WO2022244461A1 - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
WO2022244461A1
WO2022244461A1 PCT/JP2022/013847 JP2022013847W WO2022244461A1 WO 2022244461 A1 WO2022244461 A1 WO 2022244461A1 JP 2022013847 W JP2022013847 W JP 2022013847W WO 2022244461 A1 WO2022244461 A1 WO 2022244461A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
section
cooler
condensation
condensed water
Prior art date
Application number
PCT/JP2022/013847
Other languages
French (fr)
Japanese (ja)
Inventor
裕文 弐又
駿 丹野
剛史 細野
一雄 亀井
栄一 鳥越
功 畔柳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022244461A1 publication Critical patent/WO2022244461A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Definitions

  • the present disclosure relates to a heat exchange system that exchanges heat between refrigerant and air.
  • a vehicle air conditioner disclosed in Patent Document 1 includes an evaporator and a condenser, and the evaporator and condenser constitute the heat exchange system.
  • the evaporator and condenser are housed in one housing.
  • the condenser is arranged below the evaporator, and is provided with a conduit for guiding the condensed water generated in the evaporator to the condenser.
  • condensed water from the evaporator is applied to the condenser to raise the cooling efficiency of the refrigerant in the condenser, thereby improving the efficiency of the entire refrigeration cycle including the evaporator and the condenser.
  • Patent Document 1 makes no mention of smoothly guiding the condensed water generated in the cooler to the radiator. As a result of detailed studies by the inventors, the above was found.
  • the present disclosure aims to provide a heat exchange system that can smoothly guide condensed water generated in a cooler to a radiator.
  • a heat exchange system includes: A heat exchange system for exchanging heat between a refrigerant and air, a cooler that cools air with a refrigerant; A radiator located below the cooler, arranged so that condensed water generated in the cooler flows down, has a specific configuration, and dissipates heat from the refrigerant to the air,
  • the specific configuration is a radiator, which allows condensed water that has flowed down to the radiator to wet and spread more than when the specific configuration is not provided.
  • the condensed water generated in the cooler is more likely to be pulled toward the radiator due to the specific configuration of the radiator. Therefore, the condensed water is less likely to stay in the cooler, and the condensed water can be smoothly guided to the radiator.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle circuit having a heat exchanger of a first embodiment
  • FIG. It is a sectional view showing typically a schematic structure of a heat exchanger in a 1st embodiment.
  • FIG. 3 is a diagram showing, in section III-III of FIG. 2, an excerpt of a laminated structure constituting the heat exchanger of the first embodiment;
  • FIG. 3 is a view showing an excerpt from the laminated structure constituting the heat exchanger of the first embodiment in the IV-IV cross section of FIG. 2;
  • FIG. 4 is a cross-sectional view schematically showing a partial cross-section of the condensation tube portion obtained by cutting the plate material constituting the condensation tube portion so as to reveal the thickness of the plate material constituting the condensation tube portion in the first embodiment, and showing the configuration of the condensation portion.
  • FIG. 2 is a diagram in which, in addition to the reference numerals, reference numerals indicating the configuration of the evaporating section are also written.
  • FIG. 4 is a cross-sectional view schematically showing a partial cross-section of a condensation fin obtained by cutting the plate material constituting the condensation fin so that the thickness of the plate material constituting the condensation fin is exposed in the first embodiment; In addition to , reference numerals indicating the configuration of the evaporator are also shown.
  • FIG. 2 is a diagram in which, in addition to the reference numerals, reference numerals indicating the configuration of the evaporating section are also written.
  • FIG. 4 is a cross-sectional view schematically showing a partial cross-section of a condensation
  • FIG. 5 is a cross-sectional view schematically showing the VII-VII cross section of FIG. 1 is a cutaway view of FIG.
  • FIG. 10 is a schematic perspective view of a single condensation fin extracted and partially enlarged in the second embodiment.
  • FIG. 9 is a cross-sectional view schematically showing the IX-IX cross section of FIG. 8 in the second embodiment, and is a portion of the condensation fin obtained by cutting along a plane perpendicular to the direction in which the fine grooves provided in the condensation fin extend.
  • 1 is a diagram showing a typical cross section; FIG. FIG.
  • FIG. 10 is a perspective view schematically showing the condensation fins and the condensation tube portions adjacent to the condensation fins in the second embodiment, in which the flow of condensed water flowing from the condensation tube portions to the condensation fins is indicated by dashed arrows; is.
  • FIG. 5 is a view corresponding to FIG. 4 , showing an excerpt of a laminated structure constituting a heat exchanger in the third embodiment;
  • FIG. 12 is a sectional view showing the XII-XII section of FIG. 11 in the third embodiment;
  • FIG. 12 is a perspective view schematically showing an enlarged portion XIII of FIG. 11 in the third embodiment;
  • FIG. 5 is a view corresponding to FIG. 4 , showing an excerpt of a laminated structure constituting a heat exchanger in the fourth embodiment;
  • FIG. 15 is a schematic enlarged view of the portion corresponding to the XV portion of FIG. 14 in the fifth embodiment, showing a plurality of grooves formed in the intermediate surface.
  • FIG. 10 is a view corresponding to FIG. 4 , showing an excerpt of the laminated structure constituting the heat exchanger in the sixth embodiment.
  • FIG. 17 is a diagram schematically showing an enlarged portion corresponding to the XVII portion of FIG. 16 in the seventh embodiment, showing a plurality of condensation section surface grooves formed on the surface of the condensation section.
  • FIG. 11 is a cross-sectional view schematically showing the schematic configuration of a heat exchanger in an eighth embodiment, corresponding to FIG. 2 ;
  • FIG. 19 is a view corresponding to FIG.
  • FIG. 4 showing the condenser section and the evaporator section of the heat exchanger of the eighth embodiment, taken along the XIX-XIX section of FIG. 18;
  • FIG. 11 is a view corresponding to FIG. 4 , showing a condensing section, an evaporating section, and an intermediate section that constitute a heat exchanger in a ninth embodiment;
  • FIG. 10 is a perspective view showing a unit in which a heat exchanger with a condenser and an evaporator, a pressure reducing device, and an accumulator are integrated in another embodiment.
  • FIG. 5 is a view corresponding to FIG. 4 and showing an extract of a laminated structure constituting a heat exchanger in another embodiment.
  • FIG. 21 is a view corresponding to FIG. 20 and showing an extract of a laminated structure constituting a heat exchanger in another embodiment.
  • a heat exchanger 10 is provided as a heat exchange system for exchanging heat between refrigerant and air.
  • the heat exchanger 10 is used in a vehicle air conditioner and constitutes part of a refrigeration cycle circuit 12 that is included in the vehicle air conditioner and in which a refrigerant circulates.
  • a vehicle air conditioner air-conditions a vehicle interior, which is a space to be air-conditioned.
  • the refrigerant compressed by the compressor 14 included in the refrigerating cycle circuit 12 flows into the condenser section 20 that constitutes a part of the heat exchanger 10 and functions as a radiator. heat is exchanged with
  • the refrigerant that has exchanged heat with the air in the condenser section 20 is decompressed and expanded by the decompression device 15, flows from the decompression device 15 into the evaporator section 22 that constitutes a part of the heat exchanger 10 and functions as a cooler, and then flows into the evaporator section. At 22, it is made to exchange heat with air.
  • the refrigerant that has exchanged heat with the air in the evaporator 22 flows into the accumulator 16, which is a gas-liquid separator, where it is separated into gas and liquid.
  • the gas-phase refrigerant flows out of the accumulator 16 and is sucked into the compressor 14 .
  • the liquid-phase refrigerant is stored in the accumulator 16 .
  • the decompression device 15 is, for example, a capillary tube, an orifice, or an expansion valve.
  • the evaporator 22 of the heat exchanger 10 is arranged in the first air passage through which air flows toward the air-conditioned space, and cools the air flowing through the first air passage with a refrigerant.
  • the condenser section 20 of the heat exchanger 10 is arranged in the second air passage through which the air discharged to the outside of the air-conditioned space flows, and releases heat from the refrigerant to the air flowing through the second air passage.
  • the heat exchanger 10 of the present embodiment is constructed by brazing together a plurality of constituent members made of metal such as aluminum alloy or copper alloy.
  • the heat exchanger 10 includes an intermediate section 24, one side plate section 30, the other side plate section 32, a condenser inlet pipe 34, a condenser outlet pipe 35, and an evaporator.
  • a section inlet pipe 36 and an evaporator section outlet pipe 37 are provided.
  • the one-side side plate portion 30 and the other-side side plate portion 32 are formed in a plate shape with a predetermined stacking direction Ds as the thickness direction. As shown in FIGS. 2 to 4, the evaporating section 22 and the condensing section 20 are arranged in the order of the evaporating section 22 and the condensing section 20 from one side in the heat exchanger vertical direction Dv that matches the alignment direction. An intermediate section 24 is arranged between the evaporating section 22 and the condensing section 20 .
  • the heat exchanger 10 is arranged in a posture inclined with respect to the vertical direction Dg (in other words, the vertical direction Dg) when mounted on a vehicle.
  • the vertical direction Dv is oblique to the vertical direction Dg.
  • One side in the longitudinal direction Dv of the heat exchanger is positioned above the other side. Therefore, the evaporating section 22, the intermediate section 24, and the condensing section 20 are arranged side by side in the order of the evaporating section 22, the intermediate section 24, and the condensing section 20 from the upper side in the vertical direction Dg.
  • the condensation section 20 is arranged to overlap the evaporation section 22 downward in the vertical direction Dg, and the intermediate section 24 is provided between the condensation section 20 and the evaporation section 22 . Therefore, when condensed water Wc is generated in the evaporating section 22 as the air is cooled, the condensed water Wc flows down from the evaporating section 22 to the condensing section 20 through the intermediate section 24 .
  • the stacking direction Ds is a direction intersecting the vertical direction Dg and the heat exchanger vertical direction Dv, or strictly speaking, a direction perpendicular to each.
  • the direction perpendicular to both the stacking direction Ds and the heat exchanger vertical direction Dv is referred to as the heat exchanger width direction Dw.
  • "upper side” means the upper side when mounted on the vehicle (i.e., the upper side of the vehicle)
  • “lower side” means the lower side when mounted on the vehicle (i.e., the upper side of the vehicle). , vehicle underside).
  • the one side plate portion 30 is arranged at one end of the heat exchanger 10 in the stacking direction Ds, and the other side plate portion 32 is arranged at the other end of the heat exchanger 10 in the stacking direction Ds. It is The condensation section 20, the evaporation section 22, and the intermediate section 24 are arranged between the one side plate section 30 and the other side plate section 32 in the stacking direction Ds. It is sandwiched between 32 and Condensing section 20 and evaporating section 22 are fixed to one side plate section 30 and other side plate section 32, respectively, and intermediate section 24 is fixed to condensing section 20 and evaporating section 22, respectively.
  • One side plate portion 30 is provided with a condenser inlet pipe 34 and an evaporator outlet pipe 37
  • the other side plate portion 32 is provided with a condenser outlet pipe 35 and an evaporator inlet pipe 36.
  • the condenser inlet pipe 34 is connected to the refrigerant flow upstream side of the condenser 20 and causes the refrigerant discharged from the compressor 14 to flow into the condenser 20
  • the condenser outlet pipe 35 is connected to the refrigerant flow downstream side of the condenser 20 and causes the refrigerant in the condenser 20 to flow out from the condenser 20 to the decompression device 15 .
  • the evaporator inlet pipe 36 is connected to the refrigerant flow upstream side of the evaporator 22 and allows the refrigerant from the decompression device 15 to flow into the evaporator 22 .
  • the evaporator outlet pipe 37 is connected to the refrigerant flow downstream side of the evaporator 22 and causes the refrigerant in the evaporator 22 to flow out from the evaporator 22 to the accumulator 16 .
  • the condensation section 20 has a first condensation tank section 201, a second condensation tank section 203, a plurality of condensation tube sections 205, and a plurality of condensation fins 206.
  • the condensation section 20 exchanges heat between the refrigerant flowing in the condensation tube section 205 and the air passing through the condensation section 20, and the heat exchange causes the refrigerant to release heat to the air, thereby condensing the refrigerant.
  • the first condensation tank portion 201 is provided on one side of the plurality of condensation tube portions 205 in the heat exchanger vertical direction Dv, and the second condensation tank portion 203 is provided on one side of the plurality of condensation tube portions 205 in the heat exchanger vertical direction Dv. provided on the other side.
  • the first condensation tank portion 201 has a plurality of first condensation tank constituent portions 202 arranged in series in the stacking direction Ds, and is configured by joining the plurality of first condensation tank constituent portions 202 to each other. . Therefore, the first condensation tank portion 201 is formed to extend in the stacking direction Ds.
  • the internal spaces 202a of the first condensing tank forming portions 202 communicate with each other through through holes.
  • the communication between the internal spaces 202a of the first condensing tank forming portions 202 adjacent to each other is blocked.
  • the second condensation tank portion 203 has a plurality of second condensation tank constituent portions 204 arranged in series in the stacking direction Ds, and is configured by joining the plurality of second condensation tank constituent portions 204 to each other. . Therefore, the second condensation tank portion 203 is formed to extend in the stacking direction Ds.
  • the internal spaces 204a of the second condensation tank constituent parts 204 communicate with each other through through holes. However, communication between the inner spaces 204a of the second condensing tank forming portions 204 adjacent to each other is cut off at the C2 and C3 portions (see FIG. 2).
  • the condensation tube portion 205 corresponds to the radiator tube of the present disclosure.
  • the condensation tube portion 205 has a flat shape whose thickness direction is the stacking direction Ds.
  • a condensation tube flow path 205a through which a refrigerant flows is formed inside the condensation tube portion 205.
  • the condensation tube flow path 205a extends in a meandering manner while reciprocating in the longitudinal direction Dv of the heat exchanger.
  • One end of the condensation tube channel 205 a is connected to the internal space 202 a of the first condensation tank component 202
  • the other end of the condensation tube channel 205 a is connected to the internal space 204 a of the second condensation tank component 204 .
  • the plurality of condensing tube portions 205 are stacked so as to be spaced apart from each other in the stacking direction Ds. Ventilation spaces 20a through which air passes are formed between the condensing tube portions 205 adjacent to each other. That is, a plurality of ventilation spaces 20a are formed side by side in the stacking direction Ds.
  • An arrow FLa represents the flow of air flowing into the ventilation space 20a of the condensation section 20. As shown in FIG. That is, the air passing through the ventilation space 20a of the condenser section 20 flows with one side in the heat exchanger width direction Dw as the air flow upstream side and the other side in the heat exchanger width direction Dw as the air flow downstream side.
  • the condenser fins 206 correspond to radiator fins of the present disclosure.
  • a plurality of condensation fins 206 are respectively arranged in the ventilation space 20 a of the condensation section 20 and brazed to the outside of the condensation tube section 205 adjacent to the condensation fins 206 .
  • the condensation fins 206 are corrugated fins, and the condensation fins 206 are formed with a plurality of louvers 206a (see FIG. 8). With such a configuration, the condensation fins 206 promote heat exchange between the air passing through the ventilation space 20 a of the condensation section 20 and the refrigerant in the condensation section 20 .
  • Condensation fins 206 are made of a metal with good thermal conductivity, such as an aluminum alloy or a copper alloy.
  • refrigerant from the compressor 14 is provided at one end of the second condensation tank section 203 in the stacking direction Ds. It flows into the internal space 204 a of the section 204 via the condensation section inlet pipe 34 .
  • the refrigerant flows from one side to the other side in the stacking direction Ds.
  • the refrigerant flows from the first condensation tank forming portion 202 side to the second condensation tank forming portion 204 side, or from the second condensation tank forming portion 204 side to the first condensation tank forming portion. It flows to the part 202 side.
  • arrow A2 indicates the refrigerant flow in the second condensing tank portion 203
  • arrow A3 indicates the refrigerant flow in the condensing tube portion 205. showing.
  • the refrigerant that has flowed through the condensation section 20 in this way flows from the internal space 204 a of the second condensation tank forming section 204 provided at the end of the second condensation tank section 203 on the other side in the stacking direction Ds to the condensation section outlet pipe 35 . to the decompression device 15 (see FIG. 1).
  • the evaporating section 22 has a first evaporating tank section 221, a second evaporating tank section 223, a plurality of evaporating tube sections 225, and a plurality of evaporating fins 226.
  • the evaporating portion 22 exchanges heat between the refrigerant flowing through the evaporating tube portion 225 and the air passing through the evaporating portion 22, and the heat exchange evaporates the refrigerant and cools the air.
  • the first evaporation tank portion 221 is provided on one side of the plurality of evaporation tube portions 225 in the heat exchanger vertical direction Dv, and the second evaporation tank portion 223 is provided on one side of the plurality of evaporation tube portions 225 in the heat exchanger vertical direction Dv. provided on the other side.
  • the first evaporation tank portion 221 has a plurality of first evaporation tank constituent portions 222 arranged in series in the stacking direction Ds, and is configured by joining the plurality of first evaporation tank constituent portions 222 to each other. . Therefore, the first evaporation tank portion 221 is formed to extend in the stacking direction Ds.
  • the internal spaces 222a of the first evaporation tank constituent parts 222 communicate with each other through through holes. However, in the E1 and E2 portions (see FIG. 2), communication between the internal spaces 222a of the first evaporation tank forming portions 222 adjacent to each other is blocked.
  • the second evaporation tank portion 223 has a plurality of second evaporation tank constituent portions 224 arranged in series in the stacking direction Ds, and is configured by joining the plurality of second evaporation tank constituent portions 224 to each other. . Therefore, the second evaporation tank portion 223 is formed to extend in the stacking direction Ds.
  • the internal spaces 224a of the second evaporation tank constituent parts 224 basically communicate with each other through through holes. However, in the E3 portion (see FIG. 2), the communication between the internal spaces 224a of the second evaporation tank forming portions 224 adjacent to each other is blocked.
  • the evaporator tube section 225 corresponds to the cooler tube of the present disclosure.
  • the evaporating tube portion 225 has a flat shape whose thickness direction is the stacking direction Ds. Inside the evaporating tube portion 225, an evaporating tube flow path 225a through which a refrigerant flows is formed.
  • the evaporation tube flow path 225a extends in a meandering manner while reciprocating in the longitudinal direction Dv of the heat exchanger.
  • One end of the evaporation tube flow path 225 a is connected to the internal space 222 a of the first evaporation tank forming part 222 , and the other end of the evaporation tube flow path 225 a is connected to the internal space 224 a of the second evaporation tank forming part 224 .
  • the plurality of evaporating tube portions 225 are arranged in layers so as to be spaced apart from each other in the stacking direction Ds. Ventilation spaces 22a through which air passes are formed between the evaporating tube portions 225 adjacent to each other. That is, a plurality of ventilation spaces 22a are formed side by side in the stacking direction Ds.
  • An arrow FLb (see FIGS. 3 and 4) represents the flow of air flowing into the ventilation space 22a of the evaporator 22. That is, the air passing through the ventilation space 22a of the evaporating section 22 flows with one side in the heat exchanger width direction Dw as the air flow upstream side and the other side in the heat exchanger width direction Dw as the air flow downstream side.
  • the plurality of evaporating fins 226 are arranged in the ventilation space 22a of the evaporating part 22 and are brazed to the outside of the evaporating tube part 225 adjacent to the evaporating fins 226 .
  • the evaporation fins 226 are corrugated fins, and the evaporation fins 226 are formed with a plurality of louvers like the condensation fins 206 .
  • the evaporating fins 226 facilitate heat exchange between the air passing through the ventilation space 22 a of the evaporating section 22 and the refrigerant in the evaporating section 22 .
  • Evaporation fins 226 are made of metal with good thermal conductivity, such as aluminum alloy or copper alloy.
  • the refrigerant from the decompression device 15 (see FIG. 1) is provided at the end of the first evaporating tank section 221 on the other side in the stacking direction Ds. It flows into the internal space 222 a of the unit 222 through the evaporator inlet pipe 36 . In the first evaporation tank portion 221 and the second evaporation tank portion 223, the refrigerant flows from the other side to the one side in the stacking direction Ds.
  • the refrigerant flows from the first evaporation tank forming portion 222 side to the second evaporation tank forming portion 224 side, or from the second evaporation tank forming portion 224 side to the first evaporation tank forming portion. It flows to the part 222 side.
  • Arrow B1 in FIG. 2 indicates the refrigerant flow in the first evaporation tank portion 221
  • arrow B2 indicates the refrigerant flow in the second evaporation tank portion 223
  • arrow B3 indicates the refrigerant flow in the evaporation tube portion 225. showing.
  • the refrigerant that has flowed through the evaporator 22 in this manner flows from the internal space 222 a of the first evaporator tank forming portion 222 provided at one end in the stacking direction Ds of the first evaporator tank 221 to the evaporator outlet pipe 37 . to the accumulator 16 (see FIG. 1).
  • the condensation section 20 and the evaporation section 22 of the heat exchanger 10 are constructed by laminating a plurality of laminated structures 38 in the lamination direction Ds and brazing them together.
