communication holes 221m and 221o and the second communication holes 221n and 221p.
  • a plurality of evaporation constituent groups 224a to 224c having one or more evaporation constituents 221 are configured.
  • the first evaporation constituent group 224a, the second evaporation constituent group 224b, and the third evaporation constituent group 224c are configured as the plurality of evaporation constituent groups 224a to 224c.
  • the first evaporation component group 224a, the second evaporation component group 224b, and the third evaporation component group 224c are arranged side by side from the other side to one side in the stacking direction Ds in the order of description. .. Then, in the refrigerant flow of the evaporation unit 22, the first evaporation component group 224a, the second evaporation component group 224b, and the third evaporation component group 224c are connected in series from the upstream side to the downstream side in the order of description. ing.
  • the plurality of evaporation flow paths 221c are connected in parallel in the refrigerant flow.
  • the one-side evaporation plate part 221d located at one end of the stacking direction Ds in the first evaporation component group 224a Is not provided with the first communication hole 221 m.
  • the second communication hole 221p is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c.
  • the one-side evaporation plate portion 221d located at one end of the stacking direction Ds in the third evaporation component group 224c is not provided with the first communication hole 221m.
  • the one-side evaporation plate portion 221d in which the second communication hole 221n is provided but the first communication hole 221m is not provided is shown in FIG.
  • one one-side condensing plate portion 201d, one one-side evaporation plate portion 221d, and one first outer cylinder constituent portion 281a are configured as a single component. .. That is, the one-side condensing plate portion 201d, the one-side evaporation plate portion 221d, and the first outer cylinder constituent portion 281a constitute one first plate member 381 (that is, the first and third heat exchange plates). ..
  • the first plate members 381 the one-side condensing plate portion 201d, the first outer cylinder constituent portion 281a, and the one-side evaporation plate portion 221d are arranged in this order from the lower side to the upper side in the vertical direction Dg. It is arranged in.
  • the first plate member 381 has a first outer cylinder constituent portion 281a, which is a portion constituting a part of the internal heat exchange portion 28, between the one-side condensing plate portion 201d and the one-side evaporation plate portion 221d. doing. In short, the first plate member 381 constitutes a part of the internal heat exchange unit 28.
  • one other side condensing plate portion 201h, one other side evaporation plate portion 221h, and one second outer cylinder constituent portion 281b are configured as a single component. That is, the other side condensing plate portion 201h, the other side evaporating plate portion 221h, and the second outer cylinder forming portion 281b constitute one second plate member 382 (that is, the second and fourth heat exchange plates). .. Among the second plate members 382, the other side condensing plate portion 201h, the second outer cylinder constituent portion 281b, and the other side evaporation plate portion 221h are arranged in this order from the lower side to the upper side in the vertical direction Dg. It is arranged in.
  • the second plate member 382 has a second outer cylinder constituent portion 281b, which is a portion constituting a part of the internal heat exchange portion 28, between the other side condensing plate portion 201h and the other side evaporation plate portion 221h. doing. In short, the second plate member 382 constitutes a part of the internal heat exchange portion 28.
  • the first plate member 381 is formed so that the outer cylinder forming portion 281a is convex toward one side of the stacking direction Ds (that is, one side in the predetermined direction) with respect to the evaporation flow path forming portion 221g.
  • the second plate member 382 is formed so that the outer cylinder constituent portion 281b is convex toward the other side of the stacking direction Ds (that is, the other side in the predetermined direction) with respect to the evaporation flow path forming portion 221k.
  • Both the first plate member 381 and the second plate member 382 are made of a metal having good thermal conductivity such as an aluminum alloy. Further, the plurality of first plate members 381 and the plurality of second plate members 382 are alternately laminated and arranged in the stacking direction Ds, and are brazed to each other. In the present embodiment, the first plate member 381 and the second plate member 382 are joined to a plate member located at one end of the stacking direction Ds, that is, the first plate 301 on one side.
  • the plate member is a second plate member 382.
  • the plate member located at the other end of the laminated structure in the stacking direction Ds, that is, the plate member joined to the first plate 321 on the other side is referred to as the first plate member 381.
  • the second plate member 382 has the front and back surfaces of the stacking direction Ds with respect to the first plate member 381, except for the presence or absence of the communication holes 201m, 201n, 201o, 201p, 221m, 221n, 221o, and 221p. It is said that the shape is inverted. Both the first plate member 381 and the second plate member 382 have a shape symmetrical with respect to the heat exchanger width direction Dw. Therefore, parts are standardized between at least a part of the plurality of first plate members 381 and at least a part of the plurality of second plate members 382.
  • the internal space of the condensation component 201, the internal space of the evaporation component 221 and the outer flow path 28a of the internal heat exchange unit 28 are mutually connected. It is an independent space. That is, the first plate member 381 is formed so as to separate the condensing flow path 201c, the outer flow path 28a, and the evaporation flow path 221c formed by the first plate member 381 from each other. Similarly to this, the second plate member 382 is also formed so as to separate the condensing flow path 201c, the outer flow path 28a, and the evaporation flow path 221c formed by the second plate member 382 from each other.
  • the refrigerant flows as follows. First, as shown in FIGS. 1, 2, and 7, the refrigerant discharged from the compressor 14 passes through the inlet pipe 34 as shown by arrows Fi and F1a, and the first condensed component group 204a of the condensed portion 20 Of these, a plurality of one-sided condensing tank spaces 201a flow into the upstream space in which they are connected.
  • the refrigerant that has flowed into the upstream space of the first condensing component group 204a is distributed to the plurality of condensing flow paths 201c while flowing to one side of the stacking direction Ds as shown by the arrow F2a in the upstream space.
  • an air flow from one side of the heat exchanger width direction Dw flows to the other side of the heat exchanger width direction Dw through the circumference of the condensing component 201 (that is, a plurality of ventilation flow paths 20a) as shown by the arrow FB2 in FIG.
  • the refrigerant (that is, high-pressure refrigerant) flowing through the plurality of condensing flow paths 201c flows in parallel with each other as shown by arrows F4a, F4b, and F4c, and the air flow around the condensing component 201 (that is, the plurality of ventilation flow paths 20a). It exchanges heat with the air flow inside) and dissipates heat to that air flow.
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected. Further, the refrigerant is transferred from the downstream space of the first condensing component group 204a to the upstream space in which a plurality of other side condensing tank spaces 201b of the second condensing component group 204b are connected as shown by an arrow F3a. Inflow. The refrigerant that has flowed into the upstream space of the second condensed component group 204b is distributed to the plurality of condensed flow paths 201c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing through the plurality of condensed flow paths 201c exchanges heat with the air flow around the condensed component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other as shown by arrows F4d and F4e. It is made to dissipate heat to the air flow.
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected. Further, the refrigerant flows from the downstream space of the second condensed component group 204b into the one-sided condensed tank space 201a as the upstream space of the third condensed component group 204c as shown by an arrow F2b. The refrigerant that has flowed into the upstream space of the third condensed component group 204c flows from the upstream space to the condensed flow path 201c.
  • the refrigerant flowing in the condensing flow path 201c exchanges heat with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing as shown by the arrow F4f, and dissipates heat to the air. ..
  • the refrigerant flows from the condensing flow path 201c into the condensing tank space 201b on the other side as a downstream space. Further, the refrigerant is transferred from the downstream space of the third condensed component group 204c to the upstream space in which a plurality of other side condensed tank spaces 201b of the fourth condensed component group 204d are connected as shown by an arrow F3b. Inflow.
  • the refrigerant that has flowed into the upstream space of the fourth condensed component group 204d is distributed to the plurality of condensed flow paths 201c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of condensing flow paths 201c exchanges heat with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other as shown by arrows F4g and F4h. It is made to dissipate heat to the air flow.
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected.
  • the refrigerant that has flowed into the space on the downstream side of the fourth condensing component group 204d is, as shown by arrows F1b and F2c, from the condensing portion outlet 202a to the condensing portion through hole 301b of the first plate 301 on one side and the second on one side. It flows into the one-side relay flow path 30a through the through hole 302b for the condensing portion of the plate 302.
  • the refrigerant flows from the lower side to the upper side of the vertical Dg as shown by the arrow F1c in FIG. 2, and the refrigerant flows from the one-side relay flow path 30a to the internal heat exchange portion as shown by the arrow F1d. It flows into the inner flow path 28b of 28.
  • the refrigerant flows from one side of the stacking direction Ds to the other side, and the refrigerant flows from the inner flow path 28b to the other side relay flow path 32a as shown by the arrow F1e.
  • the refrigerant flows from the lower side to the upper side in the vertical direction Dg, and the refrigerant flows from the other side relay flow path 32a through the throttle hole 321d of the other side first plate 321 into the evaporation unit 22. Inflow to.
  • the refrigerant flow is throttled in the throttle hole 321d, so that the refrigerant pressure after passing through the throttle hole 321d is lower than the refrigerant pressure before passing through the throttle hole 321d.
  • the refrigerant that has passed through the throttle hole 321d of the throttle section 321e flows into the evaporation section 22 from the evaporation section inlet 222a. Therefore, all of the plurality of condensing flow paths 201c formed in the condensing portion 20 evaporate the evaporating portion 22 through the condensing portion outlet 202a (see FIG. 7), the throttle hole 321d, and the evaporating portion inlet 222a in the order of description. It is connected to the flow path 221c.
  • the refrigerant flowing into the evaporation unit 22 from the evaporation unit inlet 222a first flows into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the first evaporation component group 224a are connected.
  • the refrigerant that has flowed into the upstream space of the first evaporation component group 224a is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds as shown by the arrow F5a in the upstream space.
  • an air flow from one side of the heat exchanger width direction Dw flows to the other side of the heat exchanger width direction Dw through the evaporation component 221 (that is, a plurality of ventilation flow paths 22a) as shown by the arrow FB1 in FIG.
  • the refrigerant flowing through the plurality of evaporation flow paths 221c exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other as shown by arrows F7a and F7b. It is made to absorb heat from the air flow.
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. Further, the refrigerant is transferred from the downstream space of the first evaporation component group 224a to the upstream space in which a plurality of other side evaporation tank spaces 221b of the second evaporation component group 224b are connected as shown by an arrow F6a. Inflow.
  • the refrigerant that has flowed into the upstream space of the second evaporation component group 224b is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing through the plurality of evaporation flow paths 221c exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other as shown by arrows F7c and F7d. It is made to absorb heat from the air flow.
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant is transferred from the downstream space of the second evaporation component group 224b to the upstream space in which a plurality of one-side evaporation tank spaces 221a of the third evaporation component group 224c are connected as shown by an arrow F5b. Inflow.
  • the refrigerant that has flowed into the upstream space of the third evaporation component group 224c is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of evaporation channels 221c flows in parallel with each other as shown by arrows F7e, F7f, and F7g, exchanges heat with the air flow around the evaporation component 221 and absorbs heat from the air flow.
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected.
  • the refrigerant that has flowed into the downstream space of the third evaporation component group 224c flows from the evaporation part outlet 22b to the liquid storage space 26a of the gas-liquid separation part 26 of the one-side side plate part 30 as shown by arrows F6b and F8. Flow to.
  • the refrigerant is gas-liquid separated, and among the gas-liquid separated refrigerants, the gas-phase refrigerant flows to the outer flow path 28a of the internal heat exchange unit 28 as shown by arrows F9a and F9b. On the other hand, among the gas-liquid separated refrigerants, the liquid-phase refrigerant accumulates in the liquid storage space 26a.
  • the refrigerant flowing in the outer flow path 28a of the internal heat exchange unit 28 exchanges heat with the refrigerant flowing in the inner flow path 28b while flowing from one side to the other side of the stacking direction Ds as shown by arrows FA1 and FA2 in FIG. Be made to. Then, the refrigerant flowing through the outer flow path 28a flows out from the outlet pipe 36 to the outside of the heat exchanger 10 as shown by the arrow Fo. The refrigerant flowing out of the outlet pipe 36 is sucked into the compressor 14 as shown in FIG. As described above, the refrigerant flows in the heat exchanger 10 and the refrigeration cycle circuit 12.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated on the surface exposed on the ventilation flow path 22a side and the evaporation part fin 223 in each of the plurality of evaporation components 221.
  • the condensed water generated in this way is dropped onto the upper outer surface 283 of the water guide plate 50 and the outer cylinder portion 281 as shown by arrows W1 and W2 in FIG.
  • the condensed water dropped on the water guide plate 50 flows to the upper outer surface 283 of the outer cylinder portion 281 along the water guide plate 50 as shown by the arrow W3 in FIG.
  • the condensed water flowing from the water guide plate 50 merges with the condensed water dropped from the surfaces of the plurality of ventilation flow paths 22a and the evaporation portion fin 223.
  • the merged condensed water is a heat exchanger between the one side plate portion 30 and the other side plate portion 32 with respect to the outer cylinder portion 281 along the upper outer surface 283 as shown by the arrow W3 in FIG. It flows to one side of the width direction Dw.
  • the condensed water passes through one side of the heat exchanger width direction Dw with respect to the outer tubular portion 281 and the plurality of ventilation flow paths 20a of the condensing portion 20. Drop into.
  • the condensed water is guided to the upstream side of the air flow in the condensing part heat exchange core 230 of the condensing part 20 by the water guiding plate 50 and the upper outer surface 283 of the outer cylinder part 281. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
  • the refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • the heat exchanger 10 has an internal heat exchange with a condensing unit 20 including a heat exchange core 230 that dissipates heat from the refrigerant to an air flow in a plurality of ventilation flow paths 20a, an evaporation unit 22, and an internal heat exchanger.
  • a unit 28 is provided.
  • the evaporation section 22 is arranged on the Dg upper side in the vertical direction with respect to the condensing section 20, and is a refrigerant by heat exchange between the air flow in the plurality of ventilation flow paths 22a and the refrigerant (that is, the low pressure refrigerant) in the evaporation flow path 221c. Is absorbed from the air flow in the plurality of ventilation flow paths 22a and evaporated.
  • the internal heat exchange unit 28 is arranged between the condensing unit 20 and the evaporation unit 22.
  • the internal heat exchange portion 28 includes an upper outer surface 283 of the outer tubular portion 281.
  • Patent Document 1 describes that a water storage unit for storing condensed water generated in the evaporation unit is provided in a case, and the condensed water in the water storage unit is hung on the heat dissipation unit.
  • the condensed water generated in the evaporation section 22 is hung on the condensing section 20 from above, the condensed water is hung on the heat exchange section of the condensing section 20 along the upper tank. Instead, it just flows downwind. Therefore, the condensed water may not be useful for cooling the high-pressure refrigerant in the heat exchange section of the condensing section 20.
  • the internal heat exchange unit 28 of the present embodiment includes the upper outer surface 283 of the outer cylinder portion 281 as described above.
  • the upper outer surface 283 guides the condensed water generated from the evaporation unit 22 by the heat exchange of the evaporation unit 22 to the wind side of the air flow in the plurality of ventilation passages 22a of the heat exchange cores 230 in the condensation unit 20.
  • the condensed water to be collected is hung on the heat exchange core 230. Therefore, the refrigerant (that is, the high-pressure refrigerant) in the condensing flow path 201c dissipates heat to the condensed water to vaporize the condensed water.
  • the heat of vaporization can be transferred from the refrigerant in the condensing flow path 201c to the condensed water. Therefore, the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
  • the condensing unit 20 and the evaporation unit 22 are configured to have a plurality of pairs of the first plate member 381 and the second plate member 382.
  • the first plate member 381, the second plate member 382, the first plate member 381, and the second plate member 382 arranged in the stacking direction Ds are referred to as the first plate member 381A.
  • the first plate member 381A is a first heat exchange plate arranged on one side of the stacking direction Ds with respect to the second plate member 382A.
  • the first plate member 381B is a third heat exchange plate arranged on one side of the stacking direction Ds with respect to the second plate member 382B.
  • the second plate member 382A is a second heat exchange plate arranged on one side in a predetermined direction with respect to the first plate member 381B (that is, the fourth heat exchange plate).
  • the first plate member 381 and the second plate member 382 are arranged so as to be paired with each other, and the evaporation flow path 221c and the condensation flow path 221c and the condensation flow path are arranged between the first plate member 381 and the second plate member 382. 201c is formed. Ventilation channels 20a and 22a are formed between the second plate member 382A and the first plate member 381B.
  • the first plate member 381B and the second plate member 382B are arranged so as to form a pair and meet each other, and ventilation passages 20a and 22a are formed between the first plate member 381B and the second plate member 382B. Has been done.
  • the first plate members 381A and 381B and the second plate members 382A and 382B each constitute an internal heat exchange unit 28.
  • the internal heat exchange section 28 is arranged between the evaporation flow path 221c and the condensation flow path 201c and exchanges heat between the refrigerant that has passed through the condensation section 20 and the refrigerant that has passed through the evaporation section 22.
  • the upper outer surface 283 of the internal heat exchange section 28 serves as a water guiding section that guides the condensed water to the windward side of the air flow in the heat exchange core 230.
  • the first plate members 381A and 381B are formed so that the outer cylinder forming portion 281a is convex toward one side of the stacking direction Ds with respect to the evaporation flow path forming portion 221g, respectively.
  • the second plate members 382A and 382B are formed so that the outer cylinder forming portion 281b is convex toward the other side of the stacking direction Ds with respect to the evaporation flow path forming portion 221k, respectively. Therefore, the condensed water generated on the outer surface of the evaporation channel forming portions 221g and 221k can be satisfactorily received by the outer cylinder constituent portions 281a and 281b.
  • the water guide plate 50 is arranged between the one side side plate portion 30 and the other side side plate portion 32.
  • the water guide plate 50 has a heat exchanger width with respect to the internal heat exchange portion 28.
  • Direction Dw is arranged on the other side.
  • the water guide plate 50 guides the condensed water dropped from the ventilation flow path 22a to the upper outer surface 283 of the outer cylinder portion 281 of the internal heat exchange portion 28.
  • the water guide plate 50 is formed so as to be inclined so that the upper surface thereof advances in the vertical direction Dg toward the other side in the heat exchanger width direction Dw. Therefore, the water guide plate 50 suppresses the condensed water dropped from the plurality of ventilation flow paths 22a from flowing to the leeward side of the air flow in the plurality of ventilation flow paths 20a, and the condensed water is transferred to the internal heat exchange unit 28. It can be satisfactorily guided to the upper outer surface 283 of the outer cylinder portion 281.
  • the heat exchanger 10 of the present embodiment includes a condensing unit 20, an evaporation unit 22, and a drawing unit 321e, as in the first embodiment.
  • the heat exchanger 10 of the present embodiment does not include the gas-liquid separation unit 26 (see FIG. 2) and the internal heat exchange unit 28.
  • FIG. 18 shows a deliberate spacing (that is, actually) between the first plate member 381, the second plate member 382, the one-side side plate portion 30, and the other-side side plate portion 32. It is displayed with a space (no interval).
  • the refrigeration cycle circuit 12 of the present embodiment includes a gas-liquid separator 40 corresponding to the gas-liquid separation unit 26 of the first embodiment as a device different from the heat exchanger 10.
  • the gas-liquid separator 40 is an accumulator having the same function as the gas-liquid separator 26, and is provided on the downstream side of the refrigerant flow with respect to the outlet pipe 36 of the heat exchanger 10 and on the upstream side of the refrigerant flow with respect to the compressor 14. ..
  • the one-side side plate portion 30 has a single-layer structure rather than a laminated structure in which a plurality of plates are laminated. That is, the one-sided side plate portion 30 of the present embodiment is composed of the one-sided first plate 301, and corresponds to the one-sided second plate 302 and the one-sided third plate 303 (see FIG. 2) of the first embodiment. Does not have.
  • the inlet pipe 34 is inserted into a lower through hole 30b formed in the lower part of the one side side plate portion 30, and is brazed to the one side side plate portion 30 at the lower through hole 30b. As a result, the inlet pipe 34 is connected to the condensing portion 20 so as to communicate with the condensing portion 20.
  • the outlet pipe 36 is inserted into the upper through hole 30c formed in the upper part of the one side side plate portion 30, and is brazed to the one side side plate portion 30 at the upper through hole 30c. .. As a result, the outlet pipe 36 is connected to the evaporation unit 22 so as to communicate with the evaporation unit 22.
  • the other side plate portion 32 has the other side first plate 321 and the other side second plate 322, and the other side first plate 321 and the other side second plate thereof. It is configured by laminating 322 and joining to each other.
  • the first plate 321 on the other side has a diaphragm portion 321e as in the first embodiment.
  • the first plate 321 on the other side is formed with a condensing portion outlet hole 321h which is a through hole provided in the lower part of the first plate 321 on the other side.
  • the condensing portion outlet hole 321h communicates with the condensing portion outlet 202a.
  • the second plate 322 on the other side has a groove portion 322a that is recessed from one side of the stacking direction Ds to the other side and extends in the vertical direction Dg.
  • the other side second plate 322 is brazed to the other side of the stacking direction Ds with respect to the other side first plate 321 so that the groove portion 322a of the other side second plate 322 is joined to the other side first plate 321.
  • a side relay flow path 322b is formed between the two.
  • This side relay flow path 322b extends in the vertical direction Dg, and is provided between the condensing portion outlet hole 321h and the throttle portion 321e of the other side first plate 321 in the refrigerant flow. That is, the side relay flow path 322b is a flow path that connects the condensing portion outlet 202a of the condensing portion 20 and the throttle hole 321d. Due to such a flow path configuration of the refrigerant, the throttle hole 321d of the other side plate portion 32 is provided between the condensing portion outlet 202a and the evaporation portion inlet 222a in the refrigerant flow.
  • one condensing component 201 and one evaporation component 221 arranged in the vertical direction Dg have a pair of plate members 381 and 382 in the stacking direction. It is configured by being laminated on Ds and joined to each other. Then, of the pair of plate members 381 and 382, the first plate member 381 is arranged on one side of the stacking direction Ds with respect to the second plate member 382.
  • one side condensing tank space 201a is arranged below the condensation flow path 201c in the vertical direction Dg, and the other side condensing tank space 201b is the condensing flow path 201c. It is arranged above the vertical Dg. Further, the one-side evaporation tank space 221a is arranged below the evaporation flow path 221c in the vertical direction Dg, and the other side evaporation tank space 221b is arranged above the evaporation flow path 221c in the vertical direction Dg. As shown in FIG.
  • the condensing unit 20 of the present embodiment includes a first condensed component group 204a, a second condensed component group 204b, a third condensed component group 204c, and a fourth condensed component group 204d. doing.
  • the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are arranged from one side to the other side in the stacking direction Ds in the order of description. Have been placed.
  • the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are on the upstream side in the order of description. It is connected in series from to the downstream side.
  • a plurality of condensing flow paths 201c are connected in parallel in the refrigerant flow.
  • the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the first condensing component group 204a Is not provided with the first communication hole 201o.
  • the second communication hole 201p is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b.
  • the first communication hole 201o is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the third condensing component group 204c.
  • the other side condensing plate portion 201h in which the second communication hole 201p is provided but the first communication hole 201o is not provided is shown in FIG. 23. Further, the other side condensing plate portion 201h in which the first communication hole 201o is provided but the second communication hole 201p is not provided is shown in FIG. 24.
  • the plurality of evaporation constituent groups 224a to 224d included in the evaporation portion 22 are the first evaporation constituent group 224a, the second evaporation constituent group 224b, and the third evaporation constituent group.
  • Group 224c and fourth evaporation component group 224d are configured.
  • the first evaporation component group 224a, the second evaporation component group 224b, the third evaporation component group 224c, and the fourth evaporation component group 224d are in the stacking direction Ds in the order of description. They are arranged side by side from the other side to one side. Then, in the refrigerant flow of the evaporation unit 22, the first evaporation component group 224a, the second evaporation component group 224b, the third evaporation component group 224c, and the fourth evaporation component group 224d are on the upstream side in the order of description. It is connected in series from to the downstream side. Further, in each of the plurality of evaporation components groups 224a to 224d, a plurality of evaporation channels 221c are connected in parallel in the refrigerant flow.
  • the other side evaporation plate part 221h located at the other end of the stacking direction Ds in the second evaporation component group 224b Is not provided with a second communication hole 221p.
  • the first communication hole 221o is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c.
  • the second communication hole 221p is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the fourth evaporation component group 224d.
  • FIG. 23 the other side evaporation plate portion 221h in which the first communication hole 221o is provided but the second communication hole 221p is not provided is shown in FIG. 23. Further, the other side evaporation plate portion 221h in which the second communication hole 221p is provided but the first communication hole 221o is not provided is shown in FIG. 23.
  • one one-side condensing plate portion 201d and one one-side evaporation plate portion 221d are not configured as a single component, but are configured as separate components.
  • one other side condensing plate portion 201h and one other side evaporation plate portion 221h are not configured as a single component, but are configured as separate components. Therefore, in the present embodiment, the first plate member 381 (see FIG. 15) is not configured, and the second plate member 382 is also not configured. In this respect, the present embodiment is different from the first embodiment.
  • the one-side condensing plate portion 201d and the one-side evaporation plate portion 221d are configured as separate parts, and the other-side condensing plate portion 201h and the other-side evaporation plate portion 221h are also configured as separate parts. .. Therefore, the condensing portion 20 and the evaporating portion 22 are integrally formed by joining the one-side side plate portion 30 and the other-side side plate portion 32 on both sides of the condensing portion 20 and the evaporating portion 22.
  • the first communication hole 201o is formed in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the first condensing component group 204a. Is not provided.
  • the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b has a second The communication hole 201p is not provided.
  • the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the third condensing component group 204c has a first The communication hole 201o is not provided.
  • the second communication hole 221p is provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the second evaporation component group 224b. Is not provided.
  • the first communication hole 221o is formed in the other side evaporation plate part 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c. Is not provided.
  • the second communication hole 221p is provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the fourth evaporation component group 224d. Is not provided.
  • a water guiding section 50A is provided between one condensing component 201 and one evaporation component 221.
  • the water guide portion 50A includes a partition plate 51 and a closing plate 52.
  • the partition plate 51 is arranged between the evaporation component 221 of the evaporation section 22 and the condensation configuration section 201 of the condensation section 20.
  • the partition plate 51 is formed in a plate shape extending in an intersecting direction in which the evaporation portion 22 and the condensing portion 20 intersect in the line-up direction.
  • the partition plate 51 is arranged between the one side side plate portion 30 and the other side side plate portion 32.
  • the partition plate 51 is formed in a plate shape over the stacking direction Ds. That is, the partition plate 51 is formed in a plate shape that extends in the stacking direction Ds and the heat exchanger width direction Dw (that is, the intersecting direction in which the evaporation portion 22 and the condensing portion 20 intersect in the line-up direction).
  • the partition plate 51 is formed so as to cover one side and the center side of the heat exchanger width direction Dw with respect to the evaporation portion 22. Therefore, the partition plate 51 is arranged with respect to the evaporation portion 22 so as to be offset from the other side in the heat exchanger width direction Dw.
  • the closing plate 52 is formed in a plate shape that is connected to one side of the partition plate 51 in the heat exchanger width direction Dw (that is, the leeward side of the air flow in the ventilation flow path 20a) and extends in the vertical direction Dg.
  • the closing plate 52 is formed so as to close the gap between one condensation component 201 and one evaporation component 221.
  • the closing plate 52 is a water guiding plate formed so as to prevent the condensed water dropped on the partition plate 51 from flowing to one side of the heat exchanger width direction Dw. That is, the closing plate 52 constitutes a weir portion that prevents condensed water from flowing from the partition plate 51 to the leeward side of the air flow in the ventilation flow path 20a.
  • the refrigerant flows as follows.
  • the broken line arrow shown in FIG. 18 indicates the refrigerant flow in the heat exchanger 10.
  • the refrigerant discharged from the compressor 14 is connected to a plurality of one-sided condensing tank spaces 201a among the first condensing component group 204a of the condensing portion 20 via the inlet pipe 34. It flows into the upstream space.
  • the refrigerant that has flowed into the upstream space of the first condensed component group 204a is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space.
  • an air flow from the other side of the heat exchanger width direction Dw flows to one side of the heat exchanger width direction Dw through the condensing component 201 (that is, a plurality of ventilation flow paths 20a) as shown by the arrow FB2 in FIG.
  • the refrigerant flowing in the plurality of condensed flow paths 201c (that is, high-pressure refrigerant) flows in parallel with each other and exchanges heat with the air flow around the condensed component 201 (that is, the air flow in the plurality of ventilation flow paths 20a). Heat is dissipated to the air flow.
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected. Further, the refrigerant flows from the downstream space of the first condensing component group 204a into the upstream space in which a plurality of other side condensing tank spaces 201b of the second condensing component group 204b are connected.
  • the refrigerant that has flowed into the upstream space of the second condensation component group 204b is distributed to the plurality of condensation channels 201c while flowing to the other side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and dissipates heat to the air flow. ..
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected.
  • the refrigerant that has flowed into the upstream space of the third condensed component group 204c is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and dissipates heat to the air flow. ..
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected.
  • the refrigerant that has flowed into the upstream space of the fourth condensed component group 204d is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and radiates heat to the air flow.
  • the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected.
  • the refrigerant that has flowed into the space on the downstream side of the fourth condensing component group 204d flows into the side relay flow path 322b from the condensing portion outlet 202a through the condensing portion outlet hole 321h of the other side plate portion 32.
  • the refrigerant flows from the lower side to the upper side in the vertical direction Dg, and the refrigerant flows from the side relay flow path 322b into the evaporation section 22 through the throttle hole 321d of the throttle section 321e. At this time, the refrigerant is depressurized by passing through the throttle hole 321d.
  • the refrigerant that has passed through the throttle hole 321d of the throttle section 321e flows into the evaporation section 22 from the evaporation section inlet 222a.
  • the refrigerant flowing into the evaporation section 22 from the evaporation section inlet 222a first flows into the upstream space in which the plurality of other side evaporation tank spaces 221b of the first evaporation component group 224a are connected.
  • the refrigerant that has flowed into the upstream space of the first evaporation component group 224a is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • an air flow from the other side of the heat exchanger width direction Dw flows to one side of the heat exchanger width direction Dw through the evaporation component 221 (that is, a plurality of ventilation flow paths 22a) as shown by the arrow FB1 in FIG.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c is exchanged with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other, and the air flow thereof. It absorbs heat from.
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant flows from the downstream space of the first evaporation component group 224a into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the second evaporation component group 224b are connected. The refrigerant that has flowed into the upstream space of the second evaporation component group 224b is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c flows in parallel with each other, exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a), and absorbs heat from the air.
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. Further, the refrigerant flows from the downstream space of the second evaporation component group 224b into the upstream space in which a plurality of other side evaporation tank spaces 221b of the third evaporation component group 224c are connected.
  • the refrigerant that has flowed into the upstream space of the third evaporation component group 224c is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c is exchanged with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other, and absorbs heat from the air flow. ..
  • the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant flows from the downstream space of the third evaporation component group 224c into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the fourth evaporation component group 224d are connected.
  • the refrigerant that has flowed into the upstream space of the fourth evaporation component group 224d is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c flows in parallel with each other, exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a), and absorbs heat from the air. Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected.
  • the refrigerant flowing out of the outlet pipe 36 flows into the gas-liquid separator 40 as shown in FIG. 14, and is sucked into the compressor 14 from the gas-liquid separator 40.
  • the refrigerant flows in the heat exchanger 10 and the refrigeration cycle circuit 12 of the present embodiment.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated on the surface exposed on the ventilation flow path 22a side and the evaporation part fin 223 in each of the plurality of evaporation components 221.
  • the condensed water generated in this way is dropped onto the partition plate 51 as shown by the arrow W4 in FIG. 21.
  • the condensed water dropped on the partition plate 51 flows along the partition plate 51 to the other side of the heat exchanger width direction Dw as shown by the arrow W4 in FIG. 21.
  • the condensed water between the one side plate portion 30 and the other side plate portion 32 passes through the other side of the heat exchanger width direction Dw with respect to the partition plate 51 and enters the plurality of ventilation flow paths 20a of the condensing portion 20. Drop.
  • the condensed water is guided by the partition plate 51 to the upstream side of the air flow in the condensing part heat exchange core 230 of the condensing part 20. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
  • the refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • this embodiment is the same as the first embodiment. Then, in the present embodiment, the effect obtained from the configuration common to the above-mentioned first embodiment can be obtained in the same manner as in the first embodiment.
  • the heat exchanger of the present embodiment includes an upper air-conditioning casing 60, a lower air-conditioning casing 61, a drain pipe 62, and a distributor 63 together with an evaporation unit 22 and a condensing unit 20.
  • the upper air-conditioning casing 60 includes an air flow path 60a for accommodating the evaporation unit 22 and allowing an air flow passing through the evaporation unit 22 to flow, and a water storage unit 60b for temporarily storing the condensed water generated in the evaporation unit 22.
  • the lower air-conditioning casing 61 is arranged on the lower side in the vertical direction with respect to the upper air-conditioning casing 60.
  • the lower air-conditioning casing 61 includes an air flow path 61a that houses the condensing portion 20 and allows an air flow that passes through the condensing portion 20 to flow.
  • the drain pipe 62 is a pipe for guiding the condensed water in the water storage portion 60b of the upper air conditioning casing 60 to the distributor 63 in the lower air conditioning casing 61.
  • the distributor 63 includes a water guide unit 64, a distribution unit 65, and a support member 66.
  • the water conducting portion 64 is made of a fiber material and is formed so as to expand in the width direction of the heat exchange core 230.
  • the water guiding portion 64 is arranged on the heavenly region improvement side of the heat exchange core 230 of the condensing portion 20 and on the windward side with respect to the condensing portion 20.
  • the water guide unit 64 is used to distribute the condensed water from the drain pipe 62 to the distribution unit 65.
  • the water guiding portion 64 of the present embodiment is fitted between the side plates 236 and 237 of the condensing portion 20.
  • the distribution unit 65 is connected to the water guide unit 64.
  • the distribution unit 65 is composed of a fine fiber material, and guides the condensed water from the water guide unit 64 to a plurality of tubes 231 and heat exchange fins 233 by a capillary phenomenon.
  • the distribution unit 65 includes a plurality of protrusions 65a of the water guide 64 that project from the improvement side to the leeward side.
  • the plurality of protrusions 65a are arranged in the width direction of the heat exchange core 230, respectively.
  • the plurality of protrusions 65a are respectively arranged between two adjacent tubes 231 of the plurality of tubes 231 of the heat exchange core 230.
  • the plurality of protrusions 65a are respectively arranged above the corresponding heat exchange fins 233 of the heat exchange fins 233.
  • the plurality of protrusions 65a come into contact with the upper side of the heat exchange fins 233 and the plurality of tubes 231 of the heat exchange core 230, respectively.
  • the condensing unit 20 includes an upper tank 234, a heat exchange core 230, and a lower tank 235.
  • the upper tank 234 distributes the high-pressure refrigerant from the compressor 14 to the plurality of tubes 231 of the heat exchange core 230.
  • Each of the plurality of tubes 231 is formed so as to extend in the vertical direction.
  • the plurality of tubes 231 are arranged in the width direction at intervals.
  • Each of the plurality of tubes 231 is a refrigerant pipe for guiding the high-pressure refrigerant from the upper tank 234 to the lower tank 235.
  • Each of the plurality of tubes 231 circulates a high-pressure refrigerant to dissipate heat from the high-pressure refrigerant to an air flow passing through the air flow path 61a.
  • the lower tank 235 collects the high-pressure refrigerant that has passed through the plurality of tubes 231 and guides it to the decompression section.
  • a ventilation flow path 20a for circulating an air flow is provided between two adjacent tubes 231 of the plurality of tubes 231.
  • Heat exchange fins 233 are arranged in each of the plurality of ventilation flow paths 20a. The heat exchange fins 233, together with the plurality of tubes 231, exchange heat between the air flow in the plurality of ventilation flow paths 20a and the high-pressure refrigerant.
  • the distributor 63 configured in this way is arranged below the upper tank 234 of the condensing portion 20 in the vertical direction, on the improving side of the heat exchange core 230, and on the windward side of the heat exchange core 230. ing.
  • the refrigerant discharged from the compressor 14 flows through the plurality of tubes 231 of the heat exchange core 230 of the condensing unit 20.
  • an air flow flows through the plurality of ventilation passages 20a of the heat exchange core 230 as shown by the arrow FB2 in FIG.
  • Heat is exchanged between the air flow in the plurality of ventilation flow paths 20a and the refrigerant in the plurality of tubes 231. As a result, the refrigerant dissipates heat to the air flow, so that the refrigerant is cooled.
  • the refrigerant that has passed through the pressure reducing valve (that is, the low-pressure refrigerant) flows through the evaporation unit 22.
  • the refrigerant flows through the evaporation unit 22.
  • heat is exchanged between the low-pressure refrigerant flowing in the evaporation unit 22 and the air flow passing through the evaporation unit 22, and the refrigerant absorbs heat from the air flow.
  • condensed water is generated in the evaporation unit 22.
  • the condensed water in the water storage portion 60b is guided to the water guide portion 64 of the distributor 63 through the drain pipe 62.
  • the condensed water guided to the water conveyance portion 64 is guided to the windward side in the air flow direction of the heat exchange core 230 through the distribution portion 65 by the capillary phenomenon.
  • the condensed water is distributed by the distributor 63 to the heat exchange core 230 in the width direction. Therefore, in the heat exchange core 230, the refrigerant flowing through the plurality of tubes 231 dissipates heat to the condensed water and vaporizes the condensed water. As a result, the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow.
  • the refrigerant flowing through the plurality of tubes 231 of the condensing unit 20 radiates heat to the air flow and is cooled.
  • the drain pipe 62 guides the condensed water in the water storage portion 60b of the upper air conditioning casing 60 to the distributor 63 in the lower air conditioning casing 61.
  • the distributor 63 is guided to the lower side of the condensing portion 20 in the vertical direction with respect to the upper tank 234, to the upper side of the heat exchange core 230 to improve the top region, and to the windward side of the heat exchange core 230.
  • the distributor 63 distributes the condensed water to the heat exchange core 230 in the width direction thereof.
  • the refrigerant flowing through the plurality of tubes 231 dissipates heat to the condensed water and vaporizes the condensed water.
  • the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow.
  • the air flow flowing through the evaporation unit 22 and the air flow flowing through the condensing unit 20 flow in opposite directions.
  • the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated in each of the plurality of evaporation components 221.
  • the condensed water generated in this way flows downward by Dg in the vertical direction along the plurality of evaporation components 221 due to gravity. At this time, the condensed water flows leeward along the plurality of evaporation components 221 by the air flow passing through the evaporation unit 22.
  • Condensed water drops from one side of the heat exchanger width direction Dw of the evaporation unit 22 onto one side of the heat exchanger width direction Dw of the heat exchange core 230 of the condensation unit 20. That is, the air flow passing through the evaporation unit 22 guides the condensed water of the evaporation unit 22 to the windward side of the heat exchange core 230 of the condensation unit 20.
  • the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201.
  • the refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the condensed water to the refrigerant flowing through the plurality of condensed flow paths 201c. As a result, the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow.
  • the condensed water generated from the evaporation unit 22 by arranging the heat exchanger 10 at an angle is air in the heat exchange core 230 of the condensation unit 20.
  • An example of guiding the flow (that is, the first air flow) to the windward side will be described.
  • FIG. 29 shows the overall configuration of the vehicle air conditioner 70 to which the heat exchanger 10 of the present embodiment is applied.
  • the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, a blower unit 80, and a blower duct 90.
  • the blower unit 80 is an air flow generator including centrifugal fans 81A and 81B, and a blower case 82.
  • the centrifugal fan 81A is rotated about the axis S by the rotational force output from the rotating shaft 83a of the electric motor 83.
  • the centrifugal fan 81A is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
  • the centrifugal fan 81B is rotated about the axis S by the rotational force output from the rotating shaft 83a of the electric motor 83.
  • the centrifugal fan 81B is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
  • the blower case 82 collects the air flow blown from the centrifugal fan 81A and guides it to the upper air flow path 91 of the duct 90, and collects the air flow blown out from the centrifugal fan 81B to the lower air flow path 92 of the duct 90. Lead to.
  • the air duct 90 forms an upper air flow path 91 and a lower air flow path 92.
  • the upper air flow path 91 and the lower air flow path 92 are formed so as to be separated by a ventilation duct 90.
  • the heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
  • the evaporation unit 22 is arranged in the upper air flow path 91.
  • the condensing portion 20 is arranged in the lower air flow path 92.
  • the main flow of the air flow flowing through the evaporation unit 22 is the air flow having the largest air volume among the plurality of air flows flowing through the evaporation unit 22.
  • the mainstream of the air flow flowing through the condensing portion 20 is the air flow having the largest air volume among the plurality of air flows flowing through the condensing portion 20.
  • the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
  • the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow.
  • the condensed water generated in the evaporation section 22 is guided to the windward side of the air flow in the evaporation section 22 along the surface exposed on the ventilation flow path 22a side and the evaporation section fin 223 in each of the plurality of evaporation components 221. ..
  • This guided condensed water is guided to the upstream side of the air flow in the condensed portion heat exchange core 230 of the condensed portion 20 through the region 400 on one side of the heat exchanger width direction Dw from the heat insulating hole 381a of the heat exchanger 10. Will be killed.
  • the heat insulating hole 381a is provided between the condensing portion 20 and the evaporating portion 22 in place of the internal heat exchange portion 28.
  • the heat insulating hole 381a is provided to prevent heat transfer between the refrigerant in the condensation component 201 and the refrigerant in the evaporation component 221.
  • the heat insulating hole 381a is formed by communicating the through hole of the first plate member 381 and the through hole of the second plate member 382.
  • the leeward side of the air flow in the evaporation unit 22 is arranged above the windward side of the air flow in the evaporation unit 22, so that the evaporation unit 22 condenses the condensed water by gravity. It will be guided to the upstream side of the air flow in the condensing part heat exchange core 230 of the part 20.
  • the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201.
  • the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
  • a heat insulating hole 381a is formed in place of the internal heat exchange portion 28.
  • the heat insulating hole 381a serves to prevent heat transfer between the refrigerant in the condensation component 201 and the refrigerant in the evaporation component 221.
  • both the one-sided condensing tank space 201a and the other-side condensing tank space 201b are arranged below the vertical Dg with respect to the condensing flow path 201c.
  • Both the one-side evaporation tank space 221a and the other-side evaporation tank space 221b are arranged above the evaporation flow path 221c in the vertical direction Dg.
  • the sixth embodiment in which the air flows in the opposite direction will be described with reference to FIGS. 32 and 33.
  • the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, a blower unit 80, and a blower duct 90.
  • the blower unit 80 is an air flow generator including a centrifugal fan 81C and a blower case 82A.
  • the centrifugal fan 81C is rotated about the axis by the rotational force output from the rotating shaft of the electric motor.
  • the centrifugal fan 81C is a plug fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
  • the blower case 82A guides the air flow blown from the centrifugal fan 81C to the upper air flow path 91 and the lower air flow path 92 of the duct 90.
  • the air duct 90 forms an upper air flow path 91 and a lower air flow path 92.
  • the upper air flow path 91 and the lower air flow path 92 are formed so as to be separated by a ventilation duct 90.
  • the heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
  • the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
  • the leeward side of the air flow in the evaporation unit 22 is arranged below the windward side of the air flow in the evaporation unit 22, so that the evaporation unit 22 condenses the condensed water in the condensing unit 20 by gravity. It will be guided to the upstream side of the air flow in the partial heat exchange core 230.
  • the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
  • the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201.
  • the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • the refrigerant in the condensing flow path 201c can be cooled by the condensed water as in the fifth embodiment. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
  • FIG. 34 shows the overall configuration of the vehicle air conditioner 70 to which the heat exchanger 10 of the present embodiment is applied.
  • the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, blower units 80A and 80B, and a blower duct 90.
  • the blower unit 80A includes a centrifugal fan 81A and a blower case 82A.
  • the centrifugal fan 81A is rotated about the axis by the rotational force output from the rotating shaft of the electric motor.
  • the centrifugal fan 81A is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
  • the blower case 82A collects the air flow generated from the centrifugal fan 81A and guides it to the upper air flow path 91 of the duct 90.
  • the blower unit 80B includes a centrifugal fan 81B and a blower case 82B.
  • the centrifugal fan 81B is rotated about the axis by the rotational force output from the rotating shaft of the electric motor.
  • the centrifugal fan 81B is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
  • the blower case 82B collects the air flow generated from the centrifugal fan 81B and guides it to the lower air flow path 92 of the duct 90.
  • the blower unit 80A and the blower unit 80B of the present embodiment constitute an air flow generation unit that generates an air flow to be circulated in each of the upper air flow path 91 and the lower air flow path 92 of the duct 90.
  • the blower duct 90 constitutes an upper air flow path 91 that circulates the air flow blown from the blower unit 80A and a lower air flow path 92 that circulates the air flow blown out from the blower unit 80B.
  • the upper air flow path 91 and the lower air flow path 92 are separated by a ventilation duct 90.
  • the heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
  • the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the other side of the heat exchanger 10 in the heat exchanger width direction Dw (that is, vertical). It is arranged on the upper side in the direction Dg).
  • the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction).
  • the evaporation unit 22 guides the condensed water to the upstream side of the air flow in the heat exchange core 230 of the condensation unit of the condensation unit 20 by gravity.
  • the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
  • the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201.
  • the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
  • the heat exchanger 10 of the present embodiment is the main stream of the air flow flowing through the evaporation unit 22 (that is, the second air flow) and the air flow flowing through the condensing unit 20 (that is, the second air flow). That is, the main stream of the first air stream) flows in parallel and in the same direction.
  • the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
  • the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow.
  • the evaporation unit 22 guides the condensed water to the upstream side of the air flow in the heat exchange core 230 of the condensation unit of the condensation unit 20 by gravity.
  • the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
  • the condensed water generated in the evaporation portion 22 is dropped on the upper outer surface 283 of the water guide plate 50 and the outer cylinder portion 281.
  • the dropped condensed water is guided to the upstream side of the air flow in the condensed portion heat exchange core 230 of the condensed portion 20 by the upper outer surface 283 of the water guiding plate 50 and the outer tubular portion 281. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
  • the refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
  • the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
  • the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the other side of the heat exchanger 10 in the heat exchanger width direction Dw (that is, vertical). It is arranged on the upper side in the direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction).
  • the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. As a result, the same effect as that of the sixth embodiment can be obtained.
  • the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 are circulated in parallel and in opposite directions to each other.
  • the other side of the heat exchanger 10 in the heat exchanger width direction Dw is higher than the other side of the heat exchanger 10 in the heat exchanger width direction Dw. It is arranged on the upper side in the direction (that is, the vertical direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction).
  • the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
  • the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the heat exchanger 10 in the heat exchanger width direction Dw one side (that is, vertical). It is arranged on the upper side in the direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow.
  • the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
  • the heat exchanger 10 includes a gas-liquid separation unit 26 as an accumulator, which is an example.
  • the heat exchanger 10 may include a receiver 42 that functions as a gas-liquid separator instead of the gas-liquid separator 26.
  • the receiver 42 is arranged between the outlet 202a of the condensing portion and the inner flow path 28b of the internal heat exchange portion 28 in the flow of the refrigerant. Then, the receiver 42 stores the refrigerant (specifically, the gas-liquid two-phase refrigerant or the liquid single-phase refrigerant) that has flowed into the receiver 42 from the condensing unit 20, gas-liquid separation, and the gas-liquid separation is performed. The liquid refrigerant flows to the inner flow path 28b of the internal heat exchange section 28.
  • the refrigerant specifically, the gas-liquid two-phase refrigerant or the liquid single-phase refrigerant
  • the receiver 42 may be provided on one side side plate portion 30 by laminating a plurality of plates like the gas-liquid separation portion 26, or may be provided on one side of the stacking direction Ds with respect to the one side side plate portion 30. It may be provided so as to be fixed.
  • the outlet position condensing component 202a provided with the condensing outlet 202a is located at one end of the plurality of condensing components 201 in the stacking direction Ds. This is an example.
  • the outlet position condensing component 202 may be located at the other end of the plurality of condensing components 201 in the stacking direction Ds.
  • the inlet position evaporation component 222 provided with the evaporation component inlet 222a is located at the other end of the plurality of evaporation components 221 in the stacking direction Ds. This is an example.
  • the inlet position evaporation component 222 may be located at one end of the plurality of evaporation components 221 in the stacking direction Ds.
  • the one-side condensing plate portion 201d, the one-side evaporation plate portion 221d, and the first outer cylinder constituent portion 281a constitute one first plate member 381.
  • the condensing plate portion 201h on the other side, the evaporation plate portion 221h on the other side, and the second outer cylinder constituent portion 281b constitute one second plate member 382.
  • One of the above may be a combination of a plurality of separately configured parts.
  • the pair of condensing plate portions 201d and 201h are laminated in the laminating direction Ds in any of the plurality of condensing components 201, but this is an example.
  • the pair of condensed plate portions 201d and 201h may not be laminated in the stacking direction Ds.
  • at least one of the plurality of condensed constituent parts 201 included in the condensed part 20 may have a pair of condensed plate parts 201d and 201h.
  • each of the plurality of evaporation components 221 has a pair of evaporation plate portions 221d and 221h, which is an example.
  • the pair of evaporation plate portions 221d and 221h may not be laminated in the stacking direction Ds.
  • at least one of the plurality of evaporation constituent parts 221 included in the evaporation part 22 may have a pair of evaporation plate parts 221d and 221h.
  • the internal space of the condensing component 201 has a shape in which one side condensing plate portion 201d is recessed to one side of the stacking direction Ds and the other side condensing plate portion to the other side of the stacking direction Ds.
  • 201h is formed by a recessed shape.
  • one of the one-side condensing plate portion 201d and the other-side condensing plate portion 201h may have a flat plate shape without having a recessed shape in the stacking direction Ds. This also applies to the shapes of the one-side evaporation plate portion 221d and the other-side evaporation plate portion 221h.
  • the throttle hole 321d provided in the other side plate portion 32 is an orifice, which is an example.
  • the aperture hole 321d may be a capillary, a capillary and an orifice connected to each other, or a block in which the aperture hole 321d is formed as shown in FIGS. 40 and 41. ..
  • the diaphragm hole 321d is configured as a block-shaped member, is fitted into a hole formed in the first plate 321 on the other side, and is fixed to the first plate 321 on the other side.
  • the groove portion 322a of the second plate 322 on the other side does not have a function of throttled the refrigerant flow to reduce the pressure of the refrigerant, but this is an example.
  • the groove portion 322a may be configured as a capillary for narrowing the flow of the refrigerant and may have a function of reducing the pressure of the refrigerant.
  • the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg from the upper side in the order of description, but the arrangement order and arrangement thereof. There is no limit to the direction.
  • the evaporation unit 22, the internal heat exchange unit 28, and the condensation unit 20 may be arranged side by side in the horizontal direction, or the condensation unit 20 may be arranged above the evaporation unit 22 in the vertical direction Dg.
  • the heat exchanger 10 includes a gas-liquid separation unit 26, an internal heat exchange unit 28, and a throttle hole 321d in addition to the evaporation unit 22 and the condensing unit 20. This is an example.
  • the heat exchanger 10 does not include all or any of the gas-liquid separation unit 26, the internal heat exchange unit 28, and the throttle hole 321d.
  • the condensation flow path 201c and the evaporation flow path 221c have the same shape as each other, but this is an example.
  • the condensation flow path 201c and the evaporation flow path 221c may have different shapes.
  • one of the one-sided condensing tank space 201a and the other-side condensing tank space 201b is arranged above the condensation flow path 201c in the vertical direction Dg.
  • the other side of the condensing tank space 201a on one side and the condensing tank space 201b on the other side is arranged below the Dg in the vertical direction with respect to the condensing flow path 201c.
  • both the one-sided condensing tank space 201a and the other-side condensing tank space 201b may be biased to one of the upper side and the lower side of the vertical Dg with respect to the condensing flow path 201c.
  • both the one-side evaporation tank space 221a and the other-side evaporation tank space 221b may be unevenly arranged on one of the upper side and the lower side of the vertical direction Dg with respect to the evaporation flow path 221c.
  • the heat radiating unit constitutes the condensing unit 20 for condensing the refrigerant in the refrigeration cycle.
  • the refrigeration cycle may constitute a supercritical cycle in which carbon dioxide is used as the refrigerant and the pressure of the high-pressure refrigerant is higher than the critical point and the heat radiating portion does not condense the refrigerant.
  • the gas-liquid separator 40 as an accumulator is provided as a device different from the heat exchanger 10, but this is an example.
  • the gas-liquid separator 40 may be configured as a part of the heat exchanger 10 and integrated with the condensing unit 20, the evaporation unit 22, and the drawing unit 321e.
  • the present invention is not limited to this, and in the fifth to eleventh embodiments, the main stream of the air flow flowing through the condensing section 20 and the main stream of the air flow flowing through the evaporation section 22 may flow in substantially the same direction.
  • the relationship between the mainstream of the air flow flowing through the condensing unit 20 and the mainstream of the air flow flowing through the evaporation unit 22 deviates from the parallel relationship. You may.
  • the main stream of the air flow flowing through the condensing section 20 and the main stream of the air flow flowing through the evaporation section 22 do not necessarily have to flow in parallel.
  • the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done.
  • the heat exchanger is a high pressure refrigerant by heat exchange between the first air flow and the high pressure refrigerant.
  • a heat radiating unit including a heat exchange core for radiating heat to the first air flow is provided.
  • the heat exchanger is arranged above the heat radiating section, and includes an evaporating section that absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
  • the heat exchanger guides the condensed water generated from the evaporation part by the heat exchange of the evaporation part to the wind side of the first air flow in the heat exchange core in the heat dissipation part, and applies this guided condensed water to the heat exchange core to increase the pressure.
  • the condensed water is vaporized by dissipating heat from the refrigerant to the condensed water.
  • the heat exchanger is arranged between the evaporation part and the heat dissipation part for guiding the condensed water generated from the evaporation part to the wind side of the first air flow in the heat exchange core of the heat dissipation part. Equipped with a water guide.
  • the condensed water can be satisfactorily applied to the windward side of the first air flow in the heat exchange core.
  • the water guiding part is arranged between the heat radiating part and the evaporating part and is formed so as to expand in the intersecting direction. Has been done.
  • the water conveyance portion also serves as a partition portion that prevents the first air flow in the first air flow passage and the second air flow in the second air flow passage from being mixed with each other. Therefore, the physique can be reduced as compared with the case where the water conveyance portion and the partition portion are used respectively.
  • a weir portion is provided on the leeward side of the first air flow in the headrace portion to prevent condensed water from flowing from the headrace portion to the leeward side of the first air flow.
  • the heat exchanger includes a high-pressure refrigerant flow path through which the high-pressure refrigerant flows, and the evaporation part includes a low-pressure refrigerant flow path through which the low-pressure refrigerant flows.
  • the heat radiating section and the evaporating section are configured to include a first heat exchange plate, a second heat exchange plate, a third heat exchange plate, and a fourth heat exchange plate.
  • the first heat exchange plate is arranged on one side in a predetermined direction with respect to the second heat exchange plate, and the second heat exchange plate is arranged on one side in a predetermined direction with respect to the third heat exchange plate.
  • the third heat exchange plate is arranged on one side in a predetermined direction with respect to the fourth heat exchange plate.
  • the first heat exchange plate and the second heat exchange plate are arranged so as to meet each other, and a high-pressure refrigerant flow path and a low-pressure refrigerant flow path are formed between the first heat exchange plate and the second heat exchange plate. There is.
  • a first air flow path through which the first air flow flows and a second air flow path through which the second air flow flows are formed.
  • the third heat exchange plate and the fourth heat exchange plate are arranged so as to meet each other, and a high-pressure refrigerant flow path and a low-pressure refrigerant flow path are formed between the third heat exchange plate and the fourth heat exchange plate. There is.
  • the first heat exchange plate, the second heat exchange plate, the third heat exchange plate, and the fourth heat exchange plate are arranged between the low pressure refrigerant flow path and the high pressure refrigerant flow path, respectively. It constitutes the internal heat exchange unit.
  • the internal heat exchange unit exchanges heat between the low-pressure refrigerant that has passed through the low-pressure refrigerant flow path and the high-pressure refrigerant that has passed through the high-pressure refrigerant flow path.
  • the internal heat exchange unit constitutes a water guide unit for guiding the condensed water generated in the second air flow path to the windward side of the first air flow in the heat exchange core.
  • the water conveyance section can be satisfactorily configured by the internal heat exchange section.
  • the internal heat exchange portion includes an outer tubular portion that is formed in a tubular shape extending in a predetermined direction and allows low-pressure refrigerant to flow through the low-pressure refrigerant flow path.
  • the internal heat exchange portion includes an inner cylinder portion that is formed in a tubular shape extending in a predetermined direction inside the outer cylinder portion and allows high-pressure refrigerant that has passed through the high-pressure refrigerant flow path to flow, and the low-pressure refrigerant in the outer cylinder portion and the inside of the inner cylinder portion. Heat is exchanged with the high-pressure refrigerant of.
  • the upper portion of the outer tubular portion formed toward the second air flow path constitutes a water conducting portion.
  • the water guide portion when the water guide portion is the first water guide portion, it is arranged on the lower side with respect to the second air flow path and is provided on the leeward side of the first air flow with respect to the outer cylinder portion.
  • a second headrace for guiding the condensed water generated in the second air flow path to the first headrace is provided.
  • the condensed water generated in the second air flow path can be satisfactorily collected in the first headrace.
  • the second headrace is formed so as to be inclined upward toward the leeward side of the first air flow in order to guide the condensed water to the first headrace.
  • the evaporation part and the heat dissipation part form a refrigeration cycle together with the pressure reducing valve and the compressor.
  • the compressor sucks in the low-pressure refrigerant flowing from the evaporation unit, compresses it, and discharges the high-pressure refrigerant.
  • the heat radiating unit exchanges heat between the high-pressure refrigerant discharged from the compressor and the first air flow.
  • the pressure reducing valve decompresses the high pressure refrigerant flowing from the heat radiating unit to discharge the low pressure refrigerant, and the evaporation unit exchanges heat between the low pressure refrigerant flowing from the pressure reducing valve and the second air flow.
  • the main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
  • the evaporation section is arranged at an angle so that the windward side of the second air flow of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section, so that the evaporation section is condensed water. Is guided to the windward side of the first air flow in the heat exchange core in the heat dissipation part by gravity.
  • the main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in opposite directions to each other.
  • the evaporation section is arranged at an angle so that the leeward side of the second air stream of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section, so that the evaporation section collects condensed water.
  • the heat exchange core in the heat dissipation section is guided by gravity to the windward side of the first air flow.
  • the air conditioner includes a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
  • the air conditioner is arranged above the heat dissipation unit, and includes an evaporation unit that absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
  • the air conditioner has a duct having a first air flow path through which the first air flow flows and a second air flow path formed separately from the first air flow path and through which the second air flow flows. Be prepared. The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
  • Condensation generated from the evaporation part by arranging the evaporation part at an angle so that the leeward side of the second air flow of the evaporation part is arranged below the leeward side of the second air flow of the evaporation part.
  • the evaporation part guides water to the windward side of the first air flow in the heat exchange core in the heat dissipation part by gravity.
  • the air conditioner includes a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
  • the air conditioner is arranged above the heat dissipation unit, and includes an evaporation unit that absorbs heat from the second air flow and evaporates the low pressure refrigerant by heat exchange between the second air flow and the low pressure refrigerant.
  • the air conditioner includes a duct having a first air flow path through which the first air flow flows, and a second air flow path formed separately from the first air flow path and through which the second air flow flows. ..
  • the main flow of the first air flow flowing through the heat dissipation part and the main flow of the second air flow flowing through the evaporation part flow in opposite directions.
  • Condensed water generated from the evaporation section by arranging the evaporation section at an angle so that the leeward side of the second air flow of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section.
  • the evaporation part guides the heat exchange core in the heat dissipation part to the windward side of the first air flow by gravity.
  • an air flow generating unit for generating a first air flow and a second air flow is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger comprises: a heat dissipation unit (20) that is provided with a heat exchange core (230) that dissipates heat from a high-pressure refrigerant into a first air flow by heat exchange between the first air flow and the high-pressure refrigerant; and an evaporator (22) that is disposed above the heat dissipation unit and evaporates a low-pressure refrigerant by causing the low-pressure refrigerant to absorb heat from a second air flow by heat exchange between the second air flow and the low-pressure refrigerant. In this heat exchanger, the condensed water generated from the evaporator by the heat exchange in the evaporator is guided to the windward side of the first air flow in the heat exchange core of the heat dissipation unit, and the guided condensed water is applied to the heat exchange core to dissipate heat from the high-pressure refrigerant into the condensed water and vaporize the condensed water.

Description

熱交換器、および空調装置Heat exchanger and air conditioner 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年7月23日に出願された日本特許出願番号2019-135404号と、2020年3月25日に出願された日本特許出願番号2020-54811号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-135404 filed on July 23, 2019 and Japanese Patent Application No. 2020-54811 filed on March 25, 2020. The description is incorporated by reference.
 本開示は、熱交換器、および空調装置に関するものである。 This disclosure relates to heat exchangers and air conditioners.
 従来、空調装置では、蒸発部が放熱部の上側に配置され、蒸発部に生じる凝縮水を放熱部に導く導水流路を設けるものが提案されている(例えば、特許文献1参照)。 Conventionally, in an air conditioner, it has been proposed that the evaporation part is arranged above the heat dissipation part and a water guiding flow path for guiding the condensed water generated in the evaporation part to the heat dissipation part is provided (see, for example, Patent Document 1).
 このものにおいては、放熱部に凝縮水を掛けて凝縮水を放熱部で気化させて冷媒から気化熱を奪うことにより、放熱部における冷媒を冷却する冷却効率を上げることを狙いとしている。 In this product, the aim is to improve the cooling efficiency of cooling the refrigerant in the heat dissipation part by applying condensed water to the heat dissipation part and vaporizing the condensed water in the heat dissipation part to remove the heat of vaporization from the refrigerant.
国際公開2018/235765号International release 2018/235765
 上記特許文献1には、空調装置では、蒸発部に生じる凝縮水を放熱部にどのように掛けるかについて記載されていない。例えば、凝縮水を放熱部のうち上側タンクに流下させると、凝縮水が放熱部の上側タンクに沿って風下側に流れるおそれがある。 The above-mentioned Patent Document 1 does not describe how to apply the condensed water generated in the evaporation part to the heat dissipation part in the air conditioner. For example, if the condensed water is allowed to flow down to the upper tank of the heat radiating portion, the condensed water may flow to the leeward side along the upper tank of the heat radiating portion.
 したがって、凝縮水が放熱部で気化されずに、そのまま、放熱部の風下側に流れてしまう。よって、放熱部において冷媒の十分な冷却効果を得られない可能性が高い。 Therefore, the condensed water is not vaporized in the heat radiating part and flows to the leeward side of the heat radiating part as it is. Therefore, there is a high possibility that a sufficient cooling effect of the refrigerant cannot be obtained in the heat radiating portion.
 本開示は、蒸発部および放熱部を備える熱交換器において、蒸発部に生じる凝縮水を用いて放熱部における冷媒の冷却効果を向上するようにした熱交換器、および空調装置を提供することを目的とする。 The present disclosure provides a heat exchanger provided with an evaporation unit and a heat dissipation unit, the heat exchanger in which the condensed water generated in the evaporation unit is used to improve the cooling effect of the refrigerant in the heat dissipation unit, and an air conditioner. The purpose.
 上記目的を達成するため、本開示の1つの観点によれば、第1空気流および高圧冷媒の間の熱交換によって高圧冷媒から第1空気流に放熱させる熱交換コアを備える放熱部と、
 放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって低圧冷媒を第2空気流から吸熱させて蒸発させる蒸発部と、を備え、
 蒸発部の熱交換によって蒸発部から生じる凝縮水を放熱部における熱交換コアのうち第1空気流の風上側に導いて、この導かれる凝縮水を熱交換コアに掛けて高圧冷媒から凝縮水に放熱させて凝縮水を気化させる。
In order to achieve the above object, according to one aspect of the present disclosure, a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
It is provided on the upper side with respect to the heat radiating section, and includes an evaporating section which absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
The condensed water generated from the evaporation part by the heat exchange of the evaporation part is guided to the wind side of the first air flow in the heat exchange core in the heat dissipation part, and this guided condensed water is applied to the heat exchange core to change from the high pressure refrigerant to the condensed water. It dissipates heat and vaporizes condensed water.
 したがって、高圧冷媒から気化熱を凝縮水に移動させることができるので、凝縮水を用いて高圧冷媒を冷却することができる。これにより、蒸発部に生じる凝縮水を用いて放熱部における冷媒の冷却効果を向上するようにした熱交換器を提供することができる。 Therefore, since the heat of vaporization can be transferred from the high-pressure refrigerant to the condensed water, the high-pressure refrigerant can be cooled by using the condensed water. This makes it possible to provide a heat exchanger in which the condensed water generated in the evaporation section is used to improve the cooling effect of the refrigerant in the heat dissipation section.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference reference numerals in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態の熱交換器を有する冷凍サイクル回路を示した冷媒回路図である。It is a refrigerant circuit diagram which showed the refrigerating cycle circuit which has the heat exchanger of 1st Embodiment. 第1実施形態において熱交換器の概略構成を模式的に示した断面図である。It is sectional drawing which shows typically the schematic structure of the heat exchanger in 1st Embodiment. 第1実施形態において図2のIII-III断面を示した断面図であって、一方側サイドプレート部の一方側第3板を抜粋して示した図である。FIG. 5 is a cross-sectional view showing a cross section of III-III of FIG. 2 in the first embodiment, and is an excerpt of a third plate on one side of a side plate portion on one side. 第1実施形態における図2のIV方向の矢視図であって、他方側サイドプレート部の他方側第2板を二点鎖線で示した図である。It is the arrow view of FIG. 2 in the IV direction in 1st Embodiment, and is the figure which showed the 2nd plate of the other side of the other side plate part by the alternate long and short dash line. 第1実施形態において、凝縮構成部および蒸発構成部を構成する一対の板部材のうち積層方向の他方側に配置される第2板部材を、図2の矢印Vで示す方向視で見た矢視図である。In the first embodiment, of the pair of plate members constituting the condensation component and the evaporation component, the second plate member arranged on the other side in the stacking direction is viewed as an arrow in the direction indicated by the arrow V in FIG. It is a visual view. 第1実施形態において、凝縮構成部および蒸発構成部を構成する一対の板部材のうち積層方向の一方側に配置される第1板部材を、図2の矢印IVで示す方向視で見た矢視図である。In the first embodiment, of the pair of plate members constituting the condensation component and the evaporation component, the first plate member arranged on one side in the stacking direction is an arrow viewed in the direction indicated by the arrow IV in FIG. It is a visual view. 第1実施形態において図2のVII-VII断面を示した断面図であって、凝縮部内の冷媒流れを矢印で模式的に示した図である。In the first embodiment, it is the cross-sectional view which showed the cross section of VII-VII of FIG. 2, and is the figure which shows typically the refrigerant flow in a condensed part by an arrow. 第1実施形態において図2のVIII-VIII断面を示した断面図であって、蒸発部内の冷媒流れを矢印で模式的に示した図である。It is sectional drawing which showed the cross section of VIII-VIII of FIG. 2 in 1st Embodiment, and is the figure which shows typically the refrigerant flow in the evaporation part by an arrow. 第1実施形態において図4のIX-IX断面を示した断面図であって、内部熱交換部の構造を模式的に示した図である。It is sectional drawing which showed the cross section of IX-IX of FIG. 4 in 1st Embodiment, and is the figure which showed typically the structure of the internal heat exchange part. 第1実施形態において、一方側サイドプレート部の一方側第2板を、図2の矢印Vで示す方向視で見た矢視図である。In the first embodiment, it is an arrow view of the second plate on one side of the side plate portion on one side as viewed in the direction indicated by the arrow V in FIG. 第1実施形態において、一方側サイドプレート部の一方側第1板を、図2の矢印Vで示す方向視で見た矢視図である。In the first embodiment, it is an arrow view of the first plate on one side of the side plate portion on one side as viewed in the direction indicated by the arrow V in FIG. 図5に相当する図であって、図5の第2板部材のうち他方側凝縮板部の第1連通孔が設けられていない構成を示した図である。It is a figure corresponding to FIG. 5, and is the figure which showed the structure in which the 1st communication hole of the condensing plate part on the other side of the 2nd plate member of FIG. 5 is not provided. 図6に相当する図であって、図6の第1板部材のうち一方側蒸発板部の第1連通孔が設けられていない構成を示した図である。It is a figure corresponding to FIG. 6, and is the figure which showed the structure which the 1st communication hole of one side evaporation plate part was not provided in the 1st plate member of FIG. 第1実施形態において図4のXIV-XIV断面を示した断面図であって、内部熱交換部および導水板を模式的に示した図である。It is sectional drawing which showed the cross section of XIV-XIV of FIG. 4 in 1st Embodiment, and is the figure which showed typically the internal heat exchange part and the water guide plate. 対比例において熱交換器の概略構成を模式的に示した断面図である。It is sectional drawing which shows typically the schematic structure of the heat exchanger in inverse proportion. 図15中のXVI部分を拡大した図であって、貯水部、ドレイン配管、およ凝縮部の構成を示した図である。It is an enlarged view of the XVI part in FIG. 15, and is the figure which showed the structure of the water storage part, the drain pipe, and the condensation part. 第2実施形態の熱交換器を有する冷凍サイクル回路を示した冷媒回路図であって、図1に相当する図である。It is a refrigerant circuit diagram which showed the refrigerating cycle circuit which has the heat exchanger of 2nd Embodiment, and is the figure which corresponds to FIG. 第2実施形態において熱交換器の概略構成を模式的に示した断面図であって、図2に相当する図である。It is sectional drawing which shows typically the schematic structure of the heat exchanger in 2nd Embodiment, and is the figure which corresponds to FIG. 図18のXIX方向の矢視図であって、第2実施形態の一方側サイドプレート部を示した図である。FIG. 18 is an arrow view in the XIX direction of FIG. 18, showing a side plate portion on one side of the second embodiment. 第2実施形態において図18のXX-XX断面を示した断面図であって、第2実施形態の他方側サイドプレート部を示した図である。It is sectional drawing which showed the XX-XX cross section of FIG. 18 in 2nd Embodiment, and is the figure which showed the other side side plate part of 2nd Embodiment. 第2実施形態において図18のXXI-XXI断面を示した断面図であって、一方側凝縮板部と一方側蒸発板部とを抜粋して示した図である。It is sectional drawing which showed the XXI-XXI cross section of FIG. 18 in 2nd Embodiment, and is the figure which showed the one-side condensing plate part and one-side evaporation plate part excerpted. 第2実施形態において図18のXXII-XXII断面を示した断面図であって、一方側凝縮板部と一方側蒸発板部とを抜粋して示した図である。It is sectional drawing which showed the cross section of XXII-XXII of FIG. 18 in 2nd Embodiment, and is the figure which showed the one-side condensing plate part and one-side evaporation plate part excerpted. 図18のXXIII-XXIII断面を示した、図22に相当する断面図であって、図22の第2板部材のうち他方側凝縮板部の第1連通孔と他方側蒸発板部の第2連通孔とが設けられていない構成を示した図である。It is a cross-sectional view corresponding to FIG. 22 showing the cross section of XXIII-XXIII of FIG. 18, and is the first communication hole of the condensing plate portion on the other side and the second communication plate portion of the evaporation plate portion on the other side of the second plate member of FIG. It is a figure which showed the structure which the communication hole is not provided. 図18のXXIV-XXIV断面を示した、図22に相当する断面図であって、図22の第2板部材のうち他方側凝縮板部の第2連通孔と他方側蒸発板部の第1連通孔とが設けられていない構成を示した図である。It is a cross-sectional view corresponding to FIG. 22 showing the cross section of XXIV-XXIV of FIG. 18, and is the first communication hole of the other side condensing plate portion and the first of the other side evaporation plate portion of the second plate member of FIG. It is a figure which showed the structure which the communication hole is not provided. 第3実施形態において熱交換器において、蒸発部、貯水部、ドレイン配管、凝縮部、およびディストリビュータを模式的に示した模式図である。FIG. 5 is a schematic diagram schematically showing an evaporation unit, a water storage unit, a drain pipe, a condensing unit, and a distributor in the heat exchanger in the third embodiment. 第3実施形態において図25のXXVI方向の矢視図であって、ドレイン配管、凝縮部、およびディストリビュータを模式的に示した模式図である。In the third embodiment, it is an arrow view in the direction of XXVI of FIG. 25, and is a schematic view schematically showing a drain pipe, a condensing part, and a distributor. 第3実施形態において凝縮部、およびディストリビュータを分解した状態を模式的に示した斜視図である。It is a perspective view which shows typically the state which disassembled the condensing part and a distributor in 3rd Embodiment. 第4実施形態において図21に相当する図であって、一方側凝縮板部と一方側蒸発板部とを抜粋して示した図である。It is the figure corresponding to FIG. 21 in 4th Embodiment, and is the figure which showed the one-side condensing plate part and one-side evaporation plate part excerpted. 第5実施形態の熱交換器、ダクト、および送風ユニットを備える空調装置の全体を鉛直方向の上側から視た全体構成図である。FIG. 5 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a fifth embodiment as viewed from above in the vertical direction. 第5実施形態の送風ユニットの構成を示した図である。It is a figure which showed the structure of the blower unit of 5th Embodiment. 図29のXXXI-XXXI断面を示した断面図であって、第5実施形態の熱交換器、およびダクトの配置関係を示した図である。It is sectional drawing which showed the cross section of XXXI-XXXI of FIG. 29, and is the figure which showed the arrangement relation of the heat exchanger and the duct of 5th Embodiment. 第6実施形態の熱交換器、ダクト、および送風ユニットを備える空調装置の全体を鉛直方向の上側から視た全体構成図である。6 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a sixth embodiment as viewed from above in the vertical direction. 図32のXXXIII-XXXIII断面を示した断面図であって、第6実施形態の送風ユニットの構成を示した図である。It is sectional drawing which showed the sectional view of XXXIII-XXXIII of FIG. 32, and is the figure which showed the structure of the blower unit of 6th Embodiment. 第7実施形態の熱交換器、ダクト、および送風ユニットを備える空調装置の全体を鉛直方向の上側から視た全体構成図である。FIG. 5 is an overall configuration diagram of an air conditioner including a heat exchanger, a duct, and a blower unit according to a seventh embodiment as viewed from above in the vertical direction. 第8実施形態の熱交換器、およびダクトの配置関係を示した全体構成図である。It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 8th Embodiment. 第9実施形態の熱交換器、およびダクトの配置関係を示した全体構成図である。It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 9th Embodiment. 第10実施形態の熱交換器、およびダクトの配置関係を示した全体構成図である。It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of the tenth embodiment. 第11実施形態の熱交換器、およびダクトの配置関係を示した全体構成図である。It is an overall block diagram which showed the arrangement relation of the heat exchanger and the duct of 11th Embodiment. 第1実施形態の変形例において、熱交換器を有する冷凍サイクル回路を示した冷媒回路図である。It is a refrigerant circuit diagram which showed the refrigerating cycle circuit which has a heat exchanger in the modification of 1st Embodiment. 第1実施形態の変形例において、図2のVIII-VIII断面に相当する断面を示した断面図であって、図8に相当する図である。In the modified example of the first embodiment, it is the cross-sectional view which showed the cross section corresponding to the VIII-VIII cross section of FIG. 2, and is the figure which corresponds to FIG. 第2実施形態の変形例において、冷凍サイクル回路を示した冷媒回路図である。It is a refrigerant circuit diagram which showed the refrigerating cycle circuit in the modification of 2nd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the figures. In each of the following embodiments, the same or equal parts are designated by the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 図1に示すように、本実施形態の熱交換器10は、冷媒が循環する冷凍サイクル回路12の一部を構成する。すなわち、冷凍サイクル回路12では、その冷凍サイクル回路12に含まれる圧縮機14が圧縮した冷媒が熱交換器10に流入し、その熱交換器10に流入した冷媒は、熱交換器10内を流通してから圧縮機14に吸い込まれる。
(First Embodiment)
As shown in FIG. 1, the heat exchanger 10 of the present embodiment constitutes a part of the refrigeration cycle circuit 12 in which the refrigerant circulates. That is, in the refrigeration cycle circuit 12, the refrigerant compressed by the compressor 14 included in the refrigeration cycle circuit 12 flows into the heat exchanger 10, and the refrigerant flowing into the heat exchanger 10 flows through the heat exchanger 10. Then, it is sucked into the compressor 14.