  • the laminated structure 38 which is a tube sub-assembly, has a substantially flat shape whose thickness direction is the lamination direction Ds. The hand direction coincides with the heat exchanger width direction Dw.
  • Each of the plurality of laminated structures 38 is composed of a first plate member 381 and a second plate member 382 that are joined together by brazing to form a pair. Both the first plate member 381 and the second plate member 382 are made of a metal having good thermal conductivity, such as an aluminum alloy or a copper alloy.
  • FIG. 2 the cross sections of the first plate member 381, the second plate member 382, the condensation fins 206, and the evaporation fins 226 are indicated by thick lines instead of hatching. Also, in order to make the illustration easier to see, FIG. are displayed with a space between them). These are the same for later-described figures corresponding to FIG. 2 .
  • the first plate member 381 is arranged on one side in the stacking direction Ds with respect to the second plate member 382 in the laminate structure 38 including the first plate member 381.
  • FIG. The first plate member 381 has a plate shape having a thickness in the stacking direction Ds, and is recessed toward one side in the stacking direction Ds so as to form a recessed space through which the coolant flows.
  • the second plate member 382 has a plate shape having a thickness in the stacking direction Ds, and is recessed toward the other side in the stacking direction Ds so as to form a recessed space through which the coolant flows.
  • first plate member 381 and the second plate member 382 are joined together in a posture in which the recessed space of the first plate member 381 and the recessed space of the second plate member 382 face each other. It is composed by
  • the path 225a is formed by combining the concave space of the first plate member 381 and the concave space of the second plate member 382 together.
  • one laminated structure 38 includes one first condensation tank constituent portion 202, one second condensation tank constituent portion 204, one condensation tube constituent portion 205, one first evaporation tank constituent portion 222, and one second condensation tank constituent portion 222. It has two evaporation tank constituent parts 224 and one evaporation tube part 225 .
  • the first condensation tank component 202, the second condensation tank component 204, the condensation tube component 205, the first evaporation tank component 222, the second evaporation tank component 224, and the evaporation tube component 225 are integrated. It's becoming
  • the condensation tube flow path 205a located on the most one side in the stacking direction Ds among the plurality of condensation tube flow paths 205a is formed by the second plate member 382 and the one side plate portion 30.
  • the condensation tube flow path 205 a located on the othermost side in the stacking direction Ds is formed by the first plate member 381 and the other side plate portion 32 .
  • the internal spaces 202a, 204a of the first and second condensing tank components 202, 204, the internal spaces 222a, 224a of the first and second evaporative tank components 222, 224, and the evaporative tube channel 225a It is the same.
  • through-holes 38a are formed in the plurality of laminated structures 38, and the through-holes 38a separate the condensation section 20 and the evaporation section 22 in each of the laminated structures 38. It is arranged between the condensing section 20 and the evaporating section 22 as shown in FIG. This is to insulate between the condenser section 20 and the evaporator section 22 by the through holes 38a.
  • the intermediate portion 24 of the heat exchanger 10 is provided between the condensation portion 20 and the evaporation portion 22 as described above. is arranged in the middle of the path flowing from the evaporating section 22 to the condensing section 20 .
  • the intermediate portion 24 corresponds to the portion of the laminate structure 38 on one side and the portion on the other side of the through hole 38 a in the heat exchanger width direction Dw.
  • the intermediate portion 24 is formed with an intermediate surface 241 disposed in the middle of the flow of the condensed water Wc from the evaporating portion 22 to the condensing portion 20, and the outer surface of the intermediate portion 24 corresponds to the intermediate surface 241. .
  • the condensing section 20 has a specific configuration 207 for promoting the flow of the condensed water Wc from the evaporating section 22 to the condensing section 20.
  • FIG. The specific configuration 207 of the condensation section 20 allows the condensed water Wc that has flowed down to the condensation section 20 to wet and spread in the condensation section 20 compared to the case where the specific configuration 207 is not provided.
  • the specific configuration 207 of the condensation section 20 in this embodiment is the surface coating 207 a applied to the condensation section 20 .
  • the condensation section 20 has a surface coating 207 a applied to the condensation section 20 as the specific configuration 207 .
  • the surface coating 207 a is provided on the respective surfaces of the first condensing tank portion 201 , the second condensing tank portion 203 , the condensing tube portion 205 and the condensing fins 206 .
  • 5 shows the surface coating 207a applied to the surface of the condensation tube portion 205
  • FIG. 6 shows the surface coating 207a applied to the surface of the condensation fins 206.
  • the surface coating 207a of the condensation section 20 is a hydrophilic coating that improves the hydrophilicity of the surface of the condensation section 20 compared to when the surface coating 207a is not provided.
  • the surface of the condensation section 20 is, for example, the surfaces of the first condensation tank section 201 , the second condensation tank section 203 , the condensation tube section 205 and the condensation fins 206 .
  • this surface coating 207a can be formed by surface treatment such as painting or plating.
  • the surface coating 207a is formed by immersing the heat exchanger 10 after brazing in a dip bath containing a liquid coating agent.
  • the same surface coating as the surface coating 207a of the condenser section 20 is applied to the entire heat exchanger 10 . That is, the evaporating section 22 is also coated with a surface coating 227 a , and the surface coating 227 a of the evaporating section 22 is the same hydrophilic coating as the surface coating 207 a of the condensing section 20 . Therefore, the surface coating 207 a of the condenser section 20 gives the surface of the condenser section 20 the same hydrophilicity compared to the evaporator section 22 .
  • the surface coating 227a of the evaporating section 22 is also a hydrophilic coating, the surface coating 227a of the evaporating section 22 improves the hydrophilicity of the surface of the evaporating section 22 compared to the case where the surface coating 227a is not provided.
  • the surface of the evaporating section 22 is, for example, the surfaces of the first evaporating tank section 221 , the second evaporating tank section 223 , the evaporating tube section 225 and the evaporating fins 226 . 5 and 6 each show a cross section of the condensation section 20. In FIGS. 5 and 6, reference numerals indicate the configuration of the evaporation section 22 corresponding to the configuration of the condensation section 20 shown in FIGS. are also listed.
  • the intermediate section 24 has the surface coating 24a applied to the intermediate surface 241 as shown in FIG. have.
  • the surface coating 24a of the intermediate portion 24 is the same hydrophilic coating as the surface coatings 207a and 227a of the condensation portion 20 and the evaporation portion 22.
  • the surface coating 24 a of the intermediate portion 24 gives the intermediate surface 241 the same hydrophilicity compared to the evaporator portion 22 . Also, since the surface coating 24a of the intermediate portion 24 is also a hydrophilic coating, the surface coating 24a of the intermediate portion 24 makes the intermediate surface 241 more hydrophilic than if the surface coating 24a were not provided.
  • the intermediate portion 24 has the surface coating 24a as a promoting structure that promotes the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 to the same extent or more than that of the evaporating portion 22.
  • the surface coating 24a promotes wetting and spreading of the condensed water Wc more than when the surface coating 24a is not provided.
  • the condensation section 20 is positioned below the evaporation section 22 and arranged so that the condensed water Wc generated in the evaporation section 22 flows down.
  • Condensing section 20 has specific configuration 207 , and specific configuration 207 wets and spreads condensed water Wc that has flowed down to condensation section 20 in comparison with the case where specific configuration 207 is not provided. It's something that makes you laugh. Therefore, the condensed water Wc generated in the evaporating section 22 is easily pulled toward the condensing section 20 by the specific configuration 207 of the condensing section 20 . Therefore, the condensed water Wc is less likely to stay in the evaporating section 22 , and the condensed water Wc can be smoothly guided to the condensing section 20 .
  • the heat exchanger 10 is arranged in a posture inclined with respect to the vertical direction Dg as described above. Specifically, the upper side of the heat exchanger 10 is located upstream of the air flow passing through the condenser section 20 (in other words, upstream of the second air passage in which the condenser section 20 is arranged) with respect to the lower side. , the heat exchanger 10 is inclined with respect to the vertical direction Dg. In other words, the condensing section 20 and the evaporating section 22 of the heat exchanger 10 are each inclined with respect to the vertical direction Dg so that the air inflow surface 20b of the condensing section 20 into which the air flows faces obliquely downward.
  • the condensation section 20 has the surface coating 207a, which is a hydrophilic coating applied to the condensation section 20, as the specific configuration 207.
  • the surface coating 207a of the condensing section 20 imparts the same hydrophilicity to the surface of the condensing section 20 as compared to the evaporating section 22, such that the surface of the condensing section 20 is more hydrophilic than if the surface coating 207a were not provided. Improves hydrophilicity. Therefore, the condensed water Wc flowing into the condensing section 20 is not stagnant due to the surface properties of the condensing section 20, and the condensed water Wc can flow in the condensing section 20 while being thinned.
  • the condensed water Wc that has flowed down to the condenser 20 flows as a thin film, the heat exchange between the condensed water Wc and the refrigerant is efficiently performed in the condenser 20.
  • all of the condensed water that has flowed down to the condenser 20 It is easy to evaporate the water Wc.
  • the performance of the condenser 20 is improved, and the remaining condensed water Wc that has not been evaporated in the condenser 20 is prevented from splashing. can be prevented from remaining as liquid in the condensation section 20 .
  • the intermediate portion 24 is arranged in the middle of the path along which the condensed water Wc flows from the evaporating portion 22 to the condensing portion 20 .
  • the intermediate portion 24 has a surface coating 24a as a promoting structure that promotes the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 to the same extent or more than that of the evaporating portion 22 .
  • the surface coating 24a promotes wetting and spreading of the condensed water Wc more than when the surface coating 24a is not provided.
  • the surface coating 24 a of the intermediate section 24 gives the intermediate surface 241 the same hydrophilicity as compared to the evaporator section 22 . Also, the surface coating 24a of the intermediate portion 24 makes the intermediate surface 241 more hydrophilic than if the surface coating 24a were not provided.
  • the condensed water Wc can be thinned and flowed. This prevents the condensed water Wc from stagnation while flowing from the evaporating section 22 to the condensing section 20 , and allows the condensed water Wc to smoothly flow down from the evaporating section 22 to the condensing section 20 .
  • the plurality of evaporating tube portions 225 are configured integrally with the plurality of condensing tube portions 205, respectively. Therefore, it is possible to easily realize a structure in which the condensed water Wc generated in the evaporating section 22 easily flows down to the condensing tube section 205 and the condensing fins 206 of the condensing section 20 .
  • the surface coatings 24a, 207a, and 227a applied to the heat exchanger 10 are all the same hydrophilic coating, and it is easy to make the hydrophilicity uniform in the condensation section 20, the evaporation section 22, and the intermediate section 24. .
  • the surface coating 227a of the evaporating section 22 is a hydrophilic coating. Therefore, the surface coating 227a of the evaporating section 22 wets and spreads the condensed water Wc adhering to the surface of the evaporating section 22 in comparison with the case where the surface coating 227a is not provided. Corresponds to certain cooler configurations of the present disclosure that the evaporator section 22 has.
  • the condensation fins 206 have a plurality of fine grooves 206b formed on the surface of the condensation fins 206 as a specific configuration 207.
  • the plurality of fine grooves 206b are fine grooves formed so as to increase the hydrophilicity of the surface of the condensation fins 206. As shown in FIG.
  • each of the plurality of fine grooves 206b extends in a direction that intersects the heat exchanger width direction Dw, and is arranged side by side at predetermined intervals in the heat exchanger width direction Dw. Also, the plurality of fine grooves 206b are evenly provided on the entire surface of the condensation fins 206. As shown in FIG.
  • the condensation fins 206 have a plurality of fine grooves 206b formed to increase the hydrophilicity of the surface of the condensation fins 206 as the specific configuration 207. . Therefore, as indicated by the dashed arrow in FIG. 10, the condensed water Wc adhering to the surface of the condensation tube portion 205 smoothly flows from the condensation tube portion 205 to the condensation fins 206, and the condensed water Wc flowing to the condensation fins 206 is It is led to the louver 206a while being thinned.
  • the condensed water Wc exchanges heat with the refrigerant around the louver 206a, the heat exchange between the condensed water Wc and the refrigerant is efficiently performed in the condenser 20. For example, all the condensed water flowing down to the condenser 20 It is easy to evaporate Wc.
  • this embodiment is the same as the first embodiment.
  • the surface coatings 24a, 207a, and 227a are applied to the heat exchanger 10 in the first embodiment, the surface coatings 24a, 207a, and 227a may be applied to the heat exchanger 10 in the present embodiment. It may or may not be applied. Unless otherwise specified, this also applies to embodiments described later based on the first embodiment.
  • the intermediate section 24 of the heat exchanger 10 has a plurality of recessed sections 242 extending from the evaporating section 22 side to the condensing section 20 side.
  • the recessed portion 242 is formed such that a cross section perpendicular to the direction in which the recessed portion 242 extends (specifically, the longitudinal direction Dv of the heat exchanger) has a recessed shape.
  • the concave portion 242 extends continuously from the intermediate portion 24 to each of the condensation portion 20 and the evaporation portion 22 .
  • the condensation section 20 has a condensation recessed portion 208 formed continuously in series from the recessed portion 242 of the intermediate portion 24 and having a concave cross section.
  • the evaporating portion 22 has an evaporating concave portion 228 which is formed so as to continue in series from the concave portion 242 of the intermediate portion 24 and has a concave cross section.
  • the concave portion 242 of the intermediate portion 24 is also referred to as the intermediate concave portion 242 .
  • the heat exchanger 10 includes a plurality of overall concave portions 39 each composed of a condensation concave portion 208 , an intermediate concave portion 242 and an evaporating concave portion 228 .
  • each of the plurality of overall concave portions 39 is provided at one edge portion of the laminated structure 38 in the heat exchanger width direction Dw. It extends in the heat exchanger longitudinal direction Dv to the lower part of the part 20 . Therefore, in the condenser section 20, the plurality of overall concave portions 39 are provided upstream of the air flow passing through the condenser section 20, and in the evaporator section 22, they are provided upstream of the air flow passing through the evaporator section 22. is provided.
  • the condensation recessed portion 208 wets and spreads the condensed water Wc that has flowed down to the condensation portion 20 in comparison with the case where the condensation recessed portion 208 is not provided. 20 specific configurations 207 are provided.
  • the evaporation recessed portion 228 wets and spreads the condensed water Wc along the evaporation recessed portion 228 in the evaporator 22 compared to the case where the evaporation recessed portion 228 is not provided. It corresponds to a certain cooler configuration.
  • a pair of overall recessed portions 39 are provided for each laminated structure 38 .
  • One of the pair of overall concave portions 39 is formed by bending the edge of the first plate member 381 on one side in the heat exchanger width direction Dw toward one side in the stacking direction Ds.
  • the other of the pair of overall concave portions 39 is formed by bending the edge of the second plate member 382 on one side in the heat exchanger width direction Dw toward the other side in the stacking direction Ds.
  • the cross-sectional concave shape of the intermediate concave portion 242 in the intermediate portion 24 is V-shaped, for example.
  • the cross-sectional shape of the condensation recessed portion 208 is changed by the coupling of the two.
  • a certain concave shape is, for example, a U shape. This is the same for the evaporator 22 as well.
  • the intermediate portion 24 of the heat exchanger 10 has a plurality of concave portions 242 extending from the evaporating portion 22 side to the condensing portion 20 side.
  • the recessed portion 242 of the intermediate portion 24 is formed so that the cross section perpendicular to the direction in which the recessed portion 242 extends has a recessed shape. Therefore, as shown in FIG. 12, it is possible to guide the condensed water Wc inside the recessed portion 242 of the intermediate portion 24 and lead it to the condensation portion 20 .
  • the recessed portion 242 of the intermediate portion 24 acts to wet and spread the condensed water Wc adhering to the intermediate portion 24 , so that the wetting and spreading of the condensed water Wc is the same as that of the evaporating portion 22 . It can be said that it is provided as a promotion configuration for promoting the above.
  • the concave portion 242 of the intermediate portion 24 extends continuously from the intermediate portion 24 to the condensation portion 20 and the evaporation portion 22 respectively.
  • the condensation concave portion 208 formed by extending from the concave portion 242 of the intermediate portion 24 is provided upstream of the air flow passing through the condensation portion 20 in the condensation portion 20 .
  • the condensed water Wc generated in the evaporating section 22 can be guided to the air flow upstream side of the condensing section 20 .
  • This makes it easier for the condensed water Wc to spread in the condensing part 20 along with the air passing through the condensing part 20, making it possible to reduce the thickness of the condensed water Wc and promote the evaporation of the condensed water Wc.
  • the upper side of the heat exchanger 10 of the present embodiment is located on the upstream side of the air flow in the condenser section 20 (in other words, the upstream side of the second air passage) with respect to the lower side. This is particularly effective because the container 10 is inclined with respect to the vertical direction Dg.
  • this embodiment is the same as the first embodiment.
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described second embodiment.
  • a plurality of grooves 241a are formed in the intermediate surface 241 in this embodiment.
  • the plurality of grooves 241a are longitudinal grooves extending in the vertical direction Dg.
  • the plurality of grooves 241a of the present embodiment are longitudinal grooves extending along the vertical direction Dg. 14 shows the intermediate surface 241 facing the other side in the stacking direction Ds, the plurality of grooves 241a are formed not only in the intermediate surface 241 facing the other side in the stacking direction Ds but also in the stacking direction.
  • An intermediate surface 241 facing one side of Ds is also formed in the same manner as shown in FIG.
  • the plurality of grooves 241a of the intermediate surface 241 may be distributed over the entire intermediate portion 24. It is provided so as to be unevenly distributed. Specifically, the plurality of grooves 241a of the intermediate surface 241 are provided on one side of the through hole 38a of the laminated structure 38 in the heat exchanger width direction Dw.
  • the intermediate surface 241 is formed with a plurality of grooves 241a.
  • the condensed water Wc adhering to the intermediate surface 241 spreads while permeating into the plurality of grooves 241a.
  • the wet spreading of the condensed water Wc is the same or larger than that of the evaporating section 22. It can be said that it is provided as a promotion configuration for further promotion.
  • the plurality of grooves 241a formed in the intermediate surface 241 are vertical grooves extending in the vertical direction Dg. Therefore, the plurality of grooves 241a act to wet and spread the condensed water Wc adhering to the intermediate surface 241 in the vertical direction Dg. Therefore, the synergistic effect of the action of the plurality of grooves 241 a and the action of gravity can promote the flow of the condensed water Wc to the condensation section 20 .
  • the longitudinal grooves extending in the vertical direction Dg do not need to extend parallel to the vertical direction Dg, and may extend at an angle to the vertical direction Dg as long as they extend vertically.
  • this embodiment is the same as the first embodiment.
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described second or third embodiment.
  • the plurality of grooves 241a formed in the intermediate surface 241 do not extend along the vertical direction Dg.
  • the plurality of grooves 241a extend obliquely with respect to the vertical direction Dg.
  • the plurality of grooves 241a of the intermediate surface 241 are inclined with respect to the vertical direction Dg, they still extend in the vertical direction Dg.
  • the plurality of grooves 241a are provided in a grid pattern. Therefore, the surface area of the intermediate surface 241 can be made larger than when the plurality of grooves 241a are simply arranged in parallel. can do.
  • this embodiment is the same as the fourth embodiment.
  • the same effects as in the fourth embodiment can be obtained from the configuration common to that of the fourth embodiment.
  • a plurality of vertical grooves 241a are formed in an intermediate surface 241, as in the fourth embodiment.
  • the condenser section 20 has a plurality of condensation section surface grooves 209 formed on the surface of the condenser tube section 205 as a specific feature 207 . In this respect, this embodiment differs from the fourth embodiment.
  • the plurality of condensation section surface grooves 209 are formed not only on the surface of the condensation tube section 205 but also on the surface of the condensation section 20 around the first condensation tank forming section 202 . Also, the condensation portion surface grooves 209 are formed on both the surface of the condensation portion 20 on one side and the surface on the other side in the stacking direction Ds.
  • some of the plurality of condensation portion surface grooves 209 are continuously connected to some of the plurality of grooves 241 a formed in the intermediate surface 241 .
  • the groove shape of the condensation portion surface groove 209 is the same as the groove shape of the groove 241 a of the intermediate surface 241 . That is, the plurality of condensation portion surface grooves 209 are longitudinal grooves extending in the vertical direction Dg. Specifically, the plurality of condensation portion surface grooves 209 of this embodiment are longitudinal grooves extending along the vertical direction Dg.
  • the plurality of condensation section surface grooves 209 may be distributed over the entire surface of the condensation section 20 . It is only provided around and on top of the condensation tube section 205 . This is because the condensed water Wc that has flowed down to the condensation section 20 first adheres to the surroundings of the first condensation tank forming section 202 and the upper portion of the condensation tube section 205 in the condensation section 20 .
  • the condensation section 20 has a plurality of condensation section surface grooves 209 formed on the surface of the condensation tube section 205 as the specific configuration 207 .
  • the condensed water Wc adhering to the surface of the condensation tube portion 205 in which the condensation portion surface grooves 209 are formed spreads while permeating into the condensation portion surface grooves 209. It can flow smoothly.
  • the plurality of condensation portion surface grooves 209 are longitudinal grooves extending in the vertical direction Dg. Therefore, the plurality of condensation portion surface grooves 209 act to wet and spread the condensed water Wc adhering to the surface on which the condensation portion surface grooves 209 are formed in the vertical direction Dg. Therefore, the synergistic effect of the action of the plurality of condensing section surface grooves 209 and the action of gravity can promote the flow and spread of the condensed water Wc on the surface of the condensing section 20 .
  • the longitudinal grooves extending in the vertical direction Dg do not need to extend parallel to the vertical direction Dg, and may extend at an angle to the vertical direction Dg as long as they extend vertically.
  • this embodiment is the same as the fourth embodiment.
  • the same effects as in the fourth embodiment can be obtained from the configuration common to that of the fourth embodiment.
  • a plurality of condensation section surface grooves 209 formed on the surface of the condensation section 20 are provided in a lattice similar to the grooves 241a of the intermediate surface 241 shown in FIG. ing. Therefore, since the surface area of the condensation section 20 can be made larger than when the plurality of condensation section surface grooves 209 are simply arranged in parallel, the surface of the condensation section 20 can be made hydrophilic, and the surface of the condensation section 20 can be of water can be promoted.
  • this embodiment is the same as the sixth embodiment.
  • the same effects as in the sixth embodiment can be obtained from the same configuration as in the sixth embodiment.
  • the condensation section 20 and the evaporation section 22 are fixed to the one side plate section 30 and the other side plate section 32, respectively, but are not directly connected. do not have.
  • the evaporating section 22 is spaced apart from the condensing section 20 in the longitudinal direction Dv of the heat exchanger.
  • the heat exchanger 10 does not have a configuration corresponding to the intermediate section 24 of the first embodiment.
  • surface coatings 207a and 227a are applied to the heat exchanger 10 in the same manner as in the first embodiment.
  • this embodiment is the same as the first embodiment.
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with any of the second, third, sixth, and seventh embodiments described above.
  • an intermediate portion 24 configured as a component separate from the condensation portion 20 and the evaporation portion 22 is inserted into the gap between the condensation portion 20 and the evaporation portion 22.
  • the condenser section 20 and the evaporator section 22 are connected to each other in the longitudinal direction Dv of the heat exchanger via the intermediate section 24 .
  • the intermediate portion 24 of the present embodiment has a function of promoting the flow of the condensed water Wc similarly to the intermediate portion 24 of the first embodiment.
  • a surface coating 24a (see FIG. 7), which is a hydrophilic coating, is applied.
  • the surface of the intermediate portion 24 of the present embodiment is formed so as to be smoothly connected to the surface of the evaporating portion 22 and the surface of the condensing portion 20 without any step. This is to prevent the condensed water Wc from flowing from the evaporating portion 22 to the condensing portion 20 via the intermediate portion 24 .
  • the intermediate part 24 may be configured as part of an air conditioning case that accommodates the heat exchanger 10 and forms a ventilation passage.
  • the intermediate portion 24 may be configured as a component separate from the air conditioning case and housed in the air conditioning case together with the heat exchanger 10 .
  • a plurality of intermediate portions 24 are provided side by side in the stacking direction Ds (see FIG. 18). inserted in each.
  • this embodiment is the same as the eighth embodiment.
  • the same effects as in the eighth embodiment can be obtained from the configuration common to that of the eighth embodiment.
  • the intermediate portion 24 of the present embodiment corresponds to the intermediate portion 24 of the first embodiment
  • the effect of the intermediate portion 24, which is provided by the configuration common to that of the first embodiment, is the same as that of the first embodiment.
  • the form can be obtained as well.
  • this embodiment is a modification based on the eighth embodiment, it is also possible to combine this embodiment with any of the above-described second to seventh embodiments.
  • the same surface coating as the surface coating 207a of the condenser section 20 shown in FIGS. be.
  • the evaporation section 22 is not provided with the surface coating 227a.
  • the surface coating 207a of the condensing section 20 will also render the surface of the condensing section 20 more hydrophilic than the evaporator section 22.
  • the evaporating section 22 is not provided with the surface coating 227a and the intermediate section 24 is provided with the surface coating 24a (see FIG. 7).
  • the surface coating 24 a of the intermediate section 24 also renders the intermediate surface 241 more hydrophilic than the evaporator section 22 . That is, it can be said that the intermediate portion 24 is configured to promote the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 by the surface coating 24a more than the evaporating portion 22.
  • each of the plurality of fine grooves 206b provided in the condensation fin 206 extends in a direction intersecting the heat exchanger width direction Dw. Although they are arranged side by side at predetermined intervals in the exchanger width direction Dw, this is an example.
  • the plurality of fine grooves 206b may be provided in a grid pattern, or may be formed on the surface of the condensation fins 206 so as to extend curvedly.
  • contoured portion 39 is an example.
  • intermediate recess 242 is provided, but one or both of condensing recess 208 and evaporating recess 228 are not provided.
  • the heat exchanger 10, the pressure reducing device 15, and the accumulator 16 are configured as separate devices, but this is an example.
  • the heat exchanger 10, decompression device 15, and accumulator 16 may be integrated.
  • the decompression device 15 shown in FIG. 21 is a capillary tube, the type of the decompression device 15 is not limited.
  • Patent Document 1 discloses a tubular member in which a water conduit is formed to guide condensed water from an evaporator corresponding to the evaporating section 22 to a condenser corresponding to the condensing section 20.
  • Intermediate section 24 may be such a tubular member.
  • the inner wall surface of the tubular member facing the water conduit corresponds to the intermediate surface 241, and for example, the inner wall surface of the tubular member is coated with a hydrophilic coating.
  • the surface coating 227a applied to the surface of the evaporator section 22 corresponds to a certain cooler configuration of the present disclosure
  • the evaporative concave section 228 corresponds to the certain cooler configuration of the present disclosure.
  • the position of the condenser section 20 and the position of the evaporator section 22 in the heat exchanger width direction Dw are aligned with each other.
  • the condensation section 20 and the evaporation section 22 are arranged side by side, this is an example.
  • the condensation section 20 and the evaporation section 22 are arranged side by side so that the positions of the condensation section 20 and the evaporation section 22 in the width direction Dw of the heat exchanger are shifted from each other. It doesn't matter if it is. 22 and 23, the condensation section 20 and the evaporation section 22 are not inclined with respect to the vertical direction Dg, but are oriented along the vertical direction Dg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchange system for performing heat exchange between a refrigerant and air comprises: a cooler (22) for cooling air by means of a refrigerant; and a radiator (20) that causes heat to be dissipated from the refrigerant to air. The radiator is positioned below the cooler and arranged so that condensed water (Wc) generated by the cooler flows downward toward the radiator. The radiator has a specific configuration (207). The specific configuration causes the moisture of condensed water flowing down to the radiator to be spread out more at the radiator than cases in which the radiator is not equipped with the specific configuration.

Description

熱交換システムheat exchange system 関連出願への相互参照Cross-references to related applications
 本出願は、2021年5月18日に出願された日本特許出願番号2021-84033号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-84033 filed on May 18, 2021, the contents of which are incorporated herein by reference.
 本開示は、冷媒と空気とを熱交換させる熱交換システムに関するものである。 The present disclosure relates to a heat exchange system that exchanges heat between refrigerant and air.
 例えば、特許文献1に記載された車両用の空調装置はエバポレータとコンデンサとを備えており、そのエバポレータとコンデンサは上記の熱交換システムを構成している。そのエバポレータとコンデンサは1つの筐体の中に収容されている。また、コンデンサはエバポレータに対し下側に配置され、エバポレータで発生した凝縮水をコンデンサへ導く導水路が設けられている。
 特許文献1の空調装置では、エバポレータの凝縮水をコンデンサにかけることによりコンデンサでの冷媒の冷却効率を引き上げて、エバポレータとコンデンサとを含む冷凍サイクル全体の効率向上が図られている。
For example, a vehicle air conditioner disclosed in Patent Document 1 includes an evaporator and a condenser, and the evaporator and condenser constitute the heat exchange system. The evaporator and condenser are housed in one housing. Also, the condenser is arranged below the evaporator, and is provided with a conduit for guiding the condensed water generated in the evaporator to the condenser.
In the air conditioner disclosed in Patent Document 1, condensed water from the evaporator is applied to the condenser to raise the cooling efficiency of the refrigerant in the condenser, thereby improving the efficiency of the entire refrigeration cycle including the evaporator and the condenser.
国際公開第2018/235765号WO2018/235765
 確かに、コンデンサなどの放熱器において冷媒を冷却する冷却効率の向上を図るためには、放熱器に水(例えば、凝縮水)を掛けることは有効である。この場合、エバポレータなどの冷却器で発生した凝縮水を放熱器へ円滑に導く必要がある。もしも冷却器から放熱器への導水が滞った場合には、冷却器に滞留した水が飛散する水飛びや、放熱器における熱交換の不足といった事態を生じ得るからである。 Certainly, in order to improve the cooling efficiency of cooling the refrigerant in a radiator such as a condenser, it is effective to pour water (for example, condensed water) over the radiator. In this case, it is necessary to smoothly guide condensed water generated in a cooler such as an evaporator to a radiator. This is because, if the flow of water from the cooler to the radiator is interrupted, a situation may occur in which the water remaining in the cooler scatters, or the heat exchange in the radiator is insufficient.
 しかしながら、特許文献1では、冷却器で発生した凝縮水を放熱器へ円滑に導くことについて一切言及されていない。発明者らの詳細な検討の結果、以上のようなことが見出された。 However, Patent Document 1 makes no mention of smoothly guiding the condensed water generated in the cooler to the radiator. As a result of detailed studies by the inventors, the above was found.
 本開示は上記点に鑑みて、冷却器で発生した凝縮水を放熱器へ円滑に導くことが可能な熱交換システムを提供することを目的とする。 In view of the above points, the present disclosure aims to provide a heat exchange system that can smoothly guide condensed water generated in a cooler to a radiator.
 上記目的を達成するため、本開示の1つの観点によれば、熱交換システムは、
 冷媒と空気とを熱交換させる熱交換システムであって、
 冷媒で空気を冷却する冷却器と、
 冷却器に対し下側に位置し、冷却器で生じた凝縮水が流下してくるように配置され、特定構成を有し、冷媒から空気へ放熱させる放熱器とを備え、
 特定構成は、放熱器で、その放熱器に流下してきた凝縮水を、特定構成が設けられない場合と比較してより濡れ拡がらせるものである。
To achieve the above objects, according to one aspect of the present disclosure, a heat exchange system includes:
A heat exchange system for exchanging heat between a refrigerant and air,
a cooler that cools air with a refrigerant;
A radiator located below the cooler, arranged so that condensed water generated in the cooler flows down, has a specific configuration, and dissipates heat from the refrigerant to the air,
The specific configuration is a radiator, which allows condensed water that has flowed down to the radiator to wet and spread more than when the specific configuration is not provided.
 このようにすれば、冷却器で生じた凝縮水は、放熱器の特定構成によって放熱器側へ引っ張られやすくなる。そのため、凝縮水が冷却器で滞留しにくく、その凝縮水を放熱器へ円滑に導くことが可能である。 By doing so, the condensed water generated in the cooler is more likely to be pulled toward the radiator due to the specific configuration of the radiator. Therefore, the condensed water is less likely to stay in the cooler, and the condensed water can be smoothly guided to the radiator.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態の熱交換器を有する冷凍サイクル回路を示した冷媒回路図である。1 is a refrigerant circuit diagram showing a refrigeration cycle circuit having a heat exchanger of a first embodiment; FIG. 第1実施形態において熱交換器の概略構成を模式的に示した断面図である。It is a sectional view showing typically a schematic structure of a heat exchanger in a 1st embodiment. 図2のIII-III断面において、第1実施形態の熱交換器を構成する積層構成体を抜粋して示した図である。FIG. 3 is a diagram showing, in section III-III of FIG. 2, an excerpt of a laminated structure constituting the heat exchanger of the first embodiment; 図2のIV-IV断面において、第1実施形態の熱交換器を構成する積層構成体を抜粋して示した図である。FIG. 3 is a view showing an excerpt from the laminated structure constituting the heat exchanger of the first embodiment in the IV-IV cross section of FIG. 2; 第1実施形態において、凝縮チューブ部を構成する板材の厚みが表われるように切断して得られる凝縮チューブ部の部分的な断面を模式的に示した断面図であって、凝縮部の構成を示す符号に加えて蒸発部の構成を示す符号も併記した図である。FIG. 4 is a cross-sectional view schematically showing a partial cross-section of the condensation tube portion obtained by cutting the plate material constituting the condensation tube portion so as to reveal the thickness of the plate material constituting the condensation tube portion in the first embodiment, and showing the configuration of the condensation portion. FIG. 2 is a diagram in which, in addition to the reference numerals, reference numerals indicating the configuration of the evaporating section are also written. 第1実施形態において、凝縮フィンを構成する板材の厚みが表われるように切断して得られる凝縮フィンの部分的な断面を模式的に示した断面図であって、凝縮部の構成を示す符号に加えて蒸発部の構成を示す符号も併記した図である。FIG. 4 is a cross-sectional view schematically showing a partial cross-section of a condensation fin obtained by cutting the plate material constituting the condensation fin so that the thickness of the plate material constituting the condensation fin is exposed in the first embodiment; In addition to , reference numerals indicating the configuration of the evaporator are also shown. 図4のVII-VII断面を模式的に示した断面図であって、中間部(すなわち、蒸発部と凝縮部とが接続している部分)を構成する板材の厚みが表われるように中間部を切断した図である。FIG. 5 is a cross-sectional view schematically showing the VII-VII cross section of FIG. 1 is a cutaway view of FIG. 第2実施形態において、凝縮フィンを単体で抜粋しその一部分を拡大した模式的な斜視図である。FIG. 10 is a schematic perspective view of a single condensation fin extracted and partially enlarged in the second embodiment. 第2実施形態において図8のIX-IX断面を模式的に示した断面図であって、凝縮フィンに設けられた微細溝が延伸する方向に垂直な平面で切断して得られる凝縮フィンの部分的な断面を示した図である。FIG. 9 is a cross-sectional view schematically showing the IX-IX cross section of FIG. 8 in the second embodiment, and is a portion of the condensation fin obtained by cutting along a plane perpendicular to the direction in which the fine grooves provided in the condensation fin extend. 1 is a diagram showing a typical cross section; FIG. 第2実施形態において、凝縮フィンとその凝縮フィンに隣接する凝縮チューブ部とを模式的に示した斜視図であって、凝縮チューブ部から凝縮フィンへ流れる凝縮水の流れを破線矢印で示した図である。FIG. 10 is a perspective view schematically showing the condensation fins and the condensation tube portions adjacent to the condensation fins in the second embodiment, in which the flow of condensed water flowing from the condensation tube portions to the condensation fins is indicated by dashed arrows; is. 第3実施形態において、熱交換器を構成する積層構成体を抜粋して示した図であって、図4に相当する図である。FIG. 5 is a view corresponding to FIG. 4 , showing an excerpt of a laminated structure constituting a heat exchanger in the third embodiment; 第3実施形態において、図11のXII-XII断面を示した断面図である。FIG. 12 is a sectional view showing the XII-XII section of FIG. 11 in the third embodiment; 第3実施形態において、図11のXIII部分を拡大して模式的に示した斜視図である。FIG. 12 is a perspective view schematically showing an enlarged portion XIII of FIG. 11 in the third embodiment; 第4実施形態において、熱交換器を構成する積層構成体を抜粋して示した図であって、図4に相当する図である。FIG. 5 is a view corresponding to FIG. 4 , showing an excerpt of a laminated structure constituting a heat exchanger in the fourth embodiment; 第5実施形態において、図14のXV部分に相当する部分を拡大して模式的に示した図であって、中間面に形成された複数の溝を表した図である。FIG. 15 is a schematic enlarged view of the portion corresponding to the XV portion of FIG. 14 in the fifth embodiment, showing a plurality of grooves formed in the intermediate surface. 第6実施形態において、熱交換器を構成する積層構成体を抜粋して示した図であって、図4に相当する図である。FIG. 10 is a view corresponding to FIG. 4 , showing an excerpt of the laminated structure constituting the heat exchanger in the sixth embodiment. 第7実施形態において、図16のXVII部分に相当する部分を拡大して模式的に示した図であって、凝縮部の表面に形成された複数の凝縮部表面溝を表した図である。FIG. 17 is a diagram schematically showing an enlarged portion corresponding to the XVII portion of FIG. 16 in the seventh embodiment, showing a plurality of condensation section surface grooves formed on the surface of the condensation section. 第8実施形態において熱交換器の概略構成を模式的に示した断面図であって、図2に相当する図である。FIG. 11 is a cross-sectional view schematically showing the schematic configuration of a heat exchanger in an eighth embodiment, corresponding to FIG. 2 ; 図18のXIX-XIX断面において、第8実施形態の熱交換器を構成する凝縮部と蒸発部とを抜粋して示した図であって、図4に相当する図である。FIG. 19 is a view corresponding to FIG. 4, showing the condenser section and the evaporator section of the heat exchanger of the eighth embodiment, taken along the XIX-XIX section of FIG. 18; 第9実施形態において、熱交換器を構成する凝縮部と蒸発部と中間部とを抜粋して示した図であって、図4に相当する図である。FIG. 11 is a view corresponding to FIG. 4 , showing a condensing section, an evaporating section, and an intermediate section that constitute a heat exchanger in a ninth embodiment; 他の実施形態において、凝縮部および蒸発部を備えた熱交換器と、減圧装置と、アキュムレータとが一体構成になったユニットを示した斜視図である。FIG. 10 is a perspective view showing a unit in which a heat exchanger with a condenser and an evaporator, a pressure reducing device, and an accumulator are integrated in another embodiment. 他の実施形態において、熱交換器を構成する積層構成体を抜粋して示した図であって、図4に相当する図である。FIG. 5 is a view corresponding to FIG. 4 and showing an extract of a laminated structure constituting a heat exchanger in another embodiment. 他の実施形態において、熱交換器を構成する積層構成体を抜粋して示した図であって、図20に相当する図である。FIG. 21 is a view corresponding to FIG. 20 and showing an extract of a laminated structure constituting a heat exchanger in another embodiment.
 以下、図面を参照しながら、各実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Each embodiment will be described below with reference to the drawings. In addition, in each of the following embodiments, the same or equivalent portions are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1、図2に示すように、本実施形態では、熱交換器10が、冷媒と空気とを熱交換させる熱交換システムとして設けられている。例えば、その熱交換器10は、車両用の空調装置に用いられ、その車両用の空調装置に含まれ冷媒が循環する冷凍サイクル回路12の一部を構成する。車両用の空調装置は、空調対象空間である車室内の空調を行う。
(First embodiment)
As shown in FIGS. 1 and 2, in this embodiment, a heat exchanger 10 is provided as a heat exchange system for exchanging heat between refrigerant and air. For example, the heat exchanger 10 is used in a vehicle air conditioner and constitutes part of a refrigeration cycle circuit 12 that is included in the vehicle air conditioner and in which a refrigerant circulates. A vehicle air conditioner air-conditions a vehicle interior, which is a space to be air-conditioned.
 冷凍サイクル回路12において、その冷凍サイクル回路12に含まれる圧縮機14が圧縮した冷媒は、熱交換器10の一部を構成し放熱器として機能する凝縮部20へ流入し、凝縮部20で空気と熱交換させられる。凝縮部20で空気と熱交換した冷媒は、減圧装置15で減圧膨張させられ、減圧装置15から、熱交換器10の一部を構成し冷却器として機能する蒸発部22へ流入し、蒸発部22で空気と熱交換させられる。その蒸発部22で空気と熱交換した冷媒は、気液分離器であるアキュムレータ16へ流入し、アキュムレータ16で気液分離される。そのアキュムレータ16で気液分離された冷媒のうち気相の冷媒は、アキュムレータ16から流出し圧縮機14へ吸い込まれる。その一方で、アキュムレータ16で気液分離された冷媒のうち液相の冷媒は、アキュムレータ16内に貯留される。なお、減圧装置15は、例えばキャピラリーチューブ、オリフィス、または膨張弁などである。 In the refrigerating cycle circuit 12, the refrigerant compressed by the compressor 14 included in the refrigerating cycle circuit 12 flows into the condenser section 20 that constitutes a part of the heat exchanger 10 and functions as a radiator. heat is exchanged with The refrigerant that has exchanged heat with the air in the condenser section 20 is decompressed and expanded by the decompression device 15, flows from the decompression device 15 into the evaporator section 22 that constitutes a part of the heat exchanger 10 and functions as a cooler, and then flows into the evaporator section. At 22, it is made to exchange heat with air. The refrigerant that has exchanged heat with the air in the evaporator 22 flows into the accumulator 16, which is a gas-liquid separator, where it is separated into gas and liquid. Of the refrigerant separated into gas and liquid by the accumulator 16 , the gas-phase refrigerant flows out of the accumulator 16 and is sucked into the compressor 14 . On the other hand, of the refrigerant separated into gas and liquid by the accumulator 16 , the liquid-phase refrigerant is stored in the accumulator 16 . Incidentally, the decompression device 15 is, for example, a capillary tube, an orifice, or an expansion valve.