 この熱交換器10は、冷房または暖房が行われる空調対象空間へ流れる空気と冷媒との熱交換を行う。例えば、その空調対象空間が冷房される場合には、熱交換器10は、その空調対象空間へ流れる空気を冷媒で冷却する。また、その空調対象空間が暖房される場合には、熱交換器10は、その空調対象空間へ流れる空気を冷媒で加熱する。 The heat exchanger 10 exchanges heat between the air flowing into the air-conditioned space where cooling or heating is performed and the refrigerant. For example, when the air-conditioned space is cooled, the heat exchanger 10 cools the air flowing to the air-conditioned space with a refrigerant. Further, when the air-conditioned space is heated, the heat exchanger 10 heats the air flowing to the air-conditioned space with a refrigerant.
 図1および図2に示すように、本実施形態の熱交換器10は、例えば、アルミニウム合金などの金属からなる複数の構成部材が互いにロウ付け接合されることにより構成されている。 As shown in FIGS. 1 and 2, the heat exchanger 10 of the present embodiment is configured by brazing and joining a plurality of constituent members made of a metal such as an aluminum alloy to each other.
 本実施形態の熱交換器10は、放熱部としての凝縮部20と、蒸発部22と、内部熱交換部28と、一方側サイドプレート部30と、他方側サイドプレート部32と、管状の入口管34と、管状の出口管36とを備えている。熱交換器10は、凝縮水を外側筒部281の上側に導くための第2導水部としての導水板50を備える。 The heat exchanger 10 of the present embodiment includes a condensing unit 20 as a heat radiating unit, an evaporation unit 22, an internal heat exchange unit 28, one side plate portion 30, the other side plate portion 32, and a tubular inlet. It includes a pipe 34 and a tubular outlet pipe 36. The heat exchanger 10 includes a water guide plate 50 as a second water guide for guiding the condensed water to the upper side of the outer cylinder 281.
 図2~図4に示すように、一方側サイドプレート部30と他方側サイドプレート部32は、所定の積層方向Dsを厚み方向とし且つ鉛直方向Dgを長手方向とした略板状を成している。 As shown in FIGS. 2 to 4, the one-side side plate portion 30 and the other-side side plate portion 32 form a substantially plate shape with a predetermined stacking direction Ds as a thickness direction and a vertical direction Dg as a longitudinal direction. There is.
 その積層方向Dsは鉛直方向Dgに対して交差する方向、厳密に言えば鉛直方向Dgに対して直交する方向である。なお、図2は、図4のII-II断面を示している。また、本実施形態では、積層方向Dsと鉛直方向Dgとの両方に直交する方向を熱交換器幅方向Dwと呼ぶものとする。 The stacking direction Ds is a direction intersecting the vertical direction Dg, strictly speaking, a direction orthogonal to the vertical direction Dg. Note that FIG. 2 shows a cross section of II-II of FIG. Further, in the present embodiment, the direction orthogonal to both the stacking direction Ds and the vertical direction Dg is referred to as the heat exchanger width direction Dw.
 一方側サイドプレート部30は、熱交換器10のうち積層方向Dsの一方側の端に配置され、他方側サイドプレート部32は、熱交換器10のうち積層方向Dsの他方側の端に配置されている。凝縮部20と蒸発部22と内部熱交換部28は、積層方向Dsにおいて、その一方側サイドプレート部30と他方側サイドプレート部32との間に配置されている。すなわち、一方側サイドプレート部30は、凝縮部20と蒸発部22と内部熱交換部28とに対し積層方向Dsの一方側に配置され、他方側サイドプレート部32は、凝縮部20と蒸発部22と内部熱交換部28とに対し積層方向Dsの他方側に配置されている。そして、一方側サイドプレート部30および他方側サイドプレート部32は、その一方側サイドプレート部30と他方側サイドプレート部32との間に、凝縮部20と蒸発部22と内部熱交換部28と導水板50を挟んでいる。 The one side plate portion 30 is arranged at one end of the heat exchanger 10 in the stacking direction Ds, and the other side plate portion 32 is arranged at the other end of the heat exchanger 10 in the stacking direction Ds. Has been done. The condensing portion 20, the evaporating portion 22, and the internal heat exchange portion 28 are arranged between the one side side plate portion 30 and the other side side plate portion 32 in the stacking direction Ds. That is, the one-side side plate portion 30 is arranged on one side of the stacking direction Ds with respect to the condensing portion 20, the evaporating portion 22, and the internal heat exchange portion 28, and the other side side plate portion 32 is the condensing portion 20, the evaporating portion, and the evaporating portion. It is arranged on the other side of the stacking direction Ds with respect to 22 and the internal heat exchange portion 28. Then, the one side side plate portion 30 and the other side side plate portion 32 have a condensing portion 20, an evaporation portion 22, and an internal heat exchange portion 28 between the one side side plate portion 30 and the other side side plate portion 32. The water guide plate 50 is sandwiched between them.
 凝縮部20は、積層方向Dsを厚み方向とし且つ鉛直方向Dgを長手方向とした凝縮構成部201が積層方向Dsに複数積層された積層構造を備えている。すなわち、凝縮部20は複数の凝縮構成部201を有しており、その複数の凝縮構成部201は積層方向Dsに積層されると共に、互いに接合されている。 The condensing portion 20 has a laminated structure in which a plurality of condensed constituent portions 201 having the laminating direction Ds in the thickness direction and the vertical direction Dg in the longitudinal direction are laminated in the laminating direction Ds. That is, the condensing unit 20 has a plurality of condensed components 201, and the plurality of condensed components 201 are laminated in the stacking direction Ds and joined to each other.
 そして、図2、図5、図6に示すように、複数の凝縮構成部201の内部にはそれぞれ、一方側凝縮タンク空間201aと他方側凝縮タンク空間201bと凝縮流路201c(すなわち、高圧冷媒流路)とからなる内部空間が形成されている。一方側凝縮タンク空間201aと他方側凝縮タンク空間201bと凝縮流路201cは、冷媒が流通する空間である。 Then, as shown in FIGS. 2, 5, and 6, inside the plurality of condensing components 201, one side condensing tank space 201a, the other side condensing tank space 201b, and the condensing flow path 201c (that is, high-pressure refrigerant), respectively. An internal space consisting of a flow path) is formed. The one-side condensing tank space 201a, the other-side condensing tank space 201b, and the condensing flow path 201c are spaces through which the refrigerant flows.
 一方側凝縮タンク空間201aは凝縮流路201cの一端に接続され、他方側凝縮タンク空間201bは凝縮流路201cの他端に接続されている。凝縮流路201cは、例えば、鉛直方向Dgに複数回往復する波形の経路に沿って延びている。本実施形態では、凝縮流路201cは、鉛直方向Dgに3往復する波形の経路に沿って延びている。 One side condensing tank space 201a is connected to one end of the condensing flow path 201c, and the other side condensing tank space 201b is connected to the other end of the condensing flow path 201c. The condensing flow path 201c extends, for example, along a corrugated path that reciprocates a plurality of times in the vertical direction Dg. In the present embodiment, the condensing flow path 201c extends along a corrugated path that reciprocates three times in the vertical direction Dg.
 凝縮流路201cは、一方側凝縮タンク空間201aと他方側凝縮タンク空間201bとに対し鉛直方向Dgの上側に配置されている。また、一方側凝縮タンク空間201aは、他方側凝縮タンク空間201bに対し熱交換器幅方向Dwの一方側に配置されている。 The condensing flow path 201c is arranged above the one-sided condensing tank space 201a and the other-side condensing tank space 201b in the vertical direction Dg. Further, the one-sided condensing tank space 201a is arranged on one side of the heat exchanger width direction Dw with respect to the other-side condensing tank space 201b.
 また、図2および図7に示すように、互いに隣接した凝縮構成部201の相互間では、少なくとも、一方側凝縮タンク空間201a同士または他方側凝縮タンク空間201b同士が互いに連通している。 Further, as shown in FIGS. 2 and 7, at least one side condensing tank space 201a or the other side condensing tank space 201b communicates with each other between the condensing components 201 adjacent to each other.
 凝縮部20内には、圧縮機14(図1参照)が圧縮し吐出した冷媒が矢印Fi、F1aのように入口管34を介して流入し、その冷媒は各凝縮構成部201の凝縮流路201cへと流れる。そして、凝縮部20は、凝縮部20周りの空気と凝縮流路201cに流れる冷媒とを熱交換させ、それによって、その冷媒から放熱させると共にその冷媒を凝縮させる。 The refrigerant compressed and discharged by the compressor 14 (see FIG. 1) flows into the condensing section 20 through the inlet pipe 34 as shown by arrows Fi and F1a, and the refrigerant flows into the condensing flow path of each condensing component 201. It flows to 201c. Then, the condensing unit 20 exchanges heat between the air around the condensing unit 20 and the refrigerant flowing in the condensing flow path 201c, thereby dissipating heat from the refrigerant and condensing the refrigerant.
 なお、図7の矢印F2a、F2b、F2cはそれぞれ、積層方向Dsに隣接して互いに接続された複数の一方側凝縮タンク空間201aにおける冷媒流れを示している。また、矢印F3a、F3bはそれぞれ、積層方向Dsに隣接して互いに接続された複数の他方側凝縮タンク空間201bにおける冷媒流れを示している。また、矢印F4a~F4hはそれぞれ、凝縮流路201cの冷媒流れを示している。 The arrows F2a, F2b, and F2c in FIG. 7 indicate the refrigerant flow in the plurality of one-sided condensing tank spaces 201a adjacent to each other in the stacking direction Ds and connected to each other. Further, arrows F3a and F3b each indicate a refrigerant flow in a plurality of other side condensing tank spaces 201b adjacent to each other in the stacking direction Ds and connected to each other. Further, arrows F4a to F4h each indicate a refrigerant flow in the condensation flow path 201c.
 蒸発部22は、積層方向Dsを厚み方向とし且つ鉛直方向Dgを長手方向とした蒸発構成部221が積層方向Dsに複数積層された積層構造を備えている。すなわち、蒸発部22は複数の蒸発構成部221を有しており、その複数の蒸発構成部221は積層方向Dsに積層されると共に、互いに接合されている。 The evaporation unit 22 has a laminated structure in which a plurality of evaporation components 221 having the lamination direction Ds in the thickness direction and the vertical direction Dg in the longitudinal direction are laminated in the lamination direction Ds. That is, the evaporation component 22 has a plurality of evaporation components 221 and the plurality of evaporation components 221 are laminated in the stacking direction Ds and joined to each other.
 そして、図2、図5、図6に示すように、複数の蒸発構成部221の内部にはそれぞれ、一方側蒸発タンク空間221aと他方側蒸発タンク空間221bと蒸発流路221c(すなわち、低圧冷媒流路)とからなる内部空間が形成されている。一方側蒸発タンク空間221aと他方側蒸発タンク空間221bと蒸発流路221cは、冷媒が流通する空間である。 Then, as shown in FIGS. 2, 5 and 6, inside the plurality of evaporation components 221 respectively, one side evaporation tank space 221a, the other side evaporation tank space 221b and the evaporation flow path 221c (that is, low pressure refrigerant). An internal space consisting of a flow path) is formed. The one-side evaporation tank space 221a, the other-side evaporation tank space 221b, and the evaporation flow path 221c are spaces through which the refrigerant flows.
 一方側蒸発タンク空間221aは蒸発流路221cの一端に接続され、他方側蒸発タンク空間221bは蒸発流路221cの他端に接続されている。蒸発流路221cは、例えば、鉛直方向Dgに複数回往復する波形の経路に沿って延びている。本実施形態では、蒸発流路221cは、鉛直方向Dgに2往復する波形の経路に沿って延びている。そして、蒸発流路221cは、凝縮流路201cに比して流路断面積が大きくなるように形成されている。 The one-side evaporation tank space 221a is connected to one end of the evaporation flow path 221c, and the other side evaporation tank space 221b is connected to the other end of the evaporation flow path 221c. The evaporation flow path 221c extends, for example, along a corrugated path that reciprocates a plurality of times in the vertical direction Dg. In the present embodiment, the evaporation flow path 221c extends along a corrugated path that reciprocates twice in the vertical direction Dg. The evaporation flow path 221c is formed so that the flow path cross-sectional area is larger than that of the condensation flow path 201c.
 蒸発流路221cは、一方側蒸発タンク空間221aと他方側蒸発タンク空間221bとに対し鉛直方向Dgの下側に配置されている。また、一方側蒸発タンク空間221aは、他方側蒸発タンク空間221bに対し熱交換器幅方向Dwの一方側に配置されている。 The evaporation flow path 221c is arranged below the one-side evaporation tank space 221a and the other-side evaporation tank space 221b in the vertical direction Dg. Further, the one-side evaporation tank space 221a is arranged on one side of the heat exchanger width direction Dw with respect to the other-side evaporation tank space 221b.
 また、図2および図8に示すように、互いに隣接した蒸発構成部221の相互間では、少なくとも、一方側蒸発タンク空間221a同士または他方側蒸発タンク空間221b同士が互いに連通している。 Further, as shown in FIGS. 2 and 8, at least one side evaporation tank space 221a or the other side evaporation tank space 221b communicate with each other between the evaporation components 221 adjacent to each other.
 蒸発部22と内部熱交換部28と凝縮部20は、鉛直方向Dgにおいて、蒸発部22、内部熱交換部28、凝縮部20の順に並んで配置されている。詳しくは、蒸発部22と内部熱交換部28と凝縮部20は、その記載順で上側から鉛直方向Dgに並んで配置されている。すなわち、内部熱交換部28は蒸発部22に対し下側に重なるように配置されている。そして、凝縮部20は、蒸発部22と内部熱交換部28との両方に対し下側に重なるように配置されている。 The evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg in the order of the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20. Specifically, the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg from the upper side in the order of description. That is, the internal heat exchange unit 28 is arranged so as to overlap the evaporation unit 22 on the lower side. The condensing unit 20 is arranged so as to overlap the evaporation unit 22 and the internal heat exchange unit 28 on the lower side.
 凝縮部20から流出した冷媒は、内部熱交換部28と、他方側サイドプレート部32に含まれる後述の絞り部321eとをその記載順に経て、絞り部321e(すなわち、減圧部)で減圧されてから蒸発部22内に流入する。その凝縮部20から蒸発部22に至る冷媒流れは、例えば図2の矢印F1b~F1fで表されている。 The refrigerant flowing out of the condensing section 20 passes through the internal heat exchange section 28 and the throttle section 321e included in the other side plate section 32 in the order of description thereof, and is decompressed by the throttle section 321e (that is, the decompression section). Flows into the evaporation unit 22. The refrigerant flow from the condensing portion 20 to the evaporating portion 22 is represented by, for example, arrows F1b to F1f in FIG.
 絞り部321eから蒸発部22内に流入した冷媒は各蒸発構成部221の蒸発流路221cへと流れる。そして、蒸発部22は、蒸発部22周りの空気と蒸発流路221cに流れる冷媒とを熱交換させ、それによって、その冷媒に吸熱させると共にその冷媒を蒸発させる。 The refrigerant that has flowed into the evaporation section 22 from the drawing section 321e flows into the evaporation flow path 221c of each evaporation component section 221. Then, the evaporation unit 22 exchanges heat between the air around the evaporation unit 22 and the refrigerant flowing in the evaporation flow path 221c, thereby causing the refrigerant to absorb heat and evaporate the refrigerant.
 なお、図8の矢印F5a、F5bはそれぞれ、積層方向Dsに隣接して互いに接続された複数の一方側蒸発タンク空間221aにおける冷媒流れを示している。また、矢印F6a、F6bはそれぞれ、積層方向Dsに隣接して互いに接続された複数の他方側蒸発タンク空間221bにおける冷媒流れを示している。また、矢印F7a~F7gはそれぞれ、蒸発流路221cの冷媒流れを示している。 The arrows F5a and F5b in FIG. 8 indicate the refrigerant flow in the plurality of one-sided evaporation tank spaces 221a adjacent to each other in the stacking direction Ds and connected to each other. Further, the arrows F6a and F6b each indicate the refrigerant flow in the plurality of other side evaporation tank spaces 221b adjacent to each other in the stacking direction Ds and connected to each other. Further, arrows F7a to F7g each indicate a refrigerant flow in the evaporation flow path 221c.
 図2に示すように、一方側サイドプレート部30は、板状の部材である一方側第1板301と一方側第2板302と一方側第3板303とを有している。一方側サイドプレート部30は、それらの一方側第1板301と一方側第2板302と一方側第3板303とが積層され互いに接合されることで構成されている。その一方側第1板301と一方側第2板302と一方側第3板303は、一方側第1板301、一方側第2板302、一方側第3板303の順に積層方向Dsの他方側から一方側へ積層されている。 As shown in FIG. 2, the one-side side plate portion 30 has a one-sided first plate 301, a one-sided second plate 302, and a one-sided third plate 303, which are plate-shaped members. The one-side side plate portion 30 is configured such that the one-side first plate 301, the one-side second plate 302, and the one-side third plate 303 are laminated and joined to each other. The one-sided first plate 301, the one-sided second plate 302, and the one-sided third plate 303 are arranged in the order of the one-sided first plate 301, the one-sided second plate 302, and the one-sided third plate 303 in the stacking direction Ds. It is stacked from one side to the other.
 一方側サイドプレート部30には、凝縮部20と蒸発部22とがそれぞれ固定されている。詳細には、積層方向Dsにおける一方側第1板301の他方側に、凝縮部20と蒸発部22とが並列に接合されている。すなわち、複数の凝縮構成部201と複数の蒸発構成部221はそれぞれ、一方側サイドプレート部30に対し積層方向Dsの他方側に積層されている。 The condensing portion 20 and the evaporating portion 22 are fixed to the one side side plate portion 30, respectively. Specifically, the condensing portion 20 and the evaporating portion 22 are joined in parallel to the other side of the first plate 301 on one side in the stacking direction Ds. That is, the plurality of condensation constituents 201 and the plurality of evaporation constituents 221 are respectively laminated on the other side of the stacking direction Ds with respect to the one side plate portion 30.
 他方側サイドプレート部32は、板状の部材である他方側第1板321と他方側第2板322とを有し、それらの他方側第1板321と他方側第2板322とが積層され互いに接合されることで構成されている。その他方側第1板321と他方側第2板322は、他方側第1板321、他方側第2板322の順に積層方向Dsの一方側から他方側へ積層されている。 The other side side plate portion 32 has a plate-shaped member, the other side first plate 321 and the other side second plate 322, and the other side first plate 321 and the other side second plate 322 are laminated. It is composed of being joined to each other. The other side first plate 321 and the other side second plate 322 are laminated from one side to the other side in the stacking direction Ds in the order of the other side first plate 321 and the other side second plate 322.
 他方側サイドプレート部32には、凝縮部20と蒸発部22とがそれぞれ固定されている。詳細には、積層方向Dsにおける他方側第1板321の一方側に、凝縮部20と蒸発部22とが並列に接合されている。すなわち、複数の凝縮構成部201と複数の蒸発構成部221はそれぞれ、他方側サイドプレート部32に対し積層方向Dsの一方側に積層されている。 The condensing portion 20 and the evaporating portion 22 are fixed to the other side plate portion 32, respectively. Specifically, the condensing portion 20 and the evaporating portion 22 are joined in parallel to one side of the other side first plate 321 in the stacking direction Ds. That is, the plurality of condensation constituents 201 and the plurality of evaporation constituents 221 are respectively laminated on one side of the stacking direction Ds with respect to the other side plate portion 32.
 図2、図4、図9に示すように、内部熱交換部28は、凝縮部20(すなわち、凝縮流路201c)から流出した冷媒と蒸発部22の(すなわち、蒸発流路221c)から流出した冷媒とを熱交換させる。すなわち、内部熱交換部28は、凝縮部20を通過した高圧冷媒から蒸発部22を通過した低圧冷媒に熱を移動させる。 As shown in FIGS. 2, 4, and 9, the internal heat exchange section 28 flows out from the refrigerant flowing out from the condensing section 20 (that is, the condensing flow path 201c) and from the evaporating section 22 (that is, the evaporation flow path 221c). The heat is exchanged with the refrigerant. That is, the internal heat exchange unit 28 transfers heat from the high-pressure refrigerant that has passed through the condensing unit 20 to the low-pressure refrigerant that has passed through the evaporation unit 22.
 そのために、内部熱交換部28は、積層方向Dsに延伸した二重管構造になっており、筒状の外側筒部281と、その外側筒部281の中に挿通された筒状の内側筒部282とを有している。内部熱交換部28は、一方側第1板301と他方側第1板321との間で凝縮部20および蒸発部22と並んで配置され、その一方側第1板301と他方側第1板321とにそれぞれ接合されている。 Therefore, the internal heat exchange portion 28 has a double-tube structure extending in the stacking direction Ds, and has a tubular outer cylinder portion 281 and a tubular inner cylinder inserted into the outer cylinder portion 281. It has a portion 282. The internal heat exchange section 28 is arranged side by side with the condensing section 20 and the evaporation section 22 between the first plate 301 on one side and the first plate 321 on the other side, and the first plate 301 on one side and the first plate on the other side thereof. It is joined to 321 respectively.
 外側筒部281は複数の外側筒構成部281a、281bを有している。外側筒部281は、その複数の外側筒構成部281a、281bが積層方向Dsに直列に連結し互いに接合されることにより、積層方向Dsに延びるように形成されている筒形状になっている。詳細には、外側筒部281は、複数の第1外側筒構成部281aと、その第1外側筒構成部281aとは形状が異なる複数の第2外側筒構成部281bとを、その複数の外側筒構成部281a、281bとして有している。 The outer cylinder portion 281 has a plurality of outer cylinder constituent portions 281a and 281b. The outer cylinder portion 281 has a tubular shape formed so as to extend in the stacking direction Ds by connecting the plurality of outer cylinder constituent portions 281a and 281b in series in the stacking direction Ds and joining them to each other. Specifically, the outer cylinder portion 281 includes a plurality of first outer cylinder constituent portions 281a and a plurality of second outer cylinder constituent portions 281b having a shape different from that of the first outer cylinder constituent portion 281a. It has as cylinder constituent parts 281a and 281b.
 例えば、その第1外側筒構成部281a(すなわち、第1、第2内部熱交換部形成部)と第2外側筒構成部281b(すなわち、第2、第4内部熱交換部形成部)は何れも積層方向Dsに延伸した筒形状を有している。 For example, whichever the first outer cylinder constituent portion 281a (that is, the first and second internal heat exchange portion forming portions) and the second outer cylinder constituent portion 281b (that is, the second and fourth internal heat exchange portion forming portions) Also has a tubular shape extended in the stacking direction Ds.
 第2外側筒構成部281bは、第1外側筒構成部281aに対し積層方向Dsに対称な形状とされている。そして、その複数の第1外側筒構成部281aと複数の第2外側筒構成部281bは、積層方向Dsに交互に直列に連結されると共に、互いにロウ付け接合されている。このようにして、外側筒部281は構成されている。 The second outer cylinder constituent portion 281b has a shape symmetrical to the stacking direction Ds with respect to the first outer cylinder constituent portion 281a. The plurality of first outer cylinder constituent portions 281a and the plurality of second outer cylinder constituent portions 281b are alternately connected in series in the stacking direction Ds and brazed to each other. In this way, the outer tubular portion 281 is configured.
 本実施形態では、外側筒部281は、図2および図4に示すように、その外表面のうち鉛直方向Dg上側(すなわち、通風流路22a)に向けて形成されている上側外表面283を備えている。外側筒部281は、上側外表面283のうち上側部位であって、導水板50に沿って流れる凝縮水や通風流路22a(すなわち、第2空気流路)から滴下した凝縮水を熱交換器幅方向Dw一方側に導く第1導水部の役割を果たす。 In the present embodiment, as shown in FIGS. 2 and 4, the outer tubular portion 281 has an upper outer surface 283 formed toward the upper side of the outer surface in the vertical direction Dg (that is, the ventilation flow path 22a). I have. The outer cylinder portion 281 is an upper portion of the upper outer surface 283, and heat exchangers the condensed water flowing along the water guide plate 50 and the condensed water dropped from the ventilation flow path 22a (that is, the second air flow path). It serves as a first water conveyance portion that leads to one side of Dw in the width direction.
 内側筒部282は、積層方向Dsに延びるように形成されている管部材で構成されている。その内側筒部282の一端は、図2および図10に示すように、一方側第2板302に形成された一端用貫通孔302aに挿入され、その一端用貫通孔302aにて一方側第2板302に対しロウ付け接合されている。また、内側筒部282の他端は、図2および図9に示すように、他方側第1板321に形成された他端用貫通孔321aに挿入され、その他端用貫通孔321aにて他方側第1板321に対しロウ付け接合されている。 The inner cylinder portion 282 is composed of a pipe member formed so as to extend in the stacking direction Ds. As shown in FIGS. 2 and 10, one end of the inner tubular portion 282 is inserted into a through hole 302a for one end formed in the second plate 302 on one side, and the second through hole 302a on one side is used for the through hole 302a for one end. It is brazed to the plate 302. Further, as shown in FIGS. 2 and 9, the other end of the inner cylinder portion 282 is inserted into the other end through hole 321a formed in the other side first plate 321 and the other end through hole 321a. It is brazed and joined to the side first plate 321.
 このような構成により、内部熱交換部28には、積層方向Dsに延伸した2本の流路、具体的には、蒸発部22から流出した冷媒が流通する外側流路28aと、凝縮部20から流出した冷媒が流通する内側流路28bとが形成されている。 With such a configuration, the internal heat exchange section 28 has two flow paths extending in the stacking direction Ds, specifically, an outer flow path 28a through which the refrigerant flowing out from the evaporation section 22 flows, and a condensing section 20. An inner flow path 28b through which the refrigerant flowing out of the water flows is formed.
 そして、外側流路28aは外側筒部281の内側に配置され、内側流路28bは、外側流路28aに対しその外側流路28aの内側に内側筒部282の筒壁を挟んで配置されている。従って、内部熱交換部28では、外側流路28aに流れる冷媒と内側流路28bに流れる冷媒とが内側筒部282の筒壁を介して互いに熱交換する。 The outer flow path 28a is arranged inside the outer cylinder portion 281, and the inner flow path 28b is arranged inside the outer flow path 28a with the cylinder wall of the inner cylinder portion 282 interposed therebetween. There is. Therefore, in the internal heat exchange unit 28, the refrigerant flowing in the outer flow path 28a and the refrigerant flowing in the inner flow path 28b exchange heat with each other via the cylinder wall of the inner cylinder portion 282.
 本実施形態では、導水板50は、一方側サイドプレート部30と他方側サイドプレート部32の間に亘って配置されている第2導水部である。導水板50は、複数の通風流路22aに対して下側に配置されている。導水板50は、内部熱交換部28の外側筒部281に対して熱交換器幅方向Dw他方側(すなわち、通風流路22a内の空気流の風下側)に配置されている。 In the present embodiment, the water guide plate 50 is a second water guide portion arranged between the one side side plate portion 30 and the other side side plate portion 32. The water guide plate 50 is arranged below the plurality of ventilation flow paths 22a. The water guide plate 50 is arranged on the other side of the heat exchanger width direction Dw (that is, the leeward side of the air flow in the ventilation flow path 22a) with respect to the outer cylinder portion 281 of the internal heat exchange portion 28.
 導水板50は、その厚み方向が鉛直方向Dgに交差するように配置されている。導水板50は、その上面が通風流路22aに向けて配置されている。導水板50の上面のうち熱交換器幅方向Dw一方側は、外側筒部281の上側外表面283のうち熱交換器幅方向Dw他方側と、鉛直方向Dgにおいて同一部位に位置する。 The water guide plate 50 is arranged so that its thickness direction intersects the vertical direction Dg. The upper surface of the water guide plate 50 is arranged so as to face the ventilation flow path 22a. One side of the upper surface of the water guide plate 50 in the heat exchanger width direction Dw is located at the same portion in the vertical direction Dg as the other side of the heat exchanger width direction Dw of the upper outer surface 283 of the outer cylinder portion 281.
 導水板50は、その上面が熱交換器幅方向Dw他方側に向かうほど鉛直方向Dgに進むように傾斜状に形成されている。本実施形態の導水板50は、複数の通風流路22aから滴下した凝縮水を上側外表面283に導く役割を果たす。 The water guide plate 50 is formed in an inclined shape so that its upper surface advances in the vertical direction Dg toward the other side in the heat exchanger width direction Dw. The water guide plate 50 of the present embodiment plays a role of guiding the condensed water dropped from the plurality of ventilation flow paths 22a to the upper outer surface 283.
 図4、図7、図9に示すように、他方側第1板321には、上記の他端用貫通孔321aの他に、入口用貫通孔321bと出口用貫通孔321cとが形成されている。そして、他方側第1板321には、オリフィス孔として機能する絞り孔321dも形成されている。すなわち、他方側サイドプレート部32は、他方側第1板321のうちその絞り孔321dが形成された部分を絞り部321eとして有している。この絞り孔321dはオリフィスである。 As shown in FIGS. 4, 7, and 9, in addition to the above-mentioned through hole 321a for the other end, the through hole 321b for the inlet and the through hole 321c for the exit are formed in the first plate 321 on the other side. There is. A diaphragm hole 321d that functions as an orifice hole is also formed in the first plate 321 on the other side. That is, the other side side plate portion 32 has a portion of the other side first plate 321 in which the throttle hole 321d is formed as the throttle portion 321e. The throttle hole 321d is an orifice.
 入口用貫通孔321bには入口管34が挿入され、その入口管34は、その入口用貫通孔321bにて他方側第1板321に対しロウ付け接合されている。これにより、入口管34は凝縮部20内に連通するようにその凝縮部20に対して接続される。 An inlet pipe 34 is inserted into the inlet through hole 321b, and the inlet pipe 34 is brazed to the other side first plate 321 at the inlet through hole 321b. As a result, the inlet pipe 34 is connected to the condensing portion 20 so as to communicate with the condensing portion 20.
 出口用貫通孔321cには出口管36が挿入され、その出口管36は、その出口用貫通孔321cにて他方側第1板321に対しロウ付け接合されている。これにより、出口管36は内部熱交換部28の外側流路28aに連通するようにその内部熱交換部28に対して接続される。 An outlet pipe 36 is inserted into the outlet through hole 321c, and the outlet pipe 36 is brazed to the other side first plate 321 at the outlet through hole 321c. As a result, the outlet pipe 36 is connected to the internal heat exchange section 28 so as to communicate with the outer flow path 28a of the internal heat exchange section 28.
 図2、図4、図9に示すように、他方側サイドプレート部32において他方側第2板322は、他方側第1板321に対し積層方向Dsの他方側にロウ付け接合されており、これによって、他方側第1板321との間に他方側中継流路32aを形成している。 As shown in FIGS. 2, 4, and 9, in the other side plate portion 32, the other side second plate 322 is brazed and joined to the other side first plate 321 on the other side in the stacking direction Ds. As a result, the other side relay flow path 32a is formed between the other side first plate 321 and the other side relay flow path 32a.
 この他方側中継流路32aは鉛直方向Dgに延びており、冷媒流れにおいて内部熱交換部28の内側流路28bと絞り孔321dとの間に設けられている。すなわち、他方側中継流路32aは、内側流路28bの冷媒出口側と絞り孔321dの冷媒入口側とをつなぐ流路となっている。 The other side relay flow path 32a extends in the vertical direction Dg, and is provided between the inner flow path 28b of the internal heat exchange portion 28 and the throttle hole 321d in the refrigerant flow. That is, the other side relay flow path 32a is a flow path connecting the refrigerant outlet side of the inner flow path 28b and the refrigerant inlet side of the throttle hole 321d.
 図2および図8に示すように、複数の蒸発構成部221のうち積層方向Dsの他方側の端に位置する入口位置蒸発構成部222には、絞り流路としての絞り孔321dから蒸発部22内へ冷媒を流入させる蒸発部入口222aが設けられている。この蒸発部入口222aは、入口位置蒸発構成部222の一方側蒸発タンク空間221aに含まれている。そして、他方側サイドプレート部32の絞り孔321dは蒸発部入口222aに接続している。 As shown in FIGS. 2 and 8, the inlet position evaporation component 222 located at the other end of the stacking direction Ds among the plurality of evaporation components 221 has the evaporation section 22 from the throttle hole 321d as the throttle flow path. An evaporation unit inlet 222a for allowing the refrigerant to flow into the inside is provided. The evaporation unit inlet 222a is included in the one-side evaporation tank space 221a of the inlet position evaporation component 222. The throttle hole 321d of the other side plate portion 32 is connected to the evaporation portion inlet 222a.
 また、他方側サイドプレート部32の絞り部321eの孔径は、その絞り孔321dを通過する冷媒に対し所定の減圧作用を生じるように設定されている。すなわち、絞り孔321dは、冷媒流れを絞る固定絞りであり、凝縮部20から流出した冷媒を減圧してから蒸発部22へ流す減圧部として機能する。本実施形態では内部熱交換部28が設けられているので、詳細に言うと、絞り部321eの絞り孔321dには、凝縮部20から流出して内部熱交換部28の内側流路28bと他方側中継流路32aとを通過した冷媒が流入する。 Further, the hole diameter of the throttle portion 321e of the other side plate portion 32 is set so as to cause a predetermined depressurizing action on the refrigerant passing through the throttle hole 321d. That is, the throttle hole 321d is a fixed throttle that throttles the flow of the refrigerant, and functions as a decompression unit that decompresses the refrigerant flowing out from the condensing unit 20 and then flows it to the evaporation unit 22. Since the internal heat exchange section 28 is provided in the present embodiment, more specifically, the throttle hole 321d of the throttle section 321e flows out of the condensing section 20 and flows out from the condensing section 20 to the inner flow path 28b of the internal heat exchange section 28 and the other. The refrigerant that has passed through the side relay flow path 32a flows in.
 図11に示すように、一方側サイドプレート部30の一方側第1板301には、凝縮部用貫通孔301bと気液分離用貫通孔301cとが形成されている。この凝縮部用貫通孔301bは、気液分離用貫通孔301cよりも下側に位置している。 As shown in FIG. 11, a through hole 301b for a condensing portion and a through hole 301c for gas-liquid separation are formed in the first plate 301 on one side of the one-side side plate portion 30. The through hole 301b for the condensing portion is located below the through hole 301c for gas-liquid separation.
 また、図10に示すように、一方側第2板302には、上記の一端用貫通孔302aの他に、凝縮部用貫通孔302bと気液分離用貫通孔302cとが形成されている。この凝縮部用貫通孔302bは、一端用貫通孔302aおよび気液分離用貫通孔302cよりも下側に位置し、一方側第1板301の凝縮部用貫通孔301bと同心になるように配置されている。 Further, as shown in FIG. 10, in addition to the above-mentioned through hole 302a for one end, the through hole 302b for the condensing portion and the through hole 302c for gas-liquid separation are formed in the second plate 302 on one side. The through hole 302b for the condensing portion is located below the through hole 302a for one end and the through hole 302c for gas-liquid separation, and is arranged so as to be concentric with the through hole 301b for the condensing portion of the first plate 301 on one side. Has been done.
 また、図2および図3に示すように、一方側第3板303は、流路カバー部303aと、その流路カバー部303aに対し上側に配置された気液分離カバー部303cとを有している。 Further, as shown in FIGS. 2 and 3, the one-side third plate 303 has a flow path cover portion 303a and a gas-liquid separation cover portion 303c arranged above the flow path cover portion 303a. ing.
 図2および図7に示すように、複数の凝縮構成部201のうち積層方向Dsの一方側の端に位置する出口位置凝縮構成部202には、凝縮部20内から冷媒を流出させる凝縮部出口202aが設けられている。この凝縮部出口202aは、出口位置凝縮構成部202の一方側凝縮タンク空間201aに含まれている。そして、一方側第1板301の凝縮部用貫通孔301bと一方側第2板302の凝縮部用貫通孔302bは凝縮部出口202aに接続している。 As shown in FIGS. 2 and 7, the outlet position of the plurality of condensed components 201 located at one end of the stacking direction Ds is the outlet of the condensed section in which the refrigerant flows out from the inside of the condensed section 20. 202a is provided. The condensing portion outlet 202a is included in the one-sided condensing tank space 201a of the outlet position condensing component 202. Then, the through hole 301b for the condensing portion of the first plate 301 on one side and the through hole 302b for the condensing portion of the second plate 302 on the one side are connected to the outlet 202a of the condensing portion.
 また、一方側第3板303は一方側第2板302に対し積層方向Dsの一方側にロウ付け接合されており、これによって、一方側第3板303の流路カバー部303aは一方側第2板302との間に一方側中継流路30aを形成している。 Further, the one-side third plate 303 is brazed to one side of the stacking direction Ds with respect to the one-side second plate 302, whereby the flow path cover portion 303a of the one-side third plate 303 is unilaterally first. A one-sided relay flow path 30a is formed between the two plates 302.
 この一方側中継流路30aは鉛直方向Dgに延びており、冷媒流れにおいて一方側第2板302の凝縮部用貫通孔302bと内部熱交換部28の内側流路28bとの間に設けられている。すなわち、一方側中継流路30aは、凝縮部20の凝縮部出口202aと内側流路28bの冷媒入口側とをつなぐ流路となっている。このような冷媒の流路構成により、他方側サイドプレート部32の絞り孔321dは、冷媒流れにおいて凝縮部出口202aと蒸発部入口222aとの間に設けられていることになる。 The one-side relay flow path 30a extends in the vertical direction Dg, and is provided between the through hole 302b for the condensing portion of the one-side second plate 302 and the inner flow path 28b of the internal heat exchange portion 28 in the refrigerant flow. There is. That is, the one-side relay flow path 30a is a flow path connecting the condensing part outlet 202a of the condensing part 20 and the refrigerant inlet side of the inner flow path 28b. Due to such a flow path configuration of the refrigerant, the throttle hole 321d of the other side plate portion 32 is provided between the condensing portion outlet 202a and the evaporation portion inlet 222a in the refrigerant flow.
 図11に示すように、一方側第1板301の気液分離用貫通孔301cは、一方側貫通部301dと他方側貫通部301eと連結部301fとから構成されている。その一方側貫通部301dと他方側貫通部301eは鉛直方向Dgに延びるように形成されている。
 他方側貫通部301eは、一方側貫通部301dに対し一方側貫通部301dから少し離れて、熱交換器幅方向Dwの一方側とは反対側の他方側に配置されている。そして、連結部301fは、一方側貫通部301dと他方側貫通部301eとの間に配置され、その一方側貫通部301dの上端部分と他方側貫通部301eの上端部分とを連結している。
 また、図8および図11に示すように、蒸発部22には、蒸発部22内から冷媒を流出させる蒸発部出口22bが設けられている。この蒸発部出口22bは積層方向Dsを向いて開口した開口孔である。気液分離用貫通孔301cは、その気液分離用貫通孔301cのうち専ら他方側貫通部301eがその蒸発部出口22bに対し積層方向Dsの一方側に重なるように形成されている。
As shown in FIG. 11, the gas-liquid separation through hole 301c of the first plate 301 on one side is composed of a penetration portion 301d on one side, a penetration portion 301e on the other side, and a connecting portion 301f. The one-side penetrating portion 301d and the other-side penetrating portion 301e are formed so as to extend in the vertical direction Dg.
The other side penetrating portion 301e is arranged on the other side opposite to one side in the heat exchanger width direction Dw, slightly away from the one side penetrating portion 301d with respect to the one side penetrating portion 301d. The connecting portion 301f is arranged between the one-side penetrating portion 301d and the other-side penetrating portion 301e, and connects the upper end portion of the one-side penetrating portion 301d and the upper end portion of the other-side penetrating portion 301e.
Further, as shown in FIGS. 8 and 11, the evaporation unit 22 is provided with an evaporation unit outlet 22b that allows the refrigerant to flow out from the inside of the evaporation unit 22. The evaporation portion outlet 22b is an opening hole opened in the stacking direction Ds. The gas-liquid separation through hole 301c is formed so that the other side through hole 301e of the gas-liquid separation through hole 301c exclusively overlaps one side of the stacking direction Ds with respect to the evaporation part outlet 22b.
 図10に示すように、一方側第2板302の気液分離用貫通孔302cは鉛直方向Dgに延びるように形成されている。そして、この気液分離用貫通孔302cは、一方側第1板301の他方側貫通部301eに対し重なるように配置されている。その一方で、一方側第2板302の気液分離用貫通孔302cは、一方側第1板301の一方側貫通部301dに対しては、熱交換器幅方向Dwの他方側へ離れて配置されている。 As shown in FIG. 10, the gas-liquid separation through hole 302c of the second plate 302 on one side is formed so as to extend in the vertical direction Dg. The gas-liquid separation through hole 302c is arranged so as to overlap the other side penetrating portion 301e of the one side first plate 301. On the other hand, the gas-liquid separation through hole 302c of the second plate 302 on one side is arranged away from the one side through portion 301d of the first plate 301 on one side toward the other side in the heat exchanger width direction Dw. Has been done.
 図2および図3に示すように、一方側第3板303の気液分離カバー部303cは積層方向Dsの一方側へ凹んだ形状を有し、一方側第2板302との間にカバー内空間303dを形成している。このカバー内空間303dは一方側第2板302の気液分離用貫通孔302cに連結した空間となっている。 As shown in FIGS. 2 and 3, the gas-liquid separation cover portion 303c of the third plate 303 on one side has a shape recessed to one side in the stacking direction Ds, and is inside the cover between the second plate 302 on one side. It forms the space 303d. The cover inner space 303d is a space connected to the gas-liquid separation through hole 302c of the second plate 302 on one side.
 この気液分離カバー部303cと、一方側第1板301のうち気液分離用貫通孔301cが形成された第1気液分離構成部301gと、一方側第2板302のうち気液分離用貫通孔302cが形成された第2気液分離構成部302dは気液分離部26を構成している。すなわち、一方側サイドプレート部30は気液分離部26を有している。この気液分離部26には蒸発部22から冷媒が矢印F8(図2、図8参照)のように流入する。そして、気液分離部26は、蒸発部22から流入した冷媒の気液を分離するアキュムレータとして機能する。気液分離部26は、気液分離された冷媒のうち気相の冷媒を気液分離部26から内部熱交換部28の外側流路28aへ流出させると共に、気液分離部26に形成された液貯留空間26aに液相の冷媒を溜める。 The gas-liquid separation cover portion 303c, the first gas-liquid separation component 301g in which the gas-liquid separation through hole 301c is formed in the first plate 301 on one side, and the gas-liquid separation portion 302 in the second plate 302 on one side for gas-liquid separation. The second gas-liquid separation component 302d in which the through hole 302c is formed constitutes the gas-liquid separation unit 26. That is, the one-side side plate portion 30 has a gas-liquid separation portion 26. Refrigerant flows into the gas-liquid separation unit 26 from the evaporation unit 22 as shown by arrows F8 (see FIGS. 2 and 8). Then, the gas-liquid separation unit 26 functions as an accumulator that separates the gas-liquid of the refrigerant flowing in from the evaporation unit 22. The gas-liquid separation unit 26 is formed in the gas-liquid separation unit 26 while allowing the gas-phase refrigerant out of the gas-liquid separated refrigerants to flow out from the gas-liquid separation unit 26 to the outer flow path 28a of the internal heat exchange unit 28. The liquid phase refrigerant is stored in the liquid storage space 26a.
 その液貯留空間26aは、図3、図10、図11に示すように、一方側第1板301の他方側貫通部301eと一方側第2板302の気液分離用貫通孔302cとカバー内空間303dとから構成されている。図2、図3、図10、図11では、液貯留空間26aの下部に液相の冷媒が溜まっている様子がハッチングで示されている。 As shown in FIGS. 3, 10, and 11, the liquid storage space 26a includes the gas-liquid separation through hole 302c of the one-side first plate 301, the other-side penetration portion 301e, and the one-side second plate 302, and the inside of the cover. It is composed of space 303d. In FIGS. 2, 10, 10 and 11, the state in which the liquid phase refrigerant is accumulated in the lower part of the liquid storage space 26a is shown by hatching.
 内部熱交換部28の内側筒部282は、一方側第1板301の一方側貫通部301dに挿通された上で一方側第2板302の一端用貫通孔302aにまで到達している。そして、一方側第1板301の一方側貫通部301dはその下部にて内部熱交換部28の外側流路28aに連通している。そのため、一方側第1板301の一方側貫通部301dと連結部301fは、気相の冷媒を矢印F9a、F9bのように液貯留空間26aから外側流路28aへ導く冷媒導出流路として機能する。 The inner tubular portion 282 of the internal heat exchange portion 28 is inserted through the one-side penetrating portion 301d of the one-sided first plate 301 and then reaches the one-side through hole 302a of the one-sided second plate 302. Then, the one-side penetrating portion 301d of the one-sided first plate 301 communicates with the outer flow path 28a of the internal heat exchange portion 28 at the lower portion thereof. Therefore, the one-side penetrating portion 301d and the connecting portion 301f of the one-side first plate 301 function as a refrigerant lead-out flow path that guides the gas phase refrigerant from the liquid storage space 26a to the outer flow path 28a as shown by arrows F9a and F9b. ..
 凝縮部20の構成について詳述すると、図2および図7に示すように、複数の凝縮構成部201はそれぞれ、板状の一対の凝縮板部201d、201hを有している。複数の凝縮構成部201のそれぞれでは、その一対の凝縮板部201d、201hが積層方向Dsに積層されている。そして、複数の凝縮構成部201はそれぞれ、一対の凝縮板部201d、201hが凝縮流路201cと凝縮タンク空間201a、201bとを一対の凝縮板部201d、201hの相互間に形成するように互いに接合されることによって構成されている。 To elaborate on the configuration of the condensing unit 20, as shown in FIGS. 2 and 7, each of the plurality of condensing components 201 has a pair of plate-shaped condensing plate portions 201d and 201h, respectively. In each of the plurality of condensing components 201, the pair of condensing plate portions 201d and 201h are laminated in the stacking direction Ds. Then, the plurality of condensing components 201 are provided with each other so that the pair of condensing plate portions 201d and 201h form the condensing flow path 201c and the condensing tank spaces 201a and 201b between the pair of condensing plate portions 201d and 201h, respectively. It is composed by being joined.
 具体的には、一対の凝縮板部201d、201hとは、一方側凝縮板部201dと、その一方側凝縮板部201dに対し積層方向Dsの他方側に配置された他方側凝縮板部201hとである。 Specifically, the pair of condensing plate portions 201d and 201h are the one-side condensing plate portion 201d and the other-side condensing plate portion 201h arranged on the other side of the stacking direction Ds with respect to the one-side condensing plate portion 201d. Is.
 図2、図5、図6に示すように、一対の凝縮板部201d、201hのうちの一方である一方側凝縮板部201dは、積層方向Dsの一方側へ窪んだ第1凝縮タンク形成部201eと第2凝縮タンク形成部201fと凝縮流路形成部201gとを有している。 As shown in FIGS. 2, 5 and 6, one of the pair of condensing plate portions 201d and 201h, one side condensing plate portion 201d, is a first condensing tank forming portion recessed to one side in the stacking direction Ds. It has a 201e, a second condensation tank forming portion 201f, and a condensing flow path forming portion 201g.
 また、一対の凝縮板部201d、201hのうちの他方である他方側凝縮板部201hは、積層方向Dsの他方側へ窪んだ第1凝縮タンク形成部201iと第2凝縮タンク形成部201jと凝縮流路形成部201kとを有している。 Further, the other side condensing plate portion 201h, which is the other of the pair of condensing plate portions 201d and 201h, condenses with the first condensing tank forming portion 201i and the second condensing tank forming portion 201j recessed toward the other side in the stacking direction Ds. It has a flow path forming portion 201k.
 一方側凝縮タンク空間201aは、この両方の第1凝縮タンク形成部201e、201iの間に形成され、他方側凝縮タンク空間201bは、両方の第2凝縮タンク形成部201f、201jの間に形成されている。また、凝縮流路201cは、両方の凝縮流路形成部201g、201kの間に形成されている。 The one-side condensed tank space 201a is formed between both of the first condensed tank forming portions 201e and 201i, and the other side condensed tank space 201b is formed between both the second condensed tank forming portions 201f and 201j. ing. Further, the condensed flow path 201c is formed between both condensed flow path forming portions 201g and 201k.
 また、一方側凝縮板部201dでは、積層方向Dsにおいて第1凝縮タンク形成部201eの幅と第2凝縮タンク形成部201fの幅は互いに同じになっており、凝縮流路形成部201gの幅よりも大きくなっている。これと同様に、他方側凝縮板部201hでは、積層方向Dsにおいて第1凝縮タンク形成部201iの幅と第2凝縮タンク形成部201jの幅は互いに同じになっており、凝縮流路形成部201kの幅よりも大きくなっている。 そのため、凝縮部20において互いに隣接する凝縮構成部201同士の間では、第1凝縮タンク形成部201e、201i同士が互いに接合されると共に、第2凝縮タンク形成部201f、201j同士も互いに接合されている。 Further, in the one-side condensing plate portion 201d, the width of the first condensing tank forming portion 201e and the width of the second condensing tank forming portion 201f are the same in the stacking direction Ds, which is larger than the width of the condensing flow path forming portion 201g. Is also getting bigger. Similarly, in the condensing plate portion 201h on the other side, the width of the first condensing tank forming portion 201i and the width of the second condensing tank forming portion 201j are the same in the stacking direction Ds, and the condensing flow path forming portion 201k It is larger than the width of. Therefore, in the condensing portion 20, the first condensing tank forming portions 201e and 201i are joined to each other and the second condensing tank forming portions 201f and 201j are also joined to each other between the condensing constituent portions 201 adjacent to each other in the condensing portion 20. There is.
 その一方で、互いに隣接する凝縮構成部201同士の間のうち凝縮流路形成部201g、201k同士の間には空気流(すなわち、第1空気流)が通過する通風流路20a(すなわち、第1空気流路)が形成されている。 On the other hand, among the condensing components 201 adjacent to each other, the ventilation flow path 20a (that is, the first air flow) through which the air flow (that is, the first air flow) passes between the condensate flow path forming portions 201g and 201k. 1 air flow path) is formed.
 このことにより、凝縮部20には、複数の通風流路20aが設けられていることになる。このため、凝縮部20には、複数対の凝縮流路形成部201g、201kが設けられていることになる。 As a result, the condensing portion 20 is provided with a plurality of ventilation flow paths 20a. Therefore, the condensing portion 20 is provided with a plurality of pairs of condensing flow path forming portions 201g and 201k.
 複数対の凝縮流路形成部201g、201k、および複数の凝縮部フィン203は、凝縮部20において空気流と冷媒との間で熱交換させる凝縮部熱交換コア230を構成する。この通風流路20aは積層方向Dsに並んで複数形成されており、その複数の通風流路20aにはそれぞれ、凝縮流路形成部201g、201kの外側にロウ付け接合されたコルゲートフィンである凝縮部フィン203が配置されている。そして、その凝縮部フィン203は、通風流路20aを通る空気と凝縮部20内の冷媒との熱交換を促進する。 The plurality of pairs of condensing flow path forming portions 201g and 201k, and the plurality of condensing portion fins 203 form a condensing portion heat exchange core 230 that exchanges heat between the air flow and the refrigerant in the condensing portion 20. A plurality of the ventilation flow paths 20a are formed side by side in the stacking direction Ds, and the plurality of ventilation flow paths 20a are condensed, which are corrugated fins brazed to the outside of the condensation flow path forming portions 201g and 201k, respectively. The part fin 203 is arranged. Then, the condensing portion fin 203 promotes heat exchange between the air passing through the ventilation flow path 20a and the refrigerant in the condensing portion 20.
 なお、図2および図7に示すように、複数の凝縮構成部201のうち積層方向Dsの一方側の端と他方側の端とのそれぞれに位置する凝縮構成部201は、それらの間に位置する凝縮構成部201とは形状が異なる。例えば、その一方側の端に位置する凝縮構成部201は、他方側凝縮板部201hと、一方側第1板301のうちその他方側凝縮板部201hに対し対向する部分301hとから構成されている。また、その他方側の端に位置する凝縮構成部201は、一方側凝縮板部201dと、他方側第1板321のうちその一方側凝縮板部201dに対し対向する部分321fとから構成されている。 As shown in FIGS. 2 and 7, among the plurality of condensed components 201, the condensed components 201 located at one end and the other end of the stacking direction Ds are located between them. The shape is different from that of the condensed component 201. For example, the condensing component 201 located at the end on one side thereof is composed of a condensing plate portion 201h on the other side and a portion 301h of the first plate 301 on the one side facing the condensing plate portion 201h on the other side. There is. Further, the condensing component 201 located at the other end is composed of one side condensing plate portion 201d and a portion 321f of the other side first plate 321 facing the one side condensing plate portion 201d. There is.
 また、図5~図7に示すように、一方側凝縮板部201dにおいて第1凝縮タンク形成部201eには、積層方向Dsに貫通した第1連通孔201mが形成され、第2凝縮タンク形成部201fには、積層方向Dsに貫通した第2連通孔201nが形成されている。これと同様に、他方側凝縮板部201hにおいて第1凝縮タンク形成部201iには、積層方向Dsに貫通した第1連通孔201oが形成され、第2凝縮タンク形成部201jには、積層方向Dsに貫通した第2連通孔201pが形成されている。 Further, as shown in FIGS. 5 to 7, in the one-sided condensing plate portion 201d, the first condensing tank forming portion 201e is formed with the first communication hole 201m penetrating in the stacking direction Ds, and the second condensing tank forming portion 201m is formed. A second communication hole 201n penetrating in the stacking direction Ds is formed in 201f. Similarly, in the other side condensing plate portion 201h, the first condensing tank forming portion 201i is formed with the first communication hole 201o penetrating in the stacking direction Ds, and the second condensing tank forming portion 201j is formed with the stacking direction Ds. A second communication hole 201p is formed through the hole.
 互いに隣接する凝縮構成部201のそれぞれの一方側凝縮タンク空間201aは、第1連通孔201m、201o同士が重なって配置されることで互いに連通している。また、互いに隣接する凝縮構成部201のそれぞれの他方側凝縮タンク空間201bは、第2連通孔201n、201p同士が重なって配置されることで互いに連通している。 The condensing tank space 201a on one side of each of the condensing components 201 adjacent to each other communicates with each other by arranging the first communication holes 201m and 201o so as to overlap each other. Further, the condensing tank space 201b on the other side of the condensing component 201 adjacent to each other communicates with each other by arranging the second communication holes 201n and 201p so as to overlap each other.
 但し、複数の凝縮構成部201の中には、第1連通孔201m、201o、第2連通孔201n、201pのうちの何れかが設けられていないものもある。これにより、1または2以上の凝縮構成部201を有する凝縮構成部群204a~204dが複数構成されている。本実施形態では、その複数の凝縮構成部群204a~204dとして、第1凝縮構成部群204a、第2凝縮構成部群204b、第3凝縮構成部群204c、および第4凝縮構成部群204dが構成されている。 However, some of the plurality of condensing components 201 are not provided with any of the first communication holes 201m and 201o and the second communication holes 201n and 201p. As a result, a plurality of condensed constituent groups 204a to 204d having one or more condensed constituents 201 are configured. In the present embodiment, as the plurality of condensed constituent groups 204a to 204d, the first condensed constituent group 204a, the second condensed constituent group 204b, the third condensed constituent group 204c, and the fourth condensed constituent group 204d are used. It is configured.
 凝縮部20では、第1凝縮構成部群204aと第2凝縮構成部群204bと第3凝縮構成部群204cと第4凝縮構成部群204dは、その記載順で積層方向Dsの他方側から一方側へ並んで配置されている。そして、凝縮部20の冷媒流れにおいて、第1凝縮構成部群204aと第2凝縮構成部群204bと第3凝縮構成部群204cと第4凝縮構成部群204dは、その記載順で、上流側から下流側へ直列に連結されている。 In the condensing unit 20, the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are arranged in the order of description from the other side in the stacking direction Ds. They are arranged side by side. Then, in the refrigerant flow of the condensing unit 20, the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are on the upstream side in the order of description. It is connected in series from to the downstream side.
 また、複数の凝縮構成部群204a~204dのうち複数の凝縮構成部201を有する凝縮構成部群では、複数の凝縮流路201cが冷媒流れにおいて並列接続されている。 Further, in the condensation configuration unit group having a plurality of condensation configuration units 201 among the plurality of condensation configuration unit groups 204a to 204d, the plurality of condensation flow paths 201c are connected in parallel in the refrigerant flow.
 このような冷媒の流通経路を実現するために、図7のC1部に示すように、第2凝縮構成部群204bのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。また、C2部に示すように、第2凝縮構成部群204bのうち積層方向Dsの一方側の端に位置する一方側凝縮板部201dには、第2連通孔201nが設けられていない。また、C3部に示すように、第4凝縮構成部群204dのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。例えば、第2連通孔201pは設けられているが第1連通孔201oが設けられていない他方側凝縮板部201hは、図12に示されている。 In order to realize such a flow path of the refrigerant, as shown in the C1 portion of FIG. 7, the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b Is not provided with the first communication hole 201o. Further, as shown in the C2 portion, the second communication hole 201n is not provided in the one-sided condensing plate portion 201d located at one end of the stacking direction Ds in the second condensing component group 204b. Further, as shown in the C3 portion, the first communication hole 201o is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the fourth condensing component group 204d. For example, the other side condensing plate portion 201h in which the second communication hole 201p is provided but the first communication hole 201o is not provided is shown in FIG.
 蒸発部22の構成も基本的には上述した凝縮部20の構成と同様である。すなわち、図2および図8に示すように、複数の蒸発構成部221はそれぞれ、板状の一対の蒸発板部221d、221hを有している。複数の蒸発構成部221のそれぞれでは、その一対の蒸発板部221d、221hが積層方向Dsに積層されている。そして、複数の蒸発構成部221はそれぞれ、一対の蒸発板部221d、221hが蒸発流路221cと蒸発タンク空間221a、221bとを一対の蒸発板部221d、221hの相互間に形成するように互いに接合されることによって構成されている。 The configuration of the evaporation unit 22 is basically the same as the configuration of the condensation unit 20 described above. That is, as shown in FIGS. 2 and 8, each of the plurality of evaporation components 221 has a pair of plate-shaped evaporation plate portions 221d and 221h. In each of the plurality of evaporation components 221 the pair of evaporation plate portions 221d and 221h are laminated in the stacking direction Ds. Then, the plurality of evaporation components 221 are provided with each other so that the pair of evaporation plates 221d and 221h form the evaporation flow path 221c and the evaporation tank spaces 221a and 221b between the pair of evaporation plates 221d and 221h, respectively. It is composed by being joined.
 具体的には、一対の蒸発板部221d、221hとは、一方側蒸発板部221dと、その一方側蒸発板部221dに対し積層方向Dsの他方側に配置された他方側蒸発板部221hとである。 Specifically, the pair of evaporation plate portions 221d and 221h are the one-side evaporation plate portion 221d and the other-side evaporation plate portion 221h arranged on the other side of the stacking direction Ds with respect to the one-side evaporation plate portion 221d. Is.
 図2、図5、図6に示すように、一対の蒸発板部221d、221hのうちの一方である一方側蒸発板部221dは、積層方向Dsの一方側へ窪んだ第1蒸発タンク形成部221eと第2蒸発タンク形成部221fと蒸発流路形成部221gとを有している。 As shown in FIGS. 2, 5 and 6, one of the pair of evaporation plate portions 221d and 221h, one side evaporation plate portion 221d, is a first evaporation tank forming portion recessed to one side in the stacking direction Ds. It has 221e, a second evaporation tank forming portion 221f, and an evaporation channel forming portion 221g.
 また、一対の蒸発板部221d、221hのうちの他方である他方側蒸発板部221hは、積層方向Dsの他方側へ窪んだ第1蒸発タンク形成部221iと第2蒸発タンク形成部221jと蒸発流路形成部221kとを有している。 Further, the other side evaporation plate part 221h, which is the other of the pair of evaporation plate parts 221d and 221h, evaporates with the first evaporation tank forming part 221i and the second evaporation tank forming part 221j recessed toward the other side in the stacking direction Ds. It has a flow path forming portion 221k.
 一方側蒸発タンク空間221aは、この両方の第1蒸発タンク形成部221e、221iの間に形成され、他方側蒸発タンク空間221bは、両方の第2蒸発タンク形成部221f、221jの間に形成されている。また、蒸発流路221cは、両方の蒸発流路形成部221g、221kの間に形成されている。 The one-side evaporation tank space 221a is formed between the two first evaporation tank forming portions 221e and 221i, and the other side evaporation tank space 221b is formed between both the second evaporation tank forming portions 221f and 221j. ing. Further, the evaporation channel 221c is formed between both evaporation channel forming portions 221g and 221k.
 また、一方側蒸発板部221dでは、積層方向Dsにおいて第1蒸発タンク形成部221eの幅と第2蒸発タンク形成部221fの幅は互いに同じになっており、蒸発流路形成部221g(すなわち、第1、第3低圧冷媒流路形成部)の幅よりも大きくなっている。また、積層方向Dsにおいて蒸発タンク形成部221e、221fの幅は、一方側凝縮板部201dの凝縮タンク形成部201e、201fの幅と同じになっている。 Further, in the one-side evaporation plate portion 221d, the width of the first evaporation tank forming portion 221e and the width of the second evaporation tank forming portion 221f are the same in the stacking direction Ds, and the evaporation flow path forming portion 221g (that is, that is). It is larger than the width of the first and third low-pressure refrigerant flow path forming portions). Further, the widths of the evaporation tank forming portions 221e and 221f in the stacking direction Ds are the same as the widths of the condensing tank forming portions 201e and 201f of the one-side condensing plate portion 201d.
 これと同様に、他方側蒸発板部221hでは、積層方向Dsにおいて第1蒸発タンク形成部221iの幅と第2蒸発タンク形成部221jの幅は互いに同じになっておいる。蒸発流路形成部221k(すなわち、第2、第4低圧冷媒流路形成部)の幅よりも大きくなっている。また、積層方向Dsにおいて蒸発タンク形成部221i、221jの幅は、他方側凝縮板部201hの凝縮タンク形成部201i、201jの幅と同じになっている。 Similarly, in the other side evaporation plate portion 221h, the width of the first evaporation tank forming portion 221i and the width of the second evaporation tank forming portion 221j are the same in the stacking direction Ds. It is larger than the width of the evaporation channel forming portion 221k (that is, the second and fourth low pressure refrigerant channel forming portions). Further, the widths of the evaporation tank forming portions 221i and 221j in the stacking direction Ds are the same as the widths of the condensing tank forming portions 201i and 201j of the condensing plate portion 201h on the other side.
 そのため、蒸発部22において互いに隣接する蒸発構成部221同士の間では、第1蒸発タンク形成部221e、221i同士が互いに接合されると共に、第2蒸発タンク形成部221f、221j同士も互いに接合されている。 Therefore, in the evaporation unit 22, the first evaporation tank forming portions 221e and 221i are joined to each other, and the second evaporation tank forming portions 221f and 221j are also joined to each other between the evaporation constituent parts 221 adjacent to each other. There is.
 その一方で、互いに隣接する蒸発構成部221同士の間のうち蒸発流路形成部221g、221k同士の間には空気が通過する通風流路22aが形成されている。このことにより、蒸発部22には、複数の通風流路22aが設けられていることになる。 On the other hand, among the evaporation constituent parts 221 adjacent to each other, a ventilation flow path 22a through which air passes is formed between the evaporation flow path forming portions 221g and 221k. As a result, the evaporation section 22 is provided with a plurality of ventilation flow paths 22a.
 この通風流路22aは積層方向Dsに並んで複数形成されており、その複数の通風流路22a(すなわち、第2空気流路)にはそれぞれ、蒸発流路形成部221g、221kの外側にロウ付け接合されたコルゲートフィンである蒸発部フィン223が配置されている。そして、その蒸発部フィン223は、通風流路22aを通る空気流(すなわち、第2空気流)と蒸発部22内の冷媒との熱交換を促進する。 A plurality of the ventilation flow paths 22a are formed side by side in the stacking direction Ds, and each of the plurality of ventilation flow paths 22a (that is, the second air flow path) is brazed to the outside of the evaporation flow path forming portions 221g and 221k. The evaporation part fin 223, which is a brazed corrugated fin, is arranged. Then, the evaporation section fin 223 promotes heat exchange between the air flow passing through the ventilation flow path 22a (that is, the second air flow) and the refrigerant in the evaporation section 22.
 なお、図2および図8に示すように、複数の蒸発構成部221のうち積層方向Dsの他方側の端に位置する蒸発構成部221は、それ以外の蒸発構成部221とは形状が異なる。例えば、その他方側の端に位置する蒸発構成部221は、一方側蒸発板部221dと、他方側第1板321のうちその一方側蒸発板部221dに対し対向する部分321gとから構成されている。 As shown in FIGS. 2 and 8, the evaporation component 221 located at the other end of the stacking direction Ds among the plurality of evaporation components 221 has a different shape from the other evaporation components 221. For example, the evaporation component 221 located at the other end is composed of a one-side evaporation plate portion 221d and a portion 321g of the other-side first plate 321 facing the one-side evaporation plate portion 221d. There is.
 図5、図6、図8に示すように、一方側蒸発板部221dにおいて第1蒸発タンク形成部221eには、積層方向Dsに貫通した第1連通孔221mが形成され、第2蒸発タンク形成部221fには、積層方向Dsに貫通した第2連通孔221nが形成されている。これと同様に、他方側蒸発板部221hにおいて第1蒸発タンク形成部221iには、積層方向Dsに貫通した第1連通孔221oが形成され、第2蒸発タンク形成部221jには、積層方向Dsに貫通した第2連通孔221pが形成されている。 As shown in FIGS. 5, 6 and 8, in the one-side evaporation plate portion 221d, the first evaporation tank forming portion 221e is formed with a first communication hole 221m penetrating in the stacking direction Ds to form a second evaporation tank. A second communication hole 221n penetrating in the stacking direction Ds is formed in the portion 221f. Similarly, in the other side evaporation plate portion 221h, the first evaporation tank forming portion 221i is formed with the first communication hole 221o penetrating in the stacking direction Ds, and the second evaporation tank forming portion 221j is formed with the stacking direction Ds. A second communication hole 221p is formed through the hole.
 互いに隣接する蒸発構成部221のそれぞれの一方側蒸発タンク空間221aは、第1連通孔221m、221o同士が重なって配置されることで互いに連通している。また、互いに隣接する蒸発構成部221のそれぞれの他方側蒸発タンク空間221bは、第2連通孔221n、221p同士が重なって配置されることで互いに連通している。 The evaporation tank space 221a on one side of each of the evaporation components 221 adjacent to each other communicates with each other by arranging the first communication holes 221m and 221o so as to overlap each other. Further, the evaporation tank space 221b on the other side of each of the evaporation components 221 adjacent to each other communicates with each other by arranging the second communication holes 221n and 221p so as to overlap each other.
 但し、複数の蒸発構成部221の中には、第1連通孔221m、221o、第2連通孔221n、221pのうちの何れかが設けられていないものもある。これにより、1または2以上の蒸発構成部221を有する蒸発構成部群224a~224cが複数構成されている。本実施形態では、その複数の蒸発構成部群224a~224cとして、第1蒸発構成部群224a、第2蒸発構成部群224b、および第3蒸発構成部群224cが構成されている。 However, some of the plurality of evaporation components 221 are not provided with any of the first communication holes 221m and 221o and the second communication holes 221n and 221p. As a result, a plurality of evaporation constituent groups 224a to 224c having one or more evaporation constituents 221 are configured. In the present embodiment, the first evaporation constituent group 224a, the second evaporation constituent group 224b, and the third evaporation constituent group 224c are configured as the plurality of evaporation constituent groups 224a to 224c.
 蒸発部22では、第1蒸発構成部群224aと第2蒸発構成部群224bと第3蒸発構成部群224cは、その記載順で積層方向Dsの他方側から一方側へ並んで配置されている。そして、蒸発部22の冷媒流れにおいて、第1蒸発構成部群224aと第2蒸発構成部群224bと第3蒸発構成部群224cは、その記載順で、上流側から下流側へ直列に連結されている。 In the evaporation unit 22, the first evaporation component group 224a, the second evaporation component group 224b, and the third evaporation component group 224c are arranged side by side from the other side to one side in the stacking direction Ds in the order of description. .. Then, in the refrigerant flow of the evaporation unit 22, the first evaporation component group 224a, the second evaporation component group 224b, and the third evaporation component group 224c are connected in series from the upstream side to the downstream side in the order of description. ing.
 また、複数の蒸発構成部群224a~224cのうち複数の蒸発構成部221を有する蒸発構成部群では、複数の蒸発流路221cが冷媒流れにおいて並列接続されている。 Further, in the evaporation component group having the plurality of evaporation components 221 out of the plurality of evaporation components groups 224a to 224c, the plurality of evaporation flow paths 221c are connected in parallel in the refrigerant flow.
 このような冷媒の流通経路を実現するために、図8のE1部に示すように、第1蒸発構成部群224aのうち積層方向Dsの一方側の端に位置する一方側蒸発板部221dには、第1連通孔221mが設けられていない。また、E2部に示すように、第3蒸発構成部群224cのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第2連通孔221pが設けられていない。また、E3部に示すように、第3蒸発構成部群224cのうち積層方向Dsの一方側の端に位置する一方側蒸発板部221dには、第1連通孔221mが設けられていない。例えば、第2連通孔221nは設けられているが第1連通孔221mが設けられていない一方側蒸発板部221dは、図13に示されている。 In order to realize such a flow path of the refrigerant, as shown in the E1 part of FIG. 8, the one-side evaporation plate part 221d located at one end of the stacking direction Ds in the first evaporation component group 224a Is not provided with the first communication hole 221 m. Further, as shown in the E2 portion, the second communication hole 221p is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c. Further, as shown in the E3 portion, the one-side evaporation plate portion 221d located at one end of the stacking direction Ds in the third evaporation component group 224c is not provided with the first communication hole 221m. For example, the one-side evaporation plate portion 221d in which the second communication hole 221n is provided but the first communication hole 221m is not provided is shown in FIG.
 図2、図5、図6に示すように、1つの一方側凝縮板部201dと1つの一方側蒸発板部221dと1つの第1外側筒構成部281aは単一の部品として構成されている。すなわち、その一方側凝縮板部201dと一方側蒸発板部221dと第1外側筒構成部281aは1枚の第1板部材381(すなわち、第1、第3熱交換プレート)を構成している。その第1板部材381のうちでは、一方側凝縮板部201dと第1外側筒構成部281aと一方側蒸発板部221dとがその記載順で、鉛直方向Dgの下側から上側へ順番に並んで配置されている。 As shown in FIGS. 2, 5, and 6, one one-side condensing plate portion 201d, one one-side evaporation plate portion 221d, and one first outer cylinder constituent portion 281a are configured as a single component. .. That is, the one-side condensing plate portion 201d, the one-side evaporation plate portion 221d, and the first outer cylinder constituent portion 281a constitute one first plate member 381 (that is, the first and third heat exchange plates). .. Among the first plate members 381, the one-side condensing plate portion 201d, the first outer cylinder constituent portion 281a, and the one-side evaporation plate portion 221d are arranged in this order from the lower side to the upper side in the vertical direction Dg. It is arranged in.
 従って、第1板部材381は、内部熱交換部28の一部を構成する部分である第1外側筒構成部281aを、一方側凝縮板部201dと一方側蒸発板部221dとの間に有している。要するに、第1板部材381は、内部熱交換部28の一部を構成している。 Therefore, the first plate member 381 has a first outer cylinder constituent portion 281a, which is a portion constituting a part of the internal heat exchange portion 28, between the one-side condensing plate portion 201d and the one-side evaporation plate portion 221d. doing. In short, the first plate member 381 constitutes a part of the internal heat exchange unit 28.
 これと同様に、1つの他方側凝縮板部201hと1つの他方側蒸発板部221hと1つの第2外側筒構成部281bは単一の部品として構成されている。すなわち、その他方側凝縮板部201hと他方側蒸発板部221hと第2外側筒構成部281bは1枚の第2板部材382(すなわち、第2、第4熱交換プレート)を構成している。その第2板部材382のうちでは、他方側凝縮板部201hと第2外側筒構成部281bと他方側蒸発板部221hとがその記載順で、鉛直方向Dgの下側から上側へ順番に並んで配置されている。 従って、第2板部材382は、内部熱交換部28の一部を構成する部分である第2外側筒構成部281bを、他方側凝縮板部201hと他方側蒸発板部221hとの間に有している。要するに、第2板部材382は、内部熱交換部28の一部を構成している。 Similarly, one other side condensing plate portion 201h, one other side evaporation plate portion 221h, and one second outer cylinder constituent portion 281b are configured as a single component. That is, the other side condensing plate portion 201h, the other side evaporating plate portion 221h, and the second outer cylinder forming portion 281b constitute one second plate member 382 (that is, the second and fourth heat exchange plates). .. Among the second plate members 382, the other side condensing plate portion 201h, the second outer cylinder constituent portion 281b, and the other side evaporation plate portion 221h are arranged in this order from the lower side to the upper side in the vertical direction Dg. It is arranged in. Therefore, the second plate member 382 has a second outer cylinder constituent portion 281b, which is a portion constituting a part of the internal heat exchange portion 28, between the other side condensing plate portion 201h and the other side evaporation plate portion 221h. doing. In short, the second plate member 382 constitutes a part of the internal heat exchange portion 28.
 本実施形態では、第1板部材381は、蒸発流路形成部221gよりも外側筒構成部281aが積層方向Ds一方側(すなわち、所定方向一方側)に凸なるように形成されている。第2板部材382は、蒸発流路形成部221kよりも外側筒構成部281bが積層方向Ds他方側(すなわち、所定方向他方側)に凸なるように形成されている。 In the present embodiment, the first plate member 381 is formed so that the outer cylinder forming portion 281a is convex toward one side of the stacking direction Ds (that is, one side in the predetermined direction) with respect to the evaporation flow path forming portion 221g. The second plate member 382 is formed so that the outer cylinder constituent portion 281b is convex toward the other side of the stacking direction Ds (that is, the other side in the predetermined direction) with respect to the evaporation flow path forming portion 221k.
 第1板部材381も第2板部材382も、例えばアルミニウム合金など熱伝導性の良好な金属で構成されている。また、複数の第1板部材381と複数の第2板部材382は積層方向Dsに交互に積層配置されると共に、互いにロウ付け接合されている。なお、本実施形態では、その第1板部材381と第2板部材382とによる積層構造のうち積層方向Dsの一方側の端に位置する板部材、すなわち一方側第1板301に接合される板部材は、第2板部材382とされている。そして、その積層構造のうち積層方向Dsの他方側の端に位置する板部材、すなわち他方側第1板321に接合される板部材は、第1板部材381とされている。 Both the first plate member 381 and the second plate member 382 are made of a metal having good thermal conductivity such as an aluminum alloy. Further, the plurality of first plate members 381 and the plurality of second plate members 382 are alternately laminated and arranged in the stacking direction Ds, and are brazed to each other. In the present embodiment, the first plate member 381 and the second plate member 382 are joined to a plate member located at one end of the stacking direction Ds, that is, the first plate 301 on one side. The plate member is a second plate member 382. The plate member located at the other end of the laminated structure in the stacking direction Ds, that is, the plate member joined to the first plate 321 on the other side is referred to as the first plate member 381.
 また、本実施形態では、第2板部材382は、連通孔201m、201n、201o、201p、221m、221n、221o、221pの有無を除けば、第1板部材381に対し、積層方向Dsの表裏を反転させた形状とされている。そして、第1板部材381も第2板部材382も、熱交換器幅方向Dwに対称な形状とされている。従って、複数の第1板部材381のうちの少なくとも一部と複数の第2板部材382のうちの少なくとも一部との間では、部品共通化が図られている。 Further, in the present embodiment, the second plate member 382 has the front and back surfaces of the stacking direction Ds with respect to the first plate member 381, except for the presence or absence of the communication holes 201m, 201n, 201o, 201p, 221m, 221n, 221o, and 221p. It is said that the shape is inverted. Both the first plate member 381 and the second plate member 382 have a shape symmetrical with respect to the heat exchanger width direction Dw. Therefore, parts are standardized between at least a part of the plurality of first plate members 381 and at least a part of the plurality of second plate members 382.
 また、一対を成す第1板部材381と第2板部材382との中では、凝縮構成部201の内部空間と蒸発構成部221の内部空間と内部熱交換部28の外側流路28aとが互いに独立した空間になっている。すなわち、第1板部材381は、その第1板部材381により形成された凝縮流路201cと外側流路28aと蒸発流路221cとを互いに隔てるように形成されている。そして、これと同様に、第2板部材382も、その第2板部材382により形成された凝縮流路201cと外側流路28aと蒸発流路221cとを互いに隔てるように形成されている。 Further, in the pair of the first plate member 381 and the second plate member 382, the internal space of the condensation component 201, the internal space of the evaporation component 221 and the outer flow path 28a of the internal heat exchange unit 28 are mutually connected. It is an independent space. That is, the first plate member 381 is formed so as to separate the condensing flow path 201c, the outer flow path 28a, and the evaporation flow path 221c formed by the first plate member 381 from each other. Similarly to this, the second plate member 382 is also formed so as to separate the condensing flow path 201c, the outer flow path 28a, and the evaporation flow path 221c formed by the second plate member 382 from each other.