 例えば、熱交換器10の蒸発部22は、空調対象空間へ向かって空気が流れる第1の空気通路に配置され、その第1の空気通路に流通する空気を冷媒によって冷却する。また、熱交換器10の凝縮部20は、空調対象空間の外へ排出される空気が流れる第2の空気通路に配置され、その第2の空気通路に流通する空気へ冷媒から放熱させる。 For example, the evaporator 22 of the heat exchanger 10 is arranged in the first air passage through which air flows toward the air-conditioned space, and cools the air flowing through the first air passage with a refrigerant. Also, the condenser section 20 of the heat exchanger 10 is arranged in the second air passage through which the air discharged to the outside of the air-conditioned space flows, and releases heat from the refrigerant to the air flowing through the second air passage.
 図2に示すように、本実施形態の熱交換器10は、例えば、アルミニウム合金または銅合金などの金属からなる複数の構成部材が互いにロウ付け接合されることにより構成されている。熱交換器10は、上記した凝縮部20と蒸発部22とに加え、中間部24と一方側サイドプレート部30と他方側サイドプレート部32と凝縮部入口管34と凝縮部出口管35と蒸発部入口管36と蒸発部出口管37とを備えている。 As shown in FIG. 2, the heat exchanger 10 of the present embodiment is constructed by brazing together a plurality of constituent members made of metal such as aluminum alloy or copper alloy. In addition to the condenser section 20 and the evaporator section 22, the heat exchanger 10 includes an intermediate section 24, one side plate section 30, the other side plate section 32, a condenser inlet pipe 34, a condenser outlet pipe 35, and an evaporator. A section inlet pipe 36 and an evaporator section outlet pipe 37 are provided.
 一方側サイドプレート部30と他方側サイドプレート部32は、所定の積層方向Dsを厚み方向とした板状を成している。そして、図2~図4に示すように、蒸発部22と凝縮部20は、それらの並び方向に一致する熱交換器縦方向Dvの一方側から、蒸発部22、凝縮部20の順に並んで配置され、その蒸発部22と凝縮部20との間に中間部24が配置されている。 The one-side side plate portion 30 and the other-side side plate portion 32 are formed in a plate shape with a predetermined stacking direction Ds as the thickness direction. As shown in FIGS. 2 to 4, the evaporating section 22 and the condensing section 20 are arranged in the order of the evaporating section 22 and the condensing section 20 from one side in the heat exchanger vertical direction Dv that matches the alignment direction. An intermediate section 24 is arranged between the evaporating section 22 and the condensing section 20 .
 図3、図4に示すように、熱交換器10は、車両に搭載された車両搭載状態では鉛直方向Dg(言い換えれば、上下方向Dg)に対して傾斜した姿勢で配置されるので、熱交換器縦方向Dvは鉛直方向Dgに対し斜めの方向になる。そして、熱交換器縦方向Dvの一方側は他方側に対し上側とされる。従って、蒸発部22と中間部24と凝縮部20は、鉛直方向Dgでは上側から、蒸発部22、中間部24、凝縮部20の順に並んで配置されている。例えば、凝縮部20は鉛直方向Dgにおいて蒸発部22に対し下側に重なるように配置され、中間部24は、その凝縮部20と蒸発部22との間に設けられている。従って、蒸発部22で空気の冷却に伴って凝縮水Wcが発生した場合には、その凝縮水Wcは、蒸発部22から中間部24を通って凝縮部20に流下してくることになる。 As shown in FIGS. 3 and 4, the heat exchanger 10 is arranged in a posture inclined with respect to the vertical direction Dg (in other words, the vertical direction Dg) when mounted on a vehicle. The vertical direction Dv is oblique to the vertical direction Dg. One side in the longitudinal direction Dv of the heat exchanger is positioned above the other side. Therefore, the evaporating section 22, the intermediate section 24, and the condensing section 20 are arranged side by side in the order of the evaporating section 22, the intermediate section 24, and the condensing section 20 from the upper side in the vertical direction Dg. For example, the condensation section 20 is arranged to overlap the evaporation section 22 downward in the vertical direction Dg, and the intermediate section 24 is provided between the condensation section 20 and the evaporation section 22 . Therefore, when condensed water Wc is generated in the evaporating section 22 as the air is cooled, the condensed water Wc flows down from the evaporating section 22 to the condensing section 20 through the intermediate section 24 .
 なお、図2~図4に示すように、積層方向Dsは鉛直方向Dgと熱交換器縦方向Dvとのそれぞれに対し交差する方向、厳密に言えば、それぞれに対し垂直な方向である。また、本実施形態では、積層方向Dsと熱交換器縦方向Dvとの両方に垂直な方向を熱交換器幅方向Dwと呼ぶものとする。また、本実施形態の説明において特に断りのない限り、「上側」とは車両搭載状態での上側(すなわち、車両上側)を意味し、「下側」とは車両搭載状態での下側(すなわち、車両下側)を意味する。 As shown in FIGS. 2 to 4, the stacking direction Ds is a direction intersecting the vertical direction Dg and the heat exchanger vertical direction Dv, or strictly speaking, a direction perpendicular to each. Moreover, in this embodiment, the direction perpendicular to both the stacking direction Ds and the heat exchanger vertical direction Dv is referred to as the heat exchanger width direction Dw. Further, in the description of the present embodiment, unless otherwise specified, "upper side" means the upper side when mounted on the vehicle (i.e., the upper side of the vehicle), and "lower side" means the lower side when mounted on the vehicle (i.e., the upper side of the vehicle). , vehicle underside).
 一方側サイドプレート部30は、熱交換器10のうち積層方向Dsの一方側の端に配置され、他方側サイドプレート部32は、熱交換器10のうち積層方向Dsの他方側の端に配置されている。凝縮部20と蒸発部22と中間部24は、積層方向Dsにおいて一方側サイドプレート部30と他方側サイドプレート部32との間に配置され、その一方側サイドプレート部30と他方側サイドプレート部32とに挟まれている。そして、凝縮部20と蒸発部22はそれぞれ一方側サイドプレート部30と他方側サイドプレート部32とに固定され、中間部24は凝縮部20と蒸発部22とにそれぞれ固定されている。 The one side plate portion 30 is arranged at one end of the heat exchanger 10 in the stacking direction Ds, and the other side plate portion 32 is arranged at the other end of the heat exchanger 10 in the stacking direction Ds. It is The condensation section 20, the evaporation section 22, and the intermediate section 24 are arranged between the one side plate section 30 and the other side plate section 32 in the stacking direction Ds. It is sandwiched between 32 and Condensing section 20 and evaporating section 22 are fixed to one side plate section 30 and other side plate section 32, respectively, and intermediate section 24 is fixed to condensing section 20 and evaporating section 22, respectively.
 また、一方側サイドプレート部30には凝縮部入口管34と蒸発部出口管37とが設けられ、他方側サイドプレート部32には凝縮部出口管35と蒸発部入口管36とが設けられている。図1、図2に示すように、凝縮部入口管34は凝縮部20の冷媒流れ上流側に接続され、圧縮機14から吐出された冷媒を凝縮部20へ流入させる。凝縮部出口管35は凝縮部20の冷媒流れ下流側に接続され、凝縮部20内の冷媒を凝縮部20から減圧装置15へ流出させる。蒸発部入口管36は蒸発部22の冷媒流れ上流側に接続され、減圧装置15からの冷媒を蒸発部22へ流入させる。蒸発部出口管37は蒸発部22の冷媒流れ下流側に接続され、蒸発部22内の冷媒を蒸発部22からアキュムレータ16へ流出させる。 One side plate portion 30 is provided with a condenser inlet pipe 34 and an evaporator outlet pipe 37, and the other side plate portion 32 is provided with a condenser outlet pipe 35 and an evaporator inlet pipe 36. there is As shown in FIGS. 1 and 2 , the condenser inlet pipe 34 is connected to the refrigerant flow upstream side of the condenser 20 and causes the refrigerant discharged from the compressor 14 to flow into the condenser 20 . The condenser outlet pipe 35 is connected to the refrigerant flow downstream side of the condenser 20 and causes the refrigerant in the condenser 20 to flow out from the condenser 20 to the decompression device 15 . The evaporator inlet pipe 36 is connected to the refrigerant flow upstream side of the evaporator 22 and allows the refrigerant from the decompression device 15 to flow into the evaporator 22 . The evaporator outlet pipe 37 is connected to the refrigerant flow downstream side of the evaporator 22 and causes the refrigerant in the evaporator 22 to flow out from the evaporator 22 to the accumulator 16 .
 図2~図4に示すように、凝縮部20は、第1凝縮タンク部201と第2凝縮タンク部203と複数の凝縮チューブ部205と複数の凝縮フィン206とを有している。凝縮部20は、凝縮チューブ部205内に流通する冷媒と凝縮部20を通過する空気とを熱交換させ、その熱交換により冷媒から空気へ放熱させて冷媒を凝縮させる。 As shown in FIGS. 2 to 4, the condensation section 20 has a first condensation tank section 201, a second condensation tank section 203, a plurality of condensation tube sections 205, and a plurality of condensation fins 206. The condensation section 20 exchanges heat between the refrigerant flowing in the condensation tube section 205 and the air passing through the condensation section 20, and the heat exchange causes the refrigerant to release heat to the air, thereby condensing the refrigerant.
 第1凝縮タンク部201は複数の凝縮チューブ部205に対し熱交換器縦方向Dvの一方側に設けられ、第2凝縮タンク部203は複数の凝縮チューブ部205に対し熱交換器縦方向Dvの他方側に設けられている。第1凝縮タンク部201は、積層方向Dsへ直列に並んだ複数の第1凝縮タンク構成部202を有し、その複数の第1凝縮タンク構成部202が互いに接合されることによって構成されている。従って、第1凝縮タンク部201は、積層方向Dsへ延伸するように形成されている。 The first condensation tank portion 201 is provided on one side of the plurality of condensation tube portions 205 in the heat exchanger vertical direction Dv, and the second condensation tank portion 203 is provided on one side of the plurality of condensation tube portions 205 in the heat exchanger vertical direction Dv. provided on the other side. The first condensation tank portion 201 has a plurality of first condensation tank constituent portions 202 arranged in series in the stacking direction Ds, and is configured by joining the plurality of first condensation tank constituent portions 202 to each other. . Therefore, the first condensation tank portion 201 is formed to extend in the stacking direction Ds.
 互いに隣接した第1凝縮タンク構成部202の相互間では、基本的に、第1凝縮タンク構成部202の内部空間202a同士が貫通孔を介して互いに連通している。但し、C1部分(図2参照)では、互いに隣接した第1凝縮タンク構成部202の内部空間202a同士の間の連通は遮断されている。 Between the first condensing tank forming portions 202 adjacent to each other, basically, the internal spaces 202a of the first condensing tank forming portions 202 communicate with each other through through holes. However, in the C1 portion (see FIG. 2), the communication between the internal spaces 202a of the first condensing tank forming portions 202 adjacent to each other is blocked.
 第2凝縮タンク部203は、積層方向Dsへ直列に並んだ複数の第2凝縮タンク構成部204を有し、その複数の第2凝縮タンク構成部204が互いに接合されることによって構成されている。従って、第2凝縮タンク部203は、積層方向Dsへ延伸するように形成されている。 The second condensation tank portion 203 has a plurality of second condensation tank constituent portions 204 arranged in series in the stacking direction Ds, and is configured by joining the plurality of second condensation tank constituent portions 204 to each other. . Therefore, the second condensation tank portion 203 is formed to extend in the stacking direction Ds.
 互いに隣接した第2凝縮タンク構成部204の相互間では、基本的に、第2凝縮タンク構成部204の内部空間204a同士が貫通孔を介して互いに連通している。但し、C2、C3部分(図2参照)では、互いに隣接した第2凝縮タンク構成部204の内部空間204a同士の間の連通は遮断されている。 Between the mutually adjacent second condensation tank constituent parts 204, basically, the internal spaces 204a of the second condensation tank constituent parts 204 communicate with each other through through holes. However, communication between the inner spaces 204a of the second condensing tank forming portions 204 adjacent to each other is cut off at the C2 and C3 portions (see FIG. 2).
 凝縮チューブ部205は本開示の放熱器チューブに対応する。凝縮チューブ部205は、積層方向Dsを厚み方向とした扁平状であり、凝縮チューブ部205の内部には、冷媒が流通する凝縮チューブ流路205aが形成されている。この凝縮チューブ流路205aは熱交換器縦方向Dvに往復しながら蛇行するように延びている。凝縮チューブ流路205aの一端は第1凝縮タンク構成部202の内部空間202aに連結し、凝縮チューブ流路205aの他端は第2凝縮タンク構成部204の内部空間204aに連結している。 The condensation tube portion 205 corresponds to the radiator tube of the present disclosure. The condensation tube portion 205 has a flat shape whose thickness direction is the stacking direction Ds. Inside the condensation tube portion 205, a condensation tube flow path 205a through which a refrigerant flows is formed. The condensation tube flow path 205a extends in a meandering manner while reciprocating in the longitudinal direction Dv of the heat exchanger. One end of the condensation tube channel 205 a is connected to the internal space 202 a of the first condensation tank component 202 , and the other end of the condensation tube channel 205 a is connected to the internal space 204 a of the second condensation tank component 204 .
 また、複数の凝縮チューブ部205は、積層方向Dsへ相互間隔をあけて並ぶように積層配置されている。互いに隣接する凝縮チューブ部205同士の間には、それぞれ、空気が通過する通風空間20aが形成されている。すなわち、この通風空間20aは積層方向Dsに並んで複数形成されている。 Also, the plurality of condensing tube portions 205 are stacked so as to be spaced apart from each other in the stacking direction Ds. Ventilation spaces 20a through which air passes are formed between the condensing tube portions 205 adjacent to each other. That is, a plurality of ventilation spaces 20a are formed side by side in the stacking direction Ds.
 矢印FLa(図3、図4参照)は、凝縮部20の通風空間20aへ流入する空気流れを表している。つまり、その凝縮部20の通風空間20aを通過する空気は、熱交換器幅方向Dwの一方側を空気流れ上流側とし且つ熱交換器幅方向Dwの他方側を空気流れ下流側として流れる。 An arrow FLa (see FIGS. 3 and 4) represents the flow of air flowing into the ventilation space 20a of the condensation section 20. As shown in FIG. That is, the air passing through the ventilation space 20a of the condenser section 20 flows with one side in the heat exchanger width direction Dw as the air flow upstream side and the other side in the heat exchanger width direction Dw as the air flow downstream side.
 凝縮フィン206は本開示の放熱器フィンに対応する。複数の凝縮フィン206はそれぞれ、凝縮部20の通風空間20aに配置され、凝縮フィン206に隣接する凝縮チューブ部205の外側にロウ付け接合されている。具体的に、凝縮フィン206はコルゲートフィンであり、凝縮フィン206には複数のルーバ206a(図8参照)が形成されている。このような構成により、凝縮フィン206は、凝縮部20の通風空間20aを通る空気と凝縮部20内の冷媒との熱交換を促進する。凝縮フィン206は、例えばアルミニウム合金または銅合金など熱伝導性の良好な金属で構成されている。 The condenser fins 206 correspond to radiator fins of the present disclosure. A plurality of condensation fins 206 are respectively arranged in the ventilation space 20 a of the condensation section 20 and brazed to the outside of the condensation tube section 205 adjacent to the condensation fins 206 . Specifically, the condensation fins 206 are corrugated fins, and the condensation fins 206 are formed with a plurality of louvers 206a (see FIG. 8). With such a configuration, the condensation fins 206 promote heat exchange between the air passing through the ventilation space 20 a of the condensation section 20 and the refrigerant in the condensation section 20 . Condensation fins 206 are made of a metal with good thermal conductivity, such as an aluminum alloy or a copper alloy.
 図2に示すように、凝縮部20では、圧縮機14(図1参照)からの冷媒が、第2凝縮タンク部203のうち積層方向Dsの一方側の端に設けられた第2凝縮タンク構成部204の内部空間204aに凝縮部入口管34を介して流入する。そして、第1凝縮タンク部201および第2凝縮タンク部203では冷媒は積層方向Dsの一方側から他方側へ流れる。それと共に、複数の凝縮チューブ部205ではそれぞれ、冷媒は、第1凝縮タンク構成部202側から第2凝縮タンク構成部204側へ、或いは、第2凝縮タンク構成部204側から第1凝縮タンク構成部202側へと流れる。図2の矢印A1は第1凝縮タンク部201内での冷媒流れを示し、矢印A2は第2凝縮タンク部203内での冷媒流れを示し、矢印A3は凝縮チューブ部205内での冷媒流れを示している。 As shown in FIG. 2, in the condensation section 20, refrigerant from the compressor 14 (see FIG. 1) is provided at one end of the second condensation tank section 203 in the stacking direction Ds. It flows into the internal space 204 a of the section 204 via the condensation section inlet pipe 34 . In the first condensation tank portion 201 and the second condensation tank portion 203, the refrigerant flows from one side to the other side in the stacking direction Ds. At the same time, in each of the plurality of condensation tube portions 205, the refrigerant flows from the first condensation tank forming portion 202 side to the second condensation tank forming portion 204 side, or from the second condensation tank forming portion 204 side to the first condensation tank forming portion. It flows to the part 202 side. Arrow A1 in FIG. 2 indicates the refrigerant flow in the first condensing tank portion 201, arrow A2 indicates the refrigerant flow in the second condensing tank portion 203, and arrow A3 indicates the refrigerant flow in the condensing tube portion 205. showing.
 このように凝縮部20内を流れた冷媒は、第2凝縮タンク部203のうち積層方向Dsの他方側の端に設けられた第2凝縮タンク構成部204の内部空間204aから凝縮部出口管35を介して減圧装置15(図1参照)へ流出する。 The refrigerant that has flowed through the condensation section 20 in this way flows from the internal space 204 a of the second condensation tank forming section 204 provided at the end of the second condensation tank section 203 on the other side in the stacking direction Ds to the condensation section outlet pipe 35 . to the decompression device 15 (see FIG. 1).
 図2~図4に示すように、蒸発部22は、第1蒸発タンク部221と第2蒸発タンク部223と複数の蒸発チューブ部225と複数の蒸発フィン226とを有している。蒸発部22は、蒸発チューブ部225内に流通する冷媒と蒸発部22を通過する空気とを熱交換させ、その熱交換により冷媒を蒸発させると共に空気を冷却する。 As shown in FIGS. 2 to 4, the evaporating section 22 has a first evaporating tank section 221, a second evaporating tank section 223, a plurality of evaporating tube sections 225, and a plurality of evaporating fins 226. The evaporating portion 22 exchanges heat between the refrigerant flowing through the evaporating tube portion 225 and the air passing through the evaporating portion 22, and the heat exchange evaporates the refrigerant and cools the air.
 第1蒸発タンク部221は複数の蒸発チューブ部225に対し熱交換器縦方向Dvの一方側に設けられ、第2蒸発タンク部223は複数の蒸発チューブ部225に対し熱交換器縦方向Dvの他方側に設けられている。第1蒸発タンク部221は、積層方向Dsへ直列に並んだ複数の第1蒸発タンク構成部222を有し、その複数の第1蒸発タンク構成部222が互いに接合されることによって構成されている。従って、第1蒸発タンク部221は、積層方向Dsへ延伸するように形成されている。 The first evaporation tank portion 221 is provided on one side of the plurality of evaporation tube portions 225 in the heat exchanger vertical direction Dv, and the second evaporation tank portion 223 is provided on one side of the plurality of evaporation tube portions 225 in the heat exchanger vertical direction Dv. provided on the other side. The first evaporation tank portion 221 has a plurality of first evaporation tank constituent portions 222 arranged in series in the stacking direction Ds, and is configured by joining the plurality of first evaporation tank constituent portions 222 to each other. . Therefore, the first evaporation tank portion 221 is formed to extend in the stacking direction Ds.
 互いに隣接した第1蒸発タンク構成部222の相互間では、基本的に、第1蒸発タンク構成部222の内部空間222a同士が貫通孔を介して互いに連通している。但し、E1、E2部分(図2参照)では、互いに隣接した第1蒸発タンク構成部222の内部空間222a同士の間の連通は遮断されている。 Between the first evaporation tank constituent parts 222 adjacent to each other, basically, the internal spaces 222a of the first evaporation tank constituent parts 222 communicate with each other through through holes. However, in the E1 and E2 portions (see FIG. 2), communication between the internal spaces 222a of the first evaporation tank forming portions 222 adjacent to each other is blocked.
 第2蒸発タンク部223は、積層方向Dsへ直列に並んだ複数の第2蒸発タンク構成部224を有し、その複数の第2蒸発タンク構成部224が互いに接合されることによって構成されている。従って、第2蒸発タンク部223は、積層方向Dsへ延伸するように形成されている。 The second evaporation tank portion 223 has a plurality of second evaporation tank constituent portions 224 arranged in series in the stacking direction Ds, and is configured by joining the plurality of second evaporation tank constituent portions 224 to each other. . Therefore, the second evaporation tank portion 223 is formed to extend in the stacking direction Ds.