 上述のように構成された熱交換器10、および、その熱交換器10を含む冷凍サイクル回路12では、次のように冷媒が流れる。先ず、図1、図2、図7に示すように、圧縮機14から吐出された冷媒は、矢印Fi、F1aのように入口管34を介して、凝縮部20の第1凝縮構成部群204aのうち複数の一方側凝縮タンク空間201aが連なった上流側空間に流入する。 In the heat exchanger 10 configured as described above and the refrigeration cycle circuit 12 including the heat exchanger 10, the refrigerant flows as follows. First, as shown in FIGS. 1, 2, and 7, the refrigerant discharged from the compressor 14 passes through the inlet pipe 34 as shown by arrows Fi and F1a, and the first condensed component group 204a of the condensed portion 20 Of these, a plurality of one-sided condensing tank spaces 201a flow into the upstream space in which they are connected.
 その第1凝縮構成部群204aの上流側空間に流入した冷媒は、その上流側空間にて、矢印F2aのように積層方向Dsの一方側へ流れながら複数の凝縮流路201cへ分配される。 The refrigerant that has flowed into the upstream space of the first condensing component group 204a is distributed to the plurality of condensing flow paths 201c while flowing to one side of the stacking direction Ds as shown by the arrow F2a in the upstream space.
 ここで、熱交換器幅方向Dw一方側から空気流が図4の矢印FB2の如く凝縮構成部201周り(すなわち、複数の通風流路20a)を通して熱交換器幅方向Dw他方側に流れる。 Here, an air flow from one side of the heat exchanger width direction Dw flows to the other side of the heat exchanger width direction Dw through the circumference of the condensing component 201 (that is, a plurality of ventilation flow paths 20a) as shown by the arrow FB2 in FIG.
 その複数の凝縮流路201cに流れる冷媒(すなわち、高圧冷媒)は、矢印F4a、F4b、F4cのように互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 The refrigerant (that is, high-pressure refrigerant) flowing through the plurality of condensing flow paths 201c flows in parallel with each other as shown by arrows F4a, F4b, and F4c, and the air flow around the condensing component 201 (that is, the plurality of ventilation flow paths 20a). It exchanges heat with the air flow inside) and dissipates heat to that air flow.
 そして、その冷媒は、複数の凝縮流路201cから、複数の他方側凝縮タンク空間201bが連なった下流側空間へ流入する。更に、その冷媒は、その第1凝縮構成部群204aの下流側空間から、矢印F3aのように、第2凝縮構成部群204bのうち複数の他方側凝縮タンク空間201bが連なった上流側空間に流入する。その第2凝縮構成部群204bの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の凝縮流路201cへ分配される。その複数の凝縮流路201cに流れる冷媒は、矢印F4d、F4eのように互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected. Further, the refrigerant is transferred from the downstream space of the first condensing component group 204a to the upstream space in which a plurality of other side condensing tank spaces 201b of the second condensing component group 204b are connected as shown by an arrow F3a. Inflow. The refrigerant that has flowed into the upstream space of the second condensed component group 204b is distributed to the plurality of condensed flow paths 201c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing through the plurality of condensed flow paths 201c exchanges heat with the air flow around the condensed component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other as shown by arrows F4d and F4e. It is made to dissipate heat to the air flow.
 そして、その冷媒は、複数の凝縮流路201cから、複数の一方側凝縮タンク空間201aが連なった下流側空間へ流入する。更に、その冷媒は、その第2凝縮構成部群204bの下流側空間から、矢印F2bのように、第3凝縮構成部群204cのうち上流側空間としての一方側凝縮タンク空間201aに流入する。その第3凝縮構成部群204cの上流側空間に流入した冷媒は、その上流側空間から凝縮流路201cへ流れる。その凝縮流路201cに流れる冷媒は、矢印F4fのように流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気へ放熱する。 Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected. Further, the refrigerant flows from the downstream space of the second condensed component group 204b into the one-sided condensed tank space 201a as the upstream space of the third condensed component group 204c as shown by an arrow F2b. The refrigerant that has flowed into the upstream space of the third condensed component group 204c flows from the upstream space to the condensed flow path 201c. The refrigerant flowing in the condensing flow path 201c exchanges heat with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing as shown by the arrow F4f, and dissipates heat to the air. ..
 そして、その冷媒は、その凝縮流路201cから、下流側空間としての他方側凝縮タンク空間201bへ流入する。更に、その冷媒は、その第3凝縮構成部群204cの下流側空間から、矢印F3bのように、第4凝縮構成部群204dのうち複数の他方側凝縮タンク空間201bが連なった上流側空間に流入する。 Then, the refrigerant flows from the condensing flow path 201c into the condensing tank space 201b on the other side as a downstream space. Further, the refrigerant is transferred from the downstream space of the third condensed component group 204c to the upstream space in which a plurality of other side condensed tank spaces 201b of the fourth condensed component group 204d are connected as shown by an arrow F3b. Inflow.
 その第4凝縮構成部群204dの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の凝縮流路201cへ分配される。その複数の凝縮流路201cに流れる冷媒は、矢印F4g、F4hのように互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 The refrigerant that has flowed into the upstream space of the fourth condensed component group 204d is distributed to the plurality of condensed flow paths 201c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of condensing flow paths 201c exchanges heat with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other as shown by arrows F4g and F4h. It is made to dissipate heat to the air flow.
 そして、その冷媒は、複数の凝縮流路201cから、複数の一方側凝縮タンク空間201aが連なった下流側空間へ流入する。その第4凝縮構成部群204dの下流側空間に流入した冷媒は、矢印F1b、F2cのように、凝縮部出口202aから、一方側第1板301の凝縮部用貫通孔301bと一方側第2板302の凝縮部用貫通孔302bとを経て、一方側中継流路30aに流入する。 Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected. The refrigerant that has flowed into the space on the downstream side of the fourth condensing component group 204d is, as shown by arrows F1b and F2c, from the condensing portion outlet 202a to the condensing portion through hole 301b of the first plate 301 on one side and the second on one side. It flows into the one-side relay flow path 30a through the through hole 302b for the condensing portion of the plate 302.
 その一方側中継流路30aでは冷媒は、図2の矢印F1cのように鉛直方向Dgの下側から上側へ流れ、その冷媒は、矢印F1dのように一方側中継流路30aから内部熱交換部28の内側流路28bへと流れる。その内側流路28bでは冷媒は積層方向Dsの一方側から他方側へ流れ、その冷媒は、矢印F1eのように内側流路28bから他方側中継流路32aへと流れる。 In the one-side relay flow path 30a, the refrigerant flows from the lower side to the upper side of the vertical Dg as shown by the arrow F1c in FIG. 2, and the refrigerant flows from the one-side relay flow path 30a to the internal heat exchange portion as shown by the arrow F1d. It flows into the inner flow path 28b of 28. In the inner flow path 28b, the refrigerant flows from one side of the stacking direction Ds to the other side, and the refrigerant flows from the inner flow path 28b to the other side relay flow path 32a as shown by the arrow F1e.
 その他方側中継流路32aでは冷媒は、鉛直方向Dgの下側から上側へ流れ、その冷媒は、他方側中継流路32aから他方側第1板321の絞り孔321dを介して蒸発部22内へ流入する。このとき、絞り孔321dでは冷媒流れが絞られ、それにより、絞り孔321dを通過した後の冷媒圧力は、その絞り孔321dの通過前の冷媒圧力よりも低下する。 In the other side relay flow path 32a, the refrigerant flows from the lower side to the upper side in the vertical direction Dg, and the refrigerant flows from the other side relay flow path 32a through the throttle hole 321d of the other side first plate 321 into the evaporation unit 22. Inflow to. At this time, the refrigerant flow is throttled in the throttle hole 321d, so that the refrigerant pressure after passing through the throttle hole 321d is lower than the refrigerant pressure before passing through the throttle hole 321d.
 図2および図8に示すように、絞り部321eの絞り孔321dを通った冷媒は蒸発部入口222aから蒸発部22内へ流入する。従って、凝縮部20に形成された複数の凝縮流路201cは全て、凝縮部出口202a(図7参照)と絞り孔321dと蒸発部入口222aとを、その記載順に介して、蒸発部22の蒸発流路221cに接続されている。 As shown in FIGS. 2 and 8, the refrigerant that has passed through the throttle hole 321d of the throttle section 321e flows into the evaporation section 22 from the evaporation section inlet 222a. Therefore, all of the plurality of condensing flow paths 201c formed in the condensing portion 20 evaporate the evaporating portion 22 through the condensing portion outlet 202a (see FIG. 7), the throttle hole 321d, and the evaporating portion inlet 222a in the order of description. It is connected to the flow path 221c.
 蒸発部入口222aから蒸発部22内へ流入する冷媒は、先ず、第1蒸発構成部群224aのうち複数の一方側蒸発タンク空間221aが連なった上流側空間に流入する。その第1蒸発構成部群224aの上流側空間に流入した冷媒は、その上流側空間にて、矢印F5aのように積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。
 ここで、熱交換器幅方向Dw一方側から空気流が図4の矢印FB1の如く蒸発構成部221周り(すなわち、複数の通風流路22a)を通して熱交換器幅方向Dw他方側に流れる。
The refrigerant flowing into the evaporation unit 22 from the evaporation unit inlet 222a first flows into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the first evaporation component group 224a are connected. The refrigerant that has flowed into the upstream space of the first evaporation component group 224a is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds as shown by the arrow F5a in the upstream space.
Here, an air flow from one side of the heat exchanger width direction Dw flows to the other side of the heat exchanger width direction Dw through the evaporation component 221 (that is, a plurality of ventilation flow paths 22a) as shown by the arrow FB1 in FIG.
 その複数の蒸発流路221cに流れる冷媒は、矢印F7a、F7bのように互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気流から吸熱する。 The refrigerant flowing through the plurality of evaporation flow paths 221c exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other as shown by arrows F7a and F7b. It is made to absorb heat from the air flow.
 そして、その冷媒は、複数の蒸発流路221cから、複数の他方側蒸発タンク空間221bが連なった下流側空間へ流入する。更に、その冷媒は、その第1蒸発構成部群224aの下流側空間から、矢印F6aのように、第2蒸発構成部群224bのうち複数の他方側蒸発タンク空間221bが連なった上流側空間に流入する。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. Further, the refrigerant is transferred from the downstream space of the first evaporation component group 224a to the upstream space in which a plurality of other side evaporation tank spaces 221b of the second evaporation component group 224b are connected as shown by an arrow F6a. Inflow.
 その第2蒸発構成部群224bの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。その複数の蒸発流路221cに流れる冷媒は、矢印F7c、F7dのように互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気流から吸熱する。 The refrigerant that has flowed into the upstream space of the second evaporation component group 224b is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing through the plurality of evaporation flow paths 221c exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other as shown by arrows F7c and F7d. It is made to absorb heat from the air flow.
 そして、その冷媒は、複数の蒸発流路221cから、複数の一方側蒸発タンク空間221aが連なった下流側空間へ流入する。更に、その冷媒は、その第2蒸発構成部群224bの下流側空間から、矢印F5bのように、第3蒸発構成部群224cのうち複数の一方側蒸発タンク空間221aが連なった上流側空間に流入する。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant is transferred from the downstream space of the second evaporation component group 224b to the upstream space in which a plurality of one-side evaporation tank spaces 221a of the third evaporation component group 224c are connected as shown by an arrow F5b. Inflow.
 その第3蒸発構成部群224cの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。その複数の蒸発流路221cに流れる冷媒は、矢印F7e、F7f、F7gのように互いに並列に流れながら、蒸発構成部221周りの空気流と熱交換させられその空気流から吸熱する。 The refrigerant that has flowed into the upstream space of the third evaporation component group 224c is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of evaporation channels 221c flows in parallel with each other as shown by arrows F7e, F7f, and F7g, exchanges heat with the air flow around the evaporation component 221 and absorbs heat from the air flow.
 そして、その冷媒は、複数の蒸発流路221cから、複数の他方側蒸発タンク空間221bが連なった下流側空間へ流入する。その第3蒸発構成部群224cの下流側空間に流入した冷媒は、矢印F6b、F8のように、蒸発部出口22bから、一方側サイドプレート部30が有する気液分離部26の液貯留空間26aへと流れる。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. The refrigerant that has flowed into the downstream space of the third evaporation component group 224c flows from the evaporation part outlet 22b to the liquid storage space 26a of the gas-liquid separation part 26 of the one-side side plate part 30 as shown by arrows F6b and F8. Flow to.
 その気液分離部26では冷媒は気液分離され、その気液分離された冷媒のうち気相の冷媒は、矢印F9a、F9bのように内部熱交換部28の外側流路28aへ流れる。その一方で、その気液分離された冷媒のうち液相の冷媒は、液貯留空間26aに溜まる。 In the gas-liquid separation unit 26, the refrigerant is gas-liquid separated, and among the gas-liquid separated refrigerants, the gas-phase refrigerant flows to the outer flow path 28a of the internal heat exchange unit 28 as shown by arrows F9a and F9b. On the other hand, among the gas-liquid separated refrigerants, the liquid-phase refrigerant accumulates in the liquid storage space 26a.
 内部熱交換部28の外側流路28a内を流れる冷媒は、図2の矢印FA1、FA2のように積層方向Dsの一方側から他方側へ流れながら、内側流路28b内を流れる冷媒と熱交換させられる。そして、その外側流路28aを流れた冷媒は、矢印Foのように出口管36から熱交換器10の外部へ流出する。その出口管36から流出した冷媒は、図1に示すように圧縮機14に吸い込まれる。以上のようにして、熱交換器10および冷凍サイクル回路12では冷媒が流れる。 The refrigerant flowing in the outer flow path 28a of the internal heat exchange unit 28 exchanges heat with the refrigerant flowing in the inner flow path 28b while flowing from one side to the other side of the stacking direction Ds as shown by arrows FA1 and FA2 in FIG. Be made to. Then, the refrigerant flowing through the outer flow path 28a flows out from the outlet pipe 36 to the outside of the heat exchanger 10 as shown by the arrow Fo. The refrigerant flowing out of the outlet pipe 36 is sucked into the compressor 14 as shown in FIG. As described above, the refrigerant flows in the heat exchanger 10 and the refrigeration cycle circuit 12.
 本実施形態では、蒸発部22では、上述の如く、複数の蒸発流路221cに流れる冷媒は、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)から吸熱する。このため、複数の通風流路22aにおいて、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223には、凝縮水が発生する。 In the present embodiment, as described above, in the evaporation unit 22, the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated on the surface exposed on the ventilation flow path 22a side and the evaporation part fin 223 in each of the plurality of evaporation components 221.
 このように発生される凝縮水は、図4矢印W1、W2の如く、導水板50や外側筒部281の上側外表面283に滴下する。この導水板50に滴下した凝縮水は、図4中矢印W3の如く、導水板50に沿って外側筒部281の上側外表面283に流れる。 The condensed water generated in this way is dropped onto the upper outer surface 283 of the water guide plate 50 and the outer cylinder portion 281 as shown by arrows W1 and W2 in FIG. The condensed water dropped on the water guide plate 50 flows to the upper outer surface 283 of the outer cylinder portion 281 along the water guide plate 50 as shown by the arrow W3 in FIG.
 ここで、外側筒部281の上側外表面283では、導水板50から流れてきた凝縮水は、複数の通風流路22aの表面や蒸発部フィン223から滴下した凝縮水と合流する。この合流した凝縮水は、一方側サイドプレート部30と他方側サイドプレート部32との間において、図4中矢印W3の如く、上側外表面283に沿って外側筒部281に対して熱交換器幅方向Dw一方側に流れる。 Here, on the upper outer surface 283 of the outer cylinder portion 281, the condensed water flowing from the water guide plate 50 merges with the condensed water dropped from the surfaces of the plurality of ventilation flow paths 22a and the evaporation portion fin 223. The merged condensed water is a heat exchanger between the one side plate portion 30 and the other side plate portion 32 with respect to the outer cylinder portion 281 along the upper outer surface 283 as shown by the arrow W3 in FIG. It flows to one side of the width direction Dw.
 その後、一方側サイドプレート部30と他方側サイドプレート部32との間において凝縮水は、外側筒部281に対して熱交換器幅方向Dw一方側を通して、凝縮部20の複数の通風流路20aに滴下する。 After that, between the one side plate portion 30 and the other side plate portion 32, the condensed water passes through one side of the heat exchanger width direction Dw with respect to the outer tubular portion 281 and the plurality of ventilation flow paths 20a of the condensing portion 20. Drop into.
 すなわち、凝縮水は、導水板50や外側筒部281の上側外表面283によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。 That is, the condensed water is guided to the upstream side of the air flow in the condensing part heat exchange core 230 of the condensing part 20 by the water guiding plate 50 and the upper outer surface 283 of the outer cylinder part 281. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
 複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 The refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 以上説明した本実施形態によれば、熱交換器10は、冷媒から複数の通風流路20a内の空気流に放熱させる熱交換コア230を備える凝縮部20と、蒸発部22と、内部熱交換部28と、を備える。 According to the present embodiment described above, the heat exchanger 10 has an internal heat exchange with a condensing unit 20 including a heat exchange core 230 that dissipates heat from the refrigerant to an air flow in a plurality of ventilation flow paths 20a, an evaporation unit 22, and an internal heat exchanger. A unit 28 is provided.
 蒸発部22は、凝縮部20に対して鉛直方向Dg上側に配置され、複数の通風流路22a内の空気流および蒸発流路221c内の冷媒(すなわち、低圧冷媒)の間の熱交換によって冷媒を複数の通風流路22a内の空気流から吸熱させて蒸発させる。 The evaporation section 22 is arranged on the Dg upper side in the vertical direction with respect to the condensing section 20, and is a refrigerant by heat exchange between the air flow in the plurality of ventilation flow paths 22a and the refrigerant (that is, the low pressure refrigerant) in the evaporation flow path 221c. Is absorbed from the air flow in the plurality of ventilation flow paths 22a and evaporated.
 内部熱交換部28は、凝縮部20と蒸発部22との間に配置されている。内部熱交換部28は、外側筒部281の上側外表面283を備えている。 The internal heat exchange unit 28 is arranged between the condensing unit 20 and the evaporation unit 22. The internal heat exchange portion 28 includes an upper outer surface 283 of the outer tubular portion 281.
 上記特許文献1では、蒸発部で発生した凝縮水を貯める貯水部をケースに設け、この貯水部内の凝縮水を放熱部に対して掛ける旨が記載されている。 The above-mentioned Patent Document 1 describes that a water storage unit for storing condensed water generated in the evaporation unit is provided in a case, and the condensed water in the water storage unit is hung on the heat dissipation unit.
 例えば、図15、図16に示すように、蒸発部22で生じた凝縮水を凝縮部20に対して上側から掛けると、上側タンクに沿って凝縮水が凝縮部20の熱交換部に掛かることなく、そのまま風下側に流れてしまう。このため、凝縮部20の熱交換部内の高圧冷媒の冷却に、凝縮水が役立たない恐れがある。 For example, as shown in FIGS. 15 and 16, when the condensed water generated in the evaporation section 22 is hung on the condensing section 20 from above, the condensed water is hung on the heat exchange section of the condensing section 20 along the upper tank. Instead, it just flows downwind. Therefore, the condensed water may not be useful for cooling the high-pressure refrigerant in the heat exchange section of the condensing section 20.
 これに対して、本実施形態の内部熱交換部28は、上述の如く、外側筒部281の上側外表面283を備えている。上側外表面283は、蒸発部22の熱交換によって蒸発部22から生じる凝縮水を凝縮部20における熱交換コア230のうち複数の通風流路22a内の空気流の風上側に導いて、この導かれる凝縮水を熱交換コア230に掛ける。このため、凝縮流路201c内の冷媒(すなわち、高圧冷媒)から凝縮水に放熱させて凝縮水を気化させる。 On the other hand, the internal heat exchange unit 28 of the present embodiment includes the upper outer surface 283 of the outer cylinder portion 281 as described above. The upper outer surface 283 guides the condensed water generated from the evaporation unit 22 by the heat exchange of the evaporation unit 22 to the wind side of the air flow in the plurality of ventilation passages 22a of the heat exchange cores 230 in the condensation unit 20. The condensed water to be collected is hung on the heat exchange core 230. Therefore, the refrigerant (that is, the high-pressure refrigerant) in the condensing flow path 201c dissipates heat to the condensed water to vaporize the condensed water.
 これによれば、凝縮流路201c内の冷媒から凝縮水に気化熱を移動させることができる。このため、凝縮流路201c内の冷媒を凝縮水によって冷却することができる。したがって、蒸発部22および凝縮部20を備える熱交換器10において、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 According to this, the heat of vaporization can be transferred from the refrigerant in the condensing flow path 201c to the condensed water. Therefore, the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
 具体的には、凝縮部20および蒸発部22は、複数対の第1板部材381、第2板部材382を有して構成されている。以下、説明の便宜上、図14に示すように、積層方向Dsに並べられている第1板部材381、第2板部材382、第1板部材381、第2板部材382を第1板部材381A、第2板部材382A、第1板部材381B、第2板部材382Bとする。 Specifically, the condensing unit 20 and the evaporation unit 22 are configured to have a plurality of pairs of the first plate member 381 and the second plate member 382. Hereinafter, for convenience of explanation, as shown in FIG. 14, the first plate member 381, the second plate member 382, the first plate member 381, and the second plate member 382 arranged in the stacking direction Ds are referred to as the first plate member 381A. , 2nd plate member 382A, 1st plate member 381B, 2nd plate member 382B.
 第1板部材381Aは、第2板部材382Aに対して積層方向Ds一方側に配置されている第1熱交換プレートである。第1板部材381Bは、第2板部材382Bに対して積層方向Ds一方側に配置されている第3熱交換プレートである。第2板部材382Aは、第1板部材381B(すなわち、第4熱交換プレート)に対して所定方向一方側に配置されている第2熱交換プレートである。 The first plate member 381A is a first heat exchange plate arranged on one side of the stacking direction Ds with respect to the second plate member 382A. The first plate member 381B is a third heat exchange plate arranged on one side of the stacking direction Ds with respect to the second plate member 382B. The second plate member 382A is a second heat exchange plate arranged on one side in a predetermined direction with respect to the first plate member 381B (that is, the fourth heat exchange plate).
 第1板部材381および第2板部材382は、対を成して互いに合わさるように配置されて、第1板部材381および第2板部材382の間には、蒸発流路221cおよび凝縮流路201cが形成されている。第2板部材382Aおよび第1板部材381Bの間には、通風流路20a、22aが形成されている。 The first plate member 381 and the second plate member 382 are arranged so as to be paired with each other, and the evaporation flow path 221c and the condensation flow path 221c and the condensation flow path are arranged between the first plate member 381 and the second plate member 382. 201c is formed. Ventilation channels 20a and 22a are formed between the second plate member 382A and the first plate member 381B.
 第1板部材381Bおよび第2板部材382Bは、対を成して互いに合わさるように配置されて、第1板部材381Bおよび第2板部材382Bの間には、通風流路20a、22aが形成されている。第1板部材381A、381B、第2板部材382A、382Bは、それぞれ、内部熱交換部28を構成する。 The first plate member 381B and the second plate member 382B are arranged so as to form a pair and meet each other, and ventilation passages 20a and 22a are formed between the first plate member 381B and the second plate member 382B. Has been done. The first plate members 381A and 381B and the second plate members 382A and 382B each constitute an internal heat exchange unit 28.
 内部熱交換部28は、蒸発流路221cおよび凝縮流路201cの間に配置されて凝縮部20を通過した冷媒と蒸発部22を通過した冷媒との間で熱交換する。内部熱交換部28のうち上側外表面283は、凝縮水を熱交換コア230のうち空気流の風上側に導く導水部の役割を果たす。 The internal heat exchange section 28 is arranged between the evaporation flow path 221c and the condensation flow path 201c and exchanges heat between the refrigerant that has passed through the condensation section 20 and the refrigerant that has passed through the evaporation section 22. The upper outer surface 283 of the internal heat exchange section 28 serves as a water guiding section that guides the condensed water to the windward side of the air flow in the heat exchange core 230.
 本実施形態では、第1板部材381A、381Bは、それぞれ、蒸発流路形成部221gよりも外側筒構成部281aが積層方向Ds一方側に凸なるように形成されている。第2板部材382A、382Bは、それぞれ、蒸発流路形成部221kよりも外側筒構成部281bが積層方向Ds他方側に凸なるように形成されている。このため、蒸発流路形成部221g、221kの外表面で発生した凝縮水を外側筒構成部281a、281bで良好に受け止めることができる。 In the present embodiment, the first plate members 381A and 381B are formed so that the outer cylinder forming portion 281a is convex toward one side of the stacking direction Ds with respect to the evaporation flow path forming portion 221g, respectively. The second plate members 382A and 382B are formed so that the outer cylinder forming portion 281b is convex toward the other side of the stacking direction Ds with respect to the evaporation flow path forming portion 221k, respectively. Therefore, the condensed water generated on the outer surface of the evaporation channel forming portions 221g and 221k can be satisfactorily received by the outer cylinder constituent portions 281a and 281b.
 本実施形態では、導水板50は、一方側サイドプレート部30と他方側サイドプレート部32の間に亘って配置されている、導水板50は、内部熱交換部28に対して熱交換器幅方向Dw他方側に配置されている。導水板50は、通風流路22aから滴下した凝縮水を内部熱交換部28の外側筒部281の上側外表面283に導く。 In the present embodiment, the water guide plate 50 is arranged between the one side side plate portion 30 and the other side side plate portion 32. The water guide plate 50 has a heat exchanger width with respect to the internal heat exchange portion 28. Direction Dw is arranged on the other side. The water guide plate 50 guides the condensed water dropped from the ventilation flow path 22a to the upper outer surface 283 of the outer cylinder portion 281 of the internal heat exchange portion 28.
 このため、多くの凝縮水を集めて凝縮部20における熱交換コア230のうち複数の通風流路22a内の空気流の風上側に導くことができる。本実施形態では、導水板50は、その上面が熱交換器幅方向Dw他方側に向かうほど鉛直方向Dgに進むように傾斜状に形成されている。このため、導水板50は、複数の通風流路22aから滴下した凝縮水を複数の通風流路20a内の空気流の風下側に流れることを抑制して、凝縮水を内部熱交換部28の外側筒部281の上側外表面283に良好に導くことができる。 Therefore, a large amount of condensed water can be collected and guided to the windward side of the air flow in the plurality of ventilation channels 22a of the heat exchange cores 230 in the condensing portion 20. In the present embodiment, the water guide plate 50 is formed so as to be inclined so that the upper surface thereof advances in the vertical direction Dg toward the other side in the heat exchanger width direction Dw. Therefore, the water guide plate 50 suppresses the condensed water dropped from the plurality of ventilation flow paths 22a from flowing to the leeward side of the air flow in the plurality of ventilation flow paths 20a, and the condensed water is transferred to the internal heat exchange unit 28. It can be satisfactorily guided to the upper outer surface 283 of the outer cylinder portion 281.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の実施形態の説明においても同様である。
 図17および図18に示すように、本実施形態の熱交換器10は、第1実施形態と同様に、凝縮部20と、蒸発部22と、絞り部321eとを備えている。しかし、本実施形態の熱交換器10は、第1実施形態とは異なり、気液分離部26(図2参照)と内部熱交換部28とを備えていない。
(Second Embodiment)
Next, the second embodiment will be described. In this embodiment, the differences from the above-described first embodiment will be mainly described. In addition, the same or equivalent parts as those in the above-described embodiment will be omitted or simplified. This also applies to the description of the embodiment described later.
As shown in FIGS. 17 and 18, the heat exchanger 10 of the present embodiment includes a condensing unit 20, an evaporation unit 22, and a drawing unit 321e, as in the first embodiment. However, unlike the first embodiment, the heat exchanger 10 of the present embodiment does not include the gas-liquid separation unit 26 (see FIG. 2) and the internal heat exchange unit 28.
 なお、図18では、第1板部材381、第2板部材382、凝縮部フィン203、および蒸発部フィン223のそれぞれの断面がハッチングではなく太線で表示されている。また、見やすい図示とするために、図18は、第1板部材381と第2板部材382と一方側サイドプレート部30と他方側サイドプレート部32との相互間に敢えて間隔(すなわち、実際には無い間隔)を空けた表示とされている。 In FIG. 18, the cross sections of the first plate member 381, the second plate member 382, the condensing part fin 203, and the evaporation part fin 223 are shown by thick lines instead of hatching. Further, in order to make the illustration easy to see, FIG. 18 shows a deliberate spacing (that is, actually) between the first plate member 381, the second plate member 382, the one-side side plate portion 30, and the other-side side plate portion 32. It is displayed with a space (no interval).
 本実施形態の冷凍サイクル回路12は、第1実施形態の気液分離部26に相当する気液分離器40を、熱交換器10とは別の機器として備えている。その気液分離器40は、気液分離部26と同じ機能を有するアキュムレータであり、熱交換器10の出口管36に対する冷媒流れ下流側で且つ圧縮機14に対する冷媒流れ上流側に設けられている。 The refrigeration cycle circuit 12 of the present embodiment includes a gas-liquid separator 40 corresponding to the gas-liquid separation unit 26 of the first embodiment as a device different from the heat exchanger 10. The gas-liquid separator 40 is an accumulator having the same function as the gas-liquid separator 26, and is provided on the downstream side of the refrigerant flow with respect to the outlet pipe 36 of the heat exchanger 10 and on the upstream side of the refrigerant flow with respect to the compressor 14. ..
 図18および図19に示すように、本実施形態では、一方側サイドプレート部30は、複数の板が積層された積層構造ではなく、単層構造である。すなわち、本実施形態の一方側サイドプレート部30は一方側第1板301で構成され、第1実施形態の一方側第2板302および一方側第3板303(図2参照)に相当する部位を有していない。 As shown in FIGS. 18 and 19, in the present embodiment, the one-side side plate portion 30 has a single-layer structure rather than a laminated structure in which a plurality of plates are laminated. That is, the one-sided side plate portion 30 of the present embodiment is composed of the one-sided first plate 301, and corresponds to the one-sided second plate 302 and the one-sided third plate 303 (see FIG. 2) of the first embodiment. Does not have.
 入口管34は、一方側サイドプレート部30のうちの下部に形成された下部貫通孔30bに挿入され、その下部貫通孔30bにて一方側サイドプレート部30に対しロウ付け接合されている。これにより、入口管34は凝縮部20内に連通するようにその凝縮部20に対して接続される。 The inlet pipe 34 is inserted into a lower through hole 30b formed in the lower part of the one side side plate portion 30, and is brazed to the one side side plate portion 30 at the lower through hole 30b. As a result, the inlet pipe 34 is connected to the condensing portion 20 so as to communicate with the condensing portion 20.
 また、出口管36は、一方側サイドプレート部30のうちの上部に形成された上部貫通孔30cに挿入され、その上部貫通孔30cにて一方側サイドプレート部30に対しロウ付け接合されている。これにより、出口管36は蒸発部22内に連通するようにその蒸発部22に対して接続される。 Further, the outlet pipe 36 is inserted into the upper through hole 30c formed in the upper part of the one side side plate portion 30, and is brazed to the one side side plate portion 30 at the upper through hole 30c. .. As a result, the outlet pipe 36 is connected to the evaporation unit 22 so as to communicate with the evaporation unit 22.
 図18および図20に示すように、他方側サイドプレート部32は、他方側第1板321と他方側第2板322とを有し、それらの他方側第1板321と他方側第2板322とが積層され互いに接合されることで構成されている。 As shown in FIGS. 18 and 20, the other side plate portion 32 has the other side first plate 321 and the other side second plate 322, and the other side first plate 321 and the other side second plate thereof. It is configured by laminating 322 and joining to each other.
 他方側第1板321は、第1実施形態と同様に絞り部321eを有している。それに加え、他方側第1板321には、その他方側第1板321のうちの下部に設けられた貫通孔である凝縮部出口孔321hが形成されている。この凝縮部出口孔321hは、凝縮部出口202aに連通している。 The first plate 321 on the other side has a diaphragm portion 321e as in the first embodiment. In addition, the first plate 321 on the other side is formed with a condensing portion outlet hole 321h which is a through hole provided in the lower part of the first plate 321 on the other side. The condensing portion outlet hole 321h communicates with the condensing portion outlet 202a.
 他方側第2板322は、積層方向Dsの一方側から他方側へ凹んで鉛直方向Dgに延伸した溝部322aを有している。他方側第2板322は、他方側第1板321に対し積層方向Dsの他方側にロウ付け接合されており、これによって、他方側第2板322の溝部322aは他方側第1板321との間に側部中継流路322bを形成している。 The second plate 322 on the other side has a groove portion 322a that is recessed from one side of the stacking direction Ds to the other side and extends in the vertical direction Dg. The other side second plate 322 is brazed to the other side of the stacking direction Ds with respect to the other side first plate 321 so that the groove portion 322a of the other side second plate 322 is joined to the other side first plate 321. A side relay flow path 322b is formed between the two.
 この側部中継流路322bは、鉛直方向Dgに延びており、冷媒流れにおいて他方側第1板321の凝縮部出口孔321hと絞り部321eとの間に設けられている。すなわち、側部中継流路322bは、凝縮部20の凝縮部出口202aと絞り孔321dとをつなぐ流路となっている。このような冷媒の流路構成により、他方側サイドプレート部32の絞り孔321dは、冷媒流れにおいて凝縮部出口202aと蒸発部入口222aとの間に設けられていることになる。 This side relay flow path 322b extends in the vertical direction Dg, and is provided between the condensing portion outlet hole 321h and the throttle portion 321e of the other side first plate 321 in the refrigerant flow. That is, the side relay flow path 322b is a flow path that connects the condensing portion outlet 202a of the condensing portion 20 and the throttle hole 321d. Due to such a flow path configuration of the refrigerant, the throttle hole 321d of the other side plate portion 32 is provided between the condensing portion outlet 202a and the evaporation portion inlet 222a in the refrigerant flow.
 図18に示すように、本実施形態でも第1実施形態と同様に、鉛直方向Dgに並んだ1つの凝縮構成部201と1つの蒸発構成部221は、一対の板部材381、382が積層方向Dsに積層され互いに接合されることで構成されている。そして、その一対の板部材381、382のうち、第1板部材381は、第2板部材382に対し積層方向Dsの一方側に配置されている。 As shown in FIG. 18, in the present embodiment as in the first embodiment, one condensing component 201 and one evaporation component 221 arranged in the vertical direction Dg have a pair of plate members 381 and 382 in the stacking direction. It is configured by being laminated on Ds and joined to each other. Then, of the pair of plate members 381 and 382, the first plate member 381 is arranged on one side of the stacking direction Ds with respect to the second plate member 382.
 但し、本実施形態では図18および図21に示すように、一方側凝縮タンク空間201aは凝縮流路201cに対し鉛直方向Dgの下側に配置され、他方側凝縮タンク空間201bは凝縮流路201cに対し鉛直方向Dgの上側に配置されている。また、一方側蒸発タンク空間221aは蒸発流路221cに対し鉛直方向Dgの下側に配置され、他方側蒸発タンク空間221bは蒸発流路221cに対し鉛直方向Dgの上側に配置されている。
 図18に示すように、本実施形態の凝縮部20は、第1凝縮構成部群204aと第2凝縮構成部群204bと第3凝縮構成部群204cと第4凝縮構成部群204dとを有している。その第1凝縮構成部群204aと第2凝縮構成部群204bと第3凝縮構成部群204cと第4凝縮構成部群204dは、その記載順で積層方向Dsの一方側から他方側へ並んで配置されている。
However, in the present embodiment, as shown in FIGS. 18 and 21, one side condensing tank space 201a is arranged below the condensation flow path 201c in the vertical direction Dg, and the other side condensing tank space 201b is the condensing flow path 201c. It is arranged above the vertical Dg. Further, the one-side evaporation tank space 221a is arranged below the evaporation flow path 221c in the vertical direction Dg, and the other side evaporation tank space 221b is arranged above the evaporation flow path 221c in the vertical direction Dg.
As shown in FIG. 18, the condensing unit 20 of the present embodiment includes a first condensed component group 204a, a second condensed component group 204b, a third condensed component group 204c, and a fourth condensed component group 204d. doing. The first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are arranged from one side to the other side in the stacking direction Ds in the order of description. Have been placed.
 そして、凝縮部20の冷媒流れにおいて、第1凝縮構成部群204aと第2凝縮構成部群204bと第3凝縮構成部群204cと第4凝縮構成部群204dは、その記載順で、上流側から下流側へ直列に連結されている。 Then, in the refrigerant flow of the condensing unit 20, the first condensed component group 204a, the second condensed component group 204b, the third condensed component group 204c, and the fourth condensed component group 204d are on the upstream side in the order of description. It is connected in series from to the downstream side.
 また、複数の凝縮構成部群204a~204dのそれぞれでは、複数の凝縮流路201cが冷媒流れにおいて並列接続されている。 Further, in each of the plurality of condensing components groups 204a to 204d, a plurality of condensing flow paths 201c are connected in parallel in the refrigerant flow.
 このような冷媒の流通経路を実現するために、図18のC4部に示すように、第1凝縮構成部群204aのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。また、C5部に示すように、第2凝縮構成部群204bのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第2連通孔201pが設けられていない。また、C6部に示すように、第3凝縮構成部群204cのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。 In order to realize such a refrigerant flow path, as shown in the C4 portion of FIG. 18, in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the first condensing component group 204a. Is not provided with the first communication hole 201o. Further, as shown in the C5 portion, the second communication hole 201p is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b. Further, as shown in the C6 portion, the first communication hole 201o is not provided in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the third condensing component group 204c.
 例えば、第2連通孔201pは設けられているが第1連通孔201oが設けられていない他方側凝縮板部201hは、図23に示されている。また、第1連通孔201oは設けられているが第2連通孔201pが設けられていない他方側凝縮板部201hは、図24に示されている。 For example, the other side condensing plate portion 201h in which the second communication hole 201p is provided but the first communication hole 201o is not provided is shown in FIG. 23. Further, the other side condensing plate portion 201h in which the first communication hole 201o is provided but the second communication hole 201p is not provided is shown in FIG. 24.
 図18に示すように、本実施形態では、蒸発部22に含まれる複数の蒸発構成部群224a~224dとして、第1蒸発構成部群224a、第2蒸発構成部群224b、第3蒸発構成部群224c、および第4蒸発構成部群224dが構成されている。 As shown in FIG. 18, in the present embodiment, the plurality of evaporation constituent groups 224a to 224d included in the evaporation portion 22 are the first evaporation constituent group 224a, the second evaporation constituent group 224b, and the third evaporation constituent group. Group 224c and fourth evaporation component group 224d are configured.
 本実施形態の蒸発部22では、第1蒸発構成部群224aと第2蒸発構成部群224bと第3蒸発構成部群224cと第4蒸発構成部群224dは、その記載順で積層方向Dsの他方側から一方側へ並んで配置されている。そして、蒸発部22の冷媒流れにおいて、第1蒸発構成部群224aと第2蒸発構成部群224bと第3蒸発構成部群224cと第4蒸発構成部群224dは、その記載順で、上流側から下流側へ直列に連結されている。
 また、複数の蒸発構成部群224a~224dのそれぞれでは、複数の蒸発流路221cが冷媒流れにおいて並列接続されている。
In the evaporation unit 22 of the present embodiment, the first evaporation component group 224a, the second evaporation component group 224b, the third evaporation component group 224c, and the fourth evaporation component group 224d are in the stacking direction Ds in the order of description. They are arranged side by side from the other side to one side. Then, in the refrigerant flow of the evaporation unit 22, the first evaporation component group 224a, the second evaporation component group 224b, the third evaporation component group 224c, and the fourth evaporation component group 224d are on the upstream side in the order of description. It is connected in series from to the downstream side.
Further, in each of the plurality of evaporation components groups 224a to 224d, a plurality of evaporation channels 221c are connected in parallel in the refrigerant flow.
 このような冷媒の流通経路を実現するために、図18のE4部に示すように、第2蒸発構成部群224bのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第2連通孔221pが設けられていない。また、E5部に示すように、第3蒸発構成部群224cのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第1連通孔221oが設けられていない。また、E6部に示すように、第4蒸発構成部群224dのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第2連通孔221pが設けられていない。 In order to realize such a flow path of the refrigerant, as shown in the E4 part of FIG. 18, the other side evaporation plate part 221h located at the other end of the stacking direction Ds in the second evaporation component group 224b Is not provided with a second communication hole 221p. Further, as shown in the E5 portion, the first communication hole 221o is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c. Further, as shown in the E6 portion, the second communication hole 221p is not provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the fourth evaporation component group 224d.
 例えば、第1連通孔221oは設けられているが第2連通孔221pが設けられていない他方側蒸発板部221hは、図23に示されている。また、第2連通孔221pは設けられているが第1連通孔221oが設けられていない他方側蒸発板部221hは、図21に示されている。 For example, the other side evaporation plate portion 221h in which the first communication hole 221o is provided but the second communication hole 221p is not provided is shown in FIG. 23. Further, the other side evaporation plate portion 221h in which the second communication hole 221p is provided but the first communication hole 221o is not provided is shown in FIG.
 本実施形態では、図21に示すように、1つの一方側凝縮板部201dと1つの一方側蒸発板部221dは単一の部品として構成されておらず、別々の部品として構成されている。そして、図22に示すように、1つの他方側凝縮板部201hと1つの他方側蒸発板部221hも単一の部品として構成されておらず、別々の部品として構成されている。従って、本実施形態では、第1板部材381(図15参照)は構成されておらず、第2板部材382も構成されていない。このような点において、本実施形態は第1実施形態と異っている。 In the present embodiment, as shown in FIG. 21, one one-side condensing plate portion 201d and one one-side evaporation plate portion 221d are not configured as a single component, but are configured as separate components. As shown in FIG. 22, one other side condensing plate portion 201h and one other side evaporation plate portion 221h are not configured as a single component, but are configured as separate components. Therefore, in the present embodiment, the first plate member 381 (see FIG. 15) is not configured, and the second plate member 382 is also not configured. In this respect, the present embodiment is different from the first embodiment.
 上記のように、一方側凝縮板部201dと一方側蒸発板部221dは別々の部品として構成され、且つ、他方側凝縮板部201hと他方側蒸発板部221hも別々の部品として構成されている。そのため、凝縮部20と蒸発部22は、その凝縮部20と蒸発部22の両側に一方側サイドプレート部30と他方側サイドプレート部32とが接合されることで一体構成になっている。 As described above, the one-side condensing plate portion 201d and the one-side evaporation plate portion 221d are configured as separate parts, and the other-side condensing plate portion 201h and the other-side evaporation plate portion 221h are also configured as separate parts. .. Therefore, the condensing portion 20 and the evaporating portion 22 are integrally formed by joining the one-side side plate portion 30 and the other-side side plate portion 32 on both sides of the condensing portion 20 and the evaporating portion 22.
 但し、図18に示すように、図18のC4部において、第1凝縮構成部群204aのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。また、図23および図27に示すように、図23のC5部において、第2凝縮構成部群204bのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第2連通孔201pが設けられていない。また、図23および図26に示すように、図23のC6部において、第3凝縮構成部群204cのうち積層方向Dsの他方側の端に位置する他方側凝縮板部201hには、第1連通孔201oが設けられていない。 However, as shown in FIG. 18, in the C4 portion of FIG. 18, the first communication hole 201o is formed in the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the first condensing component group 204a. Is not provided. Further, as shown in FIGS. 23 and 27, in the C5 portion of FIG. 23, the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the second condensing component group 204b has a second The communication hole 201p is not provided. Further, as shown in FIGS. 23 and 26, in the C6 portion of FIG. 23, the other side condensing plate portion 201h located at the other end of the stacking direction Ds in the third condensing component group 204c has a first The communication hole 201o is not provided.
 また、図18に示すように、図18のE4部において、第2蒸発構成部群224bのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第2連通孔221pが設けられていない。また、図18に示すように、図18のE5部において、第3蒸発構成部群224cのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第1連通孔221oが設けられていない。また、図18に示すように、図18のE6部において、第4蒸発構成部群224dのうち積層方向Dsの他方側の端に位置する他方側蒸発板部221hには、第2連通孔221pが設けられていない。 Further, as shown in FIG. 18, in the E4 portion of FIG. 18, the second communication hole 221p is provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the second evaporation component group 224b. Is not provided. Further, as shown in FIG. 18, in the E5 part of FIG. 18, the first communication hole 221o is formed in the other side evaporation plate part 221h located at the other end of the stacking direction Ds in the third evaporation component group 224c. Is not provided. Further, as shown in FIG. 18, in the E6 portion of FIG. 18, the second communication hole 221p is provided in the other side evaporation plate portion 221h located at the other end of the stacking direction Ds in the fourth evaporation component group 224d. Is not provided.
 また、図21~図24から判るように、複数の一方側凝縮板部201dの相互間および複数の一方側蒸発板部221dの相互間だけでなく、一方側凝縮板部201dと一方側蒸発板部221dとの相互間でも部品共通化が図られている。これと同様に、複数の他方側凝縮板部201hの相互間および複数の他方側蒸発板部221hの相互間だけでなく、他方側凝縮板部201hと他方側蒸発板部221hとの相互間でも部品共通化が図られている。 Further, as can be seen from FIGS. 21 to 24, not only between the plurality of one-side condensing plate portions 201d and between the plurality of one-side evaporating plate portions 221d, but also between the one-side condensing plate portion 201d and the one-side evaporating plate portion 201d. Parts are shared with each other with the unit 221d. Similarly, not only between the plurality of other side condensing plate portions 201h and between the plurality of other side evaporative plate portions 221h, but also between the other side condensing plate portion 201h and the other side evaporative plate portion 221h. Parts are standardized.
 本実施形態では、1つの凝縮構成部201と1つの蒸発構成部221との間には、導水部50Aが設けられている。 In the present embodiment, a water guiding section 50A is provided between one condensing component 201 and one evaporation component 221.
 導水部50Aは、仕切板51、および閉塞板52を備える。仕切板51は、蒸発部22の蒸発構成部221と凝縮部20の凝縮構成部201との間に配置されている。仕切板51は、蒸発部22と凝縮部20とが並ぶ方向に交差する交差方向に拡がる板状に形成されている。 The water guide portion 50A includes a partition plate 51 and a closing plate 52. The partition plate 51 is arranged between the evaporation component 221 of the evaporation section 22 and the condensation configuration section 201 of the condensation section 20. The partition plate 51 is formed in a plate shape extending in an intersecting direction in which the evaporation portion 22 and the condensing portion 20 intersect in the line-up direction.
 仕切板51は、一方側サイドプレート部30と他方側サイドプレート部32との間にて配置されている。仕切板51は、積層方向Dsに亘って板状に形成されている。すなわち、仕切板51は、積層方向Dsおよび熱交換器幅方向Dw(すなわち、蒸発部22と凝縮部20が並ぶ向に交差する交差方向)に拡がる板状に形成されている。 The partition plate 51 is arranged between the one side side plate portion 30 and the other side side plate portion 32. The partition plate 51 is formed in a plate shape over the stacking direction Ds. That is, the partition plate 51 is formed in a plate shape that extends in the stacking direction Ds and the heat exchanger width direction Dw (that is, the intersecting direction in which the evaporation portion 22 and the condensing portion 20 intersect in the line-up direction).
 仕切板51は、蒸発部22に対してその熱交換器幅方向Dwの一方側および中央側を覆うように形成されている。このため、仕切板51は、蒸発部22に対してその熱交換器幅方向Dwの他方側からずれて配置されている。 The partition plate 51 is formed so as to cover one side and the center side of the heat exchanger width direction Dw with respect to the evaporation portion 22. Therefore, the partition plate 51 is arranged with respect to the evaporation portion 22 so as to be offset from the other side in the heat exchanger width direction Dw.
 閉塞板52は、仕切板51のうち熱交換器幅方向Dw一方側(すなわち、通風流路20a内の空気流の風下側)に接続されて鉛直方向Dgに延びる板状に形成されている。閉塞板52は、1つの凝縮構成部201と1つの蒸発構成部221との間の隙間を塞ぐように形成されている。 The closing plate 52 is formed in a plate shape that is connected to one side of the partition plate 51 in the heat exchanger width direction Dw (that is, the leeward side of the air flow in the ventilation flow path 20a) and extends in the vertical direction Dg. The closing plate 52 is formed so as to close the gap between one condensation component 201 and one evaporation component 221.
 閉塞板52は、仕切板51に滴下した凝縮水が熱交換器幅方向Dwの一方側に流れることを防ぐように形成されている導水板である。すなわち、閉塞板52は、仕切板51から凝縮水が通風流路20a内の空気流の風下側に流れることを抑制する堰部を構成する。 The closing plate 52 is a water guiding plate formed so as to prevent the condensed water dropped on the partition plate 51 from flowing to one side of the heat exchanger width direction Dw. That is, the closing plate 52 constitutes a weir portion that prevents condensed water from flowing from the partition plate 51 to the leeward side of the air flow in the ventilation flow path 20a.
 本実施形態の熱交換器10および冷凍サイクル回路12では、次のように冷媒が流れる。なお、図18に示された破線矢印は、熱交換器10における冷媒流れを示している。 In the heat exchanger 10 and the refrigeration cycle circuit 12 of the present embodiment, the refrigerant flows as follows. The broken line arrow shown in FIG. 18 indicates the refrigerant flow in the heat exchanger 10.
 先ず、図18に示すように、圧縮機14から吐出された冷媒は、入口管34を介して、凝縮部20の第1凝縮構成部群204aのうち複数の一方側凝縮タンク空間201aが連なった上流側空間に流入する。その第1凝縮構成部群204aの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの他方側へ流れながら複数の凝縮流路201cへ分配される。 First, as shown in FIG. 18, the refrigerant discharged from the compressor 14 is connected to a plurality of one-sided condensing tank spaces 201a among the first condensing component group 204a of the condensing portion 20 via the inlet pipe 34. It flows into the upstream space. The refrigerant that has flowed into the upstream space of the first condensed component group 204a is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space.
 ここで、熱交換器幅方向Dw他方側から空気流が図4の矢印FB2の如く凝縮構成部201周り(すなわち、複数の通風流路20a)を通して熱交換器幅方向Dw一方側に流れる。 Here, an air flow from the other side of the heat exchanger width direction Dw flows to one side of the heat exchanger width direction Dw through the condensing component 201 (that is, a plurality of ventilation flow paths 20a) as shown by the arrow FB2 in FIG.
 その複数の凝縮流路201cに流れる冷媒(すなわち、高圧冷媒)は互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 The refrigerant flowing in the plurality of condensed flow paths 201c (that is, high-pressure refrigerant) flows in parallel with each other and exchanges heat with the air flow around the condensed component 201 (that is, the air flow in the plurality of ventilation flow paths 20a). Heat is dissipated to the air flow.
 そして、その冷媒は、複数の凝縮流路201cから、複数の他方側凝縮タンク空間201bが連なった下流側空間へ流入する。更に、その冷媒は、その第1凝縮構成部群204aの下流側空間から、第2凝縮構成部群204bのうち複数の他方側凝縮タンク空間201bが連なった上流側空間に流入する。 Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected. Further, the refrigerant flows from the downstream space of the first condensing component group 204a into the upstream space in which a plurality of other side condensing tank spaces 201b of the second condensing component group 204b are connected.
 その第2凝縮構成部群204bの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの他方側へ流れながら複数の凝縮流路201cへ分配される。その複数の凝縮流路201cに流れる冷媒は互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 そして、その冷媒は、複数の凝縮流路201cから、複数の一方側凝縮タンク空間201aが連なった下流側空間へ流入する。更に、その冷媒は、その第2凝縮構成部群204bの下流側空間から、第3凝縮構成部群204cのうち複数の一方側凝縮タンク空間201aが連なった上流側空間に流入する。 The refrigerant that has flowed into the upstream space of the second condensation component group 204b is distributed to the plurality of condensation channels 201c while flowing to the other side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and dissipates heat to the air flow. .. Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected. Further, the refrigerant flows from the downstream space of the second condensed component group 204b into the upstream space in which a plurality of one-sided condensed tank spaces 201a of the third condensed component group 204c are connected.
 その第3凝縮構成部群204cの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの他方側へ流れながら複数の凝縮流路201cへ分配される。その複数の凝縮流路201cに流れる冷媒は互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a内の空気流)と熱交換させられその空気流へ放熱する。 そして、その冷媒は、複数の凝縮流路201cから、複数の他方側凝縮タンク空間201bが連なった下流側空間へ流入する。更に、その冷媒は、その第3凝縮構成部群204cの下流側空間から、第4凝縮構成部群204dのうち複数の他方側凝縮タンク空間201bが連なった上流側空間に流入する。 The refrigerant that has flowed into the upstream space of the third condensed component group 204c is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the air flow in the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and dissipates heat to the air flow. .. Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of condensing tank spaces 201b on the other side are connected. Further, the refrigerant flows from the downstream side space of the third condensed component group 204c into the upstream space in which a plurality of other side condensed tank spaces 201b of the fourth condensed component group 204d are connected.
 その第4凝縮構成部群204dの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの他方側へ流れながら複数の凝縮流路201cへ分配される。その複数の凝縮流路201cに流れる冷媒は互いに並列に流れながら、凝縮構成部201周りの空気流(すなわち、複数の通風流路20a)と熱交換させられその空気流へ放熱する。 The refrigerant that has flowed into the upstream space of the fourth condensed component group 204d is distributed to the plurality of condensed flow paths 201c while flowing to the other side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of condensing flow paths 201c is exchanged with the air flow around the condensing component 201 (that is, the plurality of ventilation flow paths 20a) while flowing in parallel with each other, and radiates heat to the air flow.
 そして、その冷媒は、複数の凝縮流路201cから、複数の一方側凝縮タンク空間201aが連なった下流側空間へ流入する。その第4凝縮構成部群204dの下流側空間に流入した冷媒は、凝縮部出口202aから、他方側サイドプレート部32の凝縮部出口孔321hを経て側部中継流路322bに流入する。 Then, the refrigerant flows from the plurality of condensing flow paths 201c into the downstream space in which the plurality of one-sided condensing tank spaces 201a are connected. The refrigerant that has flowed into the space on the downstream side of the fourth condensing component group 204d flows into the side relay flow path 322b from the condensing portion outlet 202a through the condensing portion outlet hole 321h of the other side plate portion 32.
 その側部中継流路322bでは冷媒は鉛直方向Dgの下側から上側へ流れ、その冷媒は、側部中継流路322bから絞り部321eの絞り孔321dを介して蒸発部22内へ流入する。このとき、冷媒は、その絞り孔321dを通ることによって減圧させられる。 In the side relay flow path 322b, the refrigerant flows from the lower side to the upper side in the vertical direction Dg, and the refrigerant flows from the side relay flow path 322b into the evaporation section 22 through the throttle hole 321d of the throttle section 321e. At this time, the refrigerant is depressurized by passing through the throttle hole 321d.
 絞り部321eの絞り孔321dを通った冷媒は蒸発部入口222aから蒸発部22内へ流入する。蒸発部入口222aから蒸発部22内へ流入する冷媒は、先ず、第1蒸発構成部群224aのうち複数の他方側蒸発タンク空間221bが連なった上流側空間に流入する。 The refrigerant that has passed through the throttle hole 321d of the throttle section 321e flows into the evaporation section 22 from the evaporation section inlet 222a. The refrigerant flowing into the evaporation section 22 from the evaporation section inlet 222a first flows into the upstream space in which the plurality of other side evaporation tank spaces 221b of the first evaporation component group 224a are connected.
 その第1蒸発構成部群224aの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。 The refrigerant that has flowed into the upstream space of the first evaporation component group 224a is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space.
 ここで、熱交換器幅方向Dw他方側から空気流が図21の矢印FB1の如く蒸発構成部221周り(すなわち、複数の通風流路22a)を通して熱交換器幅方向Dw一方側に流れる。 Here, an air flow from the other side of the heat exchanger width direction Dw flows to one side of the heat exchanger width direction Dw through the evaporation component 221 (that is, a plurality of ventilation flow paths 22a) as shown by the arrow FB1 in FIG.
 このため、その複数の蒸発流路221cに流れる冷媒は互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気流から吸熱する。 Therefore, the refrigerant flowing in the plurality of evaporation flow paths 221c is exchanged with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other, and the air flow thereof. It absorbs heat from.
 そして、その冷媒は、複数の蒸発流路221cから、複数の一方側蒸発タンク空間221aが連なった下流側空間へ流入する。更に、その冷媒は、その第1蒸発構成部群224aの下流側空間から、第2蒸発構成部群224bのうち複数の一方側蒸発タンク空間221aが連なった上流側空間に流入する。その第2蒸発構成部群224bの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。その複数の蒸発流路221cに流れる冷媒は互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気から吸熱する。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant flows from the downstream space of the first evaporation component group 224a into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the second evaporation component group 224b are connected. The refrigerant that has flowed into the upstream space of the second evaporation component group 224b is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of evaporation flow paths 221c flows in parallel with each other, exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a), and absorbs heat from the air.
 そして、その冷媒は、複数の蒸発流路221cから、複数の他方側蒸発タンク空間221bが連なった下流側空間へ流入する。更に、その冷媒は、その第2蒸発構成部群224bの下流側空間から、第3蒸発構成部群224cのうち複数の他方側蒸発タンク空間221bが連なった上流側空間に流入する。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. Further, the refrigerant flows from the downstream space of the second evaporation component group 224b into the upstream space in which a plurality of other side evaporation tank spaces 221b of the third evaporation component group 224c are connected.
 その第3蒸発構成部群224cの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。その複数の蒸発流路221cに流れる冷媒は互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気流から吸熱する。 The refrigerant that has flowed into the upstream space of the third evaporation component group 224c is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of evaporation flow paths 221c is exchanged with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a) while flowing in parallel with each other, and absorbs heat from the air flow. ..
 そして、その冷媒は、複数の蒸発流路221cから、複数の一方側蒸発タンク空間221aが連なった下流側空間へ流入する。更に、その冷媒は、その第3蒸発構成部群224cの下流側空間から、第4蒸発構成部群224dのうち複数の一方側蒸発タンク空間221aが連なった上流側空間に流入する。 Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of one-side evaporation tank spaces 221a are connected. Further, the refrigerant flows from the downstream space of the third evaporation component group 224c into the upstream space in which a plurality of one-side evaporation tank spaces 221a of the fourth evaporation component group 224d are connected.
 その第4蒸発構成部群224dの上流側空間に流入した冷媒は、その上流側空間にて、積層方向Dsの一方側へ流れながら複数の蒸発流路221cへ分配される。その複数の蒸発流路221cに流れる冷媒は互いに並列に流れながら、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)と熱交換させられその空気から吸熱する。 そして、その冷媒は、複数の蒸発流路221cから、複数の他方側蒸発タンク空間221bが連なった下流側空間へ流入する。その第4蒸発構成部群224dの下流側空間に流入した冷媒は、出口管36から熱交換器10の外部へ流出する。その出口管36から流出した冷媒は、図14に示すように気液分離器40へ流れ、その気液分離器40から圧縮機14に吸い込まれる。以上のようにして、本実施形態の熱交換器10および冷凍サイクル回路12では冷媒が流れる。 The refrigerant that has flowed into the upstream space of the fourth evaporation component group 224d is distributed to the plurality of evaporation channels 221c while flowing to one side of the stacking direction Ds in the upstream space. The refrigerant flowing in the plurality of evaporation flow paths 221c flows in parallel with each other, exchanges heat with the air flow around the evaporation component 221 (that is, the air flow in the plurality of ventilation flow paths 22a), and absorbs heat from the air. Then, the refrigerant flows from the plurality of evaporation channels 221c into the downstream space in which the plurality of other side evaporation tank spaces 221b are connected. The refrigerant that has flowed into the space on the downstream side of the fourth evaporation component group 224d flows out from the outlet pipe 36 to the outside of the heat exchanger 10. The refrigerant flowing out of the outlet pipe 36 flows into the gas-liquid separator 40 as shown in FIG. 14, and is sucked into the compressor 14 from the gas-liquid separator 40. As described above, the refrigerant flows in the heat exchanger 10 and the refrigeration cycle circuit 12 of the present embodiment.
 本実施形態では、蒸発部22では、上述の如く、複数の蒸発流路221cに流れる冷媒は、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)から吸熱する。このため、複数の通風流路22aにおいて、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223には、凝縮水が発生する。 In the present embodiment, as described above, in the evaporation unit 22, the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated on the surface exposed on the ventilation flow path 22a side and the evaporation part fin 223 in each of the plurality of evaporation components 221.
 このように発生される凝縮水は、図21矢印W4の如く、仕切板51に滴下する。この仕切板51に滴下した凝縮水は、図21中矢印W4の如く、仕切板51に沿って熱交換器幅方向Dw他方側に流れる。 The condensed water generated in this way is dropped onto the partition plate 51 as shown by the arrow W4 in FIG. 21. The condensed water dropped on the partition plate 51 flows along the partition plate 51 to the other side of the heat exchanger width direction Dw as shown by the arrow W4 in FIG. 21.
 その後、一方側サイドプレート部30と他方側サイドプレート部32との間において凝縮水は、仕切板51に対して熱交換器幅方向Dw他方側を通して、凝縮部20の複数の通風流路20aに滴下する。 After that, the condensed water between the one side plate portion 30 and the other side plate portion 32 passes through the other side of the heat exchanger width direction Dw with respect to the partition plate 51 and enters the plurality of ventilation flow paths 20a of the condensing portion 20. Drop.
 すなわち、凝縮水は、仕切板51によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。 That is, the condensed water is guided by the partition plate 51 to the upstream side of the air flow in the condensing part heat exchange core 230 of the condensing part 20. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
 複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 The refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except as described above, this embodiment is the same as the first embodiment. Then, in the present embodiment, the effect obtained from the configuration common to the above-mentioned first embodiment can be obtained in the same manner as in the first embodiment.
 (第3実施形態)
 上記第1、第2実施形態では、熱交換器において、蒸発部で発生した凝縮水を放熱部の熱交換部のうち風上側に導くための導水部を設けた例について説明した。しかし、これに加えて、放熱部に対して、その幅方向に亘って凝縮水を分配して掛けるディストリビュータを追加した本第3実施形態について図25、図26、図27を参照して説明する。
(Third Embodiment)
In the first and second embodiments described above, an example in which a water guide portion for guiding the condensed water generated in the evaporation portion to the windward side of the heat exchange portion of the heat dissipation portion has been described in the heat exchanger. However, in addition to this, the third embodiment in which a distributor for distributing and hanging condensed water over the width direction of the heat radiating portion is added will be described with reference to FIGS. 25, 26, and 27. ..
 本実施形態の熱交換器は、蒸発部22、凝縮部20とともに、上側空調ケーシング60、下側空調ケーシング61、ドレイン配管62、およびディストリビュータ63を備える。上側空調ケーシング60は、蒸発部22を収納して蒸発部22を通過する空気流を流通させる空気流路60aと、蒸発部22で発生した凝縮水を一時的に貯める貯水部60bを備える。 The heat exchanger of the present embodiment includes an upper air-conditioning casing 60, a lower air-conditioning casing 61, a drain pipe 62, and a distributor 63 together with an evaporation unit 22 and a condensing unit 20. The upper air-conditioning casing 60 includes an air flow path 60a for accommodating the evaporation unit 22 and allowing an air flow passing through the evaporation unit 22 to flow, and a water storage unit 60b for temporarily storing the condensed water generated in the evaporation unit 22.
 下側空調ケーシング61は、上側空調ケーシング60に対して天地方向下側に配置されている。下側空調ケーシング61は、凝縮部20を収納して凝縮部20を通過する空気流を流通させる空気流路61aを備える。ドレイン配管62は、上側空調ケーシング60の貯水部60b内の凝縮水を下側空調ケーシング61内のディストリビュータ63に導くための配管である。 The lower air-conditioning casing 61 is arranged on the lower side in the vertical direction with respect to the upper air-conditioning casing 60. The lower air-conditioning casing 61 includes an air flow path 61a that houses the condensing portion 20 and allows an air flow that passes through the condensing portion 20 to flow. The drain pipe 62 is a pipe for guiding the condensed water in the water storage portion 60b of the upper air conditioning casing 60 to the distributor 63 in the lower air conditioning casing 61.
 ディストリビュータ63は、導水部64、分配部65、および支持材66を備える。導水部64は、繊維材から構成されて、熱交換コア230の幅方向に拡がるように形成されている。導水部64は、凝縮部20の熱交換コア230のうち天地方向上側で、かつ凝縮部20に対して風上側に配置されている。 The distributor 63 includes a water guide unit 64, a distribution unit 65, and a support member 66. The water conducting portion 64 is made of a fiber material and is formed so as to expand in the width direction of the heat exchange core 230. The water guiding portion 64 is arranged on the heavenly region improvement side of the heat exchange core 230 of the condensing portion 20 and on the windward side with respect to the condensing portion 20.
 導水部64は、ドレイン配管62からの凝縮水を分配部65に流通させるために用いられる。本実施形態の導水部64は、凝縮部20のサイドプレート236、237の間に嵌め込まれている。 The water guide unit 64 is used to distribute the condensed water from the drain pipe 62 to the distribution unit 65. The water guiding portion 64 of the present embodiment is fitted between the side plates 236 and 237 of the condensing portion 20.
 分配部65は、導水部64に接続されている。分配部65は、微細繊維材によって構成されて、導水部64からの凝縮水を毛細管現象によって複数のチューブ231や熱交換フィン233に導く。分配部65は、導水部64のうち天地方向上側から風下側に突起する複数の突起部65aを備える。 The distribution unit 65 is connected to the water guide unit 64. The distribution unit 65 is composed of a fine fiber material, and guides the condensed water from the water guide unit 64 to a plurality of tubes 231 and heat exchange fins 233 by a capillary phenomenon. The distribution unit 65 includes a plurality of protrusions 65a of the water guide 64 that project from the improvement side to the leeward side.
 複数の突起部65aは、それぞれ、熱交換コア230の幅方向に並べられている。複数の突起部65aは、それぞれ、熱交換コア230のうち複数のチューブ231のうち隣り合う2つのチューブ231の間に配置されている。複数の突起部65aは、それぞれ、熱交換フィン233のうち対応する熱交換フィン233の上側に配置されている。 The plurality of protrusions 65a are arranged in the width direction of the heat exchange core 230, respectively. The plurality of protrusions 65a are respectively arranged between two adjacent tubes 231 of the plurality of tubes 231 of the heat exchange core 230. The plurality of protrusions 65a are respectively arranged above the corresponding heat exchange fins 233 of the heat exchange fins 233.
 このことにより、複数の突起部65aは、それぞれ、熱交換コア230のうち熱交換フィン233や複数のチューブ231のうち上側に接触することになる。 As a result, the plurality of protrusions 65a come into contact with the upper side of the heat exchange fins 233 and the plurality of tubes 231 of the heat exchange core 230, respectively.
 凝縮部20は、上側タンク234、熱交換コア230、および下側タンク235を備える。上側タンク234は、圧縮機14からの高圧冷媒を熱交換コア230の複数のチューブ231に分配する。複数のチューブ231は、それぞれ、天地方向に延びるように形成されている。複数のチューブ231は、それぞれ、間隔を開けて幅方向に並べられている。複数のチューブ231は、それぞれ、上側タンク234からの高圧冷媒を下側タンク235に導くための冷媒配管である。 The condensing unit 20 includes an upper tank 234, a heat exchange core 230, and a lower tank 235. The upper tank 234 distributes the high-pressure refrigerant from the compressor 14 to the plurality of tubes 231 of the heat exchange core 230. Each of the plurality of tubes 231 is formed so as to extend in the vertical direction. The plurality of tubes 231 are arranged in the width direction at intervals. Each of the plurality of tubes 231 is a refrigerant pipe for guiding the high-pressure refrigerant from the upper tank 234 to the lower tank 235.
 複数のチューブ231は、それぞれ、高圧冷媒を流通させて高圧冷媒から空気流路61aを通過する空気流に放熱させる。下側タンク235は、複数のチューブ231を通過した高圧冷媒を集合させて減圧部に導く。 Each of the plurality of tubes 231 circulates a high-pressure refrigerant to dissipate heat from the high-pressure refrigerant to an air flow passing through the air flow path 61a. The lower tank 235 collects the high-pressure refrigerant that has passed through the plurality of tubes 231 and guides it to the decompression section.
 複数のチューブ231のうち隣り合う2つのチューブ231の間には、空気流を流通させる通風流路20aが設けられている。複数の通風流路20aのそれぞれには、熱交換フィン233が配置されている。熱交換フィン233は、複数のチューブ231とともに、複数の通風流路20a内の空気流と高圧冷媒との間で熱交換する。 A ventilation flow path 20a for circulating an air flow is provided between two adjacent tubes 231 of the plurality of tubes 231. Heat exchange fins 233 are arranged in each of the plurality of ventilation flow paths 20a. The heat exchange fins 233, together with the plurality of tubes 231, exchange heat between the air flow in the plurality of ventilation flow paths 20a and the high-pressure refrigerant.
 このように構成されるディストリビュータ63は、凝縮部20のうち上側タンク234に対して天地方向下側において、熱交換コア230のうち天地方向上側で、かつ熱交換コア230のうち風上側に配置されている。 The distributor 63 configured in this way is arranged below the upper tank 234 of the condensing portion 20 in the vertical direction, on the improving side of the heat exchange core 230, and on the windward side of the heat exchange core 230. ing.
 次に、本実施形態の熱交換器10の作動について説明する。 Next, the operation of the heat exchanger 10 of the present embodiment will be described.
 まず、圧縮機14から吐出される冷媒(すなわち、高圧冷媒)が凝縮部20の熱交換コア230の複数のチューブ231に流れる。この際に、熱交換コア230の複数の通風流路20aには、図25中矢印FB2の如く、空気流が流れる。 First, the refrigerant discharged from the compressor 14 (that is, the high-pressure refrigerant) flows through the plurality of tubes 231 of the heat exchange core 230 of the condensing unit 20. At this time, an air flow flows through the plurality of ventilation passages 20a of the heat exchange core 230 as shown by the arrow FB2 in FIG.
 複数の通風流路20a内の空気流と複数のチューブ231内の冷媒との間で熱交換される。このことにより、冷媒が空気流に放熱するため、冷媒が冷却される。 Heat is exchanged between the air flow in the plurality of ventilation flow paths 20a and the refrigerant in the plurality of tubes 231. As a result, the refrigerant dissipates heat to the air flow, so that the refrigerant is cooled.
 一方、蒸発部22に減圧弁を通過した冷媒(すなわち、低圧冷媒)が流れる。これに伴い、蒸発部22内を流れる低圧冷媒と蒸発部22を通過する空気流との間で熱交換されて冷媒が空気流から吸熱する。この際に、蒸発部22において凝縮水が発生する。 On the other hand, the refrigerant that has passed through the pressure reducing valve (that is, the low-pressure refrigerant) flows through the evaporation unit 22. Along with this, heat is exchanged between the low-pressure refrigerant flowing in the evaporation unit 22 and the air flow passing through the evaporation unit 22, and the refrigerant absorbs heat from the air flow. At this time, condensed water is generated in the evaporation unit 22.
 この凝縮水は、蒸発部22から凝縮水が滴下する。このため、凝縮水は、一時的に上側空調ケーシング60の貯水部60bに貯まる。この貯水部60b内の凝縮水は、ドレイン配管62を通してディストリビュータ63の導水部64に導かれる。この導水部64に導かれる凝縮水は毛細管現象により分配部65を通して熱交換コア230のうち空気流れ方向風上側に導かれる。 Condensed water drops from the evaporation unit 22 of this condensed water. Therefore, the condensed water is temporarily stored in the water storage portion 60b of the upper air conditioning casing 60. The condensed water in the water storage portion 60b is guided to the water guide portion 64 of the distributor 63 through the drain pipe 62. The condensed water guided to the water conveyance portion 64 is guided to the windward side in the air flow direction of the heat exchange core 230 through the distribution portion 65 by the capillary phenomenon.
 このことにより、凝縮水は、ディストリビュータ63によって熱交換コア230に対してその幅方向に分配されることになる。このため、熱交換コア230においては、複数のチューブ231を流れる冷媒が凝縮水に放熱して凝縮水を気化させる。このことにより、凝縮水は、空気流とともに、複数のチューブ231内の冷媒を冷却させることになる。 以上説明した本実施形態によれば、蒸発部22および凝縮部20を備える熱交換器10において、凝縮部20の複数のチューブ231に流れる冷媒は、空気流に放熱して冷却される。ドレイン配管62は、上側空調ケーシング60の貯水部60b内の凝縮水を下側空調ケーシング61内のディストリビュータ63に導く。 As a result, the condensed water is distributed by the distributor 63 to the heat exchange core 230 in the width direction. Therefore, in the heat exchange core 230, the refrigerant flowing through the plurality of tubes 231 dissipates heat to the condensed water and vaporizes the condensed water. As a result, the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow. According to the present embodiment described above, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, the refrigerant flowing through the plurality of tubes 231 of the condensing unit 20 radiates heat to the air flow and is cooled. The drain pipe 62 guides the condensed water in the water storage portion 60b of the upper air conditioning casing 60 to the distributor 63 in the lower air conditioning casing 61.
 このため、ディストリビュータ63は、凝縮部20のうち上側タンク234に対して天地方向下側において、熱交換コア230のうち天地方向上側で、かつ熱交換コア230のうち風上側に導くことになる。ディストリビュータ63は、凝縮水を熱交換コア230に対してその幅方向に分配する。 Therefore, the distributor 63 is guided to the lower side of the condensing portion 20 in the vertical direction with respect to the upper tank 234, to the upper side of the heat exchange core 230 to improve the top region, and to the windward side of the heat exchange core 230. The distributor 63 distributes the condensed water to the heat exchange core 230 in the width direction thereof.
 熱交換コア230においては、複数のチューブ231を流れる冷媒が凝縮水に放熱して凝縮水を気化させる。このことにより、凝縮水は、空気流とともに、複数のチューブ231内の冷媒を冷却させることになる。 In the heat exchange core 230, the refrigerant flowing through the plurality of tubes 231 dissipates heat to the condensed water and vaporizes the condensed water. As a result, the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow.
 以上により、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 From the above, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensation unit 20.
 (第4実施形態)
 上記第1、第2実施形態では、熱交換器10において、蒸発部22で発生した凝縮水を凝縮部20の熱交換コア230のうち風上側に導くための導水部50Aを設けた例について説明した。
(Fourth Embodiment)
In the first and second embodiments, an example will be described in which the heat exchanger 10 is provided with a water guiding portion 50A for guiding the condensed water generated in the evaporating portion 22 to the windward side of the heat exchange core 230 of the condensing portion 20. did.
 しかし、導水部50Aを設けることなく、蒸発部22に流れる空気流に対して凝縮部20に流れる空気流を逆向きに流すことにより、凝縮水を凝縮部20の熱交換コア230のうち風上側に導くようにした本第4実施形態について図28を参照して説明する。 However, by flowing the air flow flowing through the condensing unit 20 in the opposite direction to the air flow flowing through the evaporation unit 22 without providing the water conducting unit 50A, the condensed water is flowed upwind of the heat exchange core 230 of the condensing unit 20. The fourth embodiment will be described with reference to FIG. 28.
 本実施形態では、図28中矢印FB1、矢印FB2に示すように、蒸発部22に流れる空気流と凝縮部20に流れる空気流とが逆向きに流れる。 In the present embodiment, as shown by arrows FB1 and FB2 in FIG. 28, the air flow flowing through the evaporation unit 22 and the air flow flowing through the condensing unit 20 flow in opposite directions.
 本実施形態では、蒸発部22では、上述の如く、複数の蒸発流路221cに流れる冷媒は、蒸発構成部221周りの空気流(すなわち、複数の通風流路22a内の空気流)から吸熱する。このため、複数の通風流路22aにおいて、複数の蒸発構成部221のそれぞれにおいて凝縮水が発生する。 In the present embodiment, as described above, in the evaporation unit 22, the refrigerant flowing in the plurality of evaporation flow paths 221c absorbs heat from the air flow around the evaporation component unit 221 (that is, the air flow in the plurality of ventilation flow paths 22a). .. Therefore, in the plurality of ventilation flow paths 22a, condensed water is generated in each of the plurality of evaporation components 221.