 互いに隣接した第2蒸発タンク構成部224の相互間では、基本的に、第2蒸発タンク構成部224の内部空間224a同士が貫通孔を介して互いに連通している。但し、E3部分(図2参照)では、互いに隣接した第2蒸発タンク構成部224の内部空間224a同士の間の連通は遮断されている。 Between the mutually adjacent second evaporation tank constituent parts 224, the internal spaces 224a of the second evaporation tank constituent parts 224 basically communicate with each other through through holes. However, in the E3 portion (see FIG. 2), the communication between the internal spaces 224a of the second evaporation tank forming portions 224 adjacent to each other is blocked.
 蒸発チューブ部225は本開示の冷却器チューブに対応する。蒸発チューブ部225は、積層方向Dsを厚み方向とした扁平状であり、蒸発チューブ部225の内部には、冷媒が流通する蒸発チューブ流路225aが形成されている。この蒸発チューブ流路225aは熱交換器縦方向Dvに往復しながら蛇行するように延びている。蒸発チューブ流路225aの一端は第1蒸発タンク構成部222の内部空間222aに連結し、蒸発チューブ流路225aの他端は第2蒸発タンク構成部224の内部空間224aに連結している。 The evaporator tube section 225 corresponds to the cooler tube of the present disclosure. The evaporating tube portion 225 has a flat shape whose thickness direction is the stacking direction Ds. Inside the evaporating tube portion 225, an evaporating tube flow path 225a through which a refrigerant flows is formed. The evaporation tube flow path 225a extends in a meandering manner while reciprocating in the longitudinal direction Dv of the heat exchanger. One end of the evaporation tube flow path 225 a is connected to the internal space 222 a of the first evaporation tank forming part 222 , and the other end of the evaporation tube flow path 225 a is connected to the internal space 224 a of the second evaporation tank forming part 224 .
 また、複数の蒸発チューブ部225は、積層方向Dsへ相互間隔をあけて並ぶように積層配置されている。互いに隣接する蒸発チューブ部225同士の間には、それぞれ、空気が通過する通風空間22aが形成されている。すなわち、この通風空間22aは積層方向Dsに並んで複数形成されている。 Also, the plurality of evaporating tube portions 225 are arranged in layers so as to be spaced apart from each other in the stacking direction Ds. Ventilation spaces 22a through which air passes are formed between the evaporating tube portions 225 adjacent to each other. That is, a plurality of ventilation spaces 22a are formed side by side in the stacking direction Ds.
 矢印FLb(図3、図4参照)は、蒸発部22の通風空間22aへ流入する空気流れを表している。つまり、その蒸発部22の通風空間22aを通過する空気は、熱交換器幅方向Dwの一方側を空気流れ上流側とし且つ熱交換器幅方向Dwの他方側を空気流れ下流側として流れる。 An arrow FLb (see FIGS. 3 and 4) represents the flow of air flowing into the ventilation space 22a of the evaporator 22. That is, the air passing through the ventilation space 22a of the evaporating section 22 flows with one side in the heat exchanger width direction Dw as the air flow upstream side and the other side in the heat exchanger width direction Dw as the air flow downstream side.
 複数の蒸発フィン226はそれぞれ、蒸発部22の通風空間22aに配置され、蒸発フィン226に隣接する蒸発チューブ部225の外側にロウ付け接合されている。具体的に、蒸発フィン226はコルゲートフィンであり、蒸発フィン226には、凝縮フィン206と同様に複数のルーバが形成されている。このような構成により、蒸発フィン226は、蒸発部22の通風空間22aを通る空気と蒸発部22内の冷媒との熱交換を促進する。蒸発フィン226は、例えばアルミニウム合金または銅合金など熱伝導性の良好な金属で構成されている。 The plurality of evaporating fins 226 are arranged in the ventilation space 22a of the evaporating part 22 and are brazed to the outside of the evaporating tube part 225 adjacent to the evaporating fins 226 . Specifically, the evaporation fins 226 are corrugated fins, and the evaporation fins 226 are formed with a plurality of louvers like the condensation fins 206 . With such a configuration, the evaporating fins 226 facilitate heat exchange between the air passing through the ventilation space 22 a of the evaporating section 22 and the refrigerant in the evaporating section 22 . Evaporation fins 226 are made of metal with good thermal conductivity, such as aluminum alloy or copper alloy.
 図2に示すように、蒸発部22では、減圧装置15(図1参照)からの冷媒が、第1蒸発タンク部221のうち積層方向Dsの他方側の端に設けられた第1蒸発タンク構成部222の内部空間222aに蒸発部入口管36を介して流入する。そして、第1蒸発タンク部221および第2蒸発タンク部223では冷媒は積層方向Dsの他方側から一方側へ流れる。それと共に、複数の蒸発チューブ部225ではそれぞれ、冷媒は、第1蒸発タンク構成部222側から第2蒸発タンク構成部224側へ、或いは、第2蒸発タンク構成部224側から第1蒸発タンク構成部222側へと流れる。図2の矢印B1は第1蒸発タンク部221内での冷媒流れを示し、矢印B2は第2蒸発タンク部223内での冷媒流れを示し、矢印B3は蒸発チューブ部225内での冷媒流れを示している。 As shown in FIG. 2, in the evaporating section 22, the refrigerant from the decompression device 15 (see FIG. 1) is provided at the end of the first evaporating tank section 221 on the other side in the stacking direction Ds. It flows into the internal space 222 a of the unit 222 through the evaporator inlet pipe 36 . In the first evaporation tank portion 221 and the second evaporation tank portion 223, the refrigerant flows from the other side to the one side in the stacking direction Ds. At the same time, in each of the plurality of evaporation tube portions 225, the refrigerant flows from the first evaporation tank forming portion 222 side to the second evaporation tank forming portion 224 side, or from the second evaporation tank forming portion 224 side to the first evaporation tank forming portion. It flows to the part 222 side. Arrow B1 in FIG. 2 indicates the refrigerant flow in the first evaporation tank portion 221, arrow B2 indicates the refrigerant flow in the second evaporation tank portion 223, and arrow B3 indicates the refrigerant flow in the evaporation tube portion 225. showing.
 このように蒸発部22内を流れた冷媒は、第1蒸発タンク部221のうち積層方向Dsの一方側の端に設けられた第1蒸発タンク構成部222の内部空間222aから蒸発部出口管37を介してアキュムレータ16(図1参照)へ流出する。 The refrigerant that has flowed through the evaporator 22 in this manner flows from the internal space 222 a of the first evaporator tank forming portion 222 provided at one end in the stacking direction Ds of the first evaporator tank 221 to the evaporator outlet pipe 37 . to the accumulator 16 (see FIG. 1).
 ここで、熱交換器10のうち凝縮部20と蒸発部22との構成について詳述する。図2~図4に示すように、その凝縮部20と蒸発部22は、複数の積層構成体38が積層方向Dsに積層され互いにロウ付け接合されることで構成されている。チューブサブアッシイである積層構成体38は、積層方向Dsを厚み方向とした略扁平状であり、積層構成体38の長手方向は熱交換器縦方向Dvに一致し、積層構成体38の短手方向は熱交換器幅方向Dwに一致する。 Here, the configuration of the condensation section 20 and the evaporation section 22 of the heat exchanger 10 will be described in detail. As shown in FIGS. 2 to 4, the condensation section 20 and the evaporation section 22 are constructed by laminating a plurality of laminated structures 38 in the lamination direction Ds and brazing them together. The laminated structure 38, which is a tube sub-assembly, has a substantially flat shape whose thickness direction is the lamination direction Ds. The hand direction coincides with the heat exchanger width direction Dw.
 複数の積層構成体38はそれぞれ、互いにロウ付け接合されて一対を成す第1板部材381と第2板部材382とから構成されている。その第1板部材381も第2板部材382も、例えばアルミニウム合金または銅合金など熱伝導性の良好な金属で構成されている。 Each of the plurality of laminated structures 38 is composed of a first plate member 381 and a second plate member 382 that are joined together by brazing to form a pair. Both the first plate member 381 and the second plate member 382 are made of a metal having good thermal conductivity, such as an aluminum alloy or a copper alloy.
 なお、図2では、第1板部材381、第2板部材382、凝縮フィン206、および蒸発フィン226のそれぞれの断面がハッチングではなく太線で表示されている。また、見やすい図示とするために、図2は、第1板部材381と第2板部材382と一方側サイドプレート部30と他方側サイドプレート部32との相互間に敢えて間隔(すなわち、実際には無い間隔)を空けた表示とされている。これらのことは、図2に相当する後述の図でも同様である。 Note that in FIG. 2, the cross sections of the first plate member 381, the second plate member 382, the condensation fins 206, and the evaporation fins 226 are indicated by thick lines instead of hatching. Also, in order to make the illustration easier to see, FIG. are displayed with a space between them). These are the same for later-described figures corresponding to FIG. 2 .
 図2~図4に示すように、第1板部材381は、その第1板部材381を含む積層構成体38のうち第2板部材382に対し積層方向Dsの一方側に配置されている。第1板部材381は、積層方向Dsに厚みを有する板状であり、冷媒が流通する凹空間を形成するように積層方向Dsの一方側へ凹んだ形状を備えている。これに対し、第2板部材382は、積層方向Dsに厚みを有する板状であり、冷媒が流通する凹空間を形成するように積層方向Dsの他方側へ凹んだ形状を備えている。 As shown in FIGS. 2 to 4, the first plate member 381 is arranged on one side in the stacking direction Ds with respect to the second plate member 382 in the laminate structure 38 including the first plate member 381. FIG. The first plate member 381 has a plate shape having a thickness in the stacking direction Ds, and is recessed toward one side in the stacking direction Ds so as to form a recessed space through which the coolant flows. On the other hand, the second plate member 382 has a plate shape having a thickness in the stacking direction Ds, and is recessed toward the other side in the stacking direction Ds so as to form a recessed space through which the coolant flows.
 個々の積層構成体38は、第1板部材381の凹空間と第2板部材382の凹空間とを互いに対向させた姿勢で第1板部材381と第2板部材382とが互いに接合されることによって構成されている。 In each laminated structure 38, the first plate member 381 and the second plate member 382 are joined together in a posture in which the recessed space of the first plate member 381 and the recessed space of the second plate member 382 face each other. It is composed by
 また、第1、第2凝縮タンク構成部202、204の内部空間202a、204a、凝縮チューブ流路205a、第1、第2蒸発タンク構成部222、224の内部空間222a、224a、および蒸発チューブ流路225aは、第1板部材381の凹空間と第2板部材382の凹空間とが合体することにより形成されている。 In addition, the internal spaces 202a and 204a of the first and second condensing tank components 202 and 204, the condensation tube flow path 205a, the internal spaces 222a and 224a of the first and second evaporation tank components 222 and 224, and the evaporation tube flow The path 225a is formed by combining the concave space of the first plate member 381 and the concave space of the second plate member 382 together.
 すなわち、1つの積層構成体38は、1つの第1凝縮タンク構成部202と1つの第2凝縮タンク構成部204と1つの凝縮チューブ部205と1つの第1蒸発タンク構成部222と1つの第2蒸発タンク構成部224と1つの蒸発チューブ部225とを有している。言い換えると、それらの第1凝縮タンク構成部202と第2凝縮タンク構成部204と凝縮チューブ部205と第1蒸発タンク構成部222と第2蒸発タンク構成部224と蒸発チューブ部225は一体構成になっている。 That is, one laminated structure 38 includes one first condensation tank constituent portion 202, one second condensation tank constituent portion 204, one condensation tube constituent portion 205, one first evaporation tank constituent portion 222, and one second condensation tank constituent portion 222. It has two evaporation tank constituent parts 224 and one evaporation tube part 225 . In other words, the first condensation tank component 202, the second condensation tank component 204, the condensation tube component 205, the first evaporation tank component 222, the second evaporation tank component 224, and the evaporation tube component 225 are integrated. It's becoming
 但し、複数の凝縮チューブ流路205aのうち積層方向Dsの最も一方側に位置する凝縮チューブ流路205aは、第2板部材382と一方側サイドプレート部30とによって形成されている。そして、複数の凝縮チューブ流路205aのうち積層方向Dsの最も他方側に位置する凝縮チューブ流路205aは、第1板部材381と他方側サイドプレート部32とによって形成されている。このことは、第1、第2凝縮タンク構成部202、204の内部空間202a、204a、第1、第2蒸発タンク構成部222、224の内部空間222a、224a、および蒸発チューブ流路225aについても同様である。 However, the condensation tube flow path 205a located on the most one side in the stacking direction Ds among the plurality of condensation tube flow paths 205a is formed by the second plate member 382 and the one side plate portion 30. As shown in FIG. Among the plurality of condensation tube flow paths 205 a , the condensation tube flow path 205 a located on the othermost side in the stacking direction Ds is formed by the first plate member 381 and the other side plate portion 32 . This is also true for the internal spaces 202a, 204a of the first and second condensing tank components 202, 204, the internal spaces 222a, 224a of the first and second evaporative tank components 222, 224, and the evaporative tube channel 225a. It is the same.
 図3、図4に示すように、複数の積層構成体38には貫通孔38aが形成されており、その貫通孔38aは、積層構成体38のそれぞれにおいて凝縮部20と蒸発部22とを隔てるように凝縮部20と蒸発部22との間に配置されている。凝縮部20と蒸発部22との間を貫通孔38aで断熱するためである。 As shown in FIGS. 3 and 4, through-holes 38a are formed in the plurality of laminated structures 38, and the through-holes 38a separate the condensation section 20 and the evaporation section 22 in each of the laminated structures 38. It is arranged between the condensing section 20 and the evaporating section 22 as shown in FIG. This is to insulate between the condenser section 20 and the evaporator section 22 by the through holes 38a.
 熱交換器10の中間部24は、上記したように凝縮部20と蒸発部22との間に設けられているが、詳しく言えば、蒸発部22で空気の冷却に伴って発生した凝縮水Wcが蒸発部22から凝縮部20へ流れる経路の途中に配置されている。例えば本実施形態では、積層構成体38のうち貫通孔38aに対する熱交換器幅方向Dwの一方側の部分と他方側の部分とが、中間部24に該当する。 The intermediate portion 24 of the heat exchanger 10 is provided between the condensation portion 20 and the evaporation portion 22 as described above. is arranged in the middle of the path flowing from the evaporating section 22 to the condensing section 20 . For example, in the present embodiment, the intermediate portion 24 corresponds to the portion of the laminate structure 38 on one side and the portion on the other side of the through hole 38 a in the heat exchanger width direction Dw.
 また、蒸発部22から凝縮部20へ流下する凝縮水Wcは、その多くが、中間部24の外側表面を濡らしながら通る。すなわち、中間部24には、凝縮水Wcが蒸発部22から凝縮部20へ流れる途中に配置された中間面241が形成されており、中間部24の上記外側表面がその中間面241に該当する。 In addition, most of the condensed water Wc that flows down from the evaporating section 22 to the condensing section 20 passes through while wetting the outer surface of the intermediate section 24 . That is, the intermediate portion 24 is formed with an intermediate surface 241 disposed in the middle of the flow of the condensed water Wc from the evaporating portion 22 to the condensing portion 20, and the outer surface of the intermediate portion 24 corresponds to the intermediate surface 241. .
 図2、図5、図6に示すように、凝縮部20は、凝縮水Wcが蒸発部22から凝縮部20へ流れることを促進するための特定構成207を有している。その凝縮部20の特定構成207は、その特定構成207が設けられない場合と比較して、凝縮部20に流下してきた凝縮水Wcを凝縮部20で濡れ拡がらせるものである。 As shown in FIGS. 2, 5 and 6, the condensing section 20 has a specific configuration 207 for promoting the flow of the condensed water Wc from the evaporating section 22 to the condensing section 20. FIG. The specific configuration 207 of the condensation section 20 allows the condensed water Wc that has flowed down to the condensation section 20 to wet and spread in the condensation section 20 compared to the case where the specific configuration 207 is not provided.
 具体的に、本実施形態における凝縮部20の特定構成207は、凝縮部20に施された表面コーティング207aである。言い換えると、凝縮部20は、その凝縮部20に施された表面コーティング207aを特定構成207として有している。従って、その表面コーティング207aは、第1凝縮タンク部201、第2凝縮タンク部203、凝縮チューブ部205、凝縮フィン206のそれぞれの表面に設けられている。図5には、凝縮チューブ部205の表面に施された表面コーティング207aが示され、図6には、凝縮フィン206の表面に施された表面コーティング207aが示されている。 Specifically, the specific configuration 207 of the condensation section 20 in this embodiment is the surface coating 207 a applied to the condensation section 20 . In other words, the condensation section 20 has a surface coating 207 a applied to the condensation section 20 as the specific configuration 207 . Accordingly, the surface coating 207 a is provided on the respective surfaces of the first condensing tank portion 201 , the second condensing tank portion 203 , the condensing tube portion 205 and the condensing fins 206 . 5 shows the surface coating 207a applied to the surface of the condensation tube portion 205, and FIG. 6 shows the surface coating 207a applied to the surface of the condensation fins 206. FIG.
 そして、凝縮部20の表面コーティング207aは、その表面コーティング207aが設けられない場合よりも凝縮部20の表面の親水性を向上させる親水性コーティングである。その凝縮部20の表面とは、例えば、第1凝縮タンク部201、第2凝縮タンク部203、凝縮チューブ部205、および凝縮フィン206の表面である。例えば、この表面コーティング207aは、塗装やメッキなどの表面処理によって形成することができる。本実施形態では、例えば、液状のコーティング剤が溜まったディップ槽にロウ付け後の熱交換器10が浸されることで、表面コーティング207aは形成されている。 The surface coating 207a of the condensation section 20 is a hydrophilic coating that improves the hydrophilicity of the surface of the condensation section 20 compared to when the surface coating 207a is not provided. The surface of the condensation section 20 is, for example, the surfaces of the first condensation tank section 201 , the second condensation tank section 203 , the condensation tube section 205 and the condensation fins 206 . For example, this surface coating 207a can be formed by surface treatment such as painting or plating. In the present embodiment, for example, the surface coating 207a is formed by immersing the heat exchanger 10 after brazing in a dip bath containing a liquid coating agent.
 従って、本実施形態の熱交換器10では、凝縮部20の表面コーティング207aと同じ表面コーティングが熱交換器10の全体に施されている。つまり、蒸発部22にも表面コーティング227aが施されており、その蒸発部22の表面コーティング227aは、凝縮部20の表面コーティング207aと同じ親水性コーティングとなっている。そのため、凝縮部20の表面コーティング207aは、凝縮部20の表面に、蒸発部22と比較して同じ親水性を与えるものである。 Therefore, in the heat exchanger 10 of the present embodiment, the same surface coating as the surface coating 207a of the condenser section 20 is applied to the entire heat exchanger 10 . That is, the evaporating section 22 is also coated with a surface coating 227 a , and the surface coating 227 a of the evaporating section 22 is the same hydrophilic coating as the surface coating 207 a of the condensing section 20 . Therefore, the surface coating 207 a of the condenser section 20 gives the surface of the condenser section 20 the same hydrophilicity compared to the evaporator section 22 .
 また、蒸発部22の表面コーティング227aも親水性コーティングであるので、蒸発部22の表面コーティング227aは、その表面コーティング227aが設けられない場合よりも蒸発部22の表面の親水性を向上させる。その蒸発部22の表面とは、例えば、第1蒸発タンク部221、第2蒸発タンク部223、蒸発チューブ部225、および蒸発フィン226の表面である。なお、図5、図6はそれぞれ凝縮部20における断面を示すが、図5、図6では、図5、図6に表された凝縮部20の構成に相当する蒸発部22の構成を示す符号も併記されている。 In addition, since the surface coating 227a of the evaporating section 22 is also a hydrophilic coating, the surface coating 227a of the evaporating section 22 improves the hydrophilicity of the surface of the evaporating section 22 compared to the case where the surface coating 227a is not provided. The surface of the evaporating section 22 is, for example, the surfaces of the first evaporating tank section 221 , the second evaporating tank section 223 , the evaporating tube section 225 and the evaporating fins 226 . 5 and 6 each show a cross section of the condensation section 20. In FIGS. 5 and 6, reference numerals indicate the configuration of the evaporation section 22 corresponding to the configuration of the condensation section 20 shown in FIGS. are also listed.
 また、凝縮部20の表面コーティング207aと同じ表面コーティングが熱交換器10の全体に施されているので、図7に示すように、中間部24は、中間面241に施された表面コーティング24aを有している。そして、その中間部24の表面コーティング24aは、凝縮部20および蒸発部22の表面コーティング207a、227aと同じ親水性コーティングである。 Further, since the same surface coating as the surface coating 207a of the condenser section 20 is applied to the entire heat exchanger 10, the intermediate section 24 has the surface coating 24a applied to the intermediate surface 241 as shown in FIG. have. The surface coating 24a of the intermediate portion 24 is the same hydrophilic coating as the surface coatings 207a and 227a of the condensation portion 20 and the evaporation portion 22. FIG.