 このように発生される凝縮水は、重力によって複数の蒸発構成部221に沿って鉛直方向Dg下側に流れる。この際に、凝縮水は、蒸発部22を通過する空気流によって複数の蒸発構成部221に沿って風下側に流れる。 The condensed water generated in this way flows downward by Dg in the vertical direction along the plurality of evaporation components 221 due to gravity. At this time, the condensed water flows leeward along the plurality of evaporation components 221 by the air flow passing through the evaporation unit 22.
 蒸発部22のうち熱交換器幅方向Dw一方側から凝縮水が凝縮部20の熱交換コア230のうち熱交換器幅方向Dw一方側に滴下する。すなわち、蒸発部22を通過する空気流によって、蒸発部22の凝縮水が凝縮部20の熱交換コア230のうち風上側に導かれることになる。 Condensed water drops from one side of the heat exchanger width direction Dw of the evaporation unit 22 onto one side of the heat exchanger width direction Dw of the heat exchange core 230 of the condensation unit 20. That is, the air flow passing through the evaporation unit 22 guides the condensed water of the evaporation unit 22 to the windward side of the heat exchange core 230 of the condensation unit 20.
 このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。 Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201.
 複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、凝縮水から複数の凝縮流路201cに流れる冷媒へ気化熱が移動されることになる。このことにより、凝縮水は、空気流とともに、複数のチューブ231内の冷媒を冷却させることになる。 The refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the condensed water to the refrigerant flowing through the plurality of condensed flow paths 201c. As a result, the condensed water cools the refrigerant in the plurality of tubes 231 together with the air flow.
 以上により、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 From the above, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensation unit 20.
 (第5実施形態)  本第5実施形態では、上記第1実施形態において、熱交換器10を傾けて配置することにより蒸発部22から生じる凝縮水を凝縮部20の熱交換コア230のうち空気流(すなわち、第1空気流)の風上側に導く例について説明する。 (Fifth Embodiment) In the fifth embodiment, in the first embodiment, the condensed water generated from the evaporation unit 22 by arranging the heat exchanger 10 at an angle is air in the heat exchange core 230 of the condensation unit 20. An example of guiding the flow (that is, the first air flow) to the windward side will be described.
 図29に本実施形態の熱交換器10が適用されている車両用空調装置70の全体構成を示す。 FIG. 29 shows the overall configuration of the vehicle air conditioner 70 to which the heat exchanger 10 of the present embodiment is applied.
 本実施形態の車両用空調装置70は、図29、図30、および図31に示すように、熱交換器10、送風ユニット80、および送風ダクト90を備える。送風ユニット80は、遠心ファン81A、81B、および送風ケース82を備える空気流発生部である。 As shown in FIGS. 29, 30, and 31, the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, a blower unit 80, and a blower duct 90. The blower unit 80 is an air flow generator including centrifugal fans 81A and 81B, and a blower case 82.
 遠心ファン81Aは、電動モータ83の回転軸83aから出力される回転力によって軸線Sを中心として回転される。遠心ファン81Aは、その回転によって軸線方向一方側から空気流を吸い込んで径方向外側に吹き出すシロッコファンである。 The centrifugal fan 81A is rotated about the axis S by the rotational force output from the rotating shaft 83a of the electric motor 83. The centrifugal fan 81A is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
 遠心ファン81Bは、電動モータ83の回転軸83aから出力される回転力によって軸線Sを中心として回転される。遠心ファン81Bは、その回転によって軸線方向一方側から空気流を吸い込んで径方向外側に吹き出すシロッコファンである。 The centrifugal fan 81B is rotated about the axis S by the rotational force output from the rotating shaft 83a of the electric motor 83. The centrifugal fan 81B is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
 送風ケース82は、遠心ファン81Aから吹き出される空気流を集めてダクト90の上側空気流路91に導くとともに、遠心ファン81Bから吹き出される空気流を集めてダクト90の下側空気流路92に導く。 The blower case 82 collects the air flow blown from the centrifugal fan 81A and guides it to the upper air flow path 91 of the duct 90, and collects the air flow blown out from the centrifugal fan 81B to the lower air flow path 92 of the duct 90. Lead to.
 送風ダクト90は、上側空気流路91および下側空気流路92を形成する。上側空気流路91および下側空気流路92は、送風ダクト90によって、区分けされるように形成されている。熱交換器10は、上側空気流路91および下側空気流路92を跨ぐように配置されている。 The air duct 90 forms an upper air flow path 91 and a lower air flow path 92. The upper air flow path 91 and the lower air flow path 92 are formed so as to be separated by a ventilation duct 90. The heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
 蒸発部22は、上側空気流路91内に配置されている。凝縮部20は、下側空気流路92内に配置されている。 The evaporation unit 22 is arranged in the upper air flow path 91. The condensing portion 20 is arranged in the lower air flow path 92.
 本実施形態では、蒸発部22に流れる空気流(すなわち、第2空気流)の主流と、凝縮部20に流れる空気流(すなわち、第1空気流)の主流とは、平行で、かつ互いに同一の向きに流れる。 In the present embodiment, the main stream of the air flow flowing through the evaporation unit 22 (that is, the second air flow) and the main flow of the air flow flowing through the condensing unit 20 (that is, the first air flow) are parallel and identical to each other. Flows in the direction of.
 ここで、蒸発部22に流れる空気流の主流とは、蒸発部22に流れる複数の空気流のうち最も風量の多い空気流である。凝縮部20に流れる空気流の主流とは、凝縮部20に流れる複数の空気流のうち最も風量の多い空気流である。 Here, the main flow of the air flow flowing through the evaporation unit 22 is the air flow having the largest air volume among the plurality of air flows flowing through the evaporation unit 22. The mainstream of the air flow flowing through the condensing portion 20 is the air flow having the largest air volume among the plurality of air flows flowing through the condensing portion 20.
 本実施形態では、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 In the present embodiment, the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
 このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow.
 したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って蒸発部22のうち空気流の風上側に導かれる。 Therefore, the condensed water generated in the evaporation section 22 is guided to the windward side of the air flow in the evaporation section 22 along the surface exposed on the ventilation flow path 22a side and the evaporation section fin 223 in each of the plurality of evaporation components 221. ..
 この導かれる凝縮水は、熱交換器10のうち断熱用孔381aよりも熱交換器幅方向Dw一方側の領域400を通して、凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 This guided condensed water is guided to the upstream side of the air flow in the condensed portion heat exchange core 230 of the condensed portion 20 through the region 400 on one side of the heat exchanger width direction Dw from the heat insulating hole 381a of the heat exchanger 10. Will be killed.
 断熱用孔381aは、凝縮部20と蒸発部22との間において、内部熱交換部28に代えて設けられたものである。断熱用孔381aは、凝縮構成部201内の冷媒と蒸発構成部221内の冷媒との間の伝熱を妨げるために設けられている。断熱用孔381aは、第1板部材381の貫通孔と第2板部材382の貫通孔とが連通して構成されている。 The heat insulating hole 381a is provided between the condensing portion 20 and the evaporating portion 22 in place of the internal heat exchange portion 28. The heat insulating hole 381a is provided to prevent heat transfer between the refrigerant in the condensation component 201 and the refrigerant in the evaporation component 221. The heat insulating hole 381a is formed by communicating the through hole of the first plate member 381 and the through hole of the second plate member 382.
 すなわち、本実施形態では、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向で上側に配置されることにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。 That is, in the present embodiment, the leeward side of the air flow in the evaporation unit 22 is arranged above the windward side of the air flow in the evaporation unit 22, so that the evaporation unit 22 condenses the condensed water by gravity. It will be guided to the upstream side of the air flow in the condensing part heat exchange core 230 of the part 20.
 このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。これにより、複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201. As a result, the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 これにより、凝縮流路201c内の冷媒を凝縮水によって冷却することができる。したがって、蒸発部22および凝縮部20を備える熱交換器10において、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 Thereby, the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
 本実施形態では、内部熱交換部28に代えて断熱用孔381aが形成されている。断熱用孔381aは、凝縮構成部201内の冷媒と蒸発構成部221内の冷媒との間の伝熱を妨げる役割を果たす。 In this embodiment, a heat insulating hole 381a is formed in place of the internal heat exchange portion 28. The heat insulating hole 381a serves to prevent heat transfer between the refrigerant in the condensation component 201 and the refrigerant in the evaporation component 221.
 なお、本実施形態では、一方側凝縮タンク空間201aと他方側凝縮タンク空間201bとの両方が凝縮流路201cに対して鉛直方向Dgの下側に配置されている。一方側蒸発タンク空間221aと他方側蒸発タンク空間221bとの両方が蒸発流路221cに対し鉛直方向Dgの上側に配置されている。 In the present embodiment, both the one-sided condensing tank space 201a and the other-side condensing tank space 201b are arranged below the vertical Dg with respect to the condensing flow path 201c. Both the one-side evaporation tank space 221a and the other-side evaporation tank space 221b are arranged above the evaporation flow path 221c in the vertical direction Dg.
 (第6実施形態)
 上記第5実施形態では、蒸発部22に流れる空気流の主流と凝縮部20に流れる空気流の主流とが、平行で、かつ互いに同一の向きに流れる例について説明した。
(Sixth Embodiment)
In the fifth embodiment, an example in which the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 flow in parallel and in the same direction as each other has been described.
 しかし、これに代えて、蒸発部22に流れる空気流(すなわち、第2空気流)の主流と凝縮部20に流れる空気流(すなわち、第1空気流)の主流とが、平行で、かつ互いに逆向きに流れる本第6実施形態について図32、図33を参照して説明する。 However, instead of this, the mainstream of the air flow flowing through the evaporation section 22 (that is, the second airflow) and the mainstream of the airflow flowing through the condensing section 20 (that is, the first airflow) are parallel and mutually. The sixth embodiment in which the air flows in the opposite direction will be described with reference to FIGS. 32 and 33.
 本実施形態の車両用空調装置70は、図32および図33に示すように、熱交換器10、送風ユニット80、および送風ダクト90を備える。送風ユニット80は、遠心ファン81C、および送風ケース82Aを備える空気流発生部である。 As shown in FIGS. 32 and 33, the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, a blower unit 80, and a blower duct 90. The blower unit 80 is an air flow generator including a centrifugal fan 81C and a blower case 82A.
 遠心ファン81Cは、電動モータの回転軸から出力される回転力によって軸線を中心として回転される。遠心ファン81Cは、その回転によって軸線方向一方側から空気流を吸い込んで径方向外側に吹き出すプラグファンである。 The centrifugal fan 81C is rotated about the axis by the rotational force output from the rotating shaft of the electric motor. The centrifugal fan 81C is a plug fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation.
 送風ケース82Aは、遠心ファン81Cから吹き出される空気流をダクト90の上側空気流路91と下側空気流路92に導く。 The blower case 82A guides the air flow blown from the centrifugal fan 81C to the upper air flow path 91 and the lower air flow path 92 of the duct 90.
 送風ダクト90は、上側空気流路91および下側空気流路92を形成する。上側空気流路91および下側空気流路92は、送風ダクト90によって、区分けされるように形成されている。熱交換器10は、上側空気流路91および下側空気流路92を跨ぐように配置されている。 The air duct 90 forms an upper air flow path 91 and a lower air flow path 92. The upper air flow path 91 and the lower air flow path 92 are formed so as to be separated by a ventilation duct 90. The heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
 本実施形態では、蒸発部22に流れる空気流(すなわち、第2空気流)の主流と凝縮部20に流れる空気流(すなわち、第1空気流)の主流とは、平行で、かつ互いに逆向きに流れる。 In the present embodiment, the main stream of the air flow flowing through the evaporation section 22 (that is, the second air flow) and the main stream of the air flow flowing through the condensing section 20 (that is, the first air flow) are parallel and opposite to each other. Flow to.
 本実施形態では、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 In the present embodiment, the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
 すなわち、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向で下側に配置されることにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。 That is, the leeward side of the air flow in the evaporation unit 22 is arranged below the windward side of the air flow in the evaporation unit 22, so that the evaporation unit 22 condenses the condensed water in the condensing unit 20 by gravity. It will be guided to the upstream side of the air flow in the partial heat exchange core 230.
 このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
 このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。これにより、複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201. As a result, the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 以上により、上記第5実施形態と同様に、凝縮流路201c内の冷媒を凝縮水によって冷却することができる。したがって、蒸発部22および凝縮部20を備える熱交換器10において、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 From the above, the refrigerant in the condensing flow path 201c can be cooled by the condensed water as in the fifth embodiment. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
 (第7実施形態)
 上記第6実施形態では、1つの遠心ファンからの送風される空気流を分流して蒸発部22と凝縮部20とに流した例について説明した。しかし、これに代えて、2つの遠心ファン81A、81Bから蒸発部22と凝縮部20とに空気流を流通させる本第7実施形態について図34を参照して説明する。
(7th Embodiment)
In the sixth embodiment, an example in which the air flow blown from one centrifugal fan is divided and flowed to the evaporation unit 22 and the condensation unit 20 has been described. However, instead of this, the seventh embodiment in which the air flow is circulated from the two centrifugal fans 81A and 81B to the evaporation unit 22 and the condensation unit 20 will be described with reference to FIG. 34.
 図34に本実施形態の熱交換器10が適用されている車両用空調装置70の全体構成を示す。 FIG. 34 shows the overall configuration of the vehicle air conditioner 70 to which the heat exchanger 10 of the present embodiment is applied.
 本実施形態の車両用空調装置70は、図34に示すように、熱交換器10、送風ユニット80A、80B、および送風ダクト90を備える。 As shown in FIG. 34, the vehicle air conditioner 70 of the present embodiment includes a heat exchanger 10, blower units 80A and 80B, and a blower duct 90.
 送風ユニット80Aは、遠心ファン81A、および送風ケース82Aを備える。遠心ファン81Aは、電動モータの回転軸から出力される回転力によって軸線を中心として回転される。遠心ファン81Aは、その回転によって軸線方向一方側から空気流を吸い込んで径方向外側に吹き出すシロッコファンである。送風ケース82Aは、遠心ファン81Aから発生される空気流を集めてダクト90の上側空気流路91に導く。 The blower unit 80A includes a centrifugal fan 81A and a blower case 82A. The centrifugal fan 81A is rotated about the axis by the rotational force output from the rotating shaft of the electric motor. The centrifugal fan 81A is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation. The blower case 82A collects the air flow generated from the centrifugal fan 81A and guides it to the upper air flow path 91 of the duct 90.
 送風ユニット80Bは、遠心ファン81B、および送風ケース82Bを備える。遠心ファン81Bは、電動モータの回転軸から出力される回転力によって軸線を中心として回転される。遠心ファン81Bは、その回転によって軸線方向一方側から空気流を吸い込んで径方向外側に吹き出すシロッコファンである。送風ケース82Bは、遠心ファン81Bから発生される空気流を集めてダクト90の下側空気流路92に導く。 The blower unit 80B includes a centrifugal fan 81B and a blower case 82B. The centrifugal fan 81B is rotated about the axis by the rotational force output from the rotating shaft of the electric motor. The centrifugal fan 81B is a sirocco fan that sucks in air flow from one side in the axial direction and blows it out in the radial direction by its rotation. The blower case 82B collects the air flow generated from the centrifugal fan 81B and guides it to the lower air flow path 92 of the duct 90.
 本実施形態の送風ユニット80Aおよび送風ユニット80Bは、ダクト90の上側空気流路91、下側空気流路92のそれぞれに流通させる空気流を発生させる空気流発生部を構成する。 The blower unit 80A and the blower unit 80B of the present embodiment constitute an air flow generation unit that generates an air flow to be circulated in each of the upper air flow path 91 and the lower air flow path 92 of the duct 90.
 送風ダクト90は、送風ユニット80Aから吹き出される空気流を流通させる上側空気流路91と、送風ユニット80Bから吹き出される空気流を流通させる下側空気流路92とを構成する。上側空気流路91と下側空気流路92とは、送風ダクト90によって区分けされている。熱交換器10は、上側空気流路91および下側空気流路92を跨ぐように配置されている。 The blower duct 90 constitutes an upper air flow path 91 that circulates the air flow blown from the blower unit 80A and a lower air flow path 92 that circulates the air flow blown out from the blower unit 80B. The upper air flow path 91 and the lower air flow path 92 are separated by a ventilation duct 90. The heat exchanger 10 is arranged so as to straddle the upper air flow path 91 and the lower air flow path 92.
 本実施形態では、上記第6実施形態と同様に、蒸発部22に流れる空気流(すなわち、第2空気流)の主流と凝縮部20に流れる空気流(すなわち、第1空気流)の主流とは、平行で、かつ互いに逆向きに流れる。 In the present embodiment, similarly to the sixth embodiment, the main stream of the air flow flowing through the evaporation section 22 (that is, the second air flow) and the main stream of the air flow flowing through the condensing section 20 (that is, the first air flow). Flow parallel and opposite to each other.
 本実施形態では、上記第6実施形態と同様に、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 In the present embodiment, similarly to the sixth embodiment, the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the other side of the heat exchanger 10 in the heat exchanger width direction Dw (that is, vertical). It is arranged on the upper side in the direction Dg).
 このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で下側に配置されている。このことにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。 Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction). As a result, the evaporation unit 22 guides the condensed water to the upstream side of the air flow in the heat exchange core 230 of the condensation unit of the condensation unit 20 by gravity.
 したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
 このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。これにより、複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation passages 20a and the condensing part fins 203 in the plurality of condensing components 201. As a result, the refrigerant flowing through the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 これにより、凝縮流路201c内の冷媒を凝縮水によって冷却することができる。したがって、蒸発部22および凝縮部20を備える熱交換器10において、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 Thereby, the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
 (第8実施形態)
 上記第6、7実施形態では、断熱用孔381aを設けた熱交換器10を傾斜させて配置した例について説明した。しかし、これに代えて、断熱用孔381aに代わる内部熱交換部28を設けた熱交換器10を傾斜させて配置した本第8実施形態について図35を参照して説明する。
(8th Embodiment)
In the sixth and seventh embodiments, an example in which the heat exchanger 10 provided with the heat insulating hole 381a is arranged in an inclined manner has been described. However, instead of this, the eighth embodiment in which the heat exchanger 10 provided with the internal heat exchange portion 28 instead of the heat insulating hole 381a is arranged in an inclined manner will be described with reference to FIG. 35.
 本実施形態の熱交換器10は、上記第1実施形態の熱交換器10と同様に、蒸発部22に流れる空気流(すなわち、第2空気流)の主流と凝縮部20に流れる空気流(すなわち、第1空気流)の主流とが平行で、かつ同一向きに流れる。 Similar to the heat exchanger 10 of the first embodiment, the heat exchanger 10 of the present embodiment is the main stream of the air flow flowing through the evaporation unit 22 (that is, the second air flow) and the air flow flowing through the condensing unit 20 (that is, the second air flow). That is, the main stream of the first air stream) flows in parallel and in the same direction.
 本実施形態では、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 In the present embodiment, the other side of the heat exchanger 10 in the width direction Dw of the heat exchanger is arranged above the one side of the heat exchanger 10 in the width direction Dw of the heat exchanger in the vertical direction (that is, Dg in the vertical direction). There is.
 このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。このことにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。 Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow. As a result, the evaporation unit 22 guides the condensed water to the upstream side of the air flow in the heat exchange core 230 of the condensation unit of the condensation unit 20 by gravity.
 したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
 さらに、蒸発部22で生じる凝縮水の一部は、導水板50や外側筒部281の上側外表面283に滴下する。この滴下した凝縮水は、導水板50や外側筒部281の上側外表面283によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。このため、複数の凝縮構成部201において複数の通風流路20aに露出する表面や凝縮部フィン203に凝縮水が掛かることになる。 Further, a part of the condensed water generated in the evaporation portion 22 is dropped on the upper outer surface 283 of the water guide plate 50 and the outer cylinder portion 281. The dropped condensed water is guided to the upstream side of the air flow in the condensed portion heat exchange core 230 of the condensed portion 20 by the upper outer surface 283 of the water guiding plate 50 and the outer tubular portion 281. Therefore, the condensed water is applied to the surface exposed to the plurality of ventilation flow paths 20a and the condensed portion fins 203 in the plurality of condensed constituent portions 201.
 以上により、上記第6実施形態と同様に、複数の凝縮流路201cに流れる冷媒から凝縮水に放熱させて凝縮水を気化させる。このため、複数の凝縮流路201cに流れる冷媒から凝縮水へ気化熱が移動されることになる。 As described above, similarly to the sixth embodiment, the refrigerant flowing in the plurality of condensed flow paths 201c dissipates heat to the condensed water to vaporize the condensed water. Therefore, the heat of vaporization is transferred from the refrigerant flowing in the plurality of condensed flow paths 201c to the condensed water.
 これにより、凝縮流路201c内の冷媒を凝縮水によって冷却することができる。したがって、蒸発部22および凝縮部20を備える熱交換器10において、蒸発部22に生じる凝縮水を用いて凝縮部20における冷媒の冷却効果を向上するようにした熱交換器10を提供することができる。 Thereby, the refrigerant in the condensing flow path 201c can be cooled by the condensed water. Therefore, in the heat exchanger 10 including the evaporation unit 22 and the condensing unit 20, it is possible to provide the heat exchanger 10 in which the condensed water generated in the evaporation unit 22 is used to improve the cooling effect of the refrigerant in the condensing unit 20. it can.
 (第9実施形態)
 上記第8実施形態では、蒸発部22に流れる空気流の主流と凝縮部20に流れる空気流の主流とを平行で、かつ同一向きに流通させる例について説明した。しかし、これに代えて、本第9実施形態では、図36のように、蒸発部22に流れる空気流の主流と凝縮部20に流れる空気流の主流とを平行で、かつ互いに逆向きに流通させてもよい。
(9th Embodiment)
In the eighth embodiment, an example has been described in which the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 are circulated in parallel and in the same direction. However, instead of this, in the ninth embodiment, as shown in FIG. 36, the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 are distributed in parallel and in opposite directions to each other. You may let me.
 本実施形態では、上記第8実施形態と同様に、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で下側に配置されている。 In the present embodiment, similarly to the eighth embodiment, the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the other side of the heat exchanger 10 in the heat exchanger width direction Dw (that is, vertical). It is arranged on the upper side in the direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction).
 このことにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。以上により、上記第6実施形態と同様の効果が得られる。 As a result, the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. As a result, the same effect as that of the sixth embodiment can be obtained.
 (第10実施形態)
 上記第9実施形態では、上記第1実施形態の熱交換器10を傾斜して配置した例について説明したが、これに代えて、上記第2実施形態の熱交換器10を傾斜して配置した本第10実施形態について図37を参照して説明する。
(10th Embodiment)
In the ninth embodiment, the example in which the heat exchanger 10 of the first embodiment is inclined and arranged has been described, but instead of this, the heat exchanger 10 of the second embodiment is arranged by being inclined. The tenth embodiment will be described with reference to FIG. 37.
 本実施形態の熱交換器10では、蒸発部22に流れる空気流の主流と凝縮部20に流れる空気流の主流とを平行で、かつ互いに逆向きに流通させる。 In the heat exchanger 10 of the present embodiment, the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 are circulated in parallel and in opposite directions to each other.
 本実施形態の熱交換器10では、上記第6実施形態と同様に、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で下側に配置されている。 In the heat exchanger 10 of the present embodiment, similarly to the sixth embodiment, the other side of the heat exchanger 10 in the heat exchanger width direction Dw is higher than the other side of the heat exchanger 10 in the heat exchanger width direction Dw. It is arranged on the upper side in the direction (that is, the vertical direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged below the upwind side of the air flow in the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction).
 このことにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 As a result, the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
 以上により、上記第6実施形態と同様の効果が得られる。 From the above, the same effect as that of the sixth embodiment can be obtained.
 (第11実施形態)
 上記第10実施形態では、蒸発部22に流れる空気流と凝縮部20に流れる空気流とを逆向きに流通させる例について説明した。しかし、これに代えて、本第11実施形態では、図38のように、蒸発部22に流れる空気流の主流と凝縮部20に流れる空気流の主流とを、平行で、かつ互いに同一向きに流通させてもよい。
(11th Embodiment)
In the tenth embodiment, an example in which the air flow flowing through the evaporation unit 22 and the air flow flowing through the condensing unit 20 are circulated in opposite directions has been described. However, instead of this, in the eleventh embodiment, as shown in FIG. 38, the main stream of the air flow flowing through the evaporation section 22 and the main stream of the air flow flowing through the condensing section 20 are parallel and in the same direction as each other. It may be distributed.
 本実施形態では、上記第10実施形態と同様に、熱交換器10のうち熱交換器幅方向Dw他方側が熱交換器10のうち熱交換器幅方向Dw一方側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。このため、蒸発部22のうち空気流の風下側が蒸発部22のうち空気流の風上側よりも天地方向(すなわち、鉛直方向Dg)で上側に配置されている。 In the present embodiment, similarly to the tenth embodiment, the other side of the heat exchanger 10 in the heat exchanger width direction Dw is more vertical than the heat exchanger 10 in the heat exchanger width direction Dw one side (that is, vertical). It is arranged on the upper side in the direction Dg). Therefore, the leeward side of the air flow in the evaporation unit 22 is arranged above the evaporation unit 22 in the vertical direction (that is, Dg in the vertical direction) with respect to the windward side of the air flow.
 このことにより、蒸発部22が凝縮水を重力によって凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導くことになる。したがって、蒸発部22で生じる凝縮水は、複数の蒸発構成部221のそれぞれにおいて通風流路22a側に露出する表面や蒸発部フィン223に沿って凝縮部20の凝縮部熱交換コア230のうち空気流上流側に導かれることになる。 As a result, the evaporation section 22 guides the condensed water to the upstream side of the air flow in the condensing section heat exchange core 230 of the condensing section 20 by gravity. Therefore, the condensed water generated in the evaporation section 22 is the air in the condensing section heat exchange core 230 of the condensing section 20 along the surface exposed on the ventilation flow path 22a side in each of the plurality of evaporation components 221 and the evaporation section fin 223. It will be guided to the upstream side.
 以上により、上記第10実施形態と同様の効果が得られる。 From the above, the same effect as that of the tenth embodiment can be obtained.
 (他の実施形態)
 (1)上述の第1実施形態では、熱交換器10は、アキュムレータとしての気液分離部26を備えているが、これは一例である。例えば、図39に示すように、熱交換器10は、その気液分離部26に替えて、気液分離器として機能するレシーバ42を備えていてもよい。
(Other embodiments)
(1) In the above-mentioned first embodiment, the heat exchanger 10 includes a gas-liquid separation unit 26 as an accumulator, which is an example. For example, as shown in FIG. 39, the heat exchanger 10 may include a receiver 42 that functions as a gas-liquid separator instead of the gas-liquid separator 26.
 レシーバ42は、冷媒流れにおいて凝縮部出口202aと内部熱交換部28の内側流路28bとの間に配置される。そして、レシーバ42は、凝縮部20からレシーバ42に流入した冷媒(具体的には、気液ニ相の冷媒もしくは液単相の冷媒)を貯留すると共に気液分離し、その気液分離された液冷媒を内部熱交換部28の内側流路28bへ流す。 The receiver 42 is arranged between the outlet 202a of the condensing portion and the inner flow path 28b of the internal heat exchange portion 28 in the flow of the refrigerant. Then, the receiver 42 stores the refrigerant (specifically, the gas-liquid two-phase refrigerant or the liquid single-phase refrigerant) that has flowed into the receiver 42 from the condensing unit 20, gas-liquid separation, and the gas-liquid separation is performed. The liquid refrigerant flows to the inner flow path 28b of the internal heat exchange section 28.
 例えば、レシーバ42は、気液分離部26と同様に複数の板を積層させることで一方側サイドプレート部30に設けられてもよいし、一方側サイドプレート部30に対する積層方向Dsの一方側に固定するようにして設けられてもよい。 For example, the receiver 42 may be provided on one side side plate portion 30 by laminating a plurality of plates like the gas-liquid separation portion 26, or may be provided on one side of the stacking direction Ds with respect to the one side side plate portion 30. It may be provided so as to be fixed.
 (2)上述の第1実施形態では、凝縮部出口202aが設けられた出口位置凝縮構成部202は、複数の凝縮構成部201のうち積層方向Dsの一方側の端に位置するが、これは一例である。 (2) In the above-described first embodiment, the outlet position condensing component 202a provided with the condensing outlet 202a is located at one end of the plurality of condensing components 201 in the stacking direction Ds. This is an example.
 熱交換器10における冷媒流れの構成によっては、その出口位置凝縮構成部202は、複数の凝縮構成部201のうち積層方向Dsの他方側の端に位置することもある。 Depending on the configuration of the refrigerant flow in the heat exchanger 10, the outlet position condensing component 202 may be located at the other end of the plurality of condensing components 201 in the stacking direction Ds.
 (3)上述の第1実施形態では、蒸発部入口222aが設けられた入口位置蒸発構成部222は、複数の蒸発構成部221のうち積層方向Dsの他方側の端に位置するが、これは一例である。 (3) In the above-described first embodiment, the inlet position evaporation component 222 provided with the evaporation component inlet 222a is located at the other end of the plurality of evaporation components 221 in the stacking direction Ds. This is an example.
 熱交換器10における冷媒流れの構成によっては、その入口位置蒸発構成部222は、複数の蒸発構成部221のうち積層方向Dsの一方側の端に位置することもある。 Depending on the configuration of the refrigerant flow in the heat exchanger 10, the inlet position evaporation component 222 may be located at one end of the plurality of evaporation components 221 in the stacking direction Ds.
 (4)上述の第1実施形態では、一方側凝縮板部201dと一方側蒸発板部221dと第1外側筒構成部281aは1枚の第1板部材381を構成している。それと共に、他方側凝縮板部201hと他方側蒸発板部221hと第2外側筒構成部281bは1枚の第2板部材382を構成している。 (4) In the above-described first embodiment, the one-side condensing plate portion 201d, the one-side evaporation plate portion 221d, and the first outer cylinder constituent portion 281a constitute one first plate member 381. At the same time, the condensing plate portion 201h on the other side, the evaporation plate portion 221h on the other side, and the second outer cylinder constituent portion 281b constitute one second plate member 382.
 しかしながら、これは一例である。一方側凝縮板部201dと一方側蒸発板部221dと第1外側筒構成部281aとの組合せと、他方側凝縮板部201hと他方側蒸発板部221hと第2外側筒構成部281bとの組合せとの一方は、別々に構成された複数の部品の組合せになっていてもよい。 However, this is just an example. The combination of the one-side condensing plate portion 201d, the one-side evaporation plate portion 221d, and the first outer cylinder configuration portion 281a, and the combination of the other-side condensing plate portion 201h, the other side evaporation plate portion 221h, and the second outer cylinder configuration portion 281b. One of the above may be a combination of a plurality of separately configured parts.
 (5)上述の第1実施形態では、複数の凝縮構成部201の何れでも、一対の凝縮板部201d、201hが積層方向Dsに積層されているが、これは一例である。 (5) In the above-described first embodiment, the pair of condensing plate portions 201d and 201h are laminated in the laminating direction Ds in any of the plurality of condensing components 201, but this is an example.
 例えば、凝縮部20に含まれる複数の凝縮構成部201のうちの一部では、一対の凝縮板部201d、201hが積層方向Dsに積層された構成になっていなくても差し支えない。要するに、凝縮部20に含まれる複数の凝縮構成部201のうちの少なくとも何れかが一対の凝縮板部201d、201hを有していればよい。 For example, in a part of the plurality of condensed constituent parts 201 included in the condensed portion 20, the pair of condensed plate portions 201d and 201h may not be laminated in the stacking direction Ds. In short, at least one of the plurality of condensed constituent parts 201 included in the condensed part 20 may have a pair of condensed plate parts 201d and 201h.
 (6)上述の第1実施形態では、複数の蒸発構成部221はそれぞれ、一対の蒸発板部221d、221hを有しているが、これは一例である。例えば、蒸発部22に含まれる複数の蒸発構成部221のうちの一部では、一対の蒸発板部221d、221hが積層方向Dsに積層された構成になっていなくても差し支えない。要するに、蒸発部22に含まれる複数の蒸発構成部221のうちの少なくとも何れかが一対の蒸発板部221d、221hを有していればよい。 (6) In the above-mentioned first embodiment, each of the plurality of evaporation components 221 has a pair of evaporation plate portions 221d and 221h, which is an example. For example, in a part of the plurality of evaporation constituent parts 221 included in the evaporation portion 22, the pair of evaporation plate portions 221d and 221h may not be laminated in the stacking direction Ds. In short, at least one of the plurality of evaporation constituent parts 221 included in the evaporation part 22 may have a pair of evaporation plate parts 221d and 221h.
 (7)上述の第1実施形態では、凝縮構成部201の内部空間は、積層方向Dsの一方側へ一方側凝縮板部201dが窪んだ形状と積層方向Dsの他方側へ他方側凝縮板部201hが窪んだ形状とによって形成されている。 (7) In the above-described first embodiment, the internal space of the condensing component 201 has a shape in which one side condensing plate portion 201d is recessed to one side of the stacking direction Ds and the other side condensing plate portion to the other side of the stacking direction Ds. 201h is formed by a recessed shape.
 しかしながら、これは一例である。例えば、一方側凝縮板部201dと他方側凝縮板部201hとの一方は、積層方向Dsに窪んだ形状を有さずに平板状であっても差し支えない。このことは、一方側蒸発板部221dと他方側蒸発板部221hとの形状に関しても同様である。 However, this is just an example. For example, one of the one-side condensing plate portion 201d and the other-side condensing plate portion 201h may have a flat plate shape without having a recessed shape in the stacking direction Ds. This also applies to the shapes of the one-side evaporation plate portion 221d and the other-side evaporation plate portion 221h.
 (8)上述の第1実施形態では、他方側サイドプレート部32に設けられた絞り孔321dはオリフィスであるが、これは一例である。絞り孔321dは、キャピラリであってもよいし、キャピラリとオリフィスとを連結したものであってもよいし、図40、図41に示すように絞り孔321dが形成されたブロックであってもよい。 (8) In the above-mentioned first embodiment, the throttle hole 321d provided in the other side plate portion 32 is an orifice, which is an example. The aperture hole 321d may be a capillary, a capillary and an orifice connected to each other, or a block in which the aperture hole 321d is formed as shown in FIGS. 40 and 41. ..
 図40、図41の例では、絞り孔321dがブロック状の部材として構成され、他方側第1板321に形成された孔に嵌め込まれその他方側第1板321に固定されている。 In the examples of FIGS. 40 and 41, the diaphragm hole 321d is configured as a block-shaped member, is fitted into a hole formed in the first plate 321 on the other side, and is fixed to the first plate 321 on the other side.
 (9)上述の第2実施形態では、他方側第2板322の溝部322aは、冷媒流れを絞って冷媒を減圧させる機能を備えていないが、これは一例である。例えば、その溝部322aは、冷媒流れを絞るキャピラリとして構成され、冷媒を減圧させる機能を備えていても差し支えない。 (9) In the second embodiment described above, the groove portion 322a of the second plate 322 on the other side does not have a function of throttled the refrigerant flow to reduce the pressure of the refrigerant, but this is an example. For example, the groove portion 322a may be configured as a capillary for narrowing the flow of the refrigerant and may have a function of reducing the pressure of the refrigerant.
 (10)上述の第1実施形態では、蒸発部22と内部熱交換部28と凝縮部20は、その記載順で上側から鉛直方向Dgに並んで配置されているが、それらの並び順および並び方向に限定はない。例えば、蒸発部22と内部熱交換部28と凝縮部20は水平方向に並んで配置されてもよいし、凝縮部20が蒸発部22に対し鉛直方向Dgの上側に配置されていてもよい。 (10) In the above-described first embodiment, the evaporation unit 22, the internal heat exchange unit 28, and the condensing unit 20 are arranged side by side in the vertical direction Dg from the upper side in the order of description, but the arrangement order and arrangement thereof. There is no limit to the direction. For example, the evaporation unit 22, the internal heat exchange unit 28, and the condensation unit 20 may be arranged side by side in the horizontal direction, or the condensation unit 20 may be arranged above the evaporation unit 22 in the vertical direction Dg.
 (11)上述の第1実施形態では、熱交換器10は、蒸発部22と凝縮部20とに加え、気液分離部26と内部熱交換部28と絞り孔321dとを備えているが、これは一例である。例えば、熱交換器10が気液分離部26と内部熱交換部28と絞り孔321dとのうちの全部または何れかを備えていないことも考え得る。 (11) In the first embodiment described above, the heat exchanger 10 includes a gas-liquid separation unit 26, an internal heat exchange unit 28, and a throttle hole 321d in addition to the evaporation unit 22 and the condensing unit 20. This is an example. For example, it is possible that the heat exchanger 10 does not include all or any of the gas-liquid separation unit 26, the internal heat exchange unit 28, and the throttle hole 321d.
 (12)上述の第2実施形態では、凝縮流路201cと蒸発流路221cは互いに同一の形状とされているが、これは一例である。例えば、凝縮流路201cと蒸発流路221cは互いに異なる形状とされていても差し支えない。 (12) In the second embodiment described above, the condensation flow path 201c and the evaporation flow path 221c have the same shape as each other, but this is an example. For example, the condensation flow path 201c and the evaporation flow path 221c may have different shapes.
 (13)上述の第2実施形態では、一方側凝縮タンク空間201aと他方側凝縮タンク空間201bとの一方は、凝縮流路201cに対し鉛直方向Dgの上側に配置されている。そして、その一方側凝縮タンク空間201aと他方側凝縮タンク空間201bとの他方は、凝縮流路201cに対し鉛直方向Dgの下側に配置されている。 (13) In the second embodiment described above, one of the one-sided condensing tank space 201a and the other-side condensing tank space 201b is arranged above the condensation flow path 201c in the vertical direction Dg. The other side of the condensing tank space 201a on one side and the condensing tank space 201b on the other side is arranged below the Dg in the vertical direction with respect to the condensing flow path 201c.
 しかしながら、これは一例である。例えば、一方側凝縮タンク空間201aと他方側凝縮タンク空間201bとの両方が、凝縮流路201cに対し鉛直方向Dgの上側と下側との一方に偏って配置されていても差し支えない。 However, this is just an example. For example, both the one-sided condensing tank space 201a and the other-side condensing tank space 201b may be biased to one of the upper side and the lower side of the vertical Dg with respect to the condensing flow path 201c.