 そのため、中間部24の表面コーティング24aは、中間面241に、蒸発部22と比較して同じ親水性を与えるものである。また、中間部24の表面コーティング24aも親水性コーティングであるので、中間部24の表面コーティング24aは、その表面コーティング24aが設けられない場合よりも中間面241の親水性を向上させる。 Therefore, the surface coating 24 a of the intermediate portion 24 gives the intermediate surface 241 the same hydrophilicity compared to the evaporator portion 22 . Also, since the surface coating 24a of the intermediate portion 24 is also a hydrophilic coating, the surface coating 24a of the intermediate portion 24 makes the intermediate surface 241 more hydrophilic than if the surface coating 24a were not provided.
 別言すると、中間部24は、その中間部24に付着した凝縮水Wcの濡れ拡がりを蒸発部22と比較して同じまたはそれ以上に促進する促進構成として、表面コーティング24aを有している。そして、その表面コーティング24aは、その表面コーティング24aが設けられない場合よりも凝縮水Wcの濡れ拡がりを促進する。 In other words, the intermediate portion 24 has the surface coating 24a as a promoting structure that promotes the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 to the same extent or more than that of the evaporating portion 22. The surface coating 24a promotes wetting and spreading of the condensed water Wc more than when the surface coating 24a is not provided.
 上述したように、本実施形態によれば、凝縮部20は蒸発部22に対し下側に位置し、蒸発部22で生じた凝縮水Wcが流下してくるように配置されている。そして、凝縮部20は特定構成207を有し、その特定構成207は、その特定構成207が設けられない場合と比較して、凝縮部20に流下してきた凝縮水Wcを凝縮部20で濡れ拡がらせるものである。従って、蒸発部22で生じた凝縮水Wcは、凝縮部20の特定構成207によって凝縮部20側へ引っ張られやすくなる。そのため、凝縮水Wcが蒸発部22で滞留しにくく、その凝縮水Wcを凝縮部20へ円滑に導くことが可能である。 As described above, according to the present embodiment, the condensation section 20 is positioned below the evaporation section 22 and arranged so that the condensed water Wc generated in the evaporation section 22 flows down. Condensing section 20 has specific configuration 207 , and specific configuration 207 wets and spreads condensed water Wc that has flowed down to condensation section 20 in comparison with the case where specific configuration 207 is not provided. It's something that makes you laugh. Therefore, the condensed water Wc generated in the evaporating section 22 is easily pulled toward the condensing section 20 by the specific configuration 207 of the condensing section 20 . Therefore, the condensed water Wc is less likely to stay in the evaporating section 22 , and the condensed water Wc can be smoothly guided to the condensing section 20 .
 また、凝縮水Wcが蒸発部22で滞留することなくスムーズに流れ落ちるので、蒸発部22における排水性の悪化を防止でき、その結果として、例えば蒸発部22での水飛びを防止することが可能である。 In addition, since the condensed water Wc smoothly flows down without staying in the evaporating section 22, it is possible to prevent deterioration of the drainage performance in the evaporating section 22. As a result, for example, water splashing in the evaporating section 22 can be prevented. be.
 また、熱交換器10は、上述したように鉛直方向Dgに対して傾斜した姿勢で配置されている。詳細には、熱交換器10の上側が下側に対し、凝縮部20を通過する空気流れの上流側(別言すると、凝縮部20が配置された上記第2の空気通路の上流側)に位置するように、熱交換器10は鉛直方向Dgに対して傾斜している。言い換えると、熱交換器10が有する凝縮部20と蒸発部22はそれぞれ、空気が流入する凝縮部20の空気流入面20bが斜め下側を向くように鉛直方向Dgに対して傾斜している。 In addition, the heat exchanger 10 is arranged in a posture inclined with respect to the vertical direction Dg as described above. Specifically, the upper side of the heat exchanger 10 is located upstream of the air flow passing through the condenser section 20 (in other words, upstream of the second air passage in which the condenser section 20 is arranged) with respect to the lower side. , the heat exchanger 10 is inclined with respect to the vertical direction Dg. In other words, the condensing section 20 and the evaporating section 22 of the heat exchanger 10 are each inclined with respect to the vertical direction Dg so that the air inflow surface 20b of the condensing section 20 into which the air flows faces obliquely downward.
 そのため、蒸発部22から流下する凝縮水Wcを凝縮部20において空気流れ上流側へ偏らせるように重力を作用させることが可能である。これにより、凝縮部20を通過する空気に従って凝縮水Wcが凝縮部20で濡れ拡がりやすくなり、凝縮水Wcを薄膜化して凝縮水Wcの蒸発を促進することが可能である。 Therefore, it is possible to apply gravity so that the condensed water Wc flowing down from the evaporating section 22 is biased toward the upstream side of the air flow in the condensing section 20 . This makes it easier for the condensed water Wc to spread in the condensing part 20 along with the air passing through the condensing part 20, making it possible to reduce the thickness of the condensed water Wc and promote the evaporation of the condensed water Wc.
 (1)また、本実施形態によれば、凝縮部20は、その凝縮部20に施された親水性コーティングである表面コーティング207aを、特定構成207として有している。凝縮部20の表面コーティング207aは、凝縮部20の表面に、蒸発部22と比較して同じ親水性を与えるものであって、その表面コーティング207aが設けられない場合よりも凝縮部20の表面の親水性を向上させる。そのため、凝縮部20へ流れてくる凝縮水Wcを凝縮部20の表面の性状に起因して滞らせることなく、凝縮部20において凝縮水Wcを薄膜化しながら流すことが可能である。 (1) According to the present embodiment, the condensation section 20 has the surface coating 207a, which is a hydrophilic coating applied to the condensation section 20, as the specific configuration 207. The surface coating 207a of the condensing section 20 imparts the same hydrophilicity to the surface of the condensing section 20 as compared to the evaporating section 22, such that the surface of the condensing section 20 is more hydrophilic than if the surface coating 207a were not provided. Improves hydrophilicity. Therefore, the condensed water Wc flowing into the condensing section 20 is not stagnant due to the surface properties of the condensing section 20, and the condensed water Wc can flow in the condensing section 20 while being thinned.
 また、凝縮部20へ流下してきた凝縮水Wcが薄膜化して流れるので、凝縮部20において凝縮水Wcと冷媒との熱交換が効率良く行われ、例えば、凝縮部20へ流下してきた全ての凝縮水Wcを蒸発させやすい。そして、そのように全ての凝縮水Wcを蒸発させれば、凝縮部20の性能が向上すると共に、凝縮部20で蒸発できずに残った凝縮水Wcによる水飛びを防止し、その凝縮水Wcが液体のまま凝縮部20に滞留することを防止することができる。 In addition, since the condensed water Wc that has flowed down to the condenser 20 flows as a thin film, the heat exchange between the condensed water Wc and the refrigerant is efficiently performed in the condenser 20. For example, all of the condensed water that has flowed down to the condenser 20 It is easy to evaporate the water Wc. By evaporating all the condensed water Wc in this way, the performance of the condenser 20 is improved, and the remaining condensed water Wc that has not been evaporated in the condenser 20 is prevented from splashing. can be prevented from remaining as liquid in the condensation section 20 .
 (2)また、本実施形態によれば、中間部24は、凝縮水Wcが蒸発部22から凝縮部20へ流れる経路の途中に配置されている。そして、中間部24は、その中間部24に付着した凝縮水Wcの濡れ拡がりを蒸発部22と比較して同じまたはそれ以上に促進する促進構成として、表面コーティング24aを有している。また、その表面コーティング24aは、その表面コーティング24aが設けられない場合よりも凝縮水Wcの濡れ拡がりを促進する。 (2) Further, according to the present embodiment, the intermediate portion 24 is arranged in the middle of the path along which the condensed water Wc flows from the evaporating portion 22 to the condensing portion 20 . The intermediate portion 24 has a surface coating 24a as a promoting structure that promotes the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 to the same extent or more than that of the evaporating portion 22 . In addition, the surface coating 24a promotes wetting and spreading of the condensed water Wc more than when the surface coating 24a is not provided.
 従って、凝縮水Wcが蒸発部22から凝縮部20へ流れる途中で滞ることを防止し、蒸発部22から凝縮部20へ凝縮水Wcをスムーズに流下させることができる。 Therefore, it is possible to prevent the condensed water Wc from stagnation while flowing from the evaporating part 22 to the condensing part 20 , and allow the condensed water Wc to smoothly flow down from the evaporating part 22 to the condensing part 20 .
 (3)また、本実施形態によれば、中間部24の表面コーティング24aは、中間面241に、蒸発部22と比較して同じ親水性を与えるものである。また、中間部24の表面コーティング24aは、その表面コーティング24aが設けられない場合よりも中間面241の親水性を向上させる。 (3) In addition, according to the present embodiment, the surface coating 24 a of the intermediate section 24 gives the intermediate surface 241 the same hydrophilicity as compared to the evaporator section 22 . Also, the surface coating 24a of the intermediate portion 24 makes the intermediate surface 241 more hydrophilic than if the surface coating 24a were not provided.
 従って、凝縮水Wcを薄膜化して流すことができる。そして、凝縮水Wcが蒸発部22から凝縮部20へ流れる途中で滞ることを防止し、蒸発部22から凝縮部20へ凝縮水Wcをスムーズに流下させることができる。 Therefore, the condensed water Wc can be thinned and flowed. This prevents the condensed water Wc from stagnation while flowing from the evaporating section 22 to the condensing section 20 , and allows the condensed water Wc to smoothly flow down from the evaporating section 22 to the condensing section 20 .
 (4)また、本実施形態によれば、複数の蒸発チューブ部225は、複数の凝縮チューブ部205とそれぞれ一体に構成されている。従って、蒸発部22で発生した凝縮水Wcが凝縮部20の凝縮チューブ部205および凝縮フィン206にまで流下しやすい構造を容易に実現することができる。 (4) Further, according to the present embodiment, the plurality of evaporating tube portions 225 are configured integrally with the plurality of condensing tube portions 205, respectively. Therefore, it is possible to easily realize a structure in which the condensed water Wc generated in the evaporating section 22 easily flows down to the condensing tube section 205 and the condensing fins 206 of the condensing section 20 .
 また、凝縮部20と蒸発部22とに全て同じ表面処理を実施しやすい。そのため、熱交換器10に施される表面コーティング24a、207a、227aを全て同じ親水性コーティングにして、凝縮部20と蒸発部22と中間部24とにおける親水性を均一にすることが容易である。 Also, it is easy to apply the same surface treatment to both the condensation section 20 and the evaporation section 22 . Therefore, the surface coatings 24a, 207a, and 227a applied to the heat exchanger 10 are all the same hydrophilic coating, and it is easy to make the hydrophilicity uniform in the condensation section 20, the evaporation section 22, and the intermediate section 24. .
 (5)また、本実施形態によれば、蒸発部22の表面コーティング227aは、親水性コーティングである。従って、この蒸発部22の表面コーティング227aは、その表面コーティング227aが設けられない場合と比較して、蒸発部22の表面に付着した凝縮水Wcを蒸発部22で濡れ拡がらせるものであり、蒸発部22が有する本開示の或る冷却器構成に対応する。 (5) Further, according to the present embodiment, the surface coating 227a of the evaporating section 22 is a hydrophilic coating. Therefore, the surface coating 227a of the evaporating section 22 wets and spreads the condensed water Wc adhering to the surface of the evaporating section 22 in comparison with the case where the surface coating 227a is not provided. Corresponds to certain cooler configurations of the present disclosure that the evaporator section 22 has.
 このような表面コーティング227aが蒸発部22の表面に施されているので、凝縮水Wcが蒸発部22で滞留しにくく、その凝縮水Wcを効率良く凝縮部20へ流下させることができる。 Since such a surface coating 227 a is applied to the surface of the evaporating section 22 , the condensed water Wc is less likely to stay in the evaporating section 22 , and the condensed water Wc can efficiently flow down to the condensing section 20 .
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の実施形態の説明においても同様である。
(Second embodiment)
Next, a second embodiment will be described. In this embodiment, differences from the above-described first embodiment will be mainly described. Also, the same or equivalent parts as those of the above-described embodiment will be omitted or simplified. This also applies to the description of the embodiments that will be described later.
 図8、図9に示すように、本実施形態では、凝縮フィン206は、その凝縮フィン206の表面に形成された複数の微細溝206bを特定構成207として有している。その複数の微細溝206bは、凝縮フィン206の表面の親水性を高めるように形成された微細な溝である。 As shown in FIGS. 8 and 9, in this embodiment, the condensation fins 206 have a plurality of fine grooves 206b formed on the surface of the condensation fins 206 as a specific configuration 207. FIG. The plurality of fine grooves 206b are fine grooves formed so as to increase the hydrophilicity of the surface of the condensation fins 206. As shown in FIG.
 例えば、複数の微細溝206bはそれぞれ、熱交換器幅方向Dwに交差する方向へ延伸しており、熱交換器幅方向Dwに所定の間隔をあけて並んで配置されている。また、複数の微細溝206bは、凝縮フィン206の表面全体に満遍なく設けられている。 For example, each of the plurality of fine grooves 206b extends in a direction that intersects the heat exchanger width direction Dw, and is arranged side by side at predetermined intervals in the heat exchanger width direction Dw. Also, the plurality of fine grooves 206b are evenly provided on the entire surface of the condensation fins 206. As shown in FIG.
 (1)上述したように、本実施形態によれば、凝縮フィン206は、その凝縮フィン206の表面の親水性を高めるように形成された複数の微細溝206bを特定構成207として有している。従って、図10の破線矢印で示すように、凝縮チューブ部205の表面に付着した凝縮水Wcは凝縮チューブ部205から凝縮フィン206へスムーズに流れ、その凝縮フィン206へ流れた凝縮水Wcは、薄膜化しつつルーバ206aへと導かれる。そして、ルーバ206a周りで凝縮水Wcは冷媒と熱交換するので、その凝縮水Wcと冷媒との熱交換が凝縮部20で効率良く行われ、例えば、凝縮部20へ流下してきた全ての凝縮水Wcを蒸発させやすい。 (1) As described above, according to this embodiment, the condensation fins 206 have a plurality of fine grooves 206b formed to increase the hydrophilicity of the surface of the condensation fins 206 as the specific configuration 207. . Therefore, as indicated by the dashed arrow in FIG. 10, the condensed water Wc adhering to the surface of the condensation tube portion 205 smoothly flows from the condensation tube portion 205 to the condensation fins 206, and the condensed water Wc flowing to the condensation fins 206 is It is led to the louver 206a while being thinned. Since the condensed water Wc exchanges heat with the refrigerant around the louver 206a, the heat exchange between the condensed water Wc and the refrigerant is efficiently performed in the condenser 20. For example, all the condensed water flowing down to the condenser 20 It is easy to evaporate Wc.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the first embodiment. In addition, in the present embodiment, it is possible to obtain the same effects as in the first embodiment, which are provided by the configuration common to that of the first embodiment.
 なお、第1実施形態では熱交換器10に表面コーティング24a、207a、227aが施されているが、本実施形態では、その表面コーティング24a、207a、227aは熱交換器10に施されていてもよいし、施されていなくてもよい。このことは、特に断りのない限り、第1実施形態を基にした後述の実施形態でも同様である。 Although the surface coatings 24a, 207a, and 227a are applied to the heat exchanger 10 in the first embodiment, the surface coatings 24a, 207a, and 227a may be applied to the heat exchanger 10 in the present embodiment. It may or may not be applied. Unless otherwise specified, this also applies to embodiments described later based on the first embodiment.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
(Third embodiment)
Next, a third embodiment will be described. In this embodiment, differences from the above-described first embodiment will be mainly described.
 本実施形態では、図11、図12に示すように、熱交換器10の中間部24は、蒸発部22側から凝縮部20側へと延伸する複数の凹形状部242を有している。その凹形状部242は、その凹形状部242が延伸する方向(具体的には、熱交換器縦方向Dv)に垂直な断面が凹形状を成すように形成されている。 In this embodiment, as shown in FIGS. 11 and 12, the intermediate section 24 of the heat exchanger 10 has a plurality of recessed sections 242 extending from the evaporating section 22 side to the condensing section 20 side. The recessed portion 242 is formed such that a cross section perpendicular to the direction in which the recessed portion 242 extends (specifically, the longitudinal direction Dv of the heat exchanger) has a recessed shape.
 詳細には、凹形状部242は、中間部24から凝縮部20と蒸発部22とのそれぞれへ連続して延伸している。言い換えれば、図11~図13に示すように、凝縮部20は、中間部24の凹形状部242から直列に連続するように形成され断面が凹形状を成す凝縮凹形状部208を有している。そして、蒸発部22は、中間部24の凹形状部242から直列に連続するように形成され断面が凹形状を成す蒸発凹形状部228を有している。なお、本実施形態の説明では、中間部24の凹形状部242を中間凹形状部242とも称する。 Specifically, the concave portion 242 extends continuously from the intermediate portion 24 to each of the condensation portion 20 and the evaporation portion 22 . In other words, as shown in FIGS. 11 to 13, the condensation section 20 has a condensation recessed portion 208 formed continuously in series from the recessed portion 242 of the intermediate portion 24 and having a concave cross section. there is The evaporating portion 22 has an evaporating concave portion 228 which is formed so as to continue in series from the concave portion 242 of the intermediate portion 24 and has a concave cross section. In addition, in the description of the present embodiment, the concave portion 242 of the intermediate portion 24 is also referred to as the intermediate concave portion 242 .
 すなわち、熱交換器10は、凝縮凹形状部208と中間凹形状部242と蒸発凹形状部228とから構成された複数の全体凹形状部39を備えている。具体的に、その複数の全体凹形状部39はそれぞれ、積層構成体38のうち熱交換器幅方向Dwの一方側の端縁部分に設けられ、その端縁部分で蒸発部22の上部から凝縮部20の下部まで熱交換器縦方向Dvに延伸している。従って、複数の全体凹形状部39は、凝縮部20では、その凝縮部20を通過する空気流れの上流側に設けられ、蒸発部22では、その蒸発部22を通過する空気流れの上流側に設けられている。 That is, the heat exchanger 10 includes a plurality of overall concave portions 39 each composed of a condensation concave portion 208 , an intermediate concave portion 242 and an evaporating concave portion 228 . Specifically, each of the plurality of overall concave portions 39 is provided at one edge portion of the laminated structure 38 in the heat exchanger width direction Dw. It extends in the heat exchanger longitudinal direction Dv to the lower part of the part 20 . Therefore, in the condenser section 20, the plurality of overall concave portions 39 are provided upstream of the air flow passing through the condenser section 20, and in the evaporator section 22, they are provided upstream of the air flow passing through the evaporator section 22. is provided.
 なお、凝縮凹形状部208は、その凝縮凹形状部208が設けられない場合と比較して、凝縮部20に流下してきた凝縮水Wcを凝縮部20で濡れ拡がらせるので、上記した凝縮部20の特定構成207として設けられていると言える。また、蒸発凹形状部228は、その蒸発凹形状部228が設けられない場合と比較して、凝縮水Wcを蒸発部22で蒸発凹形状部228に沿って濡れ拡がらせるので、本開示の或る冷却器構成に対応する。 Note that the condensation recessed portion 208 wets and spreads the condensed water Wc that has flowed down to the condensation portion 20 in comparison with the case where the condensation recessed portion 208 is not provided. 20 specific configurations 207 are provided. In addition, the evaporation recessed portion 228 wets and spreads the condensed water Wc along the evaporation recessed portion 228 in the evaporator 22 compared to the case where the evaporation recessed portion 228 is not provided. It corresponds to a certain cooler configuration.
 また、全体凹形状部39は積層構成体38毎に一対ずつ設けられている。その一対の全体凹形状部39のうちの一方は、第1板部材381のうち熱交換器幅方向Dwの一方側の端縁が積層方向Dsの一方側へ折り曲げられることにより形成されている。そして、その一対の全体凹形状部39のうちの他方は、第2板部材382のうち熱交換器幅方向Dwの一方側の端縁が積層方向Dsの他方側へ折り曲げられることにより形成されている。 A pair of overall recessed portions 39 are provided for each laminated structure 38 . One of the pair of overall concave portions 39 is formed by bending the edge of the first plate member 381 on one side in the heat exchanger width direction Dw toward one side in the stacking direction Ds. The other of the pair of overall concave portions 39 is formed by bending the edge of the second plate member 382 on one side in the heat exchanger width direction Dw toward the other side in the stacking direction Ds. there is
 従って、図12に示すように、中間部24において中間凹形状部242の断面形状である凹形状は、例えばV字状となっている。また、図13に示すように、凝縮部20のうち凝縮凹形状部208と凝縮チューブ部205の凸形状とが平行に並ぶ部分では、その両者の結合により、凝縮凹形状部208の断面形状である凹形状は、例えばU字状となっている。このことは蒸発部22でも同様である。 Therefore, as shown in FIG. 12, the cross-sectional concave shape of the intermediate concave portion 242 in the intermediate portion 24 is V-shaped, for example. Further, as shown in FIG. 13, in the portion of the condensation portion 20 in which the condensation recessed portion 208 and the convex shape of the condensation tube portion 205 are aligned in parallel, the cross-sectional shape of the condensation recessed portion 208 is changed by the coupling of the two. A certain concave shape is, for example, a U shape. This is the same for the evaporator 22 as well.
 (1)上述したように、本実施形態によれば、熱交換器10の中間部24は、蒸発部22側から凝縮部20側へと延伸する複数の凹形状部242を有している。そして、その中間部24の凹形状部242は、その凹形状部242が延伸する方向に垂直な断面が凹形状を成すように形成されている。従って、図12に示すように中間部24の凹形状部242の内側で凝縮水Wcを案内して凝縮部20へ導くことが可能である。 (1) As described above, according to the present embodiment, the intermediate portion 24 of the heat exchanger 10 has a plurality of concave portions 242 extending from the evaporating portion 22 side to the condensing portion 20 side. The recessed portion 242 of the intermediate portion 24 is formed so that the cross section perpendicular to the direction in which the recessed portion 242 extends has a recessed shape. Therefore, as shown in FIG. 12, it is possible to guide the condensed water Wc inside the recessed portion 242 of the intermediate portion 24 and lead it to the condensation portion 20 .
 そして、中間部24の凹形状部242は、中間部24に付着した凝縮水Wcを濡れ拡がらせるように作用するので、その凝縮水Wcの濡れ拡がりを蒸発部22と比較して同じまたはそれ以上に促進する促進構成として設けられていると言える。 The recessed portion 242 of the intermediate portion 24 acts to wet and spread the condensed water Wc adhering to the intermediate portion 24 , so that the wetting and spreading of the condensed water Wc is the same as that of the evaporating portion 22 . It can be said that it is provided as a promotion configuration for promoting the above.
 (2)また、本実施形態によれば、図11に示すように、中間部24の凹形状部242は、中間部24から凝縮部20と蒸発部22とのそれぞれへ連続して延伸している。そして、その中間部24の凹形状部242から延伸して形成された凝縮凹形状部208は、凝縮部20では、その凝縮部20を通過する空気流れの上流側に設けられている。 (2) Further, according to the present embodiment, as shown in FIG. 11, the concave portion 242 of the intermediate portion 24 extends continuously from the intermediate portion 24 to the condensation portion 20 and the evaporation portion 22 respectively. there is The condensation concave portion 208 formed by extending from the concave portion 242 of the intermediate portion 24 is provided upstream of the air flow passing through the condensation portion 20 in the condensation portion 20 .
 従って、蒸発部22で発生した凝縮水Wcを凝縮部20のうちの空気流れ上流側へ導くことができる。これにより、凝縮部20を通過する空気に従って凝縮水Wcが凝縮部20で濡れ拡がりやすくなり、凝縮水Wcを薄膜化して凝縮水Wcの蒸発を促進することが可能である。このことは、本実施形態の熱交換器10の上側が下側に対し凝縮部20での空気流れ上流側(別言すると、上記第2の空気通路の上流側)に位置するように熱交換器10が鉛直方向Dgに対して傾斜しているので、特に有効である。 Therefore, the condensed water Wc generated in the evaporating section 22 can be guided to the air flow upstream side of the condensing section 20 . This makes it easier for the condensed water Wc to spread in the condensing part 20 along with the air passing through the condensing part 20, making it possible to reduce the thickness of the condensed water Wc and promote the evaporation of the condensed water Wc. This means that the upper side of the heat exchanger 10 of the present embodiment is located on the upstream side of the air flow in the condenser section 20 (in other words, the upstream side of the second air passage) with respect to the lower side. This is particularly effective because the container 10 is inclined with respect to the vertical direction Dg.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the first embodiment. In addition, in the present embodiment, it is possible to obtain the same effects as in the first embodiment, which are provided by the configuration common to that of the first embodiment.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態と組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described second embodiment.
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described. In this embodiment, differences from the above-described first embodiment will be mainly described.
 図14に示すように、本実施形態では、中間面241に、複数の溝241aが形成されている。この複数の溝241aは、鉛直方向Dgへ延びる縦溝である。詳しく言うと、本実施形態の複数の溝241aは、鉛直方向Dgに沿って延びる縦溝である。また、図14には、積層方向Dsの他方側を向いた中間面241が図示されているが、複数の溝241aは、積層方向Dsの他方側を向いた中間面241だけでなく、積層方向Dsの一方側を向いた中間面241にも図14の図示と同様に形成されている。 As shown in FIG. 14, a plurality of grooves 241a are formed in the intermediate surface 241 in this embodiment. The plurality of grooves 241a are longitudinal grooves extending in the vertical direction Dg. Specifically, the plurality of grooves 241a of the present embodiment are longitudinal grooves extending along the vertical direction Dg. 14 shows the intermediate surface 241 facing the other side in the stacking direction Ds, the plurality of grooves 241a are formed not only in the intermediate surface 241 facing the other side in the stacking direction Ds but also in the stacking direction. An intermediate surface 241 facing one side of Ds is also formed in the same manner as shown in FIG.
 例えば本実施形態では、中間面241の複数の溝241aは、中間部24の全体に分布していてもよいが、本実施形態では、中間部24のうち熱交換器幅方向Dwの一方側に偏って分布するように設けられている。詳細には、中間面241の複数の溝241aは、積層構成体38の貫通孔38aに対し熱交換器幅方向Dwの一方側に設けられている。 For example, in the present embodiment, the plurality of grooves 241a of the intermediate surface 241 may be distributed over the entire intermediate portion 24. It is provided so as to be unevenly distributed. Specifically, the plurality of grooves 241a of the intermediate surface 241 are provided on one side of the through hole 38a of the laminated structure 38 in the heat exchanger width direction Dw.
 (1)上述したように、本実施形態によれば、中間面241に、複数の溝241aが形成されている。これにより、中間面241に付着した凝縮水Wcは複数の溝241a内に浸透しながら濡れ拡がるので、凝縮水Wcを滞留させずに凝縮部20へスムーズに流すことが可能である。 (1) As described above, according to this embodiment, the intermediate surface 241 is formed with a plurality of grooves 241a. As a result, the condensed water Wc adhering to the intermediate surface 241 spreads while permeating into the plurality of grooves 241a.
 そして、中間面241の複数の溝241aは、その中間面241に付着した凝縮水Wcを濡れ拡がらせるように作用するので、その凝縮水Wcの濡れ拡がりを蒸発部22と比較して同じまたはそれ以上に促進する促進構成として設けられていると言える。 Since the plurality of grooves 241a of the intermediate surface 241 act to spread the condensed water Wc adhering to the intermediate surface 241, the wet spreading of the condensed water Wc is the same or larger than that of the evaporating section 22. It can be said that it is provided as a promotion configuration for further promotion.
 (2)また、本実施形態によれば、中間面241に形成された複数の溝241aは、鉛直方向Dgへ延びる縦溝である。従って、その複数の溝241aは、中間面241に付着した凝縮水Wcを鉛直方向Dgに濡れ拡がらせるように作用する。そのため、その複数の溝241aの作用と重力の作用との相乗効果により、凝縮水Wcが凝縮部20へ流下することを促進することが可能である。なお、本実施形態で鉛直方向Dgへ延びる縦溝は、鉛直方向Dgと平行に延びている必要はなく、上下に延びていれば、鉛直方向Dgに対し傾いて延びていても差し支えない。 (2) Further, according to the present embodiment, the plurality of grooves 241a formed in the intermediate surface 241 are vertical grooves extending in the vertical direction Dg. Therefore, the plurality of grooves 241a act to wet and spread the condensed water Wc adhering to the intermediate surface 241 in the vertical direction Dg. Therefore, the synergistic effect of the action of the plurality of grooves 241 a and the action of gravity can promote the flow of the condensed water Wc to the condensation section 20 . In this embodiment, the longitudinal grooves extending in the vertical direction Dg do not need to extend parallel to the vertical direction Dg, and may extend at an angle to the vertical direction Dg as long as they extend vertically.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the first embodiment. In addition, in the present embodiment, it is possible to obtain the same effects as in the first embodiment, which are provided by the configuration common to that of the first embodiment.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態または第3実施形態と組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described second or third embodiment.
 (第5実施形態)
 次に、第5実施形態について説明する。本実施形態では、前述の第4実施形態と異なる点を主として説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described. In this embodiment, differences from the above-described fourth embodiment will be mainly described.
 図15に示すように、本実施形態では、中間面241に形成された複数の溝241aは、鉛直方向Dgに沿っては延びていない。その複数の溝241aは、鉛直方向Dgに対し傾いて延びている。なお、中間面241の複数の溝241aは、鉛直方向Dgに対し傾いているが、鉛直方向Dgへ延びていることに変わりはない。 As shown in FIG. 15, in this embodiment, the plurality of grooves 241a formed in the intermediate surface 241 do not extend along the vertical direction Dg. The plurality of grooves 241a extend obliquely with respect to the vertical direction Dg. Although the plurality of grooves 241a of the intermediate surface 241 are inclined with respect to the vertical direction Dg, they still extend in the vertical direction Dg.
 そして、その複数の溝241aは、格子状に設けられている。従って、その複数の溝241aが単純に並列配置されている場合よりも中間面241の表面積を大きくできるので、中間面241の親水化に寄与し、中間面241上での水の薄膜化を促進することができる。 The plurality of grooves 241a are provided in a grid pattern. Therefore, the surface area of the intermediate surface 241 can be made larger than when the plurality of grooves 241a are simply arranged in parallel. can do.
 以上説明したことを除き、本実施形態は第4実施形態と同様である。そして、本実施形態では、前述の第4実施形態と共通の構成から奏される効果を第4実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the fourth embodiment. In addition, in the present embodiment, the same effects as in the fourth embodiment can be obtained from the configuration common to that of the fourth embodiment.
 (第6実施形態)
 次に、第6実施形態について説明する。本実施形態では、前述の第4実施形態と異なる点を主として説明する。
(Sixth embodiment)
Next, a sixth embodiment will be described. In this embodiment, differences from the above-described fourth embodiment will be mainly described.
 図16に示すように、本実施形態では第4実施形態と同様に、中間面241に、縦溝である複数の溝241aが形成されている。更に、本実施形態では、凝縮部20は、凝縮チューブ部205の表面に形成された複数の凝縮部表面溝209を特定構成207として有している。この点において、本実施形態は第4実施形態と異なっている。 As shown in FIG. 16, in this embodiment, a plurality of vertical grooves 241a are formed in an intermediate surface 241, as in the fourth embodiment. Further, in this embodiment, the condenser section 20 has a plurality of condensation section surface grooves 209 formed on the surface of the condenser tube section 205 as a specific feature 207 . In this respect, this embodiment differs from the fourth embodiment.
 具体的に、複数の凝縮部表面溝209は、凝縮チューブ部205の表面だけでなく、第1凝縮タンク構成部202周りの凝縮部20の表面にも形成されている。また、凝縮部表面溝209は、凝縮部20における積層方向Dsの一方側の表面にも他方側の表面にも形成されている。 Specifically, the plurality of condensation section surface grooves 209 are formed not only on the surface of the condensation tube section 205 but also on the surface of the condensation section 20 around the first condensation tank forming section 202 . Also, the condensation portion surface grooves 209 are formed on both the surface of the condensation portion 20 on one side and the surface on the other side in the stacking direction Ds.
 また、複数の凝縮部表面溝209のうちの一部は、中間面241に形成された複数の溝241aの一部に対し連続してつながっている。この凝縮部表面溝209の溝形状は中間面241の溝241aの溝形状と同じである。つまり、複数の凝縮部表面溝209は、鉛直方向Dgへ延びる縦溝である。詳しく言うと、本実施形態の複数の凝縮部表面溝209は、鉛直方向Dgに沿って延びる縦溝である。 Also, some of the plurality of condensation portion surface grooves 209 are continuously connected to some of the plurality of grooves 241 a formed in the intermediate surface 241 . The groove shape of the condensation portion surface groove 209 is the same as the groove shape of the groove 241 a of the intermediate surface 241 . That is, the plurality of condensation portion surface grooves 209 are longitudinal grooves extending in the vertical direction Dg. Specifically, the plurality of condensation portion surface grooves 209 of this embodiment are longitudinal grooves extending along the vertical direction Dg.
 例えば本実施形態では、複数の凝縮部表面溝209は、凝縮部20の表面全体に分布していてもよいが、本実施形態では、凝縮部20の表面のうち第1凝縮タンク構成部202の周りと凝縮チューブ部205の上部とにのみ設けられている。これらの第1凝縮タンク構成部202の周りと凝縮チューブ部205の上部は、凝縮部20に流下してきた凝縮水Wcが凝縮部20で先ず最初に付着する部位だからである。 For example, in the present embodiment, the plurality of condensation section surface grooves 209 may be distributed over the entire surface of the condensation section 20 . It is only provided around and on top of the condensation tube section 205 . This is because the condensed water Wc that has flowed down to the condensation section 20 first adheres to the surroundings of the first condensation tank forming section 202 and the upper portion of the condensation tube section 205 in the condensation section 20 .
 (1)上述したように、本実施形態によれば、凝縮部20は、凝縮チューブ部205の表面に形成された複数の凝縮部表面溝209を特定構成207として有している。これにより、その凝縮部表面溝209が形成された凝縮チューブ部205の表面に付着した凝縮水Wcは凝縮部表面溝209内に浸透しながら濡れ拡がるので、凝縮部20の表面で凝縮水Wcをスムーズに流すことが可能である。 (1) As described above, according to the present embodiment, the condensation section 20 has a plurality of condensation section surface grooves 209 formed on the surface of the condensation tube section 205 as the specific configuration 207 . As a result, the condensed water Wc adhering to the surface of the condensation tube portion 205 in which the condensation portion surface grooves 209 are formed spreads while permeating into the condensation portion surface grooves 209. It can flow smoothly.
 (2)また、本実施形態によれば、複数の凝縮部表面溝209は、鉛直方向Dgへ延びる縦溝である。従って、その複数の凝縮部表面溝209は、凝縮部表面溝209が形成された表面に付着した凝縮水Wcを鉛直方向Dgに濡れ拡がらせるように作用する。そのため、その複数の凝縮部表面溝209の作用と重力の作用との相乗効果により、凝縮水Wcが凝縮部20の表面で流れ拡がることを促進することが可能である。なお、本実施形態で鉛直方向Dgへ延びる縦溝は、鉛直方向Dgと平行に延びている必要はなく、上下に延びていれば、鉛直方向Dgに対し傾いて延びていても差し支えない。 (2) Further, according to the present embodiment, the plurality of condensation portion surface grooves 209 are longitudinal grooves extending in the vertical direction Dg. Therefore, the plurality of condensation portion surface grooves 209 act to wet and spread the condensed water Wc adhering to the surface on which the condensation portion surface grooves 209 are formed in the vertical direction Dg. Therefore, the synergistic effect of the action of the plurality of condensing section surface grooves 209 and the action of gravity can promote the flow and spread of the condensed water Wc on the surface of the condensing section 20 . In this embodiment, the longitudinal grooves extending in the vertical direction Dg do not need to extend parallel to the vertical direction Dg, and may extend at an angle to the vertical direction Dg as long as they extend vertically.
 以上説明したことを除き、本実施形態は第4実施形態と同様である。そして、本実施形態では、前述の第4実施形態と共通の構成から奏される効果を第4実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the fourth embodiment. In addition, in the present embodiment, the same effects as in the fourth embodiment can be obtained from the configuration common to that of the fourth embodiment.
 (第7実施形態)
 次に、第7実施形態について説明する。本実施形態では、前述の第6実施形態と異なる点を主として説明する。
(Seventh embodiment)
Next, a seventh embodiment will be described. In this embodiment, differences from the sixth embodiment described above will be mainly described.
 図17に示すように、本実施形態では、凝縮部20の表面に形成された複数の凝縮部表面溝209は、図15に示された中間面241の溝241aと同様に格子状に設けられている。従って、その複数の凝縮部表面溝209が単純に並列配置されている場合よりも凝縮部20の表面積を大きくできるので、凝縮部20の表面の親水化に寄与し、凝縮部20の表面上での水の薄膜化を促進することができる。 As shown in FIG. 17, in the present embodiment, a plurality of condensation section surface grooves 209 formed on the surface of the condensation section 20 are provided in a lattice similar to the grooves 241a of the intermediate surface 241 shown in FIG. ing. Therefore, since the surface area of the condensation section 20 can be made larger than when the plurality of condensation section surface grooves 209 are simply arranged in parallel, the surface of the condensation section 20 can be made hydrophilic, and the surface of the condensation section 20 can be of water can be promoted.
 以上説明したことを除き、本実施形態は第6実施形態と同様である。そして、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the sixth embodiment. In addition, in the present embodiment, the same effects as in the sixth embodiment can be obtained from the same configuration as in the sixth embodiment.
 (第8実施形態)
 次に、第8実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
(Eighth embodiment)
Next, an eighth embodiment will be described. In this embodiment, differences from the above-described first embodiment will be mainly described.
 図18、図19に示すように、本実施形態では、凝縮部20と蒸発部22はそれぞれ一方側サイドプレート部30と他方側サイドプレート部32とに固定されているが、直接にはつながっていない。蒸発部22は、凝縮部20に対し熱交換器縦方向Dvに間隔をあけて離れて配置されている。 As shown in FIGS. 18 and 19, in this embodiment, the condensation section 20 and the evaporation section 22 are fixed to the one side plate section 30 and the other side plate section 32, respectively, but are not directly connected. do not have. The evaporating section 22 is spaced apart from the condensing section 20 in the longitudinal direction Dv of the heat exchanger.
 そのため、本実施形態において熱交換器10は、第1実施形態の中間部24に相当する構成を備えていない。なお、本実施形態では、第1実施形態と同様に、熱交換器10に表面コーティング207a、227aが施されている。 Therefore, in this embodiment, the heat exchanger 10 does not have a configuration corresponding to the intermediate section 24 of the first embodiment. In addition, in this embodiment, surface coatings 207a and 227a are applied to the heat exchanger 10 in the same manner as in the first embodiment.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the first embodiment. In addition, in the present embodiment, it is possible to obtain the same effects as in the first embodiment, which are provided by the configuration common to that of the first embodiment.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2、第3、第6、第7実施形態の何れかと組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with any of the second, third, sixth, and seventh embodiments described above.
 (第9実施形態)
 次に、第9実施形態について説明する。本実施形態では、前述の第8実施形態と異なる点を主として説明する。
(Ninth embodiment)
Next, a ninth embodiment will be described. In this embodiment, differences from the eighth embodiment described above will be mainly described.
 図20に示すように、本実施形態では、凝縮部20と蒸発部22との間の隙間に、その凝縮部20および蒸発部22とは別の部品として構成された中間部24が挿入されている。これにより、凝縮部20と蒸発部22は、その中間部24を介して熱交換器縦方向Dvに連結する。本実施形態の中間部24は、第1実施形態の中間部24と同様に凝縮水Wcの流下を促す機能を備えており、本実施形態の中間部24には、第1実施形態と同様の親水性コーティングである表面コーティング24a(図7参照)が施されている。 As shown in FIG. 20, in this embodiment, an intermediate portion 24 configured as a component separate from the condensation portion 20 and the evaporation portion 22 is inserted into the gap between the condensation portion 20 and the evaporation portion 22. there is As a result, the condenser section 20 and the evaporator section 22 are connected to each other in the longitudinal direction Dv of the heat exchanger via the intermediate section 24 . The intermediate portion 24 of the present embodiment has a function of promoting the flow of the condensed water Wc similarly to the intermediate portion 24 of the first embodiment. A surface coating 24a (see FIG. 7), which is a hydrophilic coating, is applied.
 また、本実施形態の中間部24の表面は、蒸発部22の表面と凝縮部20の表面とのそれぞれに対し段差を生じず滑らかにつながるように形成されている。蒸発部22から中間部24を介して凝縮部20へ凝縮水Wcが流れることを妨げないようにするためである。 In addition, the surface of the intermediate portion 24 of the present embodiment is formed so as to be smoothly connected to the surface of the evaporating portion 22 and the surface of the condensing portion 20 without any step. This is to prevent the condensed water Wc from flowing from the evaporating portion 22 to the condensing portion 20 via the intermediate portion 24 .
 例えば、中間部24は、熱交換器10を収容し通風路を形成する空調ケースの一部として構成されていてもよい。或いは、中間部24は、その空調ケースとは別の部品として構成され熱交換器10と共に空調ケース内に収容されるものであってもよい。 For example, the intermediate part 24 may be configured as part of an air conditioning case that accommodates the heat exchanger 10 and forms a ventilation passage. Alternatively, the intermediate portion 24 may be configured as a component separate from the air conditioning case and housed in the air conditioning case together with the heat exchanger 10 .
 また、中間部24は積層方向Ds(図18参照)に並んで複数設けられており、その複数の中間部24は、複数ある第1凝縮タンク構成部202と蒸発チューブ部225との間の隙間それぞれに挿入されている。 A plurality of intermediate portions 24 are provided side by side in the stacking direction Ds (see FIG. 18). inserted in each.