 このことは、蒸発部22の構成に関しても同様である。すなわち、一方側蒸発タンク空間221aと他方側蒸発タンク空間221bとの両方が、蒸発流路221cに対し鉛直方向Dgの上側と下側との一方に偏って配置されていても差し支えない。 This also applies to the configuration of the evaporation unit 22. That is, both the one-side evaporation tank space 221a and the other-side evaporation tank space 221b may be unevenly arranged on one of the upper side and the lower side of the vertical direction Dg with respect to the evaporation flow path 221c.
 (14)上記第1~第11実施形態では、熱交換器を車両用空調装置に適用した例について説明したが、これに限らず、熱交換器を車両用空調装置以外の各種機器(例えば、設置型の空調装置、冷凍機)に適用してもよい。 (14) In the first to eleventh embodiments described above, an example in which the heat exchanger is applied to the vehicle air conditioner has been described, but the present invention is not limited to this, and the heat exchanger is used for various devices other than the vehicle air conditioner (for example,). It may be applied to a stationary air conditioner (refrigerator).
 (15)上記第1~第11実施形態では、冷凍サイクルにおいて、放熱部が冷媒を凝縮させる凝縮部20を構成する例について説明した。しかし、これに代えて、冷媒として二酸化炭素を用いて高圧冷媒の圧力が臨界点よりも高く、放熱部が冷媒を凝縮させない、超臨界サイクルを冷凍サイクルが構成するようにしてもよい。 (15) In the first to eleventh embodiments described above, an example in which the heat radiating unit constitutes the condensing unit 20 for condensing the refrigerant in the refrigeration cycle has been described. However, instead of this, the refrigeration cycle may constitute a supercritical cycle in which carbon dioxide is used as the refrigerant and the pressure of the high-pressure refrigerant is higher than the critical point and the heat radiating portion does not condense the refrigerant.
 (16)上述の第2実施形態では、アキュムレータとしての気液分離器40は、熱交換器10とは別の機器として設けられているが、これは一例である。例えば図31に示すように、気液分離器40は熱交換器10の一部として構成され、凝縮部20、蒸発部22、および絞り部321eと一体化されていても差し支えない。 (16) In the second embodiment described above, the gas-liquid separator 40 as an accumulator is provided as a device different from the heat exchanger 10, but this is an example. For example, as shown in FIG. 31, the gas-liquid separator 40 may be configured as a part of the heat exchanger 10 and integrated with the condensing unit 20, the evaporation unit 22, and the drawing unit 321e.
 (17)上記第5~第11実施形態では、凝縮部20に流れる空気流の主流と蒸発部22に流れる空気流の主流とが、平行で、かつ同一向きに流れるようにした例について説明した。 (17) In the fifth to eleventh embodiments, an example has been described in which the main flow of the air flow flowing through the condensing portion 20 and the main flow of the air flow flowing through the evaporation portion 22 are made to flow in parallel and in the same direction. ..
 しかし、これに限らず、上記第5~第11実施形態では、凝縮部20に流れる空気流の主流と蒸発部22に流れる空気流の主流とが、ほぼ同一向きに流れるようにすればよい。 However, the present invention is not limited to this, and in the fifth to eleventh embodiments, the main stream of the air flow flowing through the condensing section 20 and the main stream of the air flow flowing through the evaporation section 22 may flow in substantially the same direction.
 例えば、熱交換器10の製造誤差が起因して生じる誤差範囲おいて、凝縮部20に流れる空気流の主流と蒸発部22に流れる空気流の主流との関係が、平行である関係からずれていてもよい。 For example, in the error range caused by the manufacturing error of the heat exchanger 10, the relationship between the mainstream of the air flow flowing through the condensing unit 20 and the mainstream of the air flow flowing through the evaporation unit 22 deviates from the parallel relationship. You may.
 つまり、上記第5~第11実施形態では、凝縮部20に流れる空気流の主流と蒸発部22に流れる空気流の主流とが、必ずしも平行に流れることを必要としない。 That is, in the fifth to eleventh embodiments, the main stream of the air flow flowing through the condensing section 20 and the main stream of the air flow flowing through the evaporation section 22 do not necessarily have to flow in parallel.
 (18)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (18) The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
 (まとめ)
 上記第1~11実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、熱交換器は、第1空気流および高圧冷媒の間の熱交換によって高圧冷媒から第1空気流に放熱させる熱交換コアを備える放熱部を備える。
(Summary)
According to the first aspect described in the first to eleventh embodiments and some or all of the other embodiments, the heat exchanger is a high pressure refrigerant by heat exchange between the first air flow and the high pressure refrigerant. A heat radiating unit including a heat exchange core for radiating heat to the first air flow is provided.
 熱交換器は、放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって低圧冷媒を第2空気流から吸熱させて蒸発させる蒸発部を備える。 The heat exchanger is arranged above the heat radiating section, and includes an evaporating section that absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
 熱交換器は、蒸発部の熱交換によって蒸発部から生じる凝縮水を放熱部における熱交換コアのうち第1空気流の風上側に導いて、この導かれる凝縮水を熱交換コアに掛けて高圧冷媒から凝縮水に放熱させて凝縮水を気化させる。 The heat exchanger guides the condensed water generated from the evaporation part by the heat exchange of the evaporation part to the wind side of the first air flow in the heat exchange core in the heat dissipation part, and applies this guided condensed water to the heat exchange core to increase the pressure. The condensed water is vaporized by dissipating heat from the refrigerant to the condensed water.
 第2の観点によれば、熱交換器は、蒸発部および放熱部の間に配置され、蒸発部から生じる凝縮水を放熱部の熱交換コアのうち第1空気流の風上側に導くための導水部を備える。 According to the second aspect, the heat exchanger is arranged between the evaporation part and the heat dissipation part for guiding the condensed water generated from the evaporation part to the wind side of the first air flow in the heat exchange core of the heat dissipation part. Equipped with a water guide.
 これによって、凝縮水を熱交換コアのうち第1空気流の風上側に良好に掛けることができる。 As a result, the condensed water can be satisfactorily applied to the windward side of the first air flow in the heat exchange core.
 第3の観点によれば、放熱部および蒸発部が並ぶ方向に交差する方向を交差方向としたとき、導水部は、放熱部および蒸発部の間に配置されて、交差方向に拡がるように形成されている。 According to the third aspect, when the direction in which the heat radiating part and the evaporating part intersect in the line-up direction is the crossing direction, the water guiding part is arranged between the heat radiating part and the evaporating part and is formed so as to expand in the intersecting direction. Has been done.
 これによって、導水部が、第1空気流通路内の第1空気流と第2空気流通路内の第2空気流とが混ざることを未然に抑える仕切部としての役割をも果たすことになる。このため、導水部および仕切部をそれぞれ用いる場合に比べて、体格を小さくすることができる。 As a result, the water conveyance portion also serves as a partition portion that prevents the first air flow in the first air flow passage and the second air flow in the second air flow passage from being mixed with each other. Therefore, the physique can be reduced as compared with the case where the water conveyance portion and the partition portion are used respectively.
 第4の観点によれば、導水部のうち第1空気流の風下側には、導水部から凝縮水が第1空気流の風下側に流れることを抑制する堰部が設けられている。 According to the fourth viewpoint, a weir portion is provided on the leeward side of the first air flow in the headrace portion to prevent condensed water from flowing from the headrace portion to the leeward side of the first air flow.
 これにより、導水部から凝縮水を熱交換コアのうち第1空気流の風上側に良好に導くことができる。 This makes it possible to satisfactorily guide the condensed water from the headrace to the windward side of the first airflow in the heat exchange core.
 第5の観点によれば、熱交換器は、放熱部は、高圧冷媒を流通させる高圧冷媒流路を備え、蒸発部は、低圧冷媒を流通させる低圧冷媒流路を備える。 According to the fifth viewpoint, the heat exchanger includes a high-pressure refrigerant flow path through which the high-pressure refrigerant flows, and the evaporation part includes a low-pressure refrigerant flow path through which the low-pressure refrigerant flows.
 放熱部および蒸発部は、第1熱交換プレート、第2熱交換プレート、第3熱交換プレート、および第4熱交換プレートを有して構成されている。 The heat radiating section and the evaporating section are configured to include a first heat exchange plate, a second heat exchange plate, a third heat exchange plate, and a fourth heat exchange plate.
 第1熱交換プレートは、第2熱交換プレートに対して所定方向一方側に配置されており、第2熱交換プレートは、第3熱交換プレートに対して所定方向一方側に配置されている。 第3熱交換プレートは、第4熱交換プレートに対して所定方向一方側に配置されている。 第1熱交換プレートおよび第2熱交換プレートは、互いに合わさるように配置されて、第1熱交換プレートおよび第2熱交換プレートの間には、高圧冷媒流路および低圧冷媒流路が形成されている。 The first heat exchange plate is arranged on one side in a predetermined direction with respect to the second heat exchange plate, and the second heat exchange plate is arranged on one side in a predetermined direction with respect to the third heat exchange plate. The third heat exchange plate is arranged on one side in a predetermined direction with respect to the fourth heat exchange plate. The first heat exchange plate and the second heat exchange plate are arranged so as to meet each other, and a high-pressure refrigerant flow path and a low-pressure refrigerant flow path are formed between the first heat exchange plate and the second heat exchange plate. There is.
 第2熱交換プレートおよび第3熱交換プレートの間には、第1空気流が流れる第1空気流路と第2空気流が流れる第2空気流路とが形成されている。 Between the second heat exchange plate and the third heat exchange plate, a first air flow path through which the first air flow flows and a second air flow path through which the second air flow flows are formed.
 第3熱交換プレートおよび第4熱交換プレートは、互いに合わさるように配置されて、第3熱交換プレートおよび第4熱交換プレートの間には、高圧冷媒流路および低圧冷媒流路が形成されている。 The third heat exchange plate and the fourth heat exchange plate are arranged so as to meet each other, and a high-pressure refrigerant flow path and a low-pressure refrigerant flow path are formed between the third heat exchange plate and the fourth heat exchange plate. There is.
 第6の観点によれば、第1熱交換プレート、第2熱交換プレート、第3熱交換プレート、および第4熱交換プレートは、それぞれ、低圧冷媒流路および高圧冷媒流路の間に配置されている内部熱交換部を構成する。内部熱交換部は、低圧冷媒流路を通過した低圧冷媒と高圧冷媒流路を通過した高圧冷媒との間で熱交換する。 According to the sixth aspect, the first heat exchange plate, the second heat exchange plate, the third heat exchange plate, and the fourth heat exchange plate are arranged between the low pressure refrigerant flow path and the high pressure refrigerant flow path, respectively. It constitutes the internal heat exchange unit. The internal heat exchange unit exchanges heat between the low-pressure refrigerant that has passed through the low-pressure refrigerant flow path and the high-pressure refrigerant that has passed through the high-pressure refrigerant flow path.
 内部熱交換部は、第2空気流路で発生した凝縮水を熱交換コアのうち第1空気流の風上側に導くための導水部を構成する。 The internal heat exchange unit constitutes a water guide unit for guiding the condensed water generated in the second air flow path to the windward side of the first air flow in the heat exchange core.
 これによって、内部熱交換部よって良好に導水部を構成することができる。 As a result, the water conveyance section can be satisfactorily configured by the internal heat exchange section.
 第7の観点によれば、内部熱交換部は、所定方向に延びる筒状に形成されて低圧冷媒流路を通過した低圧冷媒を流通させる外側筒部を備える。内部熱交換部は、外側筒部の内側において所定方向に延びる筒状に形成されて高圧冷媒流路を通過した高圧冷媒を流通させる内側筒部を備え、外側筒部内の低圧冷媒と内側筒部内の高圧冷媒との間で熱交換させる。外側筒部のうち第2空気流路に向けて形成されている上側部位は、導水部を構成する。 According to the seventh viewpoint, the internal heat exchange portion includes an outer tubular portion that is formed in a tubular shape extending in a predetermined direction and allows low-pressure refrigerant to flow through the low-pressure refrigerant flow path. The internal heat exchange portion includes an inner cylinder portion that is formed in a tubular shape extending in a predetermined direction inside the outer cylinder portion and allows high-pressure refrigerant that has passed through the high-pressure refrigerant flow path to flow, and the low-pressure refrigerant in the outer cylinder portion and the inside of the inner cylinder portion. Heat is exchanged with the high-pressure refrigerant of. The upper portion of the outer tubular portion formed toward the second air flow path constitutes a water conducting portion.
 これによって、外側筒部を用いて導水部を良好に構成することができる。 This makes it possible to satisfactorily configure the water conveyance portion using the outer cylinder portion.
 第8の観点によれば、導水部を第1導水部としたとき、第2空気流路に対して下側に配置されて外側筒部に対して第1空気流の風下側に設けられて、第2空気流路で発生した凝縮水を第1導水部に導くための第2導水部を備える。 According to the eighth viewpoint, when the water guide portion is the first water guide portion, it is arranged on the lower side with respect to the second air flow path and is provided on the leeward side of the first air flow with respect to the outer cylinder portion. , A second headrace for guiding the condensed water generated in the second air flow path to the first headrace is provided.
 これによって、第2空気流路で発生した凝縮水を第1導水部に良好に集めることができる。 As a result, the condensed water generated in the second air flow path can be satisfactorily collected in the first headrace.
 第9の観点によれば、第2導水部は、凝縮水を第1導水部に導くために、第1空気流の風下側に進むほど上側に向かう傾斜状に形成されている。 According to the ninth viewpoint, the second headrace is formed so as to be inclined upward toward the leeward side of the first air flow in order to guide the condensed water to the first headrace.
 第10の観点によれば、蒸発部および放熱部は、減圧弁、圧縮機とともに、冷凍サイクルを構成する。圧縮機は、蒸発部から流れる低圧冷媒を吸入し圧縮して高圧冷媒を吐出する。放熱部は、圧縮機から吐出される高圧冷媒および第1空気流の間で熱交換させる。減圧弁は、放熱部から流れる高圧冷媒を減圧して低圧冷媒を排出し、蒸発部は、減圧弁から流れる低圧冷媒および第2空気流の間で熱交換させる。 According to the tenth viewpoint, the evaporation part and the heat dissipation part form a refrigeration cycle together with the pressure reducing valve and the compressor. The compressor sucks in the low-pressure refrigerant flowing from the evaporation unit, compresses it, and discharges the high-pressure refrigerant. The heat radiating unit exchanges heat between the high-pressure refrigerant discharged from the compressor and the first air flow. The pressure reducing valve decompresses the high pressure refrigerant flowing from the heat radiating unit to discharge the low pressure refrigerant, and the evaporation unit exchanges heat between the low pressure refrigerant flowing from the pressure reducing valve and the second air flow.
 第11の観点によれば、熱交換器において、放熱部に流れる第1空気流の主流と、蒸発部に流れる第2空気流の主流とが、同一向きに流れる。 According to the eleventh viewpoint, in the heat exchanger, the main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
 蒸発部のうち第2空気流の風上側が蒸発部のうち第2空気流の風下側よりも下側に配置されるように蒸発部が傾斜して配置されることにより、蒸発部が凝縮水を重力によって放熱部における熱交換コアのうち第1空気流の風上側に導くようになっている。 The evaporation section is arranged at an angle so that the windward side of the second air flow of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section, so that the evaporation section is condensed water. Is guided to the windward side of the first air flow in the heat exchange core in the heat dissipation part by gravity.
 第12の観点によれば、熱交換器において、放熱部に流れる第1空気流の主流と、蒸発部に流れる第2空気流の主流とが、互いに逆向きに流れる。 According to the twelfth viewpoint, in the heat exchanger, the main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in opposite directions to each other.
 蒸発部のうち第2空気流の風下側が蒸発部のうち第2空気流の風上側よりも下側に配置されるように蒸発部が傾斜して配置されることにより、蒸発部が凝縮水を重力によって放熱部における熱交換コアのうち第1空気流の風上側に導くようになっている。 The evaporation section is arranged at an angle so that the leeward side of the second air stream of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section, so that the evaporation section collects condensed water. The heat exchange core in the heat dissipation section is guided by gravity to the windward side of the first air flow.
 第13の観点によれば、空調装置は、第1空気流および高圧冷媒の間の熱交換によって高圧冷媒から第1空気流に放熱させる熱交換コアを備える放熱部を備える。空調装置は、放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって低圧冷媒を第2空気流から吸熱させて蒸発させる蒸発部を備える。 According to the thirteenth viewpoint, the air conditioner includes a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant. The air conditioner is arranged above the heat dissipation unit, and includes an evaporation unit that absorbs heat from the second air stream and evaporates the low pressure refrigerant by heat exchange between the second air stream and the low pressure refrigerant.
 空調装置は、第1空気流を流通させる第1空気流路と、第1空気流路に対して区分けして形成されて第2空気流を流通させる第2空気流路とを有するダクトとを備える。放熱部に流れる第1空気流の主流と、蒸発部に流れる第2空気流の主流とが、同一向きに流れる。 The air conditioner has a duct having a first air flow path through which the first air flow flows and a second air flow path formed separately from the first air flow path and through which the second air flow flows. Be prepared. The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
 蒸発部のうち第2空気流の風上側が蒸発部のうち第2空気流の風下側よりも下側に配置されるように蒸発部が傾斜して配置されることにより、蒸発部から生じる凝縮水を蒸発部が重力によって放熱部における熱交換コアのうち第1空気流の風上側に導くようになっている。 Condensation generated from the evaporation part by arranging the evaporation part at an angle so that the leeward side of the second air flow of the evaporation part is arranged below the leeward side of the second air flow of the evaporation part. The evaporation part guides water to the windward side of the first air flow in the heat exchange core in the heat dissipation part by gravity.
 第14の観点によれば、空調装置は、第1空気流および高圧冷媒の間の熱交換によって高圧冷媒から第1空気流に放熱させる熱交換コアを備える放熱部を備える。 According to the fourteenth viewpoint, the air conditioner includes a heat radiating unit including a heat exchange core that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
 空調装置は、放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって低圧冷媒を第2空気流から吸熱させて蒸発させる蒸発部を備える。 The air conditioner is arranged above the heat dissipation unit, and includes an evaporation unit that absorbs heat from the second air flow and evaporates the low pressure refrigerant by heat exchange between the second air flow and the low pressure refrigerant.
 空調装置は、第1空気流を流通させる第1空気流路と、第1空気流路に対して区分けして形成されて第2空気流を流通させる第2空気流路とを有するダクトを備える。 The air conditioner includes a duct having a first air flow path through which the first air flow flows, and a second air flow path formed separately from the first air flow path and through which the second air flow flows. ..
 放熱部に流れる第1空気流の主流と、蒸発部に流れる第2空気流の主流とが、互いに逆向きに流れる。 The main flow of the first air flow flowing through the heat dissipation part and the main flow of the second air flow flowing through the evaporation part flow in opposite directions.
 蒸発部のうち第2空気流の風下側が蒸発部のうち第2空気流の風上側よりも下側に配置されるように蒸発部が傾斜して配置されることにより、蒸発部から生じる凝縮水を蒸発部が重力によって放熱部における熱交換コアのうち第1空気流の風上側に導くようになっている。 Condensed water generated from the evaporation section by arranging the evaporation section at an angle so that the leeward side of the second air flow of the evaporation section is arranged below the leeward side of the second air flow of the evaporation section. The evaporation part guides the heat exchange core in the heat dissipation part to the windward side of the first air flow by gravity.
 第15の観点によれば、第1空気流、および第2空気流を発生させる空気流発生部を備える。 According to the fifteenth viewpoint, an air flow generating unit for generating a first air flow and a second air flow is provided.

Claims (15)

  1.  熱交換器であって、
     第1空気流および高圧冷媒の間の熱交換によって前記高圧冷媒から前記第1空気流に放熱させる熱交換コア(230)を備える放熱部(20)と、
     前記放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって前記低圧冷媒を前記第2空気流から吸熱させて蒸発させる蒸発部(22)と、を備え、
     前記蒸発部の熱交換によって前記蒸発部から生じる凝縮水を前記放熱部における前記熱交換コアのうち前記第1空気流の風上側に導いて、この導かれる凝縮水を前記熱交換コアに掛けて前記高圧冷媒から前記凝縮水に放熱させて前記凝縮水を気化させる熱交換器。
    It ’s a heat exchanger,
    A heat radiating unit (20) including a heat exchange core (230) that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
    It is provided with an evaporation unit (22), which is arranged above the heat dissipation unit and absorbs heat from the second air flow to evaporate the low pressure refrigerant by heat exchange between the second air flow and the low pressure refrigerant.
    The condensed water generated from the evaporation section by the heat exchange of the evaporation section is guided to the wind side of the first air flow of the heat exchange cores in the heat dissipation section, and the guided condensed water is applied to the heat exchange core. A heat exchanger that evaporates the condensed water by radiating heat from the high-pressure refrigerant to the condensed water.
  2.  前記蒸発部および前記放熱部の間に配置され、前記蒸発部から生じる凝縮水を前記放熱部の前記熱交換コアのうち前記第1空気流の風上側に導くための導水部(283、51)を備える請求項1に記載の熱交換器。 A water guide section (283, 51) arranged between the evaporation section and the heat dissipation section for guiding the condensed water generated from the evaporation section to the wind side of the first air flow in the heat exchange core of the heat dissipation section. The heat exchanger according to claim 1.
  3.  前記放熱部および前記蒸発部が並ぶ方向に交差する方向を交差方向としたとき、前記導水部は、前記放熱部および前記蒸発部の間に配置されて、前記交差方向に拡がるように形成されている請求項2に記載の熱交換器。 When the direction in which the heat radiating portion and the evaporating portion intersect is defined as the intersecting direction, the water guiding portion is arranged between the heat radiating portion and the evaporating portion and is formed so as to expand in the intersecting direction. The heat exchanger according to claim 2.
  4.  前記導水部(51)のうち前記第1空気流の風下側には、前記導水部から前記凝縮水が前記第1空気流の風下側に流れることを抑制する堰部(52)が設けられている請求項3に記載の熱交換器。 A weir portion (52) for suppressing the flow of condensed water from the water guide portion to the leeward side of the first air flow is provided on the leeward side of the first air flow of the water guide portion (51). The heat exchanger according to claim 3.
  5.  前記放熱部は、前記高圧冷媒を流通させる高圧冷媒流路(201c)を備え、
     前記蒸発部は、前記低圧冷媒を流通させる低圧冷媒流路(221c)を備え、
     前記放熱部および前記蒸発部は、第1熱交換プレート(381A)、第2熱交換プレート(382A)、第3熱交換プレート(381B)、および第4熱交換プレート(382B)を有して構成されており、
     前記第1熱交換プレートは、前記第2熱交換プレートに対して所定方向(Ds)一方側に配置されており、
     前記第2熱交換プレートは、前記第3熱交換プレートに対して前記所定方向一方側に配置されており、
     前記第3熱交換プレートは、前記第4熱交換プレートに対して前記所定方向一方側に配置されており、
     前記第1熱交換プレートおよび前記第2熱交換プレートは、互いに合わさるように配置されて、前記第1熱交換プレートおよび前記第2熱交換プレートの間には、前記高圧冷媒流路および前記低圧冷媒流路が形成されており、
     前記第2熱交換プレートおよび前記第3熱交換プレートの間には、前記第1空気流が流れる第1空気流路(20a)と前記第2空気流が流れる第2空気流路(22a)とが形成されており、
     前記第3熱交換プレートおよび前記第4熱交換プレートは、互いに合わさるように配置されて、前記第3熱交換プレートおよび前記第4熱交換プレートの間には、前記高圧冷媒流路および前記低圧冷媒流路が形成されている請求項3に記載の熱交換器。
    The heat radiating unit includes a high-pressure refrigerant flow path (201c) through which the high-pressure refrigerant flows.
    The evaporation unit includes a low-pressure refrigerant flow path (221c) through which the low-pressure refrigerant flows.
    The heat dissipation unit and the evaporation unit include a first heat exchange plate (381A), a second heat exchange plate (382A), a third heat exchange plate (381B), and a fourth heat exchange plate (382B). Has been
    The first heat exchange plate is arranged on one side in a predetermined direction (Ds) with respect to the second heat exchange plate.
    The second heat exchange plate is arranged on one side in the predetermined direction with respect to the third heat exchange plate.
    The third heat exchange plate is arranged on one side in the predetermined direction with respect to the fourth heat exchange plate.
    The first heat exchange plate and the second heat exchange plate are arranged so as to meet each other, and the high-pressure refrigerant flow path and the low-pressure refrigerant are located between the first heat exchange plate and the second heat exchange plate. A flow path is formed,
    Between the second heat exchange plate and the third heat exchange plate, a first air flow path (20a) through which the first air flow flows and a second air flow path (22a) through which the second air flow flows. Is formed,
    The third heat exchange plate and the fourth heat exchange plate are arranged so as to meet each other, and the high-pressure refrigerant flow path and the low-pressure refrigerant are located between the third heat exchange plate and the fourth heat exchange plate. The heat exchanger according to claim 3, wherein the flow path is formed.
  6.  前記第1熱交換プレート、前記第2熱交換プレート、前記第3熱交換プレート、および前記第4熱交換プレートは、それぞれ、前記低圧冷媒流路および前記高圧冷媒流路の間に配置されて前記低圧冷媒流路を通過した前記低圧冷媒と前記高圧冷媒流路を通過した前記高圧冷媒との間で熱交換する内部熱交換部(28)を構成し、
     前記内部熱交換部は、前記第2空気流路で発生した前記凝縮水を前記熱交換コアのうち前記第1空気流の風上側に導くための前記導水部(283)を構成する請求項5に記載の熱交換器。
    The first heat exchange plate, the second heat exchange plate, the third heat exchange plate, and the fourth heat exchange plate are arranged between the low-pressure refrigerant flow path and the high-pressure refrigerant flow path, respectively. An internal heat exchange unit (28) that exchanges heat between the low-pressure refrigerant that has passed through the low-pressure refrigerant flow path and the high-pressure refrigerant that has passed through the high-pressure refrigerant flow path is configured.
    5. The internal heat exchange unit constitutes the water guide unit (283) for guiding the condensed water generated in the second air flow path to the windward side of the first air flow in the heat exchange core. The heat exchanger described in.
  7.  前記内部熱交換部は、
     所定方向に延びる筒状に形成されて前記低圧冷媒流路を通過した前記低圧冷媒を流通させる外側筒部(281)と、
     前記外側筒部の内側において前記所定方向に延びる筒状に形成されて前記高圧冷媒流路を通過した前記高圧冷媒を流通させる内側筒部(282)と、を備え、前記外側筒部内の前記低圧冷媒と前記内側筒部内の前記高圧冷媒との間で熱交換させ、
     前記外側筒部のうち前記第2空気流路に向けて形成されている上側部位は、前記導水部(283)を構成する請求項6に記載の熱交換器。
    The internal heat exchange unit
    An outer tubular portion (281) formed in a tubular shape extending in a predetermined direction and allowing the low-pressure refrigerant to flow through the low-pressure refrigerant flow path,
    An inner cylinder portion (282) formed inside the outer cylinder portion in a tubular shape extending in a predetermined direction and allowing the high pressure refrigerant to flow through the high pressure refrigerant flow path is provided, and the low pressure inside the outer cylinder portion is provided. Heat exchange is performed between the refrigerant and the high-pressure refrigerant in the inner cylinder portion.
    The heat exchanger according to claim 6, wherein the upper portion of the outer tubular portion formed toward the second air flow path constitutes the water conducting portion (283).
  8.  前記導水部を第1導水部としたとき、前記第2空気流路に対して下側に配置されて前記外側筒部に対して前記第1空気流の風下側に設けられて、前記第2空気流路で発生した前記凝縮水を前記第1導水部に導くための第2導水部(50)を備える請求項7に記載の熱交換器。 When the water guide portion is used as the first water guide portion, it is arranged below the second air flow path and is provided on the leeward side of the first air flow with respect to the outer cylinder portion. The heat exchanger according to claim 7, further comprising a second water conducting unit (50) for guiding the condensed water generated in the air flow path to the first water conducting unit.
  9.  前記第2導水部は、前記凝縮水を前記第1導水部に導くために、前記第1空気流の風下側に進むほど上側に向かう傾斜状に形成されている請求項8に記載の熱交換器。 The heat exchange according to claim 8, wherein the second headrace is formed so as to be inclined upward toward the leeward side of the first air flow in order to guide the condensed water to the first headrace. vessel.
  10.  前記蒸発部および前記放熱部は、減圧部(321e)、圧縮機(14)とともに、冷凍サイクルを構成し、
     前記圧縮機は、前記蒸発部から流れる前記低圧冷媒を吸入し圧縮して前記高圧冷媒を吐出し、
     前記放熱部は、前記圧縮機から吐出される前記高圧冷媒および前記第1空気流の間で熱交換させ、
     前記減圧部は、前記放熱部から流れる前記高圧冷媒を減圧して前記低圧冷媒を排出し、
     前記蒸発部は、前記減圧部から流れる前記低圧冷媒および前記第2空気流の間で熱交換させる請求項1ないし9のいずれか1つに記載の熱交換器。
    The evaporation unit and the heat dissipation unit form a refrigeration cycle together with the decompression unit (321e) and the compressor (14).
    The compressor sucks in and compresses the low-pressure refrigerant flowing from the evaporation unit, and discharges the high-pressure refrigerant.
    The heat radiating unit exchanges heat between the high-pressure refrigerant discharged from the compressor and the first air flow.
    The depressurizing unit decompresses the high-pressure refrigerant flowing from the heat radiating unit and discharges the low-pressure refrigerant.
    The heat exchanger according to any one of claims 1 to 9, wherein the evaporation unit exchanges heat between the low-pressure refrigerant flowing from the decompression unit and the second air flow.
  11.  前記放熱部に流れる前記第1空気流の主流と、前記蒸発部に流れる前記第2空気流の主流とが、同一向きに流れ、
     前記蒸発部のうち前記第2空気流の風上側が前記蒸発部のうち前記第2空気流の風下側よりも下側に配置されるように前記蒸発部が傾斜して配置されることにより、前記蒸発部が前記凝縮水を重力によって前記放熱部における前記熱交換コアのうち前記第1空気流の風上側に導くようになっている請求項1ないし10のいずれか1つに記載の熱交換器。
    The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
    By arranging the evaporation portion at an angle so that the windward side of the second air flow of the evaporation portion is arranged below the leeward side of the second air flow of the evaporation portion. The heat exchange according to any one of claims 1 to 10, wherein the evaporation unit guides the condensed water to the windward side of the first air flow in the heat exchange core in the heat dissipation unit by gravity. vessel.
  12.  前記放熱部に流れる前記第1空気流の主流と、前記蒸発部に流れる前記第2空気流の主流とが、互いに逆向きに流れ、
     前記蒸発部のうち前記第2空気流の風下側が前記蒸発部のうち前記第2空気流の風上側よりも下側に配置されるように前記蒸発部が傾斜して配置されることにより、前記蒸発部が前記凝縮水を重力によって前記放熱部における前記熱交換コアのうち前記第1空気流の風上側に導くようになっている請求項1ないし10のいずれか1つに記載の熱交換器。
    The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in opposite directions.
    The evaporation portion is arranged so as to be inclined so that the leeward side of the second air flow of the evaporation portion is arranged below the leeward side of the second air flow of the evaporation portion. The heat exchanger according to any one of claims 1 to 10, wherein the evaporation unit guides the condensed water to the windward side of the first air flow among the heat exchange cores in the heat dissipation unit by gravity. ..
  13.  空調装置であって、
     第1空気流および高圧冷媒の間の熱交換によって前記高圧冷媒から前記第1空気流に放熱させる熱交換コア(230)を備える放熱部(20)と、
     前記放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって前記低圧冷媒を前記第2空気流から吸熱させて蒸発させる蒸発部(22)と、
     前記第1空気流を流通させる第1空気流路(92)と、前記第1空気流路に対して区分けして形成されて前記第2空気流を流通させる第2空気流路(91)とを有するダクト(90)と、を備え、
     前記放熱部に流れる前記第1空気流の主流と、前記蒸発部に流れる前記第2空気流の主流とが、同一向きに流れ、
     前記蒸発部のうち前記第2空気流の風上側が前記蒸発部のうち前記第2空気流の風下側よりも下側に配置されるように前記蒸発部が傾斜して配置されることにより、前記蒸発部から生じる凝縮水を前記蒸発部が重力によって前記放熱部における前記熱交換コアのうち前記第1空気流の風上側に導くようになっている空調装置。
    It ’s an air conditioner,
    A heat radiating unit (20) including a heat exchange core (230) that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
    An evaporation unit (22), which is arranged above the heat dissipation unit and absorbs heat from the second air flow to evaporate the low pressure refrigerant by heat exchange between the second air flow and the low pressure refrigerant.
    A first air flow path (92) through which the first air flow flows, and a second air flow path (91) formed separately from the first air flow path and through which the second air flow flows. With a duct (90) and
    The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in the same direction.
    By arranging the evaporation portion at an angle so that the wind side of the second air flow of the evaporation portion is arranged below the leeward side of the second air flow of the evaporation portion. An air conditioner in which the evaporation unit guides the condensed water generated from the evaporation unit to the wind side of the first air flow of the heat exchange cores in the heat dissipation unit by gravity.
  14.  空調装置であって、
     第1空気流および高圧冷媒の間の熱交換によって前記高圧冷媒から前記第1空気流に放熱させる熱交換コア(230)を備える放熱部(20)と、
     前記放熱部に対して上側に配置され、第2空気流および低圧冷媒の間の熱交換によって前記低圧冷媒を前記第2空気流から吸熱させて蒸発させる蒸発部(22)と、
     前記第1空気流を流通させる第1空気流路(92)と、前記第1空気流路に対して区分けして形成されて前記第2空気流を流通させる第2空気流路(91)とを有するダクト(90)と、を備え、
     前記放熱部に流れる前記第1空気流の主流と、前記蒸発部に流れる前記第2空気流の主流とが、互いに逆向きに流れ、
     前記蒸発部のうち前記第2空気流の風下側が前記蒸発部のうち前記第2空気流の風上側よりも下側に配置されるように前記蒸発部が傾斜して配置されることにより、前記蒸発部から生じる凝縮水を前記蒸発部が重力によって前記放熱部における前記熱交換コアのうち前記第1空気流の風上側に導くようになっている空調装置。
    It ’s an air conditioner,
    A heat radiating unit (20) including a heat exchange core (230) that dissipates heat from the high pressure refrigerant to the first air flow by heat exchange between the first air flow and the high pressure refrigerant.
    An evaporation unit (22), which is arranged above the heat dissipation unit and absorbs heat from the second air flow to evaporate the low pressure refrigerant by heat exchange between the second air flow and the low pressure refrigerant.
    A first air flow path (92) through which the first air flow flows, and a second air flow path (91) formed separately from the first air flow path and through which the second air flow flows. With a duct (90) and
    The main stream of the first air flow flowing through the heat radiating section and the main stream of the second air flow flowing through the evaporation section flow in opposite directions.
    The evaporation portion is arranged so as to be inclined so that the leeward side of the second air flow of the evaporation portion is arranged below the wind side of the second air flow of the evaporation portion. An air conditioner in which the evaporation unit guides the condensed water generated from the evaporation unit to the wind side of the first air flow of the heat exchange cores in the heat dissipation unit by gravity.
  15.  前記第1空気流、および前記第2空気流を発生させる空気流発生部(80、80A、80B)を備える請求項14に記載の空調装置。 The air conditioner according to claim 14, further comprising an air flow generating unit (80, 80A, 80B) for generating the first air flow and the second air flow.
PCT/JP2020/028552 2019-07-23 2020-07-22 Heat exchanger and air conditioning device WO2021015272A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-135404 2019-07-23
JP2019135404 2019-07-23
JP2020-054811 2020-03-25
JP2020054811A JP7413875B2 (en) 2019-07-23 2020-03-25 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2021015272A1 true WO2021015272A1 (en) 2021-01-28

Family

ID=74194246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028552 WO2021015272A1 (en) 2019-07-23 2020-07-22 Heat exchanger and air conditioning device

Country Status (1)

Country Link
WO (1) WO2021015272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244461A1 (en) * 2021-05-18 2022-11-24 株式会社デンソー Heat exchange system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS43948Y1 (en) * 1965-02-25 1968-01-18
JPS5159154U (en) * 1974-11-01 1976-05-10
JPS5492648U (en) * 1977-12-13 1979-06-30
JPH0861699A (en) * 1994-06-15 1996-03-08 Nippondenso Co Ltd Unitary type cooler
JP2000337728A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Absorption type heat pump apparatus
US20170167737A1 (en) * 2014-06-05 2017-06-15 Samsung Electronics Co., Ltd Integrated air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS43948Y1 (en) * 1965-02-25 1968-01-18
JPS5159154U (en) * 1974-11-01 1976-05-10
JPS5492648U (en) * 1977-12-13 1979-06-30
JPH0861699A (en) * 1994-06-15 1996-03-08 Nippondenso Co Ltd Unitary type cooler
JP2000337728A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Absorption type heat pump apparatus
US20170167737A1 (en) * 2014-06-05 2017-06-15 Samsung Electronics Co., Ltd Integrated air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244461A1 (en) * 2021-05-18 2022-11-24 株式会社デンソー Heat exchange system

Similar Documents

Publication Publication Date Title
JP6222042B2 (en) Laminate heat exchanger
JP6481793B1 (en) Heat exchanger
JP2019215154A (en) Capacitor accompanied by refrigerant supply source for air-conditioning circuit
JP4254015B2 (en) Heat exchanger
JP2003254555A (en) Air conditioner
JP6341099B2 (en) Refrigerant evaporator
JP6120978B2 (en) Heat exchanger and air conditioner using the same
WO2021015272A1 (en) Heat exchanger and air conditioning device
JP2009150574A (en) Distributor, and heat exchanger and air conditioner loading the same
JP7413875B2 (en) Heat exchanger
JP2011220551A (en) Evaporator unit
JP5733866B1 (en) Refrigerant heat exchanger
TWI768340B (en) Heat Exchangers and Refrigeration Cycle Devices
JP4715574B2 (en) Absorption refrigeration system
JP2008138895A (en) Evaporator unit
JP2001221535A (en) Refrigerant evaporator
WO2021192903A1 (en) Heat exchanger
JP6477306B2 (en) Refrigerant evaporator
WO2023013517A1 (en) Heat exchanger and air conditioning device
JP2007113796A (en) Air conditioner
JP6927352B1 (en) Heat exchanger
WO2021014892A1 (en) Heat exchanger
WO2021014893A1 (en) Heat exchanger
JP7207286B2 (en) Heat exchanger
JP7188376B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843399

Country of ref document: EP

Kind code of ref document: A1