 以上説明したことを除き、本実施形態は第8実施形態と同様である。そして、本実施形態では、前述の第8実施形態と共通の構成から奏される効果を第8実施形態と同様に得ることができる。 Except for what has been described above, this embodiment is the same as the eighth embodiment. In addition, in the present embodiment, the same effects as in the eighth embodiment can be obtained from the configuration common to that of the eighth embodiment.
 また、本実施形態の中間部24は第1実施形態の中間部24に対応しているので、その中間部24に関し、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Further, since the intermediate portion 24 of the present embodiment corresponds to the intermediate portion 24 of the first embodiment, the effect of the intermediate portion 24, which is provided by the configuration common to that of the first embodiment, is the same as that of the first embodiment. The form can be obtained as well.
 なお、本実施形態は第8実施形態に基づいた変形例であるが、本実施形態を前述の第2~第7実施形態の何れかと組み合わせることも可能である。 Although this embodiment is a modification based on the eighth embodiment, it is also possible to combine this embodiment with any of the above-described second to seventh embodiments.
 (他の実施形態)
 (1)上述の各実施形態では、例えば図3、図4に示すように、熱交換器10は、鉛直方向Dgに対して傾斜した姿勢で配置されているが、傾斜せずに鉛直方向Dgに沿って直立した姿勢で配置されていても差し支えない。
(Other embodiments)
(1) In each of the above-described embodiments, as shown in FIGS. 3 and 4, for example, the heat exchanger 10 is arranged in a posture inclined with respect to the vertical direction Dg. may be placed in an upright position along the
 (2)上述の第1実施形態では、図2、図5、図6に示す凝縮部20の表面コーティング207aと同じ表面コーティングが熱交換器10の全体に施されているが、これは一例である。例えば、蒸発部22に、表面コーティング227aが施されていないことも想定できる。その場合にも、凝縮部20の表面コーティング207aは、凝縮部20の表面に、蒸発部22と比較してその蒸発部22以上の親水性を与えることになる。 (2) In the first embodiment described above, the same surface coating as the surface coating 207a of the condenser section 20 shown in FIGS. be. For example, it can be assumed that the evaporation section 22 is not provided with the surface coating 227a. In that case, the surface coating 207a of the condensing section 20 will also render the surface of the condensing section 20 more hydrophilic than the evaporator section 22. FIG.
 また、蒸発部22には表面コーティング227aが施されず、中間部24には表面コーティング24a(図7参照)が施されていることも想定できる。その場合にも、中間部24の表面コーティング24aは、中間面241に、蒸発部22と比較してその蒸発部22以上の親水性を与えるものである。つまり、中間部24は、表面コーティング24aにより、中間部24に付着した凝縮水Wcの濡れ拡がりを、蒸発部22と比較してその蒸発部22以上に促進するように構成されていると言える。 It is also possible to assume that the evaporating section 22 is not provided with the surface coating 227a and the intermediate section 24 is provided with the surface coating 24a (see FIG. 7). In that case, the surface coating 24 a of the intermediate section 24 also renders the intermediate surface 241 more hydrophilic than the evaporator section 22 . That is, it can be said that the intermediate portion 24 is configured to promote the wetting and spreading of the condensed water Wc adhering to the intermediate portion 24 by the surface coating 24a more than the evaporating portion 22.
 (3)上述の第2実施形態では、図8に示すように、凝縮フィン206に設けられた複数の微細溝206bはそれぞれ、熱交換器幅方向Dwに交差する方向へ延伸しており、熱交換器幅方向Dwに所定の間隔をあけて並んで配置されているが、これは一例である。例えば、その複数の微細溝206bは格子状に設けられていてもよいし、湾曲して延びるように凝縮フィン206の表面に形成されていてもよい。 (3) In the second embodiment described above, as shown in FIG. 8, each of the plurality of fine grooves 206b provided in the condensation fin 206 extends in a direction intersecting the heat exchanger width direction Dw. Although they are arranged side by side at predetermined intervals in the exchanger width direction Dw, this is an example. For example, the plurality of fine grooves 206b may be provided in a grid pattern, or may be formed on the surface of the condensation fins 206 so as to extend curvedly.
 (4)上述の第3実施形態では、図11に示すように、熱交換器10は、凝縮凹形状部208と中間凹形状部242と蒸発凹形状部228とから構成された複数の全体凹形状部39を備えているが、これは一例である。例えば、熱交換器10において、中間凹形状部242は設けられているが、凝縮凹形状部208と蒸発凹形状部228とのうちの一方または両方が設けられていないということも想定できる。 (4) In the third embodiment described above, as shown in FIG. The inclusion of contoured portion 39 is an example. For example, it is conceivable that in heat exchanger 10 intermediate recess 242 is provided, but one or both of condensing recess 208 and evaporating recess 228 are not provided.
 (5)上述の第6実施形態では、図16に示すように、凝縮部20の複数の凝縮部表面溝209だけでなく、中間面241に形成された複数の溝241aも設けられているが、その中間面241の複数の溝241aは設けられていなくても差し支えない。 (5) In the sixth embodiment described above, as shown in FIG. 16, not only the plurality of condensation section surface grooves 209 of the condensation section 20 but also the plurality of grooves 241a formed in the intermediate surface 241 are provided. , the plurality of grooves 241a on the intermediate surface 241 thereof may be omitted.
 (6)上述の各実施形態では、図1、図2に示すように、熱交換器10と減圧装置15とアキュムレータ16は別々の装置として構成されているが、これは一例である。例えば図21に示すように、熱交換器10と減圧装置15とアキュムレータ16とが一体構成になっていても差し支えない。なお、図21に示された減圧装置15はキャピラリーチューブであるが、その減圧装置15の形式に限定はない。 (6) In each of the above-described embodiments, as shown in FIGS. 1 and 2, the heat exchanger 10, the pressure reducing device 15, and the accumulator 16 are configured as separate devices, but this is an example. For example, as shown in FIG. 21, the heat exchanger 10, decompression device 15, and accumulator 16 may be integrated. Although the decompression device 15 shown in FIG. 21 is a capillary tube, the type of the decompression device 15 is not limited.
 (7)上述の第1実施形態では、図3、図4に示すように、中間部24は積層構成体38の一部分であるので、中間部24の形状は平板状であるが、その中間部24の形状に限定はない。例えば、特許文献1には、蒸発部22に対応するエバポレータから凝縮部20に対応するコンデンサへ凝縮水を導く導水路が内部に形成された管状部材が開示されているが、第1実施形態の中間部24は、そのような管状部材であってもよい。その場合、その管状部材のうち導水路に面する内側壁面が中間面241に対応し、例えば、その管状部材の内側壁面に親水性コーティングが施される。 (7) In the first embodiment described above, as shown in FIGS. The shape of 24 is not limited. For example, Patent Document 1 discloses a tubular member in which a water conduit is formed to guide condensed water from an evaporator corresponding to the evaporating section 22 to a condenser corresponding to the condensing section 20. Intermediate section 24 may be such a tubular member. In that case, the inner wall surface of the tubular member facing the water conduit corresponds to the intermediate surface 241, and for example, the inner wall surface of the tubular member is coated with a hydrophilic coating.
 (8)上述の第1実施形態では蒸発部22の表面に施された表面コーティング227aが本開示の或る冷却器構成に対応し、第3実施形態では蒸発凹形状部228が本開示の或る冷却器構成に対応するが、これらは一例である。例えば、第2実施形態の凝縮フィン206に設けられた複数の微細溝206b(図8参照)に相当する複数の微細溝が蒸発部22の表面に設けられている場合には、その蒸発部22の複数の微細溝が、本開示の或る冷却器構成に対応する。 (8) In the first embodiment described above, the surface coating 227a applied to the surface of the evaporator section 22 corresponds to a certain cooler configuration of the present disclosure, and in the third embodiment, the evaporative concave section 228 corresponds to the certain cooler configuration of the present disclosure. These are examples only. For example, when a plurality of fine grooves corresponding to the plurality of fine grooves 206b (see FIG. 8) provided in the condensation fins 206 of the second embodiment are provided on the surface of the evaporator 22, the evaporator 22 corresponds to certain cooler configurations of the present disclosure.
 (9)上述の第1、第9実施形態では、図4、図20に示すように、熱交換器幅方向Dwにおける凝縮部20の位置と蒸発部22の位置とが互いに揃うように、その凝縮部20と蒸発部22は並んで配置されているが、これは一例である。例えば図22、図23に示すように、熱交換器幅方向Dwにおける凝縮部20の位置と蒸発部22の位置とが互いにずれるように、その凝縮部20と蒸発部22とが並んで配置されていても差し支えない。なお、図22、図23の例では、凝縮部20および蒸発部22は、鉛直方向Dgに対して傾斜せず鉛直方向Dgに沿った姿勢とされている。 (9) In the above-described first and ninth embodiments, as shown in FIGS. 4 and 20, the position of the condenser section 20 and the position of the evaporator section 22 in the heat exchanger width direction Dw are aligned with each other. Although the condensation section 20 and the evaporation section 22 are arranged side by side, this is an example. For example, as shown in FIGS. 22 and 23, the condensation section 20 and the evaporation section 22 are arranged side by side so that the positions of the condensation section 20 and the evaporation section 22 in the width direction Dw of the heat exchanger are shifted from each other. It doesn't matter if it is. 22 and 23, the condensation section 20 and the evaporation section 22 are not inclined with respect to the vertical direction Dg, but are oriented along the vertical direction Dg.
 (10)なお、本開示は、上述の実施形態に限定されることなく、種々変形して実施することができる。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。 (10) It should be noted that the present disclosure is not limited to the above-described embodiments, and can be implemented in various modifications. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible.
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle It is not limited to that specific number, except when In addition, in each of the above-described embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, unless otherwise specified or in principle limited to a specific material, shape, positional relationship, etc. , its material, shape, positional relationship, and the like.

Claims (14)

  1.  冷媒と空気とを熱交換させる熱交換システムであって、
     冷媒で空気を冷却する冷却器(22)と、
     前記冷却器に対し下側に位置し、前記冷却器で生じた凝縮水(Wc)が流下してくるように配置され、特定構成(207)を有し、冷媒から空気へ放熱させる放熱器(20)とを備え、
     前記特定構成は、前記放熱器で、該放熱器に流下してきた前記凝縮水を、前記特定構成が設けられない場合と比較してより濡れ拡がらせるものである、熱交換システム。
    A heat exchange system for exchanging heat between a refrigerant and air,
    a cooler (22) that cools the air with a refrigerant;
    A radiator ( 20) and
    The heat exchange system, wherein the specific configuration causes the condensed water that has flowed down to the radiator to wet and spread more than when the specific configuration is not provided.
  2.  前記放熱器は、該放熱器に施された表面コーティング(207a)を前記特定構成として有し、
     前記放熱器の前記表面コーティングは、前記放熱器の表面に、前記冷却器と比較して同じまたはそれ以上の親水性を与えるものであって、前記放熱器の前記表面コーティングが設けられない場合よりも前記放熱器の表面の親水性を向上させるものである、請求項1に記載の熱交換システム。
    The radiator has a surface coating (207a) applied to the radiator as the specific configuration,
    The surface coating of the radiator imparts the same or greater hydrophilicity to the surface of the radiator as compared to the cooler than if the surface coating of the radiator were not provided. 2. The heat exchange system of claim 1, wherein also enhances the hydrophilicity of the surface of the radiator.
  3.  前記放熱器は、該放熱器のうち空気が通過する通風空間(20a)に配置された放熱器フィン(206)を有し、
     前記放熱器フィンは、該放熱器フィンの表面の親水性を高めるように形成された複数の微細溝(206b)を前記特定構成として有している、請求項1または2に記載の熱交換システム。
    The radiator has radiator fins (206) arranged in a ventilation space (20a) through which air passes in the radiator,
    The heat exchange system according to claim 1 or 2, wherein the radiator fins have, as the specific configuration, a plurality of fine grooves (206b) formed to increase the hydrophilicity of the surfaces of the radiator fins. .
  4.  前記冷却器と前記放熱器との間に設けられ、前記凝縮水が前記冷却器から前記放熱器へ流れる途中に配置される中間部(24)を備え、
     前記中間部は、前記冷却器と比較して同じまたはそれ以上に前記凝縮水の濡れ拡がりを促進する促進構成(24a、241a、242)を有し、
     該促進構成は、該促進構成が設けられない場合よりも前記凝縮水の濡れ拡がりを促進する、請求項1ないし3のいずれか1つに記載の熱交換システム。
    an intermediate portion (24) provided between the cooler and the radiator and located in the middle of the flow of the condensed water from the cooler to the radiator;
    the intermediate portion has an facilitating configuration (24a, 241a, 242) that promotes the wetting and spreading of the condensed water as much or more than the cooler;
    4. A heat exchange system according to any one of the preceding claims, wherein the facilitating arrangement facilitates the spreading of the condensate more than if the facilitating arrangement were not provided.
  5.  前記冷却器と前記放熱器との間に設けられ、前記凝縮水が前記冷却器から前記放熱器へ流れる途中に配置される中間面(241)が形成された中間部(24)を備え、
     前記中間部は、前記中間面に施された表面コーティング(24a)を有し、
     前記中間部の前記表面コーティングは、前記中間面に、前記冷却器と比較して同じまたはそれ以上の親水性を与えるものであって、前記中間部の前記表面コーティングが設けられない場合よりも前記中間面の親水性を向上させるものである、請求項1ないし3のいずれか1つに記載の熱交換システム。
    an intermediate portion (24) provided between the cooler and the radiator and having an intermediate surface (241) disposed in the middle of the flow of the condensed water from the cooler to the radiator;
    said intermediate portion having a surface coating (24a) applied to said intermediate surface;
    The surface coating of the intermediate section imparts the same or greater hydrophilicity to the intermediate surface as compared to the cooler, and the surface coating of the intermediate section is more hydrophilic than if the surface coating of the intermediate section were not provided. 4. A heat exchange system according to any one of claims 1 to 3, which improves the hydrophilicity of the intermediate surface.
  6.  前記冷却器と前記放熱器との間に設けられ、前記凝縮水が前記冷却器から前記放熱器へ流れる途中に配置される中間部(24)を備え、
     前記中間部は、前記冷却器側から前記放熱器側へと延伸する凹形状部(242)を有し、
     前記凹形状部は、該凹形状部が延伸する方向に垂直な断面が凹形状を成すように形成されている、請求項1ないし3のいずれか1つに記載の熱交換システム。
    an intermediate portion (24) provided between the cooler and the radiator and located in the middle of the flow of the condensed water from the cooler to the radiator;
    the intermediate portion has a concave portion (242) extending from the cooler side to the radiator side;
    4. The heat exchange system according to any one of claims 1 to 3, wherein said concave portion is formed so that a cross section perpendicular to a direction in which said concave portion extends has a concave shape.
  7.  前記凹形状部は、前記冷却器と前記放熱器とのそれぞれへ連続して延伸し、前記放熱器では、該放熱器を通過する空気流れの上流側に設けられる、請求項6に記載の熱交換システム。 7. The heat sink of claim 6, wherein the concave portion extends continuously to each of the cooler and the radiator, and in the radiator is provided upstream of air flow passing through the radiator. exchange system.
  8.  前記冷却器と前記放熱器との間に設けられ、前記凝縮水が前記冷却器から前記放熱器へ流れる途中に配置される中間面(241)が形成された中間部(24)を備え、
     前記中間面には、複数の溝(241a)が形成されている、請求項1ないし3のいずれか1つに記載の熱交換システム。
    an intermediate portion (24) provided between the cooler and the radiator and having an intermediate surface (241) disposed in the middle of the flow of the condensed water from the cooler to the radiator;
    The heat exchange system according to any one of claims 1 to 3, wherein the intermediate surface is formed with a plurality of grooves (241a).
  9.  前記中間面に形成された複数の前記溝には、上下方向(Dg)へ延びる縦溝が含まれる、請求項8に記載の熱交換システム。 The heat exchange system according to claim 8, wherein the plurality of grooves formed in the intermediate surface include vertical grooves extending in the vertical direction (Dg).
  10.  前記放熱器は、冷媒が流通する放熱器チューブ(205)を有し、
     前記放熱器は、前記放熱器チューブの表面に形成された複数の溝(209)を前記特定構成として有している、請求項1ないし9のいずれか1つに記載の熱交換システム。
    The radiator has a radiator tube (205) through which a refrigerant flows,
    10. The heat exchange system according to any one of claims 1 to 9, wherein the radiator has, as the specific configuration, a plurality of grooves (209) formed on the surface of the radiator tube.
  11.  前記放熱器チューブの表面に形成された複数の前記溝には、上下方向(Dg)へ延びる縦溝が含まれる、請求項10に記載の熱交換システム。 The heat exchange system according to claim 10, wherein the plurality of grooves formed on the surface of the radiator tube include vertical grooves extending in the vertical direction (Dg).
  12.  前記放熱器チューブは複数設けられ、
     前記冷却器は、冷媒が流通する複数の冷却器チューブ(225)を有し、
     複数の前記冷却器チューブは、複数の前記放熱器チューブとそれぞれ一体に構成されている、請求項10または11に記載の熱交換システム。
    A plurality of the radiator tubes are provided,
    the cooler has a plurality of cooler tubes (225) through which a refrigerant flows;
    12. A heat exchange system according to claim 10 or 11, wherein the plurality of cooler tubes are integrally formed with the plurality of radiator tubes respectively.
  13.  前記冷却器は、冷媒が流通する複数の冷却器チューブ(225)を有し、
     前記放熱器は、冷媒が流通する複数の放熱器チューブ(205)を有し、
     複数の前記冷却器チューブは、複数の前記放熱器チューブとそれぞれ一体に構成されている、請求項1ないし9のいずれか1つに記載の熱交換システム。
    the cooler has a plurality of cooler tubes (225) through which a refrigerant flows;
    The radiator has a plurality of radiator tubes (205) through which a refrigerant flows,
    10. The heat exchange system of any one of claims 1 to 9, wherein a plurality of said cooler tubes are integrally formed with a plurality of said radiator tubes respectively.
  14.  前記冷却器は、或る冷却器構成(227a、228)を有し、
     前記或る冷却器構成は、該或る冷却器構成が設けられない場合と比較して、前記凝縮水を前記冷却器で濡れ拡がらせるものである、請求項1ないし13のいずれか1つに記載の熱交換システム。
    said cooler has a cooler configuration (227a, 228);
    14. Any one of claims 1 to 13, wherein the certain cooler arrangement allows the condensed water to spread over the cooler compared to when the certain cooler arrangement is not provided. The heat exchange system according to .
PCT/JP2022/013847 2021-05-18 2022-03-24 Heat exchange system WO2022244461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021084033A JP2022177628A (en) 2021-05-18 2021-05-18 heat exchange system
JP2021-084033 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022244461A1 true WO2022244461A1 (en) 2022-11-24

Family

ID=84141190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013847 WO2022244461A1 (en) 2021-05-18 2022-03-24 Heat exchange system

Country Status (2)

Country Link
JP (1) JP2022177628A (en)
WO (1) WO2022244461A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861699A (en) * 1994-06-15 1996-03-08 Nippondenso Co Ltd Unitary type cooler
US20170167737A1 (en) * 2014-06-05 2017-06-15 Samsung Electronics Co., Ltd Integrated air conditioner
WO2021015272A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heat exchanger and air conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861699A (en) * 1994-06-15 1996-03-08 Nippondenso Co Ltd Unitary type cooler
US20170167737A1 (en) * 2014-06-05 2017-06-15 Samsung Electronics Co., Ltd Integrated air conditioner
WO2021015272A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heat exchanger and air conditioning device

Also Published As

Publication number Publication date
JP2022177628A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
JP2006322698A (en) Heat exchanger
US20070084589A1 (en) Evaporator
JPWO2015004719A1 (en) Laminated header, heat exchanger, air conditioner, and method of joining laminated header plate and pipe
JP2008116102A (en) Heat exchanger for cooling
JP2010025477A (en) Heat exchanger
JP2000329486A (en) Finned heat exchanger
US7013952B2 (en) Stack type heat exchanger
JP2010025479A (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
JP2008298391A (en) Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
JP2010025478A (en) Heat exchanger
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
CN110741220B (en) Heat exchanger
WO2022244461A1 (en) Heat exchange system
JP6747384B2 (en) Heat exchanger and corrugated fins
EP3550247B1 (en) Heat exchanger and air conditioner
JP2010025481A (en) Heat exchanger
JP3812021B2 (en) Laminate heat exchanger
JP7413875B2 (en) Heat exchanger
JP2010025482A (en) Heat exchanger
WO2021015272A1 (en) Heat exchanger and air conditioning device
JP2010025480A (en) Heat exchanger and method for manufacturing the heat exchanger
JP2022043207A (en) Heat exchanger, outdoor machine, and refrigeration cycle device
WO2022202102A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804379

Country of ref document: EP

Kind code of ref document: A